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All known constructions of classical or quantum commitments require at least one-way functions.
Are one-way functions really necessary for commitments? In this paper, we show that non-interactive
quantum commitments (for classical messages) with computational hiding and statistical binding
exist if pseudorandom quantum states exist. Pseudorandom quantum states are sets of quantum
states that are efficiently generated but computationally indistinguishable from Haar random states
[Z. Ji, Y.-K. Liu, and F. Song, CRYPTO 2018]. It is known that pseudorandom quantum states exist
even if BQP = QMA (relative to a quantum oracle) [W. Kretschmer, TQC 2021], which means that
pseudorandom quantum states can exist even if no quantum-secure classical cryptographic primitive
exists. Our result therefore shows that quantum commitments can exist even if no quantum-secure
classical cryptographic primitive exists. In particular, quantum commitments can exist even if
no quantum-secure one-way function exists. We also show that one-time secure signatures with
quantum public keys exist if pseudorandom quantum states exist. In the classical setting, the
existence of signatures is equivalent to the existence of one-way functions. Our result, on the other
hand, suggests that quantum signatures can exist even if no quantum-secure classical cryptographic
primitive (including quantum-secure one-way functions) exists.

I. INTRODUCTION

A. Background

Commitments are one of the most central primitives in
cryptography [1]. Assume that Alice (sender) wants to
commit a message m to Bob (receiver). Alice encrypts it,
and sends it to Bob. Later, Alice sends a key so that Bob
can open the message m. Before Alice sending the key,
Bob should not be able to learn the message m, which
is called hiding. Furthermore, Alice should not be able
to change the message later once she commits it, which
is called binding. (Imagine that Alice’s message is put in
a safe box, and sent to Bob. Bob cannot open it until
he receives the key, and Alice cannot change the message
in the safe box once it is sent to Bob.) In cryptography,
there are two types of definitions for security. One is sta-
tistical security and the other is computational security.
Statistical security means that it is secure against any
computationally-unbounded adversary, while computa-
tional security means that it is secure against adversaries
restricted to polynomial-time classical/quantum compu-
tations. It is easy to see that both hiding and binding
cannot be statistical at the same time in the classical
setting [2], and therefore one of them has to be based on
a computational assumption. In other words, in a com-
putationally hiding commitment scheme, malicious Bob
can learn the message m before the opening if his compu-
tational power is unbounded, and in a computationally
binding commitment scheme, malicious Alice can change
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her committed message later if her computational power
is unbounded. For the computational assumption, the
existence of one-way functions is known to be equivalent
to the existence of classical commitments [3, 4]. Intu-
itively, a one-way function is a function such that com-
puting f(x) is easy, but inverting it is hard [5]. The
existence of one-way functions is considered the weakest
assumption in classical cryptography, because virtually
all complexity-based cryptographic primitives are known
to imply the existence of one-way functions [6–8].
The history of quantum information has demonstrated

that utilizing quantum physics in information process-
ing achieves many advantages. In particular, it has been
shown in quantum cryptography that quantum physics
can weaken cryptographic assumptions. For example,
if quantum states are transmitted, statistically-secure
key distribution is possible [9], although it is impossible
classically. Furthermore, oblivious transfer [10] is possi-
ble with only (quantum-secure) one-way functions when
quantum states are transmitted [11–17]. Classically, it
is known to be impossible to construct oblivious transfer
from only one-way functions [18, 19].
As we have mentioned, it is classically impossible to

realize commitments with statistical hiding and statisti-
cal binding. Does quantum physics overcome the bar-
rier? Unfortunately, it is already known that both bind-
ing and hiding cannot be statistical at the same time
even in the quantum world [20, 21]. In fact, all known
constructions of quantum commitments require at least
(quantum-secure) one-way functions [22–28].
In this paper, we ask the following fundamental ques-

tion:

Are one-way functions really necessary for
commitments?
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It could be the case that in the quantum world commit-
ments can be constructed from an assumption weaker
than the existence of one-way functions. This possibility
is mentioned in previous works [11, 12], but no construc-
tion is provided.

Digital signatures [29] are another important primitive
in cryptography. In a signature scheme, a secret key sk
and a public key pk are generated. The secret key sk is
used to generate a signature σ for a message m, and the
public key pk is used for the verification of (m,σ). Any
adversary who has pk and can query the signing oracle
many times cannot forge a signature σ′ for a message
m′ which is not queried. In other words, (m′, σ′) is not
accepted by the verification algorithm.

Obviously, statistically-secure signatures are impossi-
ble, because an unbounded adversary who can access pk
and the verification algorithm can find a valid signature
by a brute-force search. In the classical world, it is known
that the existence of digital signatures is equivalent to
the existence of one-way functions [5]. In the quan-
tum setting, on the other hand, there is no known con-
struction of digital signatures that imply one-way func-
tions. Gottesman and Chuang introduced digital signa-
tures with quantum public keys [30], but they consid-
ered information-theoretical security, and therefore the
number of public keys should not be large. Our second
fundamental question in this paper is the following:

Are digital signatures possible without one-way
functions?

B. Our results

In this paper, we answer the above two questions affir-
matively. The first result of this paper is the following:

Theorem 1. If pseudorandom quantum states exist,
then non-interactive quantum commitments (for classi-
cal messages) with computational hiding and statistical
binding exist.

Pseudorandom quantum states [31–33] are sets of
quantum states that can be efficiently generated but com-
putationally indistinguishable from Haar random states.
(The formal definition is given in Definition 1.) In
Ref. [34], it is shown that pseudorandom quantum states
exist even if BQP = QMA relative to a quantum ora-
cle. If BQP = QMA, no quantum-secure classical cryp-
tographic primitive exists, because BQP = QMA means
NP ⊆ BQP. In particular, no quantum-secure one-way
function exists. Our Theorem 1 therefore shows that
quantum commitments can exist even if no quantum-
secure classical cryptographic primitive exists. In par-
ticular, quantum commitments can exist even if no
quantum-secure one-way function exists.

As we will see later, what we actually need is a weaker
version of pseudorandom states where only the computa-
tional indistinguishability of a single copy of pseudoran-
dom state from the Haar random state is required. (The

indistinguishability has to be satisfied only for t = 1 in
Definition 1.) Because a single copy of the Haar random
state is equivalent to the maximally-mixed state, what
we require is the computational indistinguishability from
the maximally-mixed state. It could be the case that re-
alization of such a weaker version of pseudorandom states
is easier than that of the standard pseudorandom states.
Non-interactive commitments are a special type of

commitments. In general, the sender and the receiver
exchange many rounds of messages during the commit-
ment phase, but in non-interactive commitments, only a
single message from the sender to the receiver is enough
for the commitment. It is known that non-interactive
quantum commitments (for classical messages) are pos-
sible with (quantum-secure) one-way functions [22], while
it is subject to a black-box barrier in classical case [35].
As the definition of binding, we use sum-binding [36],

which roughly means that p0 + p1 ≤ 1, where p0 and p1
are probabilities that the malicious sender makes the re-
ceiver open 0 and 1, respectively. (The formal definition
of statistical sum-binding is given in Definition 4.)
Our main result, Theorem 1, that quantum commit-

ments can be possible without one-way functions has im-
portant consequences in cryptography. It is known that
quantum commitments imply the existence of quantum-
secure zero-knowledge proofs (of knowledge) for all NP
languages and quantum-secure oblivious transfer [37].
Thus, those primitives can also exist even if BQP = QMA
(and in particular quantum-secure one-way functions do
not exist) while classical constructions of them imply the
existence of one-way functions. We remark that Ref. [37]
only proves a game-based security for their oblivious
transfer, which is weaker than the standard simulation-
based security. Therefore, their oblivious transfer does
not suffice for constructing general multi-party compu-
tation. Since we just plug our commitments into their
construction, our result on oblivious transfer also has a
similar limitation. However, we believe that we can con-
struct oblivious transfer with the simulation-based secu-
rity from quantum commitments by applying the tech-
nique of Ref. [37] to the construction of Refs. [11, 38]. If
this is true, multi-party computation can also exist even
if BQP = QMA. We leave a formal proof of it as an
interesting future work.
We also remark that there is no known construction

of pseudorandom quantum states from weaker assump-
tions than the existence of one-way functions without
oracles. Thus, our result should be understood as a the-
oretical evidence that quantum commitments can exist
even if BQP = QMA rather than a new concrete con-
struction. It is an interesting open problem to construct
pseudorandom quantum states from weaker assumptions
than the existence of one-way functions without ora-
cles. Such a construction immediately yields commit-
ments (and more) by our result.
Our second result in this paper is the following:

Theorem 2. If pseudorandom quantum states exist,
then one-time secure signatures with quantum public keys
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exist.

One-time security means that the adversary can query
the signing oracle at most once. In the classical setting,
it is known how to construct many-time secure signa-
tures from one-time secure signatures [5], but we do not
know how to generalize our one-time signature scheme
to a many-time one, because in our case public keys are
quantum. It is an important open problem to construct
many-time secure signatures from pseudorandom states.

Due to the oracle separation by Ref. [34], Theorem 2
means that (at least one-time secure) signatures can exist
even if no quantum-secure classical cryptographic prim-
itive exists. In particular, (one-time secure) signatures
can exist even if no quantum-secure one-way function
exists.

Our construction is similar to the “quantum public
key version” of the classical Lamport signature [40] by
Gottesman and Chuang [30]. They consider information-
theoretical security, and therefore the number of public
keys should not be large. On the other hand, our con-
struction from pseudorandom states allows unbounded
polynomial number of public keys. Quantum cryptog-
raphy with quantum public keys are also studied in
Refs. [41, 42].

As we will see later, our construction of signatures is
actually based on what we call one-wayness of quantum
algorithms (Definition 5). Intuitively, we say that a quan-
tum algorithm that outputs a quantum state |ϕk⟩ on in-
put k ∈ {0, 1}n has one-wayness if it is hard to find, given
many copies of |ϕk⟩, σ ∈ {0, 1}n such that |ϕσ⟩ is close
to |ϕk⟩. In other words, what we actually show is the
following:

Theorem 3. If a quantum algorithm that has one-
wayness exists, then one-time secure signatures with
quantum public keys exist.

We show that pseudorandom states generators have
one-wayness (Lemma 3), and therefore, Theorem 2 is
obtained as a corollary of Theorem 3. The concept of
one-wayness itself seems to be of independent interest.

Unlike our commitment scheme, our signature scheme
requires the security of pseudorandom states for un-
bounded polynomial number of copies (t = poly(n) in
Definition 1), because the number of copies decides the
number of quantum public keys. In other words, pseu-
dorandom states secure for a single copy enable com-
mitments but those for unbounded polynomially-many
copies enable signatures. There could be therefore a kind
of “hierarchy” in pseudorandom states for different num-
bers of copies, which seems to be an interesting future
research subject.

C. Concurrent work

A concurrent work also constructs commitments from
pseudorandom quantum states [43]. We give comparisons
between our and their results.

1. Their definition of binding is seemingly stronger
than sum-binding, which we consider. However, we
agree on that these definitions seem actually equiv-
alent for commitments in a purified form like the
proposed scheme in this paper [44].

2. For achieving the security level of O(2−n) for bind-
ing, they rely on 2 log n + ω(log log n)-qubit pseu-
dorandom quantum states that are secure against
adversaries that get arbitrarily many copies of the
states or 7n-qubit pseudorandom quantum states
that are secure against adversaries that get a single
copy of the state where n is the key-length. On
the other hand, we rely on 3n-qubit pseudorandom
quantum states that are secure against adversaries
that get a single copy of the state. Thus, the re-
quired parameters are incomparable.

3. Our scheme is non-interactive whereas theirs is in-
teractive though we believe that their scheme can
also be made non-interactive by a similar technique
to ours.

4. They consider a more general definition of pseu-
dorandom quantum states than us that allows the
state generation algorithm to sometimes fail. We
do not take this into account since we can rely on
pseudorandom quantum states of Ref. [34] whose
state generation never fails for our primary goal to
show that commitments can exist even if one-way
functions do not exist.

Besides commitments, the result on digital signatures is
unique to this paper. On the other hand, Ref. [43] con-
tains results that are not covered in this paper such as
pseudorandom function-like states and symmetric key en-
cryption.

II. PRELIMINARIES

In this section, we provide preliminaries.

A. Basic notations

We use standard notations in quantum information.
For example, I is the two-dimensional identity opera-
tor. For notational simplicity, we sometimes write a d-
dimensional identity operator just I when it is clear from
the context. X,Y, Z are Pauli operators. Xj means the
Pauli X operator that acts on jth qubit. TrA(ρAB) is the
partial trace of ρAB over subsystem A. For n-bit strings
x, z ∈ {0, 1}n, Xx ≡

⊗n
j=1X

xj

j and Zz ≡
⊗n

j=1 Z
zj
j .

A function f is negligible if for all constant c > 0,
f(λ) < λ−c for large enough λ. QPT and PPT stand
for quantum polynomial time and (classical) probabilis-
tic polynomial time, respectively. k ← {0, 1}n means
that k is sampled from {0, 1}n uniformly at random. For
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an algorithm A, A(ξ) → η means that the algorithm
outputs η on input ξ.

B. Pseudorandom quantum states

Let us review pseudorandom quantum states [31–33].
Intuitively, pseudorandom quantum states {|ϕk⟩}k are
sets of quantum states such that each state |ϕk⟩ is ef-
ficiently generated on input k, but |ϕk⟩⊗t is computa-
tionally indistinguishable from t copies of a Haar random
state. More precisely, the definition of a pseudorandom
states generator is given as follows.

Definition 1 (PRS generator). A pseudorandom state
(PRS) generator is a QPT algorithm StateGen that, on
input k ∈ {0, 1}n, outputs anm-qubit quantum state |ϕk⟩.
As the security, we require the following: for any poly-
nomial t and any non-uniform QPT adversary A, there
exists a negligible function negl such that for all n,∣∣∣ Pr
k←{0,1}n

[
A(|ϕk⟩⊗t(n))→ 1

]
− Pr
|ψ⟩←µm

[
A(|ψ⟩⊗t(n))→ 1

]∣∣∣
≤ negl(n),

where µm is the Haar measure on m-qubit states.

Note that in this paper, we assume m ≥ cn for a con-
stant c > 1. Although it is possible to construct PRS
without this restriction [33], this is satisfied in the con-
struction of Ref. [34, 39].

It is important to remark that what we actually need
for our construction of commitments is a weaker version
of PRS: we need the security only for t = 1. In that case,
the security is the computational indistinguishability of
a single copy of |ϕk⟩ from the m-qubit maximally-mixed

state I⊗m

2m , because a single copy of the Haar random state
is equivalent to the maximally-mixed state. It could be
the case that such a weaker version of PRS is easier to
realize than the general t(n) = poly(n) PRS [45]. This
justifies our assumption that m ≥ cn for c > 1 since
there is a trivial construction of the single copy version
of pseudorandom quantum states with m = n without
any assumption.

III. TECHNICAL OVERVIEWS

In this section, we provide technical overviews of our
results.

A. Commitments

The basic idea of our construction of commitments
is, in some sense, a quantum generalization of classical
Naor’s commitment scheme [3].

Let us recall Naor’s construction. The receiver first
samples uniformly random η ← {0, 1}3n, and sends it

to the sender. The sender chooses a uniformly random
seed s ← {0, 1}n, and sends G(s) ⊕ ηb to the receiver,
where G : {0, 1}n → {0, 1}3n is a length-tripling pseudo-
random generator, and b ∈ {0, 1} is the bit to commit.
Hiding is clear: because the receiver does not know s,
the receiver cannot distinguish G(s) and G(s) ⊕ η. The
decommitment is (b, s). The receiver can check whether
the commitment is G(s) or G(s) ⊕ η from s. Binding
comes from the fact that if both 0 and 1 can be opened,
there exist s0, s1 such that G(s0) = G(s1) = η. There
are 22n such seeds, and therefore for a random η, it is
impossible except for 2−n probability.

Our idea is to replace G(s) with a PRS |ϕk⟩, and to
replace the addition of ηb with the quantum one-time
pad, which randomly applies Pauli X and Z. By the
security of PRS, the committed state is computationally
indistinguishable from Haar random states, which shows
computational hiding. For statistical binding, we show
that the fidelity between

∑
k |ϕk⟩⟨ϕk| and the one-time-

padded version of it is small. (Intuitively,
∑
k |ϕk⟩⟨ϕk|

has a support in at most 2n-dimensional space, but ran-
dom Pauli on it makes it the maximally-mixed m-qubit
state.) A detailed explanation of our construction and
its security proof are given in Sec. IV.

B. Digital Signatures

Our construction of digital signatures is a quantum
public key version of the classical Lamport signature [40].
The Lamport signature scheme is constructed from a one-
way function. For simplicity, let us explain the Lamport
signature scheme for a single-bit message. Let f be a one-
way function. The secret key is sk ≡ (sk0, sk1), where
sk0, sk1 are uniform randomly chosen n-bit strings. The
public key is pk ≡ (pk0, pk1), where pk0 ≡ f(sk0) and
pk1 ≡ f(sk1). The signature σ for a message m ∈ {0, 1}
is skm, and the verification is to check whether pkm =
f(σ). Intuitively, the (one-time) security of this signature
scheme comes from that of the one-way function f .

We consider the quantum public key version of it: pk is
a quantum state. More precisely, we take pkb = |ϕskb⟩ for
b ∈ {0, 1}. Intuitively, this signature scheme is one-time
secure because skb cannot be obtained from |ϕskb⟩⊗t: If
skb is obtained, |ϕskb⟩⊗t can be distinguished from Haar
random states, which contradict the security of PRS. We
formalize this intuition as one-wayness (Definition 5),
and show that PRS generators have one-wayness. For
details, see Sec. V.

IV. COMMITMENTS

In this section, we provide our construction of commit-
ments, and show its security.
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A. Definition

Let us first give a formal definition of non-interactive
quantum commitments.

Definition 2 (Non-interactive quantum commitments
(Syntax)). A non-interactive quantum commitment
scheme is the following protocol.

• Commit phase: Let b ∈ {0, 1} be the bit to com-
mit. The sender generates a quantum state |ψb⟩RC
on registers R and C, and sends the register C to
the receiver. The states {|ψb⟩}b∈{0,1} can be gener-
ated in quantum polynomial-time from the all zero
state.

• Reveal phase: The sender sends b and the reg-
ister R to the receiver. The receiver does the
measurement {|ψb⟩⟨ψb|, I − |ψb⟩⟨ψb|} on the reg-
isters R and C. If the result is |ψb⟩⟨ψb|, the re-
ceiver outputs b. Otherwise, the receiver outputs
⊥. Because {|ψb⟩}b∈{0,1} can be generated in quan-
tum polynomial-time from the all zero state, the
measurement {|ψb⟩⟨ψb|, I − |ψb⟩⟨ψb|} can be imple-
mented efficiently.

The computational hiding is defined as follows:

Definition 3 (Computational hiding). Let us consider
the following security game, Exp(b), with the parameter
b ∈ {0, 1} between a challenger C and a QPT adversary
A.

1. C generates |ψb⟩RC and sends the register C to A.

2. A outputs b′ ∈ {0, 1}, which is the output of the
experiment.

We say that a non-interactive quantum commitment
scheme is computationally hiding if for any QPT adver-
sary A there exists a negligible function negl such that,

|Pr[Exp(0) = 1]− Pr[Exp(1) = 1]| ≤ negl(λ).

As the definition of binding, we consider sum-binding
that is defined as follows [36]:

Definition 4 (Statistical sum-binding). Let us consider
the following security game between a challenger C and
an unbounded adversary A:

1. A generates a quantum state |Ψ⟩ERC on the three
registers E, R, and C.

2. A sends the register C to C, which is the commit-
ment.

3. If A wants to make C open b ∈ {0, 1}, A applies a

unitary U
(b)
ER on the registers E and R, and sends

the register R to C.

Let pb be the probability that A makes C open b ∈ {0, 1}:

pb ≡ ⟨ψb|RCTrE(U (b)
ER|Ψ⟩⟨Ψ|ERCU

(b)†
ER )|ψb⟩RC .

We say that the commitment scheme is statistical sum-
binding if for any unbounded A there exists a negligible
function negl such that

p0 + p1 ≤ 1 + negl(λ).

B. Construction

Let us explain our construction of signatures [46]. The
commit phase is the following.

1. Let b ∈ {0, 1} be the bit to commit. The sender
generates

|ψb⟩ ≡
1√

22m+n

∑
x,z∈{0,1}m

∑
k∈{0,1}n

|x, z, k⟩R ⊗ P bx,z|ϕk⟩C ,

and sends the register C to the receiver, where
Px,z ≡

⊗m
j=1X

xj

j Z
zj
j .

The reveal phase is the following.

1. The sender sends the register R and the bit b to
the receiver.

2. The receiver measures the state with {|ψb⟩⟨ψb|, I−
|ψb⟩⟨ψb|}. If the result is |ψb⟩⟨ψb|, the receiver out-
puts b. Otherwise, the receiver outputs ⊥. (Note
that such a measurement can be done efficiently:

first apply V †b such that |ψb⟩ = Vb|0...0⟩, and then
measure all qubits in the computational basis to see
whether all results are zero or not.)

Note that if we slightly modify the above construc-
tion, the communication in the reveal phase can be clas-
sical. In fact, we can show it for general settings. In
general quantum commitments (Definition 2), the sender
who wants to commit b ∈ {0, 1} generates a certain state
|ψb⟩RC on the registers R and C, and sends the register C
to the receiver, which is the commit phase. In the reveal
phase, b and the register R is sent to the receiver. The
receiver runs the verification algorithm on the registers R
and C. Let us modify it as follows. In the commit phase,
the sender chooses uniform random x, z ← {0, 1}|R| and
applies

⊗|R|
j=1X

xj

j Z
zj
j on the register R of |ψb⟩RC , where

|R| is the number of qubits in the register R. The sender
then sends both the registers R and C to the receiver. It
ends the commit phase. In the reveal phase, the sender
sends the bit b to open and (x, z) to the receiver. The

receiver applies
⊗|R|

j=1X
xj

j Z
zj
j on the register R and runs

the original verification algorithm. Hiding is clear be-
cause the register R is traced out for the receiver before
the reveal phase. Binding is also easy to understand: As-
sume a malicious sender of the modified scheme can break
binding. Then, we can construct a malicious sender that
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breaks binding of the original scheme, because the ma-
licious sender of the original scheme can simulate the
malicious sender of the modified scheme.

We also note that our construction of commitments can
be extended to more general cases where ancilla qubits
are used in PRS. Let us consider a more general PRS
generator, StateGen(k) → |ϕk⟩ ⊗ |ηk⟩, where |ηk⟩ is an
ancilla. In that case, hiding and binding holds if we re-
place |ψb⟩ with

1√
22m+n

∑
x,z∈{0,1}m

∑
k∈{0,1}n

(|x, z, k⟩ ⊗ |ηk⟩)R ⊗ P bx,z|ϕk⟩C .

C. Computational hiding

We show computational hiding of our construction.

Theorem 4 (Computational hiding). Our construction
satisfies computational hiding.

Proof of Theorem 4. Let us consider the following secu-
rity game, Hyb0(b), which is the same as the original
experiment.

1. The challenger C generates

|ψb⟩ =
1√

22m+n

∑
x,z∈{0,1}m

∑
k∈{0,1}n

|x, z, k⟩R ⊗ P bx,z|ϕk⟩C ,

and sends the register C to the adversary A, where
Px,z =

⊗m
j=1X

xj

j Z
zj
j .

2. A outputs b′ ∈ {0, 1}, which is the output of this
hybrid.

Let us define Hyb1(b) as follows:

1. If b = 0, C chooses a Haar random m-qubit state
|ψ⟩ ← µm, and sends it to A. If b = 1, C generates
|ψ1⟩RC and sends the register C to A.

2. A outputs b′ ∈ {0, 1}, which is the output of this
hybrid.

Lemma 1.

|Pr[Hyb0(b) = 1]− Pr[Hyb1(b) = 1]| ≤ negl(λ)

for each b ∈ {0, 1}.

Proof of Lemma 1. It is clear that

Pr[Hyb0(1) = 1] = Pr[Hyb1(1) = 1].

Let us show

|Pr[Hyb0(0) = 1]− Pr[Hyb1(0) = 1]| ≤ negl(λ).

To show it, assume that

|Pr[Hyb0(0) = 1]− Pr[Hyb1(0) = 1]|

is non-negligible. Then, we can construct an adversaryA′
that breaks the security of PRS as follows. Let b′′ ∈ {0, 1}
be the parameter of the security game of PRS.

1. The challenger C′ of the security game of PRS sends
A′ the state |ϕk⟩ with uniform random k if b′′ = 0
and a Haar random state |ψ⟩ ← µm if b′′ = 1.

2. A′ sends the received state to A.

3. A′ outputs the output of A.

If b′′ = 0, it simulates Hyb0(0). If b′′ = 1, it simulates
Hyb1(0). Therefore, A′ breaks the security of the PRS.

Let us define Hyb2(b) as follows:

1. The challenger C chooses a Haar random m-qubit
state |ψ⟩ ← µm, and sends it to the adversary.

2. The adversary outputs b′ ∈ {0, 1}, which is the
output of this hybrid.

Lemma 2.

|Pr[Hyb1(b) = 1]− Pr[Hyb2(b) = 1]| ≤ negl(λ)

for each b ∈ {0, 1}.

Proof of Lemma 2.

Pr[Hyb1(0) = 1] = Pr[Hyb2(0) = 1]

is clear. Let us show

|Pr[Hyb1(1) = 1]− Pr[Hyb2(1) = 1]| ≤ negl(λ).

To show it, assume that

|Pr[Hyb1(1) = 1]− Pr[Hyb2(1) = 1]|

is non-negligible. Then, we can construct an adversaryA′
that breaks the security of PRS as follows. Let b′′ ∈ {0, 1}
be the parameter of the security game of PRS.

1. The challenger C′ of the security game of PRS sends
A′ the state |ϕk⟩ with uniform random k if b′′ = 0
and a Haar random state |ψ⟩ ← µm if b′′ = 1.

2. A′ applies XxZz with uniform random x, z ←
{0, 1}m, and sends the state to A.

3. A′ outputs the output of A.

If b′′ = 0, it simulates Hyb1(1). If b′′ = 1, it simulates
Hyb2(1). Therefore, A′ breaks the security of the PRS.

It is obvious that

Pr[Hyb2(0) = 1] = Pr[Hyb2(1) = 1].

Therefore, from Lemma 1 and Lemma 2, we conclude

|Pr[Hyb0(0) = 1]− Pr[Hyb0(1) = 1]| ≤ negl(λ),

which shows Theorem 4.
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D. Statistical binding

Let us show that our construction satisfies statistical
sum-binding.

Theorem 5 (Statistical sum-binding). Our construction
satisfies statistical sum-binding.

Proof of Theorem 5. Let

F (ρ, σ) :=
(
Tr

√√
σρ
√
σ
)2

be the fidelity between two states ρ and σ. Then we have

pb = ⟨ψb|RCTrE(U (b)
ER|Ψ⟩⟨Ψ|ERCU

(b)†
ER )|ψb⟩RC

= F
(
|ψb⟩RC ,TrE(U (b)

ER|Ψ⟩⟨Ψ|ERCU
(b)†
ER )

)
≤ F

(
TrR(|ψb⟩⟨ψb|RC),TrRE(U (b)

ER|Ψ⟩⟨Ψ|ERCU
(b)†
ER )

)
= F

(
TrR(|ψb⟩⟨ψb|RC),TrRE(|Ψ⟩⟨Ψ|ERC)

)
.

Here, we have used the facts that if σ = |σ⟩⟨σ|, F (ρ, σ) =
⟨σ|ρ|σ⟩, and that for any bipartite states ρAB , σAB ,
F (ρAB , σAB) ≤ F (ρA, σA), where ρA = TrB(ρAB) and
σA = TrB(σAB) [47].

Therefore,

p0 + p1 ≤ 1 +

√
F
(
TrR(|ψ0⟩⟨ψ0|RC),TrR(|ψ1⟩⟨ψ1|RC)

)
= 1 +

√
F
( 1

2n

∑
k

|ϕk⟩⟨ϕk|,
1

22m
1

2n

∑
x,z

∑
k

XxZz|ϕk⟩⟨ϕk|XxZz
)

= 1 +

√
F
( 1

2n

∑
k

|ϕk⟩⟨ϕk|,
I⊗m

2m

)

= 1 +
∥∥∥ ξ∑
i=1

√
λi

1√
2m
|λi⟩⟨λi|

∥∥∥
1

= 1 +

ξ∑
i=1

√
λi

1√
2m

≤ 1 +

√√√√ ξ∑
i=1

λi

√√√√ ξ∑
i=1

1

2m

≤ 1 +

√
2n

2m

≤ 1 +
1√

2(c−1)n
.

In the first inequality, we have used the fact that for any
states ρ, σ, ξ,

F (ρ, ξ) + F (σ, ξ) ≤ 1 +
√
F (ρ, σ)

is satisfied [48]. In the fourth equality,
∑ξ
i=1 λi|λi⟩⟨λi|

is the diagonalization of 1
2n

∑
k |ϕk⟩⟨ϕk|. In the sixth

inequality, we have used Cauchy–Schwarz inequality. In
the seventh inequality, we have used ξ ≤ 2n. In the last
inequality, we have usedm ≥ cn for a constant c > 1.

V. DIGITAL SIGNATURES

In this section, we provide our construction of dig-
ital signatures and show its security. For that goal,
we first define the concept of one-wayness (Defini-

tion 5), and show that PRS generators satisfy one-
wayness (Lemma 3).

A. One-wayness

For the construction of our signature scheme, we use
one-wayness, which is defined as follows:

Definition 5 (One-wayness). Let G is a QPT algorithm
that, on input k ∈ {0, 1}n, outputs a quantum state |ϕk⟩.
Let us consider the following security game, Exp, between
a challenger C and a QPT adversary A:

1. C chooses k ← {0, 1}n.

2. C runs |ϕk⟩ ← G(k) t+ 1 times.

3. C sends |ϕk⟩⊗t to A.
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4. A sends σ ∈ {0, 1}n to C.

5. C measures |ϕk⟩ with {|ϕσ⟩⟨ϕσ|, I − |ϕσ⟩⟨ϕσ|}. If
the result is |ϕσ⟩⟨ϕσ|, the output of the experiment
is 1. Otherwise, the output of the experiment is 0.

We say that G satisfies one-wayness if for any t =
poly(n) and for any QPT adversary A there exists a neg-
ligible function negl such that

Pr[Exp = 1] ≤ negl(n).

Note that another natural definition of one-wayness
is that given |ϕk⟩⊗t it is hard to find k. However, as
we will see later, it is not useful for our construction of
signatures.

We can show the one-wayness for PRS generators:

Lemma 3 (One-wayness of PRS generators). A PRS
generator, StateGen, satisfies the one-wayness.

Proof of Lemma 3. Assume that Pr[Exp = 1] of the se-
curity game of Definition 5 with G = StateGen is non-
negligible. Then we can construct an adversary A′ that
breaks the security of PRS as follows. Let b′ ∈ {0, 1} be
the parameter of the security game for PRS.

1. If b′ = 0, the challenger C′ of the security game for
PRS chooses k ← {0, 1}n, runs |ϕk⟩ ← StateGen(k)
t+1 times, and sends |ϕk⟩⊗t+1 to A′. If b′ = 1, the
challenger C′ of the security game for PRS sends
t + 1 copies of Haar random state |ψ⟩⊗t+1 to A′.
In other words, A′ receives ρ⊗t+1, where ρ = |ϕk⟩
if b′ = 0 and ρ = |ψ⟩ if b′ = 1.

2. A′ sends ρ⊗t to A.

3. A outputs σ ∈ {0, 1}n.

4. A′ measures ρ with {|ϕσ⟩⟨ϕσ|, I − |ϕσ⟩⟨ϕσ|}. If the
result is |ϕσ⟩⟨ϕσ|, A′ outputs 1. Otherwise, A′ out-
puts 0.

It is clear that

Pr[A′ → 1|b′ = 0] = Pr[Exp = 1].

By assumption, Pr[Exp = 1] is non-negligible, and there-
fore Pr[A′ → 1|b′ = 0] is also non-negligible. On the

other hand,

Pr[A′ → 1|b′ = 1]

=

∫
dµ(ψ)

[ ∑
σ∈{0,1}n

Pr[σ ← A(|ψ⟩⊗t)]|⟨ϕσ|ψ⟩|2
]

≤
∫
dµ(ψ)

[ ∑
σ∈{0,1}n

|⟨ϕσ|ψ⟩|2
]

=
∑

σ∈{0,1}n
⟨ϕσ|

[ ∫
dµ(ψ)|ψ⟩⟨ψ|

]
|ϕσ⟩

=
∑

σ∈{0,1}n
⟨ϕσ|

I⊗m

2m
|ϕσ⟩

≤ 2n

2m

≤ 1

2(c−1)n
.

Therefore, A′ breaks the security of PRS.

B. Definition of digital signatures with quantum
public keys

We also have to formally define digital signatures with
quantum public keys:

Definition 6 (Digital signatures with quantum public
keys (Syntax)). A signature scheme with quantum pub-
lic keys is the set of algorithms (Gen1,Gen2,Sign,Verify)
such that

• Gen1(1
λ): It is a classical PPT algorithm that, on

input the security parameter 1λ, outputs a classical
secret key sk.

• Gen2(sk): It is a QPT algorithm that, on input the
secret key sk, outputs a quantum public key pk.

• Sign(sk,m): It is a classical deterministic
polynomial-time algorithm that, on input the secret
key sk and a message m, outputs a classical signa-
ture σ.

• Verify(pk,m, σ): It is a QPT algorithm that, on
input a public key pk, the message m, and the sig-
nature σ, outputs ⊤/⊥.

The one-time security is defined as follows:

Definition 7 (One-time security of digital signatures
with quantum public keys). Let us consider the following
security game, Exp, between a challenger C and a QPT
adversary A:

1. C runs sk ← Gen1(1
λ).

2. A can query pk ← Gen2(sk) poly(λ) times.

3. A sends a message m to C.
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4. C runs σ ← Sign(sk,m), and sends σ to A.

5. A sends σ′ and m′ to C.

6. C runs v ← Verify(pk,m′, σ′). If m′ ̸= m and v =
⊤, C outputs 1. Otherwise, C outputs 0. This C’s
output is the output of the game.

A signature scheme with quantum public keys is one-time
secure if for any QPT adversary A there exists a negli-
gible function negl such that

Pr[Exp = 1] ≤ negl(λ).

C. Construction

Let G be a quantum algorithm with one-wayness. Our
construction of a one-time secure signature scheme with
quantum public keys is as follows. (For simplicity, we
consider the case when the message space is {0, 1}.)

• Gen1(1
n): Choose k0, k1 ← {0, 1}n. Output sk ≡

(sk0, sk1), where skb ≡ kb for b ∈ {0, 1}.

• Gen2(sk): Run |ϕkb⟩ ← G(kb) for b ∈ {0, 1}.
Output pk ≡ (pk0, pk1), where pkb ≡ |ϕkb⟩ for
b ∈ {0, 1}.

• Sign(sk,m): Output σ ≡ skm.

• Verify(pk,m, σ): Measure pkm with {|ϕσ⟩⟨ϕσ|, I −
|ϕσ⟩⟨ϕσ|}, and output ⊤ if the result is |ϕσ⟩⟨ϕσ|.
Otherwise, output ⊥.

D. Security

Let us show the security of our construction.

Theorem 6. Our construction of a signature scheme is
one-time secure.

Proof of Theorem 6. Let us consider the following secu-
rity game, Exp, between the challenger C and a QPT
adversary A:

1. C chooses k0, k1 ← {0, 1}n.

2. A can query |ϕkb⟩ ← G(kb) poly(n) times for b ∈
{0, 1}.

3. A sends m to C.

4. C sends km to A.

5. A sends σ to C.

6. C measures |ϕkm⊕1⟩ with {|ϕσ⟩⟨ϕσ|, I − |ϕσ⟩⟨ϕσ|}.
If the result is |ϕσ⟩⟨ϕσ|, C outputs 1. Otherwise,
C outputs 0. This C’s output is the output of the
game.

Assume that our construction is not one-time secure,
which means that Pr[Exp = 1] is non-negligible for an
adversary A who queries both Gen2(sk0) and Gen2(sk1)
s = poly(n) times. (Without loss of generality, we can
assume that the numbers of A’s queries to Gen2(sk0)
and Gen2(sk1) are the same. An adversary who queries
to Gen2(sk0) s0 times and to Gen2(sk1) s1 times can
be simulated by another adversary who queries to both
Gen2(sk0) and Gen2(sk1) s ≡ max(s0, s1) times.) Then,
we can construct an adversary that breaks the one-
wayness of PRS as follows. Let C′ and A′ be the chal-
lenger and the adversary of the security game for the
one-wayness of PRS, respectively.

1. C′ chooses k ← {0, 1}n. C′ runs |ϕk⟩ ← G(k) s+ 1
times. C′ sends |ϕk⟩⊗s to A′.

2. A′ chooses r ← {0, 1}. A′ chooses k′ ← {0, 1}n. A′
runs |ϕk′⟩ ← G(k′) s times. If r = 0, A′ returns
(|ϕk⟩⊗s, |ϕk′⟩⊗s) to the query of A. If r = 1, A′
returns (|ϕk′⟩⊗s, |ϕk⟩⊗s) to the query of A.

3. A sends m ∈ {0, 1} to A′.

4. If r = m, A′ aborts. If r ̸= m, A′ sends k′ to A.

5. A sends σ to A′.

6. A′ sends σ to C′.

7. C′ measures |ϕk⟩ with {|ϕσ⟩⟨ϕσ|, I − |ϕσ⟩⟨ϕσ|}. If
the result is |ϕσ⟩⟨ϕσ|, C′ outputs 1. Otherwise, C′
outputs 0.

By a streightforward calculation, which is given below,

Pr[C′ → 1] =
1

2
Pr[Exp = 1]. (1)

Therefore, if Pr[Exp = 1] is non-negligible, Pr[C′ → 1]
is also non-negligible, which means that A′ breaks the
one-wayness of PRS.
Let us show Eq. (1). In fact,



10

Pr[C′ → 1] =
1

22n

∑
k,k′∈{0,1}n

1

2
Pr[1← A(|ϕk⟩⊗s, |ϕk′⟩⊗s)] Pr[σ ← A(k′)]|⟨ϕσ|ϕk⟩|2

+
1

22n

∑
k,k′∈{0,1}n

1

2
Pr[0← A(|ϕk′⟩⊗s, |ϕk⟩⊗s)] Pr[σ ← A(k′)]|⟨ϕσ|ϕk⟩|2

=
1

22n

∑
k,k′∈{0,1}n

1

2
Pr[1← A(|ϕk⟩⊗s, |ϕk′⟩⊗s)] Pr[σ ← A(k′)]|⟨ϕσ|ϕk⟩|2

+
1

22n

∑
k,k′∈{0,1}n

1

2
Pr[0← A(|ϕk⟩⊗s, |ϕk′⟩⊗s)] Pr[σ ← A(k)]|⟨ϕσ|ϕk′⟩|2

=
1

2
Pr[Exp = 1].

E. Remark

For simplicity, we have considered the case when there
is no ancilla qubits in the output of PRS generators. We
note that the same results hold for more general cases
when the output contains ancilla qubits.

First, let us consider the definition of one-wayness
(Definition 5). Let G be a QPT algorithm such that,
on input k ∈ {0, 1}n, it outputs a classical description
of a unitary Uk, and applies a unitary Uk on |0...0⟩ to
generate Uk|0...0⟩ = |ϕk⟩ ⊗ |ηk⟩, where |ηk⟩ is an ancilla
state and |ϕk⟩ is the main output of G. We modify the
final verification of C in Definition 5 as follows: Given σ,
C generates Uσ|0...0⟩ = |ϕσ⟩ ⊗ |ησ⟩. C then runs U†σ on
|ϕk⟩⊗|ησ⟩, and measures all qubits in the computational
basis. If all results are zero, the output of the experiment
is 1. Otherwise, it is 0. (This verification is actually the
one explained in Ref. [43].)

It is easy to verify that the one-wayness of PRS gen-
erators (Lemma 3) holds for a PRS generator that, on

input k ∈ {0, 1}n, outputs a classical description of a uni-
tary Uk, and applies Uk on |0...0⟩ to generate Uk|0...0⟩ =
|ϕk⟩ ⊗ |ηk⟩, where |ϕk⟩ works as a PRS and |ηk⟩ is an
ancilla state.

The verification algorithm in our construction of dig-
ital signatures is also modified as follows: Given σ,
first generate Uσ|0...0⟩ = |ϕσ⟩ ⊗ |ησ⟩. Then run U†σ on
pkm⊗|ησ⟩, and measures all qubits in the computational
basis. If all results are zero, output ⊤. Otherwise, out-
put ⊥. It is easy to check that a similar proof holds for
the security of our construction.
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