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Abstract. We propose new zero-knowledge proofs for efficient and post-
quantum ring confidential transaction (RingCT) protocols based on lat-
tice assumptions in Blockchain systems. First, we introduce an inner-
product based linear equation satisfiability approach for balance proofs
with a wide range (e.g. 64-bit precision). Unlike existing balance proofs
that require additional proofs for some “corrector values” [CCS’19], our
approach avoids the corrector values for better efficiency. Furthermore,
we design a ring signature scheme to efficiently hide a user’s identity
in large anonymity sets. Different from existing approaches that adopt
a one-out-of-many proof [CCS’19, Crypto’19], we show that a linear
sum proof suffices in ring signatures which could avoid the costly bi-
nary proof part. We further use the idea of “unbalanced” relations to
build a logarithmic-size ring signature scheme. Finally, we show how to
adopt these techniques in RingCT protocols and implement a proto-
type to compare the performance with existing approaches. The results
show our solutions can reduce about 25% proof size of Crypto’19, and
up to 70% proof size, 30% proving time, and 20% verification time of
CCS’19. We also believe our techniques are of independent interest for
other privacy-preserving applications such as secure e-voting and are ap-
plicable in a generic setting.

Keywords: Lattice-based cryptography, zero-knowledge proof, balance proof,
ring signature, RingCT, blockchain

1 Introduction

Cryptocurrencies adopt the blockchain technique where each participant main-
tains a ledger of all transactions to avoid any tampering attempts from minority
attackers. In private/anonymous cryptocurrencies, the amount3 stored in each

? This is not the final version. The experiment part needs to be changed due to some
major changes.

3 In this paper, the “amount” refers to “account balance”. We avoid using balance
here as it conflicts with balance proofs.



account and the user’s identity need to be hidden from the outside world. Mean-
while, it also requires public verification to ensure each transaction is valid. Ex-
isting solutions such as Monero [33] and Zcash [35] adopt zero-knowledge proofs
(ZKPs) to prove useful statements without leaking any private information. For
instance, in Monero, a ring confidential transaction (RingCT) protocol is used
with a range proof to show all amounts are non-negative and the difference be-
tween outputs and inputs is zero (balance property), and a ring signature-like
approach to hide the identity of a spender with one-out-of-many proofs [29].
However, as the security of these implementations is mainly based on discrete
logarithm assumptions, they are at risk of potential attacks from quantum com-
puters.

This deficiency has impelled the development of “post-quantum” solutions.
Among all approaches, lattice-based cryptography is one of the most promising
candidates based on computational lattice problems. Unfortunately, the costs of
lattice-based solutions increase significantly in comparison with those in discrete
logarithm settings. Taking the range proof in Crypto’19 [15] as an example, a
single proof costs nearly 200KB size while the Bulletproofs protocol [11] costs
less than 1KB. Even worse, as the amounts in a RingCT protocol need to be com-
mitted separately, the efficient aggregation approach in [15] cannot be adopted.
MatRiCT (CCS’19 [18]) is the first lattice-based RingCT protocol to optimize
the proof size in a blockchain environment and is currently applied in Hcash [?].
By using a novel balance proof with hashed-message commitments (HMC) to
show a transaction is valid, MatRiCT reduces the size of commitments and al-
lows proofs on a wide range. Furthermore, it adopts techniques such as batched
commitments and rejection sampling for secrets with a fixed Hamming weight
in one-out-of-many proofs to improve the efficiency of the ring signature. How-
ever, the balance proof in MatRiCT requires some “corrector values” to show
the amount difference is a commitment to zero. Proving the corrector values are
properly generated imposes a prohibitively cost. Besides, the masking values of
each account are committed separately in MatRiCT. The proof size increases
when dealing with multiple accounts.

The main goal of this paper is to propose efficient, scalable, and post-quantum4

ZKPs for lattice-based RingCT protocols (e.g., MatRiCT). We first take an in-
depth analysis of the balance proof and ring signature in MatRiCT and discover
several interesting revelations (Section 3). Based on our analysis, we leverage
an inner-product relation and a partial amortization for binary proof to prove
the linear equation satisfiability for balance proofs and propose an “unbalanced”
linear sum proof for ring signatures (Section 4). We further design a novel linear
equation satisfiability proof and a new ring signature scheme which are more ef-
ficient than existing approaches (Section 5). With these techniques, we propose
efficient post-quantum ZKPs for RingCT protocols (Section 6). We also imple-

4 The post-quantum security referred in this paper relies on the hardness of “post-
quantum” lattice assumptions and does not necessarily involve security proofs in
quantum random oracle model [12,23]. We only use ROM for Fiat-Shamir transfor-
mation in the security analysis, as with [13,15–18].



ment a prototype and compare the performance with existing solutions (Section
7). Finally, we discuss some extensions (Section 8) and general applications (Sec-
tion 9) of our techniques.

We conclude our revelations as follows:

– “Corrector values” are unnecessary in a balance proof. We analyze the bal-
ance proof in MatRiCT and find the corrector values can be reduced without
sacrificing the security of the proof (Section 3.1).

– Verification of multiple accounts can be batched in one. To reduce the cost
in the verification of multiple accounts, we propose a partial amortization
for binary proofs to batch multiple relations (Section 3.2).

– Inner-product relation is efficient in proving linear equation satisfiability.
Based on our observation, we generalize balance proofs to a linear equation
satisfiability (Section 4.1 and 5.1) and show a more efficient balance proof
for RingCT protocol (Section 6.1).

– The binary proof is redundant in ring signatures. We analyze existing ring
signatures (one-out-of-many proofs) and show the binary proof used in these
approaches requires a larger parameter set. Furthermore, we prove it is suf-
ficient to use a linear sum proof for ring signatures without the binary proof
part in a one-out-of-many proof (Section 3.3).

– Unbalanced linear sum proof is secure and efficient for ring signatures. To
propose an efficient ring signature scheme, we leverage the idea of relaxed
relation and build our linear sum proof with an “unbalanced” relation (Sec-
tion 4.2 and 5.2). Furthermore, we design an efficient ring signature scheme
based on the unbalanced linear sum proof (Section 6.2).

2 Preliminaries

2.1 Related Work

In anonymous cryptocurrencies, RingCT protocols [18, 29, 36, 39] adopt range
proofs to show transaction amounts are valid and ring signature-like approaches
to hide a spender’s identity. We describe existing work in these two directions.

Range proofs. To guarantee the amount of each account in a confidential
transaction is valid, range proofs [11, 30, 32] are used in RingCT protocols. By
encapsulating the amounts in homomorphic commitments, the prover proves that
1) all the inputs and outputs are non-negative and 2) the sum of inputs equals
outputs. The proofs can be succinct and efficient with a trusted setup [6,19,21,
31], but will undermine the decentralized property of blockchain systems at the
same time where no particular trusted authority should be involved. Though
the trusted setup can be replaced by a secure multi-party computation, the
process is costly and may not be reusable when the application (i.e., circuit)
is updated [6, 21]. Currently, the smallest proof without a trusted setup is the
Bulletproofs protocol [11], which leverages the vector compression idea in [8].
However, these approaches fail to address quantum attacks as they are proposed
based on discrete logarithm assumptions.



One of the most promising post-quantum cryptography candidates is lattice-
based cryptography. Esgin et al. propose new range proofs in lattice settings
based on the unbounded-message commitment (UMC) scheme and further adopt
a new packing technique for efficient batch processing [15]. Unfortunately, the
size of a UMC commitment is linear to the message size which is not suitable for
large values such as amounts of different accounts. Besides, the batch processing
in [15] is only efficient when the amounts of all accounts are committed together
in a single commitment, while the amounts are usually committed separately in
a RingCT protocol. The first lattice-based RingCT approach is MatRiCT [18].
Instead of using UMC to commit to an amount directly, MatRiCT commits
to the bits of an amount with HMC [16] and further adopts a balance proof
with some “corrector values” to show the sums of inputs and outputs are equal.
MatRiCT+ [17] further reduces the proof size and running time of MatRiCT by
optimizing the underlying cyclotomic rings. Here we focus on MatRiCT since our
improvements are based on the techniques proposed in MatRiCT, which are quite
independent from the improvements in MatRiCT+. Though the efficiency has
been improved comparing with [15], a subtle issue prevents the use of MatRiCT
in general cases: the corrector values require additional range proofs when dealing
with multiple input and output accounts (more details in Section 3.1).

Ring signatures. To hide the identity of a signer, ring signatures (one-out-
of-many proofs) allow one to prove the knowledge of a secret key corresponding
to an element in a set of public keys. The idea of the ring signature is proposed by
Rivest, Shamir, and Tauman [34]. In discrete logarithm settings, logarithmic-size
ring signatures [7, 22] have been used in different applications. Most of current
anonymous cryptocurrencies are implemented based on discrete logarithm as-
sumptions which cannot provide post-quantum security.

On the side of lattice settings, linear-size ring signatures have been pro-
posed [5,27,37], but these approaches are inefficient for large anonymous groups.
Libert et al. [26] design a Merkle tree based accumulator and build a ZKP sys-
tem for this accumulator. With these tools, logarithmic-size ring and group sig-
natures are proposed. Furthermore, a linkable version of [26] (signatures created
by the same signer can be linked) is introduced in [38]. Though the signature size
of [26, 38] is logarithmic, the zero-knowledge arguments applied in the accumu-
lator require multiple protocol iterations (multi-shot proofs) to get a negligible
soundness error. Esgin et al. [16] introduce new tools for ZKPs to extend the
discrete logarithm proof techniques in [7,22] to lattice settings. Logarithmic-size
ring signatures can be easily achieved with these new techniques. A further im-
provement in [15] makes the underlying ZKPs achieve a negligible soundness er-
ror at a single protocol iteration (i.e., one-shot proof in Section 2.6) and reduces
the signature size accordingly. Following the blueprint of [15], MatRiCT [18]
batches commitments in binary proofs and improves the rejection sampling to
build a more efficient ring signature scheme. Besides, MatRiCT uses two sets
of compatible parameters for the ring signature to reduce the size (discussed in
Section 3.3).



2.2 Notations

We use Zq = Z/qZ to denote the ring of integers modulo q represented by the
range [− q−12 , q−12 ]. The rings are defined by R = Z[X]/(Xd + 1) and Rq =
Zq[X]/(Xd + 1) where d > 1 is a power of 2. Bold-face lower-case letters such
as a and bold-face capital letters such as A are used to denote column vectors
and matrices respectively. Commitments are denoted by capital letters such as C
even though they may be vectors. We use (a, b) to denote appending vector a to

b. For a vector a = (a0, · · · , ak−1), the norms are defined as ‖a‖ =
√∑k−1

i=0 a
2
i ,

‖a‖1 =
∑k−1
i=0 |ai|, and ‖a‖∞ = maxi |ai|. The norms of a polynomial are defined

in a similar way as a vector. Suppose x ∈ Zq, we denote xk = (1, x, x2, · · · , xk−1).
Furthermore, the inner-product of two k-dimensional vectors a and b is denoted
as 〈a, b〉 =

∑k−1
i=0 aibi and the Hadamard product is denoted as a ◦ b = (a0 ·

b0, · · · , ak−1 · bk−1). The Kronecker’s delta is denoted as δj,i such that δj,i = 1
when j = i and otherwise δj,i = 0. HW (x) denotes the Hamming weight of the
coefficient vector of x ∈ R. Uniform distribution on a set S is denoted by U(S),
and a ← S denotes sampling a from a distribution S, or uniformly sampling
from a set S. Smd indicates that totally md coefficients are sampled to generate
m polynomials in R of degree d. UB denotes the set of polynomials in R with
infinity norm at most B ∈ Z∗.

The challenge space in a Σ-protocol is defined as follows:

C = {x ∈ R : deg(x) = d− 1 ∧HW (x) = w ∧ ‖x‖∞ = p}. (1)

Clearly, we can observe ‖x‖1 ≤ pw and |C| =
(
d
w

)
· (2p)w. We denote all non-zero

challenges as C∗.

Lemma 1. (Lemma 3 in [15]) For any y1, · · · , yn ∈ C∗, we have ‖
∏n
i=1 yi‖∞ ≤

(2p)n · wn−1 and ‖
∏n
i=1 yi‖ ≤

√
d · (2p)n · wn−1.

2.3 Rejection Sampling

In Σ-protocols, a prover needs to encode its witness b as f with a challenge x
and a masking vector a, f = xb + a. In the M-SIS assumption (described in
Section 2.4), it is important to hide the distribution of b from the distribution of
(x,f). The most commonly used approach is the rejection sampling to restrict
the distribution of (x,f) being independent of b by rejecting f which are out of
bounds [28]. We summarize rejection sampling in Algorithm 1, where T = ‖b‖
and φ is a positive value to control the deviation of the normal distribution.
Returning 1 means f passes the rejection sampling.

2.4 M-SIS and M-LWE Problems

We define the two well-known lattice problems [24], module short integer solution
(M-SIS) and module learning with errors (M-LWE), which our schemes’ security
relies on.



Algorithm 1 Rejection Sampling

Rej(f , b, φ, T )

1: σ = φT ; µ(φ) = exp(12
φ + 1

2φ2 ); u← [0, 1)

2: if u > 1
µ(φ) · exp(−2〈f ,b〉+‖b‖

2

2σ2 ) then

3: Return ⊥
4: end if
5: Return 1

Definition 1. M-SIS(n,m, q, γ). Given A ← Rn×mq , the goal of the problem is
to find z ∈ Rmq such that Az = 0 mod q and 0 < ‖z‖ 6 γ.

Definition 2. M-LWE(n,m, q,B). Given UB be a distribution over Rq and s←
UnB be a secret key. Define LWE(q, s) as the distribution obtained by sampling
a ← Rnq , e ← UB and outputting (a, 〈a, s〉 + e). The goal of the problem is to
distinguish between m given samples from either LWE(q, s) or U(Rnq , Rq).

2.5 Hashed-Message Commitment

Let n,m,B, q be positive integers with m > n. Suppose a prover commits to v-
dimensional vectors over Rq for v > 1. The instantiation of the hashed-message
commitment (HMC) scheme [4,18] is as follows:

– CKeygen(1λ): Sample Gr ← Rn×mq and Gm ← Rn×vq . Output ck = G =

(Gr,Gm) ∈ Rn×(m+v)
q .

– Commitck(m): Sample r ← {−B, · · · ,B}md. Output r and Comck(m, r) =
G · (r,m) = Gr · r +Gm ·m.

– COpenck(C, (y,m′, r′)): If ‖(m′, r′)‖ 6 γ and yC = Comck(m′, r′) return
1, otherwise return 0.

Remarks. As all operations are conducted on Rq, the prover needs to sample
md-many Zq elements to build an m-dimensional Rq vector in Commit. Further-

more, the opening algorithm COpen does not simply check C
?
= Comck(m′, r′)

in common lattice-based schemes [13], but with a relaxation factor y ∈ Rq as
in [9, 15, 18]. This is due to the straightforward soundness proofs under lattice
assumptions do not work. Thus, we use “relaxed relations” by relaxing the ver-
ification relation to overcome the complications. Besides, the verifier also needs
to check the norm of the openings, ‖(m′, r′)‖ 6 γ, to ensure the hardness of
M-SIS problem in Defination 1.

Lemma 2. (Lemma 2.3 in [18]) For a (large) set of appropriately chosen
parameters, if M-LWE(m − n,m, q,B) problem is hard then the HMC defined
above is computationally hiding. If M-SIS(n,m+v, q, 2γ) is hard, then the HMC
defined above is computationally strong γ-binding to the same relaxation factor
y.



2.6 Vandermonde Matrix and One-Shot Proof [15]

A (k + 1)-dimensional Vandermonde matrix V is defined as follows for some
x0, · · · , xk ∈ R:

V =


1 x0 · · · xk0
1 x1 · · · xk1
...

...
. . .

...
1 xk · · · xkk

 . (2)

Let adj(V ) denotes adjugate matrix of V and det(V ) denotes the determinant
of V . Considering the property adj(V ) · V = det(V ) · Ik+1, we have

det(V ) =
∏

0≤i<j≤k

(xj − xi). (3)

Let (Γ0, · · · , Γk) be the last row of adj(V ). Then

Γi = (−1)i+k
∏

0≤s<j≤k
s,j 6=i

(xj − xs).
(4)

Lemma 3. (Lemma 4 in [15]) Let κ = k(k+1)
2 , we have ‖ det(V )‖∞ ≤

(2p)κwκ−1 when using the challenge space in Equation (1).

The one-shot proof is a technique proposed in [15] to efficiently prove non-
linear polynomial relations. Consider a k-degree polynomial relation with com-
mitments C0 = Com(m0; r0), · · · , Ck = Com(mk; rk). The prover encodes the

message as (f , z) ← (
∑k
i=0 x

imi,
∑k
i=0 x

iri) with a challenge x. The verifier

checks the norms of f , z and
∑k
i=0 x

iCi
?
= Com(f ; z). This protocol has (k+1)-

special soundness as we can extract a witness in one shot with the following
approach.

Considering (k + 1) accepted transactions with distinct challenges xi’s and
responses (fi, zi)’s where i ∈ [0, k] (Ci’s are the same). We have the following
relation 

1 x0 · · · xk0
1 x1 · · · xk1
...

...
. . .

...
1 xk · · · xkk

 ·

C0

C1

...
Ck

 =


Com(f0; zk)
Com(f1; zk)

...
Com(fk; zk)

 . (5)

Let the Vandermonde matrix in Equation (5) be V . By multiplying both sides
of Equation (5) by adj(V ), based on Equation (4), its last row becomes

det(V ) · Ck =

k∑
i=0

ΓiCom(fi; zi)

=Com(

k∑
i=0

Γifi;

k∑
i=0

Γizi) := Com(m̂k; r̂k).

(6)



Therefore, (m̂k, r̂k) is an exact opening of yCk with a relaxation factor y =
det(V ).

Lemma 4. (Lemma 5 in [15]) In Equation (6), the following holds for κ′ =
k(k−1)

2 :

‖m̂k‖ ≤ d(k + 1)(2p)κ
′
wκ
′−1 ·max

i
‖fi‖,

‖r̂k‖ ≤ d(k + 1)(2p)κ
′
wκ
′−1 ·max

i
‖zi‖.

(7)

Note that the i-th row of the Vandermonde matrix (i 6= k) is much different
from the form in Equation (4), which involves a function of xi’s in the (−1)i+k

part. This hinders us from using the one-shot proof to derive the relaxed opening
of Ci directly.

2.7 Amortized Relation [2]

The amortization technique to open multiple linear forms for essentially the price
of one. In [2], Attema et al. describe two amortization techniques in discrete
logarithm settings, amortized exponentiations and amortized homomorphisms.
Here we focus on the first one and ignore randomness for simplicity. Consider
the following relation

RAmorExp =

{
((ck, (Bi, Pi)

k
i=1), ((bi)

k
i=1) :

(Comck(bi) = Bi, g(bi) = Pi)
k
i=1)

}
, (8)

where g(·) is a homomorphic function, it is equivalent to prove5 Comck(
∑k
i=1 x

ibi) =∑k
i=1 x

iBi and g(
∑k
i=1 x

ibi) =
∑k
i=1 x

iPi with a challenge x. The prover can

further uses one vector a to generate the response as f = a +
∑k
i=1 x

ibi as a
standard Σ-protocol.

Attema et al. proved the completeness, special soundness, and SHVZK pros-
perities of the above amortized Σ-protocol in discrete logarithm settings (Theo-
rem 4 and Theorem 5 in [2]). In this paper, we leverage this idea in the balance
proof and extent it to lattice settings.

3 Observations and Techniques

We first analyze the balance proof and ring signature scheme in MatRiCT [18].
Then we show the performance of these approaches can be further improved
with our new techniques.

5 In discrete logarithm settings, it should be
∏k

i=1 B
xi
i and

∏k
i=1 P

xi
i . Here we express

in a additive group since it is more suitable under lattice settings.



3.1 Corrector Values in Balance Proofs

In existing RingCT protocols, to prove a transaction is valid, a spender (prover)
needs to show 1) all the inputs and outputs are non-negative and 2) the difference
between inputs and outputs is zero. The former relation can be checked in a
range proof while the latter one is quite simple as Com(a1; ∗) + Com(a2; ∗) =
Com(a1 + a2; ∗) holds under a homomorphic commitment scheme. In lattice
settings, most approaches use UMC to commit to an unbounded secret like
amount [4, 15]. However, as the size of a UMC commitment grows linearly with
the secret size, using a range proof directly is not practical in lattice-based
RingCT protocols.

MatRiCT [18] commits to bits of each amount with HMC to avoid the cost
of UMC. Thus, the former relation can be proved in a binary proof. For the
latter one, it requires “corrector values” to ensure Bits(a1) + Bits(a2) equals to
Bits(a1 + a2) after some corrections. For instance, suppose a prover wants to
prove that the following relations hold for M inputs and S outputs:

ai ≥ 0, ∀i ∈ [0,M); ∧ bi ≥ 0, ∀i ∈ [0, S); (9)

M−1∑
i=0

ai =

S−1∑
i=0

bi; (10)

where ai’s are input accounts and bi’s are output accounts. A balance proof
first converts each account into bits, ai = (ai,0, · · · , ai,k−1) ← Bits(ai) and
bi = (bi,0, · · · , bi,k−1)← Bits(bi), and commits to each ai and bi. Then, it shows
1) ai and bi are binary vectors for Equation (9) and 2) Equation (10) holds such
that:

M−1∑
i=0

ai =

S−1∑
i=0

bi ⇐⇒
M−1∑
i=0

k−1∑
j=0

2jai,j =

S−1∑
i=0

k−1∑
j=0

2jbi,j

⇐⇒
S−1∑
i=0

bi,j −
M−1∑
i=0

ai,j + τj − 2τj+1 = 0, ∀j ∈ [0, k),

where τj ’s are correct values to ensure
∑S−1
i=0 bi,j −

∑M−1
i=0 ai,j + τj − 2τj+1 = 0

holds for all j ∈ [0, k) and τ0 = τk = 0.
The balance proof requires additional work to ensure τj ’s are properly gen-

erated. In general, the prover needs to ensure τj ∈ [−M + 1, S − 1] (Lemma
4.1 in [18]) with standard range proofs6. It is acceptable to embed τj ’s in the
binary proof of bi,j ’s when M = 1 and S ≤ 2, as with the Algorithm 8 and
9 in [18]. However, in other cases, the cost of range proofs is not negligible.
Taking the state-of-the-art range proof in [15] as an example, the additional
range proof requires 3 UMCs (the commitment of τj ’s needs to be included), a

(k − 1) log(S + M − 1)(d/s)-size vector (i.e., f
(i)
j ’s in [15] where s refers to the

6 Esgin points out that the range proof can be replaced by an alternative approach
(described in Appendix F).



number of packing slots in [15]), and a 3md-size randomness (i.e., z in [15]).
Even for a small range, the proof size is prohibitively large as the UMCs and
HMCs cannot be batched together. More specifically, under the settings of [18],
the range proof costs nearly 200KB, while other parts only cost about 100KB
when M = 2 and S = 3.

One observation is that the corrector values (τ0, · · · , τk) are unnecessary for
balance proofs. To prove Equation (10) holds, one can simply prove

M−1∑
i=0

k−1∑
j=0

2jai,j =

S−1∑
i=0

k−1∑
j=0

2jbi,j

⇐⇒
k−1∑
j=0

2j
( S−1∑
i=0

bi,j −
M−1∑
i=0

ai,j

)
=

k−1∑
j=0

2jcj = 0,

(11)

where cj =
∑S−1
i=0 bi,j −

∑M−1
i=0 ai,j . The fact behind this idea is that though

Bits(a1) + Bits(a2) 6= Bits(a1 + a2), we have 〈Bits(a1),2k〉 + 〈Bits(a2),2k〉 =
〈Bits(a1 + a2),2k〉. Based on this observation, we can fully remove the range
proofs of τj ’s as well as the commitments and responses to τj ’s.

Additionally, the prover can also avoid sending the commitment of cj ’s as it
can be derived from the following equation:

Com(c0, · · · , ck−1; ∗) =

S−1∑
i=0

Com(bi; ∗)−
M−1∑
i=0

Com(ai; ∗). (12)

Meanwhile, the range proofs of ci’s can be avoided when ai’s and bi’s are binary
vectors since Equation (12) implies ci ∈ [−M,S].

The idea of using an inner-product equation to prove balance relations can
be generalized to prove the satisfiability of a linear equation (Section 4.1 and
5.1). Besides, we also observe the range of corrector values can be limited to
{−1, 0, 1}. As we do not adopt this approach in this paper, we only discuss it in
Appendix E.

3.2 Randomness of masking values

In MatRiCT (as well as other RingCT-based cryptocurrencies such Monero), a
spender needs to use a masking vector hide the amount of money in each account
in a transaction. For example, when dealing with N accounts (bi, rb,i, Bi)

N−1
i=0

such that Bi = Com(bi; rb,i), the prover needs to use N vectors, (ti, rt,i)
N−1
i=0

to generate the responses gi = xbi + ti and zb,i = xrb,i + rt,i with a challenge
x. Accordingly, the verifier needs to check Com(gi; zb,i) = xBi + Gi holds for
all i ∈ [0, S). Since the verification is conducted separately for each i, all zb,i’s
must be included in the proof, which increases the proof size when dealing with
multiple accounts.

Our observation is it is possible to batch the verification of Com(gi; zb,i) =
xBi + Gi with the amortized technique in [2]. Unfortunately, since the binary



relation bi ◦ (1− bi) = 0 is not homomorphic, it cannot be regarded as the g(·)
in Equation (8). This brings us the idea of partial amortization: only using the
batched verification for Com(gi; zb,i) = xBi+Gi and leaving the binary relation

part unchanged. Specifically, we show proving Com(
∑N−1
i=0 ζibi,

∑N−1
i=0 ζirb,i) =∑N−1

i=0 ζiBi implies Com(b̂i; r̂b,i) = yBi for a challenge ζ and a relaxation fac-
tor y in lattice settings. Since the non-homomorphic binary relation does not
involve rb,i (i.e., Bi), the prover can batch rb,i’s and only send one element

zb =
∑N−1
i=0 ζizb,i.

Note that it is important to keep the masking form as gi = xbi + ti for
the non-homomorphic binary relation, which hinders us from using g = t +∑N−1
i=0 xi+1bi in [2]. Therefore, the prover needs to send a commitment for the

batched masking values G = Com(
∑N−1
i=0 ζiti;

∑N−1
i=0 ζirt,i) to allow the verifier

to check Com(
∑N−1
i=0 ζigi; zb) = x

∑S−1
i=0 ζ

iBi+G. As a result, the proof size can
be reduced when dealing with multiple accounts since only one element, zb, is
needed in the proof.

3.3 Binary Proof in Ring Signatures

In most of existing ring signatures [15, 16, 18], a one-out-of-many proof is used
to show a prover (signer) knows an opening of a public key Pl in a public
key set (P0, · · · , PN−1). The idea for this proof is regarding a public key as
a commitment to zero. Thus, by constructing a secret binary sequence δ =
(δl,0, · · · , δl,N−1) with Hamming weight 1, a prover proves 1) δ is well-formed

and 2)
∑N−1
i=0 δl,iPi = Pl is a commitment to 0. A straightforward solution for

the former relation is to use a binary proof to show δ is a binary vector and∑N−1
i=0 fi =

∑N−1
i=0 (xδi + ai) = x for a challenge x and some masking values ai’s

where
∑N−1
i=0 ai = 0. However, this approach is inefficient as the proof size is

O(N) due to the size of δ.
The efficient logarithmic-size ring signatures “compress” δ to several shorter

delta vectors and allow the verifier to “reconstruct” δ with these vectors [15,
16, 18]. Suppose N = βk. Write l = (l0, · · · , lk−1) and i = (i0, · · · , ik−1) as the

representations in base β such that δl,i =
∏k−1
j=0 δlj ,ij . Instead of proving that

an N -size vector δ is well-formed, the prover only needs to prove k-many β-size
vectors, (δlj ,0, · · · , δlj ,β−1)k−1j=0 , are well-formed, which reduces the proof size to
O(kβ).

We have two observations. First, to ensure security, the binary proof requires
a larger parameter set than other parts of the proof. This is due to 1) the
hardness of the M-SIS problem and 2) b(1 − b) = 0 may not hold in Rq for a
smaller q [18]. Though the binary proof is simple, its larger parameters imply a
larger proof size. Motivated by this, we analyze ring signatures and find proving
δ being a binary sequence is redundant. For example, a signer can prove knowing
the opening to 2Pl instead of Pl without sacrificing security. Generally speaking,
it is sufficient to relax the one-out-of-many proof by proving that knowing an
opening to

∑N−1
i=0 biPi in ring signatures, where bi’s are short and not all bi’s

are 0. While reducing binary proof is nice in itself, we would like to highlight



that it is particularly important for ring signatures. As “the binary proof requires
a much bigger modulus than (other parts of) the one-out-of-many proof ” [18],
avoiding the binary proof fully releases ring signatures from the burden of large
parameters. Therefore, instead of running a full one-out-of-many proof, ring
signatures can use a much more efficient linear sum proof with a small modulus.

Our second observation is the linear sum proof may be difficult to adopt the
“compressing” technique in [15,16,18] to achieve logarithmic-size ring signatures

as there may not exist (bj,0, · · · , bj,β−1) such that bi =
∏k−1
j=0 bj,ij for all i ∈ [0, N)

and finding such a solution can be very inefficient. This brings us to the idea
of adopting “unbalanced” relations as in relaxed proofs: using a stricter relation
in proving, but checking the original relation in verifying. For instance, as a
linear sum relation is sound for ring signatures and a one-out-of-many relation
is stricter than the linear sum relation, a prover can use bi = δl,i in the one-out-
of-many relation to generate a proof. The verifier checks the linear sum relation
of the proof instead of the one-out-of-many relation.

Though our “unbalanced” relation is derived from relaxed relations, the mo-
tivations behind are different. In our approach, we start from the verifier’s side
and show verifying a linear sum proof suffices in ring signatures. To improve the
efficiency, we restrict the prover’s relation and require the prover to run under
a one-out-of-many relation. The key idea is to find a strict and efficient relation
for provers. On the other hand, existing relaxed proofs start from the prover’s
side and find straightforward soundness proofs do not work. They need to relax
the relation on the verifier’s side to overcome the complications. The key is to
find a relaxed but sound relation for verifiers. Thus we use the term “unbalanced
relations” to distinguish with relaxed relations. We describe the unbalance linear
sum proof in Section 4.2 and 5.2

4 New Techniques for RingCT Protocols

Based on the ideas in Section 3, we propose two general techniques. The RingCT
protocol can be regarded as an application of these techniques.

4.1 Linear Equation Satisfiability

Definition. Let N be a positive integer and ω0, · · · , ωN−1 be (public) integers.
The linear function is defined as:

F (X0, · · · , XN−1) =

N−1∑
i=0

ωiXi. (13)

The linear equation satisfiability is to prove having the witnesses (bi)
N−1
i=0 such

that F (b0, · · · , bN−1) = 0.
To support bi’s with a wide range in lattice settings, we also use the HMC

to commit to the bits of bi’s with Bi = Com(bi; ∗), where bi is the binary



representation of bi. Thus, F (b0, · · · , bN−1) can be rewritten as:

F ′(b0, · · · , bN−1) =

N−1∑
i=0

(
ωi · 〈2k, bi〉

)
. (14)

Definition 3. The following defines the linear equation relations, proving RLE

and relaxed opening R′LE:

RLE(T ) =

{
((ck, (ωi, Bi)

N−1
i=0 ), (bi, rb,i)

N−1
i=0 ) : bi ∈ {0, 1}k ∧ ‖rb,i‖ ≤ T

∧Bi = Comck(bi; rb,i) ∧ F ′(b0, · · · , bN−1) = 0

}
,

R′LE(T̂ ) =

{
((ck, (ωi, Bi)

N−1
i=0 ), (y, (bi, r̂b,i)

N−1
i=0 ) : bi ∈ {0, 1}k ∧ ‖r̂b,i‖ ≤ T̂

∧y ∈ C∗ ∧ yBi = Comck(ybi; r̂b,i) ∧ F ′(b0, · · · , bN−1) = 0

}
.

where T and T̂ are norm bounds of rb,i and r̂b,i respectively.

Inner-product based proof. Based on the idea discussed in Section 3.1,
we propose an inner-product based proof for the linear equation satisfiability.
The RLE indicates two important relations: 1) Bi’s are commitments to bits
and 2) F ′(b0, · · · , bN−1) = 0. The former one can be proved in a binary proof.
For the second relation we can rewrite Equation (14) as

F ′(b0, · · · , bN−1) = 0⇐⇒
N−1∑
i=0

(
ωi

k−1∑
j=0

2jbi,j

)
= 0

⇐⇒
k−1∑
j=0

(
2j ·

N−1∑
i=0

ωibi,j

)
=

k−1∑
j=0

2jcj = 0,

(15)

where bi,j is the j-th element of bi and cj =
∑N−1
i=0 ωibi,j . Denote c = (c0, · · · , ck−1).

The verifier can compute the commitment of c with Bi’s: C = Com(c; ∗) =∑N−1
i=0 ωiBi. Let f = xc+ d with some masking values d = (d0, · · · , dk−1) and

a challenge x, D = Com(d; ∗), dsum = 〈d,2k〉. We have

Com(f ; ∗) = Com(xc+ d; ∗) = xC +D,

〈f ,2k〉 = 〈xc+ d,2k〉 = x〈c,2k〉+ 〈d,2k〉 = dsum,
(16)

which ensure F ′(b0, · · · , bN−1) = 0 holds. Note that the prover can avoid sending

f0. The verifier computes f0 = dsum −
∑k−1
j=1 2jfj and only checks the first

equation in (16).
Overflow issue. One important issue for the second equation is that it may

not imply 〈c,2k〉 = 0 when verifying on Rq for a smaller q, i.e., q < 2k. Here we
propose two solutions.

– Our first approach is simple and straightforward: the prover computes and
sends dsum on R to avoid the overflow problem. Accordingly, the verifier
computes f0 on R and checks f0 ∈ Rq.



– Our second approach can avoid sending dsum by finding short dj ’s while en-
suring 〈d,2k〉 = 0. Specifically, the prover samples (d′j)

k−1
j=1 and sets d′0 =

d′k = 0. By setting dj = d′j − 2d′j+1, we have 〈d,2k〉 =
∑k−1
j=0 2jdj −∑k

j=1 2jdj = d0 − 2kdk = 0. Therefore, the prove can avoid sending dsum

and compute f0 = −
∑k−1
j=1 2jfj . Notice that the norms of dj will be bigger

than the first approach (but still acceptable) which indicates a less strict
soundness.

Partial amortization for binary proofs. As discussed in Section 3.1, we
propose partially amortized binary proofs to show Bi’s are commitments to bits.
The binary relation can be written as

Com(bi) = Bi ∧ bi ◦ (1− bi) = 0, ∀i ∈ [0, N). (17)

For the latter relation, the prover encodes bi as gi = xbi + ti with a challenge
x and a masking vector ti, which further allows the prover to check Com((gi ◦
(x · 1 − gi))N−1i=0 ; ∗) = xE + F , where E = Com((ti ◦ (1 − 2bi))

N−1
i=0 ; ∗) and

F = Com((−ti ◦ ti)N−1i=0 ; ∗). This works the same as a standard binary proof.

The former relation is equivalent to Com(
∑N−1
i=0 ζibi; ∗) =

∑N−1
i=0 ζiBi with

a challenge ζ. Since gi = xbi + ti, the prover needs to send the commitment of
the batched masking vectors, G = Com(

∑N−1
i=0 ζiti; ∗), to allow the verifier to

check Com(
∑N−1
i=0 ζigi) = x

∑N−1
i=0 ζiBi + G. We briefly describe the partially

amortized binary proof in Protocol 2.

Protocol 2 Partially Amortized Binary Proof (Sketch)

P((Bi)
N−1
i=0 , (bi)

N−1
i=0 ) V((Bi)

N−1
i=0 )

1: ζ
←−−−−−−−−−−−−−−−−

ζ ← C
2: Sample ti’s
3: E = Com((ti ◦ (1− 2bi))

N−1
i=0 ; ∗)

4: F = Com((−ti ◦ ti)N−1i=0 ; ∗)
5: G = Com(

∑S−1
i=0 ζ

iti; ∗)
E,F,G

−−−−−−−−−−−−−−−−→
x←−−−−−−−−−−−−−−−− x← C

6: gi = xbi + ti
gi−−−−−−−−−−−−−−−−→

7: xE + F
?
= Com((gi ◦ (x · 1− gi))N−1i=0 ; ∗)

8: x
∑N−1
i=0 ζiBi +G

?
= Com(

∑N−1
i=0 ζigi; ∗)

Note that in our binary proof, we do not batch the commitments as
Com((bi)

N−1
i=0 , (ti ◦ (1 − 2bi))

N−1
i=0 ; ∗) and Com((ti)

N−1
i=0 , (−ti ◦ ti)

N−1
i=0 ; ∗) as [18]



since verifying Com((fi)
N−1
i=0 ; ∗) = xCom((bi)

N−1
i=0 ; ∗) + Com((ti)

N−1
i=0 ; ∗) is re-

dundant (it has been checked on Bi and G as the last step of verification).
Remarks. In the security analysis (soundness), if we use the one-shot proof

[15] directly to extract the relaxed opening of Bi’s, we will end up with a painful
process to compute the i-th row elements in the Vandermonde matrix for the
norm bounds. Here we use a trick to swap the i-th row with the last one to get
a new Vandermonde matrix. Note the determinants of the two matrices are only
different in sign, which enables us to use the same relaxation value for all Bi’s.
More details are presented in Appendix B.

4.2 Ring Signature

Definition. Let r be a private key and Pl be the corresponding public key in
a public key set P = (P0, · · · , PN−1) for some N ≥ 1 and 0 ≤ l < N . The goal
of ring signatures is to show the knowledge of a secret key(s) corresponding to a
public key(s) in P . Based on the idea in Section 3.3, we show that proving the
knowledge of an opening of a short non-zero linear sum relation of the public
keys suffices for ring signatures, i.e., knowing some bounded bi’s and an opening
to
∑N−1
i=0 biPi where at least one bi is not zero. This is formally given in Lemma

5.

Lemma 5. In ring signatures, if the commitment scheme is computational hid-
ing and γ-binding, then it is hard to efficiently extract (bi)

N−1
i=0 and an opening

to
∑N−1
i=0 biPi with non-negligible probability, such that bi ∈ [−BLS,BLS] and at

least one bi is not zero, with respect to insider corruption7 in the random oracle
model.

Proof. Assume there exists a PPT adversary F that can efficiently extract bi’s
and a valid opening (0, s) of

∑N−1
i=0 biPi with non-negligible probability, then

we have a collision finder A which can break the binding property of the HMC
commitment scheme, and solve the M-SIS problem accordingly.

Specifically, A samples r ← {−B, · · · ,B} and computes an invalid public key
Pl = Comck(1, 0, · · · , 0; r). Due to the hiding probability of the commitment
scheme, F cannot distinguish Pl with other public keys. By calling F , A gets
(bi)

N−1
i=0 and a valid opening (0, s) of

∑N−1
i=0 biPi. With non-negligible probability,

we have bl 6= 0 since F can only make polynomially many registration queries
to A (calling RKeygen). Then, A uses all private keys but rl to compute s′ =
s −

∑
i 6=l biri. Since bl 6= 0, we have a binding collision for the commitment

scheme, ((bl, 0, · · · , 0), blr) and (0, s′). More details about the security reduction
is presented in Appendix D.

Remarks. The adversary A interacts as a collision finder with the HMC chal-
lenger and as a ring signature challenger with the F . Thus, A can access all

7 The attacker can obtain private keys to some public keys with corruption queries.
Accordingly, the signature forgery should not include these “corrupted” public keys
in its ring.



private keys by calling RKeygen as these key pairs will not help to find a col-
lision without a signature forgery [15, 18, 22]. Besides, since bi’s are important
to compute the HMC collision, we require F also provide bi’s along with the
forgery s (i.e., F here is not exactly as a ring signature forger). More details of
F extracting bi’s are presented in the proof of Theorem 4 (here F works as the
adversary A in Theorem 4).

Unbalanced Linear Sum Proof. We further leverage the idea of unbal-
anced relations in Section 3.3 to propose a logarithmic-size unbalanced linear
sum proof, i.e., the prover uses a one-out-of-many relation to run the protocol
by setting bi = δl,i and the verifier checks under a linear sum relation. To ensure
at least one bi is not zero, the verifier checks whether ‖b‖ > 0 in the opening.
The unbalanced linear sum relations are defined as follows:

Definition 4. The following defines the unbalanced relations for our unbalanced
linear sum proof, proving RLS and relaxed opening R′LS:

RLS(T ) =

{
((ck,P ), (l, r)) :

l ∈ [0, N) ∧ ‖r‖ ≤ T ∧ Pl = Comck(0; r)

}
,

R′LS(T̂b, T̂r) =

 ((ck,P ), (y, b, r̂)) : ‖b‖ > 0 ∧ ‖bi‖ ≤ T̂b ∧ ‖r̂‖ ≤ T̂r∧

y
N−1∑
i=0

biPi = Comck(0; r̂) ∧ y is a product of xi ∈ C∗

 ,

where T , T̂b, and T̂r are norm bounds of r, bi, and r̂ respectively.

In our unbalanced linear sum proofs, the prover first finds and commits to
k-many sequences (δlj ,0, · · · , δlj ,β−1)k−1j=0 which allow the verifier to reconstruct

δ base on δl,i =
∏k−1
j=0 δlj ,ij under a one-out-of-many relation. After receiving a

challenge x, the prover’s response contains fj,i = xδlj ,i+aj,i with some masking
values aj,i’s. Let δ′ = (δl0,0, · · · , δlk−1,β−1), a = (a0,0, · · · , ak−1,β−1), and f =
(f0,0, · · · , fk−1,β−1). To ensure δ′ is well-formed, the prover shows the following
equations hold:

Com(f ; ∗) = Com(xδ′ + a; ∗) = xB +A;

β−1∑
i=0

fj,i = x

β−1∑
i=0

δlj ,i +

β−1∑
i=0

aj,i = x+

β−1∑
i=0

aj,i, ∀j ∈ [0, k).
(18)

The second equation ensures at least one element in (δlj ,0, · · · , δlj ,β−1) is not

0 for all j’s as
∑β−1
i=0 fj,i = x +

∑β−1
i=0 aj,i implies

∑β−1
i=0 δlj ,i = 1. Moreover,

proving δ′ being “short” is done in the norm check of HMC (presented later in
steps 24 and 25 of Protocol 4). Besides, the binary proof for δ′ is avoided here
as we do not require the reconstructed δ being a binary vector under the linear
sum relation. Furthermore, the second equation is not a necessary condition for
the linear sum relation. However, based on the unbalanced relations in Section
3.3, the prover can efficiently show the second equation holds with a one-out-of-
many relation. Other steps such as reconstructing δ and checking

∑N−1
i=0 δl,iPi

being a commitment to zero are exactly same as the one-out-of-many proofs
in [15,16,18], which are presented in Section 5.2.



We can further adopt some techniques to reduce the proof size. First, choosing
aj,i’s such that

∑β−1
i=0 aj,i = 0 can avoid the cost of sending

∑β−1
i=0 aj,i in Equation

(18). Moreover, the prover only needs to send (aj,i)
β−1
i=1 which allows the verifier

to rebuild aj,0’s with aj,0 = −
∑β−1
i=1 aj,i for all j ∈ [0, k) without further checking

the second equation in (18).

5 Lattice-based Proofs

We formally describe our balance proof and ring signature for RingCT proto-
cols in lattice settings. In this paper, we separate the two protocols for a clear
expression.

5.1 Linear Equation Satisfiability

We formally present our linear equation satisfiability protocol in Protocol 3
(we describe with our first approach to solve the overflow issue in Section 4.1).
Specifically, steps 8 to 12 generate and commit to masking values ti,j ’s for the
binary proof of b. cj ’s in Equation (15) are derived in step 12 and their masking
values, dj ’s, are generated in step 14. Note that in steps 16 and 17, we do not
batch the binary proof commitments as Com(b, t ◦ (1− 2b); ∗) and Com(t,−t ◦
t; ∗).

After receiving the challenge x, the prover generates the responses based on
steps 18 to 27. As 〈f ,2k〉 = dsum holds, the prover can avoid sending f0 in steps
20 and 21. In step 23, the randomness for c (i.e., rc) is derived based on rb,i’s

since cj =
∑N−1
i=0 ωibi,j .

Finally, the verifier generates f0 in step 32 to ensure 〈f ,2k〉 = dsum holds
(i.e., F ′(b0, · · · , bN−1) = 0). Here he also needs to run on R instead of Rq
to avoid the overflow problem and returns false if f0 is not in Rq (step 35).
The commitment of c (step 33) is derived based on Bi’s. Step 39 ensures fi’s
are properly generated from ci’s and the last two steps ensure bi’s are binary
vectors.

Theorem 1. Let κ = N(N−1)/2 and γLE = 2κ+1NBpκwκ−1md2φ3(md(‖ω‖21+

N + 1))1/2
∑N−1
i=0 (wp)i and the HMC is hiding and γLE-binding. Protocol 3 has

(3, N + 1)-special soundness for relations RLE(B
√
md) and R′LE(γLE) with a

completeness error 1− 1/(µ(φ1)µ(φ2)µ(φ3)) defined in Lemma 8.

The proof for Theorem 1 is given in Appendix B.
We can easily switch to our second approach to solve the overflow issue.

Specifically, in step 14, the prover needs to sample (d′j)
k−1
j=1 from Dd

φ2T2
, sets

d′0 = d′k = 0.and computes dj = d′j − 2d′j+1. As 〈d,2k〉 = 0, dsum is no longer
needed in the rest of the protocol (by regarding dsum = 0). Since dj = d′j−2d′j+1

and d′j and d′j+1 are sampled from Dd
φ2T2

, except with negligible probability, we

have ‖fj‖ ≤ 6φ2T2
√
d based on Lemma 7. Accordingly, we need to loose the

norm bound to 6φ2T2
√
d.



Protocol 3 Linear Equation Satisfiability

PLE(ck, (ωi, Bi)
N−1
i=0 , (bi, rb,i)

N−1
i=0 ) VLE(ck, (ωi, Bi)

N−1
i=0 )

1: ζ
←−−−−−−−−−−−−−−−−

ζ ← C
2: ω = (ω0, · · · , ωN−1)
3: T1 = p

√
wkN

4: T2 = max(−
∑
ωi<0 ωi,

∑
ωi>0 ωi)p

√
wk

5: T3 = Bwp
√
md(‖ω‖21 +N + 1)

6: rb ← {−B, · · · ,B}md
7: rt, rd ← Dmd

φ3T3

8: for i = 0 to N − 1 do
9: ti ← Dkd

φ1T1
, rt,i ← Dmd

φ3T3

10: Gi = Comck(ti; rt,i)
11: end for
12: cj =

∑N−1
i=0 ωibi,j ,∀j ∈ [0, k)

13: b = (bi)
N−1
i=0 , t = (ti)

N−1
i=0

14: d← Dd
φ2T2

, dsum = 〈d,2k〉 ∈ R
15: D = Comck(d; rd), G =

∑N−1
i=0 ζiGi

16: E = Comck(t ◦ (1− 2b); rb)
17: F = Comck(−t ◦ t; rt)

dsum, D,E, F,G−−−−−−−−−−−−−−−−→
x←−−−−−−−−−−−−−−−− x← C

18: g = xb+ t
19: Rej(g, xb, φ1, T1)
20: c1 = (cj)

k−1
j=1 ,d1 = (dj)

k−1
j=1

21: f1 = xc1 + d1
22: Rej(f1, xc1, φ2, T2)

23: rc =
∑N−1
i=0 ωirb,i

24: z = xrc + rd, zg = xrb + rt
25: zb,i = xrb,i + rt,i∀i ∈ [0, N)

26: zb =
∑N−1
i=0 ζizb,i

27: Rej((z, zg, (zb,i)
N−1
i=0 ), x(rc, rb, (rb,i)

N−1
i=0 ), φ3, T3)

f1, g, z, zg, zb−−−−−−−−−−−−−−−→
28: g = (g0,0, · · · , gN−1,k−1)
29: gi = (gi,0, · · · , gi,k−1),∀i
30: h = (gi,j(x− gi,j))N−1,k−1i=0,j=0

31: f1 = (f1, · · · , fk−1)

32: f0 = dsum −
∑k−1
j=1 2j · fj ∈ R

33: C =
∑N−1
i=0 ωiBi

34: ‖gi,j‖
?
≤ 2φ1T1

√
d, ∀i, j

35: f0
?
∈ Rq

36: ‖fj‖
?
≤ 2φ2T2

√
d, ∀j

37: ‖z‖, ‖zg‖
?
≤ 2φ3T3

√
md

38: ‖zb‖
?
≤ 2mdφ3T3

∑N−1
i=0 (wp)i

39: xC +D
?
= Comck((f0, · · · , fk−1); z)

40: xE + F
?
= Comck(h; zg)

41: x
∑N−1
i=0 ζiBi +G

?
= Comck(

∑N−1
i=0 ζigi; zb)



We can also prove the security prosperities of the above protocol in a similar
way as Theorem 1. Note that the only difference is SHVZK of fj ’s. Here we need
to sample (f ′j)

k−1
j=1 from Dd

φ2T2
and set f ′0 = f ′k = 0. By writing fj = f ′j − 2f ′j+1,

we can get
∑k−1
j=0 2jfj = 0. Meanwhile, since fj = f ′j − 2f ′j+1, the distribution of

(f1, · · · , fk−1) is statistically close to the real distributions based on Lemma 7.

5.2 Unbalanced Linear Sum Proof

We formally describe our unbalanced linear sum proof protocol. Based on the de-
scription of Section 4.2, the prover needs to show 1) (δlj ,0, · · · , δlj ,β−1)’s are short
non-zero vectors and are properly committed and 2) δl,i’s can be constructed

with δl,i =
∏k−1
j=0 δlj ,ij such that

∑N−1
i=0 δl,iPi being a commitment to zero. The

first relation is discussed in Section 4.2 which implies δ = (δl,0, · · · , δl,N−1) being
a short and non-zero vector. Here we focus on the second relation.

After receiving a challenge x, the prover’s response contains fj,i = xδlj ,i +
aj,i with some masking values aj,i’s. To rebuild δl,i’s, the verifier computes the

product pi(x) =
∏k−1
j=0 fj,ij :

pi(x) =

k−1∏
j=0

fj,ij =

k−1∏
j=0

(xδlj ,ij + aj,ij )

=xk ·
k−1∏
j=0

δlj ,ij +

k−1∑
j=0

pi,j · xj = δl,ix
k +

k−1∑
j=0

pi,jx
j ,

(19)

where pi,j ’s are functions of δlj ,ij ’s (i.e., l) and aj,i’s. Equation (19) holds for
all i ∈ [0, N). As pi,j ’s are independent of x, the prover can pre-compute pi,j ’s

and send Ej =
∑N−1
i=0 pi,jPi to allow the verifier to cancel out the coefficients

of the terms 1, x, · · · , xk−1 before receiving x (the randomness is omitted here
for simplicity). For xk part, it can be set to the prover’s public key Pl with∑N−1
i=0 δl,iPi. Our unbalanced linear sum proof is formally described in Protocol

4.
In Protocol 4, steps 4 to 7 generate the masking values aj,i’s for δlj ,i’s and

ensure
∑β−1
i=0 aj,i = 0 (which further ensures

∑β−1
i=0 (xδlj ,i + aj,i) = x). The pi,j ’s

in steps 11 and 14 are derived based on Equation (19).
Upon receiving the challenge x, the prover generates the responses f1, zb, and

zr. For f , the prover can avoid sending fj,0’s as
∑β−1
i=0 fj,i = x holds. In step 21,

zr is the response to randomness in Pl and Ej ’s based on Equation (19). As ρ0
is sampled from Dmd

φ2T2
and other ρj ’s and r are sampled from {−B, · · · ,B}md,

ρ0 is the masking vector for xkr −
∑k−1
j=1 x

jρj (step 21).

Finally, the verifier computes fj,0 = x −
∑β−1
i=1 fj,i for all j ∈ [0, k) as∑β−1

i=0 fj,i = x, which ensures
∑β−1
i=0 δlj ,i = 1 (and further ensures at least one

element in (δlj ,0, · · · , δlj ,β−1) is not 0 for all j’s). The last two steps ensure that∑N−1
i=0 δl,iPi is a commitment to 0 as discussed in Section 4.2.



Protocol 4 Unbalanced Linear Sum Proof
PLS(ck,P , (l, r)) VLS(ck,P )

1: T1 = p
√
kw, T2 = (wp)kB

√
2md

2: ra ← Dmd
φ2T2

3: rb ← {−B, · · · ,B}md
4: for j = 0 to k − 1 do
5: aj,1, · · · , aj,β−1 ← Dd

φ1T1

6: aj,0 = −
∑β−1
i=1 aj,i

7: end for
8: δ = (δl0,0, · · · , δlk−1,β−1)
9: a = (a0,0, · · · , ak−1,β−1)

10: ρ0 ← Dmd
φ2T2

11: E0 =
∑N−1
i=0 pi,0Pi + Comck(0;ρ0)

12: for j = 1 to k − 1 do
13: ρj ← {−B, · · · ,B}md

14: Ej =
∑N−1
i=0 pi,jPi + Comck(0;ρj)

15: end for
16: B = Comck(δ; rb), A = Comck(a; ra)

A,B, (Ej)
k−1
j=0−−−−−−−−−−−−−−→

x←−−−−−−−−−−−−−− x← C
17: δ1 = (δl0,1, · · · , δlk−1,β−1)
18: a1 = (a0,1, · · · , ak−1,β−1)
19: f1 = xδ1 + a1

20: Rej(f1, xδ1, φ1, T1)

21: zb = xrb + ra, zr = xkr −
∑k−1
j=0 x

jρj

22: Rej((zb, zr), (xrb, x
kr −

∑k−1
j=1 x

jρj), φ2, T2)
f1, zb, zr−−−−−−−−−−−−−−→

23: fj,0 = x−
∑β−1
i=1 fj,i,∀j ∈ [0, k)

24: ‖fj,i‖
?
≤ 2φ1T1

√
d, ∀j,∀i 6= 0

25: ‖fj,0‖
?
≤ 2φ1T1

√
βd,∀j ∈ [0, k)

26: ‖zb‖, ‖zr‖
?
≤ 2φ2T2

√
md

27: f = (f0,0, · · · , fk−1,β−1)

28: xB +A
?
= Comck(f ; zb)

29:
∑N−1
i=0 (

∏k−1
j=0 fj,ij )Pi−

∑k−1
j=0 Ejx

j ?
= Comck(0; zr)



Theorem 2. Let γLS = (4φ1
√
kβ)kdk−

1
2 , γ′LS = (k+1)2κ

′+2
√

2φ2Bmd2wκpκ+1

for κ = k(k+1)/2 and κ′ = k(k−1)/2, the HMC is hiding and γLS-binding. Pro-
tocol 4 has (k+1)-special soundness for relations RLS(B

√
md) and R′LS(γLS, γ

′
LS)

with a completeness error 1− 1/(µ(φ1)µ(φ2)) defined in Lemma 8.

The proof for Theorem 2 is given in Appendix C.

6 Efficient ZKPs for RingCT

As applications of our techniques, we show how to build balance proofs and ring
signatures for RingCT protocols.

6.1 Non-Interactive Balance Proof

Based on Protocol 3, we design an efficient non-interactive balance proof for
RingCT protocols. Consider the case in Section 3.1 with M input accounts
(ai)

M−1
i=0 and S output accounts (bi)

S−1
i=0 . The balance proof is a special case

of linear equation satisfiability, where N = S +M , (ω0, · · · , ωS−1) = (1, · · · , 1),
and (ωS , · · · , ωS+M−1) = (−1, · · · ,−1). Accordingly, Equation (13) can be ex-

pressed as F (a0, · · · , aM−1, b0, · · · , bS−1) =
∑S−1
i=0 bi −

∑M−1
i=0 ai.

Let CNin = (Ai)
M−1
i=0 and CNout = (Bi)

M−1
i=0 be the sets of input and out-

put coins respectively (i.e., commitments to ai’s and bi’s), CNKin = (ra,i)
M−1
i=0

and CNKout = (rb,i)
S−1
i=0 be the sets of input and output coin keys (i.e. random-

ness). Denote the initial commitments in Protocol 3 as CMT = (D,E, F,G), the
prover’s response as RSP = (f1, g, z, zg, zb), and CMT∗ = E. We omit descrip-
tions of the full set of algorithms and detail the key ones here.
• Setup(1λ): Run G ← CKeygen and set ck = G. Choose a hash function

H : {0, 1}∗ → C. Return pp = (ck,H).
• Mint(pp, v): Sample r ← {−B, · · · ,B}md and compute (v0, · · · , vk−1) ←

Bits(v), B = Comck(v; r). Return (cn, cnk) = (B, r).
• Spend((ai)

M−1
i=0 , (bi)

S−1
i=0 , pp, CNin, CNKin): Parse CNin = (Ai)

M−1
i=0 and CNKin =

(ra,i)
M−1
i=0 . Set ai ← Bits(ai) for i ∈ [0,M) and bi ← Bits(bi) for i ∈ [0, S). Call

Mint(pp, bi) = (cni, cnki) = (Bi, rb,i) for i ∈ [0, S) to mint coins for output
accounts. Set CNout = (cni)

S−1
i=0 and CNKout = (cnki)

S−1
i=0 . Proceed as follows:

1. Run PLE(ck, ((1, Bi)
S−1
i=0 , (−1, Ai)

M−1
i=0 ), ((bi, rb,i)

S−1
i=0 , (ai, ra,i)

S−1
i=0 )) to gen-

erate CMT based on the first 18 steps8 of Protocol 3.
2. Compute x = H(ck, (Ai)

M−1
i=0 , (Bi)

S−1
i=0 ,CMT).

3. Compute RSP by running the remaining steps of PLE.
4. Return CNout and π = (CMT∗, x,RSP).

• Verify(CNin, CNout, π, pp): Parse CNin = (Ai)
M−1
i=0 , CNout = (Bi)

S−1
i=0 , π =

(CMT∗, x,RSP). Proceed as follows:

8 In existing anonymous cryptocurrency implementations, binary proofs for inputs ai’s
can be reduced as they have been verified as output accounts in previous transactions.



1. Compute C, D, F , and G based on step 33, 39, 40, and 41 of Protocol 3 and
set CMT = (D,E, F,G).

2. Return 0 if x 6= H(ck, (Ai)
M−1
i=0 , (Bi)

S−1
i=0 ,CMT).

3. Return the output of VLE(ck, ((1, Bi)
S−1
i=0 , (−1, Ai)

M−1
i=0 )) with (CMT, x,RSP).

Notice that this non-interactive balance proof does not ensure anonymity.
It can be extended to an anonymous RingCT protocol with the (linkable) ring
signature scheme (described in Section 8).

Theorem 3. Let γLE = 2κ+1NBpκwκ−1md2φ3(S + M + 1)
∑N−1
i=0 (wp)i, and

the HMC is hiding and γLE-binding. The balance proof has (3, N + 1)-special
soundness for relations RLE(B

√
md) and R′LE(γLE) with a completeness error

1− 1/(µ(φ1)µ(φ2)µ(φ3)) defined in Lemma 8.

Proof. ConsideringN = S+M , (ω0, · · · , ωS−1) = (1, · · · , 1), and (ωS , · · · , ωS+M−1) =
(−1, · · · ,−1), we have ‖ω‖1 = S +M ≥ 1. Equation (26) can be further simpli-
fied as:

Bwp
√
md(‖ω‖21 +N + 1) ≤ Bwp(S +M + 1)

√
md = T3. (20)

Thus, we have γLE = 2κ+1NBpκwκ−1md2φ3(S +M + 1)
∑N−1
i=0 (wp)i.

Other parts can be derived directly from Theorem 1.

6.2 Ring Signature

Protocol 4 can be used to construct an efficient ring signature scheme. Let M
be the message to be signed, the initial commitment in Protocol 4 be CMT =
(A,B, (Ej)

k−1
j=0 ), and the prover’s response be RSP = (f1, zb, zr). Denote CMT∗ =

(B, (Ej)
k−1
j=1 ). The ring signature is defined as follows:

• RSetup(1λ): Run G← CKeygen and set ck = G. Choose a hash function
H : {0, 1}∗ → C. Return pp = (ck,H).
•RKeygen(pp): Sample r ← {−B, · · · ,B}md and compute P = Comck(0; r).

Return (pk, sk) = (P, r).
• RSign(M,P , pp, sk): Parse P = (P0, · · · , PN−1) and Pl = Comck(0; sk)

for l ∈ [0, N). Proceed as follows:

1. Generate CMT by running PLS(ck,P , (l, r)), step 1 to 16 in Protocol 4.
2. Compute x = H(ck,M,P ,CMT).
3. Compute RSP by running the remaining steps of PLS.
4. Return π = (CMT∗, x,RSP).

• RVerify(M,P , π, pp): Parse P = (P0, · · · , PN−1), π = (CMT∗, x,RSP),
and CMT∗ = (B, (Ej)

k−1
j=1 ). Proceed as follows:

1. Compute A and E0 based on step 28 and 29 of Protocol 4 and set CMT =
(A,B, (Ej)

k−1
j=0 ).

2. Return 0 if x 6= H(ck,M,P ,CMT).



3. Return the output of VLS(ck,P ) with (CMT, x,RSP).

The correctness and anonymity of the ring signature can be derived directly
from the completeness and SHVZK of Protocol 4. The unforgeability of the ring
signature is formally described as follows:

Theorem 4. If the commitment scheme is computational hiding and γ-binding,
then the ring signature scheme described above is unforgeable with respect to
insider corruption in the random oracle model.

Proof. Assume there exists a PPT adversary F that can efficiently forge a ring
signature with non-negligible probability, we have an adversary A which can
break the binding property of the commitment scheme, and solve the M-SIS
problem accordingly.
A samples r ← {−B, · · · ,B} and computes an invalid public key pkl =

Comck(1, 0, · · · , 0; r). Due to the hiding probability of the commitment scheme,
F cannot distinguish pkl with other public keys. Then, A runs F for (k+1) times
to get (k+ 1) forgeries with distinct challenges and a same CMT∗ part based on
the forking lemma (pkl is not corrupted). Furthermore, A reconstructs CMT and
runs the extractor of Protocol 4 with the (k + 1) forgeries to get valid b′i = ykbi
for i ∈ [0, N) and a valid opening (0, s) of y

∑N−1
i=0 bi · pki for some public keys.

Thus, we have proper b′i’s and a valid opening (0, yk−1s) of
∑N−1
i=0 b′i ·pki. Based

on Lemma 5, we have a collision for the commitment scheme, ((b′l, 0, · · · , 0), b′lr)
and (0, yk−1s−

∑
i6=l b

′
iri) as (b′l, 0, · · · , 0) 6= 0 (ri’s are the private keys as the

output of Corrupt(i) in the proof of Lemma 5). More details about the security
reduction is presented in Appendix D.

7 Evaluation

Implementation. To evaluate the performance of the proposed proofs, we
give a reference implementation of both MatRiCT [18] and our approaches in
Golang [20]. The underlaying polynomial ring operations are implemented with
LaGo [25]9. For the linear equation satisfiability, we only implement the bal-
ance proof version (i.e., ωi’s are fixed in our code) to compare with the balance
proof in MatRiCT. The code of MatRiCT and our work is published in [20]. All
experiments are performed on a personal laptop equipped with Intel i7-8750H
2.20GHz CPU and 8GB memory.

Proof size: balance proof. We first evaluate the performance of our balance
proof. Referring to [18], we consider the scenario that requires 64-bit precision for
amounts (i.e., k = 64) and set the parameters as: B = 1, (d,w, p) = (64, 56, 8),
q = (227−221+1)·(226−212+1) ≈ 253, (n,m) = (32, 65), and φ1 = φ2 = φ3 = 15.
These parameters are chosen based on a “root Hermite factor” of δ ≈ 1.0045
for both M-LWE and M-SIS, and ensure 128-bit security based on the “LWE
estimator” [1]. More details are discussed in [15,18].

9 We also found a bug in MulPoly function of LaGo. Please refer to our repository [20]
for more details.
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Fig. 3: Ring signature size. The size of
MatRiCT does not include the cost of
serial numbers for fairness.

As the Algorithm 8 and 9 in [18] only deal with M = 1 and S ≤ 2, we
need to include an additional range proof in MatRiCT for other cases. However,
MatRiCT does no specified range proof approaches in [18]. According to the dis-
cussion in Section 3.1, we use the state-of-the-art range proof in [15] to evaluate
the performance of MatRiCT (the number of slot in CRT packing is set to 16 as
with [15]). For M = 1 and S ≤ 2 cases, we follow algorithms 8 and 9 in [18] as
the implementation of MatRiCT.

First, we show the balance proof size growth with the number of input ac-
counts in Figure 1. Different from the result in [18], our result shows the proof
size is relatively small and does not scale linearly with M . It is because [18]
takes NM input accounts for anonymity (N is the set size as in ring signatures).
Thus, other (N − 1)M hiding accounts contribute to a great part of the proof
size, which scales linearly with the size in [18]. While in our experiment, we do
not consider anonymity in balance proofs. Furthermore, there is a clear burst in
MatRiCT when M = 2. It is due to the additional range proofs for corrector
values. The burst also indicates the cost of range proofs is prohibitively large for
real-world implementations. Besides, the proof size does not increase much with
M except for M = 1. For some M , e.g. M ∈ [30, 40], the size remains the same.
This is an expected result as M contributes to the size of each element in g,
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zb, and zr, instead of the length of these vectors. Finally, our balance proof can
reduce about 15% size of MatriCT when M = 1 and more than 70% in other
cases.

Second, we present the balance proof size growth with the number of output
accounts in Figure 2. As discussed above, the burst of MatRiCT is caused by
range proofs. When S > 2, the proof size scales linearly with S due to the cost
of (zb,i)

S−1
i=0 . As S also contributes to the size of vector elements, the growth is

not exactly linear. Generally speaking, our approach can reduce 15% proof size
of MatRiCT when S < 2 and up to 60% for other cases.

Proof size: ring signature. We further evaluate the performance of our
ring signature, and compare with Crypto’19 [15] and MatRiCT [18]. We use
the same settings in [18] with two sets of parameters: (n̂, m̂) = (32, 65), q̂ =
(227−221+1)·(226−212+1) ≈ 253 for the binary proof part; and (n,m) = (18, 38),
q = 231− 218 + 23 + 1 ≈ 231 for other parts. Other settings for the two parts are
same (i.e., (d,w, p) = (64, 56, 8)). Please note that as our unbalanced linear sum
proof avoids the binary proofs, only the smaller parameters, n, m, and q, affect
the performance.

The signature size growth with the logarithmic ring size log(N) is depicted in
Figure 3. The result of Crypto’19 is not as “smooth” as that in [15]. It is caused
by the parameters we used are different from short infinity norm challenges
in [15]. Besides, our result also shows that MatRiCT does not improve much of
Crypto’19, which is different from the results in [18]. This is mainly caused by
the parameter settings, as d and q in [15] are much larger than those in [18].
Since MatRiCT uses the same blueprint in Crypto’19, Crypto’19 is also improved
under MatRiCT settings. Moreover, in our ring signature approach, as we avoid
the cost of a binary proof, the sizes of a commitment and zb, zr elements are much
smaller. A further observation is that all approaches do not scale logarithmically
in N . This is due to the growth of element size. Comparing with existing state-
of-the-art approaches, our ring signature is the most efficient which can reduce
about 50% and 20% of the signature size in Crypto’19 and MatRiCT respectively.

Proving/verification time. Finally, we compare the proving and verifica-
tion time of our approaches with MatRiCT [18]. As we explained earlier, the
balance proof in MatRiCT only works when M = 1 and S ≤ 2, we only compare
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the performance in two cases, (M,S) = (1, 1) and (M,S) = (1, 2). The results
are depicted in Figure 4. Our inner-product based approach reduces nearly 30%
proving time of the MatRiCT, as we do not involve ci’s in binary proofs. Besides,
since the commitment of ci’s is derived from Ai’s and Bi’s, our approach also
reduce the time of committing to corrector values. Furthermore, our approach
reduces nearly 20% verification time of the MatRiCT. The main reason is verify-
ing the inner-product relation (step 35 of Protocol 3) is much more efficient than
the balance relation with corrector values. The efficiency of binary verification
is also improved when removing the corrector values.

The performances of ring signatures are depicted in Figure 5. Our unbal-
anced linear sum approach can reduce nearly 35% time of the one-out-of-many
approach when N = 64. This is mainly contributed by avoiding the binary proof
parts in our approach. When N is small, the binary proof/verification cost is
only a small portion of the whole cost and thus the improvement is less signifi-
cant. Besides, one interesting result is that the verification time does not increase
much when N = 64. It is because we set β = 4 and k = 3 in this case, while in
other cases β = N and k = 1. Though the verification time is greatly reduced
under these settings, the proof size increases accordingly. Thus, for other cases,
we keep β = N and k = 1 as in [15]. Nevertheless, our approaches outperform
MatRiCT in all settings.

Additionally, we show the proving and verification time of a balance proof
for various inputs (M) and outputs (S) in Figure 6 and Figure 7 respectively.
As a prover does not need to verify input accounts (input accounts have been
verifier in previous transactions as output accounts), there is almost no change
in proving/verification time (similar as the result of proof size in Figure 1).
Furthermore, the proving and verification time scales linearly with S since the
prover needs to generate proofs for output accounts and the verifier needs to
check these proofs accordingly. As stated in [15], “the most common cases for
the number of input/output accounts are (M,S) = (1, 2) and (M,S) = (2, 2)”,
the time cost of our approaches are acceptable in most scenarios.



8 Extensions

We show how to apply our approaches in RingCT protocols and some extensions
with other techniques.

RingCT protocol. In a RingCT protocol, a spender needs to prove a trans-
action is valid and hides the identity of input accounts at the same time. Addi-
tionally, the verifier should also check the input accounts (based on serial num-
bers) to avoid double spending. The former one can be achieved by adding hid-

ing accounts into inputs. Considering NM inputs (CN
(j)
in )N−1j=0 = (A

(j)
i )M−1,N−1i=0,j=0 ,

which have M spender’s accounts, CN
(l)
in (the spender owns the amount values

and coin keys (a
(l)
i , r

(l)
a,i)

M−1
i=0 ), and (N−1)M hiding accounts, CN

(j)
in where j 6= l.

To transfer funds to S output accounts, the spender needs to send an additional
commitment Com(c; r′c) and compute public keys Pj ’s for each j ∈ [0, N):

Pj =

S−1∑
i=0

Bi −
M−1∑
i=0

A
(j)
i − Com(c; r′c). (21)

Obviously, Pl is a commitment to zero with the private key (randomness) r =∑S−1
i=0 rb,i−

∑M−1
i=0 r

(l)
a,i−r′c. Thus, the spender can further show Pl =

∑N−1
j=0 δl,jPj

is a commitment to zero as in our ring signature scheme, which proves the amount
balance and hides the identity at the same time.

To avoid double spending, we extend our ring signature to provide linkability
by checking the serial number of each input account to ensure it is not included
in previous transactions. Considering a new commitment key H, a serial number
is a commitment to zero under H with the coin key as randomness, i.e., Si =

H ·ra,i. At step 14 of Protocol 4, the prover also needs to compute F
(i)
j = H ·ρ(i)j

for all i ∈ [0,M). Upon receiving the challenge x, the prover generates responses

z
(i)
r = xkra,i −

∑k−1
j=0 x

jρ
(i)
j at step 21. In the verification, the verifier should

check 1) the serial numbers are distinct and not included in previous transactions
to avoid double spending, and 2) the following equation holds to ensure serial
numbers are correct:

xkSi −
k−1∑
j=0

xjF
(i)
j = H · z(i)r , ∀i ∈ [0,M). (22)

Compatible with other techniques. As we improve the underlying ZKPs
of a RingCT protocol, our approaches preserve all distinguishing features of
MatRiCT, such as being compatible with efficient rejection sampling and ex-
tractable commitment techniques. The former one can be adopted in our un-
balanced linear sum proof to improve the acceptance probability of rejection
sampling. For a secret bit b ∈ {0, 1} and a challenge x ∈ [−p, p], the prover
can sample the masking value from a uniform distribution, a← [−Ba,Ba] when
b = 1 or a ← [−(Ba − p),Ba − p] when b = 0. Thus, a will never be rejected
when b = 0. When dealing with a binary secret with a fixed Hamming weight,



this approach can improve the efficiency and avoid leaking side-channel infor-
mation at the same time. The latter technique allows one to design an auditable

RingCT protocol by placing a “mini trapdoor” in HMC. Setting Gr =
[
A, t>

]>
as an LWE matrix where t = A>s + e for some secret s (i.e., secret key for
auditing) and error e, an extractor can extract a message from a commitment
C = Grr + Gmm by computing 〈(s,−1), C〉 = −〈e, r〉 + 〈(s,−1)>Gm,m〉.
Based on the fact that the norm of 〈(s,−1), C〉− 〈(s,−1)>Gm,m〉 is small, the
extractor enumerates all possible values to recover m.

Besides MatRiCT, other techniques to optimize the underlying cyclotomic
rings [17] can also be applied in our approaches. Specifically, a new CRT-packing
technique is proposed in power-of-2 cyclotomic rings to reduce the modulus with
binary CRT slots (and reduce the commitment size accordingly). Furthermore,
[17] optimizes challenges in cyclotomic rings to reduce their Hamming weights.
As both techniques are “general and of independent interest for lattice-based
proof systems” [17], our approaches can regard them as optimized settings to
further improve efficiency. Besides, since corrector values are avoided in our
solution, our balance proof can directly use these settings without mapping under
Galois automorphisms for corrector values.

9 Discussion

Applications in discrete logarithm settings. Since our techniques do not
rely on lattice settings, the results are believed to be of independent interest
for RingCT protocols in a generic setting. The unbalanced linear sum proof can
be applied in discrete logarithm settings directly to improve the performance of
ring signatures by removing the binary proof part. Note that under the discrete
logarithm assumption, bi’s do not necessarily have to be short as the constraint
of “short bi’s” is only used to ensure the hiding and binding properties of HMC.
Thus, steps 24 and 25 in Protocol 4 can be avoided accordingly (in fact, all
norm checks can be avoided). However, the improvement of our unbalanced lin-
ear sum proof may be less significant as the binary proof does not require a
larger parameter set under discrete logarithm assumptions. For the linear equa-
tion satisfiability, it is compatible with bit-based commitments with Equation
(14) (commit to the bits of the witness instead of its value directly). Note that
bit-based commitments bring some advantages in existing RingCT protocols: a
binary proof implies a range proof relation directly. With our linear equation
satisfiability, we can build the balance and range relations in a different way.
Furthermore, the linear equation satisfiability has a wider application in anony-
mous DeFi applications (decentralized finance smart contracts on Ethereum).
By settings ωi’s as the exchange rates of different pools, we can enable confi-
dential multi-pool transactions (inputs and outputs are from distinct pools) for
today’s anonymous DeFi such as Zether [10].

General-purpose lattice-based proof systems. Since we do not exploit
any special property of the commitment scheme other than the standard hiding
and binding properties, other approaches with intriguing properties in general-



purpose lattice-based proof systems [3, 9] may be applied in our scenarios. In
standard SIS commitment schemes, the witness is a (v×l)-size matrix, S ∈ Zv×lq .
With a (r×v)-size matrix A ∈ Zr×vq , the commitment works as Com(S) = A·S =

T ∈ Zr×lq . Based on an (l × n)-size challenge C ∈ {0, 1}l×n, the prover encodes
S as Z = S · C + Y with Y ∈ Dv×n

σ .
First, an O(

√
N)-size commitment scheme is proposed in [3] by encoding

N -many secrets into S where v = l = O(
√
N). Unfortunately, when adopting

this approach, the 〈f ,2k〉 in Equation (16) cannot be calculated directly as Z
will “batch” some fi’s when computing S · C. For instance, consider the first
element in Z, z0,0 =

∑l−1
i=0 s0,i · ci,0 + y0,0. As f0 = s0,0 · c0,0 + y0,0, we have

20 ·z0,0 = 20 ·f0+20 ·(
∑l−1
i=1 s0,i ·ci,0) = 20 ·f0+20 ·e0. Therefore, it is important to

allow the verifier to cancel out
∑k−1
i=0 2i ·ei without leaking any information when

computing 〈f ,2k〉. The same issue occurs in ring signatures when computing∑β−1
i=0 fj,i in Equation (18) and

∏k−1
j=0 flj ,ij in Equation (19). The latter one

is a much thornier problem when using zi,j ’s to compute
∏k−1
j=0 fj,ij . Second,

levelled commitments and Bulletproofs folding are proposed in [9]. The proof

size can be reduced to O(N
1

d+1 ) with d-levelled commitments or O(log2(N))
with Bulletproofs folding. Though the result is promising, we find it is hard to
be applied in our approaches due to the same reasons above. Besides, the sizes
of the extracted solutions (denoted by “slack” in [9]) also increase. Generally
speaking, we cannot directly apply these approaches if the response batches fi’s.

Open problems. Our ring signature approach avoids most of the binary
proof in existing approaches based on the fact that a one-out-of-many relation
is not a necessary condition for ring signatures. An interesting question is find-
ing the sufficient and necessary condition for ring signatures. We may further
avoid unnecessary parts of our linear sum proof to improve the efficiency of ring
signatures. Another interesting problem is to remove unnecessary parts in range
proofs or balance proofs. For instance, it is sufficient to prove the balance based
on Equation (11) even when ai’s and bi’s are not binary vectors. However, this
requires additional proofs to show 〈ai,2k〉 ≥ 0 and 〈bi,2k〉 ≥ 0, which may not
be efficient. Furthermore, the linear sum relation yields a “many-out-of-many”
relation [14] which can reduce the anonymity set in RingCT. Unlike [14] which
generates many public key index from a single secret l by permutations and a
linear mapping, the linear sum relation directly maps bi’s to Pi’s which may be
more efficient. Thus, the logarithmic-size linear sum proof seems to be a promis-
ing solution. Finally, supporting other commitment schemes in general-purpose
lattice-based proof systems [3, 9] is also promising.
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A Additional Lemmas

Lemma 6. (Lemma 8 in [15]) For any f, g ∈ R = Z[X]/(Xd + 1), we have
the following relations:

– ‖f‖ ≤
√
d · ‖f‖∞,

– ‖f‖ ≤ ‖f‖1 ≤
√
d · ‖f‖,

– ‖f · g‖ ≤
√
d · ‖f‖ · ‖g‖,

– ‖f · g‖∞ ≤ ‖f‖ · ‖g‖,
– ‖f · g‖∞ ≤ ‖f‖1 · ‖g‖∞,

– ‖
∏n
i=1 fi‖∞ ≤ (

∏n−1
i=1 ‖fi‖1) · ‖fn‖∞.

Lemma 7. (Theorem 4.4 in [28])

– For any k > 0, Pr[|z| > kσ; z ← Dσ] ≤ 2e−k
2/2.

– For any k > 1, Pr[‖z‖ > kσ
√
s; z ← Ds

σ] < kses(1−k
2)/2.

Lemma 8. (Theorem 4.6 in [28]) Let h be a probability distribution over V ∈
Zs where s ≥ 1 and the norm of all elements is less than T . Let c← h and φ > 0.
Considering an algorithm that samples y ← Ds

σ and outputs Rej(z, c, φ, T ) for
z = y+c. The probability that the algorithm outputs 1 is within 2−100 of 1/µ(φ)

where µ(φ) = e12/φ+1/(2φ2). When the output is 1, the statistical distance between
the distribution of z and Ds

σ is at most 2−100.

Lemma 9. (Lemma 6 in [15]) For f, g ∈ R and k ∈ Z∗, if f · gk = 0 in Rq,
then f · g = 0 in Rq.

Lemma 10. Considering independent vectors y1, · · · ,ys with distributions Dd
σ1
, · · · , Dd

σs

for d ≥ 1. If σi ≥ τ(Zd)/
√
π for all i ∈ [1, s] where τ(Zd) is a smoothing pa-

rameter of Zd, the distribution of
∑s
i=1 yi is statistically close to Dd√∑s

i=1 σ
2
i

.

In particular, we have the distribution of
∑s
i=1 yi is statistically close to Dd

σ
√
s

if Dd
σi

= Dd
σ (Lemma 9 in [15]) and the distribution of

∑s
i=1 yi is statistically

close to Dd

σ
√∑s

i=1 2i
if Dd

σi
= Dd

σ
√
2i

for all i ∈ [1, s].

B Proof of Theorem 1

Proof. Completeness: Based on Lemma 8, the prover responds with probability
1/(µ(φ1)µ(φ2)µ(φ3)). As there are at most kN -many 1’s in b and HW (x) = w,
we have at most wkN non-zero elements in xb. Since ‖x‖∞ = p, we have,

‖xb‖ ≤ p
√
wkN = T1. (23)



Furthermore, we have ‖c‖∞ ≤ max(−
∑
ωi<0 ωi,

∑
ωi>0 ωi) based on cj =∑N−1

i=0 ωibi,j ∈ [
∑
ωi<0 ωi,

∑
ωi>0 ωi]. Since there are at most k non-zero elements

in c and HW (x) = w, xc has at most wk non-zero elements. Thus,

‖xc‖ ≤ max(−
∑
ωi<0

ωi,
∑
ωi>0

ωi) · p
√
wk = T2. (24)

Let ω = (ω0, · · · , ωN−1). Based on Lemma 6, we have

‖rc‖ =

∥∥∥∥∥
N−1∑
i=0

ωirb,i

∥∥∥∥∥ ≤
N−1∑
i=0

(
|ωi| · ‖rb,i‖

)
≤
√
md · ‖rb,i‖∞ · ‖ω‖1 ≤ B

√
md‖ω‖1,

(25)

and thus,

‖x(rc, rb, rb,0, · · · , rb,N−1)‖
=(‖xrc‖2 + ‖x(rb, rb,0, · · · , rb,N−1)‖2)1/2

≤Bwp
√
md(‖ω‖21 +N + 1) = T3.

(26)

Therefore, based on Lemma 8, the distributions of gi,j ’s, fj ’s, and z, zg, (zb,i)
N−1
i=0

are statistically close to Dd
φ1T1

, Dd
φ2T2

, and Dmd
φ3T3

respectively. Except with neg-
ligible probability, we have the following relations based on Lemma 7:

‖gi,j‖ ≤ 2(φ1T1)
√
d, ∀i ∈ [0, N), j ∈ [0, k),

‖fj‖ ≤ 2(φ2T2)
√
d, ∀j ∈ [0, k),

‖z‖, ‖zg‖, (‖zb,i‖)N−1i=0 ≤ 2(φ3T3)
√
md,

(27)

which satisfy steps 38, 40, and 41 of verification.

Finally, since zb =
∑N−1
i=0 ζizb,i, we have

‖zb‖ =
∥∥∥N−1∑
i=0

ζizb,i

∥∥∥ ≤ N−1∑
i=0

‖ζizb,i‖

≤
√
md
(N−1∑
i=0

‖ζ‖i · ‖zb,i‖
)
≤ 2mdφ3T3

N−1∑
i=0

(wp)i.

(28)

(3, N + 1)-special soundness:

Linear equation relation. We first prove F ′(b0, · · · , bN−1) = 0 relation
in R′LE. Given 3 distinct challenges, (x, x′, x′′), we have 3 accepted responses
(f1, g, z, zg, (zb,i)

N−1
i=0 ), (f ′1, g

′, z′, z′g, (z
′
b,i)

N−1
i=0 ), and (f ′′1 , g

′′, z′′, z′′g , (z
′′
b,i)

N−1
i=0 )

with the same inputs and commitments dsum, (Bi)
N−1
i=0 , D,E, F, (Gi)

N−1
i=0 . Set

C =
∑N−1
i=0 ωiBi. For each transcript, compute f0 = dsum −

∑k−1
j=1 2j · fj on R



and rebuild f = (f0, · · · fk−1). Obviously, we have 〈f ,2k〉 = dsum (so do f ′ and
f ′′). Taking (f , z), (f ′, z′), and (f ′′, z′′), we have

xC +D = Comck(f ; z), (29)

x′C +D = Comck(f ′; z′), (30)

x′′C +D = Comck(f ′′; z′′). (31)

Subtracting Equation (30) from Equation (29), we get

(x− x′)C = Comck(f − f ′; z − z′) := Comck(ĉ; r̂c). (32)

Setting y = x − x′ as a relaxation factor, we extract a valid opening (ĉ; r̂c) to
yC and prove the claimed bound for R′LE.

Taking Equation (32) and (29), we have

yD = y(xC +D)− xyC = Comck(yf − xĉ; yz − xr̂c)

= Comck(xf ′ − x′f ;xz′ − x′z) := Comck(d̂; r̂d).
(33)

Obviously, based on the definition of ĉ and d̂, we have yf = xĉ+ d̂.
As we conduct step 35 on R instead of Rq, we have 〈f ,2k〉 = dsum, and thus

x〈ĉ,2k〉+〈d̂,2k〉 = dsum. Based on the γLE-binding property of the commitment
scheme, the PPT prover cannot extract a new valid opening of yC and yD with
non-negligible probability. Thus, we also have x′〈ĉ,2k〉+ 〈d̂,2k〉 = dsum, which
implies 〈ĉ,2k〉 = 0 for distinct challenges. Considering the definition of C, we
have

C =

N−1∑
i=0

ωiBi = Comck(

N−1∑
i=0

ωibi;

N−1∑
i=0

ωirb,i), (34)

and thus

y〈
N−1∑
i=0

ωibi,2
k〉 = 〈ĉ,2k〉 = 0

=⇒
N−1∑
i=0

(
ωi · 〈2k, bi〉

)
= F ′(b0, · · · , bN−1) = 0,

(35)

which proves the F ′(b0, · · · , bN−1) = 0 relation in R′LE.

Binary relation. We first consider the relation of x
∑N−1
i=0 ζiBi + G =

Comck(
∑N−1
i=0 ζigi; zb). Given 2 distinct challenges, (x, x′), we have 2 accepted

responses, (
∑N−1
i=0 ζigi, zb) and (

∑N−1
i=0 ζig′i, z

′
b) with the same ζ, inputs, and

commitments. Accordingly, we have

x

N−1∑
i=0

ζiBi +G = Comck(

N−1∑
i=0

ζigi; zb), (36)

x′
N−1∑
i=0

ζiBi +G = Comck(

N−1∑
i=0

ζig′i; z
′
b) (37)



Subtracting Equation (37) from Equation (36), we get

(x− x′)
N−1∑
i=0

ζiBi = Comck(

N−1∑
i=0

ζi(gi − g′i); zb − z′b) := Comck(

N−1∑
i=0

ζib̃i; r̃b).

Setting y = x−x′, we extract an opening (
∑N−1
i=0 ζib̃i; r̃b) to y

∑N−1
i=0 ζiBi, where

‖r̃b‖ ≤ 4mdφ3T3
∑N−1
i=0 (wp)i. Taking the opening to Equation (36), we have

yG = yComck(

N−1∑
i=0

ζigi; zb)− x
N−1∑
i=0

ζiyBi

=Comck(

N−1∑
i=0

ζi(ygi − xb̃i); yzb − xr̃b) := Comck(

N−1∑
i=0

ζit̂i; r̂g),

(38)

which gives an opening (
∑N−1
i=0 ζit̂i; r̂g) to yG.

For
∑N−1
i=0 ζiyBi part, given N distinct challenges, (ζs)

N−1
s=0 , we have N ac-

cepted responses, (
∑N−1
i=0 ζisb̃

(s)
i ; r̃

(s)
b )N−1s=0 with the same inputs and commit-

ments. Accordingly, we have
1 ζ0 · · · ζN−10

1 ζ1 · · · ζN−11
...

...
. . .

...

1 ζN−1 · · · ζN−1N−1

 ·


yB0

yB1

...
yBN−1

 =


Comck(

∑N−1
i=0 ζi0b̃

(0)
i ; r̃

(0)
b )

Comck(
∑N−1
i=0 ζi1b̃

(1)
i ; r̃

(1)
b )

...

Comck(
∑N−1
i=0 ζiN−1b̃

(N−1)
i ; r̃

(N−1)
b )

 .

(39)

Let the Vandermonde matrix on the left hand side be VN−1. We can obtain
(b̂N−1; r̂b,N−1) as the opening of yζyBN−1 with another relaxation factor yζ =

det(VN−1). Specifically, b̃N−1, r̃b,N−1 can be derived based on Equation (4).
Note that directly compute the relaxed opening of yBs’s requires to compute

the s-th row of adj(VN−1), which will be extremal complicated to derive the
norms of the opening. To avoid this problem, we swap the s-th row with the last
row:

1 ζ0 · · · ζN−10

1 ζ1 · · · ζN−11
...

...
. . .

...

1 ζN−1 · · · ζN−1N−1
...

...
. . .

...
1 ζs · · · ζN−1s


·



yB0

yB1

...
yBN−1

...
yBs


=



Comck(
∑N−1
i=0 ζi0b̃

(0)
i ; r̃

(0)
b )

Comck(
∑N−1
i=0 ζi1b̃

(1)
i ; r̃

(1)
b )

...

Comck(
∑N−1
i=0 ζiN−1b̃

(N−1)
i ; r̃

(N−1)
b )

...

Comck(
∑N−1
i=0 ζisb̃

(s)
i ; r̃

(s)
b )


.

(40)

Let the Vandermonde matrix on the left hand side be Vs. Since Vs is derived
by swapping two rows of VN−1, we have det(Vs) = −det(VN−1) = −yζ for all



s 6= N −1. Similar to the previous approach, we can obtain an opening (b̂s; r̂b,s)

of yζyBs based on Equation (4), where r̂b,s =
∑N−1
i=0 Γi,sr̃

(s)
b .

Let κ = N(N − 1)/2 and κ′ = (N − 1)(N − 2)/2. Based on Lemma 1 and
Lemma 4, we have the bound of ‖r̂b,s‖:

‖r̂b,s‖ ≤ Nd(2p)κ
′
wκ
′−1 · 4mdφ3T3

N−1∑
i=0

(wp)i

≤2κ+1NBpκwκ−1md2φ3
√
md(‖ω‖21 +N + 1)

N−1∑
i=0

(wp)i = γLE.

(41)

Taking the opening (
∑N−1
i=0 ζit̂i; r̂g) to yG, based on the last step of verifica-

tion, we have

yζy

N−1∑
i=0

ζigi = x

N−1∑
i=0

ζib̂i +

N−1∑
i=0

ζit̃i =

N−1∑
i=0

ζi(xb̂i + yζ t̂i). (42)

Based on the γLE-binding property of the commitment scheme, the PPT prover
cannot extract a new valid opening of yζyBs’s. Meanwhile, though different
challenges generate different G’s, the γLE-binding property of the commitment
scheme avoids extracting different t̂i’s such that Comck(

∑N−1
i=0 ζit̂i; r̂g) (different

t̂i’s result in different b̂i’s and break the γLE-binding property). Thus, the same
form in Equation (42) holds for N + 1 challenges (ζs)

N
s=0, which indicates

yζygi = xb̂i + yζ t̂i. (43)

For the relation of xE + F = Comck(h; zg), given 3 distinct challenges,
(x, x′, x′′), we have 3 accepted responses, (h; zb), (h′; z′b), and (h′′; z′′b ) with the
same inputs and commitments. Accordingly, we have

xE + F = Comck(h; zb), (44)

x′E + F = Comck(h′; z′b), (45)

x′′E + F = Comck(h′′; z′′b ). (46)

Using the same extraction approach, we can derive the opening (ê; r̂b) to yE
and (ŝ; r̂t) to yF such that yh = xê + ŝ. For each element of h, we have the
following relations for all i ∈ [0, N) and j ∈ [0, k):

yhi,j = y(gi,j(x− gi,j)) = xêi,j + ŝi,j . (47)

Based on the γLE-binding property of the commitment scheme, the responses
to x′′ will have the same form in Equation (47), which indicates Equation (47)
holds for x, x′, x′′.

Based on Equation (47), we have the following equation:

y2ζy(xêi,j + ŝi,j) = y2ζy(ygi,j(x− gi,j))

=yζygi,j(xyζy − yζygi,j) = (xb̂i,j + yζ t̂i,j)(xyζy − xb̂i,j − yζ t̂i,j)

=x2
(
b̂i,j(yζy − b̂i,j)

)
+ x
(
t̂i,j(yζy − 2b̂i,j)

)
− y2ζ t̂2i,j ,

(48)



and thus

x2
(
b̂i,j(yζy − b̂i,j)

)
+ x
(
t̂i,j(yζy − 2b̂i,j)− y2ζyêi,j

)
+
(
− y2ζ t̂2i,j − y2ζyŝi,j

)
= 0,

(49)

Since Equation (49) holds for x, x′, and x′′, we have the following system:

1 x x2

1 x′ x′2

1 x′′ x′′2

 ·
 −y2ζ t̂2i,j − y2ζyŝi,j
t̂i,j(yζy − 2b̂i,j)− y2ζyêi,j

b̂i,j(yζy − b̂i,j)

 = 0. (50)

As all operations are conducted on a field Rq, the Vandermonde matrix on the

left is invertible for distinct challenges. We have b̂i,j(yζy−b̂i,j) = 0, which implies

b̂i,j = 0 or b̂i,j = yζy, i.e., b̂i,j = yζybi,j for bi,j ∈ {0, 1}. Thus, all bi’s are binary
vectors.

SHVZK: Assume the protocol is not aborted. The simulator samples rb ←
{−B, · · · ,B}md, gi,j ← Dd

φ1T1
for all i ∈ [0, N) and j ∈ [0, k), fj ← Dd

φ2T2

for all j ∈ (0, k), z, zg, (zb,i)
N−1
i=0 ← Dmd

φ3T3
, and sets C =

∑N−1
i=0 ωiBi, E =

Comck(0; rb), f1 = (f1, · · · , fk−1), f = (f0, · · · , fk−1), dsum = 〈f ,2k〉, g =
(g0,0, · · · , gs−1,k−1), gi = (gi,0, · · · , gi,k−1) for all i ∈ [0, N). Then, given x, it

computes h = (gi,j(x−gi,j))N−1,k−1i=0,j=0 ,D = Comck(f ; z)−xC, F = Comck(g,h; zg)−
xE, and Gi = Comck(gi; zb,i) − xBi for all i ∈ [0, N). Obviously, the simu-
lated transcript

(
(dsum, D,E, F, (Gi)

N−1
i=0 ), x, (f1, g, z, zg, (zb,i)

N−1
i=0 )

)
will be an

accepted transcript.

Based on Lemma 7, the distributions of f1, g, z, zg, (zb,i)
N−1
i=0 are statistically

close to the real distributions. The simulated distributions of dsum, D, F, (Gi)
N−1
i=0

are the same as the real distributions. Finally, due to the hiding property of
the commitment scheme, the distribution of simulated E is computationally
indistinguishable from the real case based on the M-LWE assumption.

C Proof of Theorem 2

Proof. Completeness: Based on Lemma 8, the prover responds with probability
1/(µ(φ1)µ(φ2)). As there are at most k-many 1’s in δ and HW (x) = w, we have
at most wk-many non-zero elements in xδ. Since ‖x‖∞ = p, we have,

‖xδ‖ ≤ p
√
wk = T1. (51)



Furthermore, based on Lemma 6, we have∥∥∥∥∥xkr −
k−1∑
j=1

xjρj

∥∥∥∥∥ ≤ ‖xkr‖+

k−1∑
j=1

‖xjρj‖

≤
√
md
(
‖xkr‖∞ +

k−1∑
j=1

‖xjρj‖∞
)

≤
√
md
(
‖x‖k1 · ‖r‖∞ +

k−1∑
j=1

‖x‖j · ‖ρj‖∞
)

≤
√
md
(

(wp)kB + B
k−1∑
j=1

(wp)j
)

= B
√
md

k∑
j=1

(wp)j .

(52)

Denote r′ = xkr −
∑k−1
j=1 x

jρj , we have

‖xrb, r′‖ = (‖xrb‖2 + ‖r′‖2)1/2

≤B
√
md
(
w2p2 + (

k∑
j=1

wjpj)2
)1/2

≤ B(wp)k
√

2md = T2.
(53)

Considering each element of f1. Based on Lemma 10, the sum of discrete
normal variables behaves as its continuous counterpart. Thus, for all j ∈ [0, k), we

have the distribution of
∑β−1
i=1 fj,i is statistically close to Dd

φ1T1

√
β−1. Therefore,

for all j ∈ [0, k) and i ∈ (0, β), we have

‖fj,i‖ ≤ 2(φ1T1)
√
d,

‖fj,0‖ ≤
∥∥∥x−∑β−1

i=1
fj,i

∥∥∥ ≤ ‖x‖+
∥∥∥∑β−1

i=1
fj,i

∥∥∥
≤
√
w + 2(φ1T1)

√
d(β − 1) ≈ 2φ1p

√
kwdβ,

‖zb‖,‖zr‖ ≤ 2(φ2T2)
√
md.

(54)

(k + 1)-special soundness: Given (k + 1) distinct challenges (xs)
k
s=0, we

have (k + 1) accepted responses (f
(s)
1 , z

(s)
b )ks=0 with the same commitments

A,B, (Ej)
k−1
j=0 . For each transcript, compute f

(s)
j,0 = xs −

∑β−1
i=1 f

(s)
i,j for all j ∈

[0, k), and rebuild f (s) = (f
(s)
0,0 , · · · f

(s)
k−1,β−1). Taking (f (0), z

(0)
b ) and (f (1), z

(1)
b ),

we have

x0B +A = Comck(f (0), z
(0)
b ), (55)

x1B +A = Comck(f (1), z
(1)
b ). (56)

Subtracting (56) from (55), we get (x0−x1)B = Comck(f (0)−f (1), z
(0)
b −z

(1)
b ),

which gives us an opening of yB with a relaxation factor y = (x0 − x1):

yB = Comck(f (0) − f (1), z
(0)
b − z

(1)
b ) := Comck(b̂, r̂b). (57)



Subtracting x0 times of (57) from y times of (55), we have:

yA = Comck(yf (0) − x0b̂; yz
(0)
b − x0r̂b)

=Comck(x0f
(1) − x1f (0); x0z

(1)
b − x1z

(0)
b )

:=Comck(â; r̂a).

(58)

Obviously, we have xsb̂ + â = yf (s) for s = {0, 1}. Taking each element in

b̂ = (̂bj,i)
β−1,k−1
i=0,j=0 and â = (âj,i)

β−1,k−1
i=0,j=0 , we have the following system for all

i ∈ [0, β), j ∈ [0, k):

xsb̂j,i + âj,i = yf
(s)
j,i . (59)

Taking
∑β−1
i=0 f

(s)
j,i = xs and Equation (59), we have

yxs =

β−1∑
i=0

yf
(s)
j,i =

β−1∑
i=0

xsb̂j,i +

β−1∑
i=0

âj,i, (60)

and thus

0 = xs(

β−1∑
i=0

b̂j,i − y) +

β−1∑
i=0

âj,i. (61)

Based on the γ-binding property of the commitment scheme, Equation (61) holds

for s = {0, 1}. Therefore, we have
∑β−1
i=0 b̂j,i−y = 0 and

∑β−1
i=0 âj,i = 0, and thus∑β−1

i=0 b̂j,i = y, i.e.,
∑β−1
i=0 b̂j,i = y

∑β−1
i=0 bj,i for

∑β−1
i=0 bj,i = 1. Based on step 23,

we have bj,0 = 1−
∑β−1
i=1 bj,i. Thus, ‖bj,0‖ ≤ 1 + 4φ1

√
kd(β − 1) ≈ 4φ1

√
kdβ.

Now we construct bi’s for all i ∈ [0, N) with bi =
∏k−1
j=0 bj,ij , where ij ’s are

the digits of representation of i in base β such that i = (i0, · · · , ik−1). Clearly,
bi 6= 0 if and only if bj,ij 6= 0 for all j ∈ [0, k).

Based on Equation (57) and Lemma 6, we have

‖bi‖ =

∥∥∥∥∥
k−1∏
j=0

bj,ij

∥∥∥∥∥ ≤ d k−1
2

k−1∏
j=0

∥∥bj,ij∥∥
≤d

k−1
2 ‖bj,0‖k ≤ (4φ1

√
kβ)kdk−

1
2 = γLS.

(62)

Considering the γ-binding property of the commitment scheme, the following
equation holds for (k + 1) challenges

yf
(s)
j,i = xsb̂j,i + âj,i = yxsbj,i + âj,i, s ∈ [0, k]. (63)

We compute p̂i(xs) = yk
∏k−1
j=0 f

(s)
j,ij

=
∏k−1
j=0 (yxsbj,ij + âj,ij ) for each i ∈

[0, N). Obviously, for all s ∈ [0, k], if p̂i(xs) is a polynomial of degree k, then
bj,ij 6= 0 for all j ∈ [0, k), which indicates bi 6= 0. Thus, for all i ∈ [0, β), we have
at least one bi is not zero, i.e., ‖b‖ > 0.



As the last verification step holds, we multiply both sides of the equation by
yk:

N−1∑
i=0

p̂i(xs) · Pi −
k−1∑
j=0

ykEjx
j
s

=xksy
k
N−1∑
i=0

Pi +

k−1∑
j=0

E′jx
j
s = Comck(0; ykz(s)r ),

(64)

where E′j ’s are the terms multiplied by the monomials xjs’s of degree at most
(k − 1) and are independent from xs. Taking all (k + 1) transcripts, we have


1 x0 · · · xk0
1 x1 · · · xk1
...

...
. . .

...
1 xk · · · xkk

 ·


E′0
E′1
...

yk
N−1∑
i=0

biPi

 =


Comck(0; ykz

(0)
r )

Comck(0; ykz
(1)
r )

...

Comck(0; ykz
(k)
r )

 . (65)

Let the Vandermonde matrix on the left hand side of Equation (65) be V . Based

on Equation (6), we can obtain (0, ykr̂) as the opening of det(V ) ·yk
∑N−1
i=0 biPi,

where r̂ =
∑N−1
i=0 Γiz

(i)
r (Γi is defined in Equation (4)). Based on Lemma 9, we

have

det(V ) · yk
∑N−1

i=0
biPi = Comck(0; ykr̂)

=⇒yk
(

det(V ) ·
∑N−1

i=0
biPi − Comck(0; r̂)

)
= 0

=⇒y
(

det(V ) ·
∑N−1

i=0
biPi − Comck(0; r̂)

)
= 0

=⇒det(V ) · y
∑N−1

i=0
biPi = Comck(0; yr̂) = 0.

(66)

Thus we extract an opening of det(V )·y
∑N−1
i=0 biPi as (0, yr̂). Let κ = k(k+1)/2

and κ′ = k(k − 1)/2. Based on Lemma 1 and Lemma 4, we have the bound of
‖yr̂‖:

‖yr̂‖ ≤ (k + 1)d(2p)κ
′+1wκ

′
· 2φ2T2

√
md

≤(k + 1)2κ
′+2
√

2φ2Bmd2wκpκ+1 = γ′LS.
(67)

SHVZK: Assume that the protocol is not aborted. The simulator samples
r ← {−B, · · · ,B}md, fj,i ← Dd

φ1T1
for all i ∈ (0, β) and j ∈ [0, k), zb, zr ←

Dmd
φ2T2

, Ej ← U(Rnq ) for all j ∈ (0, k), and sets B = Comck(0; r). Then, given x, it

computes fj,0 = x−
∑β−1
i=1 fj,i for all j ∈ [0, k) and sets f = (f0,0, · · · , fk−1,β−1),

A = Comck(f ; zb) − xB, and E0 =
∑N−1
i=0 (

∏k−1
j=0 fj,ij )Pi − Comck(0; zr) −∑k−1

j=1 Ejx
j . Obviously, the simulated transcript ((A,B, (Ej)

k−1
j=0 ), x, (f , zb, zr))

will be an accepted transcript.



Based on Lemma 7, the distributions of f , zb, zv are statistically close to
the real distributions. The simulated distributions of A and E0 are the same
as the real ones. Due to the hiding property of the commitment scheme, the
distribution of simulated B is computationally indistinguishable from the real
case. Finally, the simulated E1, · · · , Ek−1 are computationally indistinguishable
from the real cases based on the M-LWE assumption.

Considering M inputs (ai)
M−1
i=0 . Let a =

∑M−1
i=0 ai, k = dlog(a)e, and a[j] be

the j-th bit of a where 0 ≤ j < k. First, taking
∑M−1
i=0 ai[0] and writing it as the

binary representation (τ
′(0)
0 , · · · , τ ′(0)k−1) such that

∑M−1
i=0 ai[0] =

∑k−1
t=0 (τ

′(0)
t · 2t),

we have a[0] = τ
′(0)
0 . Furthermore, taking τ

′(0)
1 and

∑M−1
i=0 ai[1], we can write the

sum of them as the binary representation (τ
′(1)
0 , · · · , τ ′(1)k−1) and derive a[1] = τ

′(1)
0 .

In this way, we can observe that in order to derive a[j], the j-th element consists

of two parts:
∑M−1
i=0 ai[j] and

∑j
t=1 τ

′(j−t)
t (the latter one is the sum of all carries

from a[j− 1], · · · a[0]). Thus, for all j ∈ [0, k), writing
∑M−1
i=0 ai[j] +

∑j
t=1 τ

′(j−t)
t

as the binary representation (τ
′(j)
0 , · · · , τ ′(j)k−1), we have

M−1∑
i=0

ai[j] +

j∑
t=1

τ
′(j−t)
t =

k−1∑
t=0

(τ
′(j)
t · 2t). (68)

Obviously, a[j] = τ
′(j)
0 . Thus, we have

a[j] =

M−1∑
i=0

ai[j] +

j∑
t=1

τ
′(j−t)
t −

k−1∑
t=1

(τ
′(j)
t · 2t). (69)

Similarly, let b =
∑S−1
i=0 bi, we can derive the following equation for S outputs

b[j] =

S−1∑
i=0

bi[j] +

j∑
t=1

τ
′′(j−t)
t −

k−1∑
t=1

(τ
′′(j)
t · 2t), (70)

when the balance property holds such that k = dlog(a)e = dlog(b)e. Taking
Equation (73) and (74), for all j ∈ [0, k), we have

b[j]− a[j] =

S−1∑
i=0

bi[j]−
M−1∑
i=0

ai[j]

+

j∑
t=1

(τ
′′(j−t)
t − τ ′(j−t)t )−

k−1∑
t=1

(
(τ
′′(j)
t − τ ′(j)t ) · 2t

)
=

S−1∑
i=0

bi[j]−
M−1∑
i=0

ai[j] +

j∑
t=1

τ
(j−t)
t −

k−1∑
t=1

(τ
(j)
t · 2t),

(71)

where τ
(j)
t = τ

′′(j)
t − τ

′(j)
t . Obviously, the corrector value in [18] is a special

case of Equation (75) under k = 2 by regarding τ
(j−1)
1 = τj , τ

(j)
1 = τj+1, and

τ
(j−t)
t = τ

(j)
t = 0 when t > 1.



HMC Challenger

Pl=((1, 0, ..., 0), r).

HMC Collision finder

AL5

Signing queries 
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Corruption queries Corrupt(i)
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Abort if i=l.

Using simulator for Pl -

related queries.
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Pi
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Signature forgery (m0, σ0)
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AL5: the A in Lemma 5.

FL5: the F in Lemma 5.

AT4: the A in Theorem 4.

FT4: the F in Theorem 4.

FL5

Fig. 8: Reduction from “forging a ring signature” to “finding an HMC collision” for
ring signature unforgeability.

As τ
′′(j)
t , τ

′(j)
t ∈ {0, 1}, we have τ

(j)
t ∈ {−1, 0, 1}, which narrows down the

range of corrector values in [18] (but requires more corrector values).

D Security Reduction (Sketch) of Lemma 5 and Theorem
4

Lemma 5 and Theorem 4 reduces “forging a ring signature” to “finding an HMC
collision” for ring signature unforgeability. The security game can be illustrated
in Figure 8.

Oracle Simulation. The ring signature challenger AT4 will forward queries
and responses between the HMC collision finder AL5 and the ring signature
forger FT4. AL5 simulates the oracles as follows:

Registration query. Assume FT4 can only query N times (N ≥ 1). AL5 ran-
domly picks l← {0, 1, · · · , N−1}. For index l,AL5 sets Pl = Comck(1, 0, · · · , 0; r).
For other indices j 6= l, AL5 calls the RKeyGen algorithm to generate a pub-
lic/private key pair (Pj , rj). Upon the (i + 1)-th query, AL5 returns the corre-
sponding public key Pi.

Corruption query. On input a public key Pi, AL5 aborts when i = l. Other-
wise, AL5 returns the corresponding private key ri.



Signing query. When FT4 queries to sign on message mj with a signer Pi in
a public key list Pi = {Pj |j ∈ tj} where tj indicates the indices of the public
keys in {P0, · · · , PN−1}, i.e., ti ⊂ {1, · · · , N − 1}, AL5 processes as follows:

– If i 6= l,AL5 calls RSign algorithm directly to get the corresponding signature
since he has ri and programs the Hash function (random oracle) if needed.

– If i = l, AL5 runs the simulator in the proof of Theorem 2 (SHVZK prosper-
ity) to get the signature and programs the Hash function (random oracle)
so that H(ck,mi,Pi, A,B, (Ej)

k−1
j=0 ) = x.

Hash query. For queries with inputs that have already been programmed,
AL5 returns the corresponding output. Otherwise, AL5 chooses x at random
from the set C\{x0, · · · , xm−1} where xi’s are the outputs of the Hash function
that have been programmed. The output of the Hash function for this input is
programmed to x.

Signature Forgery. At a given point, FT4 finishes running and outputs a
forgery (mi, σi). Since Pl cannot be distinguished from other Pi’s due to the
hiding property of the HMC commiement scheme and FT4 can only make N
times of registration queries to AL5, we have the signature is signed by the
signer Pl with non-negligible probability10, i.e., bl 6= 0.

Output. After collecting k + 1 signature forgeries with the same commit-
ments (this can be done in polynomial time using the forking lemma), AT4

computes b′i’s and an opening (0, yk−1s) to
∑N−1
i=0 b′iPi by running the extractor

in the proof of Theorem 2 ((k + 1)-special soundness) and forwards b′i’s and
(0, yk−1s) to AL5. Accordingly, AL5 can find a collision for the HMC commit-
ment scheme, M0 = ((b′l, 0, · · · , 0), b′lr) and M1 = (0, yk−1s −

∑
i 6=l b

′
iri) since

(b′l, 0, · · · , 0) 6= 0 (ri’s are the private keys of other users in the ring).

E An Alternative Approach to Reduce the Cost of
Corrector Values

We present an alternative approach to reduce the cost of corrector values in [18]
by narrowing down the range of corrector values to {−1, 0, 1}. Based on the
discussion in Section 9, we can avoid the cost of UMC in range proofs.

Considering M inputs (ai)
M−1
i=0 . Let a =

∑M−1
i=0 ai, k = dlog(a)e, and ai[j] be

the j-th bit of ai where 0 ≤ j < k. First, taking
∑M−1
i=0 ai[0] and writing it as

the binary representation (τ
′(0)
0 , · · · , τ ′(0)k−1) such that

∑M−1
i=0 ai[0] =

∑k−1
t=0 (τ

′(0)
t ·

2t), we have a[0] = τ
′(0)
0 . Furthermore, taking τ

′(0)
1 and

∑M−1
i=0 ai[1], we can

write the sum of them as the binary representation (τ
′(1)
0 , · · · , τ ′(1)k−1) and derive

a[1] = τ
′(1)
0 . In this way, we can observe that in order to derive a[j] (the j-th

bit of a =
∑M−1
i=0 ai), the j-th element consists of two parts:

∑M−1
i=0 ai[j] and∑j

t=1 τ
′(j−t)
t (the latter one is the sum of all carries from a[j−1], · · · a[0]). Thus,

10 Other signers may also be involved such that bi 6= 0 for some i 6= l.



for all j ∈ [0, k), writing
∑M−1
i=0 ai[j] +

∑j
t=1 τ

′(j−t)
t as the binary representation

(τ
′(j)
0 , · · · , τ ′(j)k−1), we have

M−1∑
i=0

ai[j] +

j∑
t=1

τ
′(j−t)
t =

k−1∑
t=0

(τ
′(j)
t · 2t). (72)

Obviously, a[j] = τ
′(j)
0 . Thus, we have

a[j] =

M−1∑
i=0

ai[j] +

j∑
t=1

τ
′(j−t)
t −

k−1∑
t=1

(τ
′(j)
t · 2t). (73)

Similarly, let b =
∑S−1
i=0 bi, we can derive the following equation for S outputs

b[j] =

S−1∑
i=0

bi[j] +

j∑
t=1

τ
′′(j−t)
t −

k−1∑
t=1

(τ
′′(j)
t · 2t), (74)

when the balance property holds such that k = dlog(a)e = dlog(b)e. Taking
Equation (73) and (74), for all j ∈ [0, k), we have

b[j]− a[j] =

S−1∑
i=0

bi[j]−
M−1∑
i=0

ai[j]

+

j∑
t=1

(τ
′′(j−t)
t − τ ′(j−t)t )−

k−1∑
t=1

(
(τ
′′(j)
t − τ ′(j)t ) · 2t

)
=

S−1∑
i=0

bi[j]−
M−1∑
i=0

ai[j] +

j∑
t=1

τ
(j−t)
t −

k−1∑
t=1

(τ
(j)
t · 2t),

(75)

where τ
(j)
t = τ

′′(j)
t − τ

′(j)
t . Obviously, the corrector value in [18] is a special

case of Equation (75) under k = 2 by regarding τ
(j−1)
1 = τj , τ

(j)
1 = τj+1, and

τ
(j−t)
t = τ

(j)
t = 0 when t > 1.

As τ
′′(j)
t , τ

′(j)
t ∈ {0, 1}, we have τ

(j)
t ∈ {−1, 0, 1}, which narrows down the

range of corrector values in [18] (but requires more corrector values).

F Aggregating Range Proofs in MatRiCT

Esgin points out that running a full range proof (as in [15]) is unnecessary since
τ0− 2τ1, · · · , τk − 2τk+1 have already committed in C = Com(τ0− 2τ1, · · · , τk −
2τk+1). Consider one correct value τj that falls in the range [−(M −1), S−1]. A
prover shifts it to τ ′j = τj + (M − 1) and proves τ ′j ∈ [0, S +M − 2]. Specifically,
the prover writes τ ′j in the binary representation, (τ ′j,0, · · · , τ ′j,l−1) ← Bits(τ ′j),
where l = log(S +M − 1). By running a binary proof (can be aggregated in the
binary proof part of output accounts), the prover convinces the verifier that τ ′j,i’s



are bits after sending fj,i = x · τ ′j,i + aj,i for all j ∈ [1, k)’s and i ∈ [0, l)’s with a
challenge x and some masking values aj,i’s. Additionally, the verifier reconstructs
the masked τ ′j , fj , with

fj =

l−1∑
i=0

2ifj,i = x · τ ′j +

l−1∑
i=0

2iaj,i. (76)

With fj ’s as the masked correct values, the verifier further checks

Com(f0 − 2f1, · · · , fk − 2fk+1) = xC +Asum, (77)

whereAsum = Com(
∑l−1
i=0 2ia0,i−2

∑l−1
i=0 2ia1,i, · · · ,

∑l−1
i=0 2iak,i−2

∑l−1
i=0 2iak+1,i)

and f0 = fk = 0. Besides, Asum and Equation (77) can also be aggregated into
the binary proof verification, the prover only needs to include a (k − 1)l-size

vector, (fj,i)
k−1,l−1
j=1,i=0 , in the proof.


