
Making Private Function Evaluation Safer,
Faster, and Simpler

Yi Liu1,3, Qi Wang1,2, and Siu-Ming Yiu3

1 Research Institute of Trustworthy Autonomous Systems & Guangdong Provincial
Key Laboratory of Brain-inspired Intelligent Computation,

Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China

liuy7@mail.sustech.edu.cn

wangqi@sustech.edu.cn
2 National Center for Applied Mathematics (Shenzhen),

Southern University of Science and Technology, Shenzhen 518055, China
3 Department of Computer Science,

The University of Hong Kong, Pokfulam, Hong Kong SAR, China
smyiu@cs.hku.hk

Abstract. In the problem of two-party private function evaluation (PFE),
one party PA holds a private function f and (optionally) a private input
xA, while the other party PB possesses a private input xB . Their goal
is to evaluate f on xA and xB , and one or both parties may obtain the
evaluation result f(xA, xB) while no other information beyond f(xA, xB)
is revealed.

In this paper, we revisit the two-party PFE problem and provide several
enhancements. We propose the first constant-round actively secure PFE
protocol with linear complexity. Based on this result, we further provide
the first constant-round publicly verifiable covertly (PVC) secure PFE
protocol with linear complexity to gain better efficiency. For instance,
when the deterrence factor is ϵ = 1/2, compared to the passively secure
protocol, its communication cost is very close and its computation cost is
around 2.6×. In our constructions, as a by-product, we design a specific
protocol for proving that a list of ElGamal ciphertexts is derived from an
extended permutation performed on a given list of elements. It should be
noted that this protocol greatly improves the previous result and may be
of independent interest. In addition, a reusability property is added to our
two PFE protocols. Namely, if the same function f is involved in multiple
executions of the protocol between PA and PB, then the protocol could
be executed more efficiently from the second execution. Moreover, we
further extend this property to be global, such that it supports multiple
executions for the same f in a reusable fashion between PA and arbitrary
parties playing the role of PB.

Keywords: Extended permutation · Private function evaluation · Pub-
licly verifiable covert security · Secure two-party computation.

1 Introduction

The two-party private function evaluation (PFE) problem considers the scenario
where a party PA holds a private function f and (optionally) a private input xA

while the other party PB has another private input xB . These two parties intend
to compute f(xA, xB) without the existence of a third party. Finally, one or both
parties may obtain f(xA, xB), while they cannot deduce any other information
beyond their specified outputs during the interaction. As a special case of secure
computation, note that PFE is different from the notion of standard secure
function evaluation (SFE). The key difference is that the function f is commonly
known by participants in SFE, while f should remain private in PFE, in the sense
that everything about the function, except an upper bound on its size and the
lengths of both input and output, is hidden.

Both data and algorithms are valuable in numerous real-world scenarios, such
as medical and commercial applications. For instance, we consider the follow-
ing business scenario between a traditional enterprise and an algorithm-driven
company. The traditional enterprise has a dataset, while the algorithm-driven
company holds a powerful data mining algorithm that can process this dataset.
On the one hand, the algorithm-driven company does not intend to disclose the
algorithm. On the other hand, since the dataset may contain sensitive data,
the traditional enterprise is unwilling to reveal the dataset to others. We note
that this dilemma can be solved by a PFE protocol that allows the traditional
enterprise to receive the result of privately running the algorithm on the dataset.

It is trivial to design a PFE protocol based on fully homomorphic encryption
(FHE) schemes [17]. However, the efficiency of FHE schemes is still prohibitive,
and researchers attempted to design PFE in the setting of traditional multi-
party computation (MPC). In the literature, some PFE protocols specify a lim-
ited set of functions, such as polynomials [13, 35, 32] and low-depth circuits [38],
while others are general-purpose, focusing on functions implemented by arbi-
trary (polynomial-size) circuits [1]. In this paper, we work on general-purpose
PFE protocols, and thus the PFE protocols mentioned in the rest of this paper
are assumed to be general-purpose.

To construct general-purpose PFE protocols, there exist two main approaches.
The first approach reduces the PFE problem to the problem of secure compu-
tation for universal circuits (UC) (see [40, 27, 25, 30, 19, 42, 2, 31]). UC refers to a
sequence of circuits U = {Un}n∈N, each of which can take as input (the descrip-
tion of) a circuit C of size n and a valid input x, and output C(x)← Un(C, x).
Therefore, we can combine UC with traditional MPC techniques, such as Yao’s
garbled circuits [41, 29], to obtain PFE protocols. The major goal of this line of
work is to reduce the size of UC and improve the traditional MPC techniques.
However, a noted barrier of UC-based PFE protocol is that a (Boolean) UC has
(optimal) size |Un| = Θ(n log n) [40], where the constant factor (more than 12
for the state-of-the-art result [31]) and the low-order terms are significant. Hence,
when the size of a circuit used for evaluation is relatively large, the considerable
expansion of its size caused by the use of UC makes UC-based PFE prohibitive.

2

The second approach avoids the usage of UC. In 2011, Katz and Malka [23]
proposed a constant-round passively secure two-party PFE protocol applied on
Boolean circuits, and the protocol achieves linear complexity in circuit size.
This linear-complexity PFE protocol has asymptotically less computation and
communication complexity than UC-based PFE protocols that have complexity
Θ (n log n). Very recently, an implementation [21] of the passively secure PFE
protocol [23] showed that this protocol outperforms the state-of-the-art UC-based
PFE protocol not only in communication but also in total running time, e.g., it
is ∼ 3.3× faster in a LAN and ∼ 7.0× faster in a WAN for private circuits of size
106. Subsequently, the work [33] introduced a general framework for designing
PFE protocols. This general framework captures the idea of [23] and provides a
slight improvement in communication cost. In addition, a PFE protocol based on
oblivious evaluation of switching networks (OSN) was provided in [33] and was
later improved in [9]. However, it is shown [2, 8] that OSN-based PFE protocols
have Θ(n log n) computation and communication complexities limit their usage
when the size of circuits is considerable. More recently, a passively secure re-
executable PFE protocol with linear complexity was proposed in [8]. With this
reusability property, it is shown [8] that this protocol has significantly better
performance than the PFE protocol in [23] and [33] when the protocol is executed
any number (more than one) of times for the same function by the same two
parties.

Since parties may deviate from the protocol to gain more advantages, such
as learning the other party’s input and affecting the output of the protocol,
it is more realistic to consider PFE protocols that are secure under stronger
security models. Unfortunately, even though the line of work for PFE protocols
with linear complexity has better performance theoretically and experimentally,
existing protocols are mainly focused on the semi-honest model, and very few
results managed to provide protocols in stronger security models.

To the best of our knowledge, only two papers considered PFE protocols
with linear complexity that are secure against malicious adversaries. The seminal
work [23] introduced how to compile their passively secure PFE protocol to be
secure against malicious PB, i.e., the party that provides the private input xB , via
specific efficient zero-knowledge protocols. However, the security of the compiled
protocol is not full-fledged, and the function provider PA is required to be semi-
honest. The subsequent work [34] proposed an actively secure PFE framework
with linear complexity based on the results in [33]. However, the number of
rounds in this protocol is equal to the number of gates for the evaluated circuit.
This will simply become a bottleneck when the size of the circuit is considerable.

Besides the malicious model, there is no PFE protocol with linear complex-
ity in other security models. We notice that the publicly verifiable covert (PVC)
model is particularly useful for many scenarios that PFE protocols may ap-
ply to. Covert security was introduced by Aumann and Lindell [4]. It serves
as a compromise between semi-honest and malicious security definitions, and
thereby provides a more realistic security guarantee than semi-honest security
and has significantly less overhead than malicious security. Informally, a mali-

3

cious party is still allowed to covertly deviate from the protocol execution in
this model. However, this misbehavior will be detected by honest parties with a
certain probability ϵ, which is called deterrence factor. The fear of being caught
will deter participants from acting maliciously and deviating from the protocol.
The PVC security notion that enhances the covert security model was intro-
duced by Asharov and Orlandi in 2012 [3]. PVC security guarantees that once
the misbehavior of a malicious party is caught, honest parties could generate a
publicly verifiable certificate to persuade others, including those outside the pro-
tocol, that the malicious party is cheating. Meanwhile, it should be guaranteed
that this malicious party learns no information about the inputs of honest par-
ties even when the certificate is given. This notion significantly strengthens the
covert security model especially when parties’ reputations are important. A gen-
eral PVC-secure two-party computation protocol was proposed in [3] based on
garbled circuits and the Signed-OT technique. Then the Signed-OT protocol was
improved in [26] to obtain a more efficient PVC-secure protocol. Subsequently,
an elegant protocol [22] using a derandomized approach was proposed in 2019.
Avoiding the use of costly Signed-OT, this protocol is more efficient than the
previous protocols. In the meantime, another protocol [43] introduced a notion
called financially secure computation that combines a PVC-secure protocol with
blockchain. Very recently, a compiler that can transform a two-party passively
secure protocol to a PVC-secure protocol was introduced in [15]. It is easy to
see that PVC security is useful for two-party PFE protocols in many realistic
scenarios. Note that all existing results for two-party PVC security [3, 26, 22, 15]
are only designed for SFE, i.e., the function f is publicly known. Although UC
can be integrated into these frameworks to derive a PVC-secure PFE protocol,
so far there is no PVC-secure PFE protocol with linear complexity.

Therefore, the following question is open so far:

Can we construct a constant-round actively secure and a constant-round
PVC-secure PFE protocols with linear complexity in the two-party setting
while avoiding strong primitives such as FHE?

In this paper, we answer this question. In addition, we borrow the idea of [8]
to realize a reusability property for our protocols and further extend it globally.
A comparison of main properties for all PFE protocols with linear complexity is
summarized in Table 1.

1.1 Our Results

We summarize our results and main contributions in this paper as follows.

Active security. We provide the first constant-round actively secure PFE pro-
tocol with linear complexity in the two-party setting. More precisely, we
design a constant-round two-party PFE protocol that is secure against mali-
cious function owner PA and semi-honest private input provider PB. Then by
leveraging classical MPC results for security against malicious PB providing
private input values, such as the approach used in [23], we can automatically

4

Table 1: Comparison of the main properties for all PFE protocols with linear com-
plexity.

Paper Security # Round Reusable?

[23] Passive Constant No.
[33] Passive Constant No.
[34] Active # Gates No.
[8] Passive Constant Yes, for two parties.

This paper Active Constant Yes, global reusability.
This paper PVC Constant Yes, global reusability.

obtain the desirable actively secure protocol. Our protocol is composed of
an initiation phase and an evaluation phase.

PVC security. Based on the techniques of our actively secure PFE protocol, we
design the first constant-round PVC-secure PFE protocol with linear com-
plexity in the two-party setting to gain much better efficiency. This protocol
inherits the two-phase structure. It is noted that the additional overhead
to achieve PVC security is very light from both computation and commu-
nication aspects, e.g., when the deterrence factor is ϵ = 1/2, compared to
the passively secure protocol, its communication cost is very close and its
computation cost is around 2.6×.

Efficiency improvement. We provide the sub-protocol ΠEncEP
zk as a core com-

ponent for our actively secure and PVC-secure protocols. This protocol is
designed for proving that a list of ElGamal [16] ciphertexts is derived from
an extended permutation (see Definition 3) performed on a given list of ele-
ments. A generic construction for such a purpose was originally given in [34],
and it is left open whether it is possible to construct such a protocol in a spe-
cific approach to gaining better performance. Our protocol answers this open
problem, and improves the generic construction [34] significantly: the com-
munication cost of our protocol is less than 1/56 of the generic construction,
and the computation cost is less than 36%.

Reusability (simplified follow-up executions). The reusability property is
added to both of our two PFE protocols. When two specified parties intend
to evaluate the same private function f on different private inputs, they only
need to go through the initiation phase at one time and then execute the
evaluation phase multiple times with different inputs. Moreover, we extend
this property globally. Namely, once an initiation for a private f is performed
by the function owner PA, arbitrary private input providers playing the role
of PB can benefit from the reusability property for f .

2 Preliminaries

We use |S| to denotes the size of a set S and ∥S∥ to denote the number of bits
required to represent elements in the set S. We write x←$S for uniformly sam-

5

pling an element x from the set S. For a positive integer n, let [n] = {1, . . . , n}.
For a bit string x, we use x[i] to represent the ith bit of x. We write a vector
named a as a⃗ = (a1, . . . , an), and use 0⃗ and 1⃗ to denote a vector where all entries
are equal to 0 and 1 when its dimension is clear in the context, respectively. Let
a⃗⃗b = (a1b1, . . . , anbn) denote the Hadamard product of two vectors a⃗ and b⃗,

a⃗ ◦ b⃗ = (a1, . . . , ana , b1, . . . , bnb
) the concatenation of vectors, a⃗Tb⃗ =

∑
i aibi the

inner product, and g⃗a⃗ =
∏

i g
ai
i the multi-exponentiation. For a scalar c and a

vector a⃗, the scalar product is ca⃗ = (ca1, . . . , can).
Let κ be the computational security parameter, and κ is written in unary as

input to all algorithms. A function f in a variable κ mapping natural numbers
to [0, 1] is negligible if f(κ) = O (κ−c) for every constant c > 0. We say that
1− f is overwhelming if f is negligible.

Given a seed ∈ {0, 1}κ, we can use a pseudorandom function with seed as the
key in the CTR mode to derive sufficiently many pseudorandom numbers and
use them as random coins for operations in protocols.

We use Com to denote the (non-interactive) commitment scheme. We write
decom as the random coins for a commitment, which can be used to open this
commitment. The commitment scheme Com achieves (computationally) bind-
ing and hiding properties. We will use a signature scheme (KGen,Sig,Vf) that
is existentially unforgeable under chosen-message attacks (EUF-CMA) for our
PVC-secure protocol in Section 4.

The oblivious transfer (OT) functionality FOT is presented below. Let ΠOT

be the protocol that securely realizes a parallel version of FOT.

Functionality FOT

Private inputs: PA has input x ∈ {0, 1}λ and PB has input {(Ai,0, Ai,1)}i∈[λ].

Upon receiving x ∈ {0, 1}λ from PA and {(Ai,0, Ai,1)}i∈[λ] from PB, the function-
ality sends {Ai,x[i]}i∈[λ] to PA.

The security of our protocol relies on the decisional Diffie-Hellman (DDH)
assumption as follows.

Definition 1. The decisional Diffie-Hellman (DDH) assumption in a cyclic
group G = ⟨g⟩ of prime order q ∈ Θ(2κ) is that given (ga, gb) for a, b←$Zq, g

ab

is computationally indistinguishable from a random element in G.

Under the DDH assumption, we have the following lemma.

Lemma 1 ([36]). Under the DDH assumption for the cyclic group G of prime
order q ∈ Θ(2κ), for any positive integer n = poly(κ), given g1, . . . , gn←$G, we
have that (gα1

1 , . . . , gαn
n) is computationally indistinguishable from (gα1 , . . . , g

α
n)

for α, α1, . . . , αn←$Zq.

It is well-known that the DDH assumption implies the discrete logarithm as-
sumption, which is equivalent to the following assumption.

Definition 2. The discrete logarithm relation assumption in a cyclic group G
of prime order q ∈ Θ (2κ) is that for any positive integer n = poly(κ), given

6

g1, . . . , gn←$G, it is computationally hard to find a1, . . . , an ∈ Zq, such that
∃ai ̸= 0 ∈ Zq∧

∏n
i=1 g

ai
i = 1. We call

∏n
i=1 g

ai
i = 1 a nontrivial discrete logarithm

relation.

We use the ElGamal encryption scheme in our protocol. This encryption
scheme is over the cyclic group G = ⟨g⟩ of prime order q, and it is indistinguish-
able under chosen plaintext attack (IND-CPA) under the DDH assumption for
G. We provide the description of algorithms for the scheme as follows.

Key Generation. This algorithm takes as input the security parameter 1κ,
picks s←$Zq, and sets h ← gs. Then the algorithm outputs the public key
pk← (G, q, g, h) and the private key sk← s.

Encryption. This algorithm takes as input a message m ∈ G and a public key
pk, and returns the ciphertext c← (c(0) = gr, c(1) = mhr) for r←$Zq.

Decryption. This algorithm takes as input a ciphertext c = (c(0), c(1)) and a
key pair (pk, sk), and returns m← c(1)/(c(0))s.

The ElGamal encryption scheme is multiplicatively homomorphic, such that the
multiplication result of two ciphertexts is the ciphertext of the multiplication
result of the two corresponding plaintexts. Computing the power of a ciphertext
c also derives the ciphertext for the power of the corresponding plaintext of c.

2.1 Circuit Representation and Extended Permutation

Here, we introduce an approach to describing Boolean circuits with arbitrary fan-
out (see an example circuit Cf in Fig. 1). For a circuit, we call a wire outgoing
wire (denoted by OW) if it is an input wire of the circuit or output wire of
a gate. Meanwhile, a wire is called incoming wire (denoted by IW) if it is the
input wire of a gate. Outgoing wires are connected with incoming wires, in the
sense that each incoming wire connects with exactly one outgoing wire while an
outgoing wire may connect with an arbitrary number (including 0) of incoming
wires. Suppose that a circuit consists of θ gates, n input bits, and m output bits.
Then this circuit has n + θ outgoing wires and 2θ incoming wires. For a gate
Gi, its output wire is the outgoing wire OWn+i and its two input wires are the
incoming wires IW2i−1 and IW2i. The last m gates are the output gates of the
circuit. Fig. 1(b) lists all gates (Gi)i inside the circuit Cf . A formal description of
the connections between incoming wires and outgoing wires is captured by [33]
via extended permutation.

Definition 3 ([33]). For positive integers N and M , a mapping π : [N]→ [M]
is an extended permutation (EP) if for every x ∈ [N], there exists one y ∈ [M],
such that y = π(x).

Given an index of an incoming wire, π maps it to the index of the outgoing wire
that connects with this incoming wire (see example in Fig. 1(c)). Note that differ-
ent from the one-to-one correspondence mapping of the standard permutation,
EP allows to replicate or omit elements during the mapping.

7

OW1

OW2

OW3

OW4

OW6

OW7

OW8
OW9

OW10

OW5

OW11

IW1

IW2

IW3

IW4

IW5

IW6

IW7

IW8

IW9

IW10

IW11

IW12

G3

G1

G2

G4

G5

G6

(a) Circuit Cf assembled by (Gi)i∈θ

OW6 OW7 OW8 OW9 OW10 OW11

OW3 OW4 OW1 OW2OW2 OW3 OW8 OW7OW6 OW6 OW7 OW5

IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10 IW11 IW12

G1 G2 G3 G4 G5 G6

(b) Gates (Gi)i∈θ

IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10 IW11 IW12

OW2OW1 OW3 OW4 OW5 OW6 OW7 OW8

(c) Wire connections and EP πf

Fig. 1: A circuit Cf and the illustration of its wire connections and EP πf .

Given a set of gates (Gi)i∈[θ], the circuit owner PA holding the description of
a circuit Cf can follow the (randomized) procedure below to assign (Gi)i∈[θ] to
positions of gates in Cf and derive an EP πf from the resulting circuit assembled
by this set of gates.

1. Sort indices for non-output gate positions of Cf in a topological order, such
that if the output wire of the ith gate is connected with the input wire of
the jth gate, then i must be smaller than j. The indices of output gates are
from θ −m+ 1 to θ.

2. Pick a random standard permutation πR. For non-output gates with indices
i ∈ [θ −m], the position for the ith gate of Cf is assigned to gate GπR(i).

3. For all output gates with indices i = θ −m+ 1, . . . , θ, assign gate Gi to the
position of the ith gate.

4. Extract the EP πf for connections of outgoing wires and incoming wires
from the resulting circuit.

When we consider a circuit that only includes one type of gates, e.g., NAND
gates, the circuit can be exactly described by the corresponding EP. Now given
πf , it is easy to derive the description of the circuit. Our protocol indeed leverages
this idea and assumes that circuits only consist of NAND gates for simplicity.

2.2 Building Blocks

In Table 2, we present two zero-knowledge ideal functionalities FDH
zk and FEncEP

zk

associated with the relations RDH and REncEP for the cyclic group G = ⟨g⟩ of
prime order q as building blocks for our protocols. We will introduce how to
instantiate them in Section 3.

3 PFE Protocol for Active Security

In this section, we introduce our constant-round two-party PFE protocol. This
protocol is secure against malicious PA and semi-honest PB. Note that it is

8

Table 2: Relations and their zero-knowledge ideal functionalities.

Relation Functionality

RDH = {(G, q, {gi}i∈[N], {hi}i∈[N]) | ∃x, s.t.
∧

i∈[N](hi = gxi)} FDH
zk

REncEP = {(G, q, g, h, {gi}i∈[M], {(c(0)i , c
(1)
i)}i∈[N]) | ∃{ri}i∈[N], π, s.t.

c
(0)
i = gri ∧ c

(1)
i = gπ(i)h

ri ∧ π is an EP. }
FEncEP

zk

straightforward to obtain a constant-round actively secure PFE protocol with
linear complexity by leveraging classical MPC results, such as the approach used
in [23], to compile the protocol to be secure against malicious (circuit grabler)
PB providing private input values.

In PFE, a party PA has a private Boolean circuit input Cf (implementing
a function f) and private input xA ∈ {0, 1}nA , whereas the other party PB has
private input xB ∈ {0, 1}nB . We present the ideal functionality FactivePFE for
our protocol in the following. Here we consider the more general case that the
circuit holder PA has an input xA ∈ {0, 1}nA , and it is not difficult to modify
the protocols to the case that PA has the private input Cf only. For the sake of
simplicity, we assume that only one party will receive the evaluation result. It is
also possible to modify the protocol such that both parties can receive the final
result (see [20, Section 2.5.2]).

Functionality FactivePFE

Pre-agreement: The circuit consists of θ gates, m output wires, and n(= nA +
nB) input wires.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB .

1. If an input of the form aborti from the party Pi for i ∈ {A,B} is received,
the ideal functionality sends ⊥ to both parties and terminates.

2. If an input circuit Cf satisfying the pre-agreement from PA is received, store
Cf .

3. If xA ∈ {0, 1}nA from PA and xB ∈ {0, 1}nB from PB are received and an
input circuit Cf is stored, the ideal functionality computes Cf (xA, xB).
(a) If Pi (which is corrupted by A) is allowed to learn Cf (xA, xB), then it

sends Cf (xA, xB) to Pi.
(b) Otherwise, the ideal functionality sends nothing to the corrupted Pi. Then

if the message continue from A is received, the ideal functionality sends
Cf (x1, x2) to the honest party. Otherwise, if aborti is received from A on
behalf of the corrupted Pi, it sends ⊥ to the honest party.

3.1 Full Description of the Protocol

We now give a full description of our protocol ΠactivePFE. Our protocol consists
of two phases: initiation and evaluation. In the initiation phase, two parties
prepare required data for later evaluations of Cf . Then given the preprocessed

9

data from the initiation phase, PA and PB evaluate Cf on their inputs xA and
xB in the evaluation phase. At the end of the protocol, parties obtain their
outputs specified by FactivePFE, i.e., the evaluation result Cf (xA, xB) or nothing.
For the first execution of the protocol, PA and PB together execute the initiation
phase and evaluation phase sequentially. Then, if the two parties would like to
evaluate the same circuit Cf on different inputs, they now only need to execute
the evaluation phase using the information previously generated in the initiation
phase. This reusability property will be further extended to global reusability
(see Remark 2). Note that in our protocols, we consider the Boolean circuit Cf

only consists of NAND gates for simplicity. We use the cyclic group G = ⟨g⟩ of
prime order q as above.

Here, we briefly present the main flow of the protocol. In the initiation phase,
PA derives an EP from her private circuit Cf and establishes connections of wire
labels between incoming and outgoing wires, while PB’s tasks are to assist PA

and ensure that PA honestly follows the protocol. Then in the evaluation phase,
different from the standard paradigm of garbled circuits, we let PB obliviously
garble (all gates of) the circuit for PA. Then PA can evaluate the corresponding
garbled circuit, since she knows the topology of her circuit and the connections
of wire labels established in the initiation phase.

In this initiation phase, PB first chooses a list G of M = n+ θ −m different
elements from G and sends G to PA. This list G will be used to derive the
labels of outgoing wires except those that are output wires of the circuit. After
receiving the list G, PA generates an ElGamal encryption key pair. Then PA

derives the EP πf from the circuit Cf following the procedure in Section 2.1.
Now PA performs the EP πf on G and encrypts all elements of the resulting
list to obtain the list Φ, where the ith encrypted elements in Φ are of the form
gπ(i). The list Φ is then sent to PB. The EP here is to establish the connections
between the outgoing wires (except output wires of the circuit since they do not
connect with other wires) and the incoming wires for the further generation of
wire labels, and the resulting list is encrypted to hide the EP from PB. Then
PA picks a list T = [t1, . . . , tN] for ti ∈ Zq as the blinding factors. Using the
homomorphic property, PA can compute the tith power of the plaintext of ci
for all ci’s in Φ and obtain the resulting list Φ′, where the ith element is the
encryption of gtiπf (i)

. We note that here ti is used to blind the encrypted values

in Φ, such that PB still does not know the base gπf (i) when the element gtiπf (i)
is

given later, and thus πf and Cf are hidden. Finally, PA helps PB to decrypt all
elements of Φ′ to derive P = [p1, . . . , pN], where pi = gtiπf (i)

. In Fig. 2, we give

an illustration of the procedure that the circuit owner PA will go through in the
initiation phase for the previous example (Fig. 1).

During this procedure, to gain active security, it is important that PA should
prove in zero-knowledge that her operations are valid using the building blocks
in Section 2.2. After the initiation phase, PB holds the two lists G and P , while
PA holds the list T , together with lists G and P .

At the beginning of the evaluation phase, PB generates labels for all wires. For
the output wires of the circuit, PB randomly generates wire labels representing 0

10

g2 g3 g3 g4 g1 g2 g8 g6 g6 g7 g7 g5

g2g1 g3 g4 g5 g6 g7 g8

g2
t1 g3

t2 g3
t3 g4

t4 g1
t5 g2

t6 g8
t7 g6

t8 g6
t9g7

t10g7
t11g5

t12

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
Blinding

Extended Permutation

Fig. 2: Procedure of the circuit owner PA in the initiation phase. The values in the
dotted-line box are encrypted values that are hidden from PB.

and 1 from G. For labels of other wires, PB first picks randomly two values α0 ∈
Zq and α1 ∈ Zq. Then, all incoming-wire and outgoing-wire labels, except the
outgoing wires that are output wires of the circuit (whose have been generated),
are generated via computing the values in the lists P and G to the power of α0

and α1, respectively, for values 0 and 1. Here, each element pi in P is for an
incoming wire IWi, and the pair of its wire labels is computed via (v0i , v

1
i) ←

(pα0
i , pα1

i), i.e., (v0i , v
1
i) = (gtiα0

πf (i)
, gtiα1

πf (i)
). Similarly, for an outgoing wire OWi,

the pair of wire labels (w0
i , w

1
i)← (gα0

i , gα1
i) is computed using gi in G. PB now

can garble all θ gates of the circuit that are composed solely of NAND gates for
PA one by one using these labels via a classical approach for garbling gates as
we will introduce later. Then PB sends these garbled gates to PA. Note that PB

is unaware of the EP πf (and the topology of Cf). An illustration for wire labels
with respect to garbled gates for the previous example (Fig. 1) is given in Fig. 3.
Note that all input-wire labels of the circuit are generated and possessed by PB,

g2
t1 g3

t2 g3
t3 g4

t4 g1
t5 g2

t6 g8
t7 g6

t8 g6
t9 g7

t10 g7
t11g5

t12

g7g6 g8 g9 g10 g11

OW6 OW7 OW8 OW9 OW10 OW11

IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10 IW11 IW12

G1 G2 G3 G4 G5 G6

(
gt1α0
2

gt1α1
2

)(
gt2α0
3

gt2α1
3

) (
gt3α0
3

gt3α1
3

)(
gt4α0
4

gt4α1
4

) (
gt5α0
1

gt5α1
1

)(
gt6α0
2

gt6α1
2

) (
gt7α0
8

gt7α1
8

)(
gt8α0
6

gt8α1
6

) (
gt9α0
6

gt9α1
6

)(
gt10α0
7

gt10α1
7

) (
gt11α0
7

gt11α1
7

)(
gt12α0
5

gt12α1
5

)

(
gα0
6

gα1
6

) (
gα0
7

gα1
7

) (
gα0
8

gα1
8

) (
gα0
9

gα1
9

) (
gα0
10

gα1
10

) (
gα0
11

gα1
11

)

Fig. 3: Wire labels with respect to garbled gates for the circuit Cf .

and thus PB picks out the input-wire labels corresponding to his input xB and
sends his garbled inputs to PA. Meanwhile, PA could retrieve the garbled inputs
corresponding to her input xA from PB through OT. This approach inherits from
the standard approach of gabled circuits. Now since PA knows the topology of the

11

circuit, the list of blinding factors T , and input-wire labels, she can re-construct
the garbled circuit assembled by the received garbled gates and evaluate the
garbled circuit using both parties’ input-wire labels {xi}i∈[n].

We now introduce the approach to garbling gates and evaluating the garbled
circuit assembled by garbled gates. Two algorithms (Gb,Eval) are involved here.

The algorithm Gb is invoked by PB to generate garbled gates (in a one-
by-one manner) for PA. According to the circuit representation approach in
Section 2.1, a gate Gi consists of two input wires, i.e., incoming wires, with
indices 2i − 1 and 2i, and one output wire, i.e., an outgoing wire, with index
n+ i. For such a gate, Gb takes as input the gate index i, the two pairs of input-
wire labels (v02i−1, v

1
2i−1) and (v02i, v

1
2i), together with the pair of output-wire

labels (w0
n+i, w

1
n+i), and prepares four ciphertexts: ca,bi ← Enciva

2i−1,v
b
2i
(wa·b

n+i) for

a, b ∈ {0, 1} for a dual-key cipher Enc. Gb outputs the set of garbled gates

{GGi}i∈[θ]. Here GGi = {ca,bi }a,b∈{0,1}, where ca,bi are randomly permuted.
Eval is invoked by PA to evaluate the garbled circuit that consists of garbled

gates generated by PB. It takes as input a set of garbled gates {GGi}i∈[θ], a set
of input-wire labels {xi}i∈[n], the list of blinding factors T = {ti}i∈[N], and an
EP πf . This algorithm first derives the description of the corresponding circuit
Cf from πf . Now starting from (outgoing-wire) labels {xi}i∈[n], Eval computes
incoming-wire labels from the corresponding outgoing-wire labels and evaluates
garbled gates one by one following the topographical order of the circuit to
obtain the final output-wire labels. Without loss of generality, for an outgoing
wire OWi, we denote its label in hand by wb

i , where b ∈ {0, 1}. Note that each
outgoing wire may connect with some incoming wires that are the input wires
of some gates. Assume that an incoming wire IWj is connected with OWi, i.e.,
i = πf (j). PA can obtain the wire label of IWj by computing the tjth power

of wb
i , i.e., (w

b
i)

tj
. It is easy to verify that (wb

i)
tj

= g
αbtj
i = pαb

j = vbj , i.e., the
result is the input-wire (incoming-wire) label we want. When having two input-
wire (incoming-wire) labels (vb2i−1, v

b′

2i), where b, b′ ∈ {0, 1}, for a garbled gate
GGi, the algorithm can decrypt GGi using these two labels as keys (via a simple
reverse approach of Enc) and obtain the non-⊥ resulting output-wire (outgoing-

wire) label wb·b′
n+i. It is easy to see that the values of the wire b and b′ are hidden

from PA during this procedure. Since Eval follows the topology of the circuit,
input-wire labels of a gate are always ready when we proceed to evaluate that
gate. Finally, Eval returns the decrypted output-wire labels of the output gates.

The dual-key cipher Enc here can be constructed based on the random oracle
(denoted by H : G×G×{0, 1}∗ → {0, 1}∥G∥×τ) in a standard way: to garble a gate

with index i, we let Enciva
2i−1,v

b
2i
(wa·b

n+i) = H(va2i−1, v
b
2i, i) ⊕ wa·b

n+i,
4 and further

optimizations exist, e.g., a variant of the point-and-permute optimization [6]
(see [8]). This garbling scheme is secure under the random oracle model, and we
refer readers to see more information in Appendix A.

We provide the formal descriptions of the protocol below.

4 The operator ⊕ here is applied on the bit-representation of the right group element,
and τ specifies the length of proper padding to ensure the check of correct decryption.

12

Protocol ΠactivePFE

Pre-agreement: Both parties agree on a cyclic group G = ⟨g⟩ of prime order q,
where DDH assumption holds. They also have the pre-agreement that Cf consists
of θ gates, m output wires, and n(= nA+nB) input wires. We denote the number
of incoming wires by N ← 2θ and the number of outgoing wires except those that
are output wires of the circuit by M ← n+ θ −m.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB .

Initiation Phase

In this phase, PA has private circuit input Cf , while PB has no input.

1. PB picks gi ←$G for i ∈ [M], such that all gi’s are different, and collects them
as a list G = [g1, . . . , gM]. Then, PB sends G to PA.

2. PA picks s←$Zq and computes h ← gs. The public key and private key of
the ElGamal encryption then is denoted by pk = (G, q, g, h) and sk = s,
respectively.
PA derives an EP πf from Cf . Then PA performs πf on the elements of G and
encrypts all resulting elements using pk to derive the list Φ = [c1, c2, . . . , cN],
where ci is the encryption of gπf (i) for i ∈ [N].
PA picks ti ←$Zq for i ∈ [N], such that all ti’s are different, and stores the
list T = [t1, . . . , tN] for the evaluation phase. PB computes the tith power of
each plaintext gπf (i) of ci via the multiplicatively homomorphic property of
the ElGamal encryption to obtain c′i. Let the resulting list Φ′ = [c′1, . . . , c

′
N].

PA computes the information for decryption of all ciphertexts c′i (remember

that c′i = (c
′(0)
i , c

′(1)
i)), i.e., PA computes di ← (c

′(0)
i)s for i ∈ [N].

PA sends h, Φ, Φ′, and {di}i∈[N] to PB. Then PA uses the functionalities
FEncEP

zk to prove to PB that she has performed a valid EP on G to obtain Φ.
Meanwhile, PA uses FDH

zk to prove to PB her knowledge of s, i.e., the private
key, for (g, {c′(0)i }i∈[N]) and (h, {di}i∈[N]), together with her knowledge of ti
for the two-tuple ciphertexts ci and c′i for all i ∈ [N].

3. PB decrypts all c′i’s to obtain the plaintexts pi ← c
′(1)
i · d−1

i , and stores a list
P = [p1, . . . , pN] for the evaluation phase.

Evaluation phase

In this phase, PA has private input πf (for Cf) and xA, and PB has private
input xB . PB holds the two lists G and P derived in the initiation phase, while
PA holds the lists T , G, and P . This phase could be executed multiple times for
different input xA and xB once the two parties finish the initiation phase.

1. For output wires of the circuit, PB picks w0
i , w

1
i ←$G for i = M+1, . . . ,M+m

as the wire labels. Then PB picks α0, α1 ←$Zq. For input wires of the circuit
and output wires of non-output gates, i.e., all outgoing wires except output
wires of the circuit, PB computes labels w0

i ← gα0
i and w1

i ← gα1
i for i ∈ [M].

For all incoming wires, PB computes labels v0i ← pα0
i and v1i ← pα1

i for i ∈ [N].
PB computes {GGi}i∈[θ] ← Gb({i, (v02i−1, v

1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

Here, for a gate with index i, (v02i−1, v
1
2i−1) and (v02i, v

1
2i) are the labels of the

two input wires, and (w0
n+i, w

1
n+i) are the labels of the output wire.

13

2. PA and PB execute FOT. PB uses as input {(w0
i , w

1
i)}i∈[nA], while PA uses as

input all bits of xA ∈ {0, 1}nA . At the end, PA receives her garbled inputs

{xi = w
xA[i]
i }i∈[nA].

3. PB derives xnA+i ← w
xB [i]
nA+i for i ∈ [nB] as his garbled inputs. Then PB sends

GC = {GGi}i∈[θ] and {xnA+i}i∈[nB] to PA. If PA is allowed to know the evalu-
ation result, PB also sends the garbled output mapping {(w0

M+i, w
1
M+i)}i∈[n]

to PA.
4. PA computes the garbled output: {yi}i∈[m] ← Eval(GC, {xi}i∈[nA+nB], T, πf).

If PA is allowed to know the evaluation result y ∈ {0, 1}m, PA can derive and
output y from the garbled output mapping he has received. If PB is allowed to
know the evaluation result, PA sends {yi}i∈[m] to PB so that PB could derive
and output the final result. If the output-wire labels are not consistent with
those PB generated, PB outputs ⊥.

We present the theorem for the security of the protocol ΠactivePFE below.

Theorem 1. If the dual-key cipher is constructed based on the random oracle
as above and the DDH assumption of G holds, the protocol ΠactivePFE securely
realizes FactivePFE in the presence of malicious PA and semi-honest PB in the
(FOT,FEncEP

zk ,FDH
zk)-hybrid world.

The proof of this theorem can be found in Appendix B.
We note that there exist protocols that securely realize FOT (e.g., [12, 24]),

such that these protocols can be executed in parallel with constant-round and
have linear complexity in the number of PB’s input wires nA(≤ n ≪ θ). Mean-
while, there exist protocols (e.g., [14] that can be compiled by Fiat-Shamir heuris-
tic to be non-interactive) that securely realizes FDH

zk , such that the complexity of
the total execution of the protocols is linear in N(= 2θ), i.e., linear in the num-
ber of gates θ. In Section 3.2, we will give a realization of FEncEP

zk that can also be
compiled to be non-interactive and has linear complexity. Therefore, the protocol
ΠactivePFE can be instantiated as a constant-round PFE protocol with linear com-
plexity. By leveraging classical MPC results, such as the approach used in [23],
our protocol can be compiled to be secure against malicious PB and still pre-
serves constant-round and linear complexity. Hence, we obtain a constant-round
actively secure PFE protocol in the two-party setting with linear complexity.

Remark 1. The approach in [23] consider the case that PA only provides a circuit
Cf , while in some scenarios, PA may also provide a private input xA. For this
case, we could simply use standard techniques, such as XOR-tree [28], to prevent
malicious PB launching selective-failure attacks.

In the following theorem, we show that executing the evaluation phase mul-
tiple times when the protocol involves the same circuit Cf (and EP πf) does not
sacrifice the security of the protocol ΠactivePFE. The proof of this theorem is put
in Appendix C.

Theorem 2. The evaluation phase of ΠactivePFE can be securely executed multi-
ple times for a fixed circuit Cf . In other words, the protocol that executes one
initiation phase and multiple evaluation phases is secure against malicious PA

and semi-honest PB.

14

We note that every execution of the evaluation phase in the view of PB is to
generate a set of new garbled gates, and the efforts to achieve reusability are
mainly devoted to preventing PA from learning additional information. There-
fore, when we use classical MPC results, such as the approach used in [23], for
the protocol, it is obvious that this reusability property still holds.

Remark 2. It is important that all messages from PB in the initiation phase,
including those from PB in the protocols that securely realize FDH

zk and FEncEP
zk

(in Section 3.2) are all random. Meanwhile, after the initiation phase, PB does
not possess any private information. Therefore, we can make the initiation phase
non-interactive via borrowing the idea of Fiat-Shamir heuristic. Now PA can use
the random oracle to generate messages of PB (using all previous messages),
simulate the interaction, and publish her messages in this simulated interaction
at one time. Via this approach, the protocol is globally reusable for the same
circuit Cf . This means that all parties playing the role of PB can retrieve PA’s
messages and verify the correctness of these published messages. Then it is suffi-
cient for them to directly start the evaluation phase with PA for the fixed private
circuit Cf multiple times using P and G derived in this simulated interaction.
No interaction for initiation phase is needed between PA and a potential party
playing the role of PB. This is a new feature, since the reusability of previous
PFE protocols with linear complexity [8] is locally reusable, such that PA needs
to interactively perform a setup for a fixed circuit with a specified PB, and the
reusability only works for the two parties that perform such a setup together.

3.2 Realization of Functionality FEncEP
zk

In this section, we introduce an approach securely realizing the functionality
FEncEP

zk . We would like to note that although EP is a generalization of permu-
tation (shuffle), it seems that its corresponding zero-knowledge protocol cannot
be constructed by simply modifying or invoking a shuffle protocol, e.g., [5, 10].
That may be the main reason why [34] failed to provide such a specific protocol
for EP by extending shuffle protocols (see Appendix B of [34] for their thoughts
on failed attempts) and they only provided a protocol in a generic approach. In
what follows, we provide an efficient and specific protocol for FEncEP

zk .
We firstly introduce the basic idea of our protocol. The job of the prover

in FEncEP
zk is to convince the verifier that the plaintexts of a list of ciphertexts

Φ = [c1, . . . , cN] is derived from an EP that performs on a list of elements
G = [g1, . . . , gM]. In other words, the plaintext of each ciphertext in Φ is one of
the elements in G. Notice that this is equivalent to saying that the plaintext of
a ciphertext ci is g⃗

e⃗i =
∏M

j=1 g
eij
j , where the vector e⃗i = (ei1, . . . , eiM) is of the

form that exact one entry is 1 and all other entries are 0, i.e.,

eij =

{
1 if ci encrypts gj ,

0 otherwise.

The vector e⃗i satisfies such a condition if and only if 1⃗Te⃗i = 1 and e⃗ie⃗i = e⃗i. The
condition 1⃗Te⃗i = 1 implies that the sum of all entries of e⃗i is equal to 1. The

15

condition e⃗ie⃗i = e⃗i implies that e⃗i(e⃗i − 1⃗) = 0⃗, i.e., each entry of the vector is
either 0 or 1. These two conditions conclude that e⃗i is of the form that exact one
entry is 1 and all other entries are 0. In addition, the corresponding ciphertext
ci is of the form (gri , g⃗e⃗ihri), which is reminiscent of ElGamal or Pedersen [37]
commitment schemes and can be regarded as a commitment to the vector e⃗i.
Therefore, the prover’s goal is to prove that each “committed” vector e⃗i satisfies
1⃗Te⃗i = 1 and e⃗ie⃗i = e⃗i, in a zero-knowledge manner. We note that it is possible
for the prover to simultaneously prove the conditions for all e⃗i’s.

For the proof of the condition 1⃗Te⃗i = 1, let the verifier pick a challenge
ω←$Zq. Then using the homomorphic property, both parties compute C =

(
∏N

i=1(c
(0)
i)ω

i

,
∏N

i=1(c
(1)
i)ω

i

), which can be regarded as a commitment to the

vector e⃗ =
∑N

i=1 ω
ie⃗i. Since ω is random, if

∑N
i=1 ω

i(⃗1Te⃗i) =
∑N

i=1 ω
i holds,

then 1⃗Te⃗i = 1 holds for all i ∈ [M] with an overwhelming probability. Let

Ω ←
∑N

i=1 ω
i. Since

∑N
i=1 ω

i(⃗1Te⃗i) = 1⃗Te⃗ and e⃗ is committed in C, it is enough

for the prover to prove that 1⃗Te⃗ = Ω holds if the prover is computationally
bounded.

We could follow a similar approach for the proof of the condition e⃗ie⃗i = e⃗i.
Let the verifier pick a random challenge x ∈ Zq. Then, using the homomor-

phic property, both parties compute cd⃗ = (
∏N

i=1(c
(0)
i)x

i

,
∏N

i=1(c
(1)
i)x

i

), which

can be regarded as a commitment to d⃗ =
∑N

i=1 x
ie⃗i. Since x is randomly

chosen, if
∑N

i=1 x
ie⃗ie⃗i − d⃗ = 0⃗ holds, then e⃗ie⃗i = e⃗i holds for all i ∈ [N]

with an overwhelming probability. Moreover, let the verifier pick another ran-
dom challenge y ∈ Zq and define a bilinear map ∗ : ZM

q × ZM
q → Zq by

(a1, . . . , aM) ∗ (b1, . . . , bM) =
∑M

j=1 ajbjy
j . Similarly, if e⃗i ∗ e⃗i − 1⃗ ∗ e⃗i = 0, then

e⃗ie⃗i = e⃗i holds with an overwhelming probability. Hence, since the vectors e⃗i’s
and d⃗ have been committed in ci’s and cd⃗, it is enough for the prover to prove

that
∑N

i=1 x
ie⃗i ∗ e⃗i − 1⃗ ∗ d⃗ = 0 holds if the prover is computationally bounded.

It is important to note that all gi’s are generated by PB, and thus a compu-
tationally bounded PA cannot find a non-trivial discrete logarithm relation for
{gi}i∈[M] except a negligible probability. This guarantees the soundness of the

protocols. Now we present the protocol ΠEncEP
zk between a prover P and a verifier

V below. Two sub-protocols ΠSum
zk and ΠZero

zk then follow respectively. In these
protocols, V always verifies whether the received messages are of correct form,
and rejects once they are not. These protocols are all public-coin honest-verifier
zero-knowledge, and we can compile them to be non-interactive and secure via
Fiat-Shamir heuristic to obtain the protocols we want.

Protocol ΠEncEP
zk

Public Inputs: A cyclic group G = ⟨g⟩ of prime order q, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). A list of
elements G = [g1, . . . , gM]. A list of ElGamal ciphertexts Φ = [c1, . . . , cN], where

ci = (c
(0)
i , c

(1)
i). Elements in G and Φ all belong to the group G.

16

Witness: P has an EP π and a list R = [r1, . . . , rN] that are random coins of
ciphertexts in Φ, where ri ∈ Zq.

1. For i ∈ [N], P derives a vector e⃗i = (ei,1, . . . , ei,M) ∈ ZM
q from π, such that

the encrypted value of ci can be represented by g⃗e⃗i . For the EP π, this vector
is of the form where exact one entry is 1 and all other entries are all 0.

2. V picks an element ω←$Zq and sends it to P. Both parties compute C ←
(C(0) =

∏N
i=1(c

(0)
i)ω

i

, C(1) =
∏N

i=1(c
(1)
i)ω

i

). P computes e⃗ ←
∑N

i=1 ω
ie⃗i and

re⃗ ←
∑N

i=1 ω
iri. Both parties compute Ω ←

∑N
i=1 ω

i. P proves to V the

following relation RSum for y⃗ = 1⃗ via the protocol ΠSum
zk :

{(G, q, g, h,G,C,Ω, y⃗) | ∃(e⃗, re⃗) : C(0) = gre⃗ ∧ C(1) = g⃗e⃗hre⃗ ∧ y⃗Te⃗ = Ω} .

3. V picks two elements x, y←$Zq and sends them to P. Both parties compute

cd⃗i ← (c
(0)

d⃗i
= (c

(0)
i)x

i

, c
(1)

d⃗i
= (c

(1)
i)x

i

) for i ∈ [N] and also cd⃗ ← (c
(0)

d⃗
=∏N

i=1(c
(0)
i)x

i

, c
(1)

d⃗
=

∏N
i=1(c

(1)
i)x

i

) and c−1⃗ ← (
∏M

i=1 g
−1
i , 1). P computes d⃗i ←

xie⃗i and rd⃗i ← xiri for i ∈ [N], d⃗ ←
∑N

i=1 d⃗i, and rd⃗ =
∑N

i=1 rd⃗i . Define a

bilinear map ∗ : ZM
q ×ZM

q → Zq by (a1, . . . , aM)∗(b1, . . . , bM) =
∑M

j=1 ajbjy
j .

P proves to V the following relation RZero via the protocol ΠZero
zk :

{(G, q, g, h,G, Φ, {cd⃗i}i∈[N], cd⃗, c−1⃗) | ∃({e⃗i, ri, d⃗i, rdi}i∈[N], d⃗, rd⃗) :

(∀i ∈ [N], c
(0)
i = gri ∧ c

(1)
i = g⃗e⃗ihri ∧ c

(0)

d⃗i
= g

r
d⃗i ∧ c

(1)

d⃗i
= g⃗d⃗ih

r
d⃗i)

∧c(0)
d⃗

= grd⃗ ∧ c
(1)

d⃗
= g⃗d⃗hr

d⃗ ∧
N∑
i=1

e⃗i ∗ d⃗i − 1⃗ ∗ d⃗ = 0} .

Theorem 3. The protocol ΠEncEP
zk is an honest-verifier zero-knowledge argument

of knowledge for REncEP.

The proof of this theorem can be found in Appendix D.
The protocol ΠSum

zk between a prover P and a verifier V below uses the idea
mentioned in [11] for recursing the protocol and halving the statement in each
recursion. Thus, ΠSum

zk has logarithmic communication cost. Throughout this
protocol, we assume that the parameter M is a power of 2. If needed, one can
easily pad the inputs to ensure that this holds as in [11].

Protocol ΠSum
zk

Public Inputs: A cyclic group G = ⟨g⟩ of prime order q, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). An
ElGamal ciphertexts C = (C(0), C(1)). An element Ω ∈ Zq. Two vectors g⃗ =
(g1, . . . , gM) and y⃗ = (y1, . . . , yM) of length M . Denote the length of vectors g⃗
and y⃗ by ℓ = M . Let ce⃗ ← C(1). Both parties initiate an element c′e⃗ ← gΩ .
Witness: The prover P has witness e⃗, re⃗.

Statement: There exist e⃗ and re⃗, such that C(0) = gre⃗ ∧ ce⃗ = g⃗e⃗hre⃗ ∧ c′e⃗ = gy⃗
Te⃗.

– V picks u←$G and sends u to P. P initiates ρe⃗ = 0, and ρ′e⃗ = 0. Then two
parties engage in the procedure below to prove the statement:

17

There exist e⃗, re⃗, ρe⃗, and ρ′e⃗, such that C(0) = gre⃗ ∧ ce⃗ = g⃗e⃗uρe⃗hre⃗ ∧
c′e⃗ = gy⃗

Te⃗uρ′e⃗ .
– If ℓ = 1, we denote the only element in e⃗, g⃗, and y⃗ by ē, ḡ, and ȳ, respectively.

Let γ ← gȳ. Now ce⃗, c
′
e⃗, and C(0) are of the form ce⃗ = ḡēuρe⃗hre⃗ , c′e⃗ = γēuρ′e⃗ ,

and C(0) = gre⃗ , respectively. P and V follow the procedure as follows.
1. P picks x1, x2, x3, x4 ←$Zq, and sends a1 ← ḡx1ux2hx3 , a2 ← γx1ux4 ,

a3 ← gx3 to V.
2. V sends α←$Zq to P.
3. P sends z1 ← x1 +αē, z2 ← x2 +αρe⃗, z3 ← x3 +αre⃗, and z4 ← x4 +αρ′e⃗

to V.
4. V verifies whether equations ḡz1uz2hz3 = a1c

α
e⃗ , γ

z1uz4 = a2(c
′
e⃗)

α, and
gz3 = a3(C

(0))α hold. If they all hold, V outputs accept. Otherwise, V
outputs reject.

– If ℓ ̸= 1, P and V follow the following procedure.
1. We write e⃗ = e⃗L ◦ e⃗R, g⃗ = g⃗L ◦ g⃗R, and y⃗ = y⃗L ◦ y⃗R. P computes

vL ← g⃗e⃗LR uρL , vR ← g⃗e⃗RL uρR , v′L ← gy⃗
T
Re⃗Luρ′L , and v′R ← gy⃗

T
L e⃗Ruρ′R ,

where ρL, ρR, ρ
′
L, ρ

′
R ←$Zq. Then P sends vL, vR, v

′
L, and v′R to V.

2. V sends α←$Zq to P.
3. P computes e⃗′ = αe⃗L + α−1e⃗R of length ℓ′ = ℓ/2, and also computes

ρe⃗′ ← ρe⃗ + α2ρL + α−2ρR and ρ′e⃗′ ← ρ′e⃗ + α2ρ′L + α−2ρ′R. Both parties

compute ce⃗′ ← ce⃗v
α2

L vα
−2

R and c′e⃗′ ← c′e⃗(v
′
L)

α2

(v′R)
α−2

, and two vectors

g⃗′ ← g⃗α
−1

L g⃗αR and y⃗′ ← α−1y⃗L + αy⃗R of length ℓ′ = ℓ/2. It is easy to

verify that ce⃗′ = g⃗′
e⃗′
uρe⃗′hre⃗ and c′e⃗′ = gy⃗

′Te⃗′uρ′
e⃗′ .

4. Both parties recurse on ΠSum
zk for the same C(0), (G, q, g, h), u but using

ce⃗′ , c
′
e⃗′ , g⃗

′, y⃗′ in place of ce⃗, c
′
e⃗, g⃗, y⃗. P in the recursion uses the same re⃗,

but uses ρe⃗′ , ρ
′
e⃗′ , e⃗

′ in place of ρe⃗, ρ
′
e⃗, e⃗. We use ℓ′ = ℓ/2 in place of ℓ to

denote the length of vector g⃗′, y⃗′, and e⃗′.

Theorem 4. The protocol ΠSum
zk is an honest-verifier zero-knowledge argument

of knowledge for the relation RSum.

The proof of this theorem can be found in Appendix E.
The protocol ΠZero

zk between a prover P and a verifier V below borrows the
idea of the zero argument in [5]. We tailor the protocol to support the ElGamal
encryption scheme and introduce how to further reduce the communication cost
in Remark 3.

Protocol ΠZero
zk

Public Inputs: A cyclic group G = ⟨g⟩ of prime order q, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). A list

G = [g1, . . . , gM]. Two lists of ElGamal ciphertexts {c(0)u⃗i
, c

(1)
u⃗i
}i∈[ℓ], {c(0)v⃗i

, c
(1)
v⃗i
}i∈[ℓ].

The description of the bilinear map ∗ for a variable y.
Witness: The prover P has witness {u⃗i, ru⃗i}i∈[ℓ], {v⃗i, rv⃗i}i∈[ℓ].

Statement: There exist {u⃗i, ru⃗i}i∈[ℓ] and {v⃗i, rv⃗i}i∈[ℓ], such that c
(0)
u⃗i

= gru⃗i ,

c
(1)
u⃗i

= g⃗u⃗ihru⃗i , c
(0)
v⃗i

= grv⃗i , c
(1)
v⃗i

= g⃗v⃗ihrv⃗i for all i ∈ [ℓ], and
∑ℓ

i=1 u⃗i ∗ v⃗i = 0.

18

1. P picks u⃗0, v⃗ℓ+1 ←$ZM
q and ru⃗0 , rv⃗ℓ+1

←$Zq. Then P computes cu⃗0 ← (c
(0)
u⃗0

=

gru⃗0 , c
(1)
u⃗0

= g⃗u⃗0hru⃗0) and c ⃗vℓ+1
← (c

(0)
⃗vℓ+1

= g
rv⃗ℓ+1 , c

(1)
⃗vℓ+1

= g⃗v⃗ℓ+1h
rv⃗ℓ+1). P

computes for ϕ = 0, . . . , 2ℓ

dϕ ←
∑

0≤i≤ℓ ,1≤j≤ℓ+1
j=ℓ+1−ϕ+i

u⃗i ∗ v⃗j .

P picks rdϕ ←$Zq for ϕ ∈ {0, . . . , 2ℓ}\{ℓ+1} and computes cdϕ ← gdϕh
rdϕ for

ϕ ∈ {0, . . . , 2ℓ}\{ℓ+1}. For ϕ = ℓ+1, both parties set rdℓ+1 ← 0 and cdℓ+1 ←
1, After the computation, P sends cu⃗0 , cv⃗ℓ+1

, and {cdϕ}ϕ∈{0,...,2ℓ}\{ℓ+1} to V.
2. V sends x←$Zq to P.
3. P computes u⃗ ←

∑ℓ
i=0 x

iu⃗i, ru⃗ ←
∑ℓ

i=0 x
iru⃗i , v⃗ ←

∑ℓ+1
j=1 x

ℓ−j+1v⃗j , rv⃗ ←∑ℓ+1
j=1 x

ℓ+1−jrv⃗j , and t←
∑2ℓ

ϕ=0 x
ϕrdϕ , and sends u⃗, ru⃗, v⃗, rv⃗, t to V.

4. V outputs accept if all equations
∏ℓ

i=0(c
(0)
u⃗i

)x
i

= gru⃗ ,
∏ℓ

i=0(c
(1)
u⃗i

)x
i

= g⃗u⃗hru⃗ ,∏ℓ+1
j=1(c

(0)
v⃗j

)x
ℓ+1−j

= grv⃗ ,
∏ℓ+1

j=1(c
(1)
v⃗j

)x
ℓ+1−j

= g⃗v⃗hrv⃗ , and
∏2ℓ

ϕ=0 c
xϕ

dϕ
= gu⃗∗v⃗ht

hold. Otherwise, V outputs reject.

Theorem 5. The protocol ΠZero
zk is an honest-verifier zero-knowledge argument

of knowledge for the relation RZero.

The proof of this theorem can be found in Appendix F.

Remark 3. We can further reduce the communication cost of ΠZero
zk . Notice that

in Step 1, P needs to commit to all elements in {dϕ}ϕ=0,...,2ℓ. We could in-
clude a list of 2ℓ + 1 random elements of G, e.g., H = {hϕ}ϕ=0,...,2ℓ, in the
common reference string. P can thus commit to {dϕ}ϕ=0,...,2ℓ by computing

cd⃗ ← (grd⃗ ,
∑2ℓ

ϕ=0 h
dϕ

ϕ hr
d⃗) for rd⃗←$Zq. P now only needs to send cd⃗ to verifier

instead of {cdϕ
}ϕ∈{2,...,2ℓ}\{ℓ+1}, and does not need to send t to V in Step 3. Al-

ternatively, P proves to V the following statement for y⃗ = [x0, . . . , xℓ, 0, xℓ+2, x2ℓ]
and D = u⃗ ∗ v⃗ via the protocol ΠSum

zk in Step 4:

{(G, q, g, h,H, cd⃗, D, y⃗) | ∃(d⃗, rd⃗) : c
(0)

d⃗
= grd⃗ ∧ c

(1)

d⃗
= h⃗d⃗hr

d⃗ ∧ y⃗Td⃗ = D} .

Following this approach, we reduce the linear communication cost of send-
ing dϕ’s to the logarithmic communication cost of using ΠSum

zk . Similarly, P

can avoid directly sending v⃗ and rv⃗, i.e., the opening for cv⃗ = (c
(0)
v⃗ , c

(1)
v⃗) =

(
∏ℓ+1

j=1(c
(0)
v⃗j

)x
ℓ+1−j

,
∏ℓ+1

j=1(c
(1)
v⃗j

)x
ℓ+1−j

). Now P only sends u⃗ and ru⃗ in Step 3, and

V only verifies the two equations related to u⃗ and ru⃗ in Step 4. Then, P sends
D = u⃗ ∗ v⃗ to V and proves the following statement for y⃗ = [y1u1, . . . , y

MuM] via
the protocol ΠSum

zk in Step 4:

{(G, q, g, h,G, cv⃗, D, y⃗) | ∃(v⃗, rv⃗) : c(0)v⃗ = grv⃗ ∧ c
(1)
v⃗ = g⃗v⃗hrv⃗ ∧ y⃗Tv⃗ = D} .

19

4 PFE Protocol for PVC Security

In this section, we introduce the first constant-round PVC-secure PFE protocol
with linear complexity in the two-party setting based on the results in Section 3.
The corresponding ideal functionality FcovertPFE is given in the following.

Functionality FcovertPFE

Pre-agreement: The circuit Cf consists of θ gates, m output wires, and n(=
nA + nB) input wires.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB .

1. If an input of the form aborti from the party Pi for some i = {A,B} is re-
ceived, the ideal functionality sends ⊥ to both parties and the ideal execution
terminates.

2. If a circuit Cf satisfying the pre-agreement from PA is received, store Cf .
3. If an input of the form blatantCheat from PB is received, the ideal functionality

sends corrupted to both parties and terminates.
4. If an input of the form cheat from PB is received and PA’s inputs Cf and xA

were received previously:
– With probability ϵ, the ideal functionality sends corrupted to both parties

and terminates.
– With probability 1− ϵ, the ideal functionality sends (undetected, xA, Cf)

to PB. If PA is allowed to receive the output, the ideal functionality waits
for y ∈ {0, 1}m from the adversary A, sends y to PA, and terminates.

5. If input xA ∈ {0, 1}nA from PA and xB ∈ {0, 1}nB from PB are received and
an input circuit Cf is stored, the ideal functionality computes Cf (xA, xB).
(a) If PA (when she is corrupted by A) is allowed to learn Cf (xA, xB), then

it sends Cf (xA, xB) to PA.
(b) Otherwise, the ideal functionality sends nothing to PA. Then if continue

from A is received, the ideal functionality sends Cf (x1, x2) to the honest
PB. Otherwise, if abortA is received from A on behalf of the corrupted
PA, it sends ⊥ to the honest PB.

We give the PVC-security definition for our PFE protocol ΠcovertPFE as follows.

Definition 4. A two-party PFE protocol ΠcovertPFE along with algorithms Blame
and Judge is publicly verifiable covert secure with ϵ-deterrent if the following
conditions hold.

PVC security The protocol ΠcovertPFE, which might output cert if the honest
party detects covert cheating, securely realizes FcovertPFE with ϵ-deterrent.

Public verifiability If the honest party outputs cert during the protocol execu-
tion, then the output of the algorithm Judge for cert is 1, except a negligible
probability.

Defamation freeness If one party is honest, the probability that the other mali-
cious party generates a certificate cert for which Judge outputs 1 is negligible.

20

4.1 Full Description of the Protocol

In the two-party case, active security implies covert security with public verifia-
bility, since we could regard attempts to cheat as abortions. Therefore, techniques
for dealing with malicious PA are workable for the PVC-secure setting.

Here we briefly introduce the main idea of our PVC-secure protocolΠcovertPFE.
Recall that in Remark 2, we describe how to make the initiation phase non-
interactive. This approach can also be adopted here in ΠcovertPFE. Thus, we now
do not need to consider malicious PB in the initiation phase. We can reuse the
initiation phase of ΠactivePFE for ΠcovertPFE, with the exception that we include G
in the common reference string to simplify the proof of security. Note that this
small change does not hinder the protocol from achieving global reusability.

In the evaluation phase of ΠactivePFE, PA receives the garbled circuit and
garbled inputs, evaluates the garbled circuit, and derives the resulting outputs
or sends garbled outputs back to PB. It is easy to see that PA has no chance
to cheat in the protocol. Even if PA sends incorrect garbled outputs to PB, the
incorrect garbled outputs will still be rejected by PB due to the authenticity of
the garbling. Hence, we only need to focus on the security against covert PB.

To achieve covert security, we follow the same paradigm of all existing work,
i.e., parties generate λ instances of a passively secure protocol, check the correct-
ness of λ−1 randomly chosen instances, and take the result of the unopened one.
In addition, we use a derandomized approach to supporting efficient correctness
check in our protocol. More concretely, PB needs to pick for each instance a
seed to generate random coins during the execution of that instance (including
the circuit garbling and OT protocol). PA then uses OT protocol to retrieve all
but one of the seeds, such that PB is unaware of which instances are checked.
Now given the seeds, PA can easily check the correctness of the corresponding
instances. To prevent PB leaking inputs, PB commits to his pairs of input-wire
labels in random order with randomness derived from the seed and send these
two commitments to PA for each instance. Hence, PA can effectively check the
correctness of these commitments using the seed for opened instance, while PB’s
inputs are preserved. After the check, PA points out the unopened instance, and
now one of the two commitments for her input wires needs to be opened by PB

as his garbled input to enable PA to evaluate the unopened garbled circuit.
To add public verifiability to the approach above, we let PB sign all transcripts

that have been produced before the time when PA reveals the index of the
unopened instance. In addition, for each instance, let PA commit to a random
seed at the beginning of the protocol and uses this seed to derived random
coins during her execution of the instance. This commitment will be included
in PB’s transcript and signed by PB, such that it can prevent PA from defaming
honest PB. If PB deviates from an instance checked by PA, PA can generate a
certificate that includes related transcripts and PB’s signature on them for that
instance, such that it allows a third party to verify this proof of misbehavior.
Since PB cannot realize in time that the instance in which he deviates from the
protocol has been checked by PA, he cannot abort before PA has collected enough
materials to generate the certificate.

21

Our protocol ΠcovertPFE is given in the following. Since parties need to commit
to transcripts of the OT executions in the protocol, the description directly uses
the protocol ΠOT that securely realizes a parallel version of FOT.

Protocol ΠcovertPFE

Pre-agreement: Both parties agree on a cyclic group G = ⟨g⟩ of prime order
q, where DDH assumption holds. They also have the pre-agreement about Cf : θ
gates, m output wires, n(= nA + nB) input wires, N = 2θ incoming wires, and
M = n + θ −m outgoing wires except output wires of the circuit. The common
reference string includes a list G = [g1, . . . , gM] ∈ GM , where all gi’s are different.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB and keys (vk, sigk) for a
signature scheme. PA knows the verification key vk.

Initiation Phase

1. PA picks s←$Zq and computes h ← gs. Denote the public and private keys
of the ElGamal encryption by pk = (G, q, g, h) and sk = s, respectively.
PA derives an EP πf from Cf . Then PA permutes elements of G according
to πf and encrypts all resulting elements using pk to derive the list Φ =
[c1, c2, . . . , cN], where ci is the encryption of gπf (i) for i ∈ [N].
PA picks ti ←$Zq for i ∈ [N], such that all ti’s are different, and stores the
list T = [t1, . . . , tN] for the evaluation phase. PB computes the tith power of
each plaintext gπf (i) of ci via the multiplicatively homomorphic property of
the ElGamal encryption (using pk) to obtain c′i. Let the resulting list Φ′ =
[c′1, . . . , c

′
N]. PA computes the information for decryption of all ciphertexts c′i

(remember that c′i = (c
′(0)
i , c

′(1)
i)), i.e., PA computes di ← (c

′(0)
i)s for i ∈ [N].

PA sends h, Φ, Φ′, and {di}i∈[N] to PB. Then PA uses the functionality FEncEP
zk

to prove to PB that she has performed a valid EP on G to obtain the list of
ciphertexts Φ. Meanwhile, PA uses FDH

zk to prove to PB her knowledge of s,
i.e., sk, for (g, {c′(0)i }i∈[N]) and (h, {di}i∈[N]), together with her knowledge of
ti for the two-tuple ciphertexts ci and c′i for all i ∈ [N].

2. PB decrypts all c′i’s to obtain the plaintexts via pi ← c
′(1)
i · d−1

i . PB stores a
list P = [p1, . . . , pN] for the evaluation phase.

Evaluation phase

0. PA chooses uniform κ-bit strings {seedAj }j∈[λ], computes cseed
A
j ← Com(seedAj)

and sends {cseed
A
j }j∈[λ] to PB.

PB chooses uniform κ-bit strings {seedBj ,witnessj}j∈[λ], while PA picks ȷ̂←$ [λ]
and sets bȷ̂ = 1 and bj = 0 for j ̸= ȷ̂. PB and PA run λ executions of ΠOT.
In the jth execution, PB uses as input (seedBj ,witnessj) and PA uses as input
bj with randomness derived from seedAj . At the end, PA has {seedBj }j ̸=ȷ̂ and
witnessȷ̂. Let us denote the transcript of the jth execution by transj .

1. For j ∈ [λ], using the randomness derived from seedBj , PB picks w0
i,j , w

1
i,j ←$G

for i = M + 1, . . . ,M + m and α0,j , α1,j ←$Zq. PB also computes wire la-
bels and produces garbled gates as in ΠactivePFE. At the end, PB obtains
the resulting collection of garbled gates GCj = {GGi,j}i∈[θ], PA’s input-wire

22

labels {(w0
i,j , w

1
i,j)}i∈[nA], PB’s input-wire labels {(w0

nA+i,j , w
1
nA+i,j)}i∈[nB],

and output-wire labels of the garbled circuit {(w0
M+i,j , w

1
M+i,j)}i=1,...,m.

2. PA and PB are involved in λ executions of ΠOT. In the jth execution, PB

uses as input (w0
i,j , w

1
i,j)i∈[nA], while PA uses as input xA if j = ȷ̂ and 0nA

otherwise, and random coins of PA and PB are derived from seedAj and seedBj ,

respectively. At the end, PA obtains her garbled input {xi = w
xA[i]
i,ȷ̂ }i∈[nA].

Let hOT
j denote the hash value of the transcript for the jth execution of ΠOT.

3. (a) For all j ∈ [λ], PB computes cxB
i,j,b ← Com(wb

nA+i,j) for all i ∈ [nB]

and b ∈ {0, 1}. Let hOj be the hash value of {(w0
M+i,j , w

1
M+i,j)}i=1,...,m.

PB then computes cj ← Com(GCj , {cxB
i,j,b}i∈[nB],b∈{0,1}, h

O
j), where two

elements in each pair (cxB
i,j,0, c

xB
i,j,1) are permuted in random order. The

random coins of commitments and permutations are derived from seedBj .

(b) PB generates σj ← Sigsigk(G,P, j, cseed
A
j , transj , h

OT
j , cj) for j ∈ [λ].

Then PB sends {cj , σj}j∈[λ] to PA.
4. PA verifies that whether all σj ’s are valid. If not, PA halts and outputs ⊥.

Then PA calls Blame({hOT
j , cj}j∈[λ]\{ȷ̂}). If the output is cert, PB sends cert to

PB, outputs corrupted, and halts. Otherwise, PA sends (ȷ̂, {seedBj }j ̸=ȷ̂,witnessȷ̂)
to PB. PB verifies that these values are all consistent with those he has sent
in Step 0 and aborts if not.

5. PB assigns xnA+i ← w
xB [i]
nA+i,ȷ̂ for i ∈ [nB]. Then PB sends GCȷ̂, {xnA+i}i∈[nB],

{cxB
i,j,b}i∈[nB],b∈{0,1} (in the same order as Step 3a), and hOȷ̂ , together with

decomcȷ̂ and {decomc
xB
i,j,xB [i]}i∈[nB], to PA. If PA is allowed to know the evalu-

ation result, PB also sends the garbled output mapping {(w0
M+i, w

1
M+i)}i∈[m]

to PA.
6. PA outputs ⊥ and aborts if Com(GCj , {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1}, h
O
ȷ̂ ; decom

cȷ̂) ̸= cȷ̂,

for some i ∈ [nB], Com(xnA+i; decom
c
xB
i,j,xB [i]) /∈ {cxB

i,j,0, c
xB
i,j,1}, or hOȷ̂ is not

consistent (if it is verifiable).
PA computes {yi}i∈[m] ← Eval(GCȷ̂, {xi}i∈[n], T, πf). If PA is allowed to know
the evaluation result, PA can thereby derive the output. If yi /∈ {w0

i , w
1
i }

for some i ∈ {M + 1, . . . ,M + m}, PA outputs ⊥. If PB is allowed to know
the evaluation result, PA sends {yi}i∈[m] to PB so that PB could derive the
result. If the output-wire labels are not consistent with those PB generated,
PB outputs ⊥.

In the following, we provide the algorithms Blame and Judge used in ΠcovertPFE.

Algorithm Blame

Specified parameters: G, P , {transj , σj , seed
A
j , decom

seedAj , seedBj }j∈[λ]\{ȷ̂}.
Inputs: {hOT

j , cj}j∈[λ]\{ȷ̂}.

1. For all j ̸= ȷ̂, simulate PB’s computation in steps 1, 2, and 3a, and particularly
compute ĥOT

j and ĉj . Let J be the set of indices, such that for j ∈ J , (ĥOT
j , ĉj) ̸=

(hOT
j , cj).

2. (a) If |J | = 0, the algorithm returns accept.
(b) If |J | ≥ 1, the algorithm picks j ←$ J and outputs a certificate cert =

(P, j, transj , h
OT
j , cj , σj , seed

A
j , decom

seedAj).

23

Algorithm Judge

Inputs: A verification key vk for the signature scheme, a certificate cert =

(P, j, transj , h
OT
j , cj , σj , seed

A
j , decom

seedAj), common reference string G.

1. Compute cseed
A
j ← Com(seedAj ; decom

seedAj).

2. If Vf((G,P, j, cseed
A
j , transj , h

OT
j , cj), σj) = 0, output 0.

3. Simulate the execution of ΠOT that involves transj (Step 0 of the evaluation
phase). In this simulation, the input of PA is 0, random coins are derived from
seedAj , and the incoming messages of PB are those included in transj . Check
whether messages sent by PA are consistent with that of transj and output 0
if not. Otherwise, denote PA’s output of this simulation of ΠOT by seedBj .

4. Use seedAj and seedBj to simulate the execution of Steps 1, 2, and 3a of the

evaluation phase, and particularly compute ĥOT
j and ĉj .

5. (a) If (ĥOT
j , ĉj) = (hOT

j , cj), output 0.
(b) If ĉj ̸= cj , output 1.
(c) If the first message for which ĥOT

j ̸= hOT
j corresponds to PA, output 0.

Otherwise, output 1.

We present the theorem for the security of the protocol ΠcovertPFE as follows.

Theorem 6. If the commitment algorithm Com is computationally binding and
hiding, the hash function is modeled as a random oracle, the garbling scheme is
secure under the random oracle model, the DDH assumption of G holds, perfectly
correct protocol ΠOT UC-realizes FOT, and the signature scheme (KGen,Sig,Vf)
is EUF-CMA, then the protocol ΠCovertPFE along with Blame and Judge is publicly
verifiable covert secure with deterrence factor ϵ = 1 − 1

λ in the (FEncEP
zk ,FDH

zk)-
hybrid world.

The proof of this theorem can be found in Appendix G. Following the same
discussion as ΠactivePFE, it is easy to see that ΠcovertPFE could be instantiated as
a constant-round PVC-secure PFE protocol with linear complexity. Similarly,
it is straightforward that we have the theorem below, and Remark 2 is also
applicable to ΠcovertPFE to achieve global reusability.

Theorem 7. Once the initiation phase for a private circuit Cf is executed, every
subsequent execution of the evaluation phase of ΠcovertPFE does not degenerate the
security of ΠcovertPFE.

5 Analysis

5.1 Performance of ΠEncEP
zk

In Table 3, we provide from two directions the communication cost of each part
of ΠEncEP

zk for one execution of ΠEncEP
zk with parameters M and N in the honest-

verifier zero-knowledge setting. Note that ΠZero+
zk is the optimized protocol of

24

ΠZero
zk according to the idea introduced in Remark 3. The row of remaining is

for the communication cost of ΠEncEP
zk excluding the cost of sub-protocols. Since

messages sent from V to P are random messages in all protocols, we can leverage
the random oracle and compile these protocols to be non-interactive via the
Fiat-Shamir heuristic. Using this approach, the communication cost now only
takes into account the cost from P to V.

Table 3: Communication cost of each part of ΠEncEP
zk with parameters M and N .

Protocols Bits from P to V Bits from V to P

ΠSum
zk (4⌈log2 M⌉+ 3)∥G∥+ 4∥Zq∥ ∥G∥+ (⌈log2 M⌉+ 1)∥Zq∥

ΠZero
zk (2N + 4)∥G∥+ (2M + 3)∥Zq∥ ∥Zq∥

ΠZero+
zk (4⌈log2(2N + 3)⌉ + 4⌈log2 M⌉ +

12)∥G∥+ (M + 10)∥Zq∥
2∥G∥+(⌈log2(2N+3)+⌈log2 M⌉+
3)∥Zq∥

Remaining 0 3∥Zq∥

We give comparisons between the previous generic work [34] and our protocol
ΠEncEP

zk (using the optimized protocol ΠZero+
zk) in Tables 4 and 5. From Table 4,

Table 4: Communication cost comparison between the previous generic work [34] and
ΠEncEP

zk in this paper with parameters M and N .

Protocols Bits from P to V Bits from V to P

[34] ∼ (32N∥G∥+ 12N∥Zq∥) ∼ (2N∥G∥+ 10N∥Zq∥)
This paper ∼ (4⌈log2(N)⌉+8⌈log2 M⌉)∥G∥+M∥Zq∥ ∼ (⌈log2 N⌉+2⌈log2 M⌉)∥Zq∥

we can see that the (non-interactive) communication cost of our protocol is
aroundM∥Zq∥. In comparison, the protocol in [34] cannot be compiled to be non-
interactive. Its total communication cost is around (34N∥G∥ + 22N∥Zq∥) bits.
For a regular circuit, we always have M < N . Meanwhile, we have ∥G∥ > ∥Zq∥.
Hence, the number of the transmitted bits of the previous generic protocol is at
least 56× larger than ours.

Table 5: Computation cost comparison between the previous generic work [34] and
ΠEncEP

zk in this paper with parameters M and N .

Protocols Time P Expos Time V Expos

[34] ∼ 59N ∼ 52N
This paper ∼ (16N + 11M) ∼ (10N + 3M)

In Table 5, we count the total number of exponentiations that P and V need
to perform in these two protocols. It is easy to see that the execution of our
protocol should be much faster than the protocol in [34].

5.2 Performance of Our PFE Protocols

In this paper, we provide the first constant-round actively secure PFE protocol
with linear complexity and the first constant-round PVC-secure PFE protocol

25

with linear complexity in the two-party setting. Furthermore, our constructions
have comparably good performance with existing passively secure PFE protocols.

The same initiation phase of the two protocols can be compiled to be non-
interactive, and the resulting non-interactive information for the initiation phase
is around (8N∥G∥ + 2M∥Zq∥) bits. The linear constant-round passively secure
PFE protocols in [23] and [33] do not achieve reusability, but we can still divide
them into the same two phases, such that the phase for preprocessing the circuit
Cf is the initiation phase, and the phase for generating, sending the garbled
circuit, and evaluating that circuit is the evaluation phase. The communication
cost of the initiation phase of the optimized protocol in [23], the protocol in [33],
and the protocol in [8] are (2M + 6N)∥G∥ bits, (2M + 4N)∥G∥ bits, and (M +
N)∥G∥ bits, respectively. We can see that our protocol is competitive, even if it
is actively secure. We also remark that since the protocols in [23] and [33] do
not achieve reusability. Their initiation phases require to be executed every time
when the same circuit Cf is involved, while the cost of the initiation phase can be
amortized to multiple executions if a protocol achieves reusability. Meanwhile,
the initiation phase of the protocol in [8] is interactive, and it does not achieve
global reusability. In comparison, the initiation phase of our protocol could be
non-interactive, and it achieves global reusability.

It is shown that the linear passively secure PFE protocol in [8] outperforms
the protocols in [23] and [33] when it is executed any number (more than one)
of time for a fixed private circuit. Here, we reason that our PVC-secure protocol
does not have too much overhead compared with the passively secure protocol
in [8] in the evaluation phase. The additional communication cost of ΠcovertPFE

compared with the passively secure protocol in [8] mainly includes the following.

1. The λ executions of ΠOT in Step 0 for seed transmission.
2. The extra λ− 1 executions of ΠOT for input-wire labels retrieval in Step 2.
3. The λ tuples of {cj , σj} sent in Step 3.

4. The messages {cxB

i,j,b}i∈[nB],b∈{0,1}, h
O
ȷ̂ , decomcȷ̂ , and {decomc

xB
i,j,xB [i]}i∈[nB]

sent in Step 5.

Let us analyze the cost of ΠcovertPFE for the deterrence factor ϵ = 1/2, i.e.,
λ = 2. The additional communication cost of Step 1 and Step 3 is constant now.
Meanwhile, the additional communication cost of Step 2 and Step 4 now only
depends on the input length n of the circuit. For most regular circuits, this cost
is significantly smaller than the dominant communication cost of transmitting
the garbled gates, which is bounded by O (θ) for circuit size θ. The additional
computation cost for both parties is mainly from the cost of generating the
corresponding GCj ’s to compute the commitments cj ’s for checked instances.
Therefore, for the evaluation phase, the computation cost of both parties in our
PVC-secure PFE protocol with ϵ = 1/2 is only around 2.6× that of the passively
secure PFE protocol [8], and thus it is acceptable.

Finally, let us see the size of the certificate in our PVC-secure PFE protocol.
Note that all elements other than the list P inside a certificate do not depend
on the size of the private circuit Cf . If the initiation phase is compiled to be

26

non-interactive, we can assume that all parties have already held the messages
generated in the initiation phase, including P . Now we do not need to include
P in the certificate, and the size of the certificate is constant.

Acknowledgments. We thank the reviewers for their detailed and helpful com-
ments. Y. Liu and Q. Wang were partially supported by the Shenzhen funda-
mental research programs under Grant no. 20200925154814002 and Guangdong
Provincial Key Laboratory (Grant No. 2020B121201001).

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12 (1990)
2. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable uni-

versal circuits. J. Cryptol. 33(3), 1216–1271 (2020)
3. Asharov, G., Orlandi, C.: Calling out cheaters: Covert security with public verifia-

bility. In: Wang, X., Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012
- 18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings. Lecture
Notes in Computer Science, vol. 7658, pp. 681–698. Springer (2012)

4. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)

5. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7237, pp. 263–280. Springer (2012)

6. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA.
pp. 503–513. ACM (1990)

7. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) the ACM Conference on Computer and Commu-
nications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. pp. 784–796.
ACM (2012)

8. Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Highly efficient and re-executable
private function evaluation with linear complexity. IEEE Transactions on Depend-
able and Secure Computing pp. 1–1 (2020)

9. Bingöl, M.A., Biçer, O., Kiraz, M.S., Levi, A.: An efficient 2-party private function
evaluation protocol based on half gates. Comput. J. 62(4), 598–613 (2019)

10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 9666, pp. 327–357. Springer (2016)

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. pp. 315–334. IEEE Computer Society (2018)

27

12. Canetti, R., Sarkar, P., Wang, X.: Blazing fast OT for three-round UC OT ex-
tension. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key
Cryptography - PKC 2020 - 23rd IACR International Conference on Practice and
Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12111, pp. 299–327. Springer
(2020)

13. Chang, Y., Lu, C.: Oblivious polynomial evaluation and oblivious neural learning.
Theor. Comput. Sci. 341(1-3), 39–54 (2005)

14. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings.
Lecture Notes in Computer Science, vol. 740, pp. 89–105. Springer (1992)

15. Damg̊ard, I., Orlandi, C., Simkin, M.: Black-box transformations from passive to
covert security with public verifiability. In: Micciancio, D., Ristenpart, T. (eds.)
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 12171, pp. 647–676.
Springer (2020)

16. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, Pro-
ceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings. Lecture Notes in Computer Science, vol. 196, pp. 10–18. Springer
(1984)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 169–178. ACM
(2009)

18. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167–190 (1996)

19. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions.
In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 10625, pp. 443–470. Springer (2017)

20. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and
Constructions. Information Security and Cryptography, Springer (2010)

21. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private function
evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) Com-
puter Security - ESORICS 2020 - 25th European Symposium on Research in Com-
puter Security, ESORICS 2020, Guildford, UK, September 14-18, 2020, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 12309, pp. 401–420. Springer
(2020)

22. Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security with public
verifiability: Faster, leaner, and simpler. In: Ishai, Y., Rijmen, V. (eds.) Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol.
11478, pp. 97–121. Springer (2019)

23. Katz, J., Malka, L.: Constant-round private function evaluation with linear com-
plexity. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT

28

2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 7073, pp. 556–571. Springer (2011)

24. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9215, pp.
724–741. Springer (2015)

25. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9665, pp. 699–728. Springer (2016)

26. Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (almost)
for free. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9453, pp.
210–235. Springer (2015)

27. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) Financial Cryptography and
Data Security, 12th International Conference, FC 2008, Cozumel, Mexico, Jan-
uary 28-31, 2008, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 5143, pp. 83–97. Springer (2008)

28. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: Naor, M. (ed.) Advances in Cryptology
- EUROCRYPT 2007, 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007,
Proceedings. Lecture Notes in Computer Science, vol. 4515, pp. 52–78. Springer
(2007)

29. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

30. Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal circuit: Improve-
ments, implementation, and applications. IACR Cryptol. ePrint Arch. 2016, 17
(2016), http://eprint.iacr.org/2016/017

31. Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of valiant’s
universal circuits: Simpler, tighter and more compact. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryp-
tology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 12826, pp. 365–394. Springer
(2021)

32. Liu, Y., Wang, Q., Yiu, S.M.: Blind polynomial evaluation and data trading.
In: Applied Cryptography and Network Security - 19th International Conference,
ACNS 2021, Kamakura, Japan, June 21-24, 2021. Lecture Notes in Computer Sci-
ence, Springer (2021)

33. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC an efficient framework
for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-

29

30, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7881, pp. 557–574.
Springer (2013)

34. Mohassel, P., Sadeghian, S.S., Smart, N.P.: Actively secure private function evalu-
ation. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 8874, pp. 486–505. Springer
(2014)

35. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

36. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1991, Proceedings. Lecture Notes in Computer Science, vol. 576, pp.
129–140. Springer (1991)

38. Sander, T., Young, A.L., Yung, M.: Non-interactive cryptocomputing for nc1. In:
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA. pp. 554–567. IEEE Computer Society (1999)

39. Thaler, J.: Proofs, arguments, and zero-knowledge (2021),
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

40. Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K.,
Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual
ACM Symposium on Theory of Computing, May 3-5, 1976, Hershey, Pennsylvania,
USA. pp. 196–203. ACM (1976)

41. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986. pp. 162–167. IEEE Computer Society (1986)

42. Zhao, S., Yu, Y., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: An overall
improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11921,
pp. 401–425. Springer (2019)

43. Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2pc over a blockchain
with applications to financially-secure computations. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-
15, 2019. pp. 633–650. ACM (2019)

30

A Garbling Scheme

In this section, we present a garbling scheme for the standard SFE (rather than
PFE) setting. This scheme is related to the garbling scheme used in our protocols.
It aims to help readers understand our protocols in a more comprehensive way,
and this also assists our security proof of Theorem 1, Theorem 6, etc. We stress
that this garbling scheme is conceptually different from the one we use in our
PFE protocols. The main difference is due to the fact that the garbling scheme in
our PFE protocols should be coupled with other parts of the protocols, whereas
the garbling scheme here is independent, in the sense that it can only be used in
traditional garbled circuits approach when two parties commonly agree with the
same list T and EP πf (and thus the circuit Cf). For instance, wire labels are
generated by the two parties together in our PFE protocols, while these labels
are simply generated by an algorithm Init in the present scheme. In addition, the
generated labels are not the same in these two scenarios.

This garbling scheme consists of algorithms (Init,Gb,Eval) based on a cyclic
group G = ⟨g⟩ of prime order q. It is used for a circuit Cf that consists solely of
θ NAND gates, with m output wires and n input wires. We denote the number
of incoming wires by N = 2θ and the number of outgoing wires except those
that are output wires of the circuit by M = n + θ −m. These parameters are
implicitly taken as input by the three algorithms of the scheme. These three
algorithms are presented below.

– Init takes as input an EP πf derived from a circuit Cf (see Section 2.1) and
a list T = [t1, . . . , tN], where ti ∈ Zq. For each outgoing wire OWi with index
i ∈ [M +m], the algorithm picks the label wb

i ←$Zq for b ∈ {0, 1}. For each
incoming wire IWi with index i ∈ [N] (connecting with the outgoing wire
OWπf (i)), it picks ti←$Zq and computes the label vbi ← (wb

πf (i)
)ti for b ∈

{0, 1}. Finally, the algorithm outputs ({(w0
i , w

1
i)}i∈[M+m], {(v0i , v1i)}i∈[N]).

– Gb is invoked to generate garbled gates. According to the circuit represen-
tation approach in Section 2.1, a gate Gi consists of two input wires, i.e.,
incoming wires, with indices 2i− 1 and 2i, and one output wire, i.e., an out-
going wire, with index n+i. For such a gate, Gb takes as input the gate index
i, the two pairs of input-wire labels (v02i−1, v

1
2i−1) and (v02i, v

1
2i), together with

the pair of output-wire labels (w0
n+i, w

1
n+i), and prepares four ciphertexts:

ca,bi ← Enciva
2i−1,v

b
2i
(wa·b

n+i) for a, b ∈ {0, 1} for a dual-key cipher Enc. Gb out-

puts the set of garbled gates {GGi}i∈[θ]. Here GGi = {ca,bi }a,b∈{0,1}, where

ca,bi are randomly permuted.
– Eval takes as input a set of garbled gates {GGi}i∈[θ], a set of input-wire labels
{xi}i∈[n], a list T = {ti}i∈[N], and an EP πf . This algorithm first derives
the description of the corresponding circuit Cf from πf . Now starting from
(outgoing-wire) labels {xi}i∈[n], Eval computes incoming-wire labels from
outgoing-wire labels and evaluates garbled gates one by one following the
topographical order of the circuit to obtain the final output-wire labels.
Without loss of generality, for an outgoing wire OWi, we denote its label in
hand by wb

i , where b ∈ {0, 1}. Note that each outgoing wire may connect with

31

some incoming wires that are the input wires of some gates. Assume that an
incoming wire IWj is connected with OWi. PA can compute the corresponding

wire label of IWj by computing the tjth power of wb
i , i.e., (w

b
i)

tj
. Since we

have (wb
i)

tj
= vbj , the result is the input-wire (incoming-wire) label as we

want. When having two input-wire (incoming-wire) labels (vb2i−1, v
b′

2i), where
b, b′ ∈ {0, 1}, for a garbled gate GGi, the algorithm can decrypt GGi using
these two labels as keys (via a simple reverse approach of Enc) and obtain

the non-⊥ resulting output-wire (outgoing-wire) label wb·b′
n+i. It is easy to see

that the values of the wire b and b′ are hidden from PA during this procedure.
Since Eval follows the topology of the circuit, input-wire labels of a gate are
always ready when we proceed to evaluate that gate. Finally, Eval returns
the decrypted output-wire labels of the output gates.

To simplify our description, we could use a standard dual-key cipher Enc
in the random oracle model. Let the random oracle be H : G × G × {0, 1}∗ →
{0, 1}∥G∥×τ , where τ is an integer specifying length of redundant bits that ensures
correct decryption. We define the dual-key cipher as

ci ← Enciva
j ,v

b
k
(wa·b

ℓ) = H(vaj , v
b
k, i)⊕ ([wa·b

ℓ]||0τ) ,

where [wa·b
ℓ]||0τ denote the bit string that is the concatenation of the bit-

representation of wa·b
ℓ and the string of τ zeros. The decryption algorithm Dec for

this dual-key cipher takes as input the two keys (vj , vk), the index i and cipher-
text ci corresponding to the dual-key cipher Enc, and computes H(vai , v

b
j , i)⊕ ci.

If the last τ bits of the result are all 0, it outputs the group element of G that
represented by the first ∥G∥ bits of H(vai , v

b
j , i) ⊕ ci. Otherwise, it outputs ⊥.

Note that this scheme could be further optimized, e.g., via using a variant of the
point-and-permute optimization [6] (see [8] for more information).

In the following, we briefly present definitions for the garbling scheme that
follows the approach of [7].

Correctness For any EP πf (for the circuit Cf) and list T as above, and any
input x ∈ {0, 1}n, we follow the steps below.

1. Run ({(w0
i , w

1
i)}i∈[M+m], {(v0i , v1i)}i∈[N])← Init(πf , T).

2. Compute {GGi}i∈[θ] ← Gb({i, (v02i−1, v
1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

3. Let xi = w
x[i]
i for i ∈ [n].

4. Execute {yi}i∈[m] ← Eval({GG}i∈[θ], {xi}i∈n, T, πf).

Then this garbling scheme is correct if for all y ∈ [m], it holds that yi = w
y[i]
M+i,

where y = Cf (x).

Privacy We say that the garbling scheme achieves privacy if for any EP πf ,
list T , and input x, where the format/length of T and x satisfy the circuit Cf

corresponding to πf , there exists a PPT simulator S, such that the output distri-
butions of the following two procedures are computationally indistinguishable.

32

– 1. ({(w0
i , w

1
i)}i∈[M+m], {(v0i , v1i)}i∈[N])← Init(πf , T).

2. {GGi}i∈[θ] ← Gb({i, (v02i−1, v
1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

3. xi ← w
x[i]
i for i ∈ [n].

4. Output ({xi}i∈[n], {GGi}i∈[θ], {(w0
M+i, w

1
M+i)}i∈[m]).

– 1. ({x̃i}i∈[n], {G̃Gi}i∈[θ], {(w̃0
M+i, w̃

1
M+i)}i∈[m])← S(Cf (x), πf , T).

2. Output ({x̃i}i∈[n], {G̃Gi}i∈[θ], {(w̃0
M+i, w̃

1
M+i)}i∈[m]).

Obliviousness We say that the garbling scheme achieves obliviousness if for
any EP πf , list T , and input x, where the format/length of T and x satisfy
the circuit Cf corresponding to πf , there exists a PPT simulator S, such that
the output distributions of the following two procedures are computationally
indistinguishable.

– 1. ({(w0
i , w

1
i)}i∈[M+m], {(v0i , v1i)}i∈[N])← Init(πf , T).

2. {GGi}i∈[θ] ← Gb({i, (v02i−1, v
1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

3. xi ← w
x[i]
i for i ∈ [n].

4. Output ({xi}i∈[n], {GGi}i∈[θ]).

– 1. ({x̃i}i∈[n], {G̃Gi}i∈[θ])← S(πf , T).

2. Output ({x̃i}i∈[n], {G̃Gi}i∈[θ]).

Authenticity We say that the garbling scheme achieves authenticity if for
all PPT adversaries A, the following procedure outputs true with a negligible
probability.

1. (πf , T, x)← A(1κ).
2. If the EP πf , list T , and input x satisfy the pre-agreement of the circuit Cf ,

continue the procedure. Otherwise, return ⊥.
3. ({(w0

i , w
1
i)}i∈[M+m], {(v0i , v1i)}i∈[N])← Init(πf , T).

4. {GGi}i∈[θ] ← Gb({i, (v02i−1, v
1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

5. xi ← w
x[i]
i for i ∈ [n].

6. {yi}i∈[m] ← A({xi}i∈[n], {GGi}i∈[θ]).
7. y ← Cf (x).

8. Return (∀i ∈ [m], yi ∈ {w0
M+i, w

1
M+i}) ∧ (∃i ∈ [m], yi ̸= w

y[i]
M+i).

It is straightforward to see that the garbling scheme above is correct. For
its security, we present the following theorem. The proof of the theorem simply
follows the approach used in [29]. We refer readers to [29] and [8] for more
information and details.

Theorem 8. The garbling scheme (Init,Gb,Eval) associated with the dual-key
cipher Enc in the random oracle model above achieves privacy, obliviousness,
and authenticity.

Proof (Sketch). We first prove the privacy of the scheme. Let us define the simu-
lator S as follows. S takes as input (y, πf , T), where y = Cf (x), and goes through
the following steps.

33

1. S picks labels w̃i←$G for outgoing wires OWi with indices i ∈ [M +m]. Let

x̃i ← w̃i for i ∈ [n]. S also sets w̃
y[i]
M+i ← wM+i and w̃

1−y[i]
M+i ←$G for i ∈ [m].

2. S computes ṽi ← (w̃πf (i))
ti for i ∈ [N]. S picks ṽ′i←$G for i ∈ [N].

3. S produces {G̃Gi}i∈[θ] ← Gb({i, (ṽ2i−1, ṽ
′
2i−1), (ṽ2i, ṽ

′
2i), (w̃n+i, w̃n+i)}).

4. S outputs ({x̃i}i∈[n], {G̃Gi}i∈[θ], {w̃0
M+i, w̃

1
M+i}i∈[m]).

We can see that {xi}i∈[n] in the real execution and {x̃i}i∈[n] in the simulation
are randomly generated from G and have identical distributions. Then we could
simply follow the proof in [29] to design a sequence of hybrid games for the
remain proof.

For the garbled gates, starting from the real execution, we could design a
sequence of hybrid games. According to the topological order of gates, in each
subsequent game, a garbled gate generated as in the real execution is replaced by
a garbled gate generated as in the simulation. For two adjacent games, the four
ciphertexts (ignoring their order) are computed from the four values generated
by the random oracle:

H(v02i−1, v
0
2i, i) H(v02i−1, v

1
2i, i) H(v12i−1, v

0
2i, i) H(v12i−1, v

1
2i, i)

in the real execution and

H(ṽ2i−1, ṽ2i, i) H(ṽ2i−1, ṽ
′
2i, i) H(ṽ′2i−1, ṽ2i, i) H(ṽ′2i−1, ṽ

′
2i, i)

in the simulation. Since the inactive keys, i.e., the incoming-wire labels of the
gate that the circuit evaluator does not obtain (see more in [29]), is derived
from the corresponding randomly generated outgoing-wire labels and a fixed
ti’s, the keys themselves are totally random. Hence, the four ciphertexts are
computationally indistinguishable with respect to the random oracle.

To show that the output mapping in the real execution is computationally
indistinguishable from that in the simulation, we could also construct a sequence
of hybrid games similar to the approach above to prove the result. Therefore,
we can see that the garbling scheme achieves privacy. Following a very similar
approach, we can also prove that the garbling scheme achieves obliviousness.

Finally, we prove that the garbling scheme achieves authenticity. Assume
that there exists a garbled output yi from A that satisfies yi ∈ {w0

M+i, w
1
M+i}

and yi ̸= w
y[i]
M+i. According to the analysis of the privacy for the garbling scheme,

the (inactive) keys to encrypt w
1−y[i]
M+i are randomly generated and hidden from

A. Hence, the usage of the random oracle ensures that A can only successfully

derive w
1−y[i]
M+i with a negligible probability. ⊓⊔

Based on the definition of the garbling scheme (Init,Gb,Eval) introduced
above, we can restate Theorem 1 as follows.

Theorem 9. If the garbling scheme (Init,Gb,Eval) with respect to the dual-key
cipher Enc achieves privacy, obliviousness, and authenticity, and the DDH as-
sumption of G holds, the protocol ΠactivePFE securely realizes FactivePFE in the
presence of malicious PA and semi-honest PB in the (FOT,FEncEP

zk ,FDH
zk)-hybrid

world.

34

B Proof of Theorem 1 and Theorem 9

Proof. Firstly, we focus on the case that PA is malicious. For an adversary A
corrupting PA in the (FOT,FEncEP

zk ,FDH
zk)-hybrid world, we construct a simulator

S that runs A as a subroutine and plays the role of PB in the ideal world. We
present the simulation procedures for both the initiation and evaluation phases
(denoted by Game0). The simulator S simulates the initiation phase as follows.

1. S picks G = [g1, . . . , gM] as in the protocol. Then S sends G to A.
2. S receives h, Φ, Φ′, and {di}i∈[N] from A. Then S receives the EP πf (and

corresponding random coins) that A sends to FEncEP
zk . S verifies whether πf

and the corresponding random coins are correct. If not, S sends abortA to
FactivePFE and simulates the termination of PB. S also receives s and {ti}i∈[N]

from A for FDH
zk and verifies them following a similar procedure as for FEncEP

zk .
3. S computes P = [p1, . . . , pN] as in the protocol.

S derives the evaluated circuit Cf from the EP πf . Then S sends Cf to FactivePFE

and proceeds to simulate the evaluation phase.

1. First, S chooses αi←$Zq for i ∈ [M] and computes wi ← gαi
i for i ∈ [M].

Then S picks wi←$G for i = M + 1, . . . ,M + m for output-wire labels of
output gates. S also computes vi ← (wπf (i))

ti for i ∈ [N] and picks v′i←$G
for i ∈ [N].
S computes {GGi}i∈[θ] ← Gb({i, (v2i−1, v

′
2i−1), (v2i, v

′
2i), (wn+i, wn+i)}i∈[θ]).

2. S obtains xA from A’s input to FOT and sends {wi}i∈[nA] as output of FOT to
A. S sends xA to the ideal functionality FactivePFE and receives the evaluation
result y ∈ {0, 1}m or nothing depending on whether PA is allowed to receive
the evaluation result.

3. S sends GC = {GGi}i∈[θ] and {wnA+i}i∈[nB] to A.
– If PA is allowed to know the evaluation result, S also sends the mapping

{(w0
M+i, w

1
M+i)}i∈[m] toA, where w

y[i]
M+i = wM+i and w

1−y[i]
M+i ←$G. Then

S outputs what A outputs to conclude the simulation.
– If PA is not allowed to know the evaluation result, S continues to the

next step.

4. S receives from A the output-wire labels {w̃M+i}i∈[m]. If all elements of
{w̃M+i}i∈[m] are consistent with those of {wM+i}i∈[m], S sends continue to
FactivePFE. Otherwise, S sends abortA to FactivePFE.

Note that the messages that A receives include G, {wi}i∈[n], GC, and (possi-
bly) {(w0

M+i, w
1
M+i)}i∈[m]. It remains to show that the joint distribution of the

view of A simulated by S and the output of PB in the ideal world is indistin-
guishable from the joint distribution of the view of A and the output of PB in
the real world. We define the following games and let the output of each game
be the view of A and output of PB.

Game1 We modify the evaluation phase of Game0 as follows.

35

1. S chooses αi,0, αi,1←$Zq for i ∈ [M]. S computes w0
i ← g

αi,0

i and w1
i ←

g
αi,1

i for i ∈ [M]. Then S picks w0
i , w

1
i ←$G for i = M+1, . . . ,M+m for

output-wire labels of output gates as in the protocol. S also computes
v0i ← (w0

πf (i)
)ti and v1i ← (w1

πf (i)
)ti for i ∈ [N].

S produces {GGi}i∈[θ] ← Gb({i, (v02i−1, v
1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

2. S returns {wxA[i]
i }i∈[nA] as the output of FOT to A. The rest of the

procedure in this step is the same as Game0.

3. S sends GC = {GGi}i∈[θ] and {w
xB [i]
nA+i}i∈[nB] to A.

– If PA is allowed to know the evaluation result, S also sends the map-
ping {(w0

M+i, w
1
M+i)}i∈[m] to A, and then S outputs what A outputs

to conclude the simulation.
– If PA is not allowed to know the evaluation result, S continues to the

next step.
4. S receives from A the output-wire labels {w̃M+i}i∈[m]. Now {wy[i]

M+i}i∈[m]

is used for the consistency check. The rest of the procedure in this step
is the same as Game0.

The security (privacy or obliviousness depending on whether PA obtains the
evaluation result) of the garbling scheme presented in Appendix A guarantees
that the output of Game1 is computationally indistinguishable from the
output of Game0.

Game2 We now modify Step 4 of the evaluation phase for the consistency check.
4. S receives from A the output-wire labels {w̃M+i}i∈[m]. S checks whether

w̃M+i ∈ {(w0
M+i, w

1
M+i)} for all i ∈ [m] as in the protocol. The rest of

the procedure in this step is the same as the previous game.
Due to the security (authenticity) of the garbling scheme presented in Ap-

pendix A, A can only derive w
y[i]
M+i from GC. Hence, A cannot deduce infor-

mation about w
1−y[i]
M+i , and the output of Game2 is computationally indis-

tinguishable from the output of Game1.
Game3 We modify the first step in the evaluation phase of the previous game

as follows.
1. S chooses α0←$Zq and αi,1←$Zq for i ∈ [M]. S computes w0

i ← gα0
i

and w1
i ← g

αi,1

i for i ∈ [M]. Then S picks w0
i , w

1
i ←$G for i = M +

1, . . . ,M +m for output-wire labels of output gates as in the protocol.
The rest of the procedure in this step is the same as the previous game.

The difference between Game2 and Game3 is that S fixes one α0 instead of
generating a set of αi,0’s. In this setting, a subset of elements in {w0

i }i∈[M]

that received or derived byA are involved. Let us denote the index set for this
subset by S, and thus the subset in Game2 by Ŵ = {ŵ0

i }i∈S and in Game3

by Ŵ ′ = {ŵ′0
i }i∈S . The difference between Ŵ and Ŵ ′ is that the elements

in Ŵ is of the form ŵ0
i = g

α0,i

i for random α0,i while the elements in Ŵ ′ is

of the form ŵ′0
i = gα0

i for random but fixed α0. According to Lemma 1, Ŵ is

computationally indistinguishable from Ŵ ′, and thus the output of Game3
is computationally indistinguishable from the output of Game2.

Game4 The first step in the evaluation phase of the previous game is modified
in the following.

36

1. S chooses α0, α1←$Zq for i ∈ [M]. S computes w0
i ← gα0

i and w1
i ← gα1

i

for i ∈ [M]. Then S picks w0
i , w

1
i ←$G for i = M + 1, . . . ,M + m for

output-wire labels of output gates as in the protocol. The rest of the
procedure in this step is the same as the previous game.

Following the same argument as Game3, the output of Game4 is compu-
tationally indistinguishable from the output of Game3.

Game5 We continue to modify the first step in the evaluation phase of the
previous game. S now computes v0i and v1i via v0i ← (pi)

α0 and v1i ← (pi)
α1

for i ∈ [N].
Since we have pi = gtiπ(i) in the initiation phase, we know vbi = (pi)

αb =

gtiαb

π(i) = (wb
πf (i)

)ti for b ∈ {0, 1}. Therefore, the output of Game5 is perfectly

indistinguishable from the output of Game4.

Note that Game5 corresponds to a real execution of the protocol, and the out-
put in Game5 is computationally indistinguishable from the output of Game0.
Thus, we complete the proof for malicious PA.

Now we focus on the case that PB is semi-honest. For an adversary A cor-
rupting PB in the real world, we construct a simulator S that simulates PB’s
view. Now we present the simulation procedures for the initiation phase and
evaluation phase (denoted by Game0). The simulator S simulates the initiation
phase as follows.

1. S picks gi←$G to generate the list G as in the protocol.
2. S picks h←$G. Then S generates ci←$G2, c′i←$G2, and di←$G for i ∈ [N].
S generates accept’s as the outputs of A from FEncEP

zk and FDH
zk .

3. S computes the list P as in the protocol.

Then in the evaluation phase, S follows the simulation procedure below.

1. S randomly picks α0, α1, and derives {w0
i , w

1
i }i∈[M+m] as in the protocol. S

then generates garbled gates {GGi}i∈[θ] as in the protocol.
2. S simulates the executions of FOT as specified in the protocol.
3. S follows the instructions of PB in this step as in the protocol.

4. If PB is allowed to know the evaluation result y ∈ {0, 1}m, S sets {wy[i]
M+i}i∈[m]

as the messages sent from PA.

It remains to show that the distribution of the view of A simulated by S in the
ideal world is indistinguishable from the distribution of the view of A in the real
world. We first prove the following lemma.

Lemma 2. If the ElGamal encryption scheme with pk = (G, q, g, h) is IND-CPA
secure for security parameter κ under the DDH assumption for G, given ĝ←$G,
(pk, ĝ, c0, c

′
0, d0) is computationally indistinguishable from (pk, ĝ, c1, c

′
1, d1), where

c0←$G2, c′0←$G2, d0←$G, c1 ← (gr, ĝhr), c′1 ← (grt, ĝthrt) and d1 ← ĝt for
r←$Zq and t←$Zq.

Proof. We consider a hybrid distribution (pk, ĝ, c2, c
′
2, d2) generated as follows:

ĝ←$G; t←$Zq; c2 ← G2; c′2 ← ((c
(0)
2)t, (c

(1)
2)t); d2 ← ĝt .

37

It is straightforward to see that (pk, ĝ, c2, c
′
2, d2) and (pk, ĝ, c0, c

′
0, d0) are com-

putationally indistinguishable according to Lemma 1. We can also see that
(pk, ĝ, c2, c

′
2, d2) and (pk, ĝ, c1, c

′
1, d1) are computationally indistinguishable. For

the IND-CPA experiment of the ElGamal encryption scheme, we pick ĝ←$G
and t←$Zq. Then we send ĝ and a random element s ∈ G to the encryption
oracle. We receive a ciphertext c from the oracle. Let c′ ← ((c(0))t, (c(1))t) and
a = (pk, ĝ, c, c′, ĝt). If c encrypts ĝ, the distribution of a is identical to that
of (pk, ĝ, c1, c

′
1, d1). If c encrypts s, the distribution of a is identical to that of

(pk, ĝ, c2, c
′
2, d2). If (pk, ĝ, c2, c

′
2, d2) and (pk, ĝ, c1, c

′
1, d1) are not computationally

indistinguishable, the IND-CPA security of the ElGamal encryption scheme is
broken. Therefore, we complete our proof. ■

For convenience of presentation, let the list D = [d1, . . . , dN]. We define the
following game and let the output of the game be the view of A.

Game1 The list Φ is generated as in the protocol according to πf , where πf is
the EP derived from Cf . Then Φ′ and di are computed as in the protocol.
According to Lemma 2, the output of Game1 is computationally indistin-
guishable from the output of Game0. More concretely, we define a sequence
of hybrids. In the kth hybrid, the first k elements of Φ, Φ′, and D are com-
puted as in Game1, while other elements of these two lists are generated
as in Game0. Then we can use the hybrid tuple from the experiment of
Lemma 2 in the place of ck, c

′
k, and dk. Now we can easily simulate a hybrid

which may be either the (k − 1)th hybrid or the kth hybrid. Therefore, it is
straightforward to see that the output of Game1 and the output of Game0
should be computationally indistinguishable.

It is easy to see that Game1 is corresponding to the real execution, and thus the
distribution of the view ofA simulated by S in the ideal world is indistinguishable
from the distribution of the view of A in the real world. The proof is thus
completed. ⊓⊔

C Proof of Theorem 2

Proof. We prove the scenario where one initiation phase and two evaluation
phases are executed. The case that more than two evaluation phases are involved
can be proved following a similar flow. Here PA in the ideal world submits the
circuit Cf to the ideal functionality FactivePFE, and then both parties can submit
their private inputs to FactivePFE and get the output (the evaluation results or
nothing) twice.

The simulator S follows the strategy used in the proof of Theorem 1 to
simulate the view of the adversary A controlling PA in the initiation phase and
two evaluation phases sequentially. We use a sequence of games as in the proof
of Theorem 1 to show that the view of A and the output of PB in the ideal
world is computationally indistinguishable from those in the real world. We can
follow the same argument as in the proof of Theorem 1 except for the following
difference.

38

The difference between this proof and the proof of Theorem 1 are the com-
parisons between Game2 and Game3 and between Game3 and Game4. Let us
focus on the comparison between Game2 and Game3, and the same approach
can be used for the comparison between Game3 and Game4. Different from the
proof of Theorem 1, elements of {w0

b,i}i∈[M] in the two executions, i.e., b = 1, 2,
are derived from the same list G = [g1, . . . , gM], and thus we need to consider
their joint distributions. More concretely, there exists a set S, such that in the
two executions 1 and 2, elements of {w0

1,i}i∈S and {w0
2,i}i∈S are both received

or derived by A. We denote the set of {w0
1,i}i∈S and {w0

2,i}i∈S in Game2 by

Ŵ1 = {ŵ0
1,i}i∈S and Ŵ2 = {ŵ0

2,i}i∈S , and in Game3 by Ŵ ′
1 = {ŵ′0

1,i}i∈S and

Ŵ ′
2 = {ŵ′0

2,i}i∈S . The difference between (Ŵ1, Ŵ2) and (Ŵ ′
1, Ŵ

′
2) is that ele-

ments in (Ŵ1, Ŵ2) are of the form ({gα1,i,0

i }i∈S , {g
α2,i,0

i }i∈S) for random α1,i,0’s

and α2,i,0’s, while elements in (Ŵ ′
1, Ŵ

′
2) are of the form ({gα1,0

i }i∈S , {g
α2,0

i }i∈S)
for random but fixed α1,0 and α2,0. Let m ← |S|, ĝi ← gi for i ∈ S, β ← α1,0,
β′ ← α2,0, and βi ← α1,i,0, βm+i ← α2,i,0 for i ∈ [m]. Our goal now is to

prove that ({ĝi}i∈[m], {ĝβi

i }i∈[m], {ĝ
βm+i

i }i∈[m]) is computationally indistinguish-

able from ({ĝi}i∈[m], {ĝβi }i∈[m], {ĝβ
′

i }i∈[m]). We first prove the following lemma.

Lemma 3. Under the DDH assumption for the cyclic group G of prime order
q ∈ Θ(2κ), for any positive integer m = poly(κ), given elements ĝ1, . . . , ĝm←$G,

({ĝi}i∈[m], {ĝβi

i }i∈[m], {ĝ
βm+i

i }i∈[m]), where β1, . . . , β2m←$Zq, is computation-

ally indistinguishable from ({ĝi}i∈[m], {ĝβi }i∈[m], {ĝβ
′

i }i∈[m]), where β, β′←$Zq.

Proof. We define the following games.

Game0 This game is for the distribution of ({ĝi}i∈[m], {ĝβi

i }i∈[m], {ĝ
βm+i

i }i∈[m]),
where ĝ1, . . . , ĝm←$G and β1, . . . , β2m←$Zq.

Game1 In this game, we let β←$Zq. The distribution of in the previous game

is modified to be ({ĝi}i∈[m], {ĝβi }i∈[m], {ĝ
βm+i

i }i∈[m]). We now show that the
distribution of Game1 and Game0 is computationally indistinguishable by
constructing a distinguisher D attacking the corresponding experiment of
Lemma 1 using an adversary A that can distinguish the distribution in
Game1 and the distribution in Game0.
The distinguisher D runs A internally. When receiving ({gi}i∈[m], {hi}i∈[m]),
D picks γi←$Zq and computes h′

i = gγi

i for i ∈ [m]. Then D sends to A the
message ({gi}i∈[m], {hi}i∈[m], {h′

i}i∈[m]) and outputs what A outputs. We
note that if {hi}i∈[m] is of the form {gαi

i }i∈[n], the message sent to A is iden-
tical to the distribution in Game0, otherwise if it is of the form {gαi }i∈[n],
the message sent to A is identical to the distribution in Game1. If A can
distinguishGame0 andGame1 with a non-negligible probability, the distin-
guisher D can successfully attack the corresponding experiment of Lemma 1,
which contradict to the DDH assumption. Hence, the distribution in Game1
is computationally indistinguishable from the distribution in Game0.

Game2 In this game, we let β′←$Zq. We modify the distribution in the previ-

ous game to be ({ĝi}i∈[m], {ĝβi }i∈[m], {ĝβ
′

i }i∈[m]). Using the same argument,

39

we can easily prove that the distribution in Game2 is computationally in-
distinguishable from the distribution in Game1.

Therefore, the distribution in Game2 is computationally indistinguishable from
the distribution in Game0, and the proof is completed. ■

From the lemma, we have that ({ĝi}i∈[m], {ĝβi

i }i∈[m], {ĝ
βm+i

i }i∈[m]) is compu-

tationally indistinguishable from ({ĝi}i∈[m], {ĝβi }i∈[m], {ĝβ
′

i }i∈[m]). For elements
not in the set S, we can simply follow the same argument in the proof of The-
orem 1. Thus, we prove that the output of Game2 and the output of Game3
(and also the output of Game3 and the output of Game4) are computationally
indistinguishable.

Then following the same procedure as in the proof of Theorem 1, we complete
the proof for PA.

Now we focus on the case that PB is semi-honest. For an adversary A cor-
rupting PB in the real world, we construct a simulator S that simulates PB’s
view. Now we present the simulation procedures for the initiation phase and
evaluation phase (denoted by Game0). The simulator S simulates the initiation
phase as follows.

1. S picks gi←$G to generate the list G as in the protocol.
2. S picks h←$G and generates ci←$G2, c′i←$G2, and di←$G for i ∈ [N].

Then S generates accept’s as the outputs from FEncEP
zk and FDH

zk .
3. S computes the list P as in the protocol.

Then in the two evaluation phases, S follows the simulation procedure below for
both of them.

1. S randomly picks α0, α1, and derives {w0
i , w

1
i }i∈[M+m] as in the protocol. S

then generates garbled gates {GGi}i∈[θ] as in the protocol.
2. S simulates the executions of FOT as specified in the protocol.
3. S follows the instructions of PB in this step as in the protocol.

4. If PB is allowed to know the evaluation result y ∈ {0, 1}m, S sets {wy[i]
M+i}i∈[m]

as the messages sent from PA.

It remains to show that the distribution of the view of A simulated by S in the
ideal world is indistinguishable from the distribution of the view of A in the
real world. We can follow the same procedure in the proof of Theorem 1 for the
initiation phase. For the two evaluation phases, it is easy to see that they are
independent, and thus we follow again the proof of Theorem 1 for the evaluation
phase. The proof is thus completed. ⊓⊔

D Proof of Theorem 3

Proof. We first focus on the completeness of the protocol. Note that for i ∈ [N],
e⃗i is of the form that exact one entry is 1 and other entries are all 0 if and only

40

if e⃗ie⃗i = e⃗i and 1⃗Te⃗i = 1. Then for x←$Zq, we have

N∑
i=1

xie⃗ie⃗i =

N∑
i=1

xie⃗i .

Since d⃗i = xie⃗i and d⃗ =
∑N

i d⃗i, we can rewrite the above equation as
∑N

i=1 d⃗ie⃗i−
d⃗ = 0. Moreover, given y for the bilinear mapping ∗, we have

N∑
i=1

d⃗i ∗ e⃗i − 1⃗ ∗ d⃗ = 0 .

For ω←$Zq, we have
N∑
i=1

ωi1⃗Te⃗i =

N∑
i=1

ωi .

Let Ω =
∑N

i=1 ω
i and e⃗ =

∑N
i=1 ω

ie⃗i. We can also rewrite the above equation

as
∑N

i=1 ω
i1⃗Te⃗i = 1⃗T(

∑N
i=1 ω

ie⃗i) = 1⃗Te⃗ = Ω. Now it is easy to see that the
protocol is complete when sub-protocols ΠZero

zk and ΠSum
zk are complete.

For the honest-verifier zero-knowledge property, we construct a simulator
S as follows. S picks the challenges x, y←$Zq, computes cd⃗i

for i ∈ [N], cd⃗,

c−1⃗, C, and Ω as in the protocol, and sets y⃗ = 1⃗. Then S runs the honest-

verifier zero-knowledge simulators for both of the underlying protocols ΠZero
zk and

ΠSum
zk . Since the underlying protocols ΠZero

zk and ΠSum
zk are both honest-verifier

zero-knowledge, it is obvious that this simulation is indistinguishable from the
transcript of real executions.

Finally, we focus on the soundness of the protocol. It remains to prove that
the protocol has witness-extended emulation. The emulator E runs the protocol
and if the transcript is accepted, E has to extract a witness.
E runs the witness-extended emulator for ΠZero

zk to get the extracted witness

({e⃗i, ri, d⃗i, rd⃗i
}i∈[N], d⃗, rd⃗, τ⃗), where τ⃗ satisfies g⃗τ⃗ =

∏N
i=1 g

−1
i . We claim that we

have d⃗i = xie⃗i and rd⃗i
= xiri. Otherwise, we have two opening for cd⃗i

, which
allows us to derive a nontrivial discrete logarithm relation, and this contradicts
to the discrete logarithm relation assumption. Using the same argument, we have
d⃗ =

∑N
i d⃗i, rd⃗ =

∑N
i=1 rd⃗i

, and τ⃗ = −1⃗. Hence, we have

N∑
i=1

xie⃗i ∗ e⃗i − 1⃗ ∗ (
N∑
i=1

xie⃗i) = 0 ⇐⇒
N∑
i=1

xi(e⃗i ∗ e⃗i − 1⃗ ∗ e⃗i) = 0

⇐⇒
N∑
i=1

xi(

M∑
j=1

eijeijy
j −

M∑
k=1

eiky
k) = 0

⇐⇒
N∑
i=1

xi(

M∑
j=1

yj(eijeij − eij)) = 0 .

41

Since x, y←$Zq, with an overwhelming probability, we have eijeij = eij for
i ∈ [N], j ∈ [M], i.e., e⃗ie⃗i = e⃗i for i ∈ [N].
E also runs the witness-extended emulator for ΠSum

zk to get (e⃗, re⃗). Similarly,

we can claim that e⃗ =
∑N

i=1 ω
ie⃗i. Thus, we have

1⃗Te⃗ = Ω ⇐⇒ 1⃗T(

N∑
i=1

ωie⃗i) =

N∑
i=1

ωi ⇐⇒
N∑
i=1

ωi(⃗1Te⃗i) =

N∑
i=1

ωi .

Since ω←$Zq, with an overwhelming probability, we have 1⃗Te⃗i = 1 for i ∈ [N].
From {e⃗i}i∈[N], we can derive the EP π. Therefore, we obtain the extracted

witness {ri}i∈[N] and π for the protocol, and the protocol has witness-extended
emulation. ⊓⊔

E Proof of Theorem 4

Proof. The completeness of the protocol is clear. For the round that ℓ = 1, the
following equations are satisfied:

ḡz1uz2hz3 = ḡx1+αēux2+αρe⃗hx3+αre⃗

= (ḡx1ux2hx3)(ḡαēuαρe⃗hαre⃗)

= a1c
α
e⃗ ,

γz1uz4 = γx1+αēux4+αρ′
e⃗

= (γx1ux4)(γαēuαρ′
e⃗)

= a2(c
′
e⃗)

α ,

and

gz3 = gx3+αre⃗ = gx3gαre⃗ = a3(C
(0))α .

For the round that ℓ ̸= 1, the computed ce⃗′ , e⃗
′, g⃗′, ρe⃗′ , and re⃗ satisfy the following

relation:

(g⃗′)e⃗
′
uρe⃗′hre⃗ = (g⃗α

−1

L g⃗αR)
(αe⃗L+α−1e⃗R)u(ρe⃗+α2ρL+α−2ρR)hre⃗

= (g⃗α
−1

L g⃗αR)
(αe⃗L)(g⃗α

−1

L g⃗αR)
(α−1e⃗R)u(ρe⃗+α2ρL+α−2ρR)hre⃗

= (g⃗e⃗LL g⃗α
2e⃗L

R)(g⃗α
−2e⃗R

L g⃗e⃗RR)u(ρe⃗+α2ρL+α−2ρR)hre⃗

= g⃗e⃗g⃗α
2e⃗L

R g⃗α
−2e⃗R

L u(ρe⃗+α2ρL+α−2ρR)hre⃗

= (g⃗e⃗uρe⃗hre⃗)(g⃗α
2e⃗L

R uα2ρL)(g⃗α
−2e⃗R

L uα−2ρR)

= ce⃗v
α2

L vα
−2

R

= ce⃗′ .

42

Meanwhile, c′e⃗, e⃗
′, and y⃗′ satisfy the following equation:

g(y⃗
′)Te⃗′uρ′

e⃗′ = g(α
−1y⃗L+αy⃗R)T(αe⃗L+α−1e⃗R)u(ρ′

e⃗+α2ρ′
L+α−2ρ′

R)

= gy⃗
T
L e⃗Lgα

2y⃗T
Re⃗Lgα

−2y⃗T
L e⃗Rgy⃗

T
Re⃗Ru(ρ′

e⃗+α2ρ′
L+α−2ρ′

R)

= gy⃗
Te⃗gα

2y⃗T
Re⃗Lgα

−2y⃗T
L e⃗Ru(ρ′

e⃗+α2ρ′
L+α−2ρ′

R)

= (gy⃗
Te⃗uρ′

e⃗)(gα
2y⃗T

Re⃗Luα2ρ′
L)(gα

−2y⃗T
L e⃗Ruα−2ρ′

R)

= c′e⃗(v
′
L)

α2

(v′R)
α−2

= c′e⃗′ .

Therefore, an honest prover P following the protocol could generate all the mes-
sages that pass the verification conducted by the verifier V.

For the honest-verifier zero-knowledge property, we construct a simulator S.
S firstly pick u←$G.

When ℓ = 1, the simulator S picks α←$Zq as the challenge. S also generates
z1, z2, z3, z4←$Zq. Then S computes a1 ← ḡz1uz2hz3c−α

e⃗ , a2 ← γz1uz4(c′e⃗)
−α,

and a3 ← gz3(C(0))−α. It is obvious that the generated (a1, a2, a3, α, z1, z2, z3, z4)
is perfectly indistinguishable from the distribution of the real execution.

For the cases that ℓ ̸= 1, the simulator S firstly picks α←$Zq as the chal-
lenge. S then chooses vL, vR, v

′
L, v

′
R←$G, and computes ce⃗′ , c

′
e⃗, g⃗

′, y⃗′ as in the
real execution. We note that since vL, vR, v

′
L, v

′
R can be regarded as Pedersen

commitments that are perfectly hiding, the generated transcript is perfectly in-
distinguishable from the transcripts of real executions.

Hence, the simulator S produces a simulated proof that is indistinguishable
from valid proofs generated by an honest prover interacting with an honest
verifier.

Finally, we focus on the soundness of the protocol. It remains to prove that
the protocol has witness-extended emulation. The emulator E runs the protocol,
and if the transcript is accepted, E has to extract a witness. We will use an
inductive argument to show that in each step, E can efficiently extract a witness.
E first forks the execution with challenges u and u′, such that u ̸= u′. We then
focus on the case with u.

When ℓ = 1, after receiving a1, a2, and a3, the emulator E obtains two
accepting transcripts with two challenge α and α′ such that α′ ̸= α by rewinding
the prover. From the two transcripts, E derives two pairs (z1, z2, z3, z4) and
(z′1, z

′
2, z

′
3, z

′
4), such that

ḡz1uz2hz3 = a1c
α
e⃗ , γz1uz4 = a2(c

′
e⃗)

α , gz3 = a3(C
(0))α ,

and
ḡz

′
1uz′

2hz′
3 = a1c

α′

e⃗ , γz′
1uz′

4 = a2(c
′
e⃗)

α′
, gz

′
3 = a3(C

(0))α
′
.

Therefore, we can derive
gz3−z′

3 = (C0)α−α′
.

Let re⃗ = (z3 − z′3)/(α
′ − α), and then we have

gre⃗ = g(z3−z′
3)/(α

′−α) = C(0) .

43

Hence, we extract the discrete logarithm of C(0). Similarly, the emulator can
compute

ē← (z1 − z′1)/(α
′ − α) , ρe⃗ ← (z2 − z′2)/(α

′ − α) , ρ′e⃗ ← (z4 − z′4)/(α
′ − α) ,

These extracted values are the corresponding discrete logarithms of ce⃗, c
′
e⃗, and

C(0).
For the case that ℓ ̸= 1, E runs the prover and receives vL, vR, v

′
L, and v′R.

Then E obtains three accepting transcripts with challenge αi, such that αi ̸= αj

for 1 ≤ i < j ≤ 3 by rewinding the prover. From the three transcripts, E derives
pairs (e⃗′i, ρe⃗′i , ρ

′
e⃗′i
) for i = 1, 2, 3, such that

ce⃗v
α2

i

L v
α−2

i

R = (g⃗
α−1

i

L g⃗αi

R)e⃗
′
iu

ρe⃗′
ihre⃗ (1)

c′e⃗(v
′
L)

α2
i (v′R)

α−2
i = g(α

−1
i y⃗L+αiy⃗R)Te⃗′iuρ′

e⃗i (2)

We can easily find ν1, ν2, ν3, such that

3∑
i=1

νiα
2
i = 0 ,

3∑
i=1

νi = 1 ,

3∑
i=1

νiα
−2
i = 0 .

This follows from the fact that the matrix below is full rank: 1 α2
1 α−2

1

1 α2
2 α−2

2

1 α2
3 α−2

3

 .

Then we take the linear combination (to the power) of the three equalities (for
i = 1, . . . , 3) in (1) with ν1, ν2, ν3 as the coefficients and obtain

ce⃗ =

3∏
i=1

(ce⃗v
α2

i

L v
α−2

i

R)νi

= (

3∏
i=1

((g⃗
α−1

i

L g⃗αi

R)e⃗
′
i)νi)u

∑3
i=1 νiρe⃗′

ihre⃗
∑3

i=1 νi

= (g⃗
∑3

i=1 νiα
−1
i e⃗′i

L g⃗
∑3

i=1 νiαie⃗
′
i

R)u
∑3

i=1 νiρe⃗′
ihre⃗ .

We can compute

e⃗← (

3∑
i=1

νiα
−1
i e⃗′i,

3∑
i=1

νiαie⃗
′
i) ∈ Zn

q , ρe⃗ ←
3∑

i=1

νiρe⃗′i ∈ Zq ,

such that ce⃗ = g⃗e⃗uρLhre⃗ . Similarly, we can repeat this process for (2) and obtain

c′e⃗ =

3∏
i=1

(c′e⃗(v
′
L)

α2
i (v′R)

α−2
i)νi

= g
∑3

i=1 νi(α
−1
i y⃗L+αiy⃗R)Te⃗′iu

∑3
i=1 νiρ

′
e⃗i

= gy⃗
T
L(

∑3
i=1 νiα

−1
i e⃗′i)+y⃗T

R(
∑3

i=1 νiαie⃗
′
i)u

∑3
i=1 νiρ

′
e⃗i .

44

We here derive the same e⃗ = (
∑3

i=1 νiα
−1
i e⃗′i,

∑3
i=1 νiαie⃗

′
i) ∈ Zn

q and can compute

ρ′e⃗ =
∑3

i=1 νiρ
′
e⃗i
∈ Zq, such that c′e⃗ = gy⃗

Te⃗uρ′
e⃗ . Thus, the emulator E extracts

the witness e⃗, ρe⃗, and ρ′e⃗ for this round.
Following this procedure, the emulator E can go from the leaves of the tran-

script tree to the root of that tree and finally extract the witness of original
relation. Note that the extracted witness for the first statement should satisfy
that y⃗Te⃗ = Ω and ρ′e⃗ = 0. If it is not, since we have

c′e⃗ = gΩ = gy⃗
Te⃗uρ′

e⃗ ,

we can easily compute a nontrivial discrete logarithm relation, and this contra-
dicts to the discrete logarithm relation assumption. Similarly, we should have
ρe⃗ = 0 and ce⃗ = g⃗e⃗hre⃗ . If ρe⃗ ̸= 0, let us consider the other forking flow with u′.
Denote the corresponding extracted witness in this flow by (ˆ⃗e, re⃗, ρ̂e⃗). Here we
have identical re⃗ because re⃗ is fixed for C(0). Since u ̸= u′ and ρe⃗ ̸= 0, we have
(e⃗, ρe⃗) ̸= (ˆ⃗e, ρ̂e⃗). Hence, we have

ce⃗ = g⃗e⃗uρe⃗hrr⃗ = g⃗
ˆ⃗e(u′)ρ̂e⃗hrr⃗ ,

from which we can easily compute a nontrivial discrete logarithm relation, and
this contradicts to the discrete logarithm relation assumption. Thus, the emula-
tor E successfully extracts the witness.

During the extraction, E uses 4 × 3log2(M) transcripts, and thus runs in ex-
pected polynomial time in M .5 Therefore, the protocol has witness-extended
emulation. ⊓⊔

F Proof of Theorem 5

Proof. For completeness, if the statement is valid, the equation below holds:

dℓ+1 =
∑

0≤i≤ℓ ,1≤j≤ℓ+1
j=i

u⃗i ∗ v⃗j =
ℓ∑

i=1

u⃗i ∗ v⃗i = 0 .

Hence, cdℓ+1 = gdℓ+1hrdℓ+1 = 1 given rdℓ+1
= 0. Meanwhile, we have

u⃗ ∗ v⃗ = (

ℓ∑
i=0

xiu⃗i) ∗ (
ℓ+1∑
j=1

xℓ−j+1v⃗j) =

2ℓ∑
k=0

xkdk .

Hence, the perfect completeness of the protocol directly follows from the verifi-
cation conducted by V.

For the honest-verifier zero-knowledge property, we construct a simulator S
as follows.

5 More information for the analysis of the expected running time could be found in [10]
or [39, Section 13.1.3].

45

For the challenge x←$Zq, S picks ru⃗, rv⃗, rd0
, . . . , rdℓ

, rdℓ+2
, . . . , rd2ℓ

←$Zq

and u⃗, v⃗←$ZM
q . Then S sets rdℓ+1

= 0 and computes

c
(0)
u⃗0
← gru⃗

ℓ∏
i=1

(c
(0)
u⃗i

)−xi

, c
(1)
u⃗0
← g⃗u⃗hru⃗

ℓ∏
i=1

(c
(1)
u⃗i

)−xi

, t←
2ℓ∑

ϕ=0

xϕrdϕ
,

c
(0)
v⃗ℓ+1
← grv⃗

ℓ∏
j=1

(c
(0)
v⃗j

)−xℓ+1−j

, c
(1)
v⃗ℓ+1
← g⃗v⃗hrv⃗

ℓ∏
j=1

(c
(1)
v⃗j

)−xℓ+1−j

, cd0
← gu⃗∗v⃗hrd0 ,

and cdϕ
← hrdϕ for ϕ ∈ {1, . . . , 2ℓ}\{ℓ+ 1}. The simulated transcript is

(c
(0)
u⃗0

, c
(1)
u⃗0

, c
(0)
u⃗ℓ+1

, c
(1)
u⃗ℓ+1

, {cdϕ
}ϕ=0,...,2ℓ, x, u⃗, v⃗, ru⃗, rv⃗, t) .

Note that this simulated transcript is perfectly indistinguishable from the tran-
scripts of real executions. This is due to the fact that elements of {cdϕ

}ϕ=1,...,2ℓ

are all perfectly hiding commitments, and u⃗, v⃗, ru⃗, rv⃗, t are uniformly random

both in the real protocol and the simulation. In addition, c
(0)
u⃗0

, c
(1)
u⃗0

, c
(0)
u⃗ℓ+1

, c
(1)
u⃗ℓ+1

, cd0

are all uniquely determined by the verification equations. Hence, the honest-
verifier zero-knowledge property follows.

Finally, we focus on the soundness of the protocol. It remains to prove that
the protocol has witness-extended emulation. The emulator E runs the protocol,
and if the transcript is accepted, E has to extract a witness. After receiving
cu⃗0

, cv⃗ℓ+1
, and {cdϕ

}ϕ∈{0,...,2ℓ}\{ℓ+1}, E obtains 2ℓ+1 accepting transcripts with
different challenges {xi}i∈[2ℓ+1] by rewinding the prover. On average E will be
making 2ℓ + 1 arguments, and thus it runs in expected polynomial time. Now
we have for k ∈ [2ℓ+ 1]

ℓ∏
i=0

(c
(0)
u⃗i

)x
i
k = gr

⟨k⟩
u⃗ ,

ℓ∏
i=0

(c
(1)
u⃗i

)x
i
k = g⃗u⃗

⟨k⟩
hr

⟨k⟩
u⃗ , cdℓ+1

= 1 ,

ℓ+1∏
j=1

(c
(0)
v⃗j

)x
ℓ+1−j
k = gr

⟨k⟩
v⃗ ,

ℓ+1∏
j=1

(c
(1)
v⃗j

)x
ℓ+1−j
k = g⃗v⃗

⟨k⟩
hr

⟨k⟩
v⃗ ,

2ℓ∏
ϕ=0

c
xϕ
k

dϕ
= gu⃗

⟨k⟩∗v⃗⟨k⟩
ht⟨k⟩

.

We can easily solve the discrete logarithms {ru⃗i
}i=0,...,ℓ via a system of equations

from arbitrary ℓ+ 1 accepting transcripts, such as:

ru⃗0
x0
1 + · · ·+ ru⃗ℓ

xℓ
1 = r

⟨1⟩
u⃗

...

ru⃗0
x0
ℓ+1 + · · ·+ ru⃗ℓ

xℓ
ℓ+1 = r

⟨ℓ+1⟩
u⃗

when {xk}k∈[ℓ+1] and {r
⟨k⟩
u⃗ }k∈[ℓ+1] are known. We can always solve this system

of equations since the corresponding Vandermonde matrix of xk’s has full rank.
Then given extracted {ru⃗i

}i=0,...,ℓ, we can extract {u⃗i}i=0,...,ℓ from the following

46

system of equations via the same approach.

x0
1u⃗0 + · · ·+ xℓ

1u⃗ℓ = u⃗⟨1⟩

...

x0
ℓ+1u⃗0 + · · ·+ xℓ

ℓ+1u⃗ℓ = u⃗⟨ℓ+1⟩

Similarly, we can extract {v⃗j}j=1,...,ℓ+1 and {rv⃗j}j=1,...,ℓ+1. Meanwhile, we can
extract {dϕ}ϕ=0,...,2ℓ and {rdϕ

}ϕ=0,...,2ℓ from the systems of equations

d0x
0
1 + · · ·+ d2ℓx

2ℓ
1 = D1

...

d0x
0
2ℓ+1 + · · ·+ d2ℓx

2ℓ
2ℓ+1 = D2ℓ+1

and

rd0
x0
1 + · · ·+ rd2ℓ

x2ℓ
1 = t⟨1⟩

...

rd0x
0
2ℓ+1 + · · ·+ rd2ℓ

x2ℓ
2ℓ+1 = t⟨2ℓ+1⟩

where Dk ← u⃗⟨k⟩ ∗ v⃗⟨k⟩. We claim that the extracted dℓ+1 and rdℓ+1
satisfying

dℓ+1 = 0 and rdℓ+1
= 0. Otherwise, we have

1 = gdℓ+1hrℓ+1 = g0h0 ,

from which we can easily compute a nontrivial discrete logarithm relation, and
this contradicts to the discrete logarithm relation assumption. Thus, the emu-
lator E successfully extracts the witness such that

∑ℓ
i=1 u⃗i ∗ v⃗i = 0, and the

protocol has witness-extended emulation. ⊓⊔

G Proof of Theorem 6

Proof. We first focus on the case that PA is malicious. The analysis for malicious
PA is very similar to the proof of Theorem 1. For an adversary A corrupting PA

in the real world, we construct a simulator S holding (vk, sigk) that runs A as a
subroutine and plays the role of PB in the ideal world. S first picks the common
reference string gi←$G for i ∈ [N], where all gi’s are different. Now we present
the simulation procedure for the initiation phase and evaluation phase (denoted
by Game0). The simulator simulates the initiation phase as follows.

1. S receives h, Φ, Φ′, and {di}i∈[N] from A. Then S receives the EP πf (and

corresponding random coins) that A sends to FEncEP
zk . S verifies whether πf

and the corresponding random coins are correct. If not, S sends abortA to
FactivePFE and simulates the termination of PB. S also receives s and {ti}i∈[N]

from A for FDH
zk and verifies them following a similar procedure as for FEncEP

zk .

47

2. S computes P = [p1, . . . , pN] as in the protocol.

S can derive the evaluated circuit Cf from the EP πf . Then S sends Cf to
FactivePFE and proceeds to simulate the evaluation phase.

0. Upon receiving {cseed
A
j }j∈[λ] from A, S, as in the protocol, picks uniform

κ-bit strings {seedBj ,witnessj}j∈[λ]. Then S uses the simulator SOT for ΠOT

to extract A’s inputs {bj}j∈[λ]. Let sets Jseed = {j : bj = 0} and Jwitness =

{j : bj = 1}. Let SOT return seedBj for j ∈ Jseed and witnessj for j ∈ Jwitness
to A.

1. For j ∈ Jseed, S acts as an honest PB and follows the protocol to run this
step. For j ∈ Jwitness, S does the following.

– If |Jwitness| = 1, we let ȷ̂ be the unique index in Jwitness. S chooses αi←$Zq

for i ∈ [M]. S computes wi ← gαi
i for i ∈ [M]. Then S picks wi←$G

for i = M + 1, . . . ,M +m for output-wire labels of output gates. S also
computes vi ← (wπf (i))

ti and picks v′i←$G for i ∈ [N].
S computes {GGi}i∈[θ] ← Gb({i, (v2i−1, v

′
2i−1), (v2i, v

′
2i), (wn+i, wn+i)}i∈[θ]).

Let GCȷ̂ = {GGi}i∈[θ].
– If |Jwitness| ≥ 2, S acts as an honest PA but uses true randomness in this

step.

2. For j ∈ Jseed, S acts as an honest PB and follows the protocol to run this
step. For j ∈ Jwitness, S does the following.

– If |Jwitness| = 1, S uses the simulator SOT for ΠOT to extract A’s input
xA. SOT returns {wi}i∈[nA] to A. S sends xA to the ideal functional-
ity FcovertPFE, and receives the evaluation result y ∈ {0, 1}m or nothing
depending on the scenario.

– If |Jwitness| ≥ 2, S acts as an honest PA but uses true randomness in this
step.

3. For j ∈ Jseed, S acts as an honest PB and follows the protocol to run this
step. For j ∈ Jwitness, S does the following.

– If |Jwitness| = 1, S computes cxB

i,ȷ̂,0 ← Com(wnA+i) and cxB

i,ȷ̂,1 ← Com(0)
for i ∈ [nB].
If y is known, we let hOj denotes the hash value of the output-wire

labels {(w0
M+i, w

1
M+i)}i∈[m], where w

y[i]
M+i = wM+i and w

1−y[i]
M+i ←$G.

Otherwise, we let hOj denotes the hash value of the output-wire labels
{(wM+i, w

′
M+i)}i∈[m], where w′

M+i←$G.

S then computes cȷ̂ ← Com(GCȷ̂, {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1}, h
O
ȷ̂), where two el-

ements in each pair (cxB

i,ȷ̂,0, c
xB

i,ȷ̂,1) are permuted in random order.
– If |Jwitness| ≥ 2, S acts as an honest PB except for computing cj using

true randomness in this step.

Then S computes signature σj ’s as in the protocol, and sends {cj , σj}j∈[λ]

to A.
4. If |Jwitness| ≠ 1, S aborts. Otherwise, S receives (ȷ̂, {seedBj }j ̸=ȷ̂,witnessȷ̂) from
A. S verifies that these values are all consistent with those that have been
sent and aborts if not.

48

5. S sends GCȷ̂, {wnA+i}i∈[nB], {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1} (in the same order as be-

fore), and hOȷ̂ , together with decomcȷ̂ and {decomc
xB
i,ȷ̂,0}i∈[nB], to A.

– If PA is allowed to know the evaluation result, S also sends the mapping
{(w0

M+i, w
1
M+i)}i∈[m] to A. Then S outputs what A outputs to conclude

the simulation.
– If PA is not allowed to know the evaluation result, S continues to the

next step.
6. S receives from A the output-wire labels {w̃M+i}i∈[m]. If all elements of
{w̃M+i}i∈[m] are consistent with those of {wM+i}i∈[m], S sends continue to
FcovertPFE. Otherwise, S sends abortA to FcovertPFE.

It remains to show that the joint distribution of the view of A simulated by
S and the output of PB in the ideal world is indistinguishable from the joint
distribution of the view of A and the output of PB in the real world. We define
the following games and let the output of each game be the view of A and output
of PB.

Game1 We modify the evaluation phase of the previous game as follows.
0. Upon receiving {cseed

A
j }j∈[λ] from A, κ-bit strings {seedBj ,witnessj}j∈[λ]

are picked as in the protocol. Then S uses the simulator SOT for ΠOT to
extract A’s inputs {bj}j∈[λ]. Let sets Jseed = {j : bj = 0} and Jwitness =

{j : bj = 1}. Let SOT return seedBj for j ∈ Jseed and witnessj for j ∈
Jwitness to A.

1. For j ∈ Jseed, S acts as an honest PB and follows the protocol to run this
step. For j ∈ Jwitness, S does the following.
– If |Jwitness| = 1, we let ȷ̂ be the unique index in Jwitness. S chooses

α0, α1←$Zq for i ∈ [M]. S computes w0
i ← gα0

i and w1
i ← gα1

i for
i ∈ [M]. Then S picks w0

i , w
1
i ←$G for i = M + 1, . . . ,M + m for

output-wire labels of output gates. S also computes v0i ← (pi)
α0 and

v1i ← (pi)
α1 for i ∈ [N].

S computes {GGi}i∈[θ] ← Gb({i, (v02i−1, v
1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

Let GCȷ̂ = {GGi}i∈[θ].
– If |Jwitness| ≥ 2, S acts as an honest PA but uses true randomness in

this step.
2. For j ∈ Jseed, S acts as an honest PB and follows the protocol to run this

step. For j ∈ Jwitness, S does the following.
– If |Jwitness| = 1, S uses the simulator SOT for ΠOT to extract A’s

input xA. SOT returns {wxA[i]
i }i∈[nA] to A.

– If |Jwitness| ≥ 2, S acts as an honest PA but uses true randomness in
this step.

3. For j ∈ Jseed, S acts as an honest PB and follows the protocol to run this
step. For j ∈ Jwitness, S does the following.
– If |Jwitness| = 1, S computes cxB

i,ȷ̂,0 ← Com(w0
nA+i) and cxB

i,ȷ̂,1 ←
Com(w1

nA+i) for i ∈ [nB]. Let hOj denotes the hash value of the

output-wire labels {(w0
M+i, w

1
M+i)}i∈[m].

S computes cȷ̂ ← Com(GCȷ̂, {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1}, h
O
ȷ̂), where two ele-

ments in each pair (cxB

i,ȷ̂,0, c
xB

i,ȷ̂,1) are permuted in random order.

49

– If |Jwitness| ≥ 2, S acts as an honest PB except for computing cj using
true randomness in this step.

Then S generates signatures σj ’s as in the protocol, and sends {cj , σj}j∈[λ]

to A.
4. If |Jwitness| ̸= 1, S aborts. Otherwise, S receives (ȷ̂, {seedBj }j ̸=ȷ̂,witnessȷ̂)

from A. S verifies that these messages are all consistent with those that
have been sent and aborts if not.

5. S sends GCȷ̂, {wxB [i]
nA+i}i∈[nB], {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1} (in the same order as

before), and hOȷ̂ , together with decomcȷ̂ and {decomc
xB
i,ȷ̂,xB [i]}i∈[nB], to A.

– If PA is allowed to know the evaluation result, S also sends the map-
ping {(w0

M+i, w
1
M+i)}i∈[m] to A.

– If PA is not allowed to know the evaluation result, S continues to the
next step.

6. S receives from A the output-wire labels {w̃M+i}i∈[m]. Then S ver-
ify whether all elements of {w̃M+i}i∈[m] are consistent with those of
{w0

M+i, w
1
M+i}i∈[m] as in the protocol.

Based on the analysis in the proof of Theorem 1, the security of the hash
function, and the hiding property of the commitment scheme, we can easily
see that the output of Game1 is computationally indistinguishable from the
output of Game0.

Game2 In this game, ΠOT in Step 2 of the evaluation phase is executed honestly
when |Jwitness| = 1. It follows from the security of ΠOT that the output of
Game2 is computationally indistinguishable from the output of Game1.

Game3 Steps 1–3 of the previous game is modified, such that random coins
for j ∈ Jwitness are derived from seedBj instead of using true randomness. It
is obvious that the output of Game3 is computationally indistinguishable
from the output of Game2.

Game4 We modify the previous game as follows. In Step 4, S continues to run
the protocol as an honest PB even when |witness| ≠ 1. Due to the security
of ΠOT, it is easy to see that the output of Game4 is computationally
indistinguishable from the output of Game3.

Game5 In the game, the executions of ΠOT in Step 0 are executed honestly.
According to the security of ΠOT, the output of Game5 is computationally
indistinguishable from the output of Game4.

Note that Game5 corresponds to the real execution of the protocol where PB

holds input xB and interacts with PA, whileGame0 corresponds to the simulated
execution in the ideal world. Hence, we complete the proof for malicious PA.

We now focus on the case that PB is malicious (in a covert sense). For an
adversary A corrupting PB in the real world, we construct a simulator S holding
vk that runs A as a subroutine and plays the role of PA in the ideal world. S first
computes the common reference string gi = gωi , where ωi←$Zq, for i ∈ [N].
It is easy to see that this common reference string has an identical distribution
to that in the real world. Now we present the simulation procedures for the
initiation phase and evaluation phase (denoted by Game0). The simulator S
simulates the initiation phase as follows.

50

1. S picks h←$G. Then S generates ci←$G2, c′i
(0)←$G, c′i

(1) ← gρ
′
i and

di ← gρ
′′
i , where ρ′i←$Zq and ρ′′i ←$Zq, for i ∈ [N]. Let ρi ← ρ′i−ρ′′i mod q.

Note that now we have pi = gρi . Then S acts as FEncEP
zk and FDH

zk to convince
A.

2. S does nothing.

Then in the evaluation phase, S follows the simulation procedure below.

0. S chooses uniform κ-bit strings {seedAj }j∈[λ], computes cseed
A
j ’s as in the

protocol, and sends {cseed
A
j }j∈[λ] to A. For all λ execution of ΠOT, S interacts

with A using the input 0 with randomness derived from seedAj , and retrieves

{seedBj }j∈[λ] at the end. Let us denote the transcript of the jth execution by
transj .

1. S does nothing.

2. S uses as input 0nA for all execution of ΠOT with randomness derived from
seedAj . Let h

OT
j denote the hash value of the transcript for the jth execution

of ΠOT.

3. S receives {cj , σj}j∈[λ] from A.
4. If any signature σj are invalid, S sends abortB to FcovertPFE and simulates

the termination of PA. For j ∈ [λ], S simulates PB’s execution in Steps 1, 2,

and 3a, and particularly computes ĥOT
j and ĉj . Let J be the set of indices,

such that (ĥOT
j , ĉj) ̸= (hOT

j , cj).

– If |J | = 0, S sets caught = nothing and continues below.

– If |J | = 1, S sends cheat to FcovertPFE. If corrupted is received, S sets
caught = true. Otherwise if (undetected, Cf , xA) is received, S sets caught =
false. Then S continues below.

– If |J | ≥ 2, S sends blatantCheat to FcovertPFE, sends the certificate cert =

(P, j, transj , h
OT
j , cj , σj , seed

A
j , decom

seedAj) to A for uniform j ∈ J , and
simulates the termination of PA.

Then S rewinds A and runs Steps 0′ − 4′ below until6 |J ′| = |J | and caught′ =
caught:

0′. S picks ȷ̂←$ [λ] and computes cseed
A
ȷ̂ ← Com(0κ). S chooses a uniform κ-

bit string seedAj , computes cseed
A
j as in the protocol for j ̸= ȷ̂, and sends

{cseed
A
j }j∈[λ] to A. For the jth (j ̸= ȷ̂) execution of ΠOT, S interacts with

A using the input 0 with randomness derived from seedAj , and retrieves

{seedBj }j∈[λ],j ̸=ȷ̂ at the end. For the ȷ̂ execution of ΠOT, S uses the simulator

SOT for ΠOT and extracts seedBȷ̂ and witnessȷ̂. Let us denote the transcript
of the jth execution by transj .

1′. S does nothing.

6 Standard techniques [18, 20] can be used to ensure that S runs in expected polyno-
mial time.

51

2′. For j ̸= ȷ̂, S uses as input 0nA in the execution of ΠOT with randomness
derived from seedAj . In the ȷ̂th execution of ΠOT, S uses the simulator SOT

for ΠOT and extracts {(w0
i,ȷ̂, w

1
i,ȷ̂)}i∈[nA]. Let h

OT
j denote the hash value of

the transcript for the jth execution of ΠOT.
3′. S receives {cj , σj}j∈[λ] from A.
4′. If any signature σj are invalid, S returns to Step 0′. For j ∈ [λ], S simulates

PB’s execution in Steps 1, 2, and 3a, and particularly computes ĥOT
j and ĉj .

Let J ′ be the set of indices, such that (ĥOT
j , ĉj) ̸= (hOT

j , cj).

If |J ′| = 1 and ȷ̂ /∈ J ′, S set caught′ = true. If |J ′| = 1 and ȷ̂ ∈ J ′, S set
caught′ = false. If |J ′| = 0, S set caught′ = nothing.

Then S follows the procedure below.

4′′. If |J ′| = 1 and caught′ = true, S generates for the unique index j ∈ J ′

a certificate cert = (P, j, transj , h
OT
j , cj , σj , seed

A
j , decom

seedAj), sends it to A
and halts. Otherwise, S sends (ȷ̂, {seedBj }j ̸=ȷ̂,witnessȷ̂) to A.

5. S receives GCȷ̂, {xnA+i}i∈[nB], {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1} (in the same order as

Step 3a), and hOȷ̂ , together with decomcȷ̂ and {decomc
xB
i,ȷ̂,xB [i]}i∈[nB]. If PA

is allowed to know the evaluation result, S also receives the garbled output
mapping {(w0

M+i, w
1
M+i)}i∈[m].

6. If commitments Com(GCj , {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1}, h
O
ȷ̂ ; decom

cȷ̂) ̸= cȷ̂, for some

i ∈ [nB], Com(xnA+i; decom
c
xB
i,ȷ̂,xB [i]) /∈ {cxB

i,ȷ̂,0, c
xB

i,ȷ̂,1}, or hOȷ̂ is not consistent (if
it is verifiable), S sends abortB to FcovertPFE and simulates PA’s termination.
Otherwise, S follows the options below.
– If |J ′| = 0, S uses seedBj and the received information to derive PB’s

input xB . Then S sends xB to FcovertPFE. If PB is allowed to receive the
evaluation result, S will receive y ∈ {0, 1}m from FcovertPFE. Using seedBȷ̂

to derive the output mapping and sends {wy[i]
i,ȷ̂ }i=M+1,...,M+m to A.

– If |J ′| = 1 and caught = false, S derives πf from Cf as in the protocol.
Then S computes ti ← ρi ·ω−1

πf (i)
mod q for i ∈ [N]. Note that gi = gωi in

the common reference string, and we have pi = gρi . Let T = [t1, . . . , tN].
S uses {(w0

i,ȷ̂, w
1
i,ȷ̂)}i∈[nA] and xA from FcovertPFE, together with T , GCȷ̂,

and {xnA+i}i∈[nB] to compute the output {yi}i∈[m]. If PA is allowed to
know the evaluation result, S can derive the output y ∈ {0, 1}m from
the output mapping as in the protocol and sends y to FcovertPFE to finish
the simulation. If PB is allowed to know the evaluation result, S sends
{yi}i∈[m] to A and halts.

It remains to show that the joint distribution of the view of A simulated by
S and the output of PA in the ideal world is indistinguishable from the joint
distribution of the view of A and the output of PA in the real world. We define
the following games and let the output of each game be the view of A and output
of PA.

Game1 We modify Step 1 of the initiation phase in this game. The EP πf de-
rived from Cf is used here. Then the list T , Φ is generated as in the protocol.

52

Corresponding Φ′, c′i’s, and di’s are also computed as in the protocol. The
ideal functionality FEncEP

zk and FDH
zk are simulated as in the protocol. Then in

Step 6 of the evaluation phase, the list T is directly used for garbled circuit
execution. Since the ElGamal encryption scheme is IND-CPA secure, using
the same approach as in the proof of Theorem 1, we can prove that the
output of Game1 are computationally indistinguishable from the output of
Game0.

Game2 We pick a uniform ȷ̂←$ [λ] at the outset of the game. Then we modify
the part of the conditional judgment branch in Step 4 of the evaluation phase
as follows.
– If |J | = 0, S does the same as in Game0.
– If |J | = 1, S sets caught = true if ȷ̂ /∈ |J |. Otherwise, S sets caught = false.

– If |J | ≥ 2, S sends cert = (P, j, transj , h
OT
j , cj , σj , seed

A
j , decom

seedAj) to
A for uniform j ∈ J\{ȷ̂}, and simulates the termination of PA.

When |J | = 1, we have ȷ̂ /∈ |J | with the same probability ϵ. Meanwhile,
if |J | ≥ 2, the probability that an index j is chosen to generate a certifi-

cate is |J|
λ · (1 −

1
|J|) ·

1
|J|−1 + (1 − |J|

λ) · 1
|J| = 1

|J| , which is the same as in

Game0. Therefore, the output of Game2 is perfectly indistinguishable from
the output of Game1.

Game3 We modify the previous game as follows. In Step 0 of the evaluation

phase, the simulator does not pick seedAȷ̂ . It computes cseed
A
ȷ̂ ← Com(0κ)

alternatively. Then true random coins are used in Steps 0 and 2. It is obvious
that the output of Game3 is computationally indistinguishable from the
output of Game2.

Game4 The previous game is modified, such that S uses the simulator SOT for
the ȷ̂th execution of ΠOT in Steps 0 and 2 of the evaluation phase, and all
A’s inputs are extracted. According to the security of ΠOT, the output of
Game4 is computationally indistinguishable from the output of Game3.

Game5 Because now Steps 0–3 are identical to Steps 0′–3′ in the simulated
evaluation phase, we can “collapse” the rewinding and obtain the following
Game5 that is statistically indistinguishable from Game4, and the only
difference is in the case of an aborted rewinding in the latter game.

0. Pick ȷ̂←$ [λ] and compute cseed
A
ȷ̂ ← Com(0κ). For j ̸= ȷ̂, choose uni-

form κ-bit strings seedAj , compute {cseed
A
j } as in the protocol, and send

{cseed
A
j }j∈[λ] to A. For the jth (j ̸= ȷ̂) execution of ΠOT, interact with

A using the input 0 with randomness derived from seedAj , and retrieve

{seedBj }j∈[λ],j ̸=ȷ̂ at the end. For the ȷ̂th execution of ΠOT, use the sim-

ulator SOT for ΠOT and extract seedBȷ̂ and witnessȷ̂. Let us denote the
transcript of the jth execution by transj .

1. Do nothing.
2. For j ̸= ȷ̂, use as input 0nA for in the execution of ΠOT with randomness

derived from seedAj . In the ȷ̂th execution of ΠOT, use the simulator SOT

for ΠOT and extract {(w0
i,ȷ̂, w

1
i,ȷ̂)}i∈[nA]. Let h

OT
j denote the hash value

of the transcript for the jth execution of ΠOT.

53

3. Receive {cj , σj}j∈[λ] from A.
4. If any signature σj are invalid, output ⊥ and halt. For j ∈ [λ], emulate

PB’s execution in Steps 1, 2, and 3a, and particularly compute ĥOT
j and

ĉj . Let J
′ be the set of indices, such that (ĥOT

j , ĉj) ̸= (hOT
j , cj).

– If |J | = 0, send (ȷ̂, {seedBj }j ̸=ȷ̂,witnessȷ̂) to A and continue below.
– If |J | = 1 and ȷ̂ /∈ |J | or |J | ≥ 2, send for uniform j ∈ J\{ȷ̂}

a certificate cert = (P, j, transj , h
OT
j , cj , σj , seed

A
j , decom

seedAj) to A.
Then output corrupted and halt.

– If |J | = 1 and ȷ̂ ∈ |J |, send (ȷ̂, {seedBj }j ̸=ȷ̂,witnessȷ̂) toA and continue
below.

5. Receive GCȷ̂, {xnA+i}i∈[nB], {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1} (in the same order as

Step 3a), and hOȷ̂ , together with decomcȷ̂ and {decomc
xB
i,ȷ̂,xB [i]}i∈[nB]. If

PA is allowed to know the evaluation result, S also receives the garbled
output mapping {(w0

M+i, w
1
M+i)}i∈[m].

6. If commitments Com(GCj , {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1}, h
O
ȷ̂ ; decom

cȷ̂) ̸= cȷ̂, for some

i ∈ [nB], Com(xnA+i; decom
c
xB
i,ȷ̂,xB [i]) /∈ {cxB

i,ȷ̂,0, c
xB

i,ȷ̂,1}, or hOȷ̂ is not consis-
tent (if it is verifiable), output ⊥ and abort.
Otherwise, follow the options below.

– If |J | = 0, use seedBj and the received information to derive PB’s
input xB . Then compute y ← Cf (xA, xB). If PA is allowed to learn
the evaluation result, output y and halt. If PB is allowed to receive
the evaluation result, use seedBj to derive the output mapping and

send {wy[i]
i,ȷ̂ }i=M+1,...,M+m to A and halt.

– If |J | = 1, use {(w0
i,ȷ̂, w

1
i,ȷ̂)}i∈[nA] and xA, together with T , GCȷ̂,

and {xnA+i}i∈[nB] to compute the output {yi}i∈[m]. If PA is allowed
to know the evaluation result, derive the output from the output
mapping as in the protocol, and then output the result and halt. If
PB is allowed to know the evaluation result, send {yi}i∈[m] to A and
halts.

Game6 We modify Step 6 of the evaluation phase in the previous game. If |J | =
0, use {wxA[i]

i,ȷ̂ }i∈[nA], together with T , GCȷ̂, and {xnA+i}i∈[nB] to compute
the output {yi}i∈[m]. If PA is allowed to know the evaluation result, derive
the output y from the output mapping as in the protocol, and then output
y and halt. If PB is allowed to know the evaluation result, send {yi}i∈[m] to
A and halts.
Because |J | = 0, we know that the commitment cȷ̂ commits to a correctly
computed garbled circuit, input-wire labels {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1} (in correct
order), and the hash value of the output-wire labels. According to the binding
property of the commitment scheme and the collision-resistance property
of the hash function, GCȷ̂, {cxB

i,ȷ̂,b}i∈[nB],b∈{0,1}, and hOȷ̂ (may also together

with the output mapping {(w0
M+i, w

1
M+i)}i∈[m]) sent by A are all correct. In

addition, since |J | = 0, the collision-resistance property of the hash function
ensures that PA’s input-wire labels sent in ΠOT are correct. Therefore, using

54

{wxA[i]
i,ȷ̂ }i∈[nA], together with T , GCȷ̂, and {xnA+i}i∈[nB] for the execution of

garbled circuit will derive the correct result.
Hence, the output of Game6 is computationally indistinguishable from the
output of Game5.

Game7 Here Step 4 in the evaluation phase of the previous game is changed in
the following. PB’s executions are emulated for j ∈ [λ]\{ȷ̂}. Let Ĵ be the set

of indices, such that (ĥOT
j , ĉj) ̸= (hOT

j , cj).

– If |Ĵ | = 0, send (ȷ̂, {seedBj }j ̸=ȷ̂,witnessȷ̂) to A and continue below.

– If |Ĵ | ≠ 0, send cert = (P, j, transj , h
OT
j , cj , σj , seed

A
j , decom

seedAj) for uni-

form j ∈ Ĵ to A. Then output corrupted and halt.
Let the set J as defined before. Note that the condition that |J | = 0 or
|J | = 1 ∧ ȷ̂ ∈ |J | is equal to the condition |Ĵ | = 0. Meanwhile, the condition
that |J | = 1 ∧ ȷ̂ /∈ |J | or |J | ≥ 2 is the same as the condition |Ĵ | ≠ 0.
Thus, the output of Game7 is perfectly indistinguishable from the output
of Game6.

Game8 In this game, the ȷ̂th execution of ΠOT in Step 0 and Step 2 are exe-
cuted honestly, i.e., use input 1 to the protocol in Step 0 and xA in Step 2.
Following the security of ΠOT, the output of Game8 is computationally
indistinguishable from the output of Game7.

Game9 We modify Step 0 of the previous game by choosing seedAȷ̂ and comput-

ing {cseed
A
ȷ̂ } as in the protocol. Then for the ȷ̂th execution of ΠOT in Step 0

and Step 2, use the random coins derived from seedAȷ̂ . It is easy to see that
the output of Game9 is computationally indistinguishable from the output
of Game8.

Note that Game9 corresponds to an execution of the protocol for PA holding
input Cf and xA in the real world, while Game0 corresponds to the simulated
execution in the ideal world. We also note that the certificate is for an index
j ∈ J\{ȷ̂}, while only the ȷ̂th execution involves PB’s input. Therefore, even if
A receives cert, A cannot derive any information about PA’s input. Hence, we
complete the proof for malicious PB.

We now describe how the protocol achieves public verifiability. From the
protocol, it is easy to see that once an honest PA outputs corruptedB , she is able to
output a certificate cert to blame PB’s misbehavior. If PB intends to deviate from
the protocol covertly, he might deviate in Steps 1, 2, or 3a, i.e., PB does not follow
the execution specified by the protocol and the corresponding seed. Hence, there
exists a message from PB that is not consistent with the message he should send
according to the protocol and the seed. If an honest PA publishes a certificate
cert, then PA has obtained PB’s seed for the derandomized execution and detects
PB’s covert cheating in this execution. Since the corresponding transcript is
signed by PB, everyone is able to verify the inconsistency. More precisely, given
the verification key vk, a certificate cert, and a common reference string G,
anyone can execute the algorithm Judge to check whether the messages from
PB are consistent with an honest execution. More importantly, thanks to the
OT protocol, PB does not know whether his misbehavior is detected until PA

55

publishes the certificate cert. Thus, PB cannot abort before the time that PA can
generate the certificate.

Finally, we show that the protocol achieves defamation freeness. Assume
that a malicious PA intends to break the defamation freeness of the protocol
and blames an honest PB. According to the description of the algorithm Judge,
the algorithm will output 1 only if (hOT

j , cj) ̸= (ĥOT
j , ĉj). If cj is inconsistent, it

means that the garbled circuit is not correctly generated using the random coins
derived from seedBj . However, since PB is honest and corresponding material for

generating the garbled circuit, i.e., G and P , is signed by PB, we know that seedBj
derived from the simulation of ΠOT is incorrect, or the signature is forged. On
the one hand, the signature scheme is EUF-CMA, a computationally bounded
PA cannot forge the signature except for a negligible probability. On the other
hand, for the simulation of ΠOT, the transcript transj is already verified and

signed by PB, this means that if the output of ΠOT is not the correct seedBj ,

this incorrect output seedBj imputes to the random coins used by PA. Since the

commitment cseed
A
j is signed by PB andΠOT is perfectly correct, the output of the

simulation of ΠOT cannot be equivocated unless PA breaks the binding property
of the commitment scheme. Hence, malicious PA cannot incur an inconsistent cj
except for a negligible probability. For the hash value hOT

j , a malicious PA can

incur an inconsistent ĥOT
j only if seedAj and seedBj produces an incorrect ĥOT

j .

Similar to cj , a malicious PA cannot make ΠOT output an incorrect seedBj , and
thus incur the algorithm Judge to output 1, except for a negligible probability.
Therefore, the protocol achieves defamation freeness. ⊓⊔

56

