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Abstract

Incompressible encryption allows us to make the ciphertext size flexibly large
and ensures that an adversary learns nothing about the encrypted data, even if the
decryption key later leaks, unless she stores essentially the entire ciphertext. In-
compressible signatures can be made arbitrarily large and ensure that an adversary
cannot produce a signature on any message, even one she has seen signed before,
unless she stores one of the signatures essentially in its entirety.

In this work, we give simple constructions of both incompressible public-key
encryption and signatures under minimal assumptions. Furthermore, large in-
compressible ciphertexts (resp. signatures) can be decrypted (resp. verified) in
a streaming manner with low storage. In particular, these notions strengthen the
related concepts of disappearing encryption and signatures, recently introduced by
Guan and Zhandry (TCC 2021), whose previous constructions relied on sophisti-
cated techniques and strong, non-standard assumptions. We extend our construc-
tions to achieve an optimal “rate”, meaning the large ciphertexts (resp. signatures)
can contain almost equally large messages, at the cost of stronger assumptions.
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1 Introduction

Security breaches are ubiquitous. Therefore, it is natural to wonder: will encrypted
messages remain secure, even if the secret decryption key is later leaked? Forward secrecy
deals exactly with this problem, but requires either multi-round protocols or key updates,
both of which may be undesirable in many scenarios. And in the usual time-bounded
adversary model, unfortunately, such limitations are inherent: an adversary can simply
store the ciphertext and wait for the secret key to leak, at which point it can easily
decrypt.

Incompressible encryption. In this work we ask: can we force a would-be “save-it-
for-later adversary” to actually store the ciphertext in its entirety, for the entire length
of time it is waiting for the secret key to leak? At a minimum such storage may be
inconvenient, and for very large files or long time frames, it may be prohibitively costly.
Even for short messages, one may artificially increase the ciphertext size, hopefully forcing
the adversary to use much more storage than message length. We may therefore hope
that such an incompressible encryption scheme maintains the privacy of messages even
if the secret key is later revealed.

Remark 1. For an illustrative example, an individual with a gigabit internet connection
can transmit ∼10TB per day, potentially much more than their own storage. Of course
many entities will have 10TB or even vastly more, but an incompressible scheme would
force them to devote 10TB to storing a particular ciphertext for potentially years until
the key is revealed. Across millions or billions of people, even powerful adversaries like
state actors would only be able to devote such storage to a small fraction of victims.

Unfortunately, traditional public key encryption schemes are not incompressible; an
adversary may be able to store only a short digest of the ciphertext and still obtain non-
trivial information about the plaintext once the secret key is leaked. For example, for
efficiency reasons, hybrid encryption is typically used in the public key setting, where the
encryption of a message m may look like:

( Enc(pk, s) , G(s)⊕m ) .

Here, s is a short seed, and G is a pseudorandom generator used to stretch the random
seed into a pseudorandom pad for the message m. A save-it-for-later adversary need not
store the entire ciphertext; instead, they can store just Enc(pk, s) as well as, say, the
first few bits of G(s) ⊕ m. Once the secret key is revealed, they can learn s and then
recover the first few bits of m. This may already be enough to compromise the secrecy
of m. Such an attack is especially problematic if we wanted to artificially increase the
ciphertext size by simply padding the message and appending dummy bits, since then
the first few bits of m would contain the entire secret plaintext.

The compressibility issue is not limited to the scheme above: we could replaceG(s)⊕m
with a different efficient symmetric key encryption scheme such as CBC-mode encryption,
and essentially the same attack would work. The same goes for bit encryption as well.

Incompressible public key encryption instead requires that if the adversary stores
anything much smaller than the ciphertext, the adversary learns absolutely nothing about
the message, even if the secret key later leaks.

2



Remark 2. We note that plain public key encryption does have some incompressibility
properties. In particular, it is impossible, in a plain public key encryption scheme, for
the adversary to significantly compress the ciphertext and later be able to reconstruct the
original ciphertext. However, this guarantee implies nothing about the privacy of the
underlying message should the key leak.

Incompressible Signatures. A canonical application of signatures is to prevent man-
in-the-middle attacks: by authenticating each message with a signature, one is assured
that the messages were not tampered with. However, a man-in-the-middle can always
delay sending an authenticated message, by storing it for later. The only way to block such
attacks in the usual time-bounded adversary model is to use multi-round protocols, rely
on synchronized clocks and timeouts, or have the recipients keep state, all of which may
be undesirable. We therefore also consider the case of incompressible signatures, which
force such a delaying adversary to actually store the entire signature for the duration of
the delay.

In slightly more detail, in the case of plain signatures, a forgery is a signature on
any new message, one the adversary did not previously see signed. The reason only
new signed messages are considered forgeries is because an adversary can simply store a
valid signature it sees, and later reproduce it. An incompressible signature, essentially,
requires that an adversary who produces a valid signature on an existing message must
have actually stored a string almost as large as the signature. By making the signatures
long, we may hope to make it prohibitively costly to maintain such storage. As in the case
of encryption, existing signature schemes do not appear to offer incompressible security;
indeed, it is usually desired that signatures are very short.

Feature: Low-storage for streaming honest users. Given that communication will
be inconveniently large for the adversary to store, a desirable feature of incompressible
ciphertexts and signatures is that they can be sent and received with low storage re-
quirements for the honest users. In such a setting, the honest users would never store the
entire ciphertext or signature, but instead generate, send, and process the communication
bit-by-bit in a streaming fashion.

Feature: High rate. With incompressible ciphertexts and signatures, communication
is set to be deliberately large. If the messages themselves are also large, it may be costly
to further blow up the communication in order to achieve incompressibility. Therefore,
a desirable feature is to have the rate—the ratio of the maximum message length to the
communication size—be as close to 1 as possible. In this way, for very large messages,
there is little communication overhead to make the communication incompressible.

1.1 Related work: Disappearing Cryptography

Very recently, Guan and Zhandry [GZ21] define and construct what they call disappearing
public key encryption and digital signatures. Their notions are very similar to ours, except
with an important distinction: they assume both honest and malicious parties operate
as space-bounded streaming algorithms throughout their operation. Honest users are
assumed to have a somewhat lower storage bound than the adversary’s.
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In terms of the functionality requirement for honest users, their model corresponds
to the low-storage streaming variant of incompressible cryptography. However, in terms
of the security requirement, disappearing cryptography is somewhat weaker, since it
restricts the adversary to also be space-bounded throughout its entire operation, and
observe the ciphertexts/signatures produced by the cryptosystem in a streaming manner.
On the other hand, incompressible cryptography allows the adversary to observe each
ciphertext/signature in its entirety and compute on it using an unrestricted amount of
local memory, but then store some small compressed version of it afterwards. Some
disappearing schemes may be insecure in the incompressible threat model: for example,
one of the disappearing ciphertext schemes from [GZ21] could potentially even be based
on symmetric key cryptography, despite being a public key primitive.1 Yet public key
incompressible ciphertexts easily imply public key encryption, which is believed to be
stronger than symmetric key cryptography [IR90].

In summary, incompressible cryptography with low-storage streaming is also disap-
pearing, but the reverse direction does not hold.

Guan and Zhandry explain several interesting applications of disappearing ciphertexts
and signatures, including deniable encryption [CDNO97]. Here, one imagines that the
secret key holder is coerced into revealing their key. In order to protect the contents of an
encrypted message, traditional deniable encryption allows the key holder to generate a
fake key that causes the ciphertext to decrypt to any desired value. Unfortunately, such
receiver-deniable encryption is impossible in the standard model [BNNO11]. Disappear-
ing ciphertexts offer a solution, since the contents are protected without even faking the
key, as the space-bounded attacker is unable to store the ciphertext.

However, in addition to achieving a weaker security model than incompressible cryp-
tography, the schemes of [GZ21] have some significant limitations:

• Their schemes are built from a novel object called online obfuscation, a very strong
proposed form of program obfuscation in the bounded storage setting. While [GZ21]
gives plausible candidate constructions, the constructions are complex and it is un-
clear how to prove security. It is even plausible that the notion of online obfuscation
is impossible.

• One of their candidates requires, at a minimum, standard-model virtual grey box
(VGB) obfuscation [BCKP14], which is stronger even than indistinguishability ob-
fuscation [BGI+01], already one of the strongest known assumptions in cryptogra-
phy. And even assuming VGB, the security remains unproven. Their other can-
didate could plausibly be information-theoretic (but again, currently not proven),
but is limited to a quadratic separation between the ciphertext/signature size and
the honest users’ storage.

• Their encryption and signature schemes involve ciphertexts/signatures that are sig-
nificantly larger than the messages, and so their schemes are low “rate” when the
messages are large.

1It’s not hard to see that one-way functions, and therefore symmetric key cryptography, are implied
by disappearing ciphertexts, since the secret key can be information-theoretically recovered from the
public key.
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1.2 Our Results

We give new positive results for incompressible cryptography:

• Under the minimal assumption of standard-model public key encryption, we con-
struct a simple incompressible public key encryption scheme. The scheme supports
streaming with constant storage, independent of the ciphertext size. As a special
case, we achieve provably secure disappearing ciphertexts with optimal honest-user
storage and under mild assumptions, significantly improving on [GZ21]. The ci-
phertext size is |c| = |S| + |m| × poly(λ), where |S| is the adversary’s storage, |m|
the message size, and λ the security parameter.

• Under the minimal assumption of one-way functions, we construct incompressible
signatures. Our scheme supports streaming with constant storage, independent of
the signature size. Thus we also achieve provably secure disappearing signatures
under minimal assumptions, again significantly improving on [GZ21]. The total
communication (message length plus signature size) is |S|+ |m|+ poly(λ).

• Under standard-model indistinguishability obfuscation (iO), we construct “rate 1”
incompressible public-key encryption, where |c| = |S| + poly(λ) and the message
length can be as large as roughly |S|. In particular, for very large messages, the
ciphertext size is roughly the same as the message size.

The public keys of our scheme are small, but the secret keys in this scheme are
at least as large as the message, which we explain is potentially inherent amongst
provably-secure high-rate schemes.

Along the way, we give the first rate-1 construction of functional encryption for
circuits, where |c| = |m|+ poly(λ).

• We consider a notion of “rate-1” incompressible signatures, where the total commu-
nication is only |S|+ poly(λ), and the message can be as large as roughly |S|. Note
that the signature by itself must have size at least |S| for incompressibility (since
m may be compressible), and so if we separately send the message and signature,
the total communication would be at least |S| + |m|, which is not rate 1. Instead,
we just send a signature and require the message to be efficiently extractible from
the signature.

We show that rate-1 incompressible signatures are equivalent to incompressible en-
codings, defined by Moran and Wichs [MW20]. By relying on the positive results
of [MW20], we obtain such signatures under either the Decisional Composite Resid-
uosity (DCR) or Learning With Errors (LWE) assumption, in either the CRS or
random oracle model. The random oracle version supports low-space streaming, as
does the CRS model if we assume the (large) CRS is streamed. On the other hand,
by relying on the negative results of [MW20], we conclude that a provably secure
rate-1 construction in the standard model is unlikely.

1.3 Other Related Work

Bounded Storage Model. The work by Guan and Zhandry [GZ21] is set in the
Bounded Storage Model (BSM) due to Maurer [Mau92], which leverages bounds on
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the adversary’s storage to enable applications. Most of the related work in the BSM
is about achieving unconditionally secure schemes for the types of scenarios for which
we already have computationally secure schemes in the standard model (CPA encryp-
tion [CM97, AR99, Lu02, Raz17, GZ19], Key Agreement [CM97, GZ19, DQW21], Oblivi-
ous Transfer [CCM98, Din01, DHRS04, GZ19, DQW21], etc.). In contrast, time-stamping
in the bounded storage model [MST04] is perhaps the first application of the bounded
storage model beyond achieving information-theoretic security by assuming additional
computational assumptions. Similarly, our work, as well as the work by Guan and
Zhandry [GZ21], considers scenarios for which computationally secure schemes in the
standard model are impossible and which only make sense in the BSM (public-key en-
cryption where the adversary gets the secret key after seeing the ciphertext, signature
schemes where the adversary cannot sign messages whose signatures she has previously
observed). Our results necessarily rely on computational assumptions.

Big-Key Cryptography in the Bounded Retrieval Model. The study of big-key
cryptography in the Bounded Retrieval Model (BRM) has evolved through a series of
works [Dzi06, DLW06, CDD+07, ADW09, ADN+10, BKR16]. The high-level difference
is that in the BRM, the secret keys are made large to prevent exfiltration, while the com-
munication (e.g., ciphertexts, signatures) are kept small. In incompressible cryptography,
we do the reverse and want to make the communication (e.g., ciphertexts, signatures)
large to prevent an adversary from being able to remember it in its entirety, while the se-
cret key is ideally small. On a technical level, while there are some high-level similarities
such as relying on a combination of computational and information-theoretic techniques,
the concrete schemes are quite different.

1.4 Technical Overview

Incompressible Encryption. We first consider incompressible public key encryption.
The syntax is identical to that of standard-model encryption, but the security game is
different:

1. The challenger first gives the adversary the public key.

2. The adversary then produces two messages m0,m1.

3. The challenger encrypts one of the two messages, as the ciphertext c.

4. Now the adversary must produce a small state s of size somewhat smaller than c.

5. The challenger then reveals the secret key.

6. The adversary, given only the small state s but also the secret key, now makes a
guess for which message was encrypted.

Note that, except for the size of the state s being bounded between Steps 4 and 6, the
size of the adversary’s storage is unbounded. It is also easy to see that this definition
implies standard semantic security of public-key encryption.
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Remark 3. Note that this security definition is quite similar to that of disappearing
public key encryption by Guan and Zhandry [GZ21] with two distinctions. Firstly, in
the disappearing encryption security experiment, there is no Step 4 as above. Instead,
the adversary is bounded by some space throughout the entire experiment. Additionally,
functionality wise, disappearing encryption requires the protocol to be executable by honest
parties with some space bound lower than the adversary’s storage. In our setting, we do
not consider this to be an inherent requirement, but rather a desirable feature that some of
our schemes satisfy. As we will see in Remark 4, this feature is incompatible with rate-1
schemes, and hence we will drop it in that setting.

Our Solution. We give a construction of incompressible encryption in Section 3, under
the minimal assumption of generic public key encryption.

We describe our solution using functional encryption (FE), which is a form of public
key encryption where the secret key holder can give out function secret keys for functions
f ; a function secret key allows for learning f(m) but nothing else about the message.
For our application, we only need a very special case of single-key functional encryption,
which we instantiate with a simple and potentially practical construction from generic
public key encryption scheme. Our incompressible encryption scheme works as follows:

• The public key is just the public key for the underlying FE scheme. The secret key
is a function secret key for the function fv defined as

fv(s, b) =

{
s if b = 0

s⊕ v if b = 1

where the value v is chosen uniformly at random and hard-coded into fv. Here, s, v
are reasonably short strings, whose length will be discussed shortly.

• To encrypt m, choose a random s, and compute c ← FE.Enc(FE.mpk, (s, 0)) as an
encryption of (s, 0) under the FE scheme. Then choose a large random string R.
Interpret s as the pair (s′, t), where t is a string of length equal to the message length,
and s′ is the seed for a strong extractor. Then compute z = Extract(R; s′)⊕ t⊕m.
The final ciphertext is (c, R, z).

• To decrypt, use the FE secret key to recover s = (s′, t) from c. Then recover
m = z ⊕ Extract(R; s′)⊕ t.

We can generate and transmit the string R in a streaming fashion. We can then use an
online extractor [Vad03] so that Extract(R; s′) can be computed without having to store R
in its entirety. Note that R is the only “big” component of the ciphertext, so encryption
and decryption therefore require small space.

We prove security through a hybrid argument. First, we use FE security to switch to
c being generated as c ← FE.Enc(FE.mpk, (s ⊕ v, 1)). Since this c decrypts equivalently
under the secret key, this change is indistinguishable.

We then observe that the string u = s ⊕ v being encrypted under the FE scheme,
as well as the string z included in the final ciphertext, are both just uniformly random
strings. We can therefore delay the generation of the secret key and v, until the very
end of the experiment. Now we can think of the adversary’s state (as well as some other
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small values needed to complete the simulation) as a leakage on the large random string
R. Since the adversary’s storage is required to be sufficiently small compared to R, R still
has min-entropy conditioned on this leakage. This means we can invoke the randomness
guarantee of the randomness extractor to replace Extract(R; s′) with a uniform random
string. But at this point, m is one-time-padded with a uniform string, and therefore
information-theoretically hidden.

We explain how to instantiate the functional encryption scheme. Since the adversary
only ever sees a single secret key, we can build such a functional encryption scheme
generically from public key encryption, using garbled circuit techniques [GVW12]. On
the other hand, our functional encryption scheme only needs to support an extremely
simple linear function. We show a very simple and potentially practical solution from
any public key encryption scheme.

Remark 4. We note that our scheme has a less-than-ideal rate, since the ciphertext
size is at least as large as the adversary’s storage plus the length of the message. Low
rates, however, are inherent to schemes supporting low-storage streaming. Indeed, the
storage requirements of the honest users must be at least as large as the message, and
in the high-rate case this means the honest users must be capable of storing the entire
ciphertext. This remains true even if the message itself is streamed bit-by-bit, which can
be seen as follows: by incompressibility, the decrypter cannot start outputting message
bits until essentially the entire stream has been sent. Otherwise, an attacker can store a
short prefix of the ciphertext, and then when it gets the secret key mimic the decrypter
until it outputs the first message bit. Now, at the point right before the decrypter outputs
the first message bit, the entire contents of the message must be information-theoretically
contained within the remaining communication (which is short) and the decrypter’s state,
since the decrypter ultimately outputs the whole message. Thus the decrypter’s state must
be almost as large as the message.

A rate-1 solution. We now discuss how we achieve a rate-1 scheme, using indistin-
guishability obfuscation. This is our most complicated construction, and we only give a
brief overview here with the full construction in Section 4.

The central difficulty in achieving a rate-1 scheme is that we cannot guarantee a ci-
phertext with large information-theoretic entropy. Indeed, the ciphertext must be almost
as small as the message, so there is little room for added entropy on top of the message.
But the message itself, while large, many not have much entropy. Therefore, our approach
of using randomness extraction to extract a random string from the ciphertext will not
work naively.

Our solution, very roughly, is to have the large random value in the secret key. Using a
delicate argument, we switch to a hybrid where the ciphertext is just an encryption of large
randomnessR, and the secret key contains the message, masked by a string extracted from
R. Now we can mimic the low-rate case, arguing that given the small state produced by
the adversary, R still has min-entropy. Thus, the message m is information-theoretically
hidden.

The result is that we achieve an incompressible encryption scheme whose rate matches
the rate of the underlying functional encryption scheme. Unlike the low-rate case, our
FE scheme appears to need the full power of FE for circuits, since it will be evaluating
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cryptographic primitives such as PRGs and extractors. Unfortunately, all existing FE
schemes for general circuits, even using iO, have poor rate. For example, if we look at the
original iO scheme of [GGH+13], the ciphertext contains two plain public key encryption
encryptions of the message, plus a NIZK proof of consistency. The result is that the rate
is certainly at most 1/3. Another construction due to [BCP14] sets the ciphertext to be
an obfuscated program containing the message; since known obfuscation schemes incur a
large blowup, the scheme is not rate-1.

We give a novel rate-1 FE scheme (with many key security), by building on ideas
from [BZ14]. They build an object called private linear broadcast encryption (PLBE),
which can be seen as a special case of FE for simple comparison functionalities. However,
their approach readily generalizes to more complex functionalities. The problem with
their construction is that their proof incurs a security loss proportional to the domain
size. In their case, the domain is polynomial and this is not a problem. But in our case,
the domain is the message space, which is exponential. One may hope to use complexity
leveraging, but this would require setting the security parameter to be at least as large
as the message. However, this will not give a rate-1 scheme since the ciphertext is larger
than the message by an additive factor linear in the security parameter.

We therefore devise new techniques for proving security with just a polynomial loss,
even for large messages, thus giving the first rate-1 FE scheme for general circuits, from
iO and one-way functions. Details in Section 7.

Remark 5. We note that the final construction of rate-1 incompressible encryption has
very short public keys, but large secret keys. We therefore leave as an interesting open
question devising a scheme that also has short secret keys. However, achieving such a
scheme with provable security under standard assumptions appears hard. Indeed, crypto-
graphic assumptions typically make no restrictions on the adversary’s storage. The issue
is that the message itself may have little entropy, and so to prove that a ciphertext is in-
compressible it seems the computational assumptions will be used to transition to a hybrid
where the ciphertext has nearly full entropy (indeed, this is how our proof works). But
this transition happens without space bounds, meaning the reduction actually is capable
of decrypting the ciphertext and recovering the message once the key is revealed. Yet in
this hybrid the ciphertext was “used up” in order to make it high-entropy, and it seems
the only place left to embed the message is the secret key (again, this is how our proof
works). If the message is large, it therefore seems the secret key must be large as well.
We believe this intuition can be formalized as a black-box separation result, similarly to
analogous results of [Wic13], but we leave this for future work.

Incompressible Signatures. An incompressible signature scheme is defined by the
following experiment:

1. The challenger first gives the adversary the public key.

2. The adversary makes repeated signing queries on arbitrary messages. In response,
the challenger produces a signature on the message.

3. After observing many signatures, the adversary must produce a small state s of size
somewhat smaller than a single signature.
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4. Next, the adversary, is given the small state s, and wins if it produces a valid
signature on any message, potentially even one used in a prior signing query.

Note that, except for the size of the state s being bounded between Steps 3 and 4, the
size of the adversary’s storage is unbounded.

Remark 6. This definition is also quite similar to that of disappearing signature due to
Guan and Zhandry [GZ21] except for two differences. For disappearing signatures, the
security experiment does not have Step 3 as above, and instead requires the adversary to
be bounded by some space throughout the entire experiment. Functionality wise, disap-
pearing signature requires the scheme can be run by honest parties with a space bound
somewhat lower that the adversary’s storage, whereas we don’t require that for incom-
pressible signatures.

Our Solution. We give a very simple construction of incompressible signatures in
Section 5. To sign m, first choose a large uniformly random string R, and then compute
σ ← Sign(sk, (R,m) ), where Sign is a standard-model signature scheme. The overall
signature is then (R, σ). Verification is straightforward.

Both signing and verification can be evaluated in a low-space streaming fashion, pro-
vided Sign can be evaluated as such. One can always assume this property of Sign: first
hash the message using a streaming-friendly hash function such as Merkle-Damg̊ard, and
then sign the hash. Since the hash is small and computing the hash requires low-space,
the overall signing algorithm is low space.

For security, consider an adversary which produces a small state s somewhat smaller
than the length of R. Since R is random, it will be infeasible for the adversary to re-
produce R in Step 4. Therefore, any valid signature must have an R different than any
of the messages previously signed. But this then violates the standard unforgeability of
Sign.

A rate-1 solution. In Section 6, we modify the above construction to get a rate-1
solution. We note that “rate” here has to be defined carefully. In the above solution, the
signature size is independent of the message size, and so it seems that the signature has
good rate. However, communication will involve both the signature and the message, and
so the total length of the communication will be significantly larger than the message.
We therefore want that the total communication length is only slightly longer than the
message being signed.

On the other hand, if the message is very long, one may naturally wonder whether
we can just sign the message using any standard-model signature scheme, and have the
resulting communication be rate-1. However, a long message may in fact be compressible.
What we want is to achieve rate-1 total communication, and incompressibility, even if
the message may be compressed.

We therefore define a rate-1 incompressible signature as an incompressible signature
where the signature is only slightly longer than the message, and where there is a proce-
dure to extract the message from the signature. In this way, all that needs to be sent is
the signature itself, and therefore the total communication remains roughly the same as
the message.
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Equivalence to incompressible encodings. We next demonstrate that incompress-
ible signatures are equivalent to incompressible encodings [MW20]. These are public
encoding schemes where the encoding encodes a message into a codeword c that is only
slightly longer than the message. From c, the original message can be recovered using
a decoding procedure. For security, the adversary then receives the codeword as well as
the message, tries to compress the codeword into a small storage s. Then the adversary,
given s and the message, tries to recover the exact codeword c.

A rate-1 incompressible signature (with small public keys) gives an incompressible
encoding: to encode a message, simply generate a new public/secret key pair, and sign the
message. The codeword c is then the public key together with the signature. Decoding
and security follow readily from the message extraction procedure and security of the
incompressible signature.

In the other direction, to sign a message, first incompressibly encode the message
and then sign the result using a standard-model signature scheme. The final signature
is the codeword together with the standard-model signature. Extraction follows from
the decoding procedure. If the incompressible encoding supports low-space streaming, so
does the signature scheme. For security, since the adversary cannot produce the original
codeword that was signed due to the security of the incompressible encoding, they must
produce some other codeword. But a valid signature would also contain a standard-model
signature on this new codeword, violating the security of the signature scheme.

Moran and Wichs [MW20] instantiate incompressible encodings under either the De-
cisional Composite Residuosity (DCR) or Learning With Errors (LWE) assumptions, in
either the CRS or random oracle models. We observe that their incompressible encodings
simply break the message into blocks of length poly(λ) and encode each block separately;
as such they can be easily streamed in low space, though the CRS-based scheme would
need the CRS to be streamed as well. We obtain the incompressible signatures under the
same assumptions in the same models, with low-space streaming.

We also note that we can have the signer generate the CRS and include it in the public
key, giving a standard-model incompressible encoding scheme with large public keys. Note
that such a scheme is not immediately equivalent to incompressible encodings, since the
codeword contains the public key, and would therefore be too large.

On the other hand, [MW20] show that a CRS or random oracle is somewhat necessary,
by giving a black box separation relative to falsifiable assumptions in the standard model.
Due to our equivalence, this implies such a black box impossibility for incompressible
signatures in the standard model as well.

2 Preliminaries

Min-Entropy Extractor. Recall the definition for average min-entropy:

Definition 1 (Average Min-Entropy). For two jointly distributed random variables (X, Y ),
the average min-entropy of X conditioned on Y is defined as

H∞(X|Y ) = − log E
y

$←Y
[max

x
Pr[X = x|Y = y]].

Lemma 1 ([DRS04]). For random variables X, Y where Y is supported over a set of size
T , we have H∞(X|Y ) ≥ H∞(X, Y )− log T ≥ H∞(X)− log T.
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Definition 2 (Extractor [Nis90]). A function Extract : {0, 1}n × {0, 1}d → {0, 1}m
is a (k, ε) strong average min-entropy extractor if, for all jointly distributed random
variables (X, Y ) where X takes values in {0, 1}n and H∞(X|Y ) ≥ k, we have that
(Ud,Extract(X;Ud), Y ) is ε-close to (s, Um, Y ), where Ud and Um are uniformly random
strings of length d and m respectively.

Remark 7. Any strong randomness extractor is also a strong average min-entropy ex-
tractor, with a constant loss in ε.

Digital Signatures. We also generalize the syntax of a signature scheme, which will
ultimately be necessary to achieve a meaningful high “rate”. Instead of producing a
signature that is sent along side the message, we would implicitly embed or encode the
message into the signature. The signature is then all that is sent to the receiver, from
which the message can be decoded and verified. In this way, the “signature” captures
the total communication. Any standard signature scheme can readily be viewed in our
generalized syntax by just calling (m,σ) the “signature.” Now when we define “rate”, it
is simply the ratio of the message to signature size.

A public key signature scheme for message space {0, 1}Lm and signature space {0, 1}Lσ
is a tuple of PPT algorithms Π = (Gen, Sign,Ver) such that:

• Gen(1λ)→ (vk, sk) samples a verification key vk, and a signing key sk.

• Sign(sk,m)→ σ takes as input the signing key sk and a message m, and computes
a signature σ that implicitly contains the message m.

• Ver(vk, σ) → m/⊥ takes as input the verification key vk and a signature σ, and
outputs either the message m or ⊥. Outputting m means that the signature verifies,
and outputting ⊥ means that the signature is invalid.

Definition 3 (Correctness). For all λ ∈ N and message m ∈ {0, 1}Lm, let (vk, sk) ←
Gen(1λ), then we have Pr[Ver(vk, Sign(sk,m)) = m] ≥ 1− negl(λ).

We modify the security experiment slightly by asking the adversary to output a single
signature σ instead of a message-signature pair, and the adversary wins the game if and
only if Ver(vk, σ) 6= ⊥ or any of the messages queried before. Notice that the original
syntax of a signature scheme easily fulfills this new syntax: simply set the signature to
be σ = (m,σ′) where σ′ is the signature in the original syntax, and modify Ver to output
the original message if the signature verifies. The “rate” of the signature scheme is hence
defined to be simply Lm/Lσ.

Functional Encryption. For our constructions we also need single-key game-based
functional encryption. Let λ be the security parameter. Let {Cλ} be a class of circuits
with input space Xλ and output space Yλ. A functional encryption scheme for the circuit
class {Cλ} is a tuple of PPT algorithms FE = (Setup,KeyGen,Enc,Dec) defined as follows:

• Setup(1λ) → (mpk,msk) takes as input the security parameter λ, and outputs the
master public key mpk and the master secret key msk.
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• KeyGen(msk, C) → skC takes as input the master secret key msk and a circuit
C ∈ {Cλ}, and outputs a function key skC .

• Enc(mpk,m) → ct takes as input the public key mpk and a message m ∈ Xλ, and
outputs the ciphertext ct.

• Dec(skC , ct)→ y takes as input a function key skC and a ciphertext ct, and outputs
a value y ∈ Yλ.

We can analogously define the “rate” of an FE scheme to be the ratio between the mes-
sage length to the ciphertext length. We require correctness and security of a functional
encryption scheme.

Definition 4 (Correctness). A functional encryption scheme FE = (Setup,KeyGen,Enc,Dec)
is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

y = C(m) :

(mpk,msk)← Setup(1λ)
skC ← KeyGen(msk, C)

ct← Enc(mpk,m)
y ← Dec(skC , ct)

 ≥ 1− negl(λ).

Consider the following Semi-Adaptive Security Experiment, DistSemiAdpt
FE,A (λ):

• Run FE.Setup(1λ) to obtain (mpk,msk) and sample a random bit b← {0, 1}.

• On input 1λ and mpk, The adversary A submits the challenge query consisting of
two messages m0 and m1. It then receives ct← FE.Enc(mpk,mb).

• The adversary now submits a circuit C ∈ {Cλ} s.t. C(m0) = C(m1), and receives
skC ← FE.KeyGen(msk, C).

• The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary
succeeds and experiment outputs 1. Otherwise, the experiment outputs 0.

Definition 5 (Single-Key Semi-Adaptive Security). For security parameter λ, a func-
tional encryption scheme FE = (Setup,KeyGen,Enc,Dec) is said to have single-key semi-
adaptive security if for all PPT adversaries A :

Pr
[

DistSemiAdpt
FE,A (λ) = 1

]
≤ 1

2
+ negl(λ).

We can also consider selective security, where the adversary only receives mpk after
sending the challenge messages. We can also consider many-time semi-adaptive/selective
security, where the adversary is able to adaptively query for as many skC as it would like,
provided they all occur after the challenge query.

3 Incompressible Encryption: Our Basic Construc-

tion

Here we show how to construct an incompressible public key encryption scheme with low
“rate”, i.e. the ratio of the message size to the ciphertext size. First, we define what it
means for a public key encryption scheme to be incompressible.
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3.1 Definition

We give the definition of incompressible encryption, which is based on the similar defini-
tion of disappearing encryption [GZ21].

For security parameters λ and S, an incompressible public key encryption scheme
with message space {0, 1}Lm and ciphertext space {0, 1}Lct is a tuple of PPT algorithms
Π = (Gen,Enc,Dec).

Remark 8. For the original disappearing PKE defined in [GZ21], it is additionally re-
quired that Gen, Enc, and Dec can be run in space N � Lct. Here, we will consider
schemes that have both large and small space.

The rest of the syntax of an incompressible PKE scheme is identical to that of a
classical PKE scheme. The “rate” of the PKE scheme is simply Lm/Lct.

For the security definition, consider the following indistinguishability experiment for
an adversary A = (A1,A2):

Incompressible Encryption Security Experiment DistIncomEnc
A,Π (λ):

1. The adversary A1, on input 1λ, outputs a space bound 1S.

2. Run Gen(1λ, 1S) to obtain keys (pk, sk).

3. Sample a uniform bit b ∈ {0, 1}.

4. The adversary is then provided the public key pk.

5. The adversary replies with the challenge query consisting of two messages m0 and
m1, receives ct← Enc(pk,mb).

6. A1 produces a state st of size at most S.

7. The adversary A2 is given the tuple (pk, sk,m0,m1, st) and outputs a guess b′ for b.
If b′ = b, we say that the adversary succeeds and the output of the experiment is
1. Otherwise, the experiment outputs 0.

Definition 6 (Incompressible Encryption Security). For security parameters λ and S, a
public key encryption scheme Π = (Gen,Enc,Dec) has incompressible encryption security
if for all PPT adversaries A = (A1,A2):

Pr
[
DistIncomEnc

A,Π (λ) = 1
]
≤ 1

2
+ negl(λ).

Remark 9. The original Disappearing Ciphertext Security [GZ21] has a very similar
security notion, except that the adversary has a space bound of S throughout the entire
experiment, and that the ciphertext is a long stream sent bit by bit. Notice that our
definition of Incompressible Encryption Security is a strictly stronger security definition
than Disappearing Ciphertext Security.
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3.2 Construction

Construction 1. Given FE = (Setup,KeyGen, Enc,Dec) a single-key selectively secure
functional encryption scheme with a rate of ρFE and a strong average min-entropy ex-
tractor Extract : {0, 1}n × {0, 1}d → {0, 1}Lm, with d = poly(λ) and n = S + poly(λ) the
construction Π = (Gen,Enc,Dec) works as follows:

• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the
secret key for the following function fv with a hardcoded v ∈ {0, 1}d+Lm:

fv(s
′ = (s, t), flag) =

{
s′ if flag = 0

s′ ⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv ← FE.KeyGen(FE.msk, fv).

• Enc(pk,m): Sample a random tuple s′ = (s, t) where s ∈ {0, 1}d is used as a seed for
the extractor and t ∈ {0, 1}Lm is used as a one-time pad. The ciphertext consists of
three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long randomness R ∈ {0, 1}n, and
z = Extract(R; s)⊕ t⊕m.

• Dec(sk, ct = (FE.ct, R, z)): First, obtain s′ ← FE.Dec(FE.skfv ,FE.ct), and then use
the seed s to compute Extract(R; s)⊕ z ⊕ t to recover m.

Note that if Extract is an online extractor [Vad03], then encryption and decryption
can be run in a low-space streaming fashion, by first sending FE.ct, then streaming R,
and then sending z. The rate of this construction is

Lm
Lct

= Lm

(
d+ Lm + 1

ρFE
+ n+ Lm

)−1

=
1

(1/ρFE + 1) + S/Lm
− o(1).

Theorem 1. Assuming the existence of a functional encryption scheme with single-key
selective security and a rate of 1/poly(λ), and a (poly(λ), negl(λ)) average min-entropy
extractor, there exists an incompressible PKE with ciphertext size S + Lm + poly(λ) +
poly(λ)Lm, public key size poly(λ) and secret key size poly(λ). Furthermore, it supports
streaming decryption using Lm + poly(λ) bits of memory.

3.3 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

• H0: The original incompressible encryption security experiment DistIncomEnc
A,Π , where

the bit b in the experiment is fixed to be 0.

• H1: In step 5, instead of computing FE.ct ← FE.Enc(FE.mpk, (s′, 0)), compute
FE.ct← FE.Enc(FE.mpk, (s′ ⊕ v, 1)).
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• H2: In step 2, only sample (FE.mpk,FE.msk) ← FE.Setup(1λ). In step 5, after re-
ceiving the challenge query, sample uniformly random z ∈ {0, 1}Lm , u ∈ {0, 1}d+Lm ,
R ∈ {0, 1}n and send back FE.ct ← FE.Enc(FE.mpk, (u, 1)), R, and z as the
ciphertext. In step 7, sample a uniformly random s ∈ {0, 1}d, and compute
t = Extract(R; s)⊕ z ⊕m0, and v = s′ ⊕ u where s′ is the tuple (s, t). Use this v to
compute sk = FE.skfv ← FE.KeyGen(FE.msk, fv).

• H3: In step 7, sample a uniformly random r ∈ {0, 1}Lm and compute t = r⊕z⊕m0

instead.

• H4: Swap the bit b in the security experiment to be 1 instead of 0.

• H5: Switch back to the case where t = Extract(R; s)⊕ z ⊕m1.

• H6: Switch back to the case where we produce sk in step 2 instead of step 5.

• H7: Switch the FE ciphertext back to the real one FE.Enc(FE.mpk, (s′, 0)). Notice
here we’re at the original incompressible encryption security experiment, where the
bit b is fixed to be 1.

Proof of Hybrid Arguments

Lemma 2. If the functional encryption scheme FE has single-key selective security, then
no PPT adversary can distinguish between H0 and H1 (respectively H6 and H7) with
non-negligible probability.

Proof. Here we will prove the case for H0 and H1. The case for H6 and H7 follows
analogously. This is by a simple reduction to the single-key selective security of the
functional encryption scheme. If an adversary A is able to distinguish between H0 and
H1, we show how to construct an adversary A′ that breaks security of the functional
encryption scheme FE. The only difference between H0 and H1 is that in H0 the adversary
receives an encryption of (s′, 0), while in H1 the adversary receives an encryption of
(s′ ⊕ v, 1). But notice that fv(s

′, 0) = s′ = fv(s
′ ⊕ v, 1), so the adversary A is able to

distinguish between two FE ciphertexts that have the same functional output on function
fv, for which it has a secret key. This directly breaks the underlying functional encryption
security. Concretely, A′ works as follows by using A = (A1,A2) as a subroutine:

• On input 1λ, sample uniform values s′ and v, and submit the challenge query
FE.m0 = (s′, 0) and FE.m1 = (s′ ⊕ v, 1) to the challenger. Receive FE.mpk and
FE.ct in response.

• Send 1λ to A1 and receive 1S.

• Send FE.mpk to A1, receive challenge query m0 and m1, and respond with FE.ct, R
and z, where R is a random string of length S + poly(λ), and z = Extract(R; s) ⊕
t ⊕ m0. The adversary A1 produces a state st. Notice that the only component
that’s different for H0 and H1 is FE.ct, and it does not depend on the challenge
query from A1. R and z remain unchanged.
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• Send fv to the challenger and receive FE.skfv . Forward sk = FE.skfv to A2 together
with (FE.mpk,m0,m1, st).

• If A2 outputs that it is in H0, output 0. Otherwise, output 1.

It is straightforward to verify that if A wins the game, A′ wins as well.

Lemma 3. No adversary can distinguish between H1 and H2 (respectively H5 and H6)
with non-negligible probability.

Proof. Here we will prove the case for H1 and H2. The case for H5 and H6 follows
analogously.

Since pk does not depend on sk, and sk is not used until in step 7, now instead of
fixing fv (and thus sk = FE.skfv) in step 2, we can sample it lazily in step 7. Notice that
our new sampling procedure in H2 makes the following two changes to H1.

First, in H1, we sample a uniform t and compute z = Extract(R; s)⊕ t⊕m0, while in
H2, we sample a uniform z and compute t = Extract(R; s)⊕ z⊕m0. This is just a change
of variables, and gives two identical distributions.

Similarly, in H1 we sample a uniform v and encrypt u = v⊕s′, while in H2 we encrypt a
uniform u and compute v = u⊕s′. Again, these are two identical distributions. Therefore,
no adversary can distinguish between H1 and H2 with non-negligible probability.

Lemma 4. If the extractor Extract is a (poly(λ), negl(λ)) average min-entropy extractor,
then no adversary that produces a state st of size at most S can distinguish between H2

and H3 (respectively H4 and H5) with non-negligible probability.

Proof. We prove the case for H2 and H3. The other case follows naturally.
Here let the random variables X = R, and Y = (FE.mpk,FE.msk,m0,m1, u, z) and

Z = st. By Lemma 1, we have

H∞(X|Y, Z) ≥ min
y
H∞(X|Y = y, Z) ≥ min

y
H∞(X|Y = y)− S = poly(λ).

The last equality above follows since X = R is a uniformly random string, indepen-
dent of Y , of length S + poly(λ). By extractor security, no adversary can distinguish
(s,Extract(R; s), Y, Z) from (s, ULm , Y, Z) except with negl(λ) probability. Since we now
sample u ← ULm , no adversary can now distinguish between t = Extract(R; s) ⊕ z ⊕m0

and t = u⊕ z ⊕m0, i.e. H2 and H3.

Lemma 5. No adversary can distinguish H3 from H4 with non-zero probability.

Proof. Notice that the only difference between H3 and H4 is that in H3 we have t =
r ⊕ z ⊕m0 while in H4 we have t = r ⊕ z ⊕m1, where r is uniformly random. Thus t is
uniformly random in both cases, and H3 and H4 are identical.

Theorem 2. If FE is a functional encryption scheme with single-key selective security,
and Extract is a (poly(λ), negl(λ)) average min-entropy extractor, then Construction 1 has
incompressible encryption security.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no PPT adversary that produces a state with size at most S can distinguish one
from the next with non-negligible probability. The first hybrid H0 corresponds to the
incompressible encryption security game where b = 0, and the last one H7 corresponds
to the case where b = 1. The security of the indistinguishability game follows.
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3.4 Instantiating our FE

We now give a simple construction of functional encryption for our needed functionality.
Recall that our functions fv have the form fv(s, flag) = s⊕ (flag · v).

Construction 2. Let (Gen′,Enc′,Dec′) be a public key encryption scheme. Our scheme
FE = (Setup,KeyGen,Enc,Dec) for message length n+ 1 is defined as:

• Setup(1λ): For i ∈ {1, . . . , n}, b ∈ {0, 1}, run (pki,b, ski,b) ← Gen′(1λ). Output
(mpk = (pki,b)i,b , msk = (ski,b)i,b).

• KeyGen(msk, fv) = (ski,vi)i.

• Enc(mpk, (s, flag)): For i ∈ {1, . . . , n}, b ∈ {0, 1}, compute ci,b = Enc′(pki,b, si ⊕
(flag · b) ). Output c = (ci,b)i,b.

• Dec(skfv , c): Output x = x1x2 · · · xn where xi = Dec′(ski,vi , ci,vi)

For correctness, note that xi = si⊕(flag·vi), and therefore x = s⊕(flag·v) = fv(s, flag).
Note that the rate of this scheme is 1/poly(λ). Thus the overall rate of our incompressible
encryption scheme is 1/poly(λ).

Theorem 3. If (Gen′,Enc′,Dec′) is a CPA secure public key encryption scheme, then
Construction 2 is single key semi-adaptively secure for the functions fv.

Proof. Consider a single key semi-adaptive adversary for Construction 2. Let m0 =
(s0, flag0),m1 = (s1, flag1) be the challenge messages. For a fixed flag bit, fv is injective.
Therefore, if m0 6= m1, it must be that flag0 6= flag1. Then if the adversary’s secret key
query is on fv, we must have v = s0 ⊕ s1. Thus the two possibilities for the challenge
ciphertext are the same for ci,vi , but encrypt opposite bits in ci,1−vi . Since the adversary
never gets to see the secret keys ski,1−vi , a simple hybrid argument shows that flipping
these bits is indistinguishable.

Corollary 1. Assuming the existence of a CPA secure public key encryption scheme and
a (poly(λ), negl(λ)) average min-entropy extractor, there exists an incompressible PKE
with ciphertext size S +Lm + poly(λ) + poly(λ)Lm, public key size poly(λ) and secret key
size poly(λ). Furthermore, it supports streaming decryption using Lm + poly(λ) bits of
memory.

4 Rate-1 Incompressible Encryption

Here, we construct incompressible encryption with an optimal rate of 1 − o(1), i.e. the
message length is (almost) the same as the ciphertext length.

4.1 Construction

For our construction, we require a functional encryption scheme with single-key semi-
adaptive security and a rate of 1, a strong average min-entropy extractor, and a secure
pseudorandom generator (PRG). Our construction works as follows.
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Construction 3. Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 functional encryption
scheme satisfying single-key semi-adaptive security, Extract : {0, 1}Lm×{0, 1}d → {0, 1}n
a strong average min-entropy extractor where d, n = poly(λ), and PRG : {0, 1}n →
{0, 1}Lm a secure PRG, the construction Π = (Gen,Enc,Dec) works as follows:

• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the
secret key for the following function fv,s with a hardcoded large random pad v ∈
{0, 1}Lm and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

{
x if flag = 0

PRG(Extract(x; s))⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv,s ← FE.KeyGen(FE.msk, fv,s). Set Lm =
S + poly(λ).

• Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the underlying
FE scheme, i.e. FE.ct← FE.Enc(FE.mpk, (m, 0)).

• Dec(sk, ct): Decryption also corresponds to FE decryption. The output is simply
FE.Dec(FE.skfv,s , ct) = fv,s(m, 0) = m as desired.

Let ρFE be the rate of FE. Then the ciphertext size is (Lm + 1)/ρFE and the rate of
our incompressible encryption scheme is ρΠ = ρFE/(1 + L−1

m ). If ρFE = 1 − o(1), then
ρΠ = 1− o(1) as well.

Theorem 4. Assuming the existence of a functional encryption scheme with single-key
semi-adaptive security and a rate of 1−o(1), and a (poly(λ), negl(λ)) average min-entropy
extractor, there exists an incompressible PKE with message size of up to S − poly(λ),
ciphertext size S + poly(λ), public key size poly(λ) and secret key size poly(S, λ).

4.2 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

• H0: The original incompressible encryption security experiment DistIncomEnc
A,Π , where

the bit b in the experiment is fixed to be 0.

• H1: Instead of fixing v and s in step 2 of the security experiment, lazily sample v
and s in step 7 where we need to provide sk. Also, instead of sampling v directly,
first sample a uniformly random u ∈ {0, 1}Lm , and then compute v = u⊕m0.

• H2: We further modify how we sample v. Now instead of sampling a random u, we
sample a random PRG key k ∈ {0, 1}n, and set v = PRG(k)⊕m0.

• H3: We once more modify how we sample v. We now sample a long randomness
R ∈ {0, 1}Lm and use that to compute v = PRG(Extract(R; s))⊕m0.

• H4: In step 5, set the ciphertext to be FE.ct← FE.Enc(FE.mpk, (R, 1)).
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• H5: In step 7, revert to computing v = PRG(k)⊕m0 for a uniform k.

• H6: In step 7, revert to computing v = u⊕m0 for a uniform u.

• H7: Switch the bit b of the experiment from 0 to 1.

• H8: In step 7, sample v as PRG(k)⊕m1.

• H9: In step 7, sample v as PRG(Extract(R; s))⊕m1.

• H10: In step 5, change the ciphertext back to FE.ct← FE.Enc(FE.mpk, (m1, 0)).

• H11: In step 7, sample v as PRG(k)⊕m1.

• H12: In step 7, sample v as u⊕m1.

• H13: Sample a uniform v back at the beginning of the experiment in step 2. Notice
that now we’re back at the original incompressible encryption security experiment,
where the bit b is fixed to be 1.

Proof of Hybrid Arguments

Lemma 6. No adversary can distinguish between H0 and H1 (respectively H12 and H13)
with non-negligible probability.

Proof. We prove the case for H0 and H1. The case for H12 and H13 follows analogously.
Notice that pk does not depend on sk, and sk is the only value that depends on v and s,
but it is not used until in step 7. So we can sample v and s lazily in step 7 instead of
fixing it as early as in step 2.

Sampling a uniformly random u and XORing it with m0 is equivalent to using u as
a one-time pad. By the statistical security of OTP, H0 and H1 are also statistically
indistinguishable.

Lemma 7. If the underlying PRG is a secure pseudorandom generator, then no PPT
adversary can distinguish between H1 and H2 (as well as H5 and H6, H7 and H8, H11

and H12) with non-negligible probability.

Proof. Here we prove the case for H1 and H2. The other three cases follow naturally. In
H1, we have v = u⊕m0 with uniformly random u, and in H2, we have v = PRG(k)⊕m0

with a uniformly random PRG key k. Since the key k is random and not used anywhere
else, by PRG security, the PRG output should be computationally indistinguishable from
a uniform distribution. This directly completes the proof.

Lemma 8. If the underlying Extract is a (Lm, negl(λ)) average min-entropy extractor,
then no adversary can distinguish between H2 and H3 (respectively H10 and H11) with
non-negligible probability.

Proof. We prove the case for H2 and H3. The other case follows.
The randomness R is freshly sampled and not used anywhere else, and hence have

full Lm average min-entropy conditioned on the other variables. Therefore, we can easily
invoke the extractor security and that gives us Extract(R; s) is statistically close to a
uniform k, and hence also H2 and H3.
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Lemma 9. If the underlying FE is a functional encryption scheme with single-key semi-
adaptive game-based security, then no PPT adversary can distinguish between H3 and H4

(respectively H9 and H10) with non-negligible probability.

Proof. We will prove the case for H3 and H4. The other one follows analogously. No-
tice that the only difference between H3 and H4 is the message being encrypted by the
underlying FE scheme. In H3, we use the FE scheme to encrypt (m, 0), while in H4, we
encrypt (R, 1). Notice that

fv,s(R, 1) = PRG(Extract(R; s))⊕ PRG(Extract(R; s))⊕m = m = fv,s(m, 0).

So we have two ciphertexts with the same functionality under the function fv,s. By
the single-key semi-adaptive security of the FE scheme, they should be computationally
indistinguishable.

More concretely, assume that there exists an adversary A = (A1,A2) that distin-
guishes between H3 and H4, we show how to construct an adversary A′ that wins the
semi-adaptive security game of the FE scheme. By using A as a subroutine, A′ works as
follows:

• Receive 1λ and FE.mpk from the challenger, send 1λ to A1, receive 1S and set
Lm = S + poly(λ).

• Send FE.mpk to A1 and receive challenge query m0 and m1.

• Sample a uniformly random R ∈ {0, 1}Lm , and submit the challenge query FE.m0 =
(m0, 0) and FE.m1 = (R, 1) to the challenger. Receive FE.ct in response and forward
it to A1. A1 produces a state st.

• Sample random seed s ∈ {0, 1}d, compute v = PRG(Extract(R; s)) ⊕m0, and send
fv,s to the challenger. Receive in response FE.skfv,s , and forward it to A2 together
with (FE.mpk,m0,m1, st).

• If A2 outputs that it is in H3, output 0. Otherwise, output 1.

It should be easy to verify that if A wins, A′ also wins.

Lemma 10. If the underlying Extract is a (poly(λ), negl(λ)) average min-entropy extrac-
tor, then no adversary that uses a state of size at most S can distinguish between H4 and
H5 (respectively H8 and H9) with non-negligible probability.

Proof. Here we prove the case for H4 and H5. The other case follows analogously.
Here let the random variables X = R, and Y = (FE.mpk,FE.msk,m0,m1) and Z = st.

By Lemma 1, we have

H∞(X|Y, Z) ≥ min
y
H∞(X|Y = y, Z) ≥ min

y
H∞(X|Y = y)− S = poly(λ).

The last equation follows from that X = R is a uniformly random string of length
Lm = S + poly(λ). Therefore, by extractor security, no adversary can distinguish
(s,Extract(R; s), Y, Z) from (s, Un, Y, Z) except with negl(λ) probability. And since we
now sample k ← Un, no adversary can now distinguish between v = PRG(Extract(R; s))⊕
m0 and v = PRG(k)⊕m0, i.e. H4 and H5.
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Lemma 11. No adversary can distinguish between H6 and H7 with non-negligible prob-
ability.

Proof. The only difference between H6 and H7 is that in H6 we have v = u ⊕ m0 and
in H7 we have v = u ⊕ m1, where u is uniformly random. This is just a one time pad
encryption with a uniformly sampled key. By OTP security, H6 and H7 are statistically
indistinguishable.

Theorem 5. If FE has single-key semi-adaptive security, Extract is a (poly(λ), negl(λ))
average min-entropy extractor, and PRG is a secure PRG, then Construction 3 has in-
compressible encryption security.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no PPT adversary that produces a state with size at most S can distinguish one
from the next with non-negligible probability. The first hybrid H0 corresponds to the
incompressible encryption security game where b = 0, and the last one H13 corresponds
to the case where b = 1. The security of the indistinguishability game follows.

5 Incompressible Signatures: Our Basic Construc-

tion

5.1 Definition

Here we give the definition of incompressible signatures. An incompressible signature
scheme Π = (Gen, Sign,Ver) takes an additional space parameter S, and in addition
to the standard model signature security (where the adversary has unbounded space
throughout the game), we also require incompressible signature security that utilizes the
following experiment for adversary A = (A1,A2):

Signature Forgery Experiment SigForgeIncomSig
A,Π (λ):

• The adversary A1, on input 1λ, outputs a space bound 1S.

• Run Gen(1λ, 1S) to obtain keys (vk, sk).

• The adversary A1 is given the public key vk.

• For q = poly(λ) rounds, A1 submits a message m, and receives σ ← Sign(sk,m). At
the end of the last round, A1 produces a state st of size at most S.

• The adversary A2 is given the public key vk, the state st, and all the queried mes-
sages m, and outputs a signature σ′. If Ver(vk, σ′) outputs ⊥, output 0. Otherwise,
output 1.

Notice that traditionally, we would require Ver(vk, σ′) to be distinct from the messages
m’s queried before, but here we have no such requirement. With this experiment in mind,
we now define the additional security requirement for an incompressible signature scheme.
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Definition 7 (Incompressible Signature Security). For security parameters λ and S, an
incompressible signature scheme Π = (Gen, Sig,Ver) has incompressible signature security,
if for all PPT adversaries A = (A1,A2):

Pr
[

SigForgeIncomSig
A,Π (λ) = 1

]
≤ negl(λ).

5.2 Construction

We present a very simple construction from classical public key signature schemes.

Construction 4. Let λ, S be security parameters. Given Sig = (Gen, Sign,Ver) a classical
public key signature scheme with message space {0, 1}n+Lm where n = S + poly(λ) and
rate ρ′, we construct an incompressible signature scheme Π = (Gen, Sign,Ver) as follows:

• Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk, Sig.sk). Output vk = Sig.vk and
sk = Sig.sk.

• Sign(sk,m): Sample randomness R ∈ {0, 1}n, and output σ ← Sig.Sign(Sig.sk, (R,m)).

• Ver(vk, σ): Run M ← Sig.Ver(Sig.vk, σ). If M = ⊥, output ⊥. Otherwise, if
M = (R,m), output m.

We can always assume Sig can be computed in an low-space streaming fashion, since
we can hash the message in low space first using Merkle-Damg̊ard. Then Construction 5
can readily be computed with low space streaming. The rate of this construction is

Lm
Lσ

=
Lm

(S + Lm)/ρ′
= ρ′(1 + S/Lm)−1.

5.3 Proof of Security

Theorem 6. Assuming the existence of a secure public key signature scheme with rate ρ′,
there exists an incompressible signature scheme with signature size ρ′(S +Lm + poly(λ)),
public key size poly(λ) and secret key size poly(λ). Furthermore, it supports streaming
computation using poly(λ) bits of memory.

Proof. We show this through a reduction proof. Concretely, we show how one can use an
adversary A = (A1,A2) that breaks the incompressible signature security as a subroutine
to build an adversary A′ the breaks the underlying classical Sig scheme. The adversary
A′ works as follows:

• Send 1λ to A1, receive 1S, and set n = S + poly(λ).

• Receive vk from the challenger, and forward it to A1.

• For each signing query mi made by A1, sample a random Ri ∈ {0, 1}n and make a
query (Ri,mi) to the challenger. Receive back σi and forward it directly to A1.

• When A1 produces a state st, send vk, st and all the signing queries {mi}i to A2.
Output what A2 outputs as σ′.
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Notice that if A wins, that means Ver(vk, σ′) = (R′,m′) 6= ⊥. If m′ 6∈ {mi}i, then
(R′,m′) is a pair not queried before by A′, and thus A′ wins the game. If m′ = mj for
some j, then we argue that with overwhelming probability R′ 6= Rj, and hence A′ wins
as well. Indeed this is true since

H∞(Rj|st, vk, {mi}i) ≥ S + poly(λ)− S = poly(λ).

Therefore Rj is unpredictable conditioned on A2’s view, so the probability of A2 produc-
ing some R′ = Rj is negligible.

6 Rate-1 Incompressible Signatures

6.1 Incompressible Encoding

Moran and Wichs [MW20] give the definition for incompressible encodings and show con-
struction based on either the Decisional Composite Residuosity (DCR) or Learning With
Errors (LWE) assumptions. We modify the definition slightly to better accommodate the
syntax in this paper.

Definition 8 (Incompressible Encodings [MW20]). Let λ be security parameters. An
incompressible encoding scheme for message space {0, 1}Lm and codeword space {0, 1}Lc
is a pair of PPT algorithms Code = (Enc,Dec) that utilizes the following syntax:

• Enc(1λ,m)→ c on input the security parameter and a message, outputs a codeword
c.

• Dec(c)→ m on input a codeword, outputs the decoded message m.

The “rate” of the incompressible encoding is Lm/Lc.
2

We additionally require correctness and S-incompressibility3:

Definition 9 (Correctness). For all λ ∈ N and m ∈ M, Pr[Dec(Enc(1λ,m)) = m] ≥
1− negl(λ).

For S-incompressibility, consider the following experiment for adversaryA = (A1,A2):

Codeword Compression Experiment CompIncomCode
A,Code (λ, S):

• On input 1λ, the adversary A1 submits a message m and auxiliary input aux. It
receives c← Enc(1λ,m), and produces a state st of size at most S.

• The adversary A2 is given the state st, the message m, and the auxiliary information
aux; it produces a codeword c′. Output 1 if and only if c′ = c.

Definition 10 (S-Incompressibility). For security parameter λ, we require that for all
PPT adversary A = (A1,A2):

Pr
[
CompIncomCode

A,Code (λ, S) = 1
]
≤ negl(λ).

2This is equivalent to the α-expansion property as defined in [MW20] for α = Lc/Lm.
3This is equivalent to the β-incompressibility property as defined in [MW20] for β = S.
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6.2 Construction

Now we show how we modify Construction 4 to get an incompressible signature scheme
with a rate of 1. Essentially we can think of the procedure of attaching a long random
string in Construction 4 as a form of an incompressible encoding with a poor rate. Here
we just need to replace it with an incompressible encoding with a rate of 1.

Construction 5. Let λ, S be security parameters. Given Sig = (Gen, Sign,Ver) a classical
signature scheme with rate 1, and Code = (Enc,Dec) an incompressible encoding scheme
with rate 1 and S-incompressibility, we construct an incompressible signature scheme
Π = (Gen, Sign,Ver) as follows:

• Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk, Sig.sk). Output vk = Sig.vk and
sk = Sig.sk.

• Sign(sk,m): First compute the codeword c ← Code.Enc(1λ,m), and then compute
σ ← Sig.Sign(Sig.sk, c).

• Ver(vk, σ): Run c ← Sig.Ver(Sig.vk, σ). If c = ⊥, output ⊥. Otherwise, output
m← Code.Dec(c).

The rate of our scheme is just the product of the rates of the incompressible encod-
ing and standard-model signature scheme. Notice that using a universal one-way hash
function, we can easily construct a classical signature scheme with rate 1− o(1) by first
hashing the message and then signing the hash value; such a signature can be built from
any one-way function. The resulting incompressible signature scheme therefore has rate
1− o(1), in the CRS or random oracle model.

Theorem 7. Assuming the existence of a secure public key signature scheme with rate 1
and an incompressible encoding scheme with rate 1, there exists an incompressible signa-
ture scheme with signature size Lm, public key size poly(λ) and secret key size poly(λ).
Furthermore, it supports streaming computation using poly(λ) bits of memory, assuming
either the random oracle model, or the streaming of the CRS in the CRS model.

Proof. Assume towards contradiction that there exists an adversary A = (A1,A2) that
wins the incompressible signature game. Let {mi}i be the message queries made by
A1, {σi}i the responses, and {ci = Sig.Ver(vk, σi)}i. Let σ′ be A2’s forgery, and m′ =
Sig.Ver(vk, σ′).

Let p be the probability that A wins and m′ /∈ {mi}i. The security of the standard-
model signature scheme immediately implies that p is negligible: simply devise a new
adversary A′ that is the same as A, except that it encodes every message mi into ci ←
Code.Enc(1λ,mi) before making a signing query.

Let r be the probability that A wins and m′ ∈ {mi}. The security of the incompress-
ible encoding implies that r is negligible: we construct a new adversary A′′ which sets up
the standard-model signature for itself and simulates the entire view of A. The exception
is that it guesses a random i∗, and forwards the mi∗ as it’s challenge message; when it
receives ci∗ from the encoding challenge, it computes σi∗ ← Sig.Sign(sk, ci∗). With prob-
ability r/q, this adversary is able to reproduce ci∗ , despite compressing it. Here, q is the
number of queries made.

We therefore have that A wins with probability p+ r, which is negligible.
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6.3 Equivalence to Incompressible Encoding

Lastly, we quickly show that incompressible signatures are equivalent to incompressible
encodings (plus one-way functions) by showing how to construct an incompressible en-
coding scheme from an incompressible signature scheme.

Construction 6. Let λ be a security parameter. Given Sig = (Gen, Sign,Ver) an in-
compressible signature scheme with rate 1 and small verification keys, we construct an
incompressible encoding scheme Π = (Enc,Dec,Ver) as follows:

• Enc(1λ,m): Sample (Sig.vk, Sig.sk) ← Sig.Gen(1λ, 1S), and then compute σ ←
Sig.Sign(Sig.sk,m). Output c = (Sig.vk, σ).

• Dec(c = (Sig.vk, σ)): Simply output m← Sig.Ver(Sig.vk, σ).

The codeword length is the signature length (equal to message length if Sig has rate
1) plus the length of the verification length. Hence the rate is 1 if the verification keys
are short.

Correctness follows directly from the correctness of the signature scheme. Security
also follows directly: if an adversary using a state st of size at most S is able to produce
c′ = c, then it has also produced a valid signature σ and hence wins the incompressible
signature security game. Therefore, by Construction 5 and 6, incompressible signatures
and incompressible encodings (plus one-way functions) are equivalent.

7 Constructing Rate-1 Functional Encryption

Here, we build rate-1 functional encryption (FE). For our application, we only need one
key security. However, our construction satisfies many-key security, though we need
indistingishability obfuscation (iO). We leave it as an open question whether such high-
rate single key FE can be built from standard tools.

Our construction is based on the techniques of Boneh and Zhandry [BZ14], who build
from iO something called private linear broadcast encryption, which is a special case
of general FE. A number of issues arise in generalizing their construction to general
functions, which we demonstrate how to handle.

7.1 Building Blocks

Definition 11 (Indistinguishability Obfuscation [BGI+01]). An indistinguiability obfus-
cator iO for a circuit class {Cλ} is a PPT uniform algorithm satisfying the following
conditions:

• Functionality: For any C ∈ Cλ, then with probability 1 over the choice of C ′ ←
iO(1λ, C), C ′(x) = C(x) for all inputs x.

• Security: For all pairs of PPT adversaries (S,D), if there exists a negligible func-
tion α such that

Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← S(λ)] > 1− α(λ)
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then there exists a negligible function β such that∣∣Pr[D(σ, iO(λ,C0)) = 1]− Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < β(λ)

When Cλ is the class of all polynomial-size circuits, we simply call iO an indistin-
guishability obfuscator. There are several known ways to construct indistinguishability
obfuscation:

• Garg et al. [GGH+13] build the first candidate obfuscation from cryptographic
multilinear maps.

• Provably from novel strong circularity assumptions [BDGM20, GP21, WW20]

• Provably from “standard” assumptions [JLS21]: (sub-exponentially secure) LWE,
LPN over fields, bilinear maps, and constant-locality PRGs

Definition 12 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable PRF with
domain Xλ and range Yλ is a pair (Gen,Punc) where:

• Gen(1λ) outputs an efficiently computable function PRF : Xλ → Yλ

• Punc(PRF, x) takes as input a function PRF and an input x ∈ Xλ, and outputs a
“punctured” function PRFx.

• Correctness: With probability 1 over the choice of PRF← Gen(1λ),

PRFx(x′) =

{
PRF(x′) if x′ 6= x

⊥ if x′ = x

• Security: For all x ∈ Xλ, (PRFx,PRF(x)) is computationally indistinguishable
from (PRFx, y), where PRF← Gen(1λ) and y ← Yλ.

Such puncturable PRFs can be built from any one-way function [GGM86].
We now give a new definition of a type of signature scheme with a single-point binding

(SPB) property. Very roughly, this allows, given a message m, for generating a fake
verification key together with a signature on m. The fake verification key and signature
should be indistinguishable from the honest case. Yet the fake verification key has the
property that there are no signatures on messages other than m. In [BZ14], their security
proof implicitly constructs such signatures from iO and one-way functions, but with a
logarithmic message space, which was good enough for their special-purpose FE scheme.
In our case, we need to handle very large exponential message spaces. The problem
with [BZ14]’s approach is that the security loss is proportional to the message space;
to compensate we would need to assume (sub)exponential hardness, and also set the
security parameter to be somewhat larger than the message length. But this results
in the signature size being polynomial in the message rate, resulting in a low-rate FE
scheme. By using SPB signatures, we avoid the exponential loss, and can therefore keep
the security parameter small, resulting in a rate-1 FE scheme.
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Definition 13. A single-point binding (SPB) signature is a quadruple of algorithms
(Gen, Sign,Ver,GenBind) where Gen, Sign,Ver satisfy the usual properties of a signature
scheme. Additionally, we have the following:

• (vk, σ) ← GenBind(1λ,m) takes as input a message m, and produces a verification
key vk and signature σ.

• For any messages m and with overwhelming probability over the choice of (vk, σ)←
GenBind(1λ,m), Ver(vk, σ′) ∈ {m,⊥} for any σ′. That is, there is no message
m′ 6= m such that there is a valid signature of m′ relative to vk.

• For any m, GenBind(1λ,m) and (vk, Sign(sk,m)) are indistinguishable, where (vk, sk)←
Gen(1λ). Note that this property implies that Ver(vk, σ) accepts and output m, when
(vk, σ)← GenBind(1λ,m).

We explain how to construct SPB signatures in Section 7.3, either from leveled FHE
(and hence LWE), or from iO and one-way functions.

Our Rate-1 FE Scheme. We now give our rate-1 FE scheme:

Construction 7. Let iO be an indistinguishability obfuscator, Gen be a PRF, (Gen′, Sig,Ver)
a signature scheme, and PRG : {0, 1}λ → {0, 1}2λ,PRG′ : {0, 1}λ → {0, 1}Lm be a PRG.

• Setup(1λ): Sample PRF← Gen(1λ). Set msk = PRF and mpk = iO(1λ, PEnc), where
PEnc is the program given in Figure 1.

• KeyGen(msk, f): output skf ← iO(1λ, PDec,f ), where PDec,f is the program given in
Figure 2.

• Enc(mpk,m): Choose a random r, and evaluate (t, v) ← mpk(r). Then parse v =
(w, u). Set c = PRG′(w) ⊕ m. Next run (vk, sk) ← Gen′(1λ;u), using u as the
random coins for Gen′. Compute σ ← Sign(sk, c). Output (t, σ).

• Dec(skf , (t, σ) ) = skf (t, σ)

Inputs: r
Constants: PRF

1. t← PRG(r).

2. v ← PRF(t).

3. Output (t, v).

Figure 1: The program PEnc.

Correctness follows immediately from the correctness of the various components. No-
tice that the ciphertext size is Lm+ poly(λ), provided the signature scheme outputs short
signatures. Therefore, construction 7 has rate 1− o(1).
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Inputs: t, σ
Constants: PRF

1. (w, u)← PRF(t)

2. (vk, sk)← Gen′(1λ;u).

3. c← Ver(vk, c, σ). If c = ⊥, abort and output ⊥.

4. Output f(PRG′(w)⊕ c).

Figure 2: The program PDec,f .

Also notice that, provided the random coins for (Gen′, Sign,Ver) are independent of
the message length, PEnc has size poly(λ), independent of the message length. If sk can be
evaluated from its random coins in low-space, and Sign can be evaluated in a low-space
streaming fashion, then so can Enc.

7.2 Proof of Security

Sequence of Hybrids

• H0: This is the FE security experiment, where the bit b in the experiment is fixed to
be 0. Note that in this hybrid, the challenge ciphertext is generated as (t∗, σ∗), where
r∗ ← {0, 1}λ, t∗ ← PRG(r∗), (w∗, u∗) ← PRF(t∗), x∗ ← PRG′(w∗), c∗ ← x∗ ⊕m0,
(vk∗, sk∗)← Gen′(1λ;u∗), and σ∗ ← Sign(sk∗, c∗).

• H1: This is identical to H0, except that we now generate t∗ uniformly at random:
t∗ ← {0, 1}2λ.

• H2: This is the same as H1, except that we change the way we generate mpk, skf .

First compute PRFt
∗ ← Punc(PRF, t∗), (w∗, u∗) ← PRF(t∗). Then let (vk∗, sk∗) ←

Gen′(1λ;u∗) and x∗ = PRG(w∗). We now compute mpk← iO(1λ, P punc
Enc ) and answer

secret key queries with skf ← iO(1λ, P punc
Dec ). Here, P punc

Enc and P punc
Dec,f are the programs

in Figures 3 and 4

• H3: This is identical toH2, except that now we generate w∗, u∗ uniformly at random,
instead of (w∗, u∗)← PRF(t∗).

• H4: This is identical to H3 except that we now generate x∗ uniformly at random
instead of x∗ ← PRG(w∗).

• H5: This is identical to H4, except for the following changes:

– We generate c∗ uniformly at random at the beginning of the experiment.

– After the challenge query, we generate x∗ = c∗ ⊕m0. Note that x∗ is the only
place m0 enters the experiment.

• H6: This is identical to H5, except now we generate (vk∗, σ∗)← GenBind(1λ, c∗).
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• H7 through H13: for i = 0, · · · , 6, Hybrid H7+i is identical to H6−i, except that m0

is replaced with m1. Thus H13 is the FE security experiment where b is fixed to be
1.

Inputs: m; r

Constants: PRF t∗ , t∗

1. t← PRG(r). If t = t∗, immediately abort and output ⊥.

2. v ← PRF t∗ (t).

3. Output (t, v).

Figure 3: The program P punc
Enc . Differences from PEnc highlighted in yellow.

Inputs: t, σ

Constants: PRF
t∗

1 ,PRF
t∗

2 , t∗, x∗, vk∗

1. If t 6= t∗, skip to Step 2. If t = t∗, run c← Ver(vk∗, σ);

if c = ⊥, abort and output ⊥, otherwise abort and output f(x∗ ⊕ c).

2. (w, u)← PRF t∗ (t)

3. (vk, sk)← Gen′(1λ;u).

4. c← Ver(vk, c, σ). If c = ⊥, abort and output ⊥.

5. Output f(PRG(w)⊕ c).

Figure 4: The program P punc
Dec,f . Differences from PEnc,f highlighted in yellow.

Proofs of Hybrid Steps

Lemma 12. If PRG is a secure PRG, then no PPT adversary can distinguish between
H0 and H1 (respectively H12 and H13) except with negligible probability.

Proof. The only difference between the hybrids is how we generate t∗; in H0 it is pseudo-
random and in H1 it is uniformly random. Thus indistinguishability follows immediately
from the security of PRG.

Lemma 13. If iO is a secure indistinguishability obfuscator, then no PPT adversary can
distinguish between H1 and H2 (respectively H11 and H12) except with negligible probabil-
ity.
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Proof. Note that, with overwhelming probability, the uniformly random t∗ is not in the
sparse image of PRG. Thus, with overwhelming probability, the abort step in P punc

Enc is

never triggered. On all t 6= t∗, PRF and PRFt
∗

behave identically. Thus, PEnc and P punc
Enc

have identical functionalities. Thus their obfuscations are indistinguishable. Likewise,
PDec,f , on input (t∗, c, σ), would compute (vk, sk) ← Gen′(1λ;u∗), which would exactly
output (vk∗, sk∗). Provided the signature accepted, it would output f(m) where m =
PRG(w∗) ⊕ c. Thus PDec,f and PDec,f behave identically on all inputs of this form. On
inputs (t, c, σ) with t 6= t∗, the programs trivially behave identically. Thus they are
identical on all inputs, and their obfuscations are indistinguishable.

Lemma 14. If (Gen′,Punc) is a secure puncturable PRF, then no PPT adversary can
distinguish between H3 and H4 (respectively H10 and H11) except with negligible probabil-
ity.

Proof. The only difference between these hybrids is that w∗, u∗ switch from being outputs
of PRF(t∗) to being uniformly random. But since the rest of the experiment can be

simulated using only PRFt
∗
, security follows immediately from punctured PRF security.

Lemma 15. If PRG′ is a secure PRG, then no PPT adversary can distinguish H3 and
H4 (respectively H9 and H10) except with negligible probability.

Proof. The only difference between the hybrids is that we switch from x∗ being pseudo-
randomly generated from a random w∗ to x∗ being uniform. Indistinguishability follows
immediately from the security of PRG′.

Lemma 16. H4 and H5 (respectively H8 and H9) are identically distributed.

Proof. Since x∗ is uniform, so is c∗ = x∗ ⊕ mb. In both hybrids, we choose c∗ or x∗

randomly, and solve for the other. Thus the distributions are identical.

Lemma 17. If (Gen′, Sign,Ver,GenBind) is a secure SPB signature scheme, then no PPT
adversary can distinguish between H5 and H6 (respectively H7 and H8) except with neg-
ligible probability.

Proof. Note that neither hybrid requires sk∗, and the only difference is how we generate
vk∗, σ∗: in H5 (respectively H8) vk∗ is generated from Gen′ using fresh random coins u∗

and σ∗ is the signature on c∗, whereas in H6 (respectively H7), (vk∗, σ∗) is generated as
GenBind(1λ, c∗). Indistinguishability follows immediately from the security of the signa-
ture scheme.

Lemma 18. If iO is a secure indistinguishability obfuscator, then no PPT adversary can
distinguish between H6 and H7.

Proof. The only difference between the two hybrids is whether x∗ = c∗ ⊕ m0 or x∗ =
c∗ ⊕ m1, and the only place x∗ enters the experiment is in P punc

Dec,f . Moreover, x∗ only
affects the output f(x∗ ⊕ c), and only in the event that the input (t, c, σ) satisfies t = t∗

and Ver(vk∗, c, σ) accepts.
By the single-point binding of vk∗, all inputs (t∗, c, σ) reject, except for c = c∗. But in

the case c = c∗, we have that f(x∗⊕ c) = f(mb). The FE security experiment guarantees
that f(m0) = f(m1). Thus the programs P punc

Dec,f have identical functionality in both
hybrids, and so their obfuscations are indistinguishable.
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Theorem 8. If iO is a secure indistinguishability obfuscator, PRG,PRG′ are secure
PRGs, (Gen′, Sign,Ver,GenBind) is a secure SPB signature, and (Gen,Punc) is a secure
puncturable pseudorandom function, then Construction 7 is a secure functional encryp-
tion scheme.

7.3 Constructing SPB Signatures

We now show how to construct single-point binding signatures.

A low-rate construction. We first describe a simple low-rate construction. This
construction is not good enough for our purposes, as our FE scheme inherits the rate of
the signature scheme. But we will later show how to compile any low-rate construction
into a high-rate construction.

Our construction is just Lamport one-time signatures, where the underling one-way
function is replaced with a PRG:

Construction 8. Let PRG : {0, 1}λ → {0, 1}2λ be a PRG. Then for a desired message
length n, our construction works as follows:

• Gen(1λ): for i ∈ {1, . . . , n}, b ∈ {0, 1}, sample ski,b ← {0, 1}λ and set vki,b =
PRG(ski,b). Output (vk = (vki,b)i,b , sk = (ski,b)i,b).

• Sign(sk,m): output σ = (m, (ski,mi)i )

• Ver(vk, σ): Extract m from σ. For each i ∈ {1, . . . , n}, check that PRG(ski,mi) =
pki,mi. If all checks pass, output m. Otherwise output ⊥.

• GenBind(1λ,m): for each i ∈ {1, . . . , n}, sample ski,mi ← {0, 1}λ and set vki,mi =
PRG(ski,mi). Then sample vki,1−mi ← {0, 1}2λ uniformly. Output (vk = (vki,b)i,b , σ =
(m, (ski,mi)i) ).

In other words, to bind to a message, simply replace all the public key components
that do not correspond to the message with uniform randomness.

Binding follows from the fact that, with overwhelming probability vki,1−mi in binding
mode will have no pre-images. Since any message other than m must differ from m on
some bit i, such messages will not have any signatures. Security follows immediately
from the pseudorandomness of PRG.

The problem with this signature scheme is that its raate is poor: the signature on a
message is a multiplicative poly(λ) factor larger than the message itself

From low-rate to high-rate using SPB hashes. We now describe a new object,
related to somewhere statistically binding (SSB) hashing [HW15], which we call single-
point binding (SPB) hashing.

Definition 14. A single-point binding (SPB) hash function is a triple of algorithms
(Gen, H,GenBind) where:

• Gen(1λ) produces a hashing key hk.
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• H(hk,m) deterministically produces a hash h, with |h| � |m|.

• GenBind(1λ,m∗) takes as input a message m∗, and produces a hashing key hk
with the property that, with overwhelming probability over the choice of hk ←
GenBind(1λ,m∗), for any m 6= m∗, H(hk,m) 6= H(hk,m∗).

• For any message m∗, (m∗,Gen(1λ)) is computationally indistinguishable from
(m∗,GenBind(1λ,m∗)).

We now use a SPB hash to improve the rate of an SPB signature. The construction
is the usual hash-and-sign signature scheme: to sign a message m, simply compute the
signature σ ← H(hk,m), and output (m,σ). If the underlying signature is an SPB
signature, then GenBind for the new signature simply binds hk to m, and then binds vk
to H(hk,m).

If H hashes to a size that is independent of the message, then the resulting signature
has rate 1, regardless of the rate of the original signature.

Constructing SPB Hashing. It remains to construct an SPB hash function.
We first briefly note that such hash functions can be build from fully homomorphic

encryption (FHE), following essentially the same construction of somewhere statistically
binding hashing from [HW15]. The hashing key is normally the encryption of a random
string r of length equal to the message. To hash a message m, homomorphically compute
an encryption of b, the result of comparing m with r. To bind the hashing key to m,
simply encrypt the message m. FHE security immediately implies security. For binding,
the message m will then hash to an encryption of 1, whereas any other message will hash
to an encryption of 0. By the correctness of the FHE scheme, encryptions of 0 and 1
must be disjoint.

Next, we explain how to get a construction from iO and one-way functions. Since we
are already using iO and one-way functions to build our FE scheme, these assumptions
are redundant.

Construction 9. Let iO be an indistinguishability obfuscator, Gen′ the generation algo-
rithm for a PRF, and PRG a pseudorandom generator.

• Gen(1λ): Sample PRF ← Gen′(1λ), and output hk = iO(1λ, Phash), where Phash is
the program given in Figure 5.

• H(hk,m) = hk(m)

• GenBind(1λ,m∗): Sample PRF← Gen′(1λ), compute PRFm
∗ ← Punc(PRF,m∗), and

choose a random string x∗. Output hk = iO(1λ, P bind
tthash), where P bind

tthash is the program
given in Figure 6.

Remark 10. If we want our rate-1 incompressible encryption to have encryption be
computable in low space given a stream of m, then we need our rate-1 FE encryption to
be likewise be computable in low space given a message stream. This in turn means we
need to be able to evaluate H(hk,m) in low space given the message stream, and given
the random coins used to construct hk. We can always assume the random coins are
small. In our construction, we cannot compute hk itself in low space, since it is a large
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obfuscated program. However, we can nevertheless compute H(hk,m) = PRG(PRF(m))
in low-space, provided PRF has small keys and can be evalauted on a message stream
in low space (the output of PRF is small, so PRG can easily be computed once we have
PRF(m). Most PRFs have this property, including the puncturable PRF from one-way
functions due to [GGM84]. This gives us the desired rate-1 incompressible encryption
with low-space encryption.

Inputs: m
Constants: PRF

1. Output PRG(PRF(m))

Figure 5: The program Phash.

Inputs: m

Constants: PRF m∗
, m∗, x∗

1. If m = m∗, output x∗. Otherwise,

2. Output PRG(PRF(m))

Figure 6: The program P bind
hash . Differences from Phash are highlighted in yellow.

For binding, note that the random x∗ outputted on input m∗ is, with overwhelming
probability, outside the range of PRG. But all inputs m 6= m∗ must output points in the
range of PRG. Thus, there are no collisions with m∗.

For security, use the following sequence of hybrids:

• H0: this is the case where hk← Gen(1λ).

• H1: here, we generate hk = iO(P bind
hash ), except that x∗ is set to PRG(PRF(m∗)).

Note that this x∗ is exactly the output of Phash(m
∗). Hence in this case P bind

hash and
Phash have identical functionalities. Indistinguishability follows from iO.

• H2: here we generate x∗ = PRG(s∗) for a uniform random value s∗. The only
difference from H1 is that we replace PRF(m∗) with s∗. But since only the punctured

PRF PRFm
∗

is needed, this change follows from punctured PRF security.

• H3: here, we generate hk ← GenBind(1λ,m∗). The only difference from H2 is that
we replace x∗ = PRG(s∗) with a uniformly random x∗. Since s∗ is uniformly random,
this follows immediately from the pseudorandomness of PRG.
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[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and
Daniel Wichs. Public-key encryption in the bounded-retrieval model. In Henri

34



Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 113–134.
Springer, Heidelberg, May / June 2010.
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