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Abstract. Commitments to key-value maps (or, authenticated dictio-
naries) are an important building block in cryptographic applications,
including cryptocurrencies and distributed file systems.
In this work we study short commitments to key-value maps with two
additional properties: double-hiding (both keys and values should be
hidden) and homomorphism (we should be able to combine two com-
mitments to obtain one that is the “sum” of their key-value openings).
Furthermore, we require these commitments to be short and to support
efficient transparent zero-knowledge arguments (i.e., without a trusted
setup).
As our main contribution, we show how to construct commitments with
the properties above as well as efficient zero-knowledge arguments over
them. We additionally discuss a range of practical optimizations that can
be carried out depending on the application domain.
Finally, we formally describe a specific application of commitments to
key-value maps to scalable anonymous ledgers. We show how to extend
QuisQuis (Fauzi et al. ASIACRYPT 2019). This results in an efficient,
confidential multi-type system with a state whose size is independent of
the number of transactions.

Keywords: Zero-knowledge · Key-Value map · Commitments.

1 Introduction

In this work we propose constructions for efficient committments to key-value
maps (with specific features) and for efficient zero-knowledge arguments that
can prove properties on committed key-value maps.
Key-Value Maps. We can loosely consider a key-value map as the equivalent
of a dictionary in some programming languages (e.g., Python): a way to map
arbitrary keys—e.g., strings—to values—e.g., scalars. For example, the balance
of a user in a wallet application could be represented by a key-value map as
kv = {(USD, 100), (BTC, 10)}, where each of the different asset types (the keys)
are associated to an amount (the values). In this paper we will generally assume
that values are in an algebraic group endowed with an addition operation +.



Our Focus: Short, Homomorphic, Doubly-Hiding Commitments. A
commitment to a key-value map is roughly similar to an ordinary commitment:
it cannot be opened to two different key-value maps (binding) and it should
not leak anything about neither the keys nor the values in it. In the case of
key-value maps, however, we are interested in some additional functional and
efficiency-related requirements:

– Large key universe: our commitments should support a large universe of keys,
potentially superpolynomial in the security parameter4. This implies that the
algorithms of the commitment scheme should have a runtime independent
of (or logarithmic in) the size of the key universe.

– Short commitments: our commitments should have size independent not only
of the size of the key universe, but also of the density of the key-value map.
The density is the number of elements whose value is not zero (e.g., the
density of kv in the example above was 2).

– Homomorphic commitments: we require our commitments to support an
homomorphic operation ◦. For example assume each commitment encodes
a wallet and that we have two wallets c, c′ with c = Com({(USD, 100),
(BTC, 10)}) and c′ = Com({(USD, 20), (ETH, 1)}). Then we can compute the
commitment c∗ ← c ◦ c′ = Com({(USD, 120), (BTC, 10), (ETH, 1)}) without
knowing the opening of any of the commitments. Requiring homomorphism
rules out Merkle Trees as a solution. Homomorphic properties of commit-
ments to “structured objects” have wide applications in cryptography (see,
e.g., [KZG10] for homomorphic polynomial commitments). The homomor-
phic property is a natural one and allows many useful applications: as an ex-
ample we describe applications to privacy-preserving cryptocurrencies in Sec-
tion 7 and an additional class of application scenarios in Section 1.1.

– Efficient and transparent5 zero-knowledge proofs: we should be able to prove
(and verify) efficiently arbitrary properties over commitments of key-value
maps. We are interested in zero-knowledge proofs—which allow to prove
properties over a secret value without leaking it—and where both keys and
values are part of the secret. For example, one can prove that two committed
key-value maps hold the same value for some (hidden) key k̃. More formally,
given as public input commitments c, c′ and a public function f , one can
prove knowledge of a key k̃ such that c, c′ are commitments to key-value
maps kv, kv′ respectively and kv[k̃] = f(kv′[k̃]).

While different subsets of these properties have been studied in literature, our
contribution is to investigate constructions that require them all. Our goal is to
provide concretely efficient tools useful in different application domains.

4 This is a way to describe our setting asymptotically. We stress, however, that is not
necessary: an interesting setting for our constructions is just one where the universe
of keys is concretely large.

5 In a transparent argument system the setup does not need to be produced by a
trusted party. This property is interesting in the case of non-interactive argument
systems, which are the focus of this work.
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Key-Hiding Properties. Here we clarify what we mean by key-hiding prop-
erties and discuss how existing solution fail to solve our problem. We have three
key sets of interest: the set of all the keys in the universe (which we will assume
to be {0, 1}∗ or a field F from now on), the set Kactive of active keys, defined as
all the keys that are being used in the system, and the set Kcom of committed
keys, defined as the non-zero keys in any given commitment. For example, in
a wallet setting, Kactive consists of all the keys (asset types) encoded in some
wallet, while Kcom would consist of those encoded in a specific given wallet. De-
pending on whether we want to hide the active or the committed keys or both
we get four different settings, which we discuss below (see also Fig. 1).

Public Active keys. In the case where both the active keys and the committed
keys are public, Pedersen commitments are already a solution to our problem.
The system parameters will contain group elements h, g1, . . . , gn where there is
a known association between ki and gi for all active keys ki. We commit by
computing c = hr

∏
i g

vi
i , and proving properties of values is trivial to do using

existing sigma protocols since the verifier is allowed to learn the keys. In the
case in which the active keys are public but the committed keys are private,
Pedersen commitment can still be used but the (proving) complexity of the ZK
proof would be linear in the number of active keys6. One of our contributions is
to show how to bring this down to the size of the committed set.

Private Active keys. It does not make sense to consider the case where the
set of active keys are private but the committed keys are public. The most in-
teresting case is the one in which both of these sets are private. In this setting,
it would be possible to commit using a non-homomorphic version of Pedersen
commitment. We thus have 2n+1 generators (h, g1, f1, . . . , gn, fn) and we com-
mit computing c = hrΠgvii f

ki
i . Now it is possible to efficiently prove statements

but the commitment is not homomorphic (and therefore not applicable in our
settings of interest). Our main contribution is to provide a better solution for
this case.

1.1 Applications of Our Work

Application: Multi-Type QuisQuis. The privacy-preserving transaction sys-
tem QuisQuis [FMMO19] crucially relies commitments endowed with an homo-
morphic property. It builds upon accounts to which tokens are deposited in
a transaction without interaction of the receiver. Compared to other privacy-
preserving transaction systems like Zcash [BCG+14] or Monero [NM+16], the
design of QuisQuis achieves a state size linear in the number of participants
instead of monotonically growing over time. We extend this system through
a notion of currency types so such that different currencies share a common
anonymity set. This allows for a dynamic creation of confidential tokens by any
participant without setting up a full separate system. For this application, we

6 This is true for the aforementioned approach with sigma-protocols as well as for
other straightforward applications of NIZKs.
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also present a secret key based key-value map commitment7. In combination
with efficient NIZKs, to show that transactions conserve all value, we achieve
small transaction sizes. We formally describe this application in Section 7.

Application: Publicly Verifiable Evolving Database. Consider a database
(representable as key-value store) which receives numerous updates and where
we want the content of the database to remain private but we also are interested
in the database publicly “evolving through time”.

As an example of the above, consider a register of tax-related information
where users are identified by their SSN. The set of valid identities grows dy-
namically, which results in a high overhead if the public paramter changes every
time. Users provide their SSN to their employer who uses it to report the salary.
At the end of the month, each employer creates a hiding key-value map com-
mitment with one key per employee and their earned amount as value, e.g.
δCCorp X,May = Com({SSNAlice : 3142,SSNBob : 2718}). The company may ei-
ther prove that for the employee’s identity the correct amount was committed
(without revealing the identities of co-workers), or reveal the full opening to their
employees. Every company publishes these commitments to a persistent log. At
the end of the year, the tax authority homomorphically adds all published com-
mitments and can then generate proofs on a single commitment instead of all
commitments from all companies. The required value opening is provided by
the tax payers and the randomness by the companies. Employees with multiple
sources of income get the amounts homomorphically added. Different categories
of income may be separated by namespaces in the key.

1.2 Technical Overview

Our Construction of Key-Value Map Commitments. In order to commit
to a key-value map

{
vk
}
k∈K

we assume a group G where the discrete logarithm
is hard and a hash functionHmodeled as a random oracle mapping keys to group
elements. We then compute a commitment as c =

∏
k∈K H(k)vkhr where h is a

random generator of the group and r is a random scalar. This can be seen as
a (vector) Pedersen commitment with random key-dependent generators and it
has short homomorphic commitments. In the next paragraphs, we show how we
can construct efficient zero-knowledge proofs for circuits over such commitments.

Modular Transparent Zero-Knowledge Arguments for Committed
Key-Value Maps. Fix a (large) field F and consider a circuit C over key-value
maps (we assume that F is also both the key and the value space of the key-
value map). We assume the syntax of C to be of the type C(kv1, . . . , kvℓ, ω), the
kvi-s as private key-value maps and ω as an additional private witness (ω is a
vector of field elements). Given such a circuit we are interested in proving an
augmented circuit that takes as public input commitments to the ℓ key-value

7 I.e., a commitment which can be opened using a secret key in place of the random-
ness.
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maps and proves their opening in addition to the relation from circuit C. More
specifically, we propose an argument system for:

C∗(c1, . . . , cℓ; (kv1, ρ1), . . . , (kvℓ, ρℓ), ω)

:= C(kv1, . . . , kvℓ, ω) ∧
∧
i∈[ℓ]

ci = Com(kvi, ρi) (1)

where the part after the semicolon is considered the private witness. A more
concrete intuition on the circuit above is: given committed key–value pairs we
can prove properties of their values, their keys and any relation between these
and other private values (contained in ω).

Our Template for Zero-Knowledge Arguments on Committed Key-
Value Maps. We now describe how to prove properties on committed key-
value maps. The following refers to the setting with private-active-keys/private-
committed-keys (see lower-right quadrant in Figure 1). We denote the con-
struction for the doubly-private case by Z -dp (first part alternatively spelled
“ZKeyWee”, as a pun on “ZK for KV”, and pronounced “zee-kee-wee”; “dp”
stands for doubly-private).

Public Kactive Private Kactive

Public Kcom
c = hr ∏

i g
vi
i &

Σ-protocols
(Uninteresting case)

Private Kcom
c as in Fig. 2 &

Z -set (Sec. 1.2+ Appx. A)

c as in Fig. 2 &

Z -dp (Sec. 4)

Fig. 1: How to construct committments to key-value maps & NIZKs over them
within our settings and with our requirements of interests. (Kactive: “active”
keys set, i.e., all the keys committed somewhere; Kcom committed keys set, i.e.
those that open the commitments we are using in a proof right now). The related
constructions are specified in the second lines with our two contributions Z -set
and Z -dp.

Our construction follows a basic blueprint, which we now exemplify through a
concrete case. Consider a committed key-value map

{
vk
}
k∈K

and the problem of

proving in zero-knowledge that all its values vk are in some range {0, . . . 2µ−1}.
We proceed in two steps: we first let the prover send the verifier what we call
key-tags, these are masked version of the non-zero keys in the committed key-
value map. The prover will also show that they are valid maskings of some set
of keys. By providing key-tags, we can then break the rest of the relation in two
parts: a) showing knowledge of values (and randomness) that combined with the
key-tags produce the commitment c (part of the public input); b) showing that
these values are in range. We now elaborate on each of these steps.
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Given a key-value map
{
vk
}
k∈K

with density n (the number of non-zero

keys8) we provide n key-tags by sending bk = H(k)hrk for a random rk. The
prover should also prove that each of them is of the prescribed form. We stress
that, in order to do this, we use the heuristic technique of proving a random oracle
in zero-knowledge. Next, the prover would show knowledge of values v1, . . . , vn
and an appropriate r′ such that c = bv1

k1
· · · bvnkn

hr
′
and vi ∈ {0, . . . 2µ − 1} for

all i ∈ [n]. The latter relation—comprising reconstructing the commitment from
the key-tags and the range proof—can for example be performed through a
system like the generalized Bulletproofs in LMR [LMR19] or compressed Σ-
protocols [ACR20]. These provide interfaces to prove bilinear circuits, of which
we only use the non-bilinear gates, with logarithmic proof sizes. We stress that
our focus is on transparent solutions, i.e., without a trusted setup; all our con-
structions can be instantiated in a fully transparent manner. We discuss an
experimental evaluation in Section 6. We estimate our system can open n = 100
values and prove they are in range in approximately one minute. A very loose
estimate for the size of the corresponding proof is < 6KB using [LMR19] in the
Ristretto curve (see also Table 1 and Section 4.3).

We remark on two properties of the template of our construction above.
First, we can easily reduce its amortized cost by splitting it into an offline stage
(independent of the commitments on which we are carrying out proofs) and an
online stage. We further discuss these improvements in Section 5. Second, we
can adapt and optimize our construction to the scenario with public active keys
and private committed keys (lower-left quadrant in Figure 1). We describe this
next.

A 2nd Construction with Registration of Active Keys. In some set-
tings, although the whole universe of keys can be extremely large, the set of
active keys Kactive at any given time can have a manageable size and be publicly
known. Consider for example applications (e.g. multi-asset transaction system)
where there is an exponentially large set of potential asset types (keys), but only
a manageable subset of them are present in the system (active) at any given
time. Moreover, before becoming active in the system they plausibly need to be
registered (for example, through a first “genesis” transaction for that specific
asset type). In such settings we can leverage the partial knowledge on exist-
ing keys to improve efficiency. We do this by introducing an operation that
preprocesses the parameters of the system (or CRS) specializing them for a
specific set of active keys. Our proposed construction for this setting—denoted
by Z -set (for “registered set” of keys) and discussed in more detail in Ap-
pendix A—assumes the specialized CRS for the set Kactive to contain an accu-
mulator9 to the set of (unmasked) key-tags corresponding to Kactive, i.e., to the

8 Here we consider the case where leaking the density of the key-value map is not a
problem. We will also adapt our construction where this leakage does not occur if
an upper bound on this density is known.

9 An accumulator is a cryptographic data structure that allows to commit to a set in
a binding manner and to prove membership of an element efficiently. NB: we can
compute accumulators deterministically from a set, i.e., without a trusted authority.
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set Bactive = {H(k) : k ∈ Kactive}. Thus, in the online stage, we can produce a
proof on a commitment c = Com(

{
vk
}
k∈K

) by: 1) producing masked key-tags

B′ = {H(k)hrk : k ∈ K} produced with some fresh randomness rk; 2) showing
that each b′k ∈ B′ is of the form b ·hrk for some b in the accumulator; 3) showing
knowledge of vk-s such that c = hr

∏
k b

′vk
k .

The main advantage of the construction above, Z -set, is that it does not
require the hashing H(k) for the key-tags to be proven in zero-knowledge (by
exploiting the fact that the keys are public and “pre-registered”). This can result
in savings in verification time of one order of magnitude compared to Z -dp (we
elaborate in Appendix A.4); such savings also apply to the multi-type transaction
systems Multi-type QuisQuis (Section 7) and can be extended to other trans-
action systems (our techniques in Z -set are compatible with other frameworks
besides QuisQuis and they could be straightforwardly applied, e.g, to obtain a
multi-type version of Veksel [CHA21]).

Multi-Type QuisQuis. In constrast to the original QuisQuis where an account
stored a scalar value representing an amount, we generalize accounts to store
tokens of different types in a key-value map. Each key corresponds to a type,
also known as currency, and the value specifies how many tokens of the specific
type are held by the account. An account acct holds a balance kv, represented as
a key-value map. To transfer tokens from one account to another, a transaction
includes both accounts as active inputs, denoted by the set P. The transaction
subtracts tokens from one account with a secret index s and adds them to the
other one. The output of the transaction are two updated accounts belonging
to the same users as the inputs; the input accounts are discarded. To achieve
anonymity, the input consists of P together with a potentially large anonymity
set of accounts A which keep their balance unchanged but provide set anonymity
for the active accounts. The sender uses Z -set with a circuit to prove that they
have enough funds (knowledge of secret key and positive balance) and that the
updates are consistent.

1.3 Related Work

Authenticated Data Structures Besides the aforementioned straw-man schemes
based on Pedersen, a common approach to succinct key-value commitments uses
Merkle trees. They are not homomorphic and opening them in zero-knowledge
requires proving a number of hashes logarithmic in the number of committed
elements, which can be expensive.

A related primitive is that of vector commitments [CF13]. A limitation of
using vector commitments as key-value map commitments in general is that
values need to be stored at positions that have already been agreed upon. That
is, since we need to know for each key k what is the index ik it refers to in the
vector. This type of common agreement may be achieved in the setting in the
bottom left quadrant in Fig. 1 (public active keys) but not in the bottom right
one (private active keys). Also, while some constructions of vector commitments
are homomorphic (e.g., [CF13]) they lose this property when hiding is added to

7



them (which is usually achieved by storing hiding commitments to the values of
interest). Other constructions do not have this limitation ([LY10, BG18]) but,
like vector commitments in general, only support public active keys. We finally
remark that, vector commitments focus on a different notion of succinctness
than the one that is the focus in this paper. Our focus is on a proof size that is
sublinear in the size of the circuit we apply on the opening, but not necessarily
sublinear in the number of committed elements.

There is a large body of work on succinct commitments to key-value maps,
e.g.10, [AR20, CFG+20, BBF19, TXN20]. Differently from our work, construc-
tions in literature are not homomorphic and do not directly support hiding of
keys/values. We observe, however, that if one could do without homomorphism
the latter problem could be mitigated for some of these constructions by ap-
plying masking of keys/values and zero-knowledge. This is true for example for
some of the works based on groups of unknown-order [CFG+20, BBF19] where
we can use techniques to compose algebraic accumulators proofs and succinct
zero-knowledge proof systems described in [BCFK19].

The work in [AK20] formalizes encryption on distributed key-value maps
with consistency properties; it is not concerned with homomorphism or efficient
zero-knowledge. Other works on efficient Zero-Knowledge and key-value maps
include Spice [SAGL18]. The authors use data-structures that hide the key but
that are not homomorphic. Their constructions use a trusted setup.

Confidential Transaction Systems and Multiple Token Types Here we
describe works related to our application, a multi-type version of QuisQuis.

Works on confidential transaction systems include Zcash [BCG+14], Mon-
ero [NM+16], Omniring [LRR+19], and Veksel [CHA21]. We now compare these
works against the QuisQuis framework, which we extend in this work. The most
critical aspect is sender anonymity. Zcash obtains the largest anonymity set
among these works (as large as the UTXO set), but it does not have plausible
deniability11 and requires a trusted setup. Monero does not have these limita-
tions; it is unclear how the anonymity in Monero fares against that in QuisQuis
(see Discussion in [FMMO19]). Omniring improves the transaction size from
being linear in the size of the anonymity set (Monero) to a logarithmic size.
Both Zcash and Monero style systems, however, have transaction outputs that
can (essentially) never be removed from the UTXO set. The payment system in
Veksel, like QuisQuis, does not have this drawback. Differently from QuisQuis,
Veksel achieves O(1) transaction sizes, but at the price of weaker anonymity
guarantees. In all these systems amounts are confidential, yet they lack a notion
of type/currency.

The work in [PBF+19] introduces confidential types by using homomorphic
commitments whose construction is the “single key” version of ours. Their design
has also been used in SwapCT [EMP+21] and integrated in MimbleWimble
[YYD+19]. Another construction of confidential types is that of Cloaked Assets

10 We refer the reader to [TXN20] for a survey of this rapidly growing field.
11 Plausible deniability: no one can tell if a user meant to be involved in a transaction.
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developed by Stellar, which separates types and values in two different data
structures, similar to our non-homomorphic example. Therefore a transactor
requires the openings of all inputs to create a conservation proof, providing no
sender anonymity.

2 Notation and Preliminaries

Preliminaries on (Sparse) Key-Value Maps We assume a universe of keys
K and a universe of values V such that in a key-value map, keys are a subset
of K and values are any element in V; they may be of size superpolynomial in
a security parameter λ. We assume V to be an additive group endowed with
some operation +. A key-value map is defined as a function kv : K → V. We call
its density the number of elements that are mapped to a non-zero value in V.
Our focus is on sparse key-value maps whose density grows asymptotically with
poly(λ) (and in practice may be concretely small). We can represent a sparse
key-value map as a set of pairs

{
(k, vk)

}
k∈K

where K ⊆ K: this maps each
element k ∈ K to vk and any other element to 0 ∈ V. We often use the more
succinct notation

{
vk
}
k∈K

for a key-value map
{
(k, vk)

}
k∈K

over the set K (we

assume that the set K is implicitly part of the description of
{
vk
}
k∈K

). Hence

the empty set ∅ represents the key-value map with all elements in the universe
initialized to zero; we denote the latter empty key-value map ∅kv to be explicit.
We denote by −kv the key-value map that associates to each key k the value
−kv(k); we define a sum of key-value maps as follows:

{
vk
}
k∈K

+
{
v′k′

}
k′∈K′ is

defined as (k, vk + v′k′)k∈K∪K′ . A partition of a key-value map
{
vk
}
k∈K

is a pair

of key-value maps (
{
v′k′

}
k′∈K′ ,

{
v′′k′′

}
k′′∈K′′) such that (K ′,K ′′) is a partition of

K.

Cryptographic Assumptions For convenience we use a different, but equiva-
lent, formulation of the discrete logarithm assumption. Below G denotes a group
generator.

Assumption 1 (Generalized DLOG [BBB+18]) ∀ PPT A,m ≥ 2 :

Pr

 G← G(1λ); (g1, . . . , gm)←$ G
(a1, . . . , am)← A(G, g1, . . . , gm)

:

∃j∗ ∈ [m] aj∗ ̸= 0 ∧∏
j∈[m]

g
aj

j = 1G

 ≤ negl(λ)

NIZKs Here we describe the basic notion of non-interactive zero-knowledge.
In Section 4 we provide explicit syntax for the specific setting of NIZKs over
committed key-value maps.

Definition 1. A NIZK for a relation family R = {Rλ}λ∈N is a tuple of algo-
rithms NIZK = (Setup,Prove,VerProof) with the following syntax:
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– NIZK.Setup(1λ)→ crs outputs a common-reference string crs; if the argument
system is transparent this can consist of uniform random elements.

– NIZK.Prove(crs,x,w)→ π takes as input a string crs, an input description x
(in which we embed the whole public input), a witness w such that Rλ(x,w);
it returns a proof π.

– NIZK.VerProof(crs,x, π) → b ∈ {0, 1} takes as input a string crs, a public
input x, a proof π; it accepts or rejects the proof.

Whenever the relation family is obviously defined, we talk about a “NIZK for a
relation R”. We require a NIZK to be complete, that is, for any λ ∈ N and
(x,w) ∈ Rλ it holds with overwhelming probability that VerProof(crs,x, π)
where crs ← Setup(1λ) and π ← Prove(crs,x,w). Other properties we require
are: knowledge-soundness and zero-knowledge. Informally, the former states we
can efficiently “extract” a valid witness from a proof that passes verification;
the latter states that the proof leaks nothing about the witness (this is modeled
through a simulator that can output a valid proof for an input in the language
without knowing the witness). Notationally, we separate public and private in-
puts in relations and proving algorithm through a semicolon.

Knowledge-Soundness. For all λ ∈ N and for all (non-uniform) efficient
adversaries A, auxiliary input z ∈ {0, 1}poly(λ), there exists a (non-uniform)
efficient extractor E such that

Pr

[
crs← Setup(1λ); (x, π)← A(z, crs)
w← E(z, crs)

:
Rλ(x,w) ̸= 1 ∧

Vfy(crs,x, π) = 1

]
≤ negl(λ)

Zero-Knowledge. There exists a PPT simulator S such that for any λ ∈ N,
PPT A, auxiliary input z ∈ {0, 1}poly(λ), and it holds p0 = p1 where

pb := Pr

[
crs← Setup(1λ); (x,w)← A(z, crs)

π ← Xb(crs,x,w) if Rλ(x,w) o.w. ⊥
: A(z, crs, π) = 1

]

X0(crs,x,w) := S(z, crs,x) and X1(crs,x,w) := Prove(crs,x,w).

On efficiency of NIZKs. The efficiency (proving/verification runtimes and
proof size) of a NIZK often depends on the size of the description of a relation
in constraints (these roughly correspond to the multiplication gates of its circuit
representation). We will refer to this notion later in the text. See also [BBB+18].

3 Key-Value Commitments

Here we define homomorphic commitments to key-value maps where both keys
and values are hidden. In the appendix (Appendix D.2) we also present an ex-
tended construction, which we use to build Multi-Type Quis-Quis.

Definition 2 (Commitment to Key-Value Maps (kvC)). The following is
a syntax for our key-value maps
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Setup(1λ)→ pp generates public parameters.
Com(pp,

{
vk
}
k∈K

; r)→ c commits to the key-value map with randomness r.
We keep the randomness implicit whenever it does not affect clarity and we
assume it to be sampled from an additive group.12

Definition 3 (Hiding). A key-value map commitment is hiding if for all key-
value maps

{
v′k′

}
k′∈K′ ,

{
v′′k′′

}
k′′∈K′′ (even of different size), for pp← Setup(1λ)

the following two distributions are computationally indistinguishable:

{Com(pp,
{
v′k′

}
k′∈K′)} ≈ {Com(pp,

{
v′′k′′

}
k′′∈K′′)}

Definition 4 (Binding). A key-value map commitment is (computationally)
binding if for any PPT adversary A, it holds that

Pr


pp← Setup(1λ)

(c,
{
v′k′

}
k′∈K′ , r

′,{
v′′k′′

}
k′′∈K′′ , r

′′)← A(pp)
:

c = Com(pp,
{
v′k′

}
k′∈K′ , r

′) ∧
c = Com(pp,

{
v′′k′′

}
k′′∈K′′ , r

′′) ∧{
v′k′

}
k′∈K′ ̸=

{
v′′k′′

}
k′′∈K′′

 ≤ negl(λ)

Definition 5 (Homomorphism). We say a commitment to a key-value map
is homomorphic if there exists an operation ◦ such that Setup always produces
pp such that for all maps

{
vk
}
k∈K

,
{
v′k′

}
k′∈K′ and randomness r, r′ it holds that

Com(
{
vk
}
k∈K

; r) ◦ Com(
{
v′k′

}
k′∈K′ ; r

′) = Com(
{
v∗k∗

}
k∗∈K∗ ; r + r′)

where K∗ = K ∪K ′ and (k∗, v∗k∗) =


(k∗, vk∗) if k∗ ∈ K \K ′

(k∗, v′k∗) if k∗ ∈ K ′ \K
(k∗, vk∗ + v′k∗) if k∗ ∈ K ∩K ′

3.1 Construction

We recap some of the properties we are interested in obtaining in our con-
struction: (i) support large key universe; (ii) small commitments and small pa-
rameters; (iii) homomorphic (Definition 5); (iv) support efficient non-interactive
zero-knowledge proof of knowledge of opening (in particular they should run in
time linear in the density of the key-value map).

In Figure 2 we propose a construction based on random-oracle with the
properties above. Given a prime p we consider the universe of values V = Zp, a
group G isomorphic to it and for which the GDLOG assumption holds, a hash
function H modeled as a random oracle and an arbitrary key universe K such
that H : K → G. We prove Theorem 1 in Appendix B.

Theorem 1. If H is a random oracle and under the GDLOG assumption the
construction in Figure 2 is a kvC with value universe Zp.

12 We will use this when defining the homomorphic property of commitments.
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Setup(1λ)→ pp: samples group G; g, h←$ G; return pp = (G, g, h).
Com(pp,

{
vk
}
k∈K

; r)→ c: return
∏

k∈K H(k)vkhr.

Fig. 2: Our construction for kvC.

4 Arguments on Key-Value Commitments (Double
Private Setting)

Here we formalize and construct zero-knowledge arguments over key-value map
commitments for the setting in which there is no information on the keys avail-
able in the system and those we are using in our proof.
Circuits over Key-Value Maps To support arbitrary computation on com-
mitted key-value maps, we provide an interface which supports any arithmetic
circuit of the following form. The keys and values kv as well as an additional
witness ω are field elements in F. The circuit consists of multiplication gates of
the form F× F→ F. They have an unbounded outbound degree and any linear
relations are directly expressed between outputs and inputs.

We write any circuit using multiplication gates in the domain KVℓ × Fnω as
CF(kv1, . . . , kvℓ, ω). This circuit depends on the desired property the openings
should have. Here ω is an additional private witness that may not depend on
the opening to the key-value maps.

4.1 Arguments for Circuits over Committed Key-Value Maps

Here we present the overview of our argument system which works over commit-
ted key-value maps and takes an arbitrary inner circuit operating on the openings
of the commitments. To be clear, we spell out its formalization explicitly but it
is a special case of Definition 1.

Given an inner circuit CF as described above, our high level interface for
proofs has the following form:

kvNIZK.Setup(1λ)→ crs takes a security parameter λ and outputs a crs.
kvNIZK.Prove(crs, CF, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω)→ π takes the crs and

a circuit CF as well as ℓ commitments ci and their openings (kvi, ρi) and an
auxiliary witness ω. It outputs a proof π

kvNIZK.VerProof(crs, CF, c1, . . . , cℓ, π)→ b ∈ {0, 1} takes the crs, a circuit CF,
and ℓ commitments ci. It outputs a bit b depending on the validity of the
proof π.

The relation we want to prove is defined by the circuit C∗ in Equation (1).
To clarify our notation we re-define correctness for arguments for committed
key-value maps.

12



Definition 6 (kvNIZK Correctness). A kvNIZK is correct if, for any λ ∈ N
with crs ∈ kvNIZK.Setup(1λ), circuit CF, key-value maps k⃗v ∈ KVℓ and ran-
domness ρ⃗ ∈ Fℓ with ∀i ∈ [ℓ] : ci = Com(kvi, ρi) and any ω ∈ Fnω for which
C∗(c1, . . . , cℓ; (kv1, ρ1), . . . , (kvℓ, ρℓ), ω) = 1 it holds that

kvNIZK.VerProof(crs, CF, c1, . . . , cℓ, π) = 1 where

π ← kvNIZK.Prove(crs, CF, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω).

As for NIZKs, we require knowledge-soundness and zero-knowledge.

4.2 Construction with Intermediate Key-Tags

Our construction has two stages. First the prover creates some key-tags bk and
proves that they are well formed (i.e., they are obtained by hashing a key and
masking with a random group element, both known to the prover). These key-
tags are then used in a subsequent proof for the opening of the commitment and
the actual relation. Intuitively, since the prover knows how the key-tags have
been produced, the prover is able to compute openings of the input commit-
ments under the new “base” (h, b1, . . . , bn) – as opposed to the the original base
(g,H(k1), . . . ,H(kn) – by appropriately computing the randomizers as a func-
tion of the values in the commitment and the randomness used for producing
the key-tags. This allows to avoid proving properties of the hash function in the
second part of the proof. The full construction Z -dp is presented in Figure 3.
For sake of presentation and w.l.o.g., in the construction we assume that all our
key-value maps include the same keys k1, . . . , kn.

Theorem 2. Under the GDLOG assumption, if NIZKtags and NIZKC are se-
cure (correct, zero-knowledge, knowledge-sound) NIZKs for their required re-
lation families, then the construction Z -dp is a secure kvNIZK for arbitrary
circuits over the key-value map commitment in Fig. 2.

Proof. Correctness: Correctness follows by inspection. In particular, note that
when proving RC the prover “opens” the commitments ci under the base defined
by the key-tags bk’s. Since the bk’s are generated with the same h as the original
commitment and the prover knows the openings of the bk’s, the prover can find
the right value to be used as exponent for h.

Knowledge-Soundness: To prove knowledge-soundness, assume the existence
of extractors Etags, EC for the two sub-relations. We build an extractor E∗ that on
input a statement (CF, c1, . . . , cℓ) and accepting proof (b1, . . . , bn, c

∗, πtags, πC),
outputs ((kv1, ρ1), . . . , (kvℓ, ρℓ), ω). Our E∗ works as follows. It first extracts
through (k′1, . . . , k

′
n, r⃗

′, s′)← Etags(b1, . . . , bn, c∗, πtags) and then the rest through
((kv1, ρ

′
1), . . . , (kvℓ, ρ

′
ℓ), r⃗, s, ω) ← EC(CF, c1, . . . , cℓ, b1, . . . , bn, c

∗, πC) such that
the two relations hold for the extracted witnesses. We first argue it holds that
(k′1, . . . , k

′
ℓ, s

′) = (k1, . . . , kℓ, s), since otherwise we can construct an adversary
that breaks the binding property of the Pedersen commitment c∗. Then, we
show how to extract valid openings for the input commitments ci. Remember
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The protocol is described in the random oracle model where all parties have access
to H : {0, 1}∗ → G.

Setup(1λ): 1. compute crstags ← NIZK.Setuptags(1
λ), crsC ← NIZK.Setup(1λ).

2. generate the commitment key h
$←− G (setup for kv commitments).

3. sample random generators g⃗
$←− Gn where n is the maximum number of

committed keys (≤ number of active keys ) in a commitment.
4. Output crs = (crstags, crsC, h, g⃗)

Prove(crs, CF, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω):
1. From all key-value maps kvi, extract the set of non-zero keysKi and define

(k1, . . . , kn) :=
⋃
i∈[ℓ]{k ∈ Ki}. Parse kvi = {(k, vi,k) : k = k1, . . . , kn} for

each i = 1, . . . , ℓ

2. Sample random values r⃗
$←− Fn and create the key-tags bki = H(ki)hri .

Additionally, create a vector Pedersen commitment to all keys (called

pre-image commitment) c∗ = hs
∏n
i=1 g

ki
i with randomness s

$←− F.
3. Generate a proof that the key-tags are well formed by proving knowledge

of the pre-images ki i.e., generate a proof

πtags ← NIZK.Provetags(crs, bk1 , . . . , bkn , c
∗; k1, . . . , kn, r⃗, s)

for the relation

Rtags(bk1 , . . . , bkn , c
∗; k1, . . . , kn, r⃗, s) :=

(c∗ = hs
n∏
i=1

gkii ∧ ∀i ∈ [n] : bki = H(ki)h
ri)

4. Generate a proof

πC ← NIZK.ProveC(crs, C
F, c1, . . . , cℓ, bk1 , . . . , bkn , c

∗;

(kv1, ρ1), . . . , (kvℓ, ρℓ), r⃗, s, ω)

for the relation

RC(C
F, c1, . . . , cℓ, bk1 , . . . , bkn , c

∗; (kv1, ρ1), . . . , (kvℓ, ρℓ), r⃗, s, ω) :=

c∗ = hs
n∏
i=1

gkii ∧ ∀i ∈ [ℓ] : ci = h
ρi−

∑n
j=1 rjvi,kj

n∏
j=1

b
vi,kj

kj

∧CF((kvi)i∈[ℓ], ω) = 1

(2)

5. Return both proofs including the key-tags and the pre-image commitment
π := (bk1 , . . . , bkn , c

∗, πtags, πC)
VerProof(crs, CF, c1, . . . , cℓ, π):

1. Parse π as (bk1 , . . . , bkn , c
∗, πtags, πC).

2. Verify b0 ← NIZK.VerProoftags(crs, bk1 , . . . , bkn , c
∗, πtags)

3. Verify b1 ← NIZK.VerProofC(crs, C
F, c1, . . . , cℓ, bk1 , . . . , bkn , c

∗, πC)
4. return b0 ∧ b1

Fig. 3: Z -dp, our construction for kvNIZK
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that thanks to the knowledge-soundness of the second proof system (for relation

RC) we know that for all commitments ci it holds c = hρ
′−

∑n
j=1 rjvkj

∏n
j=1 b

vkj

kj

(we remove the index i here to improve readability) .
Thanks to the knowledge soundness of the first proof system (for relation

Rtags) we know that bkj
= H(kj)hr

′
j , thus we can rewrite c as

c = hρ
′−

∑n
j=1 rjvkj

n∏
j=1

H(kj)vkj hr
′
j ·vkj = hρ

′−
∑n

j=1(rj−r′j)vkj

n∏
j=1

H(kj)vkj

Thus our extractor can output ((kv1, ρ1), . . . , (kvℓ, ρℓ), ω) with ρi = ρ′i −∑n
j=1(rj − r′j)vki,j

as the witness for the overall relation. Note that the proof

does not guarantee that r⃗ = r⃗′ . However this is not a problem since we are
still guaranteed that the extracted witness for the overall relation is a valid one.
Zero-Knowledge: follows from the ZK property of the underlying arguments and
the hiding property of the commitments. Details can be found in Appendix B.

4.3 How to Instantiate the Subprotocols in Z -dp

To instantiate the well formedness of the tags, i.e. the relation Rtags, we pro-
pose to use a cryptographic hash function such as MiMC [AGR+16], Posei-
don [GKR+21], GMiMC [AGP+19], or Marvellous [AAB+19] which are op-
timized for zero-knowledge proofs. They provide hashing to a field element
(HF : {0, 1}∗ → F). A subsequent circuit then proves that the field element
is equivalent to the group element in the key-tags. For the example of elliptic
curves, this is the relation [bki

] = [(HF(ki), 0)] + ri · [h] where brackets enclose
group elements and (HF(ki), 0) is an explicit description of the curve point from
a field element HF(ki). The combined constraints are then proven by e.g. Bul-
letproofs [BBB+18].

The circuit for the relation RC can be implemented through a generalization
of Bulletproofs [LMR19] or compressed Σ-protocols [ACR20]. They provide an
interface supporting bilinear circuits with five gates to enable arbitrary compu-
tation of which we use a subset of gates for non-bilinear circuits only. Given
a circuit C constructed from the available gates, they then provide an efficient
protocol with communication complexity 6⌈log2(|C|)⌉+ 28 group elements.

5 Improvements in Practice: Offline/Online Stages

The proving algorithms of our constructions (both Z -dp and Z -set) follow a
two-step template. In step (a) the prover provides key-tags bk-s and proves they
are valid. This can be done independently of the commitment. In a following
step (b) we compute a proof about properties of the commitment opening (and
that actually depends on the commitments). Crucially, in the latter step, the
prover uses the key-tags as (rerandomized) “anchors” to the keys. We observe
that we can exploit the fact that (a) does not depend on the commitments to
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the key-value maps (but only on the keys that they will contain) to preprocess
this step.

Consider, for instance, the running example from the introduction where
the commitments contain multi-currency wallets. Assume that the prover knows
that in the future they will want to prove some properties about some of their
wallets (which are expected to keep changing between now and the proving time).
Moreover, while a large set Kactive of asset types might be circulating in the
system, the prover knows that they will only hold a very specific and relatively
small subset Kpre of these keys (e.g., maybe only ETH, USD and EUR). If
that is the case they can preemptively perform an “offline proving stage” that
would be valid for all of the online proofs they will have to carry out later.
Specifically, in Z -dp the prover performs step (a) above offline as follows. On
input set Kpre, the prover provides a set of |Kpre| key-tags B = {bk : k ∈ Kpre},
defined as usual as bk = H(k)hrk together with a proof πtags that they were
constructed honestly. The output of this step is therefore πoffl = (B, πtags). At
a later time, when input commitments c1, . . . , cℓ are available, the prover uses
the pre-computed set of key-tags B to produce a step (a) (the production of
key-tags) for each of the commitments ci. In order to preserve zero-knowledge,
step (b) is modified to rerandomize the related bk-s first. The rerandomization
hides the mapping between online proofs, however the verifier learns that all
commitments of the online phase contain the same set of keys. We can similarly
adapt Z -set by performing a proof of membership and masking (step 1 in Fig. 4)
before hand.

The advantage of this approach is to use a single offline stage for many proofs.
The efficiency savings of this stage (both for proving and verification time) can
be significant since it involves proving/verifying hashing in zero-knowledge. For
example, we conservatively estimate approximately 5k constraints using Posei-
don hashing on a Ristretto curve [GKR+21]. Each of these hashes can be proved
in the order of hundreds of milliseconds (see, e.g., Table 5 in [GKR+21]). For
n ≈ 100 this involves for example saving half a million constraints13 amount-
ing to around half a minute of proving time. Savings for verification time are
comparable.

Naturally the offline stage preprocesses an upper bound U on the total number
of active keys, since each commitment may have openings to key-value maps of
different density. This may incur a high overhead cost if U is far from the actual
densities (because we still need to process U key-tags as input to the circuit).
The gains from an offline stage can differ accordingly and should be weighed
depending on the application.

Efficiency summary of our Constructions We summarize the (asymptotic)
efficiency of our constructions in Table 1. We present it for the case with of-
fline processing, but summing the offline and online columns corresponds to the
setting without an offline stage.

13 For some applications this can be huge—for comparison, the ZCash circuit
[HBHW21] has approximately 100k constraints.
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Table 1: Efficiency of our constructions and comparison with non-homomorphic
solutions (when they are applicable). Above we describe proof sizes, proving
time and verification times during offline and online stage. We also describe the
additional costs for proving the homomorphism in zero-knowledge with a non-
homomorphic solution (kvadd(n)). All values are implicitly in big O notation
and denote operations in a prime-order group unless underlined. Rows marked
with ⋆ refer to this work. The construction of Z -dp is in Fig. 3. “Z -set (Acc)”
refers to the instantiation of Z -set with NIZKs over accumulators in unknown-
order groups we describe in Appendix C (the more general construction is in
Fig. 4 in Appendix A). “Pedersen (Non-Hom.)” refers to the non-homomorphic
solution based on Pedersen described in the introduction. Typical values for our
parameters could be M ≈ 1000 and n ≈ 100.

Kactive Kcom Construction |πoffl| |πonl| |π(kvadd(n))|
priv priv Z -dp ⋆ log(n(|H|+ |Gadd|)) log(|C|) —
priv priv Pedersen (Non-Hom.) — log(|C|) log(n)
publ priv Z -set (Acc) ⋆ n+ log(n|Gadd|) log(|C|) —

Kactive Kcom Construction Voffl Vonl V(kvadd(n))

priv priv Z -dp ⋆ n(|H|+ |Gadd|) |C| —
priv priv Pedersen (Non-Hom.) — |C| n
publ priv Z -set (Acc) ⋆ n|G?|+ n|Gadd| |C| —

Kactive Kcom Construction Poffl Ponl P(kvadd(n))

priv priv Z -dp ⋆ n(|H|+ |Gadd|) |C| —
priv priv Pedersen (Non-Hom.) — |C| n

publ priv Z -set (Acc) ⋆
(M − n+ n logn)|G?|
+n|Gadd|

|C| —

N : Size of key universe K
M : Number of active / registered keys (Kactive)
n : Number of keys in the opening of a key-value map commitment

N >> M ≥ n
|H| : Number of constraints for hashing to a group element

|Gadd| : Number of constraints for summing two group elements
|G?| : Cost of exponentiation in unknown-order group

kvadd(n) : Sum operation among key-value maps of size n
C : Circuit computed on key-value map.
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6 Experimental Evaluation

Here we show the practical feasibility of our construction. Our focus is on Z -dp;
we compare its efficiency to that of Z -set in Appendix A.4.

Recall that our construction-template uses two separate steps (see also be-
ginning of Section 5 and Fig. 3): (a) validity of key-tags and (b) actual property
on opening of commitment. We evaluate our construction on a representative
application setting for cryptocurrencies, that is a 64-bit range proof as a circuit
proven in step (b).

Let n be the size of the opening of the commitment (also equal to the number
of elements we are showing are in range). We estimate the following runtimes.
For step (a): ≈ n · 700ms for proving and n · 100ms for verification; for step
(b) ≈ n · 235ms for proving and n · 89ms verification. We stress that proving
times for step (a) are fully parallelizable (as we generate n independent proofs
for key-tags).

These timings refer to those for a common laptop (i7-6820HQ CPU at 2.70GHz)
and aim at estimating an efficient instantiation through the zero-knowledge
scheme LMR [LMR19] as NIZKtags and NIZKC using Ristretto Curve as an un-
derlying group.

How we derive timings. A similar derivation for Bulletproof timings was
previously used in [LRR+19]. For each timing we use the formula T (n) ≈
n · num of constraints circuitLMR · cost per constraint. Deriving step (a): for
proving, cost per constraint is measured to be ≈ 8.97/64 ms/constraint (our
experimental finding) for the implementation in [dal]. For verification 1.22/64
ms/constraint. We estimate num of constraints circuitLMR(tag) ≈ 5k: for a cir-
cuit for Poseidon hash [GKR+21] and fixed base exponentiation (for reran-
domization) of curve points14 requires L = 2806 multiplicative constraints.
To use this in LMR [LMR19] we need to encode this as a witness vector (a
very conservative upper bound is 2L, which we approximate to 5k). Deriv-
ing step (b): for proving, cost per constraint is measured to be ≈ 232/64
ms/constraint. For verification 88/64 ms/constraint. We derive these estima-
tions from BL12-38115; we know this to be a fair estimate for Ristretto [dal].
num of constraints circuitLMR(range64) ≈ 65 constraints.

7 Application: Multi-Type QuisQuis

QuisQuis [FMMO19] is a privacy-preserving transaction system which allows
for pruning old transactions, keeping the state of each participant linear in the

14 Since there is no public circuit implementation for Ristretto operations for this, we
use arkworks [ark] BL12-381 implementation for this estimate. We expect this to be
an upper bound on Ristretto points given their smaller field size— 255

381
x smaller, more

precisely. We measure this number using the implementation in [ark]
15 We use a different implementation [zen] on BL12-381 points as the implementation

in [dal] is not compatible with BL12-381
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number of users. This is a major advantage over other privacy-preserving trans-
action systems, which require a state size linear in the number of transactions.
A QuisQuis transaction is a redistribution of tokens among a set of accounts.
An account belongs to an owner and stores their tokens. Instead of consuming
accounts and creating new ones, QuisQuis updates the accounts. These update
operations need to change the balance of a peer without knowing their total
balance. This is achieved with homomorphic commitments.

In contrast to the original QuisQuis where an account stored a scalar value
representing an amount, we generalize accounts to store tokens of different types
in a key-value map. Each key corresponds to a type, also known as currency,
and the value specifies how many tokens of the specific type are held by the
account. An account acct then belongs to a secret key sk and holds a balance kv,
represented as a key-value map. To transfer tokens from one account to another,
a transaction includes both accounts as active inputs, denoted by the set P. The
transaction subtracts tokens from one account with a secret index s and adds
them to the other one. The output of the transaction are two updated accounts
belonging to the same users as the inputs; the input accounts are discarded.
To achieve anonymity, the input consists of P together with a potentially large
anonymity set of accounts A which keep their balance unchanged but provide
set anonymity for the active accounts.

As the central building block of our multi-type QuisQuis system, we present
an updatable account based on our key-value commitments.

7.1 Multi-Type QuisQuis: Syntax

The original QuisQuis transaction protocol consists of the three algorithms
(Setup,Trans,Verify). Their multi-type equivalent is as follows:

Setup(1λ, k⃗v)→ state: takes the security parameter λ and a vector of key-value

balances k⃗v and outputs an initial state state. One part of the state is a set
of unspent accounts where each key-value balance has an account.

Trans(sk,P,A, ⃗δkv)→ tx: takes a secret key sk which corresponds to one account
in the set of active accounts P and an anonymity set A with a vector of up-
date key-value maps ⃗δkv to redistribute wealth. Trans outputs a transaction
tx.

Verify(state, tx)→ ⊥/state′: takes a state and a transaction tx and outputs a new
state′ or fails with ⊥.

To support dynamic registration of new types, we require an additional algorithm
Register, which is defined as:

Register(acct, k, vk)→ tx takes an account acct and a new type k with amount
vk and outputs a transaction tx.

A registration transaction is accepted by Verify if the type k has not been reg-
istered before. We define the correctness of a transaction system more formally.
Let for all λ ∈ N and k⃗v with Rkv

rng(kvi) = 1 be state ← Setup(1λ, k⃗v). For all

19



accounts in P,A with index sets P∗ := {i ∈ [|Sort(P ∪ A)|] : accti ∈ P} and A∗

accordingly in a canonically ordered form with Sort. All accounts in P ∪ A are
part of the UTXO set in state, all ⃗δkv with Rkv

rng(−kvs) = 1 and Rkv
rng(kvi) = 1

for i ∈ P∗{s} and kvi = ∅kv for i ∈ A∗ and sk corresponding to an account
accts ∈ P with enough tokens such that after the transaction there is no negative
type Rkv

rng(kvs+δkvs) = 1, it holds that Verify(state,Trans(sk,P,A, ⃗δkv)) = state′

where state′ ̸= ⊥ and contains an updated UTXO set with all inputs P ∪ A re-
moved and the transaction outputs added.

Multi-Type QuisQuis: Security The security of a QuisQuis-like transaction
system consists of two main properties. The first property we need to achieve
is anonymity. A transaction system is anonymous if an adversary cannot suc-
cessfully distinguish two transactions. The transactions are created according to
malicious instructions after the adversary has interacted with an oracle signing
transactions on behalf of uncompromised participants.

The second property is theft prevention. This entails that (i) the adversary
cannot steal tokens from uncompromised accounts; (ii) the adversary cannot
create tokens out of thin air. Slightly more formally, we model these properties
as follows. While interacting with the aforementioned signing oracle the bal-
ance of honest accounts (not controlled by the adversary) must not decrease.
Additionally, the total amount of tokens must not increase from transaction to
transaction. Notice, however, the number of tokes may increase as the result of
mining or a token registration—the latter counts as a “genesis” transaction.

Our variant of QuisQuis with multiple token types shares many of the same
properties as the non-type aware system. We refer the reader to the original
QuisQuis paper [FMMO19] for details.

7.2 Construction

We construct the multi token QuisQuis scheme following the original QuisQuis
but with two main adaptations: each account holds tokens in multiple types and
making sure a transaction guarantees that the amounts of tokens are balanced
for each of the token types.

The details of updatable accounts for key-value maps are presented in Ap-
pendix D. In a nutshell they have the same algorithms as the original QuisQuis
construction but allow for multiple kind of tokens.

Setup The setup algorithm generates a list of updatable accounts, one for
each initial balance key-value map.

Trans Our transaction structure follows that in QuisQuis where a “transac-
tion” denotes a redistribution of wealth among all accounts involved (P∪A). The
transaction takes a vector of key-value maps, one for each account. The account
is then updated according to the key-value map. Key-value maps that contain
only valid positive values (Rkv

rng(δkvi) = 1) are used to deposit tokens to receiving
accounts. In order to ensure that the total number of tokens is preserved, we
require that one key-value map holds negative values. This is to satisfy that the
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sum of all key-value maps is zero, or
∑|δ⃗kv|

i=1 δkvi = ∅kv. For the account with the
negative key-value map (indexed by s in the canonically ordered set P ∪A), the
transaction signature ensures that the owner of the account accts authorizes the
spending by proving knowledge of the matching secret key sk. The algorithm
Trans((s, sks, kvs),P,A, k⃗v) performs the following steps:

1. Parse all input accounts P ∪A = {acct1, . . . , acctn} and check the spending
account is valid by VerifyAcct(accts, (sks, kvs)) = 1. The transaction needs

to be balanced:
∑|δ⃗kv|

i=1 δkvi = ∅kv and all key-value maps other than the
spending account must be non-negative ∀i ̸= s : Rkv

rng(δkvi) = 1. To support
large anonymity sets A, we choose to disclose the upper bound on active
accounts by showing that δkvi = ∅kv for i ∈ A∗ instead or a range proof.
The spending account must be negative Rkv

rng(−δkvs) = 1 and the resulting

account must be valid Rkv
rng(kvs + δkvs) = 1, to prevent overspending.

2. Let outputs = (acctT1 , . . . , acct
T
n ) be a canonical order of the accounts gener-

ated by UpdateAcct(P ∪ A, ⃗δkv; r).
3. Let ψ : [n] → [n] be the permutation that maps the canonically ordered

inputs to the canonically ordered outputs, i.e. input i has the same secret
key as output ψ(i).

4. Create a zero knowledge proof π showing that the transaction is well formed,
i.e. that it satisfies the following relation:

Rtx-wf :



x = (inputs, outputs),w = (sk, kvs, ⃗δkv, r = (r1, r2), ψ) s.t.

VerifyUpdateAcct(acctSi , acct
T
ψ(i), δkvi) = 1∀i ∈ P∗

∧Rkv
rng(δkvi) = 1∀i ∈ P∗/{s} ∧Rkv

rng(−δkvs) = 1

∧δkvi = ∅kv∀i ∈ A∗ ∧
∑n
i=1 δkvi = ∅kv

∧VerifyAcct(acctTψ(s), sk, kvs + δkvs) = 1.

The relation ensures that the permuted output account is correctly updated by
the transferred balance δkvi for all active accounts. It then ensures that the
updated key-value maps are valid, i.e. there is one spending account at index s
and no value is taken from other accounts. The balances of the accounts in the
anonymity set must not change. To ensure that the spender has enough tokens,
the proof checks that the updated spender account has no negativ balance. The
transaction consists of the inputs, outputs and the proof π.

Verify A transaction is valid in respect to a state if all accounts in inputs
have not been used in another transaction and the proof π is valid.

Security Analysis Our key-value commitments provide the same hiding and
binding properties as the commitments to single scalars used in QuisQuis. The
construction is a parallel version of the single type case and thereby the theft
security holds also for all keys in parallel. Regarding anonymity, we achieve
the same properties as QuisQuis, if we define an upper bound of the number
of types involved in a transaction. For transactions with few different types,
we achieve this through padding. With a constant size transaction proof, our
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new transactions have the same indistinguishability as the original QuisQuis
transactions.
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Appendix

A Arguments on Key-Value Commitments with Public
Active Keys

In this section we consider the case where the set of active keys is known by
both the prover and the verifier. We can then add a feature by which in a setup
phase it is possible to register a set of keys which are going to be used for later
proofs. This can improve the amortized efficiency when several proofs share the
same set of active keys. We dub our resulting construction Z -set.

A.1 NIZKs with Key-Registration

We define NIZK for key-value maps which allow a key-registration phase. To
this goal an algorithm RegisterActiveSet to the NIZK interface deterministically
specializes a CRS to a set of active keys. Similar ideas have been used in previous
work e.g., [BCFK19, CFG+20, CHA21] where a set-dependent specialized CRS
is used.

Definition 7. A NIZK for key-value maps with registration stage kvNIZKreg

consists of the following algorithms:

kvNIZKreg.Setup(1λ)→ crs on input λ it outputs a crs crs.
kvNIZKreg.RegisterActiveSet(crs,Kactive)→ crsreg is a deterministic algorith that

takes as input a crs, an active set Kactive and outputs a specialized CRS crsreg
16.

kvNIZKreg.Prove(crsreg,Kactive, C
F, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω)→ π takes

crsreg, a circuit CF, ℓ commitments ci, their openings (kvi, ρi) and auxiliary
witness ω. It outputs a proof π. Each of the kvi should use keys that are
subset of Kactive. .

kvNIZKreg.VerProof(crsreg, CF, c1, . . . , cℓ, π)→ b ∈ {0, 1} takes the crsreg, a cir-
cuit CF, and ℓ commitments ci.

We require properties as in Definition 1: correctness (completeness), knowl-
edge soundness, zero-knowledge. Definition 7 is almost a special case of the
notion for kvNIZKs, but not quite. We could express it as a NIZK including
Kactive as input to verification and require whatever RegisterActiveSet does as
part of the relation. However, as it’s standard in NIZKs, that would require
the verifier to run linearly in |Kactive|. By taking it as input only a (potentially

16 It is w.l.o.g. that we require the registration algorithm to register in batch the whole
set of active keys. It would be possible to define a version where we incrementally
register a new key to a previously preprocessed CRS. Several constructions, e.g.
algebraic accumulators, would efficiently support this syntax.



smaller) processing of it, crsreg, the verifier can even run sublinearly in the set
of active keys (which is the case in our construction). This motivates the special
interface we introduce in Definition 7. Otherwise, the required properties are
straightforward variants of those for NIZKs.

The relation we want to prove is again that defined by the circuit in Equa-
tion (1). For sake of clarity, we spell out correctness.

Definition 8 (Correctness). We say that a NIZK for key-value maps with
registration stage kvNIZKreg over key-value map commitment scheme Ckv is cor-
rect if for any λ ∈ N with crs ∈ kvNIZK.Setup(1λ), any crs ∈ Ckv.Setup(1

λ), any

set of keys Kactive, any circuit CF, any key-value maps k⃗v ∈ KVℓ with keys all
in Kactive and randomness ρ⃗ ∈ Fℓ with ∀i ∈ [ℓ] : ci = Ckv.Com(crs, kvi, ρi) and
any ω ∈ Fnω for which

C(c1, . . . , cℓ; (kv1, ρ1), . . . , (kvℓ, ρℓ), ω) = 1

it holds that kvNIZK.VerProof(crsreg, CF, c1, . . . , cℓ, π) = 1 where we compute
crsreg ← RegisterActiveSet(crs,Kactive), π ← kvNIZK.Prove(crsreg, CF, c1, . . . , cℓ,
(kv1, ρ1), . . . , (kvℓ, ρℓ), ω).

A.2 Accumulator-based Construction

We require the two following building blocks (described below): accumulators
and NIZKs for membership over accumulators and rereandomization.

The intuition behind our construction is to register the already hashed keys
in an accumulator (without masking). This process can be performed publicly
since producing the accumulator is deterministic. In order to output a proof,
we produce a set of key-tags (masked version of the keys committed in the
accumulator) and that these are appropriate rerandomized versions of the group
elements in the accumulator.

A.2.1 Building Block: Accumulators

Definition 9 (Accumulator scheme). An accumulator scheme AccScm over
universe Uλ(AccScm) (where λ is a security parameter) consists of a quadruple of
PPT algorithms AccScm = (Setup,Accum,PrvMem,VfyMem) with the following
syntax:

Setup(1λ)→ ppacc generates public parameters ppacc.
Accum(ppacc, S)→ acc deterministically computes accumulator acc for set S ⊆
Uλ(AccScm).

PrvMem(ppacc, S, S
′)→ πacc computes witness πacc that shows S′ ⊆ S.

VfyMem(ppacc, acc, S
′, πacc)→ b ∈ {0, 1} verifies through witness whether subset

S′ is in the set accumulated in acc. We do not require parameter S to be in
Uλ(AccScm) from the syntax.

26



An accumulator scheme should satisfy correctness—the accumulator works
as expected—and soundness—no efficient adversary can pick set S and find a
witness that checks on AccScm.Accum(ppacc, S) and S

′ ̸⊆ S17.

We assume the universe of the accumulator to be a group of prime order.

A.2.2 Building Block: NIZKs for membership and rerandomization
We will use a NIZK for the following relation, which intuitively states that a set of
group elements (fresh key-tags) are a rerandomization of elements accumulated
in the set.

Rmem-rand((ppacc, h ∈ G, acc); (B = (b1, . . . , bn) ∈ Gn,

S = {s1, . . . , sn} ∈ Gn, πacc, (r1, . . . , rn) ∈ Zn
p ))

s.t. bi = si · hri for i ∈ [n] and VfyMem(ppacc, acc, S) = 1

We refer to the NIZK for the relation above as NIZKmem-rand.

A.2.3 Construction We describe our construction in Fig. 4. In our descrip-
tion we assume the buildig blocks above and a general-purpose zero-knowledge
scheme kvNIZK like the one assumed in Section 4.1.

The security of our construction can be argued analogously to the security
proof of our construction in Fig. 3 given the security of NIZKmem-rand. The lat-
ter NIZK proves membership of the keys in the accumulator without revealing
anything about them and simulation is straighforward from this observation.
By the binding property of the accumulator and the knowledge-soundness of
NIZKmem-rand we are guaranteed that keys at proving time belong to the accu-
mulated set.

A.3 Instantiation from Algebraic Accumulators in Groups of
Unknown Order

It is possible to instantiate our construction above from accumulators in groups
of unknown order [BBF19]. While we describe our instantiation in detail later in
the appendix (see Appendix C), here we provide a high-level view of the proof
system NIZKmem-rand. Our techniques are adaptations of those in [BCFK19] and
their concrete improvements in [CHA21]. The proof system consists of two parts.
One part proves in zero-knowledge the bulk of accumulator membership. This
consists of a low communication-complexity protocol where the proof partly
consists of elements in G? (by which we denote the unknown-order group). The
other component is a Bulletproof where we both perform some sanity check
on the values in the first proof (for example, some hidden values claimed by
the prover should be in a certain range) and we perform a rerandomization

17 These definitions are standard; see [BBF19] for a formal treatment.
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Setup(1λ): 1. compute accumulator parameters ppacc ← AccScm.Setup(1λ)
2. compute CRS for membership&randomize relation crsmem-rand ←

NIZKmem-rand.Setup(1
λ)

3. compute CRS for general-purpose NIZK crsC ← NIZK.Setup(1λ)

4. generate the commitment key h
$←− G.

5. sample random generators g⃗
$←− Gn where n is the maximum number of

keys in a commitment.
6. Output crs = (ppacc, crsmem-rand, crsC, h, g⃗)

RegisterActiveSet(crs,Kactive) :
1. add hashes to an accumulator inside the new CRS by computing acc =

AccScm.Accum(ppacc, H) where H := {H(k) : k ∈ Kactive}
2. output crsreg = (crs, acc)

Prove(crsreg,Kactive, C
F, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω): 1. Run steps 1,2

and 4 in NIZK.Prove as described in Figure 3, that is: 1) parse the in-
put; 2) create the key-tags bki = HG(ki)h

ri and commit to all keys
c∗ = hs

∏n
i=1 g

ki
i ; and 4) Generate the proof πC for the relation

RC(C
F, c1, . . . , cℓ, bk1 , . . . , bkn , c

∗; (kv1, ρ1), . . . , (kvℓ, ρℓ), r⃗, s, ω) :=

c∗ = hs
n∏
i=1

gkii ∧ ∀i ∈ [ℓ] : ci = h
ρi−

∑n
j=1 rjvi,kj

n∏
j=1

b
vi,kj

kj

∧CF((kvi)i∈[ℓ], ω) = 1

(3)

2. Prove membership&randomize relation:

πmem-rand ← NIZKmem-rand.Prove(crsmem-rand,x;w)

where

x = (ppacc, h, acc) and w = (B = (b1, . . . , bn),Kactive, πacc, (r1, . . . , rn)))

3. Return π := (B, c∗, πmem-rand, πC)
VerProof(crsreg, CF, c1, . . . , cℓ, π):

1. Parse π as (B, c∗, πmem-rand, πC)
2. Verify b0 ← NIZKmem-rand.VerProof(crsmem-rand, (ppacc, h, acc))
3. Verify b1 ← NIZK.VerProofC(crs, C

F, c1, . . . , cℓ, B, c
∗, πC)

4. return b0 ∧ b1

Fig. 4: Z -set, our accumulator-based construction for kvNIZKreg (i.e., with pub-
lic previously registered active keys)
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of the group elements. This construction can be instantiated in a completely
transparent manner using class groups[BH11]18.

A breakdown of the communication complexity of the proof is as follows. Let
n be the maximum number of keys in any of the key-value commitments input
to the proof algorithm. The first component provides roughly δn elements in
G? and in the prime order group, for a small constant δ. The second component
consists of roughly log(n|Gadd||C|) where |C| is the size of the circuit representing
the general relation on key-value maps and |Gadd| is the cost of representing
an addition in the prime-order group. The latter can be in the order of 1K
constraints using some of the instantiations in [CHA21]. Concretely, for n ≈ 30
we estimate the size of the proof to be lower than 180 KB plus the cost of a
Bulletproof on the circuit C (of logarithmic size).

A.4 Discussion on Practical Benefits of Z -set

Intuitively, using an accumulator with a public set of active keys is beneficial
whenever the “cost” of a proof of membership & randomization (step 1 in Fig. 4)
is lower than that of a proof for hashing & randomization (steps 1–3 in Z -dp,
Fig. 3). Below we discuss when this can be the case; see also Table 1. The
bottomline is: Z -set can improve verification time trading proof size and proving
time.

For proving time Fig. 4 is a worse choice because proving membership in-
troduces a linear dependency in |Kactive|, not present in our construction from
Fig. 3. This is not just a matter of asymptotics: by our estimates, this would also
be the case for common concrete parameters for accumulators in unknown-order
groups. Similar observations hold for proof size.

Where we may see substantial gains from applying Z -set is in verifica-
tion time. Ignoring the cost of the circuit C and only considering the addi-
tive overhead we achieve the following verification times. Without registration
(Z -dp), we would have n times: one hashing subcircuit—each of approximately
5k constraints—plus rerandomization (additional 1k contraints). This gives a
total of 6nk constraints. With registration (Z -set) we have: n group expo-
nentiations in a group of unknown-order plus (proved with a special-purpose
“accumulator-membership” NIZK; see also Appendix C), plus n additional reran-
domizations and additional sanity check constraints (for a total around 1.5k con-
straints). To assess which solution is best one needs to compare the concrete costs
of the n exponentiations in groups of unknown order vs the n× 4.5k constraints
of the hash function. We know the first to be cheaper and in particular to be
an order of magnitude so (each exponentiation requiring tens of milliseconds, vs
hundreds of milliseconds for the case of verifying a single hash function). This
time difference in verification can be substantial. Our time estimates refer to
RSA-groups and are derived from [GKR+21, CHA21, CFG+20].

18 The more efficient instantiation based on RSA groups would require the existence of
a trusted RSA modulus. Nonetheless, all the other components of the construction
remain transparent.
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B Additional Proofs

Proof of Theorem 1 As for standard Pedersen, the construction is perfectly
hiding because of the masking factor hr. To show why the construction is binding
we argue as follows. Assume an adversary is able to provide two distinct openings
for the same commitment. Each of these openings consists of both keys and
values. The case where the keys are the same for both openings can be argued as
in standard (vector) Pedersen. Consider the case where the two openings differ
in the set of keys. We can write c =

∏
k∈K H(k)vkhr =

∏
k′∈K′ H(k′)v

′
k′hr

′
which

reduces to ∏
k∈K

H(k)vk
∏
k∈K′

H(k′)−v′
k′hr−r′ = 1G .

Since the random oracle evaluations are distributed as random group generators
we can use this adversary to break Assumption 1.

Zero-Knowledge Proof in Theorem 2 For zero-knowledge, we build our sim-
ulator S∗ using the simulators for the two subprotocols, namely Stags,SR. On in-
put a valid statement (crs, CF, c1, . . . , cℓ), S∗ outputs π = (b1, . . . , bn, c

∗, πtags, πC)
where: b1, . . . , bn, c

∗ are random group elements, and we build simulated proofs
πtags← Stags(crstags, b1, . . . , bn, c∗) and πC ← SC(crsC, CF, c1, . . . , cℓ, b1, . . . , bn, c

∗).
We can prove indistinguishability of the simulated and the real transcript through
the following hybrids:

– Hybrid 0. This is the view in the real protocol.

– Hybrid 1. This is the same as the previous hybrid, but we replace πtags with
a simulated proof. Indistinguishability follows from the ZK property of the
subprotocol for Rtags.

– Hybrid 2. This is the same as the previous hybrid, but we replace πC with
a simulated proof. Indistinguishability follows from the ZK property of the
subprotocol for RC.

– Hybrid 3. This is the same as the previous hybrid, but we replace b1, . . . , bn, c
∗

with random group elements. Indistinguishability follows since these group
elements are distributed identically in both hybrid 2 and 3 due to the choice
of the randomizers s, r⃗ in the real protocol/Hybrid 2. Note moreover that
when replacing these commitments with random group elements we do not
change the valdity of the statements to be proven by the two simulators
Stags and SC. That is, (b1, . . . , bn, c

∗) and (CF, c1, . . . , cℓ, b1, . . . , bn, c
∗) are

true statements for the two sub-relations also when the group elements are
randomly sampled. This is due to the fact that both relations are trivial:
since Pedersen commitments are perfectly hiding, for any kv1, . . . , kvℓ there
exist s, r⃗ such that the relation holds.

Since the distribution in Hybrid 3 is identical to a simulated execution, this
concludes the proof of zero-knowledge.
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C Zero-Knowledge over Algebraic Accumulators

The numbers in our Table 1 for the registration construction refer to instantia-
tions described in this section.

Construction of accumulators for group elements Below we describe an
instantiation of an accumulator for group elements pt on an elliptic curve. The
original construction is that of accumulators in unknown-order groups from [BBF19],
while the explicit description for elliptic curve points is from [CHA21]. The adap-
tations we describe in this section are important to obtain concretely efficient
instantiations.

We define a permissible set P of commitments which allows to avoid collisions.
It is parametrized by an integer µ and consists of elliptic curve points where the
x-coordinate is a µ-bit prime and the y-coordinate is the “canonically chosen”
square root so that the point can be described by its x-coordinate alone: P :=
{(x, y) ∈ (F,F) |x ∈ [2µ−1, 2µ) ∧ y ≡ 0 mod 2}

One can use µ = 251 bits for concrete instantiations in the Ristretto curve
(which we can use with [LMR19]).

Below we restrict elements to prime numbers. This is standard and necessary
for the soundness of the accumulator scheme. We observe that, when the accu-
mulator is computed publicly (which is the case in our applications), it is not
necessary to prove in zero-knowledge that its elements are primes. This can be
done at registration time ensuring that, when adding a key k, its hash H(k) is
prime. We can naturally add a padding to the key before registration time and,
through rejection sampling, ensure we obtain a prime.

Setup(1λ)→ pp

(G?, g?)← G?(1λ)
return pp = (G?, g?)

VfyMem(pp, acc, pt, πacc)

Parse pt as pt := (x, y)

Accept iff πx
acc = acc

Add(pp, pt, acc)→ acc′

Parse pt as pt := (x, y)

if pt ̸∈ P ∨ x not a prime then

return ⊥; else return accx

PrvMem(pp, S, pt)→ πacc

S′ := {x′ : (x′, y′) ∈ S \ {pt}}

prd←
∏

x′∈S′

x′

return gprd?

Fig. 5: Accumulator Instantiation for AccScm.

For efficiency, we observe that PrvMem can executed in time growing with
(M − n) + n log n for a subset of size n and accumulated set of size M (the
quasilinear factor derives from RootFactor algorithm in [BBF19]).
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Instantiating NIZKmem-rand In Appendix A, we need to efficiently prove in
zero-knowledge that a key-tag (roughly, the hash of a key) is inside an accu-
mulator (NIZKmem-rand). For our instantiations in unknown-order groups, we
can adopt a variant of the solution in [CHA21] (see their Section 5.2 and in-
stantiations in 5.4.1 and 5.4.2). Our relation Rmem-rand has only one difference
from their “one-out-of-many” relation in Section 5.2: we need to prove the same
relation for multiple key-tags (which correspond to what they call an “outer
commitment”). In other words, we need a “many-out-of-many” relation.

The subsequent change to their instantiation is almost straightforward. Their
one-out-of-many relation is composed of two parts: one described in 5.4.1 (roughly
consisting of a Bulletproof execution on a gadget of approximately 1.5K con-
straints) the other in 5.4.2 (a NIZK whose proof consists of a constant number
of unknown-order and prime-order group elements). To turn them into a many-
out-of-many variant we do the following. The constraint system for 5.4.1 can
simply be adapted to take as input n inputs, instead of just one. The batching
properties of Bulletproof allow the proof size to be affected only minimally. For
the second component, the one from 5.4.2, we can simply provide n runs of it.
This part of the argument system grows linearly in n.

D Updatable Accounts

D.1 Preliminaries: Updatable Public Keys [FMMO19]

We need updatable public keys. Intuitively, such a key can be publicly updated
and the update is indistinguishable from a newly created key. An updatable
public key scheme consists of the following algorithms:

Setup(1λ)→ pp outputs the public parameters pp.
Gen(pp)→ (sk, pk) generates a new key pair
Update(pk)→ (pk′) updates the key pk to pk′

VerifyKP(pk, sk)→ b ∈ {0, 1} verifies that a key pair is consistent.
VerifyUpdate(pk, pk′, r)→ b ∈ {0, 1} verifies that the public key pk was correctly

updated to pk′ with some randomness r.

The correctness follows directly from QuisQuis such that given a key pair,
Update generates again a valid key pair. The update process is verifiable by
VerifyUpdate and the updated key must keep the original secret key. The security
requires (a) that an updated key is indistinguishable from a new, randomly
generated one and (b) that the update process cannot change the secret key if
the update is verified.

D.2 A secret-key version with updatable keys

We now describe an extended commitment to key-value map, which is the one
we will use in our constructions for multi-type QuisQuis. In this extension we
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allow a party with a secret key to open the commitment even without know-
ing the randomness used to commit to it. This will be useful to allow to verify
that an account has a certain balance. In order to do this we let the setup re-
turn a pair of public–secret keys Setup(1λ) → (pk, sk) and we use the notation
VerifyCommSk(pk, c, sk,

{
vk
}
k∈K

). We also require the commitment to be bind-
ing also with respect to this function, that is no efficient adversary can output
(pk, c, sk,

{
vk
}
k∈K

, sk′,
{
v′k′

}
k′∈K′) with

{
vk
}
k∈K

̸=
{
v′k′

}
k′∈K′ but such that

VerifyCommSk(pk, c, sk,
{
vk
}
k∈K

) = VerifyCommSk(pk, c, sk′,
{
v′k′

}
k′∈K′) = 1.

We provide a construction reminiscent of ElGamal commitments in Figure 6.

Setup(1λ)→ (pk, sk): samples a group G and a generator g, z ←$ [|G|] and
return (pk = (G, g, h := gz), sk = z).

Com(pk,
{
vk
}
k∈K

; r)→ c: return (gr,
∏

k∈K H(k)vkhr).
VerifyCommSk(pk, c = (u, v), sk = z,

{
vk
}
k∈K

): return 1 iff
∏

k∈K H(k)vk =

v/uz.

Fig. 6: Secret-key variant of construction for kvC.

D.3 Formalization

With a key-value commitment scheme and updatable keys, we build updatable
accounts which belong to a secret key and hold a key-value map of tokens. The
important feature of an updatable account is, that anyone can rerandomize the
account and create a proof of correct rerandomization. An updated account is
not linkable to the previous version and indistinguishable from a newly created
account. In combination with a shuffling proof, a set of accounts is permuted
without changing ownership and without knowledge of openings. We provide
formal details in the full version.

Definition 10. Updatable Accounts consist of the following algorithms:

GenAcct(pp, kv)→ (acct, sk) takes an amount map
{
vk
}
k∈K

and outputs an ac-
count acct and a secret key sk

VerifyAcct(acct, (sk, kv))→ b ∈ {0, 1}∗ checks the account acct for consistency
with the private key sk and the key-value map

{
vk
}
k∈K

such that Rkv
rng(kv) =

1.

These accounts express the same updatability as the original QuisQuis accounts,
such that they remain valid for updates to the public key and homomorphic op-
erations on the commitment. This leads to the following additional operations:
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UpdateAcct({(accti, δkvi)}ni=1; r1, r2)→ {acct′i}ni=1 takes as input set of accounts
accti = (pki, ci) and key-value maps δkvi, representing the change of amount
in different types, such that Rkv

rng(δkvi) = 1 or Rkv
rng(−δkvi) = 1; it out-

puts a new set of accounts {acct′i}ni=1 with acct′i = (Update(pki; r1)), c ◦
Com(δkvi, pki; r2)

VerifyUpdateAcct({(accti, acct′i, δkvi)}ni=1; r1, r2)→ {0, 1} outputs 1 if
{acct′i}ni=1 = UpdateAcct({(accti, δkvi)}ni=1, kv; r1, r2) and Rkv

rng(δkvi) = 1 or

Rkv
rng(−δkvi) = 1, 0 otherwise.

E Multi-Type QuisQuis Transaction Relation

With (c1, . . . , cℓ) := (δacct2, . . . , δacctm, acct
′T
1 , δacct1), we construct a circuit

which checks that the first update account δacct1 is all negative and the remain-
ing ones are all positive. Last, it checks that for each type, the update values
sum to zero.

CF((k1, (v1,k1
, . . . , vℓ,k1

)), . . . , (kn, (v1,kn
, . . . , vℓ,kn

)), ω) :=

∀k∈K


Rrng(−vℓ,k) = 1

∧∀i∈[ℓ−1]Rrng(vi,k) = 1

∧
∑

i∈[ℓ−2]∪{ℓ} vi,k = 0

Our kvNIZK construction builds upon Pedersen style key-value commitments,
but for the multi-type QuisQuis setting we need public key based commitments
as shown in Appendix D.2. Therefore we change the relation RC in Equation (3)
to prove that the input to the circuit is still equivalent to the commitment
openings.

RC(C
F, ((g1, h1), c1), . . . , ((gℓ, hℓ), cℓ), bk1 , . . . , bkn , c

∗;

(kv1, ρ1), . . . , (kvℓ, ρℓ), r, ω) :=

c∗ = hr
n∏

i=1

gki
i ∧ ∀i ∈ [ℓ] : ci = (gρi

i , h
ρi−

∑n
j=1 rjvi,kj

i

n∏
j=1

b
vi,kj

kj
)

∧CF((k1, (v1,k1
, . . . , vℓ,k1

), . . . , (kn, (v1,kn
, . . . , vℓ,kn

)), ω) = 1
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