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Abstract

Due to the fact that classical computers cannot efficiently obtain random numbers, it is common
practice to design cryptosystems in terms of real random numbers and then replace them with (cryp-
tographically secure) pseudorandom ones for concrete implementations. However, as pointed out by
[10], this technique may lead to compromise of security in secure multiparty computation (MPC)
protocols. Although this work suggests using information-theoretically secure protocols and pseudo-
random generators (PRGs) with high min-entropy to alleviate the problem, yet it is preferable to base
the security on computational assumptions rather than the stronger information-theoretic ones. By
observing that the contrived constructions in the aforementioned work use MPC protocols and PRGs
that are closely related to each other, we notice that it may help to alleviate the problem by using
protocols and PRGs that are ”unrelated” to each other. In this paper, we propose a notion called
”computational irrelevancy” to formalise the term ”unrelated” and under this condition provide a
security guarantee under computational assumptions.

Keywords: secure multiparty computation, MPC, pseudorandom generators, PRG, relativisation

1 Introduction
1.1 Background
It is a widely known fact that classical computers are not able to generate random numbers. When
necessary, random numbers are generated from noise of the environment, OS statistics, or user inputs
etc. However, in most cryptosystems where very long random bit sequences are required, these random
sources are not efficient enough to generate them. To this end, pseudorandom generators (PRGs) are
used to expand a short real random bit sequence into a long one that looks random.

Under the observation that if the use of PRGs compromises security of a cryptosystem then the
cryptosystem can be modified to a distinguisher against the PRGs, one may naïvely believe that when
a cryptographically secure PRG is used in a secure cryptosystem, the resulting system is also secure.
However, this naïve reduction only works in settings where the seeds are not explicitly known to the
adversaries, and as pointed out by [10], the security definition of secure multiparty computation (MPC)
protocols (in the semi-honest model) forms a counterexample of this. Indeed, protocol-PRG pairs are
explicitly constructed by [10] such that the protocol is secure itself but becomes insecure when the PRG
is used.

Since it has become so common a paradigm in cryptography to design cryptosystems in terms of real
random numbers and use the output of PRGs for concrete implementations, it is urgent to find ways to
avoid such problems. While it is proved in [10] that using PRGs with very high min-entropy can help
avoid the problem provided that the original protocol is information-theoretically secure, it is believed
that achieving information-theoretic security for all parties is very hard and with severe limitations. For
example, it is shown in [3] that, in terms of boolean functions, information-theoretic security for majority
of the participating parties is achievable for only a limited subset of boolean functions. Therefore, instead
of using information-theoretically secure MPC protocols, it is more desirable to ensure security in terms
of computationally secure ones.

By taking a close look at the constructions in [10], it is easy to observe that these contrived construc-
tions use MPC protocols and PRGs that are closely related to each other. One may develop an intuition
that it helps to alleviate the problem to use PRGs “unrelated” to the MPC protocol. We propose a
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notion called “computational irrelevancy”, which utilises what is called “relativisation” in the literature
of complexity theory, to formalise the term “unrelated”, and under computational irrelevancy conditions
provide a security guarantee under computational assumptions.

1.2 Our Contributions
In this paper, we define computational irrelevancy in terms of MPC protocols and PRGs and investigate
the sufficient conditions under which security is preserved when PRGs are used.

Computational irrelevancy conditions are defined in two aspects:

• between the protocol and PRGs used, and

• between PRGs used by different parties.

Since [10] explicitly constructed examples where the first type of irrelevancy does not hold, we can easily
see that the first one is necessary to preserve security. In contrast, the work only considered the case where
1 PRG is used, thus examples where the second condition does not hold and use of PRGs compromises
security have not been explicitly constructed. We discovered the necessity of the second condition only
during our proof of security on the resulting protocol. That being said, we note that assuming the second
type of irrelevancy is natural and intuitive: with similar contrived examples where different parties use
closely related PRGs, adversaries may utilise this fact to recover part of the information intended for
only honest parties.

We use a paradigm called “relativisation” ([1]) to formalise computational irrelevancy, which is in-
tensely studied in the literature of complexity theory. As an informal description, an MPC protocol or
PRG is considered computationally irrelevant from a PRG if security is preserved even if the correspond-
ing distinguisher is given oracle access to the inverter of the latter. Constructing such protocols and PRGs
that are (computationally) secure relative to a family of inverters of other PRGs apparently requires some
computational problems that are hard even with access to some family of oracles. A class of problems
called “the gap-problems”, proposed by [11], can be considered a class of computational problems that are
hard relative to an oracle solving the corresponding decision problem. This class of problems proved to be
very useful and cryptographic schemes have been constructed and security of existing schemes has been
proved under the computational hardness assumptions of these problems (e.g. [11, 8, 7]). In addition,
the relativisation paradigm has been used to prove some negative results in the literature of cryptography
(e.g. [6]). Hence here we argue that such relativised computational problems are interesting in their own
right and security or computational hardness assumptions relative to a family of the inverters of some
PRGs, which are essential for the concrete implementations of our proposed sufficient conditions, are
hopefully further studied in future works.

Unlike [10] which only considered 2-party protocols where only 1 PRG is used, we consider a broader
range of situations:

I 1 adversary (or multiple non-colluding adversaries) exists and 1 PRG is used.

II 1 adversary (or multiple non-colluding adversaries) exists and multiple PRGs are used.

III Multiple colluding adversaries exist and multiple PRGs are used.

Deferring the precise presentation of the sufficient conditions to preserve security for each case, here we
briefly and informally summarise the computational irrelevancy conditions used in each case:

I 1 adversary, 1 PRG:

– Protocol is irrelevant from PRG.

II 1 adversary, multiple PRGs:

– Protocol is irrelevant from each PRG.
– PRGs are pairwise irrelevant.

III multiple adversaries, multiple PRGs:

– Protocol is irrelevant from PRGs.
– PRGs are irrelevant.
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By comparing conditions used in each case, we find that these results are very intuitive: in the first case
where only 1 PRG is used, the only possible requirement is that the protocol be irrelevant from the PRG;
in the second case where only 1 adversary exists or adversaries do not collude, computational irrelevancy
is imposed on the PRGs one-by-one; in the third case where adversaries may collude, computational
irrelevancy is imposed on the PRGs as a whole.

2 Preliminaries
In this section, we introduce some basic notations as well as security definitions of PRGs and MPC
protocols in the traditional sense.

2.1 Basic Notations
Definition 1. In this paper, we use PTM, PPT and NUPPT to denote the set of (uniform) prob-
abilistic algorithms, (uniform) probabilistic polynomial-time algorithms and non-uniform probabilistic
polynomial-time algorithms respectively. For a finite set S, we write s←R S to denote that s is assigned
a uniformly sampled value from the set S.

Definition 2. A function f : N → R≥0 is negligible if for any polynomial p, ∃λ0 ∈ N, ∀λ > λ0,
f(λ) < 1

p(λ) . A function f : N → R≥0 is noticeable if there exists a polynomial p and λ0 ∈ N, ∀λ > λ0,
f(λ) ≥ 1

p(λ) .

2.2 Pseudorandom Generators
In this section we review the definition of PRGs and their security definition as well as introduce notations
about PRGs for later use.

Definition 3. A deterministic polynomial-time algorithm is called a pseudorandom generator (PRG) if
on input (1λ, s) outputs r such that λ ∈ N, s, r ∈ {0, 1}∗ and |r| > |s|. λ ∈ N is called the security
parameter, s is called the seed, and lin(λ) := |s| and lout(λ) := |r| are called the input length and output
length respectively. When multiple PRGs are used, we use lin(λ, i) and lout(λ, i) to denote the input
length and output length of the PRG indexed by i.

Definition 4. A PRG R is said to be uniformly (resp. non-uniformly) secure if ∀D ∈ PPT (resp.
NUPPT ), ∣∣∣Pr [D(1λ,R(1λ, s))]− Pr

[
D(1λ, r)

]∣∣∣
is negligible where s←R {0, 1}lin(λ) and r ←R {0, 1}lout(λ).

Definition 5. For a PRG R, let IR denote the PTM speficied in Algorithm 1 that inverts R’s output:

Algorithm 1 IR ∈ PTM inverting R

1: procedure IR(1λ, r) . r ∈ {0, 1}lout(1
λ)

2: S ← ∅
3: for s← {0, 1}lin(λ) do
4: if R(1λ, s) = r then
5: S ← S ∪ {s}
6: end if
7: end for
8: if S 6= ∅ then
9: s←R S

10: return s
11: else
12: return ⊥
13: end if
14: end procedure
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2.3 Secure Multiparty Computation
In this section, we review security definitions for MPC protocols. While the notion of secure multiparty
computation was first conceived and formalised by Yao ([12, 13]), the modern formalisation of security
of MPC protocols that is used in more recent literature was proposed by [5]. In this paper, we shall deal
with the semi-honest adversarial model in [5].

Definition 6. Let π be an n-party protocol and ~f = (f1, f2, . . . , fn) be a probabilistic functionality to
be computed by π. We say π is secure against party Pi if ∃S ∈ PPT , ∀D ∈ NUPPT ,∣∣∣Pr [D (

S(1λ, xi, fi(~x)), ~f(~x)
)
= 1

]
− Pr

[
D
(
xi, ri, ~mi(1

λ, ~x;~r), π(1λ, ~x;~r)
)
= 1

]∣∣∣
is negligible where

• xi: input of party Pi and ~x := (x1, x2, . . . , xn).

• fi(~x): output of party Pi on inputs ~x and ~f(~x) := (f1(~x), f2(~x), . . . , fn(~x)).

• ri: random bits used by Pi and ~r := (r1, r2, . . . , rn).

• ~mi(1
λ, ~x;~r): messages received by Pi during the executing of the protocol with inputs ~x and ran-

domness ~r and ~m(1λ, ~x;~r) := (~m1(1
λ, ~x;~r), ~m2(1

λ, ~x;~r), . . . , ~mn(1
λ, ~x;~r)).

Definition 7. Let π be an n-party protocol and ~f = (f1, f2, . . . , fn) be a probabilistic functionality to be
computed by π. We say π is secure if ∃S ∈ PPT , ∀I = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n} (i1 < i2 < · · · < im),
∀D ∈ NUPPT ,∣∣∣Pr [D (

S(1λ, I, ~xI , ~fI(~x)), ~f(~x)
)
= 1

]
− Pr

[
D
(
VIEWI(~x;~r), π(1

λ, ~x;~r)
)
= 1

]∣∣∣
is negligible where

~xI := (xi1 , xi2 , . . . , xim)

~fI(~x) := (~fi1(~x),
~fi2(~x), . . . ,

~fim(~x))

VIEWI(~x;~r) := (I,VIEWi1(~x;~r),VIEWi2(~x;~r), . . . ,VIEWim(~x;~r))

VIEWik(~x;~r) := (xik , rik , ~mik(1
λ, ~x;~r)).

3 Main Theorems
3.1 1 Adversary, 1 PRG
We first consider the case where only 1 adversary exists or multiple non-colluding adversaries exist and
only 1 PRG is used. As stated before, if the adversary does not use a PRG thus the seed is not explicitly
known to the adversary, then we can perform a standard reduction to guarantee security unconditionally.
We present this in the following lemma for completeness.

Lemma 8. Let π be an n-party protocol, and R be a PRG. Let i, j ∈ {1, 2, . . . , n} and i 6= j. If π is
secure against party Pj and R is non-uniformly secure, then π ◦i R is secure against Pj. Here π ◦i R
denotes the protocol derived by replacing party Pi’s randomness with the output of R.

Proof. Let S be the simulator for party Pj by the security of π. We show that this simulator can also be
used to prove the security of π ◦i R. For any distinguisher D against S and any input ~x,∣∣∣Pr [D(xj , rj , (

−−−−→
m ◦i R)j(1λ, ~x), π ◦i R(1λ, ~x)) = 1

]
− Pr

[
D(S(1λ, xj , fj(~x)), ~f(~x)) = 1

]∣∣∣
=

∣∣∣Pr [D(xj , rj , ~mj(1
λ, ~x;

〈
R(1λ, si)

〉
i
), π(1λ, ~x;

〈
R(1λ, si)

〉
i
)) = 1

]
− Pr

[
D(S(1λ, xj , fj(~x)), ~f(~x)) = 1

]∣∣∣
≤

∣∣∣Pr [D(xj , rj , ~mj(1
λ, ~x; 〈ri〉i), π(1

λ, ~x; 〈ri〉i)) = 1
]
− Pr

[
D(S(1λ, xj , fj(~x)), ~f(~x)) = 1

]∣∣∣
+
∣∣∣Pr [D(xj , rj , ~mj(1

λ, ~x;
〈
R(1λ, si)

〉
i
), π(1λ, ~x;

〈
R(1λ, si)

〉
i
)) = 1

]
− Pr

[
D(xj , rj , ~mj(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]∣∣∣
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where ri ←R {0, 1}lout(λ) and si ←R {0, 1}lin(λ). Here (
−−−−→
m ◦i R)j denotes the messages received by Pj

during the execution of the π ◦iR (what ~mj is to π) and 〈r〉i in the randomness part of the inputs means
that party Pi takes randomness r and others take uniformly distributed random bits (as specified in π).
The first term on the right hand side is negligible by the security of π against Pj , while the second is
negligible by the non-uniform security of R. �

Next we define security of MPC protocols relative to a family of oracles to formalise computational
irrelevancy between the protocol and PRGs.

Definition 9. Let π be an n-party protocol and i ∈ {1, 2, . . . , n}. We say π is secure against party Pi

relative to O = {Oj}j∈I ⊂ PTM if ∃S ∈ PPT , ∀D ∈ NUPPT ,∣∣∣Pr [DO (
S(1λ, xi, fi(~x)), ~f(~x)

)
= 1

]
− Pr

[
DO

(
xi, ri, ~mi(1

λ, ~x;~r), π(1λ, ~x;~r)
)
= 1

]∣∣∣
is negligible where DO means D is given oracle access to all Oi.

The following is necessary as an additional assumption on PRGs.

Definition 10. Let R be a PRG. Let range(R, λ) denote the set of all R’s outputs under security
parameter λ:

range(R, λ) :=
{
R(1λ, s) | s ∈ {0, 1}lin(λ)

}
.

We say R is uniformly (resp. non-uniformly) indistinguishable in its range relative to O = {Oi}i∈I ⊂
PTM if ∀D ∈ PPT (resp. NUPPT ),∣∣∣Pr [DO (

1λ, r
)
= 1

]
− Pr

[
DO

(
1λ,R(1λ, s)

)
= 1

]∣∣∣
is negligible where r ←R range(R, λ) and s←R {0, 1}lin(λ).

The following is necessary as an additional assumption on the simulator of the protocol. This basically
states that the simulator outputs its own random bits as is to generate the adversary’s random tape. Note
that this definition is introduced by [10] and proved to be necessary also in the setting of information-
theoretic security.

Definition 11 ([10]). Let π be an n-party protocol that is secure against Pi with simulator S. We say
S is with raw randomness if ∃T ∈ PPT , ∀λ ∈ N,

S(1λ, xi, fi(~x); ri, τi) =
〈
ri, T (1λ, xi, fi(~x), ri; τi)

〉
where the notation 〈ri, y〉 means that components of the tuple (ri, y) are rearranged such that ri corre-
sponds to the simulated random tape part.

Next we present the main theorem of this section, which states the sufficient conditions under which
use of a PRG preserves security in the 1-adversary-1-PRG case.

Theorem 12. Let π be an n-party protocol. For i ∈ {1, 2, . . . , n} and any PRG R (whose output length
matches that of the random tape of Pi), if

• π is secure against party Pi relative to IR with raw randomness where IR is the inverter specified
in Definition 5.

• ε1(λ) :=
|range(R,λ)|

2lout(λ) is noticeable.

• R is non-uniformly indistinguishable in its range relative to IR.

then π ◦i R is secure against all parties. In particular, π ◦i R is secure against party Pi relative to IR
with raw randomness.

Proof. For j 6= i, the security of π ◦i R against party Pj follows directly from Lemma 8. We consider
security against party Pi.

Let S be the simulator for π by the first assumption. Since S is with raw randomness, we write
S(1λ, xi, fi(~x); ri, τi) =

〈
ri, T (1λ, xi, fi(~x), ri; τi)

〉
. Consider the simulator S̃ defined as

S̃(1λ, xi, fi(~x); si, τi) :=
〈
si, T (1λ, xi, fi(~x),R(1λ, si); τi)

〉
.
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For any distinguisher D̃ (with oracle access to IR) against S̃, define distinguisher D (with oracle
access to IR) against S as follows.

Algorithm 2 Distinguisher D against S

1: procedure DIR(x†i , r
†
i , ~m

†
i , y
†
i )

2: s†i ← IR(r
†
i )

3: if s†i 6= ⊥ then
4: return D̃IR(x†i , s

†
i , ~m

†
i , y
†
i )

5: else
6: return 0
7: end if
8: end procedure

Since S is with raw randomness, r†i is distributed identically in both the real and the simulated views.
Now the condition s†i 6= ⊥ at line 3 holds with probability ε1(λ) in either case. Under this condition,
since R(1λ, s†i ) = r†i and by raw randomness of S and the definition of S̃, we have

Pr
[
DIR(xi, ri, ~mi(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]
= Pr

[
D̃IR(xi, s

†
i ,mi(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]
Pr

[
DIR(S(1λ, xi, fi(~x); ri, τi), ~f(~x)) = 1

]
= Pr

[
D̃IR(S̃(1λ, xi, fi(~x); s

†
i , τi),

~f(~x)) = 1
]

where ri ←R {0, 1}lout(λ) and s†i ← IR(1λ, ri). Here 〈r〉i in the randomness part of the inputs means
that party Pi takes randomness r and others take uniformly distributed random bits (as specified in π).

Claim 12.1. For any input ~x, under the condition s†i 6= ⊥ at line 3 in Algorithm 2, both

ε2(λ, ~x) :=
∣∣∣Pr [D̃IR(xi, s

†
i , ~mi(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]
− Pr

[
D̃IR(xi, si, ~mi(1

λ, ~x;
〈
R(1λ, si)

〉
i
), π(1λ, ~x;

〈
R(1λ, si)

〉
i
)) = 1

]∣∣∣
ε3(λ, ~x) :=

∣∣∣Pr [D̃IR(S̃(1λ, xi, fi(~x); s
†
i , τi),

~f(~x)) = 1
]
− Pr

[
D̃IR(S̃(1λ, xi, fi(~x); si, τi), ~f(~x)) = 1

]∣∣∣
are negligible, where ri ←R {0, 1}lout(λ), s†i ← IR(1λ, ri) and si ←R {0, 1}lin(λ).

Proof. We first show that ε2(λ, ~x) is negligible. Assume the negation, i.e. ∃p ∈ poly(·), there exists
infinitely many (λ, ~x)’s such that ε2(λ, ~x) ≥ 1

p(λ) . Now consider a distinguisher D̃∗ with oracle access
to IR against R. Pick one ~x for each λ and give D̃∗ as advice for security parameter λ. Define D̃∗ as
follows.

Algorithm 3 Distinguisher D̃∗ against R

1: procedure D̃∗IR(1λ, r†) . with ~x as advice
2: s← IR(r†)
3: if s 6= ⊥ then
4: Simulate π on input ~x and use r† as random tape for party Pi to obtain Pi’s view ~mi and the

result ~y.
5: return D̃IR(xi, s, ~mi, ~y)
6: else
7: return 0
8: end if
9: end procedure

Under the condition s†i 6= ⊥ at line 3 in Algorithm 2, ri ←R {0, 1}lout(λ) is equivalent to ri ←R
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range(R, λ). Now ∣∣∣Pr [D̃∗IR (
1λ, ri

)
= 1

]
− Pr

[
D̃∗IR

(
1λ,R(1λ, si)

)
= 1

]∣∣∣
=

∣∣∣Pr [D̃IR(xi, s
†
i , ~mi(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]
− Pr

[
D̃IR(xi, si, ~mi(1

λ, ~x;
〈
R(1λ, si)

〉
i
), π(1λ, ~x;

〈
R(1λ, si)

〉
i
)) = 1

]∣∣∣
= ε2(λ, ~x) >

1

p(λ)
.

This contradicts the assumption that R is non-uniformly indistinguishable in its range relative to IR.
The proof for ε3 is similar to that of ε2, where instead of simulating π, the distinguisher D̃∗ against

R simulates S̃ using the input as its random tape. �

Let

P1(λ, ~x) := Pr
[
D̃IR(xi, s

†
i , ~mi(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]
P2(λ, ~x) := Pr

[
D̃IR(xi, si, ~mi(1

λ, ~x;
〈
R(1λ, si)

〉
i
), π(1λ, ~x;

〈
R(1λ, si)

〉
i
)) = 1

]
Q1(λ, ~x) := Pr

[
D̃IR(S̃(1λ, xi, fi(~x); s

†
i , τi),

~f(~x)) = 1
]

Q2(λ, ~x) := Pr
[
D̃IR(S̃(1λ, xi, fi(~x); si, τi), ~f(~x)) = 1

]

thus ε2 and ε3 become

ε2(λ, ~x) = |P1(λ, ~x)− P2(λ, ~x)|
ε3(λ, ~x) = |Q1(λ, ~x)−Q2(λ, ~x)| .

Summarising the discussion above, under the condition s†i 6= ⊥ at line 3 in Algorithm 2,∣∣∣Pr [DIR(xi, ri, ~mi(1
λ, ~x; 〈ri〉i), π(1

λ, ~x; 〈ri〉i)) = 1
]
− Pr

[
DIR(S(1λ, xi, fi(~x); ri, τi), ~f(~x)) = 1

]∣∣∣
=

∣∣∣Pr [D̃IR(xi, s
†
i , ~mi(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]
− Pr

[
D̃IR(S̃(1λ, xi, fi(~x); s

†
i , τi),

~f(~x)) = 1
]∣∣∣

= |P1(λ, ~x)−Q1(λ, ~x)|
= |(P2(λ, ~x)−Q2(λ, ~x)) + (P1(λ, ~x)− P2(λ, ~x))− (Q1(λ, ~x)−Q2(λ, ~x))|
≥ |P2(λ, ~x)−Q2(λ, ~x)| − |P1(λ, ~x)− P2(λ, ~x)| − |Q1(λ, ~x)−Q2(λ, ~x)|
=

∣∣∣Pr [D̃IR(xi, si, (
−−−−→
m ◦i R)i(1λ, ~x; 〈si〉i), π ◦i R(1

λ, ~x; 〈si〉i)) = 1
]

− Pr
[
D̃IR(S̃(1λ, xi, fi(~x); si, τi), ~f(~x)) = 1

]∣∣∣− ε2(λ, ~x)− ε3(λ, ~x).

Note that DIR always outputs 0 when the condition s†i 6= ⊥ at line 3 in Algorithm 2 is not satisfied.
Thus as for overall probability, we have∣∣∣Pr [DIR(xi, ri, ~mi(1

λ, ~x; 〈ri〉i), π(1
λ, ~x; 〈ri〉i)) = 1

]
− Pr

[
DIR(S(1λ, xi, fi(~x); ri, τi), ~f(~x)) = 1

]∣∣∣
≥

( ∣∣∣Pr [D̃IR(xi, si, (
−−−−→
m ◦i R)i(1λ, ~x; 〈si〉i), π ◦i R(1

λ, ~x; 〈si〉i)) = 1
]

− Pr
[
D̃IR(S̃(1λ, xi, fi(~x); si, τi), ~f(~x)) = 1

]∣∣∣− ε2(λ, ~x)− ε3(λ, ~x)
)
· ε1(λ)
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which implies that∣∣∣Pr [D̃IR(xi, si, (
−−−−→
m ◦i R)i(1λ, ~x; 〈si〉i), π ◦i R(1

λ, ~x; 〈si〉i)) = 1
]

− Pr
[
D̃IR(S̃(1λ, xi, fi(~x); si, τi), ~f(~x)) = 1

]∣∣∣
≤

∣∣∣Pr [DIR(xi, ri, ~mi(1
λ, ~x; 〈ri〉i), π(1λ, ~x; 〈ri〉i)) = 1

]
− Pr

[
DIR(S(1λ, xi, fi(~x); ri, τi), ~f(~x)) = 1

]∣∣∣
ε1(λ)

+ ε2(λ, ~x) + ε3(λ, ~x).

The first term is negligible by the assumptions that π is secure against party Pi relative to IR and that
ε1 is bounded below by the inverse of a polynomial. ε2(λ, ~x) and ε3(λ, ~x) are negligible by Claim 12.1.
Therefore the expression is negligible, which completes the proof of Theorem 12. �

3.2 1 Adversary, Multiple PRGs
We extend the result to the case where multiple parties use PRGs.

Since now we are dealing with multiple PRGs, we have to first formalise computational irrelevancy
between PRGs. It turns out that in this case, the protocol is only required to be irrelevant from each
PRG and PRGs are pairwise irrelevant.

Definition 13. Let R be a PRG. We say R is uniformly (resp. non-uniformly) secure relative to
O = {Oi}i∈I ⊂ PTM if ∀D ∈ PPT (resp. NUPPT ),∣∣∣Pr [DO (

1λ, r
)
= 1

]
− Pr

[
DO

(
1λ,R(1λ, s)

)
= 1

]∣∣∣
is negligible where r ←R {0, 1}lout(λ) and s←R {0, 1}lin(λ).

Definition 14. Let R1 and R2 be uniformly (resp. non-uniformly) secure PRGs. We say R1 and R2

are computationally irrelevant if for i ∈ {1, 2}, Ri is uniformly (resp. non-uniformly) secure relative
to IR3−i . For a family of uniformly (resp. non-uniformly) secure PRGs {Ri}i∈I , we say {Ri}i∈I are
pairwise computationally irrelevant if ∀i, j ∈ I with i 6= j, Ri and Rj are computationally irrelevant.

Using pairwise computationally irrelevant PRGs and with the help of Theorem 12, it is relatively easy
to derive the main theorem of this section, which states the sufficient conditoins to preserve security for
the 1-adversary-multiple-PRG case.

Theorem 15. Let π be an n-party protocol and I ⊂ {1, 2, . . . , n}. Let {Ri}i∈I be a family of non-
uniformly secure PRGs that are pairwise computationally irrelevant. If ∀i ∈ I,

• π is secure against party Pi relative to IRi
with raw randomness.

• |range(Ri,λ)|
2lout(λ,i) is noticeable.

• Ri is non-uniformly indistinguishable in its range relative to IRi
.

then π ◦I {Ri}i∈I is secure against all parties. In particular, ∀i ∈ I, π ◦I {Rj}j∈I is secure against party
Pi relative to IRi

with raw randomness. Here π ◦I {Ri}i∈I denotes the protocol derived by replacing party
Pi’s randomness with the output of Ri for all i ∈ I in π.

Proof. For i /∈ I, the security of π ◦I {Rj}j∈I against Pi can be easily derived by applying Lemma 8 |I|
times.

Consider the case i ∈ I. By Theorem 12, it suffices to show that π ◦I\{i} {Rj}j∈I\{i} is secure against
party Pi relative to IRi

with raw randomness. We show this in the next claim.

Claim 15.1. ∀i ∈ I, π ◦I\{i} {Rj}j∈I\{i} is secure against party Pi relative to IRi with raw randomness.
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Proof. Let I = {i, i1, i2, . . . , im−1} (2 ≤ m ≤ n, i1 < i2 < · · · < im−1). By assumption, π is secure against
party Pi relative to IRi

with raw randomness. Let S be such a simulator and we use it to prove the
security of π ◦I\{i} {Rj}j∈I\{i}. For any distinguisher D with oracle access to IRi

against S,∣∣∣Pr [DIRi (xi, ri, (
−−−−−−−−−−−−−−−→
m ◦I\{i} {Rj}j∈I\{i})i(1

λ, ~x), (π ◦I\{i} {Rj}j∈I\{i})(1
λ, ~x)) = 1

]
− Pr

[
DIRi (S(1λ, xi, fi(~x)), ~f(~x)) = 1

]∣∣∣
≤

∣∣∣Pr [DIRi (xi, ri, ~mi(1
λ, ~x), π(1λ, ~x)) = 1

]
− Pr

[
DIRi (S(1λ, xi, fi(~x)), ~f(~x)) = 1

]∣∣∣
+
∑
J

∣∣∣Pr [DIRi (xi, ri, (
−−−−−−−−−−−−−−−−−−−−−−−→
m ◦J∪{i|J|+1

} {Rj}j∈J∪{i|J|+1

})i(1λ, ~x),
(π ◦J∪{i|J|+1

} {Rj}j∈J∪{i|J|+1

})(1λ, ~x)) = 1
]

− Pr
[
DIRi (xi, ri, (

−−−−−−−−−−→
m ◦J {Rj}j∈J)i(1

λ, ~x), (π ◦J {Rj}j∈J)(1
λ, ~x)) = 1

]∣∣∣
where J spans over ∅, {i1} , {i1, i2} , . . . , {i1, i2, . . . , im−2}. Note that π ◦J {Rj}j∈J = π when J = ∅, and
π◦J∪{i|J|+1

}{Rj}j∈J∪{i|J|+1

} = π◦I\{i}{Rj}j∈I\{i} when J = {i1, i2, . . . , im−2}. By pairwise irrelevancy,
each Ri|J|+1

is non-uniformly secure relative to IRi , thus each summand is negligible. The first term is
negligible by the assumption that π is secure against Pi relative to IRi . Hence the whole expression is
negligible, which completes the proof. �

Now π ◦I\{i} {Rj}j∈I\{i} satisfies the first condition of Theorem 12 by Claim 15.1, and Ri satisfies
the second and third conditions of Theorem 12 by assumption. We can conclude that π ◦I {Rj}j∈I is
secure against party Pi relative to IRi with raw randomness. �

3.3 Multiple Adversaries, Multiple PRGs
We extend the result to the case where multiple colluding adversaries exist and multiple parties use PRGs.

Due to the difference of security definitions between the 1-adversary and multiple-adversary cases, we
first extend the security of an MPC protocol relative to a family of oracles to the case where multiple
parties are corrupted and may collude.

Definition 16. Let π be an n-party protocol. We say π is secure relative to O = {OI}I⊂{1,2,...,n} where
∀I ⊂ {1, 2, . . . , n}, OI = {Oi}i∈JI

⊂ PTM if ∃S ∈ PPT , ∀I = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n} (i1 < i2 <
· · · < im), ∀D ∈ NUPPT ,∣∣∣Pr [DOI

(
S(1λ, I, ~xI , ~fI(~x)), ~f(~x)

)
= 1

]
− Pr

[
DOI

(
VIEWI(~x;~r), π(1

λ, ~x;~r)
)
= 1

]∣∣∣
is negligible.

Similarly, the definition of raw randomness (Definition 11) can also be extended.

Definition 17. Let π be a secure n-party protocol with simulator S. We say S is with raw randomness
if ∃T ∈ PPT , ∀λ ∈ N, ∀I = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n} (i1 < i2 < · · · < im),

S(1λ, I, ~xI , ~fI(~x); ri1 , ri2 , . . . , rim , τ) =
〈
ri1 , ri2 , . . . , rim , T (1λ, I, ~xI , ~fI(~x), ri1 , ri2 , . . . , rim ; τ)

〉
where the notation 〈ri1 , ri2 , . . . , rim , y〉 means that components of the tuple (ri1 , ri2 , . . . , rim , y) are rear-
ranged such that each rik corresponds to the simulated random tape part.

Unlike the 1-adversary case where it is sufficient to consider the PRGs one-by-one, we define overall
computational irrelevancy for families of PRGs.

Definition 18. For a family of uniformly (resp. non-uniformly) secure PRGs {Ri}i∈I , we say {Ri}i∈I are
computationally irrelevant if ∀i ∈ I, Ri is uniformly (resp. non-uniformly) secure relative to

{
IRj

}
j∈I\{i}.

Now that we have extended the necessary definitions in the 1-adversary cases, the main theorem of
this section presenting a similar result can be shown for the case where multiple colluding adversaries
exist.
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Theorem 19. Let π be an n-party protocol and I ⊂ {1, 2, . . . , n}. Let {Ri}i∈I be a family of non-
uniformly secure PRGs that are computationally irrelevant. If

• π is secure relative to
{
{IRi

}i∈I∩J
}
J⊂{1,2,...,n} with raw randomness.

• ∀i ∈ I, ε1,i(λ) := |range(Ri,λ)|
2lout(λ,i) is noticeable.

• ∀i ∈ I, Ri is non-uniformly indistinguishable in its range relative to
{
IRj

}
j∈I .

then π ◦I {Ri}i∈I is secure relative to
{
{IRi

}i∈I∩J
}
J⊂{1,2,...,n} with raw randomness.

Proof. The argument is essentially the same as the one used in the proof of Theorem 12, combined with
a hybrid argument.

Let S be the simulator for π by the first assumption. Take ∀J = {j1, j2, . . . , jm} ⊂ {1, 2, . . . , n} (j1 <
j2 < · · · < jm). Since S is with raw randomness, we write

S(1λ, J, ~xJ , fJ(~x); rj1 , rj2 , . . . , rjm , τ) =
〈
rj1 , rj2 , . . . , rjm , T (1λ, J, ~xJ , fJ(~x), rj1 , rj2 , . . . , rjm ; τ)

〉
.

Consider the simulator S̃ defined as

S̃(1λ, J, ~xJ , ~fJ(~x); sj1 , sj2 , . . . , sjm , τ)

:=
〈
sj1 , sj2 , . . . sjm , T (1λ, J, xi, fi(~x),R∗j1(1

λ, sj1),R∗j2(1
λ, sj2), . . . ,R∗jm(1λ, sjm); τ)

〉
where

R∗jk(1
λ, sjk) :=

{
Rjk(1

λ, sjk) if jk ∈ I ∩ J

sjk if jk /∈ I ∩ J .

For any distinguisher D̃ (with oracle access to {IRi
}i∈I∩J) against S̃, define distinguisher D (with

oracle access to {IRi
}i∈I∩J) against S as follows.

Algorithm 4 Distinguisher D against S

1: procedure D
{
IRi

}
i∈I∩J (J†,VIEW†j1 ,VIEW

†
j2
, . . . ,VIEW†jm , y†i )

2: for jk ∈ J† do
3: (x†jk , r

†
jk
, ~m†jk)← VIEW†jk

4: if jk ∈ I then
5: s†jk ← IRjk

(r†jk)

6: if s†jk = ⊥ then
7: return 0
8: end if
9: else

10: s†jk ← r†jk
11: end if
12: VIEW††jk ← (x†jk , s

†
jk
, ~m†jk)

13: end for
14: return D̃

{
IRi

}
i∈I∩J (J†,VIEW††j1 ,VIEW

††
j2
, . . . ,VIEW††jm , y†i )

15: end procedure

Since S is with raw randomness, r†jk ’s are distributed identically in both the real and the simulated
views. Now in each iteration of the for-loop, under the condition that s†jk = ⊥ at line 6 gets evaluated,
it evaluates to false with probability ε1,jk(λ) in either case. Since if jk /∈ I, line 7 is never executed,
line 14 gets executed with probability

∏
jk∈I∩J ε1,jk(λ) in the real view as well as in the simulated view

conditioned on J = J†. Under this condition, since R∗jk(1
λ, s†jk) = r†jk and by raw randomness of S and
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the definition of S̃, we have

Pr
[
D

{
IRi

}
i∈I∩J

(
VIEWJ(~x;~r), π(1

λ, ~x;~r)
)
= 1

]
= Pr

[
D̃

{
IRi

}
i∈I∩J (J, (xj1 , s

†
j1
,mj1(1

λ, ~x; 〈rjk〉jk∈J)),

. . . , (xjm , s†jm ,mjm(1λ, ~x; 〈rjk〉jk∈J)), π(1
λ, ~x; 〈rjk〉jk∈J)) = 1

]
Pr

[
D

{
IRi

}
i∈I∩J (S(1λ, J, ~xJ , ~fJ(~x); rj1 , . . . , rjm , τ), ~f(~x)) = 1

]
= Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); s

†
j1
, . . . , s†jm , τ), ~f(~x)) = 1

]

where rjk ←R {0, 1}lout,jk
(λ) and

s†jk ←

{
IRjk

(1λ, rjk) if jk ∈ I ∩ J

rjk if jk /∈ I ∩ J .

Here 〈rjk〉jk∈J in the randomness part of the inputs means that each party Pjk ,∀jk ∈ J takes randomness
rjk and others take uniformly distributed random bits (as specified in π).

Claim 19.1. For any input ~x and J = {j1, j2, . . . , jm} ⊂ {1, 2, . . . , n} (j1 < j2 < · · · < jm), under the
condition that line 7 is never executed in the real view and the simulated view conditioned on J = J†,
both

ε2(λ, ~x, J) :=
∣∣∣Pr [D̃{

IRi

}
i∈I∩J (J, (xj1 , s

†
j1
,mj1(1

λ, ~x; 〈rjk〉jk∈J)),

. . . , (xjm , s†jm ,mjm(1λ, ~x; 〈rjk〉jk∈J)), π(1
λ, ~x; 〈rjk〉jk∈J)) = 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J (J, (xj2 , sj1 ,mj1(1

λ, ~x;
〈
R∗jk(1

λ, sjk)
〉
jk∈J

)),

. . . , (xjm , sjm ,mjm(1λ, ~x;
〈
R∗jk(1

λ, sjk)
〉
jk∈J

)), π(1λ, ~x;
〈
R∗jk(1

λ, sjk)
〉
jk∈J

)) = 1
]∣∣∣

ε3(λ, ~x, J) :=
∣∣∣Pr [D̃{

IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); s

†
j1
, . . . , s†jm , τ), ~f(~x)) = 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); sj1 , . . . , sjm , τ), ~f(~x)) = 1

]∣∣∣
are negligible, where rjk ←R {0, 1}lout,jk

(λ),

s†jk ←

{
IRjk

(1λ, rjk) if jk ∈ I ∩ J

rjk if jk /∈ I ∩ J

and

sjk ←R

{
{0, 1}lin,jk

(λ) if jk ∈ I ∩ J

{0, 1}lout,jk
(λ) if jk /∈ I ∩ J .

Proof. We first show that ε2(λ, ~x, J) is negligible. It suffices to show that 0 ≤ ∀l ≤ m− 1,

ε2,l(λ, ~x, J) :=
∣∣∣Pr [D̃{

IRi

}
i∈I∩J (J, (xj1 , sj1 ,mj1(1

λ, ~x; 〈R∗l 〉)),

. . . , (xjl , sjl ,mjl(1
λ, ~x; 〈R∗l 〉)), (xjl+1

, s†jl+1
,mjl+1

(1λ, ~x; 〈R∗l 〉)),

. . . , (xjm , s†jm ,mjm(1λ, ~x; 〈R∗l 〉)), π(1λ, ~x; 〈R∗l 〉)) = 1
]

− Pr
[
D̃

{
IRi

}
i∈I∩J (J, (xj1 , sj1 ,mj1(1

λ, ~x;
〈
R∗l+1

〉
)),

. . . , (xjl , sjl ,mjl(1
λ, ~x;

〈
R∗l+1

〉
)), (xjl+1

, sjl+1
,mjl+1

(1λ, ~x;
〈
R∗l+1

〉
)),

. . . , (xjm , s†jm ,mjm(1λ, ~x;
〈
R∗l+1

〉
)), π(1λ, ~x;

〈
R∗l+1

〉
)) = 1

]∣∣∣
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is negligible and the result follows from a standard hybrid argument. Here the notation 〈R∗l 〉 means
that parties Pj1 , . . . ,Pjl use random tapes R∗(1λ, sj1), . . . ,R∗(1λ, sjl), parties Pjl+1

, . . . ,Pjm use random
tapes rjl+1

, . . . , rjm , and others use uniformly distributed random bits. If jl+1 /∈ I ∩ J , then the claim
holds trivially. Consider the case jl+1 ∈ I ∩ J . Assume the negation, i.e. ∃p ∈ poly(·), there exists
infinitely many (λ, ~x)’s such that ε2,l(λ, ~x, J) ≥ 1

p(λ) . Now consider a distinguisher D̃∗l with oracle access
to {IRi

}i∈I∩J against Rjl+1
. Pick one ~x for each λ and give D̃∗l as advice for security parameter λ. Define

D̃∗l as follows.

Algorithm 5 Distinguisher D̃∗l against R∗jl+1

1: procedure D̃
∗
{
IRi

}
i∈I∩J

l (1λ, r†) . with ~x as advice
2: s← IRjl+1

(r†)

3: if s 6= ⊥ then
4: Simulate π on input ~x using pseudorandom tapes for parties
{Pj}j∈I∩J∩{j1,...,jl} and r† as random tape for party Pl+1 to obtain {Pj}j∈J ’s views
(xj1 , s

††
j1
,m††j1), . . . , (xjl , s

††
jl
,m††jl ), (xjl+1

, s,m††jl+1
), . . . , (xjm , s††jm ,m††jm) and the result ~y.

5: return D̃
{
IRi

}
i∈I∩J (J, (xj1 , s

††
j1
,m††j1), . . . , (xjl , s

††
jl
,m††jl ), (xjl+1

, s,m††jl+1
), . . . , (xjm , s††jm ,m††jm), ~y)

6: else
7: return 0
8: end if
9: end procedure

Under the condition that line 7 is never executed in the real view and the simulated view in Algorithm
4, rjl+1

←R {0, 1}lout(λ,jl+1) is equivalent to rjl+1
←R range(Rjl+1

, λ). Now∣∣∣∣Pr [D̃∗{IRi

}
i∈I∩J

l

(
1λ, rjl+1

)
= 1

]
− Pr

[
D̃
∗
{
IRi

}
i∈I∩J

l

(
1λ,Rjl+1

(1λ, sjl+1
)
)
= 1

]∣∣∣∣
=

∣∣∣Pr [D̃{
IRi

}
i∈I∩J (J, (xj1 , sj1 ,mj1(1

λ, ~x; 〈R∗l 〉)),

. . . , (xjl , sjl ,mjl(1
λ, ~x; 〈R∗l 〉)), (xjl+1

, s†jl+1
,mjl+1

(1λ, ~x; 〈R∗l 〉)),

. . . , (xjm , s†jm ,mjm(1λ, ~x; 〈R∗l 〉)), π(1λ, ~x; 〈R∗l 〉)) = 1
]

− Pr
[
D̃

{
IRi

}
i∈I∩J (J, (xj1 , sj1 ,mj1(1

λ, ~x;
〈
R∗l+1

〉
)),

. . . , (xjl , sjl ,mjl(1
λ, ~x;

〈
R∗l+1

〉
)), (xjl+1

, sjl+1
,mjl+1

(1λ, ~x;
〈
R∗l+1

〉
)),

. . . , (xjm , s†jm ,mjm(1λ, ~x;
〈
R∗l+1

〉
)), π(1λ, ~x;

〈
R∗l+1

〉
)) = 1

]∣∣∣
= ε2,l(λ, ~x, J) >

1

p(λ)
.

Since {IRi
}i∈I∩J ⊂ {IRi

}i∈I , by the second assumption, Rjl+1
is also non-uniformly indistinguishable

in its range relative to {IRi
}i∈I∩J , which leads to a contradiction.

The proof for ε3 is similar to that of ε2, where instead of simulating π, the distinguisher D̃∗l against
Rjl+1

simulates S̃ using random tapes as the above algorithm. �
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Let

P1(λ, ~x, J) := Pr
[
D̃

{
IRi

}
i∈I∩J (J, (xj1 , s

†
j1
,mj1(1

λ, ~x; 〈rjk〉jk∈J)),

. . . , (xjm , s†jm ,mjm(1λ, ~x; 〈rjk〉jk∈J)), π(1
λ, ~x; 〈rjk〉jk∈J)) = 1

]
P2(λ, ~x, J) := Pr

[
D̃

{
IRi

}
i∈I∩J (J, (xj1 , sj1 ,mj1(1

λ, ~x;
〈
R∗jk(1

λ, sjk)
〉
jk∈J

)),

. . . , (xjm , sjm ,mjm(1λ, ~x;
〈
R∗jk(1

λ, sjk)
〉
jk∈J

)), π(1λ, ~x;
〈
R∗jk(1

λ, sjk)
〉
jk∈J

)) = 1
]

Q1(λ, ~x, J) := Pr
[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); s

†
j1
, . . . , s†jm , τ), ~f(~x)) = 1

]
Q2(λ, ~x, J) := Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); sj1 , . . . , sjm , τ), ~f(~x)) = 1

]

thus ε2 and ε3 become

ε2(λ, ~x, J) = |P1(λ, ~x, J)− P2(λ, ~x, J)|
ε3(λ, ~x, J) = |Q1(λ, ~x, J)−Q2(λ, ~x, J)| .

Summarising the discussion above, under the condition that line 7 is never executed in the real view and
the simulated view conditioned on J = J†,∣∣∣Pr [D{

IRi

}
i∈I∩J

(
VIEWJ(~x;~r), π(1

λ, ~x;~r)
)
= 1

]
− Pr

[
D

{
IRi

}
i∈I∩J (S(1λ, J, ~xJ , ~fJ(~x); rj1 , . . . , rjm , τ), ~f(~x)) = 1

]∣∣∣
=

∣∣∣Pr [D̃{
IRi

}
i∈I∩J (J, (xj1 , s

†
j1
,mj1(1

λ, ~x; 〈rjk〉jk∈J)),

. . . , (xjm , s†jm ,mjm(1λ, ~x; 〈rjk〉jk∈J)), π(1
λ, ~x; 〈rjk〉jk∈J)) = 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); s

†
j1
, . . . , s†jm , τ), ~f(~x)) = 1

]∣∣∣
= |P1(λ, ~x, J)−Q1(λ, ~x, J)|
= |(P2(λ, ~x, J)−Q2(λ, ~x, J)) + (P1(λ, ~x, J)− P2(λ, ~x, J))− (Q1(λ, ~x, J)−Q2(λ, ~x, J))|
≥ |P2(λ, ~x, J)−Q2(λ, ~x, J)| − |P1(λ, ~x, J)− P2(λ, ~x, J)| − |Q1(λ, ~x, J)−Q2(λ, ~x, J)|
=

∣∣∣Pr [D̃{
IRi

}
i∈I∩J

((
VIEW ◦I∩J {IRi}i∈I∩J

)
J
(~x; 〈sj〉j∈I∩J), π(1

λ, ~x; 〈sj〉j∈I∩J)
)
= 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); sj1 , . . . , sjm , τ), ~f(~x)) = 1

]∣∣∣
− ε2(λ, ~x, J)− ε3(λ, ~x, J)

where
(
VIEW ◦I∩J {IRi

}i∈I∩J
)
J

denotes the view of {P}i∈J during the execution of π ◦I∩J {Ri}i∈I∩J
(what VIEWJ is to π). Note that D

{
IRi

}
i∈I∩J always outputs 0 when line 7 is executed in Algorithm 4.

Thus as for overall probability in the real view and the simulated view conditioned on J = J†, we have∣∣∣Pr [D{
IRi

}
i∈I∩J

(
VIEWJ(~x;~r), π(1

λ, ~x;~r)
)
= 1

]
− Pr

[
D

{
IRi

}
i∈I∩J (S(1λ, J, ~xJ , ~fJ(~x); rj1 , . . . , rjm , τ), ~f(~x)) = 1 | J† = J

]∣∣∣
≥

( ∣∣∣Pr [D̃{
IRi

}
i∈I∩J

((
VIEW ◦I∩J {IRi

}i∈I∩J
)
J
(~x; 〈sj〉j∈I∩J), π(1

λ, ~x; 〈sj〉j∈I∩J)
)
= 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); sj1 , . . . , sjm , τ), ~f(~x)) = 1 | J† = J

]∣∣∣
− ε2(λ, ~x, J)− ε3(λ, ~x, J)

)
·

∏
jk∈I∩J

ε1,jk(λ)

13



which implies that∣∣∣Pr [D̃{
IRi

}
i∈I∩J

((
VIEW ◦I∩J {IRi}i∈I∩J

)
J
(~x; 〈sj〉j∈I∩J), π(1

λ, ~x; 〈sj〉j∈I∩J)
)
= 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); sj1 , . . . , sjm , τ), ~f(~x)) = 1 | J† = J

]∣∣∣

≤

∣∣∣Pr [D{
IRi

}
i∈I∩J

(
VIEWJ(~x;~r), π(1

λ, ~x;~r)
)
= 1

]
− Pr

[
D

{
IRi

}
i∈I∩J (S(1λ, J, ~xJ , ~fJ(~x); rj1 , . . . , rjm , τ), ~f(~x)) = 1 | J† = J

] ∣∣∣∏
jk∈I∩J ε1,jk(λ)

+ ε2(λ, ~x, J) + ε3(λ, ~x, J).

By the security of π, the component of the output of S corresponding to J in the real view, denoted J†,
satisfies J†

nu. c≡ J , i.e. J† and J are non-uniformly indistinguishable. By the definition of S̃, the same
holds for S̃. Since J is not a random variable, this can only happen when J† 6= J occurs with negligible
probability, say ε4(1

λ, ~x, J). Thus the inequality above can be rewritten as∣∣∣Pr [D̃{
IRi

}
i∈I∩J

((
VIEW ◦I∩J {IRi

}i∈I∩J
)
J
(~x; 〈sj〉j∈I∩J), π(1

λ, ~x; 〈sj〉j∈I∩J)
)
= 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J (S̃(1λ, J, ~xJ , ~fJ(~x); sj1 , . . . , sjm , τ), ~f(~x)) = 1

]∣∣∣

≤

∣∣∣Pr [D{
IRi

}
i∈I∩J

(
VIEWJ(~x;~r), π(1

λ, ~x;~r)
)
= 1

]
− Pr

[
D

{
IRi

}
i∈I∩J (S(1λ, J, ~xJ , ~fJ(~x); rj1 , . . . , rjm , τ), ~f(~x)) = 1

] ∣∣∣+ ε4(λ, ~x, J)∏
jk∈I∩J ε1,jk(λ)

+ ε2(λ, ~x, J) + ε3(λ, ~x, J) + ε4(λ, ~x, J).

The first term is negligible by the assumptions that π is secure against party Pi relative to IR, that
ε4(λ, ~x, J) is negligible, and that each ε1,jk is bounded below by the inverse of a polynomial. ε2(λ, ~x, J)
and ε3(λ, ~x, J) are negligible by Claim 19.1. Therefore the expression is negligible.

To prove Theorem 19, it suffices to show that

Pr
[
D̃

{
IRi

}
i∈I∩J

((
VIEW ◦I∩J {IRi

}i∈I∩J
)
J
(~x; 〈sj〉j∈I∩J), π(1

λ, ~x; 〈sj〉j∈I∩J)
)
= 1

]
and

Pr
[
D̃

{
IRi

}
i∈I∩J

((
VIEW ◦I {IRi

}i∈I
)
J
(~x; 〈sj〉j∈I), π(1

λ, ~x; 〈sj〉j∈I)
)
= 1

]
only differ negligibly. This follows from a hybrid argument. Let I\J = {i1, i2, . . . , il} (0 ≤ l ≤ |I| , i1 <
i2 < · · · < il). Now∣∣∣Pr [D̃{

IRi

}
i∈I∩J

((
VIEW ◦I {IRi

}i∈I
)
J
(~x; 〈sj〉j∈I), π(1

λ, ~x; 〈sj〉j∈I)
)
= 1

]
− Pr

[
D̃

{
IRi

}
i∈I∩J

((
VIEW ◦I∩J {IRi}i∈I∩J

)
J
(~x; 〈sj〉j∈I∩J), π(2

λ, ~x; 〈sj〉j∈I∩J)
)
= 1

]∣∣∣
≤

∑
K

∣∣∣Pr [D̃{
IRi

}
i∈I∩J

((
VIEW ◦K∪{i|K|+1

} {IRi
}i∈K∪{i|K|+1

})
J
(~x; 〈sj〉j∈K∪{i|K|+1

}),
π(1λ, ~x; 〈sj〉j∈K∪{i|K|+1

})) = 1
]

− Pr
[
D̃

{
IRi

}
i∈I∩J

((
VIEW ◦K {IRi}i∈K

)
J
(~x; 〈sj〉j∈K), π(1λ, ~x; 〈sj〉j∈K)

)
= 1

]∣∣∣
where K spans over ∅, {i1} , {i1, i2} , . . . , {i1, i2, . . . , il−1}. For each K, I ∩ J = I\(I\J) ⊂ I\

{
i|K|+1

}
,

thus {IRi
}i∈I∩J ⊂ {IRi

}i∈I\{i|K|+1

}. By computational irrelevancy, each Ri|K|+1
is non-uniformly secure

relative to {IRi
}i∈I\{i|K|+1

}, thus also non-uniformly secure relative to {IRi
}i∈I∩J . Hence each summand

is negligible, so is the whole expression, which completes the proof of Theorem 19. �
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4 Related Works
4.1 Relation to Information-Theoretic Assumptions
We discuss the relation between our proposed sufficient conditions and the information-theoretic ones
used in [10]. Since [10] only considered the 1-adversary-1-PRG case, we compare its result with Theorem
12.

[10] assumes information-theoretically secure protocols (i.e. the variation distance between the real
and simulated views is negligible) with raw randomness. This is a stronger one than the first assumption
of Theorem 12 since it is a well-known fact that statistical closeness implies computational indistinguisha-
bility and its proof relativises to any family of oracles.

Next we show that the min-entropy condition on PRGs is a stronger one than our second assumption
of Theorem 12.

Proposition 20. Let R be a PRG. If lout(λ)−H∞(R(1λ, ·)) ∈ O(log λ), then |range(R,λ)|
2lout(λ) is noticeable.

Here H∞(R(1λ, ·)) is called the min-entropy of R and is defined as

H∞(R(1λ, ·)) := − max
r∈{0,1}lout(λ)

log2 Pr
[
R(1λ, s) = r

]
where s←R {0, 1}lin(λ).

Proof. By definition we can focus on the range of R when considering min-entropy:

H∞(R(1λ, ·)) = − max
r∈range(R,λ)

log2 Pr
[
R(1λ, s) = r

]
.

For a finite set, the uniform distribution yields the highest min-entropy among all distributions over this
set, thus

H∞(R(1λ, ·)) ≤ − max
r∈range(R,λ)

log2 Pr
[
Urange(R,λ) = r

]
= log2 |range(R, λ)| .

The assumption can be rewritten as 2lout(λ)

2H∞(R(1λ,·)) ≤ p(λ) for sufficiently large λ’s for some polynomial p.
Thus

2lout(λ)

|range(R, λ)|
=

2lout(λ)

2log2|range(R,λ)| ≤
2lout(λ)

2H∞(R(1λ,·)) ≤ p(λ).

Taking the inverse on both sides yields the desired result. �

4.2 On Random Oracle vs Hash Function Ensembles
Here we note that the technique used above seems unlikely to resolve the problem that occurs when a
random oracle is replaced with a hash function ensemble ([2]). For a cryptosystem that is secure under
the random oracle model, if we want to prove (based on this fact) the security when the random oracle is
replaced with a hash function ensemble with similar techniques, we have to rely on some computational
indistinguishability between them. However, no well-known security requirements (one-wayness, collision
resistance, etc.) on hash functions seem to provide such indistinguishability in any sense. A seemingly
promising indistinguishability requirement might be that∣∣∣∣ Pr

Ok,s←R{0,1}k

[
DOk(1k, s)

]
− Pr

s←R{0,1}k

[
Dfs(1k, s)

]∣∣∣∣
be negligible, where Ok denotes (the distribution of) random oracles outputting strings of length lout(k)
and fs denotes the element with index s of a hash function ensemble. Note that we have to pass the
seed s to the distinguisher since all parties (including adversaries) are supposed to know the seed in an
implementation of random oracles by hash functions. However, a distinguisher can easily distinguish the
two by computing fs(x) itself with arbitrary x and compare with the result of the oracle query.

Since both adversaries and appropriate users (or honest parties) have access to the same random
oracle or hash functions, one may think that the notion of indistinguishability, which assumes that the
random bits are private to each party, is anyway not suitable to be used in the random oracle vs hash
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function setting. A less naïve notion called “indifferentiability”, proposed by [9], is a generalisation of
indistinguishability to deal with public and private interfaces. However, even this notion cannot be
applied to the random oracle vs hash function setting – no hash function ensemble is indifferentiable from
a random oracle.

Thus we can see there seems to exist a huge gap between the random oracle model and reality (in the
sense that even trivial algorithms can distinguish them). Indeed, [2] presents stronger negative results on
RO vs hash functions than does [10] on real randomness vs pseudorandomness.

4.3 Relation to Computational Independency of One-Way Functions
It has been noticed by previous works that use of closely related cryptographic primitives may cause
problems. [4] discussed a notion called “computationally independent one-way functions” to avoid the
problems in interactive proof systems. Here we briefly discuss the relationship between our proposed
computational irrelevancy of pairs of PRGs (Definition 14) and computational independency of pairs of
one-way functions proposed by [4].

A straightforward adaptation of computational irrelevancy for onw-way functions can be formalised
as follows.

Definition 21. Let f be a one-way function. We say R is one-way relative to O = {Oi}i∈I ⊂ PTM if
∀I ∈ PPT ,

Pr
[
IO

(
1λ, f(x)

)
∈ f−1(f(x))

]
is negligible where x←R {0, 1}λ.

Definition 22. Let f1 and f2 be one-way functions. We say f1 and f2 are computationally irrelevant
if for i ∈ {1, 2}, fi is one-way relative to If3−i , where If is the inverter specified the same way as in
Definition 5.

For comparison, we restate the definition of pairs of computationally independent one-way functions.

Definition 23 ([4]). Let f1 and f2 be one-way functions. We say f1 and f2 are computationally inde-
pendent if

• (CI-a) g(x) := (f1(x), f2(x)) is also one-way.

• (CI-b) For i ∈ {1, 2}, ∀A ∈ PPT ,

Pr
[
A
(
1λ, fi(x)

)
= f3−i(x)

]
is negligible where x←R {0, 1}λ.

Computational irrelevancy does not capture (CI-a) since we only considered PRGs in this paper and
different PRGs are supposed to use different seeds anyway. However, it is a stronger notion than (CI-b).

Proposition 24. For pairs of one-way functions, computational irrelevancy implies (CI-b), i.e. for two
one-way functions f1 and f2, if they are computationally irrelevant, then for i ∈ {1, 2}, ∀A ∈ PPT ,

Pr
[
A
(
1λ, fi(x)

)
= f3−i(x)

]
is negligible.

Proof. Assume for some i ∈ {1, 2}, there exists A ∈ PPT that given fi(x) computes f3−i(x). Then an
inverter of fi can be obtained by calling A on fi(x) and calling If3−i on the output of A. The success
probability is the same as that of A. �

5 Conclusion
In this paper, we formalised computational irrelevancy in terms of MPC protocols and PRGs using the
relativisation paradigm. Also, for various adversarial settings in the semi-honest model, we provided
sufficient conditions under which security of MPC protocols are preserved even if PRGs are used under
computational assumptions.
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It remains open to construct protocols and PRGs that satisfy these computational irrelevancy condi-
tions. We note here that constructing such examples theoretically is very easy. For example, in terms of
protocols that are irrelevant from PRGs, information-theoretically secure ones always satisfy these con-
ditions; for the ones that are not necessarily information-theoretically secure, replacing the underlying
computational hardness assumptions with the ones relativised to the inverters of PRGs directly results
in the protocols with the desired properties. However, whether these relativised assumptions can be
considered “reasonable” requires further study in the literature. Since, as noted before, the relativisation
paradigm has been of great interest in both complexity theory and cryptography and proved to be useful
in previous works, we optimistically hope that subsequent works will stress this open problem.
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