Making Private Function Evaluation Safer, Faster, and Simpler

Yi Liu ${ }^{1,3}$, Qi Wang ${ }^{1,2}$, and Siu-Ming Yiu ${ }^{3}$
${ }^{1}$ Research Institute of Trustworthy Autonomous Systems \& Guangdong Provincial
Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
liuy7@mail.sustech.edu.cn
wangqi@sustech.edu.cn
2 National Center for Applied Mathematics (Shenzhen), Southern University of Science and Technology, Shenzhen 518055, China
${ }^{3}$ Department of Computer Science,
The University of Hong Kong, Pokfulam, Hong Kong SAR, China
smyiu@cs.hku.hk

Abstract

In the problem of two-party private function evaluation (PFE), one party P_{A} holds a private function f and (optionally) a private input x_{A}, while the other party P_{B} possesses a private input x_{B}. Their goal is to evaluate f on x_{A} and x_{B}, and one or both parties may obtain the evaluation result $f\left(x_{A}, x_{B}\right)$ while no other information beyond $f\left(x_{A}, x_{B}\right)$ is revealed. In this paper, we revisit the two-party PFE problem and provide several enhancements. We propose the first constant-round actively secure PFE protocol with linear complexity. Based on this result, we further provide the first constant-round publicly verifiable covertly (PVC) secure PFE protocol with linear complexity to gain better efficiency. For instance, when the deterrence factor is $\epsilon=1 / 2$, compared to the passively secure protocol, its communication cost is very close and its computation cost is around $2.6 \times$. In our constructions, as a by-product, we design a specific protocol for proving that a list of ElGamal ciphertexts is derived from an extended permutation performed on a given list of elements. It should be noted that this protocol greatly improves the previous result and may be of independent interest. In addition, a reusability property is added to our two PFE protocols. Namely, if the same function f is involved in multiple executions of the protocol between P_{A} and P_{B}, then the protocol could be executed more efficiently from the second execution. Moreover, we further extend this property to be global, such that it supports multiple executions for the same f in a reusable fashion between P_{A} and arbitrary parties playing the role of P_{B}.

Keywords: Extended permutation • Private function evaluation • Publicly verifiable covert security . Secure two-party computation.

1 Introduction

The two-party private function evaluation (PFE) problem considers the scenario where a party P_{A} holds a private function f and (optionally) a private input x_{A} while the other party P_{B} has another private input x_{B}. These two parties intend to compute $f\left(x_{A}, x_{B}\right)$ without the existence of a third party. Finally, one or both parties may obtain $f\left(x_{A}, x_{B}\right)$, while they cannot deduce any other information beyond their specified outputs during the interaction. As a special case of secure computation, note that PFE is different from the notion of standard secure function evaluation (SFE). The key difference is that the function f is commonly known by participants in SFE, while f should remain private in PFE, in the sense that everything about the function, except an upper bound on its size and the lengths of both input and output, is hidden.

Both data and algorithms are valuable in numerous real-world scenarios, such as medical and commercial applications. For instance, we consider the following business scenario between a traditional enterprise and an algorithm-driven company. The traditional enterprise has a dataset, while the algorithm-driven company holds a powerful data mining algorithm that can process this dataset. On the one hand, the algorithm-driven company does not intend to disclose the algorithm. On the other hand, since the dataset may contain sensitive data, the traditional enterprise is unwilling to reveal the dataset to others. We note that this dilemma can be solved by a PFE protocol that allows the traditional enterprise to receive the result of privately running the algorithm on the dataset.

It is trivial to design a PFE protocol based on fully homomorphic encryption (FHE) schemes [17]. However, the efficiency of FHE schemes is still prohibitive, and researchers attempted to design PFE in the setting of traditional multiparty computation (MPC). In the literature, some PFE protocols specify a limited set of functions, such as polynomials [13, 35, 32] and low-depth circuits [38], while others are general-purpose, focusing on functions implemented by arbitrary (polynomial-size) circuits [1]. In this paper, we work on general-purpose PFE protocols, and thus the PFE protocols mentioned in the rest of this paper are assumed to be general-purpose.

To construct general-purpose PFE protocols, there exist two main approaches. The first approach reduces the PFE problem to the problem of secure computation for universal circuits (UC) (see [40, 27, 25, 30, 19, 42, 2, 31]). UC refers to a sequence of circuits $\mathrm{U}=\left\{\mathrm{U}_{n}\right\}_{n \in \mathbb{N}}$, each of which can take as input (the description of) a circuit C of size n and a valid input x, and output $C(x) \leftarrow \mathrm{U}_{n}(C, x)$. Therefore, we can combine UC with traditional MPC techniques, such as Yao's garbled circuits [41, 29], to obtain PFE protocols. The major goal of this line of work is to reduce the size of UC and improve the traditional MPC techniques. However, a noted barrier of UC-based PFE protocol is that a (Boolean) UC has (optimal) size $\left|\mathrm{U}_{n}\right|=\Theta(n \log n)$ [40], where the constant factor (more than 12 for the state-of-the-art result [31]) and the low-order terms are significant. Hence, when the size of a circuit used for evaluation is relatively large, the considerable expansion of its size caused by the use of UC makes UC-based PFE prohibitive.

The second approach avoids the usage of UC. In 2011, Katz and Malka [23] proposed a constant-round passively secure two-party PFE protocol applied on Boolean circuits, and the protocol achieves linear complexity in circuit size. This linear-complexity PFE protocol has asymptotically less computation and communication complexity than UC-based PFE protocols that have complexity $\Theta(n \log n)$. Very recently, an implementation [21] of the passively secure PFE protocol [23] showed that this protocol outperforms the state-of-the-art UC-based PFE protocol not only in communication but also in total running time, e.g., it is $\sim 3.3 \times$ faster in a LAN and $\sim 7.0 \times$ faster in a WAN for private circuits of size 10^{6}. Subsequently, the work [33] introduced a general framework for designing PFE protocols. This general framework captures the idea of [23] and provides a slight improvement in communication cost. In addition, a PFE protocol based on oblivious evaluation of switching networks (OSN) was provided in [33] and was later improved in [9]. However, it is shown [2, 8] that OSN-based PFE protocols have $\Theta(n \log n)$ computation and communication complexities limit their usage when the size of circuits is considerable. More recently, a passively secure reexecutable PFE protocol with linear complexity was proposed in [8]. With this reusability property, it is shown [8] that this protocol has significantly better performance than the PFE protocol in [23] and [33] when the protocol is executed any number (more than one) of times for the same function by the same two parties.

Since parties may deviate from the protocol to gain more advantages, such as learning the other party's input and affecting the output of the protocol, it is more realistic to consider PFE protocols that are secure under stronger security models. Unfortunately, even though the line of work for PFE protocols with linear complexity has better performance theoretically and experimentally, existing protocols are mainly focused on the semi-honest model, and very few results managed to provide protocols in stronger security models.

To the best of our knowledge, only two papers considered PFE protocols with linear complexity that are secure against malicious adversaries. The seminal work [23] introduced how to compile their passively secure PFE protocol to be secure against malicious P_{B}, i.e., the party that provides the private input x_{B}, via specific efficient zero-knowledge protocols. However, the security of the compiled protocol is not full-fledged, and the function provider P_{A} is required to be semihonest. The subsequent work [34] proposed an actively secure PFE framework with linear complexity based on the results in [33]. However, the number of rounds in this protocol is equal to the number of gates for the evaluated circuit. This will simply become a bottleneck when the size of the circuit is considerable.

Besides the malicious model, there is no PFE protocol with linear complexity in other security models. We notice that the publicly verifiable covert (PVC) model is particularly useful for many scenarios that PFE protocols may apply to. Covert security was introduced by Aumann and Lindell [4]. It serves as a compromise between semi-honest and malicious security definitions, and thereby provides a more realistic security guarantee than semi-honest security and has significantly less overhead than malicious security. Informally, a mali-
cious party is still allowed to covertly deviate from the protocol execution in this model. However, this misbehavior will be detected by honest parties with a certain probability ϵ, which is called deterrence factor. The fear of being caught will deter participants from acting maliciously and deviating from the protocol. The PVC security notion that enhances the covert security model was introduced by Asharov and Orlandi in 2012 [3]. PVC security guarantees that once the misbehavior of a malicious party is caught, honest parties could generate a publicly verifiable certificate to persuade others, including those outside the protocol, that the malicious party is cheating. Meanwhile, it should be guaranteed that this malicious party learns no information about the inputs of honest parties even when the certificate is given. This notion significantly strengthens the covert security model especially when parties' reputations are important. A general PVC-secure two-party computation protocol was proposed in [3] based on garbled circuits and the Signed-OT technique. Then the Signed-OT protocol was improved in [26] to obtain a more efficient PVC-secure protocol. Subsequently, an elegant protocol [22] using a derandomized approach was proposed in 2019. Avoiding the use of costly Signed-OT, this protocol is more efficient than the previous protocols. In the meantime, another protocol [43] introduced a notion called financially secure computation that combines a PVC-secure protocol with blockchain. Very recently, a compiler that can transform a two-party passively secure protocol to a PVC-secure protocol was introduced in [15]. It is easy to see that PVC security is useful for two-party PFE protocols in many realistic scenarios. Note that all existing results for two-party PVC security $[3,26,22,15]$ are only designed for SFE, i.e., the function f is publicly known. Although UC can be integrated into these frameworks to derive a PVC-secure PFE protocol, so far there is no PVC-secure PFE protocol with linear complexity.

Therefore, the following question is open so far:
Can we construct a constant-round actively secure and a constant-round PVC-secure PFE protocols with linear complexity in the two-party setting while avoiding strong primitives such as FHE?

In this paper, we answer this question. In addition, we borrow the idea of [8] to realize a reusability property for our protocols and further extend it globally. A comparison of main properties for all PFE protocols with linear complexity is summarized in Table 1.

1.1 Our Results

We summarize our results and main contributions in this paper as follows.
Active security. We provide the first constant-round actively secure PFE protocol with linear complexity in the two-party setting. More precisely, we design a constant-round two-party PFE protocol that is secure against malicious function owner P_{A} and semi-honest private input provider P_{B}. Then by leveraging classical MPC results for security against malicious P_{B} providing private input values, such as the approach used in [23], we can automatically

Table 1: Comparison of the main properties for all PFE protocols with linear complexity.

Paper	Security	\# Round	Reusable?
$[23]$	Passive	Constant	No.
$[33]$	Passive	Constant	No.
$[34]$	Active	\# Gates	No.
$[8]$	Passive	Constant	Yes, for two parties.
This paper	Active	Constant	Yes, global reusability.
This paper	PVC	Constant	Yes, global reusability.

obtain the desirable actively secure protocol. Our protocol is composed of an initiation phase and an evaluation phase.
PVC security. Based on the techniques of our actively secure PFE protocol, we design the first constant-round PVC-secure PFE protocol with linear complexity in the two-party setting to gain much better efficiency. This protocol inherits the two-phase structure. It is noted that the additional overhead to achieve PVC security is very light from both computation and communication aspects, e.g., when the deterrence factor is $\epsilon=1 / 2$, compared to the passively secure protocol, its communication cost is very close and its computation cost is around $2.6 \times$.
Efficiency improvement. We provide the sub-protocol $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ as a core component for our actively secure and PVC-secure protocols. This protocol is designed for proving that a list of ElGamal [16] ciphertexts is derived from an extended permutation (see Definition 3) performed on a given list of elements. A generic construction for such a purpose was originally given in [34], and it is left open whether it is possible to construct such a protocol in a specific approach to gaining better performance. Our protocol answers this open problem, and improves the generic construction [34] significantly: the communication cost of our protocol is less than $1 / 56$ of the generic construction, and the computation cost is less than 36%.
Reusability (simplified follow-up executions). The reusability property is added to both of our two PFE protocols. When two specified parties intend to evaluate the same private function f on different private inputs, they only need to go through the initiation phase at one time and then execute the evaluation phase multiple times with different inputs. Moreover, we extend this property globally. Namely, once an initiation for a private f is performed by the function owner P_{A}, arbitrary private input providers playing the role of P_{B} can benefit from the reusability property for f.

2 Preliminaries

We use $|S|$ to denotes the size of a set S and $\|S\|$ to denote the number of bits required to represent elements in the set S. We write $x \leftarrow s S$ for uniformly sam-
pling an element x from the set S. For a positive integer n, let $[n]=\{1, \ldots, n\}$. For a bit string x, we use $x[i]$ to represent the i th bit of x. We write a vector named a as $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$, and use $\overrightarrow{0}$ and $\overrightarrow{1}$ to denote a vector where all entries are equal to 0 and 1 when its dimension is clear in the context, respectively. Let $\vec{a} \vec{b}=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$ denote the Hadamard product of two vectors \vec{a} and \vec{b}, $\vec{a} \circ \vec{b}=\left(a_{1}, \ldots, a_{n_{a}}, b_{1}, \ldots, b_{n_{b}}\right)$ the concatenation of vectors, $\vec{a}^{\mathrm{T}} \vec{b}=\sum_{i} a_{i} b_{i}$ the inner product, and $\vec{g}^{\vec{a}}=\prod_{i} g_{i}^{a_{i}}$ the multi-exponentiation. For a scalar c and a vector \vec{a}, the scalar product is $c \vec{a}=\left(c a_{1}, \ldots, c a_{n}\right)$.

Let κ be the computational security parameter, and κ is written in unary as input to all algorithms. A function f in a variable κ mapping natural numbers to $[0,1]$ is negligible if $f(\kappa)=\mathcal{O}\left(\kappa^{-c}\right)$ for every constant $c>0$. We say that $1-f$ is overwhelming if f is negligible.

Given a seed $\in\{0,1\}^{\kappa}$, we can use a pseudorandom function with seed as the key in the CTR mode to derive sufficiently many pseudorandom numbers and use them as random coins for operations in protocols.

We use Com to denote the (non-interactive) commitment scheme. We write decom as the random coins for a commitment, which can be used to open this commitment. The commitment scheme Com achieves (computationally) binding and hiding properties. We will use a signature scheme (KGen, Sig, Vf) that is existentially unforgeable under chosen-message attacks (EUF-CMA) for our PVC-secure protocol in Section 4.

The oblivious transfer (OT) functionality $\mathcal{F}_{\mathrm{OT}}$ is presented below. Let Π_{OT} be the protocol that securely realizes a parallel version of $\mathcal{F}_{\mathrm{OT}}$.

Functionality $\mathcal{F}_{\mathrm{OT}}$

Private inputs: P_{A} has input $x \in\{0,1\}^{\lambda}$ and P_{B} has input $\left\{\left(A_{i, 0}, A_{i, 1}\right)\right\}_{i \in[\lambda]}$.
Upon receiving $x \in\{0,1\}^{\lambda}$ from P_{A} and $\left\{\left(A_{i, 0}, A_{i, 1}\right)\right\}_{i \in[\lambda]}$ from P_{B}, the functionality sends $\left\{A_{i, x[i]}\right\}_{i \in[\lambda]}$ to P_{A}.

The security of our protocol relies on the decisional Diffie-Hellman (DDH) assumption as follows.
Definition 1. The decisional Diffie-Hellman ($D D H$) assumption in a cyclic group $\mathbb{G}=\langle g\rangle$ of prime order $q \in \Theta\left(2^{\kappa}\right)$ is that given $\left(g^{a}, g^{b}\right)$ for $a, b \leftarrow \varangle \mathbb{Z}_{q}, g^{a b}$ is computationally indistinguishable from a random element in \mathbb{G}.

Under the DDH assumption, we have the following lemma.
Lemma 1 ([36]). Under the DDH assumption for the cyclic group \mathbb{G} of prime order $q \in \Theta\left(2^{\kappa}\right)$, for any positive integer $n=\operatorname{poly}(\kappa)$, given $g_{1}, \ldots, g_{n} \leftarrow_{\&} \mathbb{G}$, we have that $\left(g_{1}^{\alpha_{1}}, \ldots, g_{n}^{\alpha_{n}}\right)$ is computationally indistinguishable from $\left(g_{1}^{\alpha}, \ldots, g_{n}^{\alpha}\right)$ for $\alpha, \alpha_{1}, \ldots, \alpha_{n} \leftarrow \mathbb{Z}_{q}$.
It is well-known that the DDH assumption implies the discrete logarithm assumption, which is equivalent to the following assumption.

Definition 2. The discrete logarithm relation assumption in a cyclic group \mathbb{G} of prime order $q \in \Theta\left(2^{\kappa}\right)$ is that for any positive integer $n=\operatorname{poly}(\kappa)$, given
$g_{1}, \ldots, g_{n} \leftarrow_{\infty} \mathbb{G}$, it is computationally hard to find $a_{1}, \ldots, a_{n} \in \mathbb{Z}_{q}$, such that $\exists a_{i} \neq 0 \in \mathbb{Z}_{q} \wedge \prod_{i=1}^{n} g_{i}^{a_{i}}=1$. We call $\prod_{i=1}^{n} g_{i}^{a_{i}}=1$ a nontrivial discrete logarithm relation.

We use the ElGamal encryption scheme in our protocol. This encryption scheme is over the cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, and it is indistinguishable under chosen plaintext attack (IND-CPA) under the DDH assumption for \mathbb{G}. We provide the description of algorithms for the scheme as follows.

Key Generation. This algorithm takes as input the security parameter 1^{κ}, picks $s \leftarrow s \mathbb{Z}_{q}$, and sets $h \leftarrow g^{s}$. Then the algorithm outputs the public key $\mathrm{pk} \leftarrow(\mathbb{G}, q, g, h)$ and the private key sk $\leftarrow s$.
Encryption. This algorithm takes as input a message $m \in \mathbb{G}$ and a public key pk, and returns the ciphertext $c \leftarrow\left(c^{(0)}=g^{r}, c^{(1)}=m h^{r}\right)$ for $r \leftarrow \mathbb{Z} \mathbb{Z}_{q}$.
Decryption. This algorithm takes as input a ciphertext $c=\left(c^{(0)}, c^{(1)}\right)$ and a key pair (pk, sk), and returns $m \leftarrow c^{(1)} /\left(c^{(0)}\right)^{s}$.

The ElGamal encryption scheme is multiplicatively homomorphic, such that the multiplication result of two ciphertexts is the ciphertext of the multiplication result of the two corresponding plaintexts. Computing the power of a ciphertext c also derives the ciphertext for the power of the corresponding plaintext of c.

2.1 Circuit Representation and Extended Permutation

Here, we introduce an approach to describing Boolean circuits with arbitrary fanout (see an example circuit C_{f} in Fig. 1). For a circuit, we call a wire outgoing wire (denoted by OW) if it is an input wire of the circuit or output wire of a gate. Meanwhile, a wire is called incoming wire (denoted by IW) if it is the input wire of a gate. Outgoing wires are connected with incoming wires, in the sense that each incoming wire connects with exactly one outgoing wire while an outgoing wire may connect with an arbitrary number (including 0) of incoming wires. Suppose that a circuit consists of θ gates, n input bits, and m output bits. Then this circuit has $n+\theta$ outgoing wires and 2θ incoming wires. For a gate G_{i}, its output wire is the outgoing wire OW_{n+i} and its two input wires are the incoming wires $\mathrm{IW}_{2 i-1}$ and $\mathrm{IW}_{2 i}$. The last m gates are the output gates of the circuit. Fig. 1(b) lists all gates $\left(G_{i}\right)_{i}$ inside the circuit C_{f}. A formal description of the connections between incoming wires and outgoing wires is captured by [33] via extended permutation.

Definition 3 ([33]). For positive integers N and M, a mapping $\pi:[N] \rightarrow[M]$ is an extended permutation $(E P)$ if for every $x \in[N]$, there exists one $y \in[M]$, such that $y=\pi(x)$.

Given an index of an incoming wire, π maps it to the index of the outgoing wire that connects with this incoming wire (see example in Fig. 1(c)). Note that different from the one-to-one correspondence mapping of the standard permutation, EP allows to replicate or omit elements during the mapping.

Fig. 1: A circuit C_{f} and the illustration of its wire connections and EP π_{f}.

Given a set of gates $\left(G_{i}\right)_{i \in[\theta]}$, the circuit owner P_{A} holding the description of a circuit C_{f} can follow the (randomized) procedure below to assign $\left(G_{i}\right)_{i \in[\theta]}$ to positions of gates in C_{f} and derive an EP π_{f} from the resulting circuit assembled by this set of gates.

1. Sort indices for non-output gate positions of C_{f} in a topological order, such that if the output wire of the i th gate is connected with the input wire of the j th gate, then i must be smaller than j. The indices of output gates are from $\theta-m+1$ to θ.
2. Pick a random standard permutation π_{R}. For non-output gates with indices $i \in[\theta-m]$, the position for the i th gate of C_{f} is assigned to gate $G_{\pi_{R}(i)}$.
3. For all output gates with indices $i=\theta-m+1, \ldots, \theta$, assign gate G_{i} to the position of the i th gate.
4. Extract the EP π_{f} for connections of outgoing wires and incoming wires from the resulting circuit.

When we consider a circuit that only includes one type of gates, e.g., NAND gates, the circuit can be exactly described by the corresponding EP. Now given π_{f}, it is easy to derive the description of the circuit. Our protocol indeed leverages this idea and assumes that circuits only consist of NAND gates for simplicity.

2.2 Building Blocks

In Table 2, we present two zero-knowledge ideal functionalities $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ and $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$ associated with the relations R_{DH} and $R_{\text {EncEP }}$ for the cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q as building blocks for our protocols. We will introduce how to instantiate them in Section 3.

3 PFE Protocol for Active Security

In this section, we introduce our constant-round two-party PFE protocol. This protocol is secure against malicious P_{A} and semi-honest P_{B}. Note that it is

Table 2: Relations and their zero-knowledge ideal functionalities.

Relation	Functionality
$R_{\text {DH }}=\left\{\left(\mathbb{G}, q,\left\{g_{i}\right\}_{i \in[N]},\left\{h_{i}\right\}_{i \in[N]}\right) \mid \exists x\right.$, s.t. $\left.\bigwedge_{i \in[N]}\left(h_{i}=g_{i}^{x}\right)\right\}$	$\mathcal{F}_{\mathrm{zk}}^{\text {DH }}$
$R_{\text {EncEP }}=\left\{\left(\mathbb{G}, q, g, h,\left\{g_{i}\right\}_{i \in[M]},\left\{\left(c_{i}^{(0)}, c_{i}^{(1)}\right)\right\}_{i \in[N]}\right) \mid \exists\left\{r_{i}\right\}_{i \in[N]}, \pi\right.$, s.t.	$\mathcal{F}_{\mathrm{zk}}^{\text {EncEP }}$
$\quad c_{i}^{(0)}=g^{\left.r_{i} \wedge c_{i}^{(1)}=g_{\pi(i)} h^{r_{i}} \wedge \pi \text { is an EP. }\right\}}$	

straightforward to obtain a constant-round actively secure PFE protocol with linear complexity by leveraging classical MPC results, such as the approach used in [23], to compile the protocol to be secure against malicious (circuit grabler) P_{B} providing private input values.

In PFE, a party P_{A} has a private Boolean circuit input C_{f} (implementing a function f) and private input $x_{A} \in\{0,1\}^{n_{A}}$, whereas the other party P_{B} has private input $x_{B} \in\{0,1\}^{n_{B}}$. We present the ideal functionality $\mathcal{F}_{\text {activePFE }}$ for our protocol in the following. Here we consider the more general case that the circuit holder P_{A} has an input $x_{A} \in\{0,1\}^{n_{A}}$, and it is not difficult to modify the protocols to the case that P_{A} has the private input C_{f} only. For the sake of simplicity, we assume that only one party will receive the evaluation result. It is also possible to modify the protocol such that both parties can receive the final result (see [20, Section 2.5.2]).

Functionality $\mathcal{F}_{\text {activePFE }}$

Pre-agreement: The circuit consists of θ gates, m output wires, and $n\left(=n_{A}+\right.$ n_{B}) input wires.
Private inputs: P_{A} has a Boolean circuit input C_{f} and input $x_{A} \in\{0,1\}^{n_{A}}$, whereas the other party P_{B} has input $x_{B} \in\{0,1\}^{n_{B}}$.

1. If an input of the form abort ${ }_{i}$ from the party P_{i} for $i \in\{A, B\}$ is received, the ideal functionality sends \perp to both parties and terminates.
2. If an input circuit C_{f} satisfying the pre-agreement from P_{A} is received, store C_{f}.
3. If $x_{A} \in\{0,1\}^{n_{A}}$ from P_{A} and $x_{B} \in\{0,1\}^{n_{B}}$ from P_{B} are received and an input circuit C_{f} is stored, the ideal functionality computes $C_{f}\left(x_{A}, x_{B}\right)$.
(a) If P_{i} (which is corrupted by \mathcal{A}) is allowed to learn $C_{f}\left(x_{A}, x_{B}\right)$, then it sends $C_{f}\left(x_{A}, x_{B}\right)$ to P_{i}.
(b) Otherwise, the ideal functionality sends nothing to the corrupted P_{i}. Then if the message continue from \mathcal{A} is received, the ideal functionality sends $C_{f}\left(x_{1}, x_{2}\right)$ to the honest party. Otherwise, if abort ${ }_{i}$ is received from \mathcal{A} on behalf of the corrupted P_{i}, it sends \perp to the honest party.

3.1 Full Description of the Protocol

We now give a full description of our protocol $\Pi_{\text {activePFE. }}$. Our protocol consists of two phases: initiation and evaluation. In the initiation phase, two parties prepare required data for later evaluations of C_{f}. Then given the preprocessed
data from the initiation phase, P_{A} and P_{B} evaluate C_{f} on their inputs x_{A} and x_{B} in the evaluation phase. At the end of the protocol, parties obtain their outputs specified by $\mathcal{F}_{\text {activePFE }}$, i.e., the evaluation result $C_{f}\left(x_{A}, x_{B}\right)$ or nothing. For the first execution of the protocol, P_{A} and P_{B} together execute the initiation phase and evaluation phase sequentially. Then, if the two parties would like to evaluate the same circuit C_{f} on different inputs, they now only need to execute the evaluation phase using the information previously generated in the initiation phase. This reusability property will be further extended to global reusability (see Remark 2). Note that in our protocols, we consider the Boolean circuit C_{f} only consists of NAND gates for simplicity. We use the cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q as above.

Here, we briefly present the main flow of the protocol. In the initiation phase, P_{A} derives an EP from her private circuit C_{f} and establishes connections of wire labels between incoming and outgoing wires, while P_{B} 's tasks are to assist P_{A} and ensure that P_{A} honestly follows the protocol. Then in the evaluation phase, different from the standard paradigm of garbled circuits, we let P_{B} obliviously garble (all gates of) the circuit for P_{A}. Then P_{A} can evaluate the corresponding garbled circuit, since she knows the topology of her circuit and the connections of wire labels established in the initiation phase.

In this initiation phase, P_{B} first chooses a list G of $M=n+\theta-m$ different elements from \mathbb{G} and sends G to P_{A}. This list G will be used to derive the labels of outgoing wires except those that are output wires of the circuit. After receiving the list $G, \mathrm{P}_{\mathrm{A}}$ generates an ElGamal encryption key pair. Then P_{A} derives the EP π_{f} from the circuit C_{f} following the procedure in Section 2.1. Now P_{A} performs the EP π_{f} on G and encrypts all elements of the resulting list to obtain the list Φ, where the i th encrypted elements in Φ are of the form $g_{\pi(i)}$. The list Φ is then sent to P_{B}. The EP here is to establish the connections between the outgoing wires (except output wires of the circuit since they do not connect with other wires) and the incoming wires for the further generation of wire labels, and the resulting list is encrypted to hide the EP from P_{B}. Then P_{A} picks a list $T=\left[t_{1}, \ldots, t_{N}\right]$ for $t_{i} \in \mathbb{Z}_{q}$ as the blinding factors. Using the homomorphic property, P_{A} can compute the t_{i} th power of the plaintext of c_{i} for all c_{i} 's in Φ and obtain the resulting list Φ^{\prime}, where the i th element is the encryption of $g_{\pi_{f}(i)}^{t_{i}}$. We note that here t_{i} is used to blind the encrypted values in Φ, such that P_{B} still does not know the base $g_{\pi_{f}(i)}$ when the element $g_{\pi_{f}(i)}^{t_{i}}$ is given later, and thus π_{f} and C_{f} are hidden. Finally, P_{A} helps P_{B} to decrypt all elements of Φ^{\prime} to derive $P=\left[p_{1}, \ldots, p_{N}\right]$, where $p_{i}=g_{\pi_{f}(i)}^{t_{i}}$. In Fig. 2, we give an illustration of the procedure that the circuit owner P_{A} will go through in the initiation phase for the previous example (Fig. 1).

During this procedure, to gain active security, it is important that P_{A} should prove in zero-knowledge that her operations are valid using the building blocks in Section 2.2. After the initiation phase, P_{B} holds the two lists G and P, while P_{A} holds the list T, together with lists G and P.

At the beginning of the evaluation phase, P_{B} generates labels for all wires. For the output wires of the circuit, P_{B} randomly generates wire labels representing 0

Fig. 2: Procedure of the circuit owner P_{A} in the initiation phase. The values in the dotted-line box are encrypted values that are hidden from P_{B}.
and 1 from \mathbb{G}. For labels of other wires, P_{B} first picks randomly two values $\alpha_{0} \in$ \mathbb{Z}_{q} and $\alpha_{1} \in \mathbb{Z}_{q}$. Then, all incoming-wire and outgoing-wire labels, except the outgoing wires that are output wires of the circuit (whose have been generated), are generated via computing the values in the lists P and G to the power of α_{0} and α_{1}, respectively, for values 0 and 1 . Here, each element p_{i} in P is for an incoming wire IW_{i}, and the pair of its wire labels is computed via $\left(v_{i}^{0}, v_{i}^{1}\right) \leftarrow$ $\left(p_{i}^{\alpha_{0}}, p_{i}^{\alpha_{1}}\right)$, i.e., $\left(v_{i}^{0}, v_{i}^{1}\right)=\left(g_{\pi_{f}(i)}^{t_{i} \alpha_{0}}, g_{\pi_{f}(i)}^{t_{i} \alpha_{1}}\right)$. Similarly, for an outgoing wire OW_{i}, the pair of wire labels $\left(w_{i}^{0}, w_{i}^{1}\right) \leftarrow\left(g_{i}^{\alpha_{0}}, g_{i}^{\alpha_{1}}\right)$ is computed using g_{i} in G. P_{B} now can garble all θ gates of the circuit that are composed solely of NAND gates for P_{A} one by one using these labels via a classical approach for garbling gates as we will introduce later. Then P_{B} sends these garbled gates to P_{A}. Note that P_{B} is unaware of the EP π_{f} (and the topology of C_{f}). An illustration for wire labels with respect to garbled gates for the previous example (Fig. 1) is given in Fig. 3. Note that all input-wire labels of the circuit are generated and possessed by P_{B},

Fig. 3: Wire labels with respect to garbled gates for the circuit C_{f}.
and thus P_{B} picks out the input-wire labels corresponding to his input x_{B} and sends his garbled inputs to P_{A}. Meanwhile, P_{A} could retrieve the garbled inputs corresponding to her input x_{A} from P_{B} through OT. This approach inherits from the standard approach of gabled circuits. Now since P_{A} knows the topology of the
circuit, the list of blinding factors T, and input-wire labels, she can re-construct the garbled circuit assembled by the received garbled gates and evaluate the garbled circuit using both parties' input-wire labels $\left\{\mathrm{x}_{i}\right\}_{i \in[n]}$.

We now introduce the approach to garbling gates and evaluating the garbled circuit assembled by garbled gates. Two algorithms (Gb, Eval) are involved here.

The algorithm $G b$ is invoked by P_{B} to generate garbled gates (in a one-by-one manner) for P_{A}. According to the circuit representation approach in Section 2.1, a gate G_{i} consists of two input wires, i.e., incoming wires, with indices $2 i-1$ and $2 i$, and one output wire, i.e., an outgoing wire, with index $n+i$. For such a gate, Gb takes as input the gate index i, the two pairs of inputwire labels $\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right)$ and $\left(v_{2 i}^{0}, v_{2 i}^{1}\right)$, together with the pair of output-wire labels $\left(w_{n+i}^{0}, w_{n+i}^{1}\right)$, and prepares four ciphertexts: $c_{i}^{a, b} \leftarrow \operatorname{Enc}_{v_{2 i-1}^{a}, v_{2 i}^{b}}^{i}\left(w_{n+i}^{\overline{a \cdot b}}\right)$ for $a, b \in\{0,1\}$ for a dual-key cipher Enc. Gb outputs the set of garbled gates $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$. Here $\mathrm{GG}_{i}=\left\{c_{i}^{a, b}\right\}_{a, b \in\{0,1\}}$, where $c_{i}^{a, b}$ are randomly permuted.

Eval is invoked by P_{A} to evaluate the garbled circuit that consists of garbled gates generated by P_{B}. It takes as input a set of garbled gates $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$, a set of input-wire labels $\left\{x_{i}\right\}_{i \in[n]}$, the list of blinding factors $T=\left\{t_{i}\right\}_{i \in[N]}$, and an EP π_{f}. This algorithm first derives the description of the corresponding circuit C_{f} from π_{f}. Now starting from (outgoing-wire) labels $\left\{\mathrm{x}_{i}\right\}_{i \in[n]}$, Eval computes incoming-wire labels from the corresponding outgoing-wire labels and evaluates garbled gates one by one following the topographical order of the circuit to obtain the final output-wire labels. Without loss of generality, for an outgoing wire OW_{i}, we denote its label in hand by w_{i}^{b}, where $b \in\{0,1\}$. Note that each outgoing wire may connect with some incoming wires that are the input wires of some gates. Assume that an incoming wire IW_{j} is connected with OW_{i}, i.e., $i=\pi_{f}(j) . \mathrm{P}_{\mathrm{A}}$ can obtain the wire label of IW_{j} by computing the t_{j} th power of w_{i}^{b}, i.e., $\left(w_{i}^{b}\right)^{t_{j}}$. It is easy to verify that $\left(w_{i}^{b}\right)^{t_{j}}=g_{i}^{\alpha_{b} t_{j}}=p_{j}^{\alpha_{b}}=v_{j}^{b}$, i.e., the result is the input-wire (incoming-wire) label we want. When having two inputwire (incoming-wire) labels $\left(v_{2 i-1}^{b}, v_{2 i}^{b^{\prime}}\right)$, where $b, b^{\prime} \in\{0,1\}$, for a garbled gate GG_{i}, the algorithm can decrypt GG_{i} using these two labels as keys (via a simple reverse approach of Enc) and obtain the non- \perp resulting output-wire (outgoingwire) label $w_{n+i}^{\overline{b \cdot b^{\prime}}}$. It is easy to see that the values of the wire b and b^{\prime} are hidden from P_{A} during this procedure. Since Eval follows the topology of the circuit, input-wire labels of a gate are always ready when we proceed to evaluate that gate. Finally, Eval returns the decrypted output-wire labels of the output gates.

The dual-key cipher Enc here can be constructed based on the random oracle (denoted by $\mathrm{H}: \mathbb{G} \times \mathbb{G} \times\{0,1\}^{*} \rightarrow\{0,1\}^{\|\mathbb{G}\| \times \tau}$) in a standard way: to garble a gate with index i, we let $\operatorname{Enc}_{v_{2 i-1}^{a}, v_{2 i}^{b}}^{i}\left(w_{n+i}^{\overline{a \cdot b}}\right)=\mathrm{H}\left(v_{2 i-1}^{a}, v_{2 i}^{b}, i\right) \oplus w_{n+i}^{\overline{a \cdot b}},{ }^{4}$ and further optimizations exist, e.g., a variant of the point-and-permute optimization [6] (see [8]). This garbling scheme is secure under the random oracle model, and we refer readers to see more information in Appendix A.

We provide the formal descriptions of the protocol below.

[^0]
Protocol $\Pi_{\text {activePFE }}$

Pre-agreement: Both parties agree on a cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, where DDH assumption holds. They also have the pre-agreement that C_{f} consists of θ gates, m output wires, and $n\left(=n_{A}+n_{B}\right)$ input wires. We denote the number of incoming wires by $N \leftarrow 2 \theta$ and the number of outgoing wires except those that are output wires of the circuit by $M \leftarrow n+\theta-m$.
Private inputs: P_{A} has a Boolean circuit input C_{f} and input $x_{A} \in\{0,1\}^{n_{A}}$, whereas the other party P_{B} has input $x_{B} \in\{0,1\}^{n_{B}}$.

Initiation Phase
In this phase, P_{A} has private circuit input C_{f}, while P_{B} has no input.

1. PB picks $g_{i} \leftarrow \mathbb{G}$ for $i \in[M]$, such that all g_{i} 's are different, and collects them as a list $G=\left[g_{1}, \ldots, g_{M}\right]$. Then, P_{B} sends G to P_{A}.
2. P_{A} picks $s \leftarrow \mathbb{Z}_{q}$ and computes $h \leftarrow g^{s}$. The public key and private key of the ElGamal encryption then is denoted by $\mathrm{pk}=(\mathbb{G}, q, g, h)$ and $\mathrm{sk}=s$, respectively.
P_{A} derives an EP π_{f} from C_{f}. Then P_{A} performs π_{f} on the elements of G and encrypts all resulting elements using pk to derive the list $\Phi=\left[c_{1}, c_{2}, \ldots, c_{N}\right]$, where c_{i} is the encryption of $g_{\pi_{f}(i)}$ for $i \in[N]$.
P_{A} picks $t_{i} \leftarrow s \mathbb{Z}_{q}$ for $i \in[N]$, such that all t_{i} 's are different, and stores the list $T=\left[t_{1}, \ldots, t_{N}\right]$ for the evaluation phase. P_{B} computes the t_{i} th power of each plaintext $g_{\pi_{f}(i)}$ of c_{i} via the multiplicatively homomorphic property of the ElGamal encryption to obtain c_{i}^{\prime}. Let the resulting list $\Phi^{\prime}=\left[c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right]$. P_{A} computes the information for decryption of all ciphertexts c_{i}^{\prime} (remember that $\left.c_{i}^{\prime}=\left(c_{i}^{\prime(0)}, c_{i}^{\prime(1)}\right)\right)$, i.e., P_{A} computes $d_{i} \leftarrow\left(c_{i}^{\prime(0)}\right)^{s}$ for $i \in[N]$.
P_{A} sends h, Φ, Φ^{\prime}, and $\left\{d_{i}\right\}_{i \in[N]}$ to P_{B}. Then P_{A} uses the functionalities $\mathcal{F}_{\text {zk }}^{\text {EncEP }}$ to prove to P_{B} that she has performed a valid EP on G to obtain Φ. Meanwhile, P_{A} uses $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ to prove to P_{B} her knowledge of s, i.e., the private key, for $\left(g,\left\{c_{i}^{\prime(0)}\right\}_{i \in[N]}\right)$ and $\left(h,\left\{d_{i}\right\}_{i \in[N]}\right)$, together with her knowledge of t_{i} for the two-tuple ciphertexts c_{i} and c_{i}^{\prime} for all $i \in[N]$.
3. P_{B} decrypts all c_{i}^{\prime} 's to obtain the plaintexts $p_{i} \leftarrow c_{i}^{\prime(1)} \cdot d_{i}^{-1}$, and stores a list $P=\left[p_{1}, \ldots, p_{N}\right]$ for the evaluation phase.

Evaluation phase

In this phase, P_{A} has private input $\pi_{f}\left(\right.$ for $\left.C_{f}\right)$ and x_{A}, and P_{B} has private input x_{B}. P_{B} holds the two lists G and P derived in the initiation phase, while P_{A} holds the lists T, G, and P. This phase could be executed multiple times for different input x_{A} and x_{B} once the two parties finish the initiation phase.

1. For output wires of the circuit, P_{B} picks $w_{i}^{0}, w_{i}^{1} \leftarrow \& \mathbb{G}$ for $i=M+1, \ldots, M+m$ as the wire labels. Then P_{B} picks $\alpha_{0}, \alpha_{1} \leftarrow s \mathbb{Z}_{q}$. For input wires of the circuit and output wires of non-output gates, i.e., all outgoing wires except output wires of the circuit, P_{B} computes labels $w_{i}^{0} \leftarrow g_{i}^{\alpha_{0}}$ and $w_{i}^{1} \leftarrow g_{i}^{\alpha_{1}}$ for $i \in[M]$. For all incoming wires, P_{B} computes labels $v_{i}^{0} \leftarrow p_{i}^{\alpha_{0}}$ and $v_{i}^{1} \leftarrow p_{i}^{\alpha_{1}}$ for $i \in[N]$. P_{B} computes $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right),\left(v_{2 i}^{0}, v_{2 i}^{1}\right),\left(w_{n+i}^{0}, w_{n+i}^{1}\right)\right\}_{i \in[\theta]}\right)$. Here, for a gate with index $i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right)$ and $\left(v_{2 i}^{0}, v_{2 i}^{1}\right)$ are the labels of the two input wires, and (w_{n+i}^{0}, w_{n+i}^{1}) are the labels of the output wire.
2. P_{A} and P_{B} execute $\mathcal{F}_{\mathrm{OT}}$. P_{B} uses as input $\left\{\left(w_{i}^{0}, w_{i}^{1}\right)\right\}_{i \in\left[n_{A}\right]}$, while P_{A} uses as input all bits of $x_{A} \in\{0,1\}^{n_{A}}$. At the end, P_{A} receives her garbled inputs $\left\{\mathrm{x}_{i}=w_{i}^{x_{A}{ }^{[i]}}\right\}_{i \in\left[n_{A}\right]}$.
3. P_{B} derives $\mathrm{x}_{n_{A}+i} \leftarrow w_{n_{A}+i}^{x_{B}[i]}$ for $i \in\left[n_{B}\right]$ as his garbled inputs. Then P_{B} sends $\mathrm{GC}=\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$ and $\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]}$ to P_{A}. If P_{A} is allowed to know the evaluation result, P_{B} also sends the garbled output mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[n]}$ to P_{A}.
4. P_{A} computes the garbled output: $\left\{\mathrm{y}_{i}\right\}_{i \in[m]} \leftarrow \operatorname{Eval}\left(\mathrm{GC},\left\{\mathrm{x}_{i}\right\}_{i \in\left[n_{A}+n_{B}\right]}, T, \pi_{f}\right)$. If P_{A} is allowed to know the evaluation result $y \in\{0,1\}^{m}, \mathrm{P}_{\mathrm{A}}$ can derive and output y from the garbled output mapping he has received. If P_{B} is allowed to know the evaluation result, P_{A} sends $\left\{\mathrm{y}_{i}\right\}_{i \in[m]}$ to P_{B} so that P_{B} could derive and output the final result. If the output-wire labels are not consistent with those P_{B} generated, P_{B} outputs \perp.

We present the theorem for the security of the protocol $\Pi_{\text {activePFE }}$ below.
Theorem 1. If the dual-key cipher is constructed based on the random oracle as above and the $D D H$ assumption of \mathbb{G} holds, the protocol $\Pi_{\text {activePFE }}$ securely realizes $\mathcal{F}_{\text {activePFE }}$ in the presence of malicious P_{A} and semi-honest P_{B} in the $\left(\mathcal{F}_{\mathrm{OT}}, \mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}, \mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}\right)$-hybrid world.
The proof of this theorem can be found in Appendix B.
We note that there exist protocols that securely realize $\mathcal{F}_{\mathrm{OT}}($ e.g., $[12,24])$, such that these protocols can be executed in parallel with constant-round and have linear complexity in the number of P_{B} 's input wires $n_{A}(\leq n \ll \theta)$. Meanwhile, there exist protocols (e.g., [14] that can be compiled by Fiat-Shamir heuristic to be non-interactive) that securely realizes $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$, such that the complexity of the total execution of the protocols is linear in $N(=2 \theta)$, i.e., linear in the number of gates θ. In Section 3.2, we will give a realization of $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$ that can also be compiled to be non-interactive and has linear complexity. Therefore, the protocol $\Pi_{\text {activePFE }}$ can be instantiated as a constant-round PFE protocol with linear complexity. By leveraging classical MPC results, such as the approach used in [23], our protocol can be compiled to be secure against malicious P_{B} and still preserves constant-round and linear complexity. Hence, we obtain a constant-round actively secure PFE protocol in the two-party setting with linear complexity.

Remark 1. The approach in [23] consider the case that P_{A} only provides a circuit C_{f}, while in some scenarios, P_{A} may also provide a private input x_{A}. For this case, we could simply use standard techniques, such as XOR-tree [28], to prevent malicious P_{B} launching selective-failure attacks.

In the following theorem, we show that executing the evaluation phase multiple times when the protocol involves the same circuit C_{f} (and EP π_{f}) does not sacrifice the security of the protocol $\Pi_{\text {activePFE. }}$. The proof of this theorem is put in Appendix C.

Theorem 2. The evaluation phase of $\Pi_{\text {activePFE }}$ can be securely executed multiple times for a fixed circuit C_{f}. In other words, the protocol that executes one initiation phase and multiple evaluation phases is secure against malicious P_{A} and semi-honest P_{B}.

We note that every execution of the evaluation phase in the view of P_{B} is to generate a set of new garbled gates, and the efforts to achieve reusability are mainly devoted to preventing P_{A} from learning additional information. Therefore, when we use classical MPC results, such as the approach used in [23], for the protocol, it is obvious that this reusability property still holds.

Remark 2. It is important that all messages from P_{B} in the initiation phase, including those from P_{B} in the protocols that securely realize $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ and $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$ (in Section 3.2) are all random. Meanwhile, after the initiation phase, P_{B} does not possess any private information. Therefore, we can make the initiation phase non-interactive via borrowing the idea of Fiat-Shamir heuristic. Now P_{A} can use the random oracle to generate messages of P_{B} (using all previous messages), simulate the interaction, and publish her messages in this simulated interaction at one time. Via this approach, the protocol is globally reusable for the same circuit C_{f}. This means that all parties playing the role of P_{B} can retrieve P_{A} 's messages and verify the correctness of these published messages. Then it is sufficient for them to directly start the evaluation phase with P_{A} for the fixed private circuit C_{f} multiple times using P and G derived in this simulated interaction. No interaction for initiation phase is needed between P_{A} and a potential party playing the role of P_{B}. This is a new feature, since the reusability of previous PFE protocols with linear complexity [8] is locally reusable, such that P_{A} needs to interactively perform a setup for a fixed circuit with a specified P_{B}, and the reusability only works for the two parties that perform such a setup together.

3.2 Realization of Functionality $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$

In this section, we introduce an approach securely realizing the functionality $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$. We would like to note that although EP is a generalization of permutation (shuffle), it seems that its corresponding zero-knowledge protocol cannot be constructed by simply modifying or invoking a shuffle protocol, e.g., [5, 10]. That may be the main reason why [34] failed to provide such a specific protocol for EP by extending shuffle protocols (see Appendix B of [34] for their thoughts on failed attempts) and they only provided a protocol in a generic approach. In what follows, we provide an efficient and specific protocol for $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$.

We firstly introduce the basic idea of our protocol. The job of the prover in $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$ is to convince the verifier that the plaintexts of a list of ciphertexts $\Phi=\left[c_{1}, \ldots, c_{N}\right]$ is derived from an EP that performs on a list of elements $G=\left[g_{1}, \ldots, g_{M}\right]$. In other words, the plaintext of each ciphertext in Φ is one of the elements in G. Notice that this is equivalent to saying that the plaintext of a ciphertext c_{i} is $\vec{g}^{\vec{e}_{i}}=\prod_{j=1}^{M} g_{j}^{e_{i j}}$, where the vector $\vec{e}_{i}=\left(e_{i 1}, \ldots, e_{i M}\right)$ is of the form that exact one entry is 1 and all other entries are 0 , i.e.,

$$
e_{i j}= \begin{cases}1 & \text { if } c_{i} \text { encrypts } g_{j} \\ 0 & \text { otherwise }\end{cases}
$$

The vector \vec{e}_{i} satisfies such a condition if and only if $\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=1$ and $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$. The condition $\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=1$ implies that the sum of all entries of \vec{e}_{i} is equal to 1 . The
condition $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$ implies that $\vec{e}_{i}\left(\vec{e}_{i}-\overrightarrow{1}\right)=\overrightarrow{0}$, i.e., each entry of the vector is either 0 or 1 . These two conditions conclude that \vec{e}_{i} is of the form that exact one entry is 1 and all other entries are 0 . In addition, the corresponding ciphertext c_{i} is of the form $\left(g^{r_{i}}, \vec{g}^{\vec{e}_{i}} h^{r_{i}}\right)$, which is reminiscent of ElGamal or Pedersen [37] commitment schemes and can be regarded as a commitment to the vector \vec{e}_{i}. Therefore, the prover's goal is to prove that each "committed" vector \vec{e}_{i} satisfies $\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=1$ and $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$, in a zero-knowledge manner. We note that it is possible for the prover to simultaneously prove the conditions for all \vec{e}_{i} 's.

For the proof of the condition $\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=1$, let the verifier pick a challenge $\omega \leftarrow \mathbb{Z}_{q}$. Then using the homomorphic property, both parties compute $C=$ $\left(\prod_{i=1}^{N}\left(c_{i}^{(0)}\right)^{\omega^{i}}, \prod_{i=1}^{N}\left(c_{i}^{(1)}\right)^{\omega^{i}}\right)$, which can be regarded as a commitment to the vector $\vec{e}=\sum_{i=1}^{N} \omega^{i} \vec{e}_{i}$. Since ω is random, if $\sum_{i=1}^{N} \omega^{i}\left(\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}\right)=\sum_{i=1}^{N} \omega^{i}$ holds, then $\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=1$ holds for all $i \in[M]$ with an overwhelming probability. Let $\Omega \leftarrow \sum_{i=1}^{N} \omega^{i}$. Since $\sum_{i=1}^{N} \omega^{i}\left(\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}\right)=\overrightarrow{1^{\mathrm{T}}} \vec{e}$ and \vec{e} is committed in C, it is enough for the prover to prove that $\overrightarrow{1}^{\mathrm{T}} \vec{e}=\Omega$ holds if the prover is computationally bounded.

We could follow a similar approach for the proof of the condition $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$. Let the verifier pick a random challenge $x \in \mathbb{Z}_{q}$. Then, using the homomorphic property, both parties compute $c_{\vec{d}}=\left(\prod_{i=1}^{N}\left(c_{i}^{(0)}\right)^{x^{i}}, \prod_{i=1}^{N}\left(c_{i}^{(1)}\right)^{x^{i}}\right)$, which can be regarded as a commitment to $\vec{d}=\sum_{i=1}^{N} x^{i} \vec{e}_{i}$. Since x is randomly chosen, if $\sum_{i=1}^{N} x^{i} \vec{e}_{i} \vec{e}_{i}-\vec{d}=\overrightarrow{0}$ holds, then $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$ holds for all $i \in[N]$ with an overwhelming probability. Moreover, let the verifier pick another random challenge $y \in \mathbb{Z}_{q}$ and define a bilinear map $*: \mathbb{Z}_{q}^{M} \times \mathbb{Z}_{q}^{M} \rightarrow \mathbb{Z}_{q}$ by $\left(a_{1}, \ldots, a_{M}\right) *\left(b_{1}, \ldots, b_{M}\right)=\sum_{j=1}^{M} a_{j} b_{j} y^{j}$. Similarly, if $\vec{e}_{i} * \vec{e}_{i}-\overrightarrow{1} * \vec{e}_{i}=0$, then $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$ holds with an overwhelming probability. Hence, since the vectors \vec{e}_{i} 's and \vec{d} have been committed in c_{i} 's and $c_{\vec{d}}$, it is enough for the prover to prove that $\sum_{i=1}^{N} x^{i} \vec{e}_{i} * \vec{e}_{i}-\overrightarrow{1} * \vec{d}=0$ holds if the prover is computationally bounded.

It is important to note that all g_{i} 's are generated by P_{B}, and thus a computationally bounded P_{A} cannot find a non-trivial discrete logarithm relation for $\left\{g_{i}\right\}_{i \in[M]}$ except a negligible probability. This guarantees the soundness of the protocols. Now we present the protocol $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ between a prover P and a verifier V below. Two sub-protocols $\Pi_{\mathrm{zk}}^{\text {Sum }}$ and $\Pi_{\mathrm{zk}}^{\text {Žero }}$ then follow respectively. In these protocols, V always verifies whether the received messages are of correct form, and rejects once they are not. These protocols are all public-coin honest-verifier zero-knowledge, and we can compile them to be non-interactive and secure via Fiat-Shamir heuristic to obtain the protocols we want.

$\underline{\text { Protocol } \Pi_{\mathrm{zk}}^{\mathrm{EncEP}}}$

Public Inputs: A cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, where DDH assumption holds. The public key of the ElGamal encryption scheme $\mathrm{pk}=(\mathbb{G}, q, g, h)$. A list of elements $G=\left[g_{1}, \ldots, g_{M}\right]$. A list of ElGamal ciphertexts $\Phi=\left[c_{1}, \ldots, c_{N}\right]$, where $c_{i}=\left(c_{i}^{(0)}, c_{i}^{(1)}\right)$. Elements in G and Φ all belong to the group \mathbb{G}.

Witness: P has an EP π and a list $R=\left[r_{1}, \ldots, r_{N}\right]$ that are random coins of ciphertexts in Φ, where $r_{i} \in \mathbb{Z}_{q}$.

1. For $i \in[N], \mathrm{P}$ derives a vector $\vec{e}_{i}=\left(e_{i, 1}, \ldots, e_{i, M}\right) \in \mathbb{Z}_{q}^{M}$ from π, such that the encrypted value of c_{i} can be represented by $\vec{g}^{\vec{e}_{i}}$. For the EP π, this vector is of the form where exact one entry is 1 and all other entries are all 0 .
2. V picks an element $\omega \leftarrow \mathbb{Z}_{q}$ and sends it to P . Both parties compute $C \leftarrow$ $\left(C^{(0)}=\prod_{i=1}^{N}\left(c_{i}^{(0)}\right)^{\omega^{i}}, C^{(1)}=\prod_{i=1}^{N}\left(c_{i}^{(1)}\right)^{\omega^{i}}\right)$. P computes $\vec{e} \leftarrow \sum_{i=1}^{N} \omega^{i} \vec{e}_{i}$ and $r_{\vec{e}} \leftarrow \sum_{i=1}^{N} \omega^{i} r_{i}$. Both parties compute $\Omega \leftarrow \sum_{i=1}^{N} \omega^{i}$. P proves to V the following relation $R_{\text {sum }}$ for $\vec{y}=\overrightarrow{1}$ via the protocol $\Pi_{\mathrm{zk}}^{\text {Sum }}$:

$$
\left\{(\mathbb{G}, q, g, h, G, C, \Omega, \vec{y}) \mid \exists\left(\vec{e}, r_{\vec{e}}\right): C^{(0)}=g^{r_{\vec{e}}} \wedge C^{(1)}=\vec{g}^{\overrightarrow{ }} h^{r_{\vec{e}}} \wedge \vec{y}^{\mathrm{T}} \vec{e}=\Omega\right\} .
$$

3. V picks two elements $x, y \leftarrow \$ \mathbb{Z}_{q}$ and sends them to P . Both parties compute $c_{\vec{d}_{i}} \leftarrow\left(c_{\vec{d}_{i}}^{(0)}=\left(c_{i}^{(0)}\right)^{x^{i}}, c_{\vec{d}_{i}}^{(1)}=\left(c_{i}^{(1)}\right)^{x^{i}}\right)$ for $i \in[N]$ and also $c_{\vec{d}} \leftarrow\left(c_{\vec{d}}^{(0)}=\right.$ $\left.\prod_{i=1}^{N}\left(c_{i}^{(0)}\right)^{x^{i}}, c_{\vec{d}}^{(1)}=\prod_{i=1}^{N}\left(c_{i}^{(1)}\right)^{x^{i}}\right)$ and $c_{-\overrightarrow{1}} \leftarrow\left(\prod_{i=1}^{M} g_{i}^{-1}, 1\right)$. P computes $\vec{d}_{i} \leftarrow$ $x^{i} \vec{e}_{i}$ and $r_{\vec{d}_{i}} \leftarrow x^{i} r_{i}$ for $i \in[N], \vec{d} \leftarrow \sum_{i=1}^{N} \vec{d}_{i}$, and $r_{\vec{d}}=\sum_{i=1}^{N} r_{\vec{d}_{i}}$. Define a bilinear map $*: \mathbb{Z}_{q}^{M} \times \mathbb{Z}_{q}^{M} \rightarrow \mathbb{Z}_{q}$ by $\left(a_{1}, \ldots, a_{M}\right) *\left(b_{1}, \ldots, b_{M}\right)=\sum_{j=1}^{M} a_{j} b_{j} y^{j}$. P proves to V the following relation $R_{\text {Zero }}$ via the protocol $\Pi_{\mathrm{zk}}^{\text {Zero }}$:

$$
\begin{aligned}
& \left\{\left(\mathbb{G}, q, g, h, G, \Phi,\left\{c_{\vec{d}_{i}}\right\}_{i \in[N]}, c_{\vec{d}}, c_{-\overrightarrow{1}}\right) \mid \exists\left(\left\{\vec{e}_{i}, r_{i}, \vec{d}_{i}, r_{d_{i}}\right\}_{i \in[N]}, \vec{d}, r_{\vec{d}}\right):\right. \\
& \left(\forall i \in[N], c_{i}^{(0)}=g^{r_{i}} \wedge c_{i}^{(1)}=\vec{g}^{\vec{e}_{i}} h^{r_{i}} \wedge c_{\vec{d}_{i}}^{(0)}=g^{r_{\vec{d}_{i}}} \wedge c_{\vec{d}_{i}}^{(1)}=\vec{g}^{\vec{d}_{i}} h^{r}{\overrightarrow{d_{i}}}\right) \\
& \\
& \left.\wedge c_{\vec{d}}^{(0)}=g^{r} \vec{d} \wedge c_{\vec{d}}^{(1)}=\vec{g}^{\vec{d}} h^{r} \vec{d} \wedge \sum_{i=1}^{N} \vec{e}_{i} * \vec{d}_{i}-\overrightarrow{1} * \vec{d}=0\right\}
\end{aligned}
$$

Theorem 3. The protocol $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ is an honest-verifier zero-knowledge argument of knowledge for $R_{\text {EncEP }}$.

The proof of this theorem can be found in Appendix D.
The protocol $\Pi_{\mathrm{zk}}^{\text {Sum }}$ between a prover P and a verifier V below uses the idea mentioned in [11] for recursing the protocol and halving the statement in each recursion. Thus, $\Pi_{\mathrm{zk}}^{\text {Sum }}$ has logarithmic communication cost. Throughout this protocol, we assume that the parameter M is a power of 2 . If needed, one can easily pad the inputs to ensure that this holds as in [11].

$$
\text { Protocol } \Pi_{\mathrm{zk}}^{\text {Sum }}
$$

Public Inputs: A cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, where DDH assumption holds. The public key of the ElGamal encryption scheme $\mathrm{pk}=(\mathbb{G}, q, g, h)$. An ElGamal ciphertexts $C=\left(C^{(0)}, C^{(1)}\right)$. An element $\Omega \in \mathbb{Z}_{q}$. Two vectors $\vec{g}=$ $\left(g_{1}, \ldots, g_{M}\right)$ and $\vec{y}=\left(y_{1}, \ldots, y_{M}\right)$ of length M. Denote the length of vectors \vec{g} and \vec{y} by $\ell=M$. Let $c_{\vec{e}} \leftarrow C^{(1)}$. Both parties initiate an element $c_{\vec{e}}^{\prime} \leftarrow g^{\Omega}$.
Witness: The prover P has witness $\vec{e}, r_{\vec{e}}$.
Statement: There exist \vec{e} and $r_{\vec{e}}$, such that $C^{(0)}=g^{r_{\vec{e}}} \wedge c_{\vec{e}}=\vec{g}^{\vec{e}} h^{r_{\vec{e}}} \wedge c_{\vec{e}}^{\prime}=g^{\vec{y}^{\mathrm{T}}} \vec{e}$.
-V picks $u \leftarrow \mathbb{G}$ and sends u to P . P initiates $\rho_{\vec{e}}=0$, and $\rho_{\vec{e}}^{\prime}=0$. Then two parties engage in the procedure below to prove the statement:

There exist $\vec{e}, r_{\vec{e}}, \rho_{\vec{e}}$, and $\rho_{\vec{e}}^{\prime}$, such that $C^{(0)}=g^{r_{\vec{e}}} \wedge c_{\vec{e}}=\vec{g}^{\vec{e}} u^{\rho_{\vec{e}}} h^{r_{\vec{e}}} \wedge$ $c_{\vec{e}}^{\prime}=g^{\vec{y}^{T} \vec{e}} u^{\rho_{\vec{e}}^{\prime}}$.

- If $\ell=1$, we denote the only element in \vec{e}, \vec{g}, and \vec{y} by \bar{e}, \bar{g}, and \bar{y}, respectively. Let $\gamma \leftarrow g^{\bar{y}}$. Now $c_{\vec{e}}, c_{\vec{e}}^{\prime}$, and $C^{(0)}$ are of the form $c_{\vec{e}}=\bar{g}^{\bar{e}} u^{\rho_{\vec{e}}} h^{r_{\vec{e}}}, c_{\vec{e}}^{\prime}=\gamma^{\bar{e}} u^{\rho_{\vec{e}}^{\prime}}$, and $C^{(0)}=g^{r_{e}}$, respectively. P and V follow the procedure as follows.

1. P picks $x_{1}, x_{2}, x_{3}, x_{4} \leftarrow s \mathbb{Z}_{q}$, and sends $a_{1} \leftarrow \bar{g}^{x_{1}} u^{x_{2}} h^{x_{3}}, a_{2} \leftarrow \gamma^{x_{1}} u^{x_{4}}$, $a_{3} \leftarrow g^{x_{3}}$ to V .
2. V sends $\alpha \leftarrow \& \mathbb{Z}_{q}$ to P .
3. P sends $z_{1} \leftarrow x_{1}+\alpha \bar{e}, z_{2} \leftarrow x_{2}+\alpha \rho_{\vec{e}}, z_{3} \leftarrow x_{3}+\alpha r_{\vec{e}}$, and $z_{4} \leftarrow x_{4}+\alpha \rho_{\vec{e}}^{\prime}$ to V.
4. V verifies whether equations $\bar{g}^{z_{1}} u^{z_{2}} h^{z_{3}}=a_{1} c_{\vec{e}}^{\alpha}, \gamma^{z_{1}} u^{z_{4}}=a_{2}\left(c_{e}^{\prime}\right)^{\alpha}$, and $g^{z_{3}}=a_{3}\left(C^{(0)}\right)^{\alpha}$ hold. If they all hold, V outputs accept. Otherwise, V outputs reject.

- If $\ell \neq 1, \mathrm{P}$ and V follow the following procedure.

1. We write $\vec{e}=\vec{e}_{L} \circ \vec{e}_{R}, \vec{g}=\vec{g}_{L} \circ \vec{g}_{R}$, and $\vec{y}=\vec{y}_{L} \circ \vec{y}_{R}$. P computes $v_{L} \leftarrow \vec{g}_{R}^{\vec{L}_{L}} u^{\rho_{L}}, v_{R} \leftarrow \vec{g}_{L}^{\vec{e}_{R}} u^{\rho_{R}}, v_{L}^{\prime} \leftarrow g^{\vec{y}_{R}^{\mathrm{T}} \vec{e}_{L}} u^{\rho_{L}^{\prime}}$, and $v_{R}^{\prime} \leftarrow g^{\vec{y}_{L}^{\mathrm{T}} \vec{e}_{R}} u^{\rho_{R}^{\prime}}$, where $\rho_{L}, \rho_{R}, \rho_{L}^{\prime}, \rho_{R}^{\prime} \leftarrow \varangle \mathbb{Z}_{q}$. Then P sends $v_{L}, v_{R}, v_{L}^{\prime}$, and v_{R}^{\prime} to V .
2. V sends $\alpha \leftarrow \mathbb{Z}_{q}$ to P .
3. P computes $\vec{e}^{\prime}=\alpha \vec{e}_{L}+\alpha^{-1} \vec{e}_{R}$ of length $\ell^{\prime}=\ell / 2$, and also computes $\rho_{\vec{e}^{\prime}} \leftarrow \rho_{\vec{e}}+\alpha^{2} \rho_{L}+\alpha^{-2} \rho_{R}$ and $\rho_{\vec{e}^{\prime}}^{\prime} \leftarrow \rho_{\vec{e}}^{\prime}+\alpha^{2} \rho_{L}^{\prime}+\alpha^{-2} \rho_{R}^{\prime}$. Both parties compute $c_{\vec{l}^{\prime}} \leftarrow c_{\vec{e}} v_{L}^{\alpha^{2}} v_{R}^{\alpha \alpha^{-2}}$ and $c_{\vec{e}^{\prime}}^{\prime} \leftarrow c_{\vec{e}}^{\prime}\left(v_{L}^{\prime}\right)^{\alpha^{2}}\left(v_{R}^{\prime}\right)^{\alpha^{-2}}$, and two vectors $\vec{g}^{\prime} \leftarrow \vec{g}_{L}^{\alpha^{-1}} \vec{g}_{R}^{\alpha}$ and $\vec{y}^{\prime} \leftarrow \alpha^{-1} \vec{y}_{L}+\alpha \vec{y}_{R}$ of length $\ell^{\prime}=\ell / 2$. It is easy to verify that $c_{\vec{e}^{\prime}}=\vec{g}^{\vec{e}^{\prime}} u^{\rho_{\vec{e}^{\prime}}} h^{r}{ }^{\vec{e}}$ and $c_{\vec{e}^{\prime}}^{\prime}=g^{{\overrightarrow{y^{\prime}}}^{\mathrm{T}} \vec{e}^{\prime}} u^{\rho_{\vec{e}^{\prime}}^{\prime}}$.
4. Both parties recurse on $\Pi_{\mathrm{zk}}^{\mathrm{Sum}}$ for the same $C^{(0)}$, (\mathbb{G}, q, g, h), u but using $c_{\vec{e}^{\prime}}, c_{\vec{e}^{\prime}}^{\prime}, \vec{g}^{\prime}, \vec{y}^{\prime}$ in place of $c_{\vec{e}}, c_{\vec{e}}^{\prime}, \vec{g}, \vec{y} . \mathrm{P}$ in the recursion uses the same $r_{\vec{e}}$, but uses $\rho_{\vec{e}^{\prime}}, \rho_{\vec{e}^{\prime}}^{\prime}, \vec{e}^{\prime}$ in place of $\rho_{\vec{e}}, \rho_{\vec{e}}^{\prime}, \vec{e}$. We use $\ell^{\prime}=\ell / 2$ in place of ℓ to denote the length of vector $\vec{g}^{\prime}, \vec{y}^{\prime}$, and \vec{e}^{\prime}.

Theorem 4. The protocol $\Pi_{\mathrm{zk}}^{\text {Sum }}$ is an honest-verifier zero-knowledge argument of knowledge for the relation $R_{\text {Sum }}$.

The proof of this theorem can be found in Appendix E.
The protocol $\Pi_{\mathrm{zk}}^{\text {Zero }}$ between a prover P and a verifier V below borrows the idea of the zero argument in [5]. We tailor the protocol to support the ElGamal encryption scheme and introduce how to further reduce the communication cost in Remark 3.

$\underline{\text { Protocol } \Pi_{\mathrm{zk}}^{\text {Zero }}}$

Public Inputs: A cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, where DDH assumption holds. The public key of the ElGamal encryption scheme $\mathrm{pk}=(\mathbb{G}, q, g, h)$. A list $G=\left[g_{1}, \ldots, g_{M}\right]$. Two lists of ElGamal ciphertexts $\left\{c_{\bar{u}_{i}}^{(0)}, c_{\vec{u}_{i}}^{(1)}\right\}_{i \in[\ell]},\left\{c_{\vec{v}_{i}}^{(0)}, c_{\vec{v}_{i}}^{(1)}\right\}_{i \in[\ell]}$. The description of the bilinear map $*$ for a variable y.
Witness: The prover P has witness $\left\{\vec{u}_{i}, r_{\vec{u}_{i}}\right\}_{i \in[\ell]},\left\{\vec{v}_{i}, r_{\vec{v}_{i}}\right\}_{i \in[\ell]}$.
Statement: There exist $\left\{\vec{u}_{i}, r_{\vec{u}_{i}}\right\}_{i \in[\ell]}$ and $\left\{\vec{v}_{i}, r_{\vec{v}_{i}}\right\}_{i \in[\ell]}$, such that $c_{\vec{u}_{i}}^{(0)}=g^{r_{\vec{u}_{i}}}$, $c_{\vec{u}_{i}}^{(1)}=\vec{g}^{\vec{u}_{i}} h^{r_{\vec{u}_{i}}}, c_{\vec{v}_{i}}^{(0)}=g^{r_{\vec{v}_{i}}}, c_{\vec{v}_{i}}^{(1)}=\vec{g}^{\vec{v}_{i}} h^{r_{\vec{v}_{i}}}$ for all $i \in[\ell]$, and $\sum_{i=1}^{\ell} \overrightarrow{u_{i}} * \overrightarrow{v_{i}}=0$.

1. P picks $\vec{u}_{0}, \vec{v}_{\ell+1} \leftarrow \$ \mathbb{Z}_{q}^{M}$ and $r_{\vec{u}_{0}}, r_{\vec{v}_{\ell+1}} \leftarrow \$ \mathbb{Z}_{q}$. Then P computes $c_{\vec{u}_{0}} \leftarrow\left(c_{\vec{u}_{0}}^{(0)}=\right.$ $\left.g^{r_{\vec{u}_{0}}}, c_{\vec{u}_{0}}^{(1)}=\vec{g}^{\vec{u}_{0}} h^{r_{\vec{u}_{0}}}\right)$ and $c_{v_{\ell+1}} \leftarrow\left(c_{v_{\ell+1}}^{(0)}=g^{r_{\vec{v}_{\ell+1}}}, c_{v_{\ell+1}}^{(1)}=\vec{g}^{\vec{v}_{\ell+1}} h^{r_{\vec{v}_{\ell+1}}}\right) . \mathrm{P}$ computes for $\phi=0, \ldots, 2 \ell$

$$
d_{\phi} \leftarrow \sum_{\substack{0 \leq i \leq \ell, 1 \leq j \leq \ell+1 \\ j=\ell+1-\phi+i}} \vec{u}_{i} * \vec{v}_{j} .
$$

P picks $r_{d_{\phi}} \leftarrow s \mathbb{Z}_{q}$ for $\phi \in\{0, \ldots, 2 \ell\} \backslash\{\ell+1\}$ and computes $c_{d_{\phi}} \leftarrow g^{d_{\phi}} h^{r_{d}}$ for $\phi \in\{0, \ldots, 2 \ell\} \backslash\{\ell+1\}$. For $\phi=\ell+1$, both parties set $r_{d_{\ell+1}} \leftarrow 0$ and $c_{d_{\ell+1}} \leftarrow$ 1, After the computation, P sends $c_{\vec{u}_{0}}, c_{\vec{v}_{\ell+1}}$, and $\left\{c_{d_{\phi}}\right\}_{\phi \in\{0, \ldots, 2 \ell\} \backslash\{\ell+1\}}$ to V .
2. V sends $x \leftarrow s \mathbb{Z}_{q}$ to P .
3. P computes $\vec{u} \leftarrow \sum_{i=0}^{\ell} x^{i} \vec{u}_{i}, r_{\vec{u}} \leftarrow \sum_{i=0}^{\ell} x^{i} r_{\vec{u}_{i}}, \vec{v} \leftarrow \sum_{j=1}^{\ell+1} x^{\ell-j+1} \vec{v}_{j}, r_{\vec{v}} \leftarrow$ $\sum_{j=1}^{\ell+1} x^{\ell+1-j} r_{\vec{v}_{j}}$, and $t \leftarrow \sum_{\phi=0}^{2 \ell} x^{\phi} r_{d_{\phi}}$, and sends $\vec{u}, r_{\vec{u}}, \vec{v}, r_{\vec{v}}, t$ to V .
4. V outputs accept if all equations $\prod_{i=0}^{\ell}\left(c_{\vec{u}_{i}}^{(0)}\right)^{x^{i}}=g^{r} \vec{u}^{u}, \prod_{i=0}^{\ell}\left(c_{\vec{u}_{i}}^{(1)}\right)^{x^{i}}=\vec{g}^{\vec{u}} h^{r \vec{u}}$, $\prod_{j=1}^{\ell+1}\left(c_{\vec{v}_{j}}^{(0)}\right)^{x^{\ell+1-j}}=g^{r} \vec{v}, \prod_{j=1}^{\ell+1}\left(c_{\vec{v}_{j}}^{(1)}\right)^{x^{\ell+1-j}}=\vec{g}^{\vec{v}} h^{r} \vec{v}$, and $\prod_{\phi=0}^{2 \ell} c_{d_{\phi}}^{x^{\phi}}=g^{\vec{u} * \vec{v}} h^{t}$ hold. Otherwise, V outputs reject.

Theorem 5. The protocol $\Pi_{\mathrm{zk}}^{\text {Zero }}$ is an honest-verifier zero-knowledge argument of knowledge for the relation $R_{\text {Zero }}$.

The proof of this theorem can be found in Appendix F.

Remark 3. We can further reduce the communication cost of $\Pi_{\mathrm{zk}}^{\text {Zero }}$. Notice that in Step 1, P needs to commit to all elements in $\left\{d_{\phi}\right\}_{\phi=0, \ldots, 2 \ell}$. We could include a list of $2 \ell+1$ random elements of \mathbb{G}, e.g., $H=\left\{h_{\phi}\right\}_{\phi=0, \ldots, 2 \ell}$, in the common reference string. P can thus commit to $\left\{d_{\phi}\right\}_{\phi=0, \ldots, 2 \ell}$ by computing $c_{\vec{d}} \leftarrow\left(g^{r_{\vec{d}}}, \sum_{\phi=0}^{2 \ell} h_{\phi}^{d_{\phi}} h^{r_{\vec{d}}}\right)$ for $r_{\vec{d}} \leftarrow s \mathbb{Z}_{q} . \mathrm{P}$ now only needs to send $c_{\vec{d}}$ to verifier instead of $\left\{c_{d_{\phi}}\right\}_{\phi \in\{2, \ldots, 2 \ell\} \backslash\{\ell+1\}}$, and does not need to send t to V in Step 3. Alternatively, P proves to V the following statement for $\vec{y}=\left[x^{0}, \ldots, x^{\ell}, 0, x^{\ell+2}, x^{2 \ell}\right]$ and $D=\vec{u} * \vec{v}$ via the protocol $\Pi_{\mathrm{zk}}^{\text {Sum }}$ in Step 4:

$$
\left\{\left(\mathbb{G}, q, g, h, H, c_{\vec{d}}, D, \vec{y}\right) \mid \exists\left(\vec{d}, r_{\vec{d}}\right): c_{\vec{d}}^{(0)}=g^{r_{\vec{d}}} \wedge c_{\vec{d}}^{(1)}=\vec{h}^{\vec{d}} h^{r_{\vec{d}}} \wedge \vec{y}^{\mathrm{T}} \vec{d}=D\right\}
$$

Following this approach, we reduce the linear communication cost of sending d_{ϕ} 's to the logarithmic communication cost of using $\Pi_{\mathrm{zk}}^{\text {Sum }}$. Similarly, P can avoid directly sending \vec{v} and $r_{\vec{v}}$, i.e., the opening for $c_{\vec{v}}=\left(c_{\vec{v}}^{(0)}, c_{\vec{v}}^{(1)}\right)=$ $\left(\prod_{j=1}^{\ell+1}\left(c_{\vec{v}_{j}}^{(0)}\right)^{x^{\ell+1-j}}, \prod_{j=1}^{\ell+1}\left(c_{\vec{v}_{j}}^{(1)}\right)^{x^{\ell+1-j}}\right)$. Now P only sends \vec{u} and $r_{\vec{u}}$ in Step 3, and V only verifies the two equations related to \vec{u} and $r_{\vec{u}}$ in Step 4. Then, P sends $D=\vec{u} * \vec{v}$ to V and proves the following statement for $\vec{y}=\left[y^{1} u_{1}, \ldots, y^{M} u_{M}\right]$ via the protocol $\Pi_{\mathrm{zk}}^{\text {Sum }}$ in Step 4:

$$
\left\{\left(\mathbb{G}, q, g, h, G, c_{\vec{v}}, D, \vec{y}\right) \mid \exists\left(\vec{v}, r_{\vec{v}}\right): c_{\vec{v}}^{(0)}=g^{r_{\vec{v}}} \wedge c_{\vec{v}}^{(1)}=\vec{g}^{\vec{v}} h^{r_{\vec{v}}} \wedge \vec{y}^{\mathrm{T}} \vec{v}=D\right\}
$$

4 PFE Protocol for PVC Security

In this section, we introduce the first constant-round PVC-secure PFE protocol with linear complexity in the two-party setting based on the results in Section 3. The corresponding ideal functionality $\mathcal{F}_{\text {covertPFE }}$ is given in the following.

Functionality $\mathcal{F}_{\text {covertPFE }}$

Pre-agreement: The circuit C_{f} consists of θ gates, m output wires, and $n(=$ $n_{A}+n_{B}$) input wires.
Private inputs: P_{A} has a Boolean circuit input C_{f} and input $x_{A} \in\{0,1\}^{n_{A}}$, whereas the other party P_{B} has input $x_{B} \in\{0,1\}^{n_{B}}$.

1. If an input of the form abort $_{i}$ from the party P_{i} for some $i=\{A, B\}$ is received, the ideal functionality sends \perp to both parties and the ideal execution terminates.
2. If a circuit C_{f} satisfying the pre-agreement from P_{A} is received, store C_{f}.
3. If an input of the form blatantCheat from P_{B} is received, the ideal functionality sends corrupted to both parties and terminates.
4. If an input of the form cheat from P_{B} is received and P_{A} 's inputs C_{f} and x_{A} were received previously:

- With probability ϵ, the ideal functionality sends corrupted to both parties and terminates.
- With probability $1-\epsilon$, the ideal functionality sends (undetected, x_{A}, C_{f}) to P_{B}. If P_{A} is allowed to receive the output, the ideal functionality waits for $y \in\{0,1\}^{m}$ from the adversary \mathcal{A}, sends y to P_{A}, and terminates.

5. If input $x_{A} \in\{0,1\}^{n_{A}}$ from P_{A} and $x_{B} \in\{0,1\}^{n_{B}}$ from P_{B} are received and an input circuit C_{f} is stored, the ideal functionality computes $C_{f}\left(x_{A}, x_{B}\right)$.
(a) If P_{A} (when she is corrupted by \mathcal{A}) is allowed to learn $C_{f}\left(x_{A}, x_{B}\right)$, then it sends $C_{f}\left(x_{A}, x_{B}\right)$ to P_{A}.
(b) Otherwise, the ideal functionality sends nothing to P_{A}. Then if continue from \mathcal{A} is received, the ideal functionality sends $C_{f}\left(x_{1}, x_{2}\right)$ to the honest P_{B}. Otherwise, if abort ${ }_{A}$ is received from \mathcal{A} on behalf of the corrupted P_{A}, it sends \perp to the honest P_{B}.

We give the PVC-security definition for our PFE protocol $\Pi_{\text {covertPFE }}$ as follows.
Definition 4. A two-party PFE protocol $\Pi_{\text {covertPFE }}$ along with algorithms Blame and Judge is publicly verifiable covert secure with ϵ-deterrent if the following conditions hold.

PVC security The protocol $\Pi_{\text {covertPFE }}$, which might output cert if the honest party detects covert cheating, securely realizes $\mathcal{F}_{\text {covertPFE }}$ with ϵ-deterrent.
Public verifiability If the honest party outputs cert during the protocol execution, then the output of the algorithm Judge for cert is 1, except a negligible probability.
Defamation freeness If one party is honest, the probability that the other malicious party generates a certificate cert for which Judge outputs 1 is negligible.

4.1 Full Description of the Protocol

In the two-party case, active security implies covert security with public verifiability, since we could regard attempts to cheat as abortions. Therefore, techniques for dealing with malicious P_{A} are workable for the PVC-secure setting.

Here we briefly introduce the main idea of our PVC-secure protocol $\Pi_{\text {covertPFE }}$. Recall that in Remark 2, we describe how to make the initiation phase noninteractive. This approach can also be adopted here in $\Pi_{\text {covertPFE. }}$ Thus, we now do not need to consider malicious P_{B} in the initiation phase. We can reuse the initiation phase of $\Pi_{\text {activePFE }}$ for $\Pi_{\text {covertPFE }}$, with the exception that we include G in the common reference string to simplify the proof of security. Note that this small change does not hinder the protocol from achieving global reusability.

In the evaluation phase of $\Pi_{\text {activePFE }}, \mathrm{P}_{\mathrm{A}}$ receives the garbled circuit and garbled inputs, evaluates the garbled circuit, and derives the resulting outputs or sends garbled outputs back to P_{B}. It is easy to see that P_{A} has no chance to cheat in the protocol. Even if P_{A} sends incorrect garbled outputs to P_{B}, the incorrect garbled outputs will still be rejected by P_{B} due to the authenticity of the garbling. Hence, we only need to focus on the security against covert P_{B}.

To achieve covert security, we follow the same paradigm of all existing work, i.e., parties generate λ instances of a passively secure protocol, check the correctness of $\lambda-1$ randomly chosen instances, and take the result of the unopened one. In addition, we use a derandomized approach to supporting efficient correctness check in our protocol. More concretely, P_{B} needs to pick for each instance a seed to generate random coins during the execution of that instance (including the circuit garbling and OT protocol). P_{A} then uses OT protocol to retrieve all but one of the seeds, such that P_{B} is unaware of which instances are checked. Now given the seeds, P_{A} can easily check the correctness of the corresponding instances. To prevent P_{B} leaking inputs, P_{B} commits to his pairs of input-wire labels in random order with randomness derived from the seed and send these two commitments to P_{A} for each instance. Hence, P_{A} can effectively check the correctness of these commitments using the seed for opened instance, while P_{B} 's inputs are preserved. After the check, P_{A} points out the unopened instance, and now one of the two commitments for her input wires needs to be opened by P_{B} as his garbled input to enable P_{A} to evaluate the unopened garbled circuit.

To add public verifiability to the approach above, we let P_{B} sign all transcripts that have been produced before the time when P_{A} reveals the index of the unopened instance. In addition, for each instance, let P_{A} commit to a random seed at the beginning of the protocol and uses this seed to derived random coins during her execution of the instance. This commitment will be included in P_{B} 's transcript and signed by P_{B}, such that it can prevent P_{A} from defaming honest P_{B}. If P_{B} deviates from an instance checked by P_{A}, P_{A} can generate a certificate that includes related transcripts and P_{B} 's signature on them for that instance, such that it allows a third party to verify this proof of misbehavior. Since P_{B} cannot realize in time that the instance in which he deviates from the protocol has been checked by P_{A}, he cannot abort before P_{A} has collected enough materials to generate the certificate.

Our protocol $\Pi_{\text {covertPFE }}$ is given in the following. Since parties need to commit to transcripts of the OT executions in the protocol, the description directly uses the protocol Π_{OT} that securely realizes a parallel version of $\mathcal{F}_{\mathrm{OT}}$.

Protocol $\Pi_{\text {covertPFE }}$

Pre-agreement: Both parties agree on a cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, where DDH assumption holds. They also have the pre-agreement about $C_{f}: \theta$ gates, m output wires, $n\left(=n_{A}+n_{B}\right)$ input wires, $N=2 \theta$ incoming wires, and $M=n+\theta-m$ outgoing wires except output wires of the circuit. The common reference string includes a list $G=\left[g_{1}, \ldots, g_{M}\right] \in \mathbb{G}^{M}$, where all g_{i} 's are different. Private inputs: P_{A} has a Boolean circuit input C_{f} and input $x_{A} \in\{0,1\}^{n_{A}}$, whereas the other party P_{B} has input $x_{B} \in\{0,1\}^{n_{B}}$ and keys (vk, sigk) for a signature scheme. P_{A} knows the verification key vk .

Initiation Phase

1. PA picks $s \leftarrow s \mathbb{Z}_{q}$ and computes $h \leftarrow g^{s}$. Denote the public and private keys of the ElGamal encryption by $\mathrm{pk}=(\mathbb{G}, q, g, h)$ and $\mathrm{sk}=s$, respectively.
P_{A} derives an EP π_{f} from C_{f}. Then P_{A} permutes elements of G according to π_{f} and encrypts all resulting elements using pk to derive the list $\Phi=$ $\left[c_{1}, c_{2}, \ldots, c_{N}\right]$, where c_{i} is the encryption of $g_{\pi_{f}(i)}$ for $i \in[N]$.
P_{A} picks $t_{i} \leftarrow \$ \mathbb{Z}_{q}$ for $i \in[N]$, such that all t_{i} 's are different, and stores the list $T=\left[t_{1}, \ldots, t_{N}\right]$ for the evaluation phase. P_{B} computes the t_{i} th power of each plaintext $g_{\pi_{f}(i)}$ of c_{i} via the multiplicatively homomorphic property of the ElGamal encryption (using pk) to obtain c_{i}^{\prime}. Let the resulting list $\Phi^{\prime}=$ $\left[c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right]$. P_{A} computes the information for decryption of all ciphertexts c_{i}^{\prime} (remember that $c_{i}^{\prime}=\left(c_{i}^{\prime(0)}, c_{i}^{\prime(1)}\right)$), i.e., P_{A} computes $d_{i} \leftarrow\left(c_{i}^{\prime(0)}\right)^{s}$ for $i \in[N]$. P_{A} sends h, Φ, Φ^{\prime}, and $\left\{d_{i}\right\}_{i \in[N]}$ to P_{B}. Then P_{A} uses the functionality $\mathcal{F}_{\text {zk }}^{\text {EncEP }}$ to prove to P_{B} that she has performed a valid EP on G to obtain the list of ciphertexts Φ. Meanwhile, P_{A} uses $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ to prove to P_{B} her knowledge of s, i.e., sk, for $\left(g,\left\{c_{i}^{\prime(0)}\right\}_{i \in[N]}\right)$ and $\left(h,\left\{d_{i}\right\}_{i \in[N]}\right)$, together with her knowledge of t_{i} for the two-tuple ciphertexts c_{i} and c_{i}^{\prime} for all $i \in[N]$.
2. P_{B} decrypts all $c_{i}^{\prime \prime}$'s to obtain the plaintexts via $p_{i} \leftarrow c_{i}^{\prime(1)} \cdot d_{i}^{-1}$. P_{B} stores a list $P=\left[p_{1}, \ldots, p_{N}\right]$ for the evaluation phase.

-Evaluation phase

0. P_{A} chooses uniform κ-bit strings $\left\{\operatorname{seed}_{j}^{A}\right\}_{j \in[\lambda]}$, computes $\mathrm{c}^{\operatorname{sed}_{j}^{A}} \leftarrow \operatorname{Com}\left(\operatorname{seed}_{j}^{A}\right)$ and sends $\left\{\mathrm{c}^{\operatorname{seed}_{j}^{A}}\right\}_{j \in[\lambda]}$ to P_{B}.
P_{B} chooses uniform κ-bit strings $\left\{\operatorname{seed}_{j}^{B} \text {, } \text { witness }_{j}\right\}_{j \in[\lambda]}$, while P_{A} picks $\hat{\jmath} \leftarrow_{\delta}[\lambda]$ and sets $b_{\hat{\jmath}}=1$ and $b_{j}=0$ for $j \neq \hat{\jmath}$. P_{B} and P_{A} run λ executions of Π_{OT}. In the j th execution, P_{B} uses as input $\left(\operatorname{seed}_{j}^{B}\right.$, witness $\left._{j}\right)$ and P_{A} uses as input b_{j} with randomness derived from $\operatorname{seed}_{j}^{A}$. At the end, P_{A} has $\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}$ and witness $_{\hat{j}}$. Let us denote the transcript of the j th execution by trans_{j}.
1. For $j \in[\lambda]$, using the randomness derived from seed ${ }_{j}^{B}, \mathrm{P}_{\mathrm{B}}$ picks $w_{i, j}^{0}, w_{i, j}^{1} \leftarrow \mathbb{G}$ for $i=M+1, \ldots, M+m$ and $\alpha_{0, j}, \alpha_{1, j} \leftarrow \$ \mathbb{Z}_{q}$. P_{B} also computes wire labels and produces garbled gates as in $\Pi_{\text {activePFE. At }}$ the end, P_{B} obtains the resulting collection of garbled gates $\mathrm{GC}_{j}=\left\{\mathrm{GG}_{i, j}\right\}_{i \in[\theta]}, \mathrm{P}_{\mathrm{A}}$'s input-wire
labels $\left\{\left(w_{i, j}^{0}, w_{i, j}^{1}\right)\right\}_{i \in\left[n_{A}\right]}, \mathrm{P}_{\mathrm{B}}$'s input-wire labels $\left\{\left(w_{n_{A}+i, j}^{0}, w_{n_{A}+i, j}^{1}\right)\right\}_{i \in\left[n_{B}\right]}$, and output-wire labels of the garbled circuit $\left\{\left(w_{M+i, j}^{0}, w_{M+i, j}^{1}\right)\right\}_{i=1, \ldots, m}$.
2. P_{A} and P_{B} are involved in λ executions of Π_{OT}. In the j th execution, P_{B} uses as input $\left(w_{i, j}^{0}, w_{i, j}^{1}\right)_{i \in\left[n_{A}\right]}$, while P_{A} uses as input x_{A} if $j=\hat{\jmath}$ and $0^{n_{A}}$ otherwise, and random coins of P_{A} and P_{B} are derived from $\operatorname{seed}_{j}^{A}$ and seed ${ }_{j}^{B}$, respectively. At the end, P_{A} obtains her garbled input $\left\{\mathrm{x}_{i}=w_{i, \hat{j}}^{x_{A}[i]}\right\}_{i \in\left[n_{A}\right]}$. Let $\mathrm{h}_{j}^{\mathrm{OT}}$ denote the hash value of the transcript for the j th execution of Π_{OT}.
3. (a) For all $j \in[\lambda], \mathrm{P}_{\mathrm{B}}$ computes $\mathrm{c}_{i, j, b}^{x_{B}} \leftarrow \operatorname{Com}\left(w_{n_{A}+i, j}^{b}\right)$ for all $i \in\left[n_{B}\right]$ and $b \in\{0,1\}$. Let $\mathrm{h}_{j}^{\mathrm{O}}$ be the hash value of $\left\{\left(w_{M+i, j}^{0}, w_{M+i, j}^{1}\right)\right\}_{i=1, \ldots, m}$. P_{B} then computes $\mathrm{c}_{j} \leftarrow \underset{x_{B}}{\operatorname{Com}}\left(\mathrm{GC}_{j},\left\{\mathrm{c}_{i, j, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}, \mathrm{h}_{j}^{\mathrm{O}}\right)$, where two elements in each pair ($\mathrm{c}_{i, j, 0}^{x_{B}}, \mathrm{c}_{i, j, 1}^{x_{B}}$) are permuted in random order. The random coins of commitments and permutations are derived from seed ${ }_{j}^{B}$.

Then P_{B} sends $\left\{\mathrm{c}_{j}, \sigma_{j}\right\}_{j \in[\lambda]}$ to P_{A}.
4. P_{A} verifies that whether all σ_{j} 's are valid. If not, P_{A} halts and outputs \perp. Then P_{A} calls $\operatorname{Blame}\left(\left\{\mathrm{h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}\right\}_{j \in[\lambda] \backslash\{\hat{j}\}}\right)$. If the output is cert, P_{B} sends cert to P_{B}, outputs corrupted, and halts. Otherwise, P_{A} sends $\left(\hat{\jmath},\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}\right.$, witness $\left.\hat{\jmath}\right)$ to $P_{B} . P_{B}$ verifies that these values are all consistent with those he has sent in Step 0 and aborts if not.
5. P_{B} assigns $\mathrm{x}_{n_{A}+i} \leftarrow w_{n_{A}+i, \hat{\jmath}}^{x_{B}[i]}$ for $i \in\left[n_{B}\right]$. Then P_{B} sends $\mathrm{GC}_{\hat{\jmath}},\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]}$, $\left\{c_{i, j, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}$ (in the same order as Step 3a), and $h_{\hat{j}}^{O}$, together with
 ation result, P_{B} also sends the garbled output mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$ to P_{A}.
6. P_{A} outputs \perp and aborts if $\operatorname{Com}\left(\mathrm{GC}_{j},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}, \mathrm{h}_{\hat{\jmath}}^{\mathrm{O}} ;\right.$ decom $\left.^{\mathrm{c}_{\hat{\jmath}}}\right) \neq \mathrm{c}_{\hat{\jmath}}$, for some $i \in\left[n_{B}\right], \operatorname{Com}\left(\mathrm{x}_{n_{A}+i} ; \operatorname{decom}^{\mathrm{c}_{i, j, x_{B}}^{x_{B}}{ }^{[i]}}\right) \notin\left\{\mathrm{c}_{i, j, 0}^{x_{B}}, \mathrm{c}_{i, j, 1}^{x_{B}}\right\}$, or $\mathrm{h}_{\hat{\jmath}}^{\mathrm{O}}$ is not consistent (if it is verifiable).
P_{A} computes $\left\{\mathrm{y}_{i}\right\}_{i \in[m]} \leftarrow \operatorname{Eval}\left(\mathrm{GC}_{\hat{j}},\left\{\mathrm{x}_{i}\right\}_{i \in[n]}, T, \pi_{f}\right)$. If P_{A} is allowed to know the evaluation result, P_{A} can thereby derive the output. If $\mathrm{y}_{i} \notin\left\{w_{i}^{0}, w_{i}^{1}\right\}$ for some $i \in\{M+1, \ldots, M+m\}, \mathrm{P}_{\mathrm{A}}$ outputs \perp. If P_{B} is allowed to know the evaluation result, P_{A} sends $\left\{\mathrm{y}_{i}\right\}_{i \in[m]}$ to P_{B} so that P_{B} could derive the result. If the output-wire labels are not consistent with those P_{B} generated, P_{B} outputs \perp.

In the following, we provide the algorithms Blame and Judge used in $\Pi_{\text {covertPFE. }}$.

```
Algorithm Blame
Specified parameters: \(G, P,\left\{\operatorname{trans}_{j}, \sigma_{j}, \operatorname{seed}_{j}^{A}, \operatorname{decom}^{\operatorname{seed}_{j}^{A}}, \operatorname{seed}_{j}^{B}\right\}_{j \in[\lambda] \backslash\{\hat{\jmath}\}}\). Inputs: \(\left\{\mathrm{h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}\right\}_{j \in[\lambda] \backslash\{\hat{j}\}}\).
```

1. For all $j \neq \hat{\jmath}$, simulate P_{B} 's computation in steps 1,2 , and 3a, and particularly compute $\hat{\mathrm{h}}_{j}^{\mathrm{OT}}$ and $\hat{\mathrm{c}}_{j}$. Let J be the set of indices, such that for $j \in J,\left(\hat{\mathrm{~h}}_{j}^{\mathrm{OT}}, \hat{\mathrm{c}}_{j}\right) \neq$ $\left(h_{j}^{\mathrm{OT}}, \mathrm{c}_{j}\right)$.
2. (a) If $|J|=0$, the algorithm returns accept.
(b) If $|J| \geq 1$, the algorithm picks $j \leftarrow \$ J$ and outputs a certificate cert $=$ $\left(P, j\right.$, trans $\left._{j}, \mathrm{~h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}, \sigma_{j}, \operatorname{seed}_{j}^{A}, \operatorname{decom}^{\operatorname{sed}_{j}^{A}}\right)$.

We present the theorem for the security of the protocol $\Pi_{\text {covertPFE }}$ as follows.
Theorem 6. If the commitment algorithm Com is computationally binding and hiding, the hash function is modeled as a random oracle, the garbling scheme is secure under the random oracle model, the DDH assumption of \mathbb{G} holds, perfectly correct protocol $\Pi_{\mathrm{OT}} U C$-realizes $\mathcal{F}_{\mathrm{OT}}$, and the signature scheme ($\mathrm{KGen}, \mathrm{Sig}, \mathrm{Vf}$) is EUF-CMA, then the protocol $\Pi_{\text {CovertPFE }}$ along with Blame and Judge is publicly verifiable covert secure with deterrence factor $\epsilon=1-\frac{1}{\lambda}$ in the $\left(\mathcal{F}_{z k}^{\mathrm{EncEP}}, \mathcal{F}_{7 \mathrm{k}}^{\mathrm{DH}}\right)$ hybrid world.

The proof of this theorem can be found in Appendix G. Following the same discussion as $\Pi_{\text {activePFE }}$, it is easy to see that $\Pi_{\text {covertPFE }}$ could be instantiated as a constant-round PVC-secure PFE protocol with linear complexity. Similarly, it is straightforward that we have the theorem below, and Remark 2 is also applicable to $\Pi_{\text {covertPFE }}$ to achieve global reusability.

Theorem 7. Once the initiation phase for a private circuit C_{f} is executed, every subsequent execution of the evaluation phase of $\Pi_{\text {covertPFE }}$ does not degenerate the security of $\Pi_{\text {covertPFE }}$.

5 Analysis

5.1 Performance of $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$

In Table 3, we provide from two directions the communication cost of each part of $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ for one execution of $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ with parameters M and N in the honestverifier zero-knowledge setting. Note that $\Pi_{\mathrm{zk}}^{\text {Zero+ }}$ is the optimized protocol of
$\Pi_{\mathrm{zk}}^{\text {Zero }}$ according to the idea introduced in Remark 3. The row of remaining is for the communication cost of $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ excluding the cost of sub-protocols. Since messages sent from V to P are random messages in all protocols, we can leverage the random oracle and compile these protocols to be non-interactive via the Fiat-Shamir heuristic. Using this approach, the communication cost now only takes into account the cost from P to V .

Table 3: Communication cost of each part of $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ with parameters M and N.

Protocols	Bits from P to V	Bits from V to P								
$\Pi_{\mathrm{zk}}^{\text {Sum }}$	$\left(4\left\lceil\log _{2} M\right\rceil+3\right)\\|\mathbb{G}\\|+4\left\\|\mathbb{Z}_{q}\right\\|$	$\\|\mathbb{G}\\|+\left(\left\lceil\log _{2} M\right\rceil+1\right)\left\\|\mathbb{Z}_{q}\right\\|$								
$\Pi_{\mathrm{z}}^{\text {Rero }}$	$(2 N+4)\\|\mathbb{G}\\|+(2 M+3)\left\\|\mathbb{Z}_{q}\right\\|$	$\left\\|\mathbb{Z}_{q}\right\\|$								
$\Pi_{\mathrm{zk}}^{\text {Zero+ }}$	$\left(4\left\lceil\log _{2}(2 N+3)\right\rceil+4\left\lceil\log _{2} M\right\rceil+\right.$	$2\\|\mathbb{G}\\|+\left(\left\lceil\log _{2}(2 N+3)+\left\lceil\log _{2} M\right\rceil+\right.\right.$								
	$12)\\|\mathbb{G}\\|+(M+10)\left\\|\mathbb{Z}_{q}\right\\|$	$3)\left\\|\mathbb{Z}_{q}\right\\|$								
Remaining	0	$3\left\\|\left\\|\mathbb{Z}_{q}\right\\|\right.$								

We give comparisons between the previous generic work [34] and our protocol $\Pi_{\mathrm{zk}}^{\text {EncEP }}$ (using the optimized protocol $\Pi_{\mathrm{zk}}^{\text {Zero+ }}$) in Tables 4 and 5. From Table 4,

Table 4: Communication cost comparison between the previous generic work [34] and $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ in this paper with parameters M and N.

Protocols	Bits from P to V	Bits from V to P								
$[34]$	$\sim\left(32 N\\|\mathbb{G}\\|+12 N\left\\|\mathbb{Z}_{q}\right\\|\right)$	$\sim\left(2 N\\|\mathbb{G}\\|+10 N\left\\|\mathbb{Z}_{q}\right\\|\right)$								
This paper	$\sim\left(4\left\lceil\log _{2}(N)\right\rceil+8\left\lceil\log _{2} M\right\rceil\right)\\|\mathbb{G}\\|+M\left\\|\mathbb{Z}_{q}\right\\|$	$\sim\left(\left\lceil\log _{2} N\right\rceil+2\left\lceil\log _{2} M\right\rceil\right)\left\\|\mathbb{Z}_{q}\right\\|$								

we can see that the (non-interactive) communication cost of our protocol is around $M\left\|\mathbb{Z}_{q}\right\|$. In comparison, the protocol in [34] cannot be compiled to be noninteractive. Its total communication cost is around $\left(34 N\|\mathbb{G}\|+22 N\left\|\mathbb{Z}_{q}\right\|\right)$ bits. For a regular circuit, we always have $M<N$. Meanwhile, we have $\|\mathbb{G}\|>\left\|\mathbb{Z}_{q}\right\|$. Hence, the number of the transmitted bits of the previous generic protocol is at least $56 \times$ larger than ours.

Table 5: Computation cost comparison between the previous generic work [34] and $\Pi_{\mathrm{zk}}^{\mathrm{EncEP}}$ in this paper with parameters M and N.

Protocols	Time P Expos	Time V Expos
$[34]$	$\sim 59 N$	$\sim 52 N$
This paper	$\sim(16 N+11 M)$	$\sim(10 N+3 M)$

In Table 5, we count the total number of exponentiations that P and V need to perform in these two protocols. It is easy to see that the execution of our protocol should be much faster than the protocol in [34].

5.2 Performance of Our PFE Protocols

In this paper, we provide the first constant-round actively secure PFE protocol with linear complexity and the first constant-round PVC-secure PFE protocol
with linear complexity in the two-party setting. Furthermore, our constructions have comparably good performance with existing passively secure PFE protocols.

The same initiation phase of the two protocols can be compiled to be noninteractive, and the resulting non-interactive information for the initiation phase is around $\left(8 N\|\mathbb{G}\|+2 M\left\|\mathbb{Z}_{q}\right\|\right)$ bits. The linear constant-round passively secure PFE protocols in [23] and [33] do not achieve reusability, but we can still divide them into the same two phases, such that the phase for preprocessing the circuit C_{f} is the initiation phase, and the phase for generating, sending the garbled circuit, and evaluating that circuit is the evaluation phase. The communication cost of the initiation phase of the optimized protocol in [23], the protocol in [33], and the protocol in $[8]$ are $(2 M+6 N)\|\mathbb{G}\|$ bits, $(2 M+4 N)\|\mathbb{G}\|$ bits, and $(M+$ $N)\|\mathbb{G}\|$ bits, respectively. We can see that our protocol is competitive, even if it is actively secure. We also remark that since the protocols in [23] and [33] do not achieve reusability. Their initiation phases require to be executed every time when the same circuit C_{f} is involved, while the cost of the initiation phase can be amortized to multiple executions if a protocol achieves reusability. Meanwhile, the initiation phase of the protocol in [8] is interactive, and it does not achieve global reusability. In comparison, the initiation phase of our protocol could be non-interactive, and it achieves global reusability.

It is shown that the linear passively secure PFE protocol in [8] outperforms the protocols in [23] and [33] when it is executed any number (more than one) of time for a fixed private circuit. Here, we reason that our PVC-secure protocol does not have too much overhead compared with the passively secure protocol in [8] in the evaluation phase. The additional communication cost of $\Pi_{\text {covertPFE }}$ compared with the passively secure protocol in [8] mainly includes the following.

1. The λ executions of Π_{OT} in Step 0 for seed transmission.
2. The extra $\lambda-1$ executions of Π_{OT} for input-wire labels retrieval in Step 2.
3. The λ tuples of $\left\{\mathrm{c}_{j}, \sigma_{j}\right\}$ sent in Step 3.
4. The messages $\left\{\mathrm{c}_{i, j, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}, \mathrm{h}_{\hat{\jmath}}^{\mathrm{O}}$, decom ${ }^{\mathrm{c}_{\hat{\jmath}}}$, and $\left\{\operatorname{decom}^{\left.{ }^{\mathrm{c}_{i, j, x_{B}[i]}}\right\}_{i \in\left[n_{B}\right]}, ~}\right.$ sent in Step 5.

Let us analyze the cost of $\Pi_{\text {covertPFe }}$ for the deterrence factor $\epsilon=1 / 2$, i.e., $\lambda=2$. The additional communication cost of Step 1 and Step 3 is constant now. Meanwhile, the additional communication cost of Step 2 and Step 4 now only depends on the input length n of the circuit. For most regular circuits, this cost is significantly smaller than the dominant communication cost of transmitting the garbled gates, which is bounded by $\mathcal{O}(\theta)$ for circuit size θ. The additional computation cost for both parties is mainly from the cost of generating the corresponding GC_{j} 's to compute the commitments c_{j} 's for checked instances. Therefore, for the evaluation phase, the computation cost of both parties in our PVC-secure PFE protocol with $\epsilon=1 / 2$ is only around $2.6 \times$ that of the passively secure PFE protocol [8], and thus it is acceptable.

Finally, let us see the size of the certificate in our PVC-secure PFE protocol. Note that all elements other than the list P inside a certificate do not depend on the size of the private circuit C_{f}. If the initiation phase is compiled to be
non-interactive, we can assume that all parties have already held the messages generated in the initiation phase, including P. Now we do not need to include P in the certificate, and the size of the certificate is constant.

Acknowledgments. We thank the reviewers for their detailed and helpful comments. Y. Liu and Q. Wang were partially supported by the Shenzhen fundamental research programs under Grant no. 20200925154814002 and Guangdong Provincial Key Laboratory (Grant No. 2020B121201001).

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1-12 (1990)
2. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable universal circuits. J. Cryptol. 33(3), 1216-1271 (2020)
3. Asharov, G., Orlandi, C.: Calling out cheaters: Covert security with public verifiability. In: Wang, X., Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp. 681-698. Springer (2012)
4. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281-343 (2010)
5. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7237, pp. 263-280. Springer (2012)
6. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA. pp. 503-513. ACM (1990)
7. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) the ACM Conference on Computer and Communications Security, CCS'12, Raleigh, NC, USA, October 16-18, 2012. pp. 784-796. ACM (2012)
8. Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Highly efficient and re-executable private function evaluation with linear complexity. IEEE Transactions on Dependable and Secure Computing pp. 1-1 (2020)
9. Bingöl, M.A., Biçer, O., Kiraz, M.S., Levi, A.: An efficient 2-party private function evaluation protocol based on half gates. Comput. J. 62(4), 598-613 (2019)
10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016-35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9666, pp. 327-357. Springer (2016)
11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. pp. 315-334. IEEE Computer Society (2018)
12. Canetti, R., Sarkar, P., Wang, X.: Blazing fast OT for three-round UC OT extension. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography - PKC 2020-23rd IACR International Conference on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111, pp. 299-327. Springer (2020)
13. Chang, Y., Lu, C.: Oblivious polynomial evaluation and oblivious neural learning. Theor. Comput. Sci. 341(1-3), 39-54 (2005)
14. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) Advances in Cryptology - CRYPTO '92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. Lecture Notes in Computer Science, vol. 740, pp. 89-105. Springer (1992)
15. Damgård, I., Orlandi, C., Simkin, M.: Black-box transformations from passive to covert security with public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12171, pp. 647-676. Springer (2020)
16. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, Proceedings of CRYPTO '84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings. Lecture Notes in Computer Science, vol. 196, pp. 10-18. Springer (1984)
17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 169-178. ACM (2009)
18. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167-190 (1996)
19. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10625, pp. 443-470. Springer (2017)
20. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography, Springer (2010)
21. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private function evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) Computer Security - ESORICS 2020-25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14-18, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12309, pp. 401-420. Springer (2020)
22. Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security with public verifiability: Faster, leaner, and simpler. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019-38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11478, pp. 97-121. Springer (2019)
23. Katz, J., Malka, L.: Constant-round private function evaluation with linear complexity. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT

2011-17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073, pp. 556-571. Springer (2011)
24. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015-35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 1620, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 724-741. Springer (2015)
25. Kiss, Á., Schneider, T.: Valiant's universal circuit is practical. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016-35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9665, pp. 699-728. Springer (2016)
26. Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (almost) for free. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology - ASIACRYPT 2015-21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9453, pp. 210-235. Springer (2015)
27. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Tsudik, G. (ed.) Financial Cryptography and Data Security, 12th International Conference, FC 2008, Cozumel, Mexico, January 28-31, 2008, Revised Selected Papers. Lecture Notes in Computer Science, vol. 5143, pp. 83-97. Springer (2008)
28. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4515, pp. 52-78. Springer (2007)
29. Lindell, Y., Pinkas, B.: A proof of security of yao's protocol for two-party computation. J. Cryptol. 22(2), 161-188 (2009)
30. Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant's universal circuit: Improvements, implementation, and applications. IACR Cryptol. ePrint Arch. 2016, 17 (2016), http://eprint.iacr.org/2016/017
31. Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of valiant's universal circuits: Simpler, tighter and more compact. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021-41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12826, pp. 365-394. Springer (2021)
32. Liu, Y., Wang, Q., Yiu, S.M.: Blind polynomial evaluation and data trading. In: Applied Cryptography and Network Security - 19th International Conference, ACNS 2021, Kamakura, Japan, June 21-24, 2021. Lecture Notes in Computer Science, Springer (2021)
33. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC an efficient framework for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-

30, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7881, pp. 557-574. Springer (2013)
34. Mohassel, P., Sadeghian, S.S., Smart, N.P.: Actively secure private function evaluation. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8874, pp. 486-505. Springer (2014)
35. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254-1281 (2006)
36. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231-262 (2004)
37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO '91, 11th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings. Lecture Notes in Computer Science, vol. 576, pp. 129-140. Springer (1991)
38. Sander, T., Young, A.L., Yung, M.: Non-interactive cryptocomputing for nc ${ }^{1}$. In: 40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New York, NY, USA. pp. 554-567. IEEE Computer Society (1999)
39. Thaler, J.: Proofs, arguments, and zero-knowledge (2021), http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
40. Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K., Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual ACM Symposium on Theory of Computing, May 3-5, 1976, Hershey, Pennsylvania, USA. pp. 196-203. ACM (1976)
41. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986. pp. 162-167. IEEE Computer Society (1986)
42. Zhao, S., Yu, Y., Zhang, J., Liu, H.: Valiant's universal circuits revisited: An overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019-25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11921, pp. 401-425. Springer (2019)
43. Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2pc over a blockchain with applications to financially-secure computations. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, November 1115, 2019. pp. 633-650. ACM (2019)

A Garbling Scheme

In this section, we present a garbling scheme for the standard SFE (rather than PFE) setting. This scheme is related to the garbling scheme used in our protocols. It aims to help readers understand our protocols in a more comprehensive way, and this also assists our security proof of Theorem 1, Theorem 6, etc. We stress that this garbling scheme is conceptually different from the one we use in our PFE protocols. The main difference is due to the fact that the garbling scheme in our PFE protocols should be coupled with other parts of the protocols, whereas the garbling scheme here is independent, in the sense that it can only be used in traditional garbled circuits approach when two parties commonly agree with the same list T and EP π_{f} (and thus the circuit C_{f}). For instance, wire labels are generated by the two parties together in our PFE protocols, while these labels are simply generated by an algorithm Init in the present scheme. In addition, the generated labels are not the same in these two scenarios.

This garbling scheme consists of algorithms (Init, Gb, Eval) based on a cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q. It is used for a circuit C_{f} that consists solely of θ NAND gates, with m output wires and n input wires. We denote the number of incoming wires by $N=2 \theta$ and the number of outgoing wires except those that are output wires of the circuit by $M=n+\theta-m$. These parameters are implicitly taken as input by the three algorithms of the scheme. These three algorithms are presented below.

- Init takes as input an EP π_{f} derived from a circuit C_{f} (see Section 2.1) and a list $T=\left[t_{1}, \ldots, t_{N}\right]$, where $t_{i} \in \mathbb{Z}_{q}$. For each outgoing wire OW_{i} with index $i \in[M+m]$, the algorithm picks the label $w_{i}^{b} \leftarrow s \mathbb{Z}_{q}$ for $b \in\{0,1\}$. For each incoming wire IW_{i} with index $i \in[N]$ (connecting with the outgoing wire $\left.\mathrm{OW}_{\pi_{f}(i)}\right)$, it picks $t_{i} \leftarrow \mathbb{Z}_{q}$ and computes the label $v_{i}^{b} \leftarrow\left(w_{\pi_{f}(i)}^{b}\right)^{t_{i}}$ for $b \in$ $\{0,1\}$. Finally, the algorithm outputs $\left(\left\{\left(w_{i}^{0}, w_{i}^{1}\right)\right\}_{i \in[M+m]},\left\{\left(v_{i}^{0}, v_{i}^{1}\right)\right\}_{i \in[N]}\right)$.
- Gb is invoked to generate garbled gates. According to the circuit representation approach in Section 2.1, a gate G_{i} consists of two input wires, i.e., incoming wires, with indices $2 i-1$ and $2 i$, and one output wire, i.e., an outgoing wire, with index $n+i$. For such a gate, Gb takes as input the gate index i, the two pairs of input-wire labels $\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right)$ and $\left(v_{2 i}^{0}, v_{2 i}^{1}\right)$, together with the pair of output-wire labels $\left(w_{n+i}^{0}, w_{n+i}^{1}\right)$, and prepares four ciphertexts: $c_{i}^{a, b} \leftarrow \operatorname{Enc}_{v_{2 i-1}^{a}, v_{2 i}^{b}}^{i}\left(w_{n+i}^{\overline{a \cdot b}}\right)$ for $a, b \in\{0,1\}$ for a dual-key cipher Enc. Gb outputs the set of garbled gates $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$. Here $\mathrm{GG}_{i}=\left\{c_{i}^{a, b}\right\}_{a, b \in\{0,1\}}$, where $c_{i}^{a, b}$ are randomly permuted.
- Eval takes as input a set of garbled gates $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$, a set of input-wire labels $\left\{\mathrm{x}_{i}\right\}_{i \in[n]}$, a list $T=\left\{t_{i}\right\}_{i \in[N]}$, and an EP π_{f}. This algorithm first derives the description of the corresponding circuit C_{f} from π_{f}. Now starting from (outgoing-wire) labels $\left\{\mathrm{x}_{i}\right\}_{i \in[n]}$, Eval computes incoming-wire labels from outgoing-wire labels and evaluates garbled gates one by one following the topographical order of the circuit to obtain the final output-wire labels.
Without loss of generality, for an outgoing wire OW_{i}, we denote its label in hand by w_{i}^{b}, where $b \in\{0,1\}$. Note that each outgoing wire may connect with
some incoming wires that are the input wires of some gates. Assume that an incoming wire IW_{j} is connected with $\mathrm{OW}_{i} . \mathrm{P}_{\mathrm{A}}$ can compute the corresponding wire label of IW_{j} by computing the t_{j} th power of w_{i}^{b}, i.e., $\left(w_{i}^{b}\right)^{t_{j}}$. Since we have $\left(w_{i}^{b}\right)^{t_{j}}=v_{j}^{b}$, the result is the input-wire (incoming-wire) label as we want. When having two input-wire (incoming-wire) labels $\left(v_{2 i-1}^{b}, v_{2 i}^{b^{\prime}}\right)$, where $b, b^{\prime} \in\{0,1\}$, for a garbled gate GG_{i}, the algorithm can decrypt GG_{i} using these two labels as keys (via a simple reverse approach of Enc) and obtain the non- \perp resulting output-wire (outgoing-wire) label $w_{n+i}^{\overline{b \cdot b^{\prime}}}$. It is easy to see that the values of the wire b and b^{\prime} are hidden from P_{A} during this procedure. Since Eval follows the topology of the circuit, input-wire labels of a gate are always ready when we proceed to evaluate that gate. Finally, Eval returns the decrypted output-wire labels of the output gates.

To simplify our description, we could use a standard dual-key cipher Enc in the random oracle model. Let the random oracle be $\mathrm{H}: \mathbb{G} \times \mathbb{G} \times\{0,1\}^{*} \rightarrow$ $\{0,1\}^{\|\mathbb{G}\| \times \tau}$, where τ is an integer specifying length of redundant bits that ensures correct decryption. We define the dual-key cipher as

$$
c_{i} \leftarrow \operatorname{Enc}_{v_{j}^{a}, v_{k}^{b}}^{i}\left(w_{\ell}^{\overline{a \cdot b}}\right)=\mathrm{H}\left(v_{j}^{a}, v_{k}^{b}, i\right) \oplus\left(\left[w_{\ell}^{\overline{a \cdot b}}\right] \| 0^{\tau}\right),
$$

where $\left[w_{\ell}^{\overline{a \cdot b}}\right] \| 0^{\tau}$ denote the bit string that is the concatenation of the bitrepresentation of $w_{\ell}^{\overline{a \cdot b}}$ and the string of τ zeros. The decryption algorithm Dec for this dual-key cipher takes as input the two keys $\left(v_{j}, v_{k}\right)$, the index i and ciphertext c_{i} corresponding to the dual-key cipher Enc, and computes $\mathrm{H}\left(v_{i}^{a}, v_{j}^{b}, i\right) \oplus c_{i}$. If the last τ bits of the result are all 0 , it outputs the group element of \mathbb{G} that represented by the first $\|\mathbb{G}\|$ bits of $\mathrm{H}\left(v_{i}^{a}, v_{j}^{b}, i\right) \oplus c_{i}$. Otherwise, it outputs \perp. Note that this scheme could be further optimized, e.g., via using a variant of the point-and-permute optimization [6] (see [8] for more information).

In the following, we briefly present definitions for the garbling scheme that follows the approach of [7].

Correctness For any EP π_{f} (for the circuit C_{f}) and list T as above, and any input $x \in\{0,1\}^{n}$, we follow the steps below.

1. Run $\left(\left\{\left(w_{i}^{0}, w_{i}^{1}\right)\right\}_{i \in[M+m]},\left\{\left(v_{i}^{0}, v_{i}^{1}\right)\right\}_{i \in[N]}\right) \leftarrow \operatorname{Init}\left(\pi_{f}, T\right)$.
2. Compute $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \operatorname{Gb}\left(\left\{i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right),\left(v_{2 i}^{0}, v_{2 i}^{1}\right),\left(w_{n+i}^{0}, w_{n+i}^{1}\right)\right\}_{i \in[\theta]}\right)$.
3. Let $\mathrm{x}_{i}=w_{i}^{x[i]}$ for $i \in[n]$.
4. Execute $\left\{\mathrm{y}_{i}\right\}_{i \in[m]} \leftarrow \operatorname{Eval}\left(\{\mathrm{GG}\}_{i \in[\theta]},\left\{\mathrm{x}_{i}\right\}_{i \in n}, T, \pi_{f}\right)$.

Then this garbling scheme is correct if for all $y \in[m]$, it holds that $\mathrm{y}_{i}=w_{M+i}^{y[i]}$, where $y=C_{f}(x)$.

Privacy We say that the garbling scheme achieves privacy if for any EP π_{f}, list T, and input x, where the format/length of T and x satisfy the circuit C_{f} corresponding to π_{f}, there exists a PPT simulator \mathcal{S}, such that the output distributions of the following two procedures are computationally indistinguishable.
$-1 .\left(\left\{\left(w_{i}^{0}, w_{i}^{1}\right)\right\}_{i \in[M+m]},\left\{\left(v_{i}^{0}, v_{i}^{1}\right)\right\}_{i \in[N]}\right) \leftarrow \operatorname{Init}\left(\pi_{f}, T\right)$.
2. $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right),\left(v_{2 i}^{0}, v_{2 i}^{1}\right),\left(w_{n+i}^{0}, w_{n+i}^{1}\right)\right\}_{i \in[\theta]}\right)$.
3. $\mathrm{x}_{i} \leftarrow w_{i}^{x[i]}$ for $i \in[n]$.
4. Output $\left(\left\{\mathrm{x}_{i}\right\}_{i \in[n]},\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]},\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}\right)$.
$-1 .\left(\left\{\widetilde{\mathrm{x}}_{i}\right\}_{i \in[n]},\left\{\widetilde{\mathrm{GG}}_{i}\right\}_{i \in[\theta]},\left\{\left(\widetilde{w}_{M+i}^{0}, \widetilde{w}_{M+i}^{1}\right)\right\}_{i \in[m]}\right) \leftarrow \mathcal{S}\left(C_{f}(x), \pi_{f}, T\right)$.
2. Output $\left(\left\{\widetilde{\mathrm{x}}_{i}\right\}_{i \in[n]},\left\{\widetilde{\mathrm{GG}}_{i}\right\}_{i \in[\theta]},\left\{\left(\widetilde{w}_{M+i}^{0}, \widetilde{w}_{M+i}^{1}\right)\right\}_{i \in[m]}\right)$.

Obliviousness We say that the garbling scheme achieves obliviousness if for any EP π_{f}, list T, and input x, where the format/length of T and x satisfy the circuit C_{f} corresponding to π_{f}, there exists a PPT simulator \mathcal{S}, such that the output distributions of the following two procedures are computationally indistinguishable.

- 1. $\left(\left\{\left(w_{i}^{0}, w_{i}^{1}\right)\right\}_{i \in[M+m]},\left\{\left(v_{i}^{0}, v_{i}^{1}\right)\right\}_{i \in[N]}\right) \leftarrow \operatorname{Init}\left(\pi_{f}, T\right)$.

2. $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right),\left(v_{2 i}^{0}, v_{2 i}^{1}\right),\left(w_{n+i}^{0}, w_{n+i}^{1}\right)\right\}_{i \in[\theta]}\right)$.
3. $\mathrm{x}_{i} \leftarrow w_{i}^{x[i]}$ for $i \in[n]$.
4. Output $\left(\left\{\mathrm{x}_{i}\right\}_{i \in[n]},\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}\right)$.

- 1. $\left(\left\{\widetilde{\mathrm{x}}_{i}\right\}_{i \in[n]},\left\{\widetilde{\mathrm{GG}}_{i}\right\}_{i \in[\theta]}\right) \leftarrow \mathcal{S}\left(\pi_{f}, T\right)$.

2. Output $\left(\left\{\widetilde{\mathrm{x}}_{i}\right\}_{i \in[n]},\left\{\widetilde{\mathrm{GG}}_{i}\right\}_{i \in[\theta]}\right)$.

Authenticity We say that the garbling scheme achieves authenticity if for all PPT adversaries \mathcal{A}, the following procedure outputs true with a negligible probability.

1. $\left(\pi_{f}, T, x\right) \leftarrow \mathcal{A}\left(1^{\kappa}\right)$.
2. If the EP π_{f}, list T, and input x satisfy the pre-agreement of the circuit C_{f}, continue the procedure. Otherwise, return \perp.
3. $\left(\left\{\left(w_{i}^{0}, w_{i}^{1}\right)\right\}_{i \in[M+m]},\left\{\left(v_{i}^{0}, v_{i}^{1}\right)\right\}_{i \in[N]}\right) \leftarrow \operatorname{Init}\left(\pi_{f}, T\right)$.
4. $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right),\left(v_{2 i}^{0}, v_{2 i}^{1}\right),\left(w_{n+i}^{0}, w_{n+i}^{1}\right)\right\}_{i \in[\theta]}\right)$.
5. $\mathrm{x}_{i} \leftarrow w_{i}^{x[i]}$ for $i \in[n]$.
6. $\left\{\mathrm{y}_{i}\right\}_{i \in[m]} \leftarrow \mathcal{A}\left(\left\{\mathrm{x}_{i}\right\}_{i \in[n]},\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}\right)$.
7. $y \leftarrow C_{f}(x)$.
8. Return $\left(\forall i \in[m], \mathrm{y}_{i} \in\left\{w_{M+i}^{0}, w_{M+i}^{1}\right\}\right) \wedge\left(\exists i \in[m], \mathrm{y}_{i} \neq w_{M+i}^{y[i]}\right)$.

It is straightforward to see that the garbling scheme above is correct. For its security, we present the following theorem. The proof of the theorem simply follows the approach used in [29]. We refer readers to [29] and [8] for more information and details.

Theorem 8. The garbling scheme (Init, Gb, Eval) associated with the dual-key cipher Enc in the random oracle model above achieves privacy, obliviousness, and authenticity.

Proof (Sketch). We first prove the privacy of the scheme. Let us define the simulator \mathcal{S} as follows. \mathcal{S} takes as input $\left(y, \pi_{f}, T\right)$, where $y=C_{f}(x)$, and goes through the following steps.

1. \mathcal{S} picks labels $\widetilde{w}_{i} \leftarrow \mathbb{G}$ for outgoing wires OW_{i} with indices $i \in[M+m]$. Let $\widetilde{x}_{i} \leftarrow \widetilde{w}_{i}$ for $i \in[n] . \mathcal{S}$ also sets $\widetilde{w}_{M+i}^{y[i]} \leftarrow w_{M+i}$ and $\widetilde{w}_{M+i}^{1-y[i]} \leftarrow \varangle \mathbb{G}$ for $i \in[m]$.
2. \mathcal{S} computes $\widetilde{v}_{i} \leftarrow\left(\widetilde{w}_{\pi_{f}(i)}\right)^{t_{i}}$ for $i \in[N]$. \mathcal{S} picks $\widetilde{v}_{i}^{\prime} \leftarrow \mathbb{G}$ for $i \in[N]$.
3. \mathcal{S} produces $\left\{\widetilde{\mathrm{GG}}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(\widetilde{v}_{2 i-1}, \widetilde{v}_{2 i-1}^{\prime}\right),\left(\widetilde{v}_{2 i}, \widetilde{v}_{2 i}^{\prime}\right),\left(\widetilde{w}_{n+i}, \widetilde{w}_{n+i}\right)\right\}\right)$.
4. \mathcal{S} outputs $\left(\left\{\widetilde{\mathrm{x}}_{i}\right\}_{i \in[n]},\left\{\widetilde{\mathrm{GG}}_{i}\right\}_{i \in[\theta]},\left\{\widetilde{w}_{M+i}^{0}, \widetilde{w}_{M+i}^{1}\right\}_{i \in[m]}\right)$.

We can see that $\left\{\mathrm{x}_{i}\right\}_{i \in[n]}$ in the real execution and $\left\{\widetilde{\mathrm{x}}_{i}\right\}_{i \in[n]}$ in the simulation are randomly generated from \mathbb{G} and have identical distributions. Then we could simply follow the proof in [29] to design a sequence of hybrid games for the remain proof.

For the garbled gates, starting from the real execution, we could design a sequence of hybrid games. According to the topological order of gates, in each subsequent game, a garbled gate generated as in the real execution is replaced by a garbled gate generated as in the simulation. For two adjacent games, the four ciphertexts (ignoring their order) are computed from the four values generated by the random oracle:

$$
\mathrm{H}\left(v_{2 i-1}^{0}, v_{2 i}^{0}, i\right) \quad \mathrm{H}\left(v_{2 i-1}^{0}, v_{2 i}^{1}, i\right) \quad \mathrm{H}\left(v_{2 i-1}^{1}, v_{2 i}^{0}, i\right) \quad \mathrm{H}\left(v_{2 i-1}^{1}, v_{2 i}^{1}, i\right)
$$

in the real execution and

$$
\mathrm{H}\left(\widetilde{v}_{2 i-1}, \widetilde{v}_{2 i}, i\right) \quad \mathrm{H}\left(\widetilde{v}_{2 i-1}, \widetilde{v}_{2 i}^{\prime}, i\right) \quad \mathrm{H}\left(\widetilde{v}_{2 i-1}^{\prime}, \widetilde{v}_{2 i}, i\right) \quad \mathrm{H}\left(\widetilde{v}_{2 i-1}^{\prime}, \widetilde{v}_{2 i}^{\prime}, i\right)
$$

in the simulation. Since the inactive keys, i.e., the incoming-wire labels of the gate that the circuit evaluator does not obtain (see more in [29]), is derived from the corresponding randomly generated outgoing-wire labels and a fixed t_{i} 's, the keys themselves are totally random. Hence, the four ciphertexts are computationally indistinguishable with respect to the random oracle.

To show that the output mapping in the real execution is computationally indistinguishable from that in the simulation, we could also construct a sequence of hybrid games similar to the approach above to prove the result. Therefore, we can see that the garbling scheme achieves privacy. Following a very similar approach, we can also prove that the garbling scheme achieves obliviousness.

Finally, we prove that the garbling scheme achieves authenticity. Assume that there exists a garbled output y_{i} from \mathcal{A} that satisfies $\mathrm{y}_{i} \in\left\{w_{M+i}^{0}, w_{M+i}^{1}\right\}$ and $\mathrm{y}_{i} \neq w_{M+i}^{y[i]}$. According to the analysis of the privacy for the garbling scheme, the (inactive) keys to encrypt $w_{M+i}^{1-y[i]}$ are randomly generated and hidden from \mathcal{A}. Hence, the usage of the random oracle ensures that \mathcal{A} can only successfully derive $w_{M+i}^{1-y[i]}$ with a negligible probability.

Based on the definition of the garbling scheme (Init, Gb, Eval) introduced above, we can restate Theorem 1 as follows.

Theorem 9. If the garbling scheme (Init, Gb, Eval) with respect to the dual-key cipher Enc achieves privacy, obliviousness, and authenticity, and the DDH assumption of \mathbb{G} holds, the protocol $\Pi_{\text {activePFE }}$ securely realizes $\mathcal{F}_{\text {activePFE }}$ in the presence of malicious P_{A} and semi-honest P_{B} in the $\left(\mathcal{F}_{\mathrm{OT}}, \mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}, \mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}\right)$-hybrid world.

B Proof of Theorem 1 and Theorem 9

Proof. Firstly, we focus on the case that P_{A} is malicious. For an adversary \mathcal{A} corrupting P_{A} in the $\left(\mathcal{F}_{\mathrm{OT}}, \mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}, \mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}\right)$-hybrid world, we construct a simulator \mathcal{S} that runs \mathcal{A} as a subroutine and plays the role of P_{B} in the ideal world. We present the simulation procedures for both the initiation and evaluation phases (denoted by $\mathbf{G a m e}_{0}$). The simulator \mathcal{S} simulates the initiation phase as follows.

1. \mathcal{S} picks $G=\left[g_{1}, \ldots, g_{M}\right]$ as in the protocol. Then \mathcal{S} sends G to \mathcal{A}.
2. \mathcal{S} receives h, Φ, Φ^{\prime}, and $\left\{d_{i}\right\}_{i \in[N]}$ from \mathcal{A}. Then \mathcal{S} receives the EP π_{f} (and corresponding random coins) that \mathcal{A} sends to $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}} . \mathcal{S}$ verifies whether π_{f} and the corresponding random coins are correct. If not, \mathcal{S} sends abort A_{A} to $\mathcal{F}_{\text {activePFE }}$ and simulates the termination of $\mathrm{P}_{\mathrm{B}} . \mathcal{S}$ also receives s and $\left\{t_{i}\right\}_{i \in[N]}$ from \mathcal{A} for $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ and verifies them following a similar procedure as for $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$.
3. \mathcal{S} computes $P=\left[p_{1}, \ldots, p_{N}\right]$ as in the protocol.
\mathcal{S} derives the evaluated circuit C_{f} from the EP π_{f}. Then \mathcal{S} sends C_{f} to $\mathcal{F}_{\text {activePFE }}$ and proceeds to simulate the evaluation phase.
4. First, \mathcal{S} chooses $\alpha_{i} \leftarrow \mathbb{Z}_{q}$ for $i \in[M]$ and computes $w_{i} \leftarrow g_{i}^{\alpha_{i}}$ for $i \in[M]$. Then \mathcal{S} picks $w_{i} \leftarrow \mathbb{G}$ for $i=M+1, \ldots, M+m$ for output-wire labels of output gates. \mathcal{S} also computes $v_{i} \leftarrow\left(w_{\pi_{f}(i)}\right)^{t_{i}}$ for $i \in[N]$ and picks $v_{i}^{\prime} \leftarrow_{\mathbb{G}} \mathbb{G}$ for $i \in[N]$.
\mathcal{S} computes $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(v_{2 i-1}, v_{2 i-1}^{\prime}\right),\left(v_{2 i}, v_{2 i}^{\prime}\right),\left(w_{n+i}, w_{n+i}\right)\right\}_{i \in[\theta]}\right)$.
5. \mathcal{S} obtains x_{A} from \mathcal{A} 's input to $\mathcal{F}_{\mathrm{OT}}$ and sends $\left\{w_{i}\right\}_{i \in\left[n_{A}\right]}$ as output of $\mathcal{F}_{\mathrm{OT}}$ to $\mathcal{A} . \mathcal{S}$ sends x_{A} to the ideal functionality $\mathcal{F}_{\text {activePFE }}$ and receives the evaluation result $y \in\{0,1\}^{m}$ or nothing depending on whether P_{A} is allowed to receive the evaluation result.
6. \mathcal{S} sends $\mathrm{GC}=\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$ and $\left\{w_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]}$ to \mathcal{A}.

- If P_{A} is allowed to know the evaluation result, \mathcal{S} also sends the mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$ to \mathcal{A}, where $w_{M+i}^{y[i]}=w_{M+i}$ and $w_{M+i}^{1-y[i]} \leftarrow{ }_{s} \mathbb{G}$. Then \mathcal{S} outputs what \mathcal{A} outputs to conclude the simulation.
- If P_{A} is not allowed to know the evaluation result, \mathcal{S} continues to the next step.

4. \mathcal{S} receives from \mathcal{A} the output-wire labels $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]}$. If all elements of $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]}$ are consistent with those of $\left\{w_{M+i}\right\}_{i \in[m]}, \mathcal{S}$ sends continue to $\mathcal{F}_{\text {activePFE. }}$. Otherwise, \mathcal{S} sends abort ${ }_{A}$ to $\mathcal{F}_{\text {activePFE. }}$.

Note that the messages that \mathcal{A} receives include $G,\left\{w_{i}\right\}_{i \in[n]}$, GC, and (possibly) $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$. It remains to show that the joint distribution of the view of \mathcal{A} simulated by \mathcal{S} and the output of P_{B} in the ideal world is indistinguishable from the joint distribution of the view of \mathcal{A} and the output of P_{B} in the real world. We define the following games and let the output of each game be the view of \mathcal{A} and output of P_{B}.

Game $_{1}$ We modify the evaluation phase of Game $_{0}$ as follows.

1. \mathcal{S} chooses $\alpha_{i, 0}, \alpha_{i, 1} \leftarrow \$ \mathbb{Z}_{q}$ for $i \in[M]$. \mathcal{S} computes $w_{i}^{0} \leftarrow g_{i}^{\alpha_{i, 0}}$ and $w_{i}^{1} \leftarrow$ $g_{i}^{\alpha_{i, 1}}$ for $i \in[M]$. Then \mathcal{S} picks $w_{i}^{0}, w_{i}^{1} \leftarrow \mathbb{G}$ for $i=M+1, \ldots, M+m$ for output-wire labels of output gates as in the protocol. \mathcal{S} also computes $v_{i}^{0} \leftarrow\left(w_{\pi_{f}(i)}^{0}\right)^{t_{i}}$ and $v_{i}^{1} \leftarrow\left(w_{\pi_{f}(i)}^{1}\right)^{t_{i}}$ for $i \in[N]$.
\mathcal{S} produces $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right),\left(v_{2 i}^{0}, v_{2 i}^{1}\right),\left(w_{n+i}^{0}, w_{n+i}^{1}\right)\right\}_{i \in[\theta]}\right)$.
2. \mathcal{S} returns $\left\{w_{i}^{x_{A}[i]}\right\}_{i \in\left[n_{A}\right]}$ as the output of $\mathcal{F}_{\mathrm{OT}}$ to \mathcal{A}. The rest of the procedure in this step is the same as Game ${ }_{0}$.
3. \mathcal{S} sends $\mathrm{GC}=\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$ and $\left\{w_{n_{A}+i}^{x_{B}[i]}\right\}_{i \in\left[n_{B}\right]}$ to \mathcal{A}.

- If P_{A} is allowed to know the evaluation result, \mathcal{S} also sends the mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$ to \mathcal{A}, and then \mathcal{S} outputs what \mathcal{A} outputs to conclude the simulation.
- If P_{A} is not allowed to know the evaluation result, \mathcal{S} continues to the next step.

4. \mathcal{S} receives from \mathcal{A} the output-wire labels $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]}$. Now $\left\{w_{M+i}^{y[i]}\right\}_{i \in[m]}$ is used for the consistency check. The rest of the procedure in this step is the same as Game ${ }_{0}$.
The security (privacy or obliviousness depending on whether P_{A} obtains the evaluation result) of the garbling scheme presented in Appendix A guarantees that the output of $\mathbf{G a m e}_{1}$ is computationally indistinguishable from the output of Game ${ }_{0}$.
Game $_{2}$ We now modify Step 4 of the evaluation phase for the consistency check. 4. \mathcal{S} receives from \mathcal{A} the output-wire labels $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]} . \mathcal{S}$ checks whether $\tilde{w}_{M+i} \in\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}$ for all $i \in[m]$ as in the protocol. The rest of the procedure in this step is the same as the previous game.
Due to the security (authenticity) of the garbling scheme presented in Appendix A, \mathcal{A} can only derive $w_{M+i}^{y[i]}$ from GC. Hence, \mathcal{A} cannot deduce information about $w_{M+i}^{1-y[i]}$, and the output of $\mathbf{G a m e}_{2}$ is computationally indistinguishable from the output of Game ${ }_{1}$.
Game $_{3}$ We modify the first step in the evaluation phase of the previous game as follows.
5. \mathcal{S} chooses $\alpha_{0} \leftarrow s \mathbb{Z}_{q}$ and $\alpha_{i, 1} \leftarrow \varangle \mathbb{Z}_{q}$ for $i \in[M]$. \mathcal{S} computes $w_{i}^{0} \leftarrow g_{i}^{\alpha_{0}}$ and $w_{i}^{1} \leftarrow g_{i}^{\alpha_{i, 1}}$ for $i \in[M]$. Then \mathcal{S} picks $w_{i}^{0}, w_{i}^{1} \leftarrow \mathbb{G}$ for $i=M+$ $1, \ldots, M+m$ for output-wire labels of output gates as in the protocol. The rest of the procedure in this step is the same as the previous game. The difference between $\mathbf{G a m e}_{2}$ and $\mathbf{G a m e}_{3}$ is that \mathcal{S} fixes one α_{0} instead of generating a set of $\alpha_{i, 0}$'s. In this setting, a subset of elements in $\left\{w_{i}^{0}\right\}_{i \in[M]}$ that received or derived by \mathcal{A} are involved. Let us denote the index set for this subset by S, and thus the subset in Game ${ }_{2}$ by $\hat{W}=\left\{\hat{w}_{i}^{0}\right\}_{i \in S}$ and in Game ${ }_{3}$ by $\hat{W}^{\prime}=\left\{\hat{w}^{\prime}{ }_{i}\right\}_{i \in S}$. The difference between \hat{W} and \hat{W}^{\prime} is that the elements in \hat{W} is of the form $\hat{w}_{i}^{0}=g_{i}^{\alpha_{0, i}}$ for random $\alpha_{0, i}$ while the elements in \hat{W}^{\prime} is of the form ${\hat{w^{\prime}}}^{\prime}{ }_{i}=g_{i}^{\alpha_{0}}$ for random but fixed α_{0}. According to Lemma $1, \hat{W}$ is computationally indistinguishable from \hat{W}^{\prime}, and thus the output of Game ${ }_{3}$ is computationally indistinguishable from the output of Game ${ }_{2}$.
Game $_{4}$ The first step in the evaluation phase of the previous game is modified in the following.
6. \mathcal{S} chooses $\alpha_{0}, \alpha_{1} \leftarrow \& \mathbb{Z}_{q}$ for $i \in[M]$. \mathcal{S} computes $w_{i}^{0} \leftarrow g_{i}^{\alpha_{0}}$ and $w_{i}^{1} \leftarrow g_{i}^{\alpha_{1}}$ for $i \in[M]$. Then \mathcal{S} picks $w_{i}^{0}, w_{i}^{1} \leftarrow \mathbb{G}$ for $i=M+1, \ldots, M+m$ for output-wire labels of output gates as in the protocol. The rest of the procedure in this step is the same as the previous game.
Following the same argument as Game ${ }_{3}$, the output of Game ${ }_{4}$ is computationally indistinguishable from the output of Game ${ }_{3}$.
Game $_{5}$ We continue to modify the first step in the evaluation phase of the previous game. \mathcal{S} now computes v_{i}^{0} and v_{i}^{1} via $v_{i}^{0} \leftarrow\left(p_{i}\right)^{\alpha_{0}}$ and $v_{i}^{1} \leftarrow\left(p_{i}\right)^{\alpha_{1}}$ for $i \in[N]$.
Since we have $p_{i}=g_{\pi(i)}^{t_{i}}$ in the initiation phase, we know $v_{i}^{b}=\left(p_{i}\right)^{\alpha_{b}}=$ $g_{\pi(i)}^{t_{i} \alpha_{b}}=\left(w_{\pi_{f}(i)}^{b}\right)^{t_{i}}$ for $b \in\{0,1\}$. Therefore, the output of Game $\mathbf{G a m}_{5}$ is perfectly indistinguishable from the output of $\mathbf{G a m e}_{4}$.

Note that $\mathbf{G a m e}_{5}$ corresponds to a real execution of the protocol, and the output in $\mathbf{G a m e}_{5}$ is computationally indistinguishable from the output of $\mathbf{G a m e}_{0}$. Thus, we complete the proof for malicious P_{A}.

Now we focus on the case that P_{B} is semi-honest. For an adversary \mathcal{A} corrupting P_{B} in the real world, we construct a simulator \mathcal{S} that simulates P_{B} 's view. Now we present the simulation procedures for the initiation phase and evaluation phase (denoted by $\mathbf{G a m e}_{0}$). The simulator \mathcal{S} simulates the initiation phase as follows.

1. \mathcal{S} picks $g_{i} \leftarrow \mathbb{G}$ to generate the list G as in the protocol.
2. \mathcal{S} picks $h \leftarrow_{\delta} \mathbb{G}$. Then \mathcal{S} generates $c_{i} \leftarrow_{\delta} \mathbb{G}^{2}, c_{i}^{\prime} \leftarrow_{\delta} \mathbb{G}^{2}$, and $d_{i} \leftarrow_{\delta} \mathbb{G}$ for $i \in[N]$. \mathcal{S} generates accept's as the outputs of \mathcal{A} from $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$ and $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$.
3. \mathcal{S} computes the list P as in the protocol.

Then in the evaluation phase, \mathcal{S} follows the simulation procedure below.

1. \mathcal{S} randomly picks α_{0}, α_{1}, and derives $\left\{w_{i}^{0}, w_{i}^{1}\right\}_{i \in[M+m]}$ as in the protocol. \mathcal{S} then generates garbled gates $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$ as in the protocol.
2. \mathcal{S} simulates the executions of $\mathcal{F}_{\mathrm{OT}}$ as specified in the protocol.
3. \mathcal{S} follows the instructions of P_{B} in this step as in the protocol.
4. If P_{B} is allowed to know the evaluation result $y \in\{0,1\}^{m}, \mathcal{S}$ sets $\left\{w_{M+i}^{y[i]}\right\}_{i \in[m]}$ as the messages sent from P_{A}.

It remains to show that the distribution of the view of \mathcal{A} simulated by \mathcal{S} in the ideal world is indistinguishable from the distribution of the view of \mathcal{A} in the real world. We first prove the following lemma.
Lemma 2. If the ElGamal encryption scheme with $\mathrm{pk}=(\mathbb{G}, q, g, h)$ is IND-CPA secure for security parameter κ under the DDH assumption for \mathbb{G}, given $\hat{g} \leftarrow \mathbb{G}$, ($\mathrm{pk}, \hat{g}, c_{0}, c_{0}^{\prime}, d_{0}$) is computationally indistinguishable from ($\mathrm{pk}, \hat{g}, c_{1}, c_{1}^{\prime}, d_{1}$), where $c_{0} \leftarrow \mathbb{G}^{2}, c_{0}^{\prime} \leftarrow \leftarrow^{2} \mathbb{G}^{2}, d_{0} \leftarrow \varangle \mathbb{G}, c_{1} \leftarrow\left(g^{r}, \hat{g} h^{r}\right), c_{1}^{\prime} \leftarrow\left(g^{r t}, \hat{g}^{t} h^{r t}\right)$ and $d_{1} \leftarrow \hat{g}^{t}$ for $r \leftarrow s \mathbb{Z}_{q}$ and $t \leftarrow \mathbb{Z}_{q}$.

Proof. We consider a hybrid distribution (pk, $\hat{g}, c_{2}, c_{2}^{\prime}, d_{2}$) generated as follows:

$$
\hat{g} \leftarrow \mathbb{G} ; \quad t \leftarrow s \mathbb{Z}_{q} ; \quad c_{2} \leftarrow \mathbb{G}^{2} ; \quad c_{2}^{\prime} \leftarrow\left(\left(c_{2}^{(0)}\right)^{t},\left(c_{2}^{(1)}\right)^{t}\right) ; \quad d_{2} \leftarrow \hat{g}^{t}
$$

It is straightforward to see that ($\mathrm{pk}, \hat{g}, c_{2}, c_{2}^{\prime}, d_{2}$) and ($\mathrm{pk}, \hat{g}, c_{0}, c_{0}^{\prime}, d_{0}$) are computationally indistinguishable according to Lemma 1 . We can also see that (pk, $\hat{g}, c_{2}, c_{2}^{\prime}, d_{2}$) and ($\mathrm{pk}, \hat{g}, c_{1}, c_{1}^{\prime}, d_{1}$) are computationally indistinguishable. For the IND-CPA experiment of the ElGamal encryption scheme, we pick $\hat{g} \leftarrow \mathbb{G}$ and $t \leftarrow \mathbb{Z}_{q}$. Then we send \hat{g} and a random element $s \in \mathbb{G}$ to the encryption oracle. We receive a ciphertext c from the oracle. Let $c^{\prime} \leftarrow\left(\left(c^{(0)}\right)^{t},\left(c^{(1)}\right)^{t}\right)$ and $a=\left(\mathrm{pk}, \hat{g}, c, c^{\prime}, \hat{g}^{t}\right)$. If c encrypts \hat{g}, the distribution of a is identical to that of ($\mathrm{pk}, \hat{g}, c_{1}, c_{1}^{\prime}, d_{1}$). If c encrypts s, the distribution of a is identical to that of (pk, $\hat{g}, c_{2}, c_{2}^{\prime}, d_{2}$). If ($\mathrm{pk}, \hat{g}, c_{2}, c_{2}^{\prime}, d_{2}$) and ($\mathrm{pk}, \hat{g}, c_{1}, c_{1}^{\prime}, d_{1}$) are not computationally indistinguishable, the IND-CPA security of the ElGamal encryption scheme is broken. Therefore, we complete our proof.

For convenience of presentation, let the list $D=\left[d_{1}, \ldots, d_{N}\right]$. We define the following game and let the output of the game be the view of \mathcal{A}.

Game $_{1}$ The list Φ is generated as in the protocol according to π_{f}, where π_{f} is the EP derived from C_{f}. Then Φ^{\prime} and d_{i} are computed as in the protocol. According to Lemma 2, the output of $\mathbf{G a m e}_{1}$ is computationally indistinguishable from the output of $\mathbf{G a m e}_{0}$. More concretely, we define a sequence of hybrids. In the k th hybrid, the first k elements of Φ, Φ^{\prime}, and D are computed as in $\mathbf{G a m e}_{1}$, while other elements of these two lists are generated as in $\mathbf{G a m e}_{0}$. Then we can use the hybrid tuple from the experiment of Lemma 2 in the place of c_{k}, c_{k}^{\prime}, and d_{k}. Now we can easily simulate a hybrid which may be either the $(k-1)$ th hybrid or the k th hybrid. Therefore, it is straightforward to see that the output of Game ${ }_{1}$ and the output of Game ${ }_{0}$ should be computationally indistinguishable.

It is easy to see that Game $_{1}$ is corresponding to the real execution, and thus the distribution of the view of \mathcal{A} simulated by \mathcal{S} in the ideal world is indistinguishable from the distribution of the view of \mathcal{A} in the real world. The proof is thus completed.

C Proof of Theorem 2

Proof. We prove the scenario where one initiation phase and two evaluation phases are executed. The case that more than two evaluation phases are involved can be proved following a similar flow. Here P_{A} in the ideal world submits the circuit C_{f} to the ideal functionality $\mathcal{F}_{\text {activePFE, }}$, and then both parties can submit their private inputs to $\mathcal{F}_{\text {activePFE }}$ and get the output (the evaluation results or nothing) twice.

The simulator \mathcal{S} follows the strategy used in the proof of Theorem 1 to simulate the view of the adversary \mathcal{A} controlling P_{A} in the initiation phase and two evaluation phases sequentially. We use a sequence of games as in the proof of Theorem 1 to show that the view of \mathcal{A} and the output of P_{B} in the ideal world is computationally indistinguishable from those in the real world. We can follow the same argument as in the proof of Theorem 1 except for the following difference.

The difference between this proof and the proof of Theorem 1 are the comparisons between Game ${ }_{2}$ and $\mathbf{G a m e}_{3}$ and between Game ${ }_{3}$ and Game ${ }_{4}$. Let us focus on the comparison between $\mathbf{G a m e}_{2}$ and $\mathbf{G a m e}_{3}$, and the same approach can be used for the comparison between Game ${ }_{3}$ and Game ${ }_{4}$. Different from the proof of Theorem 1, elements of $\left\{w_{b, i}^{0}\right\}_{i \in[M]}$ in the two executions, i.e., $b=1,2$, are derived from the same list $G=\left[g_{1}, \ldots, g_{M}\right]$, and thus we need to consider their joint distributions. More concretely, there exists a set S, such that in the two executions 1 and 2, elements of $\left\{w_{1, i}^{0}\right\}_{i \in S}$ and $\left\{w_{2, i}^{0}\right\}_{i \in S}$ are both received or derived by \mathcal{A}. We denote the set of $\left\{w_{1, i}^{0}\right\}_{i \in S}$ and $\left\{w_{2, i}^{0}\right\}_{i \in S}$ in Game ${ }_{2}$ by $\hat{W}_{1}=\left\{\hat{w}_{1, i}^{0}\right\}_{i \in S}$ and $\hat{W}_{2}=\left\{\hat{w}_{2, i}^{0}\right\}_{i \in S}$, and in Game 3 by $\hat{W}_{1}^{\prime}=\left\{\hat{w}_{1, i}^{0}\right\}_{i \in S}$ and $\hat{W}_{2}^{\prime}=\left\{{\hat{w^{\prime}}}_{2, i}^{0}\right\}_{i \in S}$. The difference between $\left(\hat{W}_{1}, \hat{W}_{2}\right)$ and $\left(\hat{W}_{1}^{\prime}, \hat{W}_{2}^{\prime}\right)$ is that elements in $\left(\hat{W}_{1}, \hat{W}_{2}\right)$ are of the form $\left(\left\{g_{i}^{\alpha_{1, i, 0}}\right\}_{i \in S},\left\{g_{i}^{\alpha_{2, i, 0}}\right\}_{i \in S}\right)$ for random $\alpha_{1, i, 0}$'s and $\alpha_{2, i, 0}$'s, while elements in ($\hat{W}_{1}^{\prime}, \hat{W}_{2}^{\prime}$) are of the form $\left(\left\{g_{i}^{\alpha_{1,0}}\right\}_{i \in S},\left\{g_{i}^{\alpha_{2,0}}\right\}_{i \in S}\right)$ for random but fixed $\alpha_{1,0}$ and $\alpha_{2,0}$. Let $m \leftarrow|S|, \hat{g}_{i} \leftarrow g_{i}$ for $i \in S, \beta \leftarrow \alpha_{1,0}$, $\beta^{\prime} \leftarrow \alpha_{2,0}$, and $\beta_{i} \leftarrow \alpha_{1, i, 0}, \beta_{m+i} \leftarrow \alpha_{2, i, 0}$ for $i \in[m]$. Our goal now is to prove that $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{i}}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{m+i}}\right\}_{i \in[m]}\right)$ is computationally indistinguishable from $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta^{\prime}}\right\}_{i \in[m]}\right)$. We first prove the following lemma.
Lemma 3. Under the $D D H$ assumption for the cyclic group \mathbb{G} of prime order $q \in \Theta\left(2^{\kappa}\right)$, for any positive integer $m=\operatorname{poly}(\kappa)$, given elements $\hat{g}_{1}, \ldots, \hat{g}_{m} \leftarrow \mathbb{G}$, $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{i}}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{m+i}}\right\}_{i \in[m]}\right)$, where $\beta_{1}, \ldots, \beta_{2 m} \leftarrow s \mathbb{Z}_{q}$, is computationally indistinguishable from $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta^{\prime}}\right\}_{i \in[m]}\right)$, where $\beta, \beta^{\prime} \leftarrow s \mathbb{Z}_{q}$.

Proof. We define the following games.
Game $_{0}$ This game is for the distribution of $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{i}}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{m+i}}\right\}_{i \in[m]}\right)$, where $\hat{g}_{1}, \ldots, \hat{g}_{m} \leftarrow s \mathbb{G}$ and $\beta_{1}, \ldots, \beta_{2 m} \leftarrow \varangle \mathbb{Z}_{q}$.
Game $_{1}$ In this game, we let $\beta \leftarrow s \mathbb{Z}_{q}$. The distribution of in the previous game is modified to be $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{m+i}}\right\}_{i \in[m]}\right.$). We now show that the distribution of Game ${ }_{1}$ and $\mathbf{G a m e}_{0}$ is computationally indistinguishable by constructing a distinguisher \mathcal{D} attacking the corresponding experiment of Lemma 1 using an adversary \mathcal{A} that can distinguish the distribution in Game $_{1}$ and the distribution in Game ${ }_{0}$.
The distinguisher \mathcal{D} runs \mathcal{A} internally. When receiving $\left(\left\{g_{i}\right\}_{i \in[m]},\left\{h_{i}\right\}_{i \in[m]}\right)$, \mathcal{D} picks $\gamma_{i} \leftarrow \mathbb{Z}_{q}$ and computes $h_{i}^{\prime}=g_{i}^{\gamma_{i}}$ for $i \in[m]$. Then \mathcal{D} sends to \mathcal{A} the message $\left(\left\{g_{i}\right\}_{i \in[m]},\left\{h_{i}\right\}_{i \in[m]},\left\{h_{i}^{\prime}\right\}_{i \in[m]}\right)$ and outputs what \mathcal{A} outputs. We note that if $\left\{h_{i}\right\}_{i \in[m]}$ is of the form $\left\{g_{i}^{\alpha_{i}}\right\}_{i \in[n]}$, the message sent to \mathcal{A} is identical to the distribution in $\mathbf{G a m e}_{0}$, otherwise if it is of the form $\left\{g_{i}^{\alpha}\right\}_{i \in[n]}$, the message sent to \mathcal{A} is identical to the distribution in $\mathbf{G a m e}_{1}$. If \mathcal{A} can distinguish $\mathbf{G a m e}_{0}$ and $\mathbf{G a m e}_{1}$ with a non-negligible probability, the distinguisher \mathcal{D} can successfully attack the corresponding experiment of Lemma 1, which contradict to the DDH assumption. Hence, the distribution in Game ${ }_{1}$ is computationally indistinguishable from the distribution in Game ${ }_{0}$.
Game $_{2}$ In this game, we let $\beta^{\prime} \leftarrow \& \mathbb{Z}_{q}$. We modify the distribution in the previous game to be $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta^{\prime}}\right\}_{i \in[m]}\right)$. Using the same argument,
we can easily prove that the distribution in $\mathbf{G a m e}_{2}$ is computationally indistinguishable from the distribution in $\mathbf{G a m e}_{1}$.

Therefore, the distribution in $\mathbf{G a m e}_{2}$ is computationally indistinguishable from the distribution in $\mathbf{G a m e}_{0}$, and the proof is completed.

From the lemma, we have that $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{i}}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta_{m+i}}\right\}_{i \in[m]}\right)$ is computationally indistinguishable from $\left(\left\{\hat{g}_{i}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta}\right\}_{i \in[m]},\left\{\hat{g}_{i}^{\beta^{\prime}}\right\}_{i \in[m]}\right)$. For elements not in the set S, we can simply follow the same argument in the proof of Theorem 1. Thus, we prove that the output of $\mathbf{G a m e}_{2}$ and the output of Game ${ }_{3}$ (and also the output of $\mathbf{G a m e}_{3}$ and the output of Game 4_{4}) are computationally indistinguishable.

Then following the same procedure as in the proof of Theorem 1, we complete the proof for P_{A}.

Now we focus on the case that P_{B} is semi-honest. For an adversary \mathcal{A} corrupting P_{B} in the real world, we construct a simulator \mathcal{S} that simulates P_{B} 's view. Now we present the simulation procedures for the initiation phase and evaluation phase (denoted by $\mathbf{G a m e}_{0}$). The simulator \mathcal{S} simulates the initiation phase as follows.

1. \mathcal{S} picks $g_{i} \leftarrow \mathbb{G}$ to generate the list G as in the protocol.
2. \mathcal{S} picks $h \leftarrow_{\delta} \mathbb{G}$ and generates $c_{i} \leftarrow_{\delta} \mathbb{G}^{2}, c_{i}^{\prime} \leftarrow_{\$} \mathbb{G}^{2}$, and $d_{i} \leftarrow_{\delta} \mathbb{G}$ for $i \in[N]$. Then \mathcal{S} generates accept's as the outputs from $\mathcal{F}_{\mathrm{zk}}^{\text {EncEP }}$ and $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$.
3. \mathcal{S} computes the list P as in the protocol.

Then in the two evaluation phases, \mathcal{S} follows the simulation procedure below for both of them.

1. \mathcal{S} randomly picks α_{0}, α_{1}, and derives $\left\{w_{i}^{0}, w_{i}^{1}\right\}_{i \in[M+m]}$ as in the protocol. \mathcal{S} then generates garbled gates $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$ as in the protocol.
2. \mathcal{S} simulates the executions of $\mathcal{F}_{\mathrm{OT}}$ as specified in the protocol.
3. \mathcal{S} follows the instructions of P_{B} in this step as in the protocol.
4. If P_{B} is allowed to know the evaluation result $y \in\{0,1\}^{m}, \mathcal{S}$ sets $\left\{w_{M+i}^{y[i]}\right\}_{i \in[m]}$ as the messages sent from P_{A}.

It remains to show that the distribution of the view of \mathcal{A} simulated by \mathcal{S} in the ideal world is indistinguishable from the distribution of the view of \mathcal{A} in the real world. We can follow the same procedure in the proof of Theorem 1 for the initiation phase. For the two evaluation phases, it is easy to see that they are independent, and thus we follow again the proof of Theorem 1 for the evaluation phase. The proof is thus completed.

D Proof of Theorem 3

Proof. We first focus on the completeness of the protocol. Note that for $i \in[N]$, \vec{e}_{i} is of the form that exact one entry is 1 and other entries are all 0 if and only
if $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$ and $\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=1$. Then for $x \leftarrow \& \mathbb{Z}_{q}$, we have

$$
\sum_{i=1}^{N} x^{i} \vec{e}_{i} \vec{e}_{i}=\sum_{i=1}^{N} x^{i} \vec{e}_{i}
$$

Since $\vec{d}_{i}=x^{i} \vec{e}_{i}$ and $\vec{d}=\sum_{i}^{N} \vec{d}_{i}$, we can rewrite the above equation as $\sum_{i=1}^{N} \vec{d}_{i} \vec{e}_{i}-$ $\vec{d}=0$. Moreover, given y for the bilinear mapping $*$, we have

$$
\sum_{i=1}^{N} \vec{d}_{i} * \vec{e}_{i}-\overrightarrow{1} * \vec{d}=0
$$

For $\omega \leftarrow s \mathbb{Z}_{q}$, we have

$$
\sum_{i=1}^{N} \omega^{i} \overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=\sum_{i=1}^{N} \omega^{i}
$$

Let $\Omega=\sum_{i=1}^{N} \omega^{i}$ and $\vec{e}=\sum_{i=1}^{N} \omega^{i} \vec{e}_{i}$. We can also rewrite the above equation as $\sum_{i=1}^{N} \omega^{i} \overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=\overrightarrow{1}^{\mathrm{T}}\left(\sum_{i=1}^{N} \omega^{i} \vec{e}_{i}\right)=\overrightarrow{1}^{\mathrm{T}} \vec{e}=\Omega$. Now it is easy to see that the protocol is complete when sub-protocols $\Pi_{\mathrm{zk}}^{\text {Zero }}$ and $\Pi_{\mathrm{zk}}^{\text {Sum }}$ are complete.

For the honest-verifier zero-knowledge property, we construct a simulator \mathcal{S} as follows. \mathcal{S} picks the challenges $x, y \leftarrow s \mathbb{Z}_{q}$, computes $c_{\vec{d}_{i}}$ for $i \in[N], c_{\vec{d}}$, $c_{-\overrightarrow{1}}, C$, and Ω as in the protocol, and sets $\vec{y}=\overrightarrow{1}$. Then \mathcal{S} runs the honestverifier zero-knowledge simulators for both of the underlying protocols $\Pi_{\mathrm{zk}}^{\text {Zero }}$ and $\Pi_{\mathrm{zk}}^{\text {Sum }}$. Since the underlying protocols $\Pi_{\mathrm{zk}}^{\text {Zero }}$ and $\Pi_{\mathrm{zk}}^{\text {Sum }}$ are both honest-verifier zero-knowledge, it is obvious that this simulation is indistinguishable from the transcript of real executions.

Finally, we focus on the soundness of the protocol. It remains to prove that the protocol has witness-extended emulation. The emulator \mathcal{E} runs the protocol and if the transcript is accepted, \mathcal{E} has to extract a witness.
\mathcal{E} runs the witness-extended emulator for $\Pi_{\mathrm{zk}}^{\text {Zero }}$ to get the extracted witness $\left(\left\{\vec{e}_{i}, r_{i}, \vec{d}_{i}, r_{\vec{d}_{i}}\right\}_{i \in[N]}, \vec{d}, r_{\vec{d}}, \vec{\tau}\right)$, where $\vec{\tau}$ satisfies $\vec{g}^{\vec{\tau}}=\prod_{i=1}^{N} g_{i}^{-1}$. We claim that we have $\vec{d}_{i}=x^{i} \vec{e}_{i}$ and $r_{\vec{d}_{i}}=x^{i} r_{i}$. Otherwise, we have two opening for $c_{\vec{d}_{i}}$, which allows us to derive a nontrivial discrete logarithm relation, and this contradicts to the discrete logarithm relation assumption. Using the same argument, we have $\vec{d}=\sum_{i}^{N} \vec{d}_{i}, r_{\vec{d}}=\sum_{i=1}^{N} r_{\vec{d}_{i}}$, and $\vec{\tau}=-\overrightarrow{1}$. Hence, we have

$$
\begin{aligned}
\sum_{i=1}^{N} x^{i} \vec{e}_{i} * \vec{e}_{i}-\overrightarrow{1} *\left(\sum_{i=1}^{N} x^{i} \vec{e}_{i}\right)=0 & \Longleftrightarrow \sum_{i=1}^{N} x^{i}\left(\vec{e}_{i} * \vec{e}_{i}-\overrightarrow{1} * \vec{e}_{i}\right)=0 \\
& \Longleftrightarrow \sum_{i=1}^{N} x^{i}\left(\sum_{j=1}^{M} e_{i j} e_{i j} y^{j}-\sum_{k=1}^{M} e_{i k} y^{k}\right)=0 \\
& \Longleftrightarrow \sum_{i=1}^{N} x^{i}\left(\sum_{j=1}^{M} y^{j}\left(e_{i j} e_{i j}-e_{i j}\right)\right)=0
\end{aligned}
$$

Since $x, y \leftarrow s \mathbb{Z}_{q}$, with an overwhelming probability, we have $e_{i j} e_{i j}=e_{i j}$ for $i \in[N], j \in[M]$, i.e., $\vec{e}_{i} \vec{e}_{i}=\vec{e}_{i}$ for $i \in[N]$.
\mathcal{E} also runs the witness-extended emulator for $\Pi_{\mathrm{zk}}^{\text {Sum }}$ to get $\left(\vec{e}, r_{\vec{e}}\right)$. Similarly, we can claim that $\vec{e}=\sum_{i=1}^{N} \omega^{i} \vec{e}_{i}$. Thus, we have

$$
\overrightarrow{1}^{\mathrm{T}} \vec{e}=\Omega \Longleftrightarrow \overrightarrow{1}^{\mathrm{T}}\left(\sum_{i=1}^{N} \omega^{i} \vec{e}_{i}\right)=\sum_{i=1}^{N} \omega^{i} \Longleftrightarrow \sum_{i=1}^{N} \omega^{i}\left(\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}\right)=\sum_{i=1}^{N} \omega^{i}
$$

Since $\omega \leftarrow \& \mathbb{Z}_{q}$, with an overwhelming probability, we have $\overrightarrow{1}^{\mathrm{T}} \vec{e}_{i}=1$ for $i \in[N]$.
From $\left\{\vec{e}_{i}\right\}_{i \in[N]}$, we can derive the EP π. Therefore, we obtain the extracted witness $\left\{r_{i}\right\}_{i \in[N]}$ and π for the protocol, and the protocol has witness-extended emulation.

E Proof of Theorem 4

Proof. The completeness of the protocol is clear. For the round that $\ell=1$, the following equations are satisfied:

$$
\begin{aligned}
\bar{g}^{z_{1}} u^{z_{2}} h^{z_{3}} & =\bar{g}^{x_{1}+\alpha \bar{e}} u^{x_{2}+\alpha \rho_{\vec{e}}} h^{x_{3}+\alpha r_{\vec{e}}} \\
& =\left(\bar{g}^{x_{1}} u^{x_{2}} h^{x_{3}}\right)\left(\bar{g}^{\alpha \bar{e}} u^{\alpha \rho_{\vec{e}}} h^{\alpha r_{\vec{e}}}\right) \\
& =a_{1} c_{\vec{e}}^{\alpha} \\
\gamma^{z_{1}} u^{z_{4}} & =\gamma^{x_{1}+\alpha \bar{e}} u^{x_{4}+\alpha \rho_{\vec{e}}^{\prime}} \\
& =\left(\gamma^{x_{1}} u^{x_{4}}\right)\left(\gamma^{\alpha \bar{e}} u^{\alpha \rho_{\vec{e}}^{\prime}}\right) \\
& =a_{2}\left(c_{\vec{e}}^{\prime}\right)^{\alpha}
\end{aligned}
$$

and

$$
g^{z_{3}}=g^{x_{3}+\alpha r_{\vec{e}}}=g^{x_{3}} g^{\alpha r_{\vec{e}}}=a_{3}\left(C^{(0)}\right)^{\alpha}
$$

For the round that $\ell \neq 1$, the computed $c_{\vec{e}^{\prime}}, \vec{e}^{\prime}, \vec{g}^{\prime}, \rho_{\vec{e}^{\prime}}$, and $r_{\vec{e}}$ satisfy the following relation:

$$
\begin{aligned}
\left(\vec{g}^{\prime}\right)^{\vec{e}^{\prime}} u^{\rho_{\vec{e}^{\prime}}} h^{r_{\vec{e}}} & =\left(\vec{g}_{L}^{\alpha-1} \vec{g}_{R}^{\alpha}\right)^{\left(\alpha \vec{e}_{L}+\alpha^{-1} \vec{e}_{R}\right)} u^{\left(\rho_{\vec{e}}+\alpha^{2} \rho_{L}+\alpha^{-2} \rho_{R}\right)} h^{r_{\vec{e}}} \\
& =\left(\vec{g}_{L}^{\alpha-1} \vec{g}_{R}^{\alpha}\right)^{\left(\alpha \vec{e}_{L}\right)}\left(\vec{g}_{L}^{\alpha^{-1}} \vec{g}_{R}^{\alpha}\right)^{\left(\alpha^{-1} \vec{e}_{R}\right)} u^{\left(\rho_{\vec{e}}+\alpha^{2} \rho_{L}+\alpha^{-2} \rho_{R}\right)} h^{r_{\vec{e}}} \\
& =\left(\vec{g}_{L}^{\vec{L}_{L}} \vec{g}_{R}^{\alpha^{\alpha} \vec{e}_{L}}\right)\left(\vec{g}_{L}^{\alpha^{-2} \vec{e}_{R}} \vec{g}_{R}^{\vec{e}_{R}}\right) u^{\left(\rho_{\vec{e}}+\alpha^{2} \rho_{L}+\alpha^{-2} \rho_{R}\right)} h^{r_{\vec{e}}} \\
& =\vec{g}_{\vec{e}} \vec{g}_{R}^{\alpha^{2} \vec{e}_{L}} \vec{g}_{L}^{\alpha^{-2} \vec{e}_{R}} u^{\left(\rho_{\vec{e}}+\alpha^{2} \rho_{L}+\alpha^{-2} \rho_{R}\right)} h^{r_{\vec{e}}} \\
& =\left(\vec{g}^{\vec{e}} u^{\rho_{e}} h^{r_{\vec{e}}}\right)\left(\vec{g}_{R}^{\alpha^{2} \vec{e}_{L}} u^{\alpha^{2} \rho_{L}}\right)\left(\vec{g}_{L}^{\alpha^{-2} \vec{e}_{R}} u^{\alpha^{-2} \rho_{R}}\right) \\
& =c_{\vec{e}} v_{L}^{\alpha^{2}} v_{R}^{\alpha-2} \\
& =c_{\vec{e}^{\prime}} .
\end{aligned}
$$

Meanwhile, $c_{\vec{e}}^{\prime}, \vec{e}^{\prime}$, and \vec{y}^{\prime} satisfy the following equation:

$$
\begin{aligned}
g^{\left(\vec{y}^{\prime}\right)^{\mathrm{T}} \vec{e}^{\prime}} u^{\rho_{\vec{e}^{\prime}}^{\prime}} & =g^{\left(\alpha^{-1} \vec{y}_{L}+\alpha \vec{y}_{R}\right)^{\mathrm{T}}\left(\alpha \vec{e}_{L}+\alpha^{-1} \vec{e}_{R}\right)} u^{\left(\rho_{\vec{e}}^{\prime}+\alpha^{2} \rho_{L}^{\prime}+\alpha^{-2} \rho_{R}^{\prime}\right)} \\
& =g^{\vec{y}_{L}^{\mathrm{T}} \vec{e}_{L}} g^{\alpha^{2} \vec{y}_{R}^{\mathrm{T}} \vec{e}_{L}} g^{\alpha^{-2} \vec{y}_{L}^{\mathrm{T}} \vec{e}_{R}} g^{\vec{y}_{R}^{\mathrm{T}} \vec{e}_{R}} u^{\left(\rho_{\vec{e}}^{\prime}+\alpha^{2} \rho_{L}^{\prime}+\alpha^{-2} \rho_{R}^{\prime}\right)} \\
& =g^{\vec{y}^{\mathrm{T}}} g^{\alpha^{2} \vec{y}_{R}^{\mathrm{T}} \vec{e}_{L}} g^{\alpha^{-2} \vec{y}_{L}^{\mathrm{T}} \vec{e}_{R}} u^{\left(\rho_{\vec{e}}^{\prime}+\alpha^{2} \rho_{L}^{\prime}+\alpha^{-2} \rho_{R}^{\prime}\right)} \\
& =\left(g^{\vec{y}^{\mathrm{T}} \vec{e}} u^{\rho^{\prime}}\right)\left(g^{\alpha^{2} \vec{y}_{R}^{\mathrm{T}} \vec{e}_{L}} u^{\alpha^{2} \rho_{L}^{\prime}}\right)\left(g^{\alpha^{-2} \vec{y}_{L}^{\mathrm{T}} \vec{e}_{R}} u^{\alpha^{-2} \rho_{R}^{\prime}}\right) \\
& =c_{\vec{e}}^{\prime}\left(v_{L}^{\prime}\right)^{\alpha^{2}}\left(v_{R}^{\prime}\right)^{\alpha^{-2}} \\
& =c_{\vec{e}^{\prime}}^{\prime} .
\end{aligned}
$$

Therefore, an honest prover P following the protocol could generate all the messages that pass the verification conducted by the verifier V .

For the honest-verifier zero-knowledge property, we construct a simulator \mathcal{S}. \mathcal{S} firstly pick $u \leftarrow \mathbb{G}$.

When $\ell=1$, the simulator \mathcal{S} picks $\alpha \leftarrow s \mathbb{Z}_{q}$ as the challenge. \mathcal{S} also generates $z_{1}, z_{2}, z_{3}, z_{4} \leftarrow s \mathbb{Z}_{q}$. Then \mathcal{S} computes $a_{1} \leftarrow \bar{g}^{z_{1}} u^{z_{2}} h^{z_{3}} c_{\vec{e}}^{-\alpha}, a_{2} \leftarrow \gamma^{z_{1}} u^{z_{4}}\left(c_{\vec{e}}^{\prime}\right)^{-\alpha}$, and $a_{3} \leftarrow g^{z_{3}}\left(C^{(0)}\right)^{-\alpha}$. It is obvious that the generated $\left(a_{1}, a_{2}, a_{3}, \alpha, z_{1}, z_{2}, z_{3}, z_{4}\right)$ is perfectly indistinguishable from the distribution of the real execution.

For the cases that $\ell \neq 1$, the simulator \mathcal{S} firstly picks $\alpha \leftarrow \mathbb{Z}_{q}$ as the challenge. \mathcal{S} then chooses $v_{L}, v_{R}, v_{L}^{\prime}, v_{R}^{\prime} \leftarrow \varangle \mathbb{G}$, and computes $c_{\vec{e}^{\prime}}, c_{\vec{e}}^{\prime}, \vec{g}^{\prime}, \vec{y}^{\prime}$ as in the real execution. We note that since $v_{L}, v_{R}, v_{L}^{\prime}, v_{R}^{\prime}$ can be regarded as Pedersen commitments that are perfectly hiding, the generated transcript is perfectly indistinguishable from the transcripts of real executions.

Hence, the simulator \mathcal{S} produces a simulated proof that is indistinguishable from valid proofs generated by an honest prover interacting with an honest verifier.

Finally, we focus on the soundness of the protocol. It remains to prove that the protocol has witness-extended emulation. The emulator \mathcal{E} runs the protocol, and if the transcript is accepted, \mathcal{E} has to extract a witness. We will use an inductive argument to show that in each step, \mathcal{E} can efficiently extract a witness. \mathcal{E} first forks the execution with challenges u and u^{\prime}, such that $u \neq u^{\prime}$. We then focus on the case with u.

When $\ell=1$, after receiving a_{1}, a_{2}, and a_{3}, the emulator \mathcal{E} obtains two accepting transcripts with two challenge α and α^{\prime} such that $\alpha^{\prime} \neq \alpha$ by rewinding the prover. From the two transcripts, \mathcal{E} derives two pairs $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ and $\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}\right)$, such that

$$
\bar{g}^{z_{1}} u^{z_{2}} h^{z_{3}}=a_{1} c_{\vec{e}}^{\alpha}, \quad \gamma^{z_{1}} u^{z_{4}}=a_{2}\left(c_{\vec{e}}^{\prime}\right)^{\alpha}, \quad g^{z_{3}}=a_{3}\left(C^{(0)}\right)^{\alpha}
$$

and

$$
\bar{g}^{z_{1}^{\prime}} u^{z_{2}^{\prime}} h^{z_{3}^{\prime}}=a_{1} c_{\vec{e}}^{\alpha^{\prime}}, \quad \gamma^{z_{1}^{\prime}} u^{z_{4}^{\prime}}=a_{2}\left(c_{\vec{e}}^{\prime}\right)^{\alpha^{\prime}}, \quad g^{z_{3}^{\prime}}=a_{3}\left(C^{(0)}\right)^{\alpha^{\prime}}
$$

Therefore, we can derive

$$
g^{z_{3}-z_{3}^{\prime}}=\left(C^{0}\right)^{\alpha-\alpha^{\prime}}
$$

Let $r_{\vec{e}}=\left(z_{3}-z_{3}^{\prime}\right) /\left(\alpha^{\prime}-\alpha\right)$, and then we have

$$
g^{r_{\vec{e}}}=g^{\left(z_{3}-z_{3}^{\prime}\right) /\left(\alpha^{\prime}-\alpha\right)}=C^{(0)}
$$

Hence, we extract the discrete logarithm of $C^{(0)}$. Similarly, the emulator can compute
$\bar{e} \leftarrow\left(z_{1}-z_{1}^{\prime}\right) /\left(\alpha^{\prime}-\alpha\right), \quad \rho_{\vec{e}} \leftarrow\left(z_{2}-z_{2}^{\prime}\right) /\left(\alpha^{\prime}-\alpha\right), \quad \rho_{\vec{e}}^{\prime} \leftarrow\left(z_{4}-z_{4}^{\prime}\right) /\left(\alpha^{\prime}-\alpha\right)$,
These extracted values are the corresponding discrete logarithms of $c_{\vec{e}}, c_{\vec{e}}^{\prime}$, and $C^{(0)}$.

For the case that $\ell \neq 1, \mathcal{E}$ runs the prover and receives $v_{L}, v_{R}, v_{L}^{\prime}$, and v_{R}^{\prime}. Then \mathcal{E} obtains three accepting transcripts with challenge α_{i}, such that $\alpha_{i} \neq \alpha_{j}$ for $1 \leq i<j \leq 3$ by rewinding the prover. From the three transcripts, \mathcal{E} derives pairs $\left(\vec{e}_{i}^{\prime}, \rho_{\vec{e}_{i}^{\prime}}, \rho_{\vec{e}_{i}^{\prime}}^{\prime}\right)$ for $i=1,2,3$, such that

$$
\begin{gather*}
c_{\vec{e}} v_{L}^{\alpha_{i}^{2}} v_{R}^{\alpha_{i}^{-2}}=\left(\vec{g}_{L}^{\alpha_{i}^{-1}} \vec{g}_{R}^{\alpha_{i}}\right)^{\vec{e}_{i}^{\prime}} u^{\rho_{\vec{e}_{i}^{\prime}}} h^{r_{\vec{e}}} \tag{1}\\
c_{\vec{e}}^{\prime}\left(v_{L}^{\prime}\right)^{\alpha_{i}^{2}}\left(v_{R}^{\prime}\right)^{\alpha_{i}^{-2}}=g^{\left(\alpha_{i}^{-1} \vec{y}_{L}+\alpha_{i} \vec{y}_{R}\right)^{\mathrm{T}} \vec{e}_{i}^{\prime}} u^{\rho_{\vec{e}_{i}}^{\prime}} \tag{2}
\end{gather*}
$$

We can easily find $\nu_{1}, \nu_{2}, \nu_{3}$, such that

$$
\sum_{i=1}^{3} \nu_{i} \alpha_{i}^{2}=0, \quad \sum_{i=1}^{3} \nu_{i}=1, \quad \sum_{i=1}^{3} \nu_{i} \alpha_{i}^{-2}=0
$$

This follows from the fact that the matrix below is full rank:

$$
\left[\begin{array}{ccc}
1 & \alpha_{1}^{2} & \alpha_{1}^{-2} \\
1 & \alpha_{2}^{2} & \alpha_{2}^{-2} \\
1 & \alpha_{3}^{2} & \alpha_{3}^{-2}
\end{array}\right]
$$

Then we take the linear combination (to the power) of the three equalities (for $i=1, \ldots, 3$) in (1) with $\nu_{1}, \nu_{2}, \nu_{3}$ as the coefficients and obtain

$$
\begin{aligned}
c_{\vec{e}} & =\prod_{i=1}^{3}\left(c_{\vec{e}} v_{L}^{\alpha_{i}^{2}} v_{R}^{\alpha_{i}^{-2}}\right)^{\nu_{i}} \\
& =\left(\prod_{i=1}^{3}\left(\left(\vec{g}_{L}^{\alpha_{i}^{-1}} \vec{g}_{R}^{\alpha_{i}}\right)^{\vec{e}^{\prime}}\right)^{\nu_{i}}\right) u^{\sum_{i=1}^{3} \nu_{i} \rho_{\vec{e}_{i}^{\prime}}} h^{r_{e} \sum_{i=1}^{3} \nu_{i}} \\
& =\left(\vec{g}_{L}^{\sum_{i=1}^{3} \nu_{i} \alpha_{i}^{-1} \vec{e}_{i}^{\prime}} \vec{g}_{R}^{\sum_{i=1}^{3} \nu_{i} \alpha_{i} \vec{e}_{i}^{\prime}}\right) u^{\sum_{i=1}^{3} \nu_{i} \rho_{\vec{e}_{i}^{\prime}}} h^{r_{\vec{e}}}
\end{aligned}
$$

We can compute

$$
\vec{e} \leftarrow\left(\sum_{i=1}^{3} \nu_{i} \alpha_{i}^{-1} \vec{e}_{i}^{\prime}, \sum_{i=1}^{3} \nu_{i} \alpha_{i} \vec{e}_{i}^{\prime}\right) \in \mathbb{Z}_{q}^{n}, \quad \rho_{\vec{e}} \leftarrow \sum_{i=1}^{3} \nu_{i} \rho_{\vec{e}_{i}^{\prime}} \in \mathbb{Z}_{q}
$$

such that $c_{\vec{e}}=\vec{g}^{\vec{e}} u^{\rho_{L}} h^{r_{\vec{e}}}$. Similarly, we can repeat this process for (2) and obtain

$$
\begin{aligned}
c_{\vec{e}}^{\prime} & =\prod_{i=1}^{3}\left(c_{\vec{e}}^{\prime}\left(v_{L}^{\prime}\right)^{\alpha_{i}^{2}}\left(v_{R}^{\prime}\right)^{\alpha_{i}^{-2}}\right)^{\nu_{i}} \\
& =g^{\sum_{i=1}^{3} \nu_{i}\left(\alpha_{i}^{-1} \vec{y}_{L}+\alpha_{i} \vec{y}_{R}\right)^{\mathrm{T}} \vec{e}_{i}^{\prime}} u^{\sum_{i=1}^{3} \nu_{i} \rho_{\vec{e}_{i}}^{\prime}} \\
& =g^{\vec{y}_{L}^{\mathrm{L}}\left(\sum_{i=1}^{3} \nu_{i} \alpha_{i}^{-1} \vec{e}_{i}^{\prime}\right)+\vec{y}_{R}^{\mathrm{T}}\left(\sum_{i=1}^{3} \nu_{i} \alpha_{i} \vec{e}_{i}^{\prime}\right)} u^{\sum_{i=1}^{3} \nu_{i} \rho_{\bar{e}_{i}}^{\prime}} .
\end{aligned}
$$

We here derive the same $\vec{e}=\left(\sum_{i=1}^{3} \nu_{i} \alpha_{i}^{-1} \vec{e}_{i}^{\prime}, \sum_{i=1}^{3} \nu_{i} \alpha_{i} \vec{e}_{i}^{\prime}\right) \in \mathbb{Z}_{q}^{n}$ and can compute $\rho_{\vec{e}}^{\prime}=\sum_{i=1}^{3} \nu_{i} \rho_{e_{i}}^{\prime} \in \mathbb{Z}_{q}$, such that $c_{\vec{e}}^{\prime}=g^{\bar{y}^{\mathrm{T}} \vec{e}} u^{\rho_{\bar{e}}^{\prime}}$. Thus, the emulator \mathcal{E} extracts the witness $\vec{e}, \rho_{\vec{e}}$, and $\rho_{\vec{e}}^{\prime}$ for this round.

Following this procedure, the emulator \mathcal{E} can go from the leaves of the transcript tree to the root of that tree and finally extract the witness of original relation. Note that the extracted witness for the first statement should satisfy that $\vec{y}^{\mathrm{T}} \vec{e}=\Omega$ and $\rho_{\vec{e}}^{\prime}=0$. If it is not, since we have

$$
c_{\vec{e}}^{\prime}=g^{\Omega}=g^{\vec{y}^{\vec{T}} \vec{e}} u^{\rho_{e}^{\prime}},
$$

we can easily compute a nontrivial discrete logarithm relation, and this contradicts to the discrete logarithm relation assumption. Similarly, we should have $\rho_{\vec{e}}=0$ and $c_{\vec{e}}=\vec{g}^{\vec{e}} h^{r_{\vec{e}}}$. If $\rho_{\vec{e}} \neq 0$, let us consider the other forking flow with u^{\prime}. Denote the corresponding extracted witness in this flow by $\left(\hat{\vec{e}}, r_{\vec{e}}, \hat{\rho}_{\vec{e}}\right)$. Here we have identical $r_{\vec{e}}$ because $r_{\vec{e}}$ is fixed for $C^{(0)}$. Since $u \neq u^{\prime}$ and $\rho_{\vec{e}} \neq 0$, we have $\left(\vec{e}, \rho_{\vec{e}}\right) \neq\left(\hat{\vec{e}}, \hat{\rho}_{\vec{e}}\right)$. Hence, we have

$$
c_{\vec{e}}=\vec{g}^{\vec{e}} u^{\rho_{e}} h^{r_{\vec{r}}}=\vec{g}^{\hat{\vec{e}}}\left(u^{\prime}\right)^{\hat{\rho}_{\vec{e}}} h^{r_{\vec{r}}},
$$

from which we can easily compute a nontrivial discrete logarithm relation, and this contradicts to the discrete logarithm relation assumption. Thus, the emulator \mathcal{E} successfully extracts the witness.

During the extraction, \mathcal{E} uses $4 \times 3^{\log _{2}(M)}$ transcripts, and thus runs in expected polynomial time in $M .{ }^{5}$ Therefore, the protocol has witness-extended emulation.

F Proof of Theorem 5

Proof. For completeness, if the statement is valid, the equation below holds:

$$
d_{\ell+1}=\sum_{\substack{0 \leq i \leq \ell, 1 \leq j \leq \ell+1 \\ j=i}} \vec{u}_{i} * \vec{v}_{j}=\sum_{i=1}^{\ell} \vec{u}_{i} * \vec{v}_{i}=0
$$

Hence, $c_{d_{\ell}+1}=g^{d_{\ell+1}} h^{r_{d_{\ell+1}}}=1$ given $r_{d_{\ell+1}}=0$. Meanwhile, we have

$$
\vec{u} * \vec{v}=\left(\sum_{i=0}^{\ell} x^{i} \vec{u}_{i}\right) *\left(\sum_{j=1}^{\ell+1} x^{\ell-j+1} \vec{v}_{j}\right)=\sum_{k=0}^{2 \ell} x^{k} d_{k}
$$

Hence, the perfect completeness of the protocol directly follows from the verification conducted by V .

For the honest-verifier zero-knowledge property, we construct a simulator \mathcal{S} as follows.

[^1]For the challenge $x \leftarrow \mathbb{Z}_{q}, \mathcal{S}$ picks $r_{\vec{u}}, r_{\vec{v}}, r_{d_{0}}, \ldots, r_{d_{\ell}}, r_{d_{\ell+2}}, \ldots, r_{d_{2 \ell}} \leftarrow \mathbb{\mathbb { Z } _ { q }}$ and $\vec{u}, \vec{v} \leftarrow \mathbb{Z}_{q}^{M}$. Then \mathcal{S} sets $r_{d_{\ell+1}}=0$ and computes

$$
\begin{aligned}
& c_{\vec{u}_{0}}^{(0)} \leftarrow g^{r_{\vec{u}}} \prod_{i=1}^{\ell}\left(c_{\vec{u}_{i}}^{(0)}\right)^{-x^{i}}, c_{\vec{u}_{0}}^{(1)} \leftarrow \vec{g}^{\vec{u}} h^{r_{\vec{u}}} \prod_{i=1}^{\ell}\left(c_{\vec{u}_{i}}^{(1)}\right)^{-x^{i}}, t \leftarrow \sum_{\phi=0}^{2 \ell} x^{\phi} r_{d_{\phi}}, \\
& c_{\vec{v}_{\ell+1}}^{(0)} \leftarrow g^{r_{\vec{v}}} \prod_{j=1}^{\ell}\left(c_{\vec{v}_{j}}^{(0)}\right)^{-x^{\ell+1-j}}, c_{\vec{v}_{\ell+1}}^{(1)} \leftarrow \vec{g}^{\vec{v}} h^{r_{\vec{v}}} \prod_{j=1}^{\ell}\left(c_{\vec{v}_{j}}^{(1)}\right)^{-x^{\ell+1-j}}, c_{d_{0}} \leftarrow g^{\vec{u} * \vec{v}} h^{r_{d_{0}}},
\end{aligned}
$$

and $c_{d_{\phi}} \leftarrow h^{r_{d_{\phi}}}$ for $\phi \in\{1, \ldots, 2 \ell\} \backslash\{\ell+1\}$. The simulated transcript is

$$
\left(c_{\vec{u}_{0}}^{(0)}, c_{\vec{u}_{0}}^{(1)}, c_{\vec{u}_{\ell+1}}^{(0)}, c_{\vec{u}_{\ell+1}}^{(1)},\left\{c_{d_{\phi}}\right\}_{\phi=0, \ldots, 2 \ell}, x, \vec{u}, \vec{v}, r_{\vec{u}}, r_{\vec{v}}, t\right) .
$$

Note that this simulated transcript is perfectly indistinguishable from the transcripts of real executions. This is due to the fact that elements of $\left\{c_{d_{\phi}}\right\}_{\phi=1, \ldots, 2 \ell}$ are all perfectly hiding commitments, and $\vec{u}, \vec{v}, r_{\vec{u}}, r_{\vec{v}}, t$ are uniformly random both in the real protocol and the simulation. In addition, $c_{\vec{u}_{0}}^{(0)}, c_{\vec{u}_{0}}^{(1)}, c_{\vec{u}_{\ell+1}}^{(0)}, c_{\vec{u}_{\ell+1}}^{(1)}, c_{d_{0}}$ are all uniquely determined by the verification equations. Hence, the honestverifier zero-knowledge property follows.

Finally, we focus on the soundness of the protocol. It remains to prove that the protocol has witness-extended emulation. The emulator \mathcal{E} runs the protocol, and if the transcript is accepted, \mathcal{E} has to extract a witness. After receiving $c_{\vec{u}_{0}}, c_{\vec{v}_{\ell+1}}$, and $\left\{c_{d_{\phi}}\right\}_{\phi \in\{0, \ldots, 2 \ell\} \backslash\{\ell+1\}}, \mathcal{E}$ obtains $2 \ell+1$ accepting transcripts with different challenges $\left\{x_{i}\right\}_{i \in[2 \ell+1]}$ by rewinding the prover. On average \mathcal{E} will be making $2 \ell+1$ arguments, and thus it runs in expected polynomial time. Now we have for $k \in[2 \ell+1]$

$$
\begin{aligned}
& \prod_{i=0}^{\ell}\left(c_{\vec{u}_{i}}^{(0)}\right)^{x_{k}^{i}}=g^{r_{\vec{u}}^{\langle k\rangle}}, \quad \prod_{i=0}^{\ell}\left(c_{\vec{u}_{i}}^{(1)}\right)^{x_{k}^{i}}=\vec{g}^{\vec{u}^{(k\rangle}} h^{r_{\vec{u}}^{\langle k\rangle}}, \quad c_{d_{\ell+1}}=1 \\
& \prod_{j=1}^{\ell+1}\left(c_{\vec{v}_{j}}^{(0)}\right)^{x_{k}^{\ell+1-j}}=g^{r_{\vec{v}}^{\langle k\rangle}}, \prod_{j=1}^{\ell+1}\left(c_{\vec{v}_{j}}^{(1)}\right)^{x_{k}^{\ell+1-j}}=\vec{g}^{\vec{v}^{(k\rangle}} h^{r_{\vec{v}}^{\langle k\rangle}}, \prod_{\phi=0}^{2 \ell} c_{d_{\phi}}^{x_{k}^{\phi}}=g^{\vec{u}^{\langle k\rangle} * \vec{v}^{\langle k\rangle}} h^{t^{(k\rangle}} .
\end{aligned}
$$

We can easily solve the discrete logarithms $\left\{r_{\vec{u}_{i}}\right\}_{i=0, \ldots, \ell}$ via a system of equations from arbitrary $\ell+1$ accepting transcripts, such as:

$$
\begin{aligned}
& r_{\vec{u}_{0}} x_{1}^{0}+\cdots+r_{\vec{u}_{\ell}} x_{1}^{\ell}=r_{\vec{u}}^{\langle 1\rangle} \\
& \vdots \\
& r_{\vec{u}_{0}} x_{\ell+1}^{0}+\cdots+r_{\vec{u}_{\ell}} x_{\ell+1}^{\ell}=r_{\vec{u}}^{\langle\ell+1\rangle}
\end{aligned}
$$

when $\left\{x_{k}\right\}_{k \in[\ell+1]}$ and $\left\{r_{\vec{u}}^{\langle k\rangle}\right\}_{k \in[\ell+1]}$ are known. We can always solve this system of equations since the corresponding Vandermonde matrix of x_{k} 's has full rank. Then given extracted $\left\{r_{\vec{u}_{i}}\right\}_{i=0, \ldots, \ell}$, we can extract $\left\{\vec{u}_{i}\right\}_{i=0, \ldots, \ell}$ from the following
system of equations via the same approach.

$$
\begin{gathered}
x_{1}^{0} \vec{u}_{0}+\cdots+x_{1}^{\ell} \vec{u}_{\ell}=\vec{u}^{\langle 1\rangle} \\
\vdots \\
x_{\ell+1}^{0} \vec{u}_{0}+\cdots+x_{\ell+1}^{\ell} \vec{u}_{\ell}=\vec{u}^{\langle\ell+1\rangle}
\end{gathered}
$$

Similarly, we can extract $\left\{\vec{v}_{j}\right\}_{j=1, \ldots, \ell+1}$ and $\left\{r_{\vec{v}_{j}}\right\}_{j=1, \ldots, \ell+1}$. Meanwhile, we can extract $\left\{d_{\phi}\right\}_{\phi=0, \ldots, 2 \ell}$ and $\left\{r_{d_{\phi}}\right\}_{\phi=0, \ldots, 2 \ell}$ from the systems of equations

$$
\begin{gathered}
d_{0} x_{1}^{0}+\cdots+d_{2 \ell} x_{1}^{2 \ell}=D_{1} \\
\vdots \\
d_{0} x_{2 \ell+1}^{0}+\cdots+d_{2 \ell} x_{2 \ell+1}^{2 \ell}=D_{2 \ell+1}
\end{gathered}
$$

and

$$
\begin{aligned}
& r_{d_{0}} x_{1}^{0}+\cdots+r_{d_{2 \ell}} x_{1}^{2 \ell}=t^{\langle 1\rangle} \\
& \vdots \\
& r_{d_{0}} x_{2 \ell+1}^{0}+\cdots+r_{d_{2 \ell}} x_{2 \ell+1}^{2 \ell}=t^{\langle 2 \ell+1\rangle}
\end{aligned}
$$

where $D_{k} \leftarrow \vec{u}^{(k)} * \vec{v}^{(k)}$. We claim that the extracted $d_{\ell+1}$ and $r_{d_{\ell+1}}$ satisfying $d_{\ell+1}=0$ and $r_{d_{\ell+1}}=0$. Otherwise, we have

$$
1=g^{d_{\ell+1}} h^{r_{\ell+1}}=g^{0} h^{0},
$$

from which we can easily compute a nontrivial discrete logarithm relation, and this contradicts to the discrete logarithm relation assumption. Thus, the emulator \mathcal{E} successfully extracts the witness such that $\sum_{i=1}^{\ell} \vec{u}_{i} * \vec{v}_{i}=0$, and the protocol has witness-extended emulation.

G Proof of Theorem 6

Proof. We first focus on the case that P_{A} is malicious. The analysis for malicious P_{A} is very similar to the proof of Theorem 1 . For an adversary \mathcal{A} corrupting P_{A} in the real world, we construct a simulator \mathcal{S} holding (vk, sigk) that runs \mathcal{A} as a subroutine and plays the role of P_{B} in the ideal world. \mathcal{S} first picks the common reference string $g_{i} \leftarrow \mathbb{G}$ for $i \in[N]$, where all g_{i} 's are different. Now we present the simulation procedure for the initiation phase and evaluation phase (denoted by Game $_{0}$). The simulator simulates the initiation phase as follows.

1. \mathcal{S} receives h, Φ, Φ^{\prime}, and $\left\{d_{i}\right\}_{i \in[N]}$ from \mathcal{A}. Then \mathcal{S} receives the EP π_{f} (and corresponding random coins) that \mathcal{A} sends to $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}} . \mathcal{S}$ verifies whether π_{f} and the corresponding random coins are correct. If not, \mathcal{S} sends abort $_{A}$ to $\mathcal{F}_{\text {activePFE }}$ and simulates the termination of P . \mathcal{S} also receives s and $\left\{t_{i}\right\}_{i \in[N]}$ from \mathcal{A} for $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ and verifies them following a similar procedure as for $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$.
2. \mathcal{S} computes $P=\left[p_{1}, \ldots, p_{N}\right]$ as in the protocol.
\mathcal{S} can derive the evaluated circuit C_{f} from the EP π_{f}. Then \mathcal{S} sends C_{f} to $\mathcal{F}_{\text {activePFE }}$ and proceeds to simulate the evaluation phase.
3. Upon receiving $\left\{\mathrm{c}^{\operatorname{sedd}_{j}^{A}}\right\}_{j \in[\lambda]}$ from \mathcal{A}, \mathcal{S}, as in the protocol, picks uniform κ-bit strings $\left\{\operatorname{seed}_{j}^{B} \text {, witness }\right\}_{j \in[\lambda]}$. Then \mathcal{S} uses the simulator $\mathcal{S}_{\text {OT }}$ for Π_{OT} to extract \mathcal{A} 's inputs $\left\{b_{j}\right\}_{j \in[\lambda]}$. Let sets $J_{\text {seed }}=\left\{j: b_{j}=0\right\}$ and $J_{\text {witness }}=$ $\left\{j: b_{j}=1\right\}$. Let $\mathcal{S}_{\text {OT }}$ return $\operatorname{seed}_{j}^{B}$ for $j \in J_{\text {seed }}$ and witness ${ }_{j}$ for $j \in J_{\text {witness }}$ to \mathcal{A}.
4. For $j \in J_{\text {seed }}, \mathcal{S}$ acts as an honest P_{B} and follows the protocol to run this step. For $j \in J_{\text {witness }}, \mathcal{S}$ does the following.

- If $\left|J_{\text {witness }}\right|=1$, we let $\hat{\jmath}$ be the unique index in $J_{\text {witness }} \mathcal{S}$ chooses $\alpha_{i} \leftarrow \& \mathbb{Z}_{q}$ for $i \in[M]$. \mathcal{S} computes $w_{i} \leftarrow g_{i}^{\alpha_{i}}$ for $i \in[M]$. Then \mathcal{S} picks $w_{i} \leftarrow \mathbb{G}$ for $i=M+1, \ldots, M+m$ for output-wire labels of output gates. \mathcal{S} also computes $v_{i} \leftarrow\left(w_{\pi_{f}(i)}\right)^{t_{i}}$ and picks $v_{i}^{\prime} \leftarrow \mathbb{G}$ for $i \in[N]$.
\mathcal{S} computes $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \mathrm{Gb}\left(\left\{i,\left(v_{2 i-1}, v_{2 i-1}^{\prime}\right),\left(v_{2 i}, v_{2 i}^{\prime}\right),\left(w_{n+i}, w_{n+i}\right)\right\}_{i \in[\theta]}\right)$. Let $\mathrm{GC}_{\hat{\jmath}}=\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$.
- If $\left|J_{\text {witness }}\right| \geq 2, \mathcal{S}$ acts as an honest P_{A} but uses true randomness in this step.

2. For $j \in J_{\text {seed }}, \mathcal{S}$ acts as an honest P_{B} and follows the protocol to run this step. For $j \in J_{\text {witness }}, \mathcal{S}$ does the following.

- If $\left|J_{\text {witness }}\right|=1, \mathcal{S}$ uses the simulator $\mathcal{S}_{\mathrm{OT}}$ for Π_{OT} to extract \mathcal{A} 's input $x_{A} . \mathcal{S}_{\mathrm{OT}}$ returns $\left\{w_{i}\right\}_{i \in\left[n_{A}\right]}$ to $\mathcal{A} . \mathcal{S}$ sends x_{A} to the ideal functionality $\mathcal{F}_{\text {covertPFE }}$, and receives the evaluation result $y \in\{0,1\}^{m}$ or nothing depending on the scenario.
- If $\left|J_{\text {witness }}\right| \geq 2, \mathcal{S}$ acts as an honest P_{A} but uses true randomness in this step.

3. For $j \in J_{\text {seed }}, \mathcal{S}$ acts as an honest P_{B} and follows the protocol to run this step. For $j \in J_{\text {witness }}, \mathcal{S}$ does the following.

- If $\left|J_{\text {witness }}\right|=1, \mathcal{S}$ computes $c_{i, \hat{\jmath}, 0}^{x_{B}} \leftarrow \operatorname{Com}\left(w_{n_{A}+i}\right)$ and $c_{i, \hat{\jmath}, 1}^{x_{B}} \leftarrow \operatorname{Com}(0)$ for $i \in\left[n_{B}\right]$.
If y is known, we let h_{j}^{O} denotes the hash value of the output-wire labels $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$, where $w_{M+i}^{y[i]}=w_{M+i}$ and $w_{M+i}^{1-y[i]} \leftarrow_{s} \mathbb{G}$. Otherwise, we let $\mathrm{h}_{j}^{\mathrm{O}}$ denotes the hash value of the output-wire labels $\left\{\left(w_{M+i}, w_{M+i}^{\prime}\right)\right\}_{i \in[m]}$, where $w_{M+i}^{\prime} \leftarrow \mathbb{G}$.
\mathcal{S} then computes $\mathrm{c}_{\hat{\jmath}} \leftarrow \operatorname{Com}\left(\mathrm{GC}_{\hat{\jmath}},\left\{\mathrm{c}_{i, \mathrm{j}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}, \mathrm{h}_{\hat{\jmath}}\right)$, where two elements in each pair $\left(\mathrm{c}_{i, \hat{\jmath}, 0}^{x_{B}}, \mathrm{c}_{i, \hat{j}, 1}^{x_{B}}\right)$ are permuted in random order.
- If $\left|J_{\text {witness }}\right| \geq 2, \mathcal{S}$ acts as an honest P_{B} except for computing c_{j} using true randomness in this step.
Then \mathcal{S} computes signature σ_{j} 's as in the protocol, and sends $\left\{\mathrm{c}_{j}, \sigma_{j}\right\}_{j \in[\lambda]}$ to \mathcal{A}.

4. If $\left|J_{\text {witness }}\right| \neq 1, \mathcal{S}$ aborts. Otherwise, \mathcal{S} receives $\left(\hat{\jmath},\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}\right.$, witness $\left.{ }_{\hat{\jmath}}\right)$ from \mathcal{A}. \mathcal{S} verifies that these values are all consistent with those that have been sent and aborts if not.
5. \mathcal{S} sends $\mathrm{GC}_{\hat{\jmath}},\left\{w_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}$ (in the same order as before), and $h_{\hat{\jmath}}^{\mathcal{O}}$, together with decom ${ }^{\mathrm{c}_{\hat{\jmath}}}$ and $\left\{\operatorname{decom}^{\mathrm{c}_{i, \hat{\jmath}}^{x_{B}},}\right\}_{i \in\left[n_{B}\right]}$, to \mathcal{A}.

- If P_{A} is allowed to know the evaluation result, \mathcal{S} also sends the mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$ to \mathcal{A}. Then \mathcal{S} outputs what \mathcal{A} outputs to conclude the simulation.
- If P_{A} is not allowed to know the evaluation result, \mathcal{S} continues to the next step.

6. \mathcal{S} receives from \mathcal{A} the output-wire labels $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]}$. If all elements of $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]}$ are consistent with those of $\left\{w_{M+i}\right\}_{i \in[m]}, \mathcal{S}$ sends continue to $\mathcal{F}_{\text {covertPFE. }}$. Otherwise, \mathcal{S} sends abort ${ }_{A}$ to $\mathcal{F}_{\text {covertPFE }}$.

It remains to show that the joint distribution of the view of \mathcal{A} simulated by \mathcal{S} and the output of P_{B} in the ideal world is indistinguishable from the joint distribution of the view of \mathcal{A} and the output of P_{B} in the real world. We define the following games and let the output of each game be the view of \mathcal{A} and output of P_{B}.

Game $_{1}$ We modify the evaluation phase of the previous game as follows.
0 . Upon receiving $\left\{\mathrm{c}^{\operatorname{sed}_{j}^{A}}\right\}_{j \in[\lambda]}$ from \mathcal{A}, κ-bit strings $\left\{\operatorname{seed}_{j}^{B} \text {, witness }\right\}_{j \in[\lambda]}$ are picked as in the protocol. Then \mathcal{S} uses the simulator $\mathcal{S}_{\mathrm{OT}}$ for $\Pi_{\text {OT }}$ to extract \mathcal{A} 's inputs $\left\{b_{j}\right\}_{j \in[\lambda]}$. Let sets $J_{\text {seed }}=\left\{j: b_{j}=0\right\}$ and $J_{\text {witness }}=$ $\left\{j: b_{j}=1\right\}$. Let $\mathcal{S}_{\mathrm{OT}}$ return $\operatorname{seed}_{j}^{B}$ for $j \in J_{\text {seed }}$ and witness ${ }_{j}$ for $j \in$ $J_{\text {witness }}$ to \mathcal{A}.

1. For $j \in J_{\text {seed }}, \mathcal{S}$ acts as an honest P_{B} and follows the protocol to run this step. For $j \in J_{\text {witness }}, \mathcal{S}$ does the following.

- If $\left|J_{\text {witness }}\right|=1$, we let $\hat{\jmath}$ be the unique index in $J_{\text {witness. }}$. \mathcal{S} chooses $\alpha_{0}, \alpha_{1} \leftarrow \mathbb{Z}_{q}$ for $i \in[M] . \mathcal{S}$ computes $w_{i}^{0} \leftarrow g_{i}^{\alpha_{0}}$ and $w_{i}^{1} \leftarrow g_{i}^{\alpha_{1}}$ for $i \in[M]$. Then \mathcal{S} picks $w_{i}^{0}, w_{i}^{1} \leftarrow \mathbb{G}$ for $i=M+1, \ldots, M+m$ for output-wire labels of output gates. \mathcal{S} also computes $v_{i}^{0} \leftarrow\left(p_{i}\right)^{\alpha_{0}}$ and $v_{i}^{1} \leftarrow\left(p_{i}\right)^{\alpha_{1}}$ for $i \in[N]$.
\mathcal{S} computes $\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]} \leftarrow \operatorname{Gb}\left(\left\{i,\left(v_{2 i-1}^{0}, v_{2 i-1}^{1}\right),\left(v_{2 i}^{0}, v_{2 i}^{1}\right),\left(w_{n+i}^{0}, w_{n+i}^{1}\right)\right\}_{i \in[\theta]}\right)$. Let $\mathrm{GC}_{\hat{\jmath}}=\left\{\mathrm{GG}_{i}\right\}_{i \in[\theta]}$.
- If $\left|J_{\text {witness }}\right| \geq 2, \mathcal{S}$ acts as an honest P_{A} but uses true randomness in this step.

2. For $j \in J_{\text {seed }}, \mathcal{S}$ acts as an honest P_{B} and follows the protocol to run this step. For $j \in J_{\text {witness }}, \mathcal{S}$ does the following.

- If $\left|J_{\text {witness }}\right|=1, \mathcal{S}$ uses the simulator $\mathcal{S}_{\text {OT }}$ for $\Pi_{\text {OT }}$ to extract \mathcal{A} 's input x_{A}. $\mathcal{S}_{\text {OT }}$ returns $\left\{w_{i}^{x_{A}[i]}\right\}_{i \in\left[n_{A}\right]}$ to \mathcal{A}.
- If $\left|J_{\text {witness }}\right| \geq 2, \mathcal{S}$ acts as an honest P_{A} but uses true randomness in this step.

3. For $j \in J_{\text {seed }}, \mathcal{S}$ acts as an honest P_{B} and follows the protocol to run this step. For $j \in J_{\text {witness }}, \mathcal{S}$ does the following.

- If $\left|J_{\text {witness }}\right|=1, \mathcal{S}$ computes $c_{i, \hat{\jmath}, 0}^{x_{B}} \leftarrow \operatorname{Com}\left(w_{n_{A}+i}^{0}\right)$ and $c_{i, \hat{\jmath}, 1}^{x_{B}} \leftarrow$ $\operatorname{Com}\left(w_{n_{A}+i}^{1}\right)$ for $i \in\left[n_{B}\right]$. Let $\mathrm{h}_{j}^{\mathrm{O}}$ denotes the hash value of the output-wire labels $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$.
\mathcal{S} computes $\mathrm{c}_{\hat{\jmath}} \leftarrow \operatorname{Com}\left(\mathrm{GC}_{\hat{\jmath}},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}, \mathrm{h}_{\hat{\jmath}}^{\mathrm{O}}\right)$, where two elements in each pair $\left(c_{i, \hat{\jmath}, 0}^{x_{B}}, \mathrm{c}_{i, \hat{\jmath}, 1}^{x_{B}}\right)$ are permuted in random order.
- If $\left|J_{\text {witness }}\right| \geq 2, \mathcal{S}$ acts as an honest P_{B} except for computing c_{j} using true randomness in this step.
Then \mathcal{S} generates signatures σ_{j} 's as in the protocol, and sends $\left\{\mathbf{c}_{j}, \sigma_{j}\right\}_{j \in[\lambda]}$ to \mathcal{A}.

4. If $\left|J_{\text {witness }}\right| \neq 1, \mathcal{S}$ aborts. Otherwise, \mathcal{S} receives $\left(\hat{\jmath},\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}\right.$, witness $\left.{ }_{\hat{\jmath}}\right)$ from \mathcal{A}. \mathcal{S} verifies that these messages are all consistent with those that have been sent and aborts if not.
5. \mathcal{S} sends $\mathrm{GC}_{\hat{j}},\left\{w_{n_{A}+i}^{x_{B}[i]}\right\}_{i \in\left[n_{B}\right]},\left\{\mathrm{c}_{i, \hat{y}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}$ (in the same order as
 - If P_{A} is allowed to know the evaluation result, \mathcal{S} also sends the mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$ to \mathcal{A}.

- If P_{A} is not allowed to know the evaluation result, \mathcal{S} continues to the next step.

6. \mathcal{S} receives from \mathcal{A} the output-wire labels $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]}$. Then \mathcal{S} verify whether all elements of $\left\{\tilde{w}_{M+i}\right\}_{i \in[m]}$ are consistent with those of $\left\{w_{M+i}^{0}, w_{M+i}^{1}\right\}_{i \in[m]}$ as in the protocol.
Based on the analysis in the proof of Theorem 1, the security of the hash function, and the hiding property of the commitment scheme, we can easily see that the output of $\mathbf{G a m e}_{1}$ is computationally indistinguishable from the output of Game ${ }_{0}$.
Game $_{2}$ In this game, Π_{OT} in Step 2 of the evaluation phase is executed honestly when $\left|J_{\text {witness }}\right|=1$. It follows from the security of Π_{OT} that the output of Game $_{2}$ is computationally indistinguishable from the output of Game ${ }_{1}$.
Game $_{3}$ Steps 1-3 of the previous game is modified, such that random coins for $j \in J_{\text {witness }}$ are derived from $\operatorname{seed}_{j}^{B}$ instead of using true randomness. It is obvious that the output of $\mathbf{G a m e}_{3}$ is computationally indistinguishable from the output of Game ${ }_{2}$.
Game $_{4}$ We modify the previous game as follows. In Step $4, \mathcal{S}$ continues to run the protocol as an honest P_{B} even when \mid witness $\mid \neq 1$. Due to the security of Π_{OT}, it is easy to see that the output of Game_{4} is computationally indistinguishable from the output of Game ${ }_{3}$.
Game $_{5}$ In the game, the executions of Π_{OT} in Step 0 are executed honestly. According to the security of Π_{OT}, the output of Game_{5} is computationally indistinguishable from the output of Game ${ }_{4}$.

Note that Game $_{5}$ corresponds to the real execution of the protocol where P_{B} holds input x_{B} and interacts with P_{A}, while $\mathbf{G a m e}_{0}$ corresponds to the simulated execution in the ideal world. Hence, we complete the proof for malicious P_{A}.

We now focus on the case that P_{B} is malicious (in a covert sense). For an adversary \mathcal{A} corrupting P_{B} in the real world, we construct a simulator \mathcal{S} holding vk that runs \mathcal{A} as a subroutine and plays the role of P_{A} in the ideal world. \mathcal{S} first computes the common reference string $g_{i}=g^{\omega_{i}}$, where $\omega_{i} \leftarrow s \mathbb{Z}_{q}$, for $i \in[N]$. It is easy to see that this common reference string has an identical distribution to that in the real world. Now we present the simulation procedures for the initiation phase and evaluation phase (denoted by Game ${ }_{0}$). The simulator \mathcal{S} simulates the initiation phase as follows.

1. \mathcal{S} picks $h \leftarrow \mathbb{G}$. Then \mathcal{S} generates $c_{i} \leftarrow_{\mathbb{S}} \mathbb{G}^{2}, c_{i}^{\prime(0)} \leftarrow \mathbb{G} \mathbb{G}, c_{i}^{\prime(1)} \leftarrow g^{\rho_{i}^{\prime}}$ and $d_{i} \leftarrow g^{\rho_{i}^{\prime \prime}}$, where $\rho_{i}^{\prime} \leftarrow \mathbb{Z}_{q}$ and $\rho_{i}^{\prime \prime} \leftarrow s \mathbb{Z}_{q}$, for $i \in[N]$. Let $\rho_{i} \leftarrow \rho_{i}^{\prime}-\rho_{i}^{\prime \prime} \bmod q$. Note that now we have $p_{i}=g^{\rho_{i}}$. Then \mathcal{S} acts as $\mathcal{F}_{\mathrm{zk}}^{\mathrm{EncEP}}$ and $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ to convince \mathcal{A}.
2. \mathcal{S} does nothing.

Then in the evaluation phase, \mathcal{S} follows the simulation procedure below.
0. \mathcal{S} chooses uniform κ-bit strings $\left\{\operatorname{seed}_{j}^{A}\right\}_{j \in[\lambda]}$, computes $c^{\operatorname{sed}_{j}^{A}}{ }^{A}$,s as in the protocol, and sends $\left\{\mathrm{c}^{\operatorname{sed}_{j}^{A}}\right\}_{j \in[\lambda]}$ to \mathcal{A}. For all λ execution of $\Pi_{\mathrm{OT}}, \mathcal{S}$ interacts with \mathcal{A} using the input 0 with randomness derived from seed ${ }_{j}^{A}$, and retrieves $\left\{\operatorname{seed}_{j}^{B}\right\}_{j \in[\lambda]}$ at the end. Let us denote the transcript of the j th execution by trans $_{j}$.

1. \mathcal{S} does nothing.
2. \mathcal{S} uses as input $0^{n_{A}}$ for all execution of Π_{OT} with randomness derived from $\operatorname{seed}_{j}^{A}$. Let $\mathrm{h}_{j}^{\mathrm{OT}}$ denote the hash value of the transcript for the j th execution of Π_{OT}.
3. \mathcal{S} receives $\left\{\mathrm{c}_{j}, \sigma_{j}\right\}_{j \in[\lambda]}$ from \mathcal{A}.
4. If any signature σ_{j} are invalid, \mathcal{S} sends abort ${ }_{B}$ to $\mathcal{F}_{\text {covertPFE }}$ and simulates the termination of P_{A}. For $j \in[\lambda], \mathcal{S}$ simulates P_{B} 's execution in Steps 1,2 , and 3a, and particularly computes $\hat{\mathrm{h}}_{j}^{\text {OT }}$ and \hat{c}_{j}. Let J be the set of indices, such that $\left(\hat{h}_{j}^{\circ \top}, \hat{c}_{j}\right) \neq\left(h_{j}^{\circ \top}, c_{j}\right)$.

- If $|J|=0, \mathcal{S}$ sets caught $=$ nothing and continues below.
- If $|J|=1, \mathcal{S}$ sends cheat to $\mathcal{F}_{\text {covertPFE. }}$. If corrupted is received, \mathcal{S} sets caught $=$ true. Otherwise if (undetected, C_{f}, x_{A}) is received, \mathcal{S} sets caught $=$ false. Then \mathcal{S} continues below.
- If $|J| \geq 2, \mathcal{S}$ sends blatantCheat to $\mathcal{F}_{\text {covertPFE }}$, sends the certificate cert $=$ $\left(P, j\right.$, trans $_{j}, \mathrm{~h}_{j}^{\text {OT }}, \mathrm{c}_{j}, \sigma_{j}$, seed $_{j}^{A}$, decom $\left.^{\text {seed }_{j}^{A}}\right)$ to \mathcal{A} for uniform $j \in J$, and simulates the termination of P_{A}.

Then \mathcal{S} rewinds \mathcal{A} and runs Steps $0^{\prime}-4^{\prime}$ below until ${ }^{6}\left|J^{\prime}\right|=|J|$ and caught $=$ caught:
0^{\prime}. \mathcal{S} picks $\hat{\jmath} \leftarrow_{s}[\lambda]$ and computes $c^{\text {seed }_{j}^{A}} \leftarrow \operatorname{Com}\left(0^{\kappa}\right) . \mathcal{S}$ chooses a uniform κ bit string $\operatorname{seed}_{j}^{A}$, computes $\mathrm{c}^{\text {sed }_{j}^{A}}$ as in the protocol for $j \neq \hat{\jmath}$, and sends $\left\{\mathrm{c}^{\operatorname{seed}_{j}^{\boldsymbol{A}}}\right\}_{j \in[\lambda]}$ to \mathcal{A}. For the j th $(j \neq \hat{\jmath})$ execution of $\Pi_{\text {ОТ }}, \mathcal{S}$ interacts with \mathcal{A} using the input 0 with randomness derived from seed ${ }_{j}^{A}$, and retrieves $\left\{\operatorname{seed}_{j}^{B}\right\}_{j \in[\lambda], j \neq \hat{\jmath}}$ at the end. For the $\hat{\jmath}$ execution of $\Pi_{\mathrm{OT}}, \mathcal{S}$ uses the simulator $\mathcal{S}_{\mathrm{OT}}$ for Π_{OT} and extracts seed ${ }_{\hat{j}}^{B}$ and witness $\hat{\jmath}$. Let us denote the transcript of the j th execution by trans ${ }_{j}$.
$1^{\prime} . \mathcal{S}$ does nothing.

[^2]2^{\prime}. For $j \neq \hat{\jmath}, \mathcal{S}$ uses as input $0^{n_{A}}$ in the execution of Π_{OT} with randomness derived from $\operatorname{seed}_{j}^{A}$. In the $\hat{\jmath}$ th execution of $\Pi_{\mathrm{OT}}, \mathcal{S}$ uses the simulator $\mathcal{S}_{\mathrm{OT}}$ for Π_{OT} and extracts $\left\{\left(w_{i, \hat{\jmath}}^{0}, w_{i, \hat{\jmath}}^{1}\right)\right\}_{i \in\left[n_{A}\right]}$. Let $\mathrm{h}_{j}^{\mathrm{OT}}$ denote the hash value of the transcript for the j th execution of Π_{OT}.
3^{\prime}. \mathcal{S} receives $\left\{\mathrm{c}_{j}, \sigma_{j}\right\}_{j \in[\lambda]}$ from \mathcal{A}.
4^{\prime}. If any signature σ_{j} are invalid, \mathcal{S} returns to Step 0^{\prime}. For $j \in[\lambda], \mathcal{S}$ simulates P_{B} 's execution in Steps 1, 2, and 3a, and particularly computes $\hat{\mathrm{h}}_{j}^{\mathrm{OT}}$ and $\hat{\mathrm{c}}_{j}$. Let J^{\prime} be the set of indices, such that $\left(\hat{\mathrm{h}}_{j}^{\mathrm{OT}}, \hat{\mathrm{c}}_{j}\right) \neq\left(\mathrm{h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}\right)$.
If $\left|J^{\prime}\right|=1$ and $\hat{\jmath} \notin J^{\prime}, \mathcal{S}$ set caught $=$ true. If $\left|J^{\prime}\right|=1$ and $\hat{\jmath} \in J^{\prime}$, \mathcal{S} set caught $^{\prime}=$ false. If $\left|J^{\prime}\right|=0, \mathcal{S}$ set caught ${ }^{\prime}=$ nothing.

Then \mathcal{S} follows the procedure below.
$4^{\prime \prime}$. If $\left|J^{\prime}\right|=1$ and caught ${ }^{\prime}=$ true, \mathcal{S} generates for the unique index $j \in J^{\prime}$ a certificate cert $=\left(P, j, \operatorname{trans}_{j}, \mathrm{~h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}, \sigma_{j}, \operatorname{seed}_{j}^{A}, \operatorname{decom}^{\operatorname{seed}_{j}^{A}}\right)$, sends it to \mathcal{A} and halts. Otherwise, \mathcal{S} sends $\left(\hat{\jmath},\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}\right.$, witness $\left.\hat{\jmath}\right)$ to \mathcal{A}.
5. \mathcal{S} receives $\mathrm{GC}_{\hat{\jmath}},\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}$ (in the same order as
 is allowed to know the evaluation result, \mathcal{S} also receives the garbled output mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$.
6. If commitments $\operatorname{Com}\left(\mathrm{GC}_{j},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}, \mathrm{h}_{\hat{\jmath}}\right.$; decom $\left.^{\mathrm{c}_{\hat{\jmath}}}\right) \neq \mathrm{c}_{\hat{\jmath}}$, for some $i \in\left[n_{B}\right], \operatorname{Com}\left(\mathrm{x}_{n_{A}+i} ; \operatorname{decom}{ }^{{ }_{i}^{\mathrm{c}_{B}, \hat{\jmath}, x_{B}[i]}}\right) \notin\left\{\mathrm{c}_{i, \hat{\jmath}, 0}^{x_{B}}, \mathrm{c}_{i, \hat{\jmath}, 1}^{x_{B}}\right\}$, or $\mathrm{h}_{\hat{\jmath}}^{\mathrm{O}}$ is not consistent (if it is verifiable), \mathcal{S} sends abort ${ }_{B}$ to $\mathcal{F}_{\text {covertPFE }}$ and simulates P_{A} 's termination. Otherwise, \mathcal{S} follows the options below.

- If $\left|J^{\prime}\right|=0, \mathcal{S}$ uses seed ${ }_{j}^{B}$ and the received information to derive P_{B} 's input x_{B}. Then \mathcal{S} sends x_{B} to $\mathcal{F}_{\text {covertPFE }}$. If P_{B} is allowed to receive the evaluation result, \mathcal{S} will receive $y \in\{0,1\}^{m}$ from $\mathcal{F}_{\text {covertPFE. Using }}$ seed $_{\hat{\jmath}}^{B}$ to derive the output mapping and sends $\left\{w_{i, \hat{\jmath}}^{y[i]}\right\}_{i=M+1, \ldots, M+m}$ to \mathcal{A}.
- If $\left|J^{\prime}\right|=1$ and caught $=$ false, \mathcal{S} derives π_{f} from C_{f} as in the protocol. Then \mathcal{S} computes $t_{i} \leftarrow \rho_{i} \cdot \omega_{\pi_{f}(i)}^{-1} \bmod q$ for $i \in[N]$. Note that $g_{i}=g^{\omega_{i}}$ in the common reference string, and we have $p_{i}=g^{\rho_{i}}$. Let $T=\left[t_{1}, \ldots, t_{N}\right]$. \mathcal{S} uses $\left\{\left(w_{i, \hat{\jmath}}^{0}, w_{i, \hat{\jmath}}^{1}\right)\right\}_{i \in\left[n_{A}\right]}$ and x_{A} from $\mathcal{F}_{\text {covertPFE }}$, together with $T, \mathrm{GC}_{\hat{\jmath}}$, and $\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]}$ to compute the output $\left\{\mathrm{y}_{i}\right\}_{i \in[m]}$. If P_{A} is allowed to know the evaluation result, \mathcal{S} can derive the output $y \in\{0,1\}^{m}$ from the output mapping as in the protocol and sends y to $\mathcal{F}_{\text {covertPFE }}$ to finish the simulation. If P_{B} is allowed to know the evaluation result, \mathcal{S} sends $\left\{\mathrm{y}_{i}\right\}_{i \in[m]}$ to \mathcal{A} and halts.
It remains to show that the joint distribution of the view of \mathcal{A} simulated by \mathcal{S} and the output of P_{A} in the ideal world is indistinguishable from the joint distribution of the view of \mathcal{A} and the output of P_{A} in the real world. We define the following games and let the output of each game be the view of \mathcal{A} and output of P_{A}.

Game $_{1}$ We modify Step 1 of the initiation phase in this game. The EP π_{f} derived from C_{f} is used here. Then the list T, Φ is generated as in the protocol.

Corresponding $\Phi^{\prime}, c_{i}^{\prime}$'s, and d_{i} 's are also computed as in the protocol. The ideal functionality $\mathcal{F}_{z k}^{\mathrm{EncEP}}$ and $\mathcal{F}_{\mathrm{zk}}^{\mathrm{DH}}$ are simulated as in the protocol. Then in Step 6 of the evaluation phase, the list T is directly used for garbled circuit execution. Since the ElGamal encryption scheme is IND-CPA secure, using the same approach as in the proof of Theorem 1, we can prove that the output of $\mathbf{G a m e}_{1}$ are computationally indistinguishable from the output of Game ${ }_{0}$.
Game $_{2}$ We pick a uniform $\hat{\jmath} \leftarrow_{s}[\lambda]$ at the outset of the game. Then we modify the part of the conditional judgment branch in Step 4 of the evaluation phase as follows.

- If $|J|=0, \mathcal{S}$ does the same as in Game $_{0}$.
- If $|J|=1, \mathcal{S}$ sets caught $=$ true if $\hat{\jmath} \notin|J|$. Otherwise, \mathcal{S} sets caught $=$ false.
- If $|J| \geq 2, \mathcal{S}$ sends cert $=\left(P, j\right.$, trans $\left._{j}, \mathrm{~h}_{j}^{\text {OT }}, \mathrm{c}_{j}, \sigma_{j}, \operatorname{seed}_{j}^{A}, \operatorname{decom}^{\operatorname{sed}_{j}^{A}}\right)$ to \mathcal{A} for uniform $j \in J \backslash\{\hat{\jmath}\}$, and simulates the termination of P_{A}.
When $|J|=1$, we have $\hat{\jmath} \notin|J|$ with the same probability ϵ. Meanwhile, if $|J| \geq 2$, the probability that an index j is chosen to generate a certificate is $\frac{|J|}{\lambda} \cdot\left(1-\frac{1}{|J|}\right) \cdot \frac{1}{|J|-1}+\left(1-\frac{|J|}{\lambda}\right) \cdot \frac{1}{|J|}=\frac{1}{|J|}$, which is the same as in Game $_{0}$. Therefore, the output of $\mathbf{G a m e}_{2}$ is perfectly indistinguishable from the output of Game ${ }_{1}$.
Game $_{3}$ We modify the previous game as follows. In Step 0 of the evaluation phase, the simulator does not pick seed ${ }_{\hat{j}}^{A}$. It computes $\mathrm{c}^{\text {sed }_{j}^{A}} \leftarrow \operatorname{Com}\left(0^{\kappa}\right)$ alternatively. Then true random coins are used in Steps 0 and 2. It is obvious that the output of Game_{3} is computationally indistinguishable from the output of Game ${ }_{2}$.
Game $_{4}$ The previous game is modified, such that \mathcal{S} uses the simulator $\mathcal{S}_{\text {OT }}$ for the \hat{j} th execution of $\Pi_{\text {От }}$ in Steps 0 and 2 of the evaluation phase, and all \mathcal{A} 's inputs are extracted. According to the security of $\Pi_{\text {От }}$, the output of $\mathbf{G a m e}_{4}$ is computationally indistinguishable from the output of Game $_{3}$.
Game $_{5}$ Because now Steps $0-3$ are identical to Steps $0^{\prime}-3^{\prime}$ in the simulated evaluation phase, we can "collapse" the rewinding and obtain the following Game $_{5}$ that is statistically indistinguishable from Game $_{4}$, and the only difference is in the case of an aborted rewinding in the latter game.
0 . Pick $\hat{\jmath} \leftarrow_{s}[\lambda]$ and compute $c^{\operatorname{seed}_{j}^{A}} \leftarrow \operatorname{Com}\left(0^{\kappa}\right)$. For $j \neq \hat{\jmath}$, choose uniform κ-bit strings seed ${ }_{j}^{A}$, compute $\left\{\mathrm{c}^{\operatorname{sed}_{j}^{A}}\right\}$ as in the protocol, and send $\left\{\mathrm{c}^{\text {sed }}{ }_{j}^{A}\right\}_{j \in[\lambda]}$ to \mathcal{A}. For the j th $(j \neq \hat{\jmath})$ execution of Π_{OT}, interact with \mathcal{A} using the input 0 with randomness derived from seed ${ }_{j}^{A}$, and retrieve $\left\{\operatorname{seed}_{j}^{B}\right\}_{j \in[\lambda], j \neq \hat{\jmath}}$ at the end. For the $\hat{\jmath}$ th execution of Π_{OT}, use the simulator $\mathcal{S}_{\mathrm{OT}}$ for Π_{OT} and extract $\operatorname{seed}_{j}^{B}$ and witness \hat{j}. Let us denote the transcript of the j th execution by trans_{j}.

1. Do nothing.
2. For $j \neq \hat{\jmath}$, use as input $0^{n_{A}}$ for in the execution of $\Pi_{\text {OT }}$ with randomness derived from seed ${ }_{j}^{A}$. In the \hat{j} th execution of Π_{OT}, use the simulator $\mathcal{S}_{\mathrm{OT}}$ for Π_{OT} and extract $\left\{\left(w_{i, \hat{j}}^{0}, w_{i, \hat{j}}^{1}\right)\right\}_{i \in\left[n_{\mathrm{A}}\right]}$. Let $\mathrm{h}_{j}^{\mathrm{OT}}$ denote the hash value of the transcript for the j th execution of Π_{OT}.
3. Receive $\left\{\mathrm{c}_{j}, \sigma_{j}\right\}_{j \in[\lambda]}$ from \mathcal{A}.
4. If any signature σ_{j} are invalid, output \perp and halt. For $j \in[\lambda]$, emulate P_{B} 's execution in Steps 1, 2, and 3a, and particularly compute $\hat{h}_{j}^{\text {OT }}$ and \hat{c}_{j}. Let J^{\prime} be the set of indices, such that $\left(\hat{h}_{j}^{\text {OT }}, \hat{c}_{j}\right) \neq\left(\mathrm{h}_{j}^{\text {OT }}, \mathrm{c}_{j}\right)$.

- If $|J|=0$, send $\left(\hat{\jmath},\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}\right.$, witness $\left.\hat{\jmath}\right)$ to \mathcal{A} and continue below.
- If $|J|=1$ and $\hat{\jmath} \notin|J|$ or $|J| \geq 2$, send for uniform $j \in J \backslash\{\hat{\jmath}\}$ a certificate cert $=\left(P, j, \operatorname{trans}_{j}, \mathrm{~h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}, \sigma_{j}, \operatorname{seed}_{j}^{A}, \operatorname{decom}^{\operatorname{seed}_{j}^{A}}\right)$ to \mathcal{A}. Then output corrupted and halt.
- If $|J|=1$ and $\hat{\jmath} \in|J|$, send $\left(\hat{\jmath},\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}\right.$, witness $\left._{\hat{\jmath}}\right)$ to \mathcal{A} and continue below.

5. Receive $\mathrm{GC}_{\hat{\jmath}},\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}$ (in the same order as Step 3a), and $h_{\hat{\jmath}}^{O}$, together with decom ${ }^{\mathrm{c}_{\hat{\jmath}}}$ and $\left\{\operatorname{decom}^{\left.{ }^{\mathrm{c}_{i, \hat{j}, x_{B}}^{\left.x_{B}\right]}}\right\}_{i \in\left[n_{B}\right]} \text {. If }}\right.$ P_{A} is allowed to know the evaluation result, \mathcal{S} also receives the garbled output mapping $\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}$.
6. If commitments $\operatorname{Com}\left(\mathrm{GC}_{j},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}^{x_{B}}, \mathrm{~h}_{\hat{\jmath}}^{\mathrm{O}} ;\right.$ decom $\left.^{\mathrm{c}_{\hat{\jmath}}}\right) \neq \mathrm{c}_{\hat{\jmath}}$, for some $i \in\left[n_{B}\right], \operatorname{Com}\left(x_{n_{A}+i} ; \operatorname{decom}^{\mathrm{c}_{i, \hat{\jmath}, x_{B}[i]}^{i, i}}\right) \notin\left\{\mathrm{c}_{i, \hat{\jmath}, 0}^{x_{B}}, \mathrm{c}_{i, \hat{\jmath}, 1}^{x_{B}}\right\}$, or $\mathrm{h}_{\hat{\jmath}}^{\mathrm{O}}$ is not consistent (if it is verifiable), output \perp and abort.
Otherwise, follow the options below.

- If $|J|=0$, use seed ${ }_{j}^{B}$ and the received information to derive P_{B} 's input x_{B}. Then compute $y \leftarrow C_{f}\left(x_{A}, x_{B}\right)$. If P_{A} is allowed to learn the evaluation result, output y and halt. If P_{B} is allowed to receive the evaluation result, use seed ${ }_{j}^{B}$ to derive the output mapping and send $\left\{w_{i, \hat{\jmath}}^{y[i]}\right\}_{i=M+1, \ldots, M+m}$ to \mathcal{A} and halt.
- If $|J|=1$, use $\left\{\left(w_{i, \hat{\jmath}}^{0}, w_{i, \hat{\jmath}}^{1}\right)\right\}_{i \in\left[n_{A}\right]}$ and x_{A}, together with $T, \mathrm{GC}_{\hat{\jmath}}$, and $\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]}$ to compute the output $\left\{\mathrm{y}_{i}\right\}_{i \in[\mathrm{~m}]}$. If P_{A} is allowed to know the evaluation result, derive the output from the output mapping as in the protocol, and then output the result and halt. If P_{B} is allowed to know the evaluation result, send $\left\{\mathrm{y}_{i}\right\}_{i \in[m]}$ to \mathcal{A} and halts.
Game $_{6}$ We modify Step 6 of the evaluation phase in the previous game. If $|J|=$ 0 , use $\left\{w_{i, \hat{\jmath}}^{x_{A}[i]}\right\}_{i \in\left[n_{A}\right]}$, together with $T, \mathrm{GC}_{\hat{\jmath}}$, and $\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]}$ to compute the output $\left\{\mathrm{y}_{i}\right\}_{i \in[m]}$. If P_{A} is allowed to know the evaluation result, derive the output y from the output mapping as in the protocol, and then output y and halt. If P_{B} is allowed to know the evaluation result, send $\left\{\mathrm{y}_{i}\right\}_{i \in[m]}$ to \mathcal{A} and halts.
Because $|J|=0$, we know that the commitment $\mathrm{c}_{\hat{\jmath}}$ commits to a correctly computed garbled circuit, input-wire labels $\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}$ (in correct order), and the hash value of the output-wire labels. According to the binding property of the commitment scheme and the collision-resistance property of the hash function, $\mathrm{GC}_{\hat{\jmath}},\left\{\mathrm{c}_{i, \hat{\jmath}, b}^{x_{B}}\right\}_{i \in\left[n_{B}\right], b \in\{0,1\}}$, and $\mathrm{h}_{\hat{\jmath}}^{\mathrm{O}}$ (may also together with the output mapping $\left.\left\{\left(w_{M+i}^{0}, w_{M+i}^{1}\right)\right\}_{i \in[m]}\right)$ sent by \mathcal{A} are all correct. In addition, since $|J|=0$, the collision-resistance property of the hash function ensures that P_{A} 's input-wire labels sent in Π_{OT} are correct. Therefore, using
$\left\{w_{i, \hat{\jmath}}^{x_{A}[i]}\right\}_{i \in\left[n_{A}\right]}$, together with $T, \mathrm{GC}_{\hat{\jmath}}$, and $\left\{\mathrm{x}_{n_{A}+i}\right\}_{i \in\left[n_{B}\right]}$ for the execution of garbled circuit will derive the correct result.
Hence, the output of $\mathbf{G a m e}_{6}$ is computationally indistinguishable from the output of Game 5 .
Game $_{7}$ Here Step 4 in the evaluation phase of the previous game is changed in the following. P_{B} 's executions are emulated for $j \in[\lambda] \backslash\{\hat{\jmath}\}$. Let \hat{J} be the set of indices, such that $\left(\hat{h}_{j}^{\mathrm{OT}}, \hat{c}_{j}\right) \neq\left(\mathrm{h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}\right)$.
- If $|\hat{J}|=0$, send $\left(\hat{\jmath},\left\{\operatorname{seed}_{j}^{B}\right\}_{j \neq \hat{\jmath}}\right.$, witness $\left.\hat{\jmath}\right)$ to \mathcal{A} and continue below.
- If $|\hat{J}| \neq 0$, send cert $=\left(P, j, \operatorname{trans}_{j}, \mathrm{~h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}, \sigma_{j}, \operatorname{seed}_{j}^{A}, \operatorname{decom}^{\operatorname{seed}_{j}^{A}}\right)$ for uniform $j \in \hat{J}$ to \mathcal{A}. Then output corrupted and halt.
Let the set J as defined before. Note that the condition that $|J|=0$ or $|J|=1 \wedge \hat{\jmath} \in|J|$ is equal to the condition $|\hat{J}|=0$. Meanwhile, the condition that $|J|=1 \wedge \hat{\jmath} \notin|J|$ or $|J| \geq 2$ is the same as the condition $|\hat{J}| \neq 0$. Thus, the output of $\mathbf{G a m e}_{7}$ is perfectly indistinguishable from the output of Game ${ }_{6}$.
Game $_{8}$ In this game, the $\hat{\jmath}$ th execution of $\Pi_{\text {OT }}$ in Step 0 and Step 2 are executed honestly, i.e., use input 1 to the protocol in Step 0 and x_{A} in Step 2. Following the security of Π_{OT}, the output of Game_{8} is computationally indistinguishable from the output of Game ${ }_{7}$.
Game $_{9}$ We modify Step 0 of the previous game by choosing $\operatorname{seed}_{\hat{j}}^{A}$ and computing $\left\{\mathrm{c}^{\text {seed }}{ }_{j}^{A}\right\}$ as in the protocol. Then for the $\hat{\jmath}$ th execution of Π_{OT} in Step 0 and Step 2, use the random coins derived from $\operatorname{seed}_{\hat{\jmath}}^{A}$. It is easy to see that the output of $\mathbf{G a m e}_{9}$ is computationally indistinguishable from the output of Game ${ }_{8}$.

Note that Game $_{9}$ corresponds to an execution of the protocol for P_{A} holding input C_{f} and x_{A} in the real world, while Game $_{0}$ corresponds to the simulated execution in the ideal world. We also note that the certificate is for an index $j \in J \backslash\{\hat{\jmath}\}$, while only the $\hat{\jmath}$ th execution involves P_{B} 's input. Therefore, even if \mathcal{A} receives cert, \mathcal{A} cannot derive any information about P_{A} 's input. Hence, we complete the proof for malicious P_{B}.

We now describe how the protocol achieves public verifiability. From the protocol, it is easy to see that once an honest P_{A} outputs corrupted ${ }_{B}$, she is able to output a certificate cert to blame P_{B} 's misbehavior. If P_{B} intends to deviate from the protocol covertly, he might deviate in Steps 1, 2, or 3a, i.e., P_{B} does not follow the execution specified by the protocol and the corresponding seed. Hence, there exists a message from P_{B} that is not consistent with the message he should send according to the protocol and the seed. If an honest P_{A} publishes a certificate cert, then P_{A} has obtained P_{B} 's seed for the derandomized execution and detects P_{B} 's covert cheating in this execution. Since the corresponding transcript is signed by P_{B}, everyone is able to verify the inconsistency. More precisely, given the verification key $v k$, a certificate cert, and a common reference string G, anyone can execute the algorithm Judge to check whether the messages from P_{B} are consistent with an honest execution. More importantly, thanks to the OT protocol, P_{B} does not know whether his misbehavior is detected until P_{A}
publishes the certificate cert. Thus, P_{B} cannot abort before the time that P_{A} can generate the certificate.

Finally, we show that the protocol achieves defamation freeness. Assume that a malicious P_{A} intends to break the defamation freeness of the protocol and blames an honest P_{B}. According to the description of the algorithm Judge, the algorithm will output 1 only if $\left(\mathrm{h}_{j}^{\mathrm{OT}}, \mathrm{c}_{j}\right) \neq\left(\hat{\mathrm{h}}_{j}^{\mathrm{OT}}, \hat{\mathrm{c}}_{j}\right)$. If c_{j} is inconsistent, it means that the garbled circuit is not correctly generated using the random coins derived from seed ${ }_{j}^{B}$. However, since P_{B} is honest and corresponding material for generating the garbled circuit, i.e., G and P, is signed by P_{B}, we know that $\operatorname{seed}_{j}^{B}$ derived from the simulation of Π_{OT} is incorrect, or the signature is forged. On the one hand, the signature scheme is EUF-CMA, a computationally bounded P_{A} cannot forge the signature except for a negligible probability. On the other hand, for the simulation of Π_{OT}, the transcript trans ${ }_{j}$ is already verified and signed by P_{B}, this means that if the output of Π_{OT} is not the correct seed ${ }_{j}^{B}$, this incorrect output seed ${ }_{j}^{B}$ imputes to the random coins used by P_{A}. Since the commitment $\mathrm{c}^{\text {seed }_{j}^{A}}$ is signed by P_{B} and Π_{OT} is perfectly correct, the output of the simulation of Π_{OT} cannot be equivocated unless P_{A} breaks the binding property of the commitment scheme. Hence, malicious P_{A} cannot incur an inconsistent c_{j} except for a negligible probability. For the hash value h_{j}^{OT}, a malicious P_{A} can incur an inconsistent $\hat{\mathrm{h}}_{j}^{\mathrm{OT}}$ only if $\operatorname{seed}_{j}^{A}$ and $\operatorname{seed}_{j}^{B}$ produces an incorrect $\hat{\mathrm{h}}_{j}^{\mathrm{OT}}$. Similar to c_{j}, a malicious P_{A} cannot make Π_{OT} output an incorrect seed ${ }_{j}^{B}$, and thus incur the algorithm Judge to output 1, except for a negligible probability. Therefore, the protocol achieves defamation freeness.

[^0]: ${ }^{4}$ The operator \oplus here is applied on the bit-representation of the right group element, and τ specifies the length of proper padding to ensure the check of correct decryption.

[^1]: ${ }^{5}$ More information for the analysis of the expected running time could be found in [10] or [39, Section 13.1.3].

[^2]: ${ }^{6}$ Standard techniques $[18,20]$ can be used to ensure that \mathcal{S} runs in expected polynomial time.

