
Short Paper: Verifiable Decryption for BGV

Tjerand Silde ID

Department of Mathematical Sciences
Norwegian University of Science and Technology

tjerand.silde@ntnu.no

Abstract. In this work we present a direct construction for verifiable
decryption for the BGV encryption scheme by combining existing zero-
knowledge proofs for linear relations and bounded values. This is one of
the first constructions of verifiable decryption protocols for lattice-based
cryptography, and we give a protocol that is simpler and at least as
efficient as the state of the art when amortizing over many ciphertexts.
To prove its practicality we provide concrete parameters, resulting in
proof size of less than 47τ KB for τ ciphertexts with message space 2048
bits. Furthermore, we provide an open source implementation showing
that the amortized cost of the verifiable decryption protocol is only 90
ms per message when batching over τ = 2048 ciphertexts.

Keywords: lattice cryptography · verifiable decryption · zero-knowledge

1 Introduction

Many privacy preserving applications require one to prove that a ciphertext is
correctly decrypted without revealing the secret key. This is called verifiable de-
cryption, formalized by Camenisch and Shoup [CS03]. Example use-cases are
electronic voting [Adi08], mixing networks [HM20], DC-networks [CWF13] and
fully homomorphic encryption [LW18]. These applications usually require de-
crypting a large number of ciphertexts.

Unfortunately, the above systems are either not secure against quantum com-
puters or very inefficient. Recent works in lattice-based cryptography are leading
towards voting protocols achieving security even against quantum adversaries,
see, e.g., the shuffles by Aranha et al. [ABG+21], Costa et al. [CMM19] and
Farzaliyev et al. [FWK21]. However, few constructions provides verifiable de-
cryption for lattice-based encryption schemes.

1.1 Contribution

We present a new and efficient verifiable decryption protocol for batches of ci-
phertext using the lattice-based encryption scheme by Brakerski, Gentry and
Vaikuntanathan [BGV12]. The protocol is direct; the decryption procedure con-
sists of computing a linear equation involving the ciphertext and the key, and

https://orcid.org/0000-0002-5455-0409


then the message is extracted by rounding the result modulo the plaintext mod-
uli. This procedure gives the correct result if the noise-level in the ciphertext
is bounded. We use lattice-based commitments to commit to the secret key,
and then we prove two relations in zero-knowledge: 1) we prove that the linear
equation holds with respect to a fresh commitment to the ciphertext-noise, and
2) prove that the noise is bounded. Together, this leads to an efficient verifi-
able decryption protocol. To show its practicality, we give concrete parameters
and estimate the size in Section 4.1 and give timings from our proof-of-concept
implementation in Section 4.2.

1.2 Related Work

We compare to the related works on verifiable decryption schemes for lattices
by Lyubashevsky et al. [LNS21], Gjøsteen et al. [GHM+21] and Boschini et
al. [BCOS20] in Section 4.3.

2 Lattice-Based Cryptography

Let N be a power of 2 and q = 1 mod 2N a prime. We define the ring Rq =
Zq[X]/⟨XN + 1⟩. For f ∈ Rq we choose coefficients as the representatives in[
− q−1

2 , q−1
2

]
, and compute inner products ⟨·, ·⟩ and norms as vectors over Z:

∥f∥1 =
∑
|αi|, ∥f∥2 =

(∑
α2
i

)1/2

, ∥f∥∞ = max{|αi|}.

We furthermore define the sets Sβ∞ = {x ∈ Rq | ∥x∥∞ ≤ β∞} as well as

C = {c ∈ Rq | ∥c∥∞ = 1, ∥c∥1 = ν} and C̄ = {c− c′ | c ̸= c′ ∈ C} .

2.1 Rejection Sampling

We want to output vectors z = y+v such that z is independent of v, and hence,
v is masked by the vector y. If y is sampled according to a Gaussian distribution
N k

σ with standard deviation σ, then we want z to be from the same distribution.
1/M is the success probability for rejection sampling, and M is computed as

max
N k

σ (z)

N k
v,σ(z)

= exp

[
−2⟨z,v⟩+ ∥v∥22

2σ2

]
≤ exp

[
24σ∥v∥2 + ∥v∥

2
2

2σ2

]
= M,

so that |⟨z,v⟩| < 12σ∥v∥2 with probability at least 1 − 2−100. Hence, for σ =
11∥v∥2, we get M ≈ 3. This is the standard way to choose parameters. If the
procedure is only done once for the vector v, we can decrease the parameters,
to the cost of leaking only one bit of information about v from the given z.

Lyubashevsky et al. [LNS21] suggest to require that ⟨z,v⟩ ≥ 0. Then we can
set M = exp(∥v∥2/2σ2). For σ = 0.675∥v∥2, we get M ≈ 3, with the effect of
rejecting about half of the vectors up front. See [LNS21, Figure 2] for details.

2



2.2 Hardness Assumptions

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is the Ring-SIS problem in its Hermite Normal Form.

Definition 1. The SKS2N,q,β problem is to find a short vector x of ℓ2 norm less
than or equal to β in R2

q satisfying [ a 1 ] ·x = 0 for a given uniformly random

a in Rq. An algorithm A has advantage ϵ in solving the SKS2N,q,β problem if

Pr

[
[a 1] · x = 0 a←$ Rq;
∧ ∥xi∥2 ≤ β 0 ̸= x ∈ R2

q ← A(a)

]
≥ ϵ.

We also define the Decisional Knapsack problem (DKS∞) in the ℓ∞ norm. DKS∞

is equivalent to the Ring-LWE problem when the number of samples is limited.

Definition 2. The DKS∞N,q,β∞
problem is to distinguish the distribution [ a 1 ]·

x, for a short x, from the uniform distribution when given uniformly random a
in Rq. An algorithm A has advantage ϵ in solving the DKS∞N,q,β∞

problem if

|Pr[b = 1 | a←$ Rq;x←$ Sβ∞ ; b← A(a, [ a 1 ] · x)]
− Pr[b = 1 | a←$ Rq;u←$ Rq; b← A(a, u)]| ≥ ϵ.

See [LM06,LPR10] for more details about knapsack problems over rings.

2.3 BGV Encryption

Let p≪ q be primes, let Rq and Rp be defined as above for a fixed N , let D be a
bounded distribution over Rq, let β∞ ∈ N be a bound and let λ be the security
parameter. The BGV encryption scheme [BGV12] consists of three algorithms:
key generation (KGen), encryption (Enc) and decryption (Dec), where

- KGen samples a←$ Rq uniformly at random, samples a short s←$ Sβ∞ and
samples noise e← D. It outputs keys pk = (a, b) = (a, as+ pe) and sk = s.

- Enc, on input pk and a message m in Rp, samples a short r ←$ Sβ∞ , samples
noise e′, e′′ ← D, and outputs ciphertext c = (u, v) = (ar+pe′, br+pe′′+m).

- Dec, on input sk = s and c = (u, v), outputs m = (v − su mod q) mod p.

The decryption is correct if max∥v − su∥∞ = BDec < ⌊q/2⌋. The encryption
scheme is CPA-secure if the DKS∞N,q,β problem is hard for some β = β(N, q, p, β∞).

2.4 Lattice-Based Commitments

Let NσC
be a Gaussian distribution over Rq with standard deviation σC. The

commitment scheme by Baum et al. [BDL+18] consists of three algorithms: key
generation (KGen), committing (Com) and opening (Open), where

3



- KGen outputs a public key pk to commit to messages in Rq. We define

A1 =
[
In A′

1

]
whereA′

1 ←$ Rn×(k−n)
q

a2 = [0n 1 a′
2] wherea′

2 ←$ R(k−n−1)
q ,

for height n+ 1 and width k and let pk be A =

[
A1

a2

]
.

- Com commits to messages m ∈ Rq by sampling rm ←$ Sβ∞ , and computes

Compk(m; rm) = A · rm +

[
0
m

]
=

[
c1
c2

]
= [[m]].

Com outputs commitment [[m]] and opening d = (m, rm, 1).
- Open verifies whether (m, rm, f), with f ∈ C̄, is a valid opening of [[m]] with

respect to pk by checking that ∥rm[i]∥2 ≤ 4σC

√
N , for i ∈ [k], and if

f ·
[
c1
c2

]
?
= A · rm + f ·

[
0
m

]
.

Open outputs 1 if all these conditions holds, and 0 otherwise.

The commitment scheme is hiding if the DKS∞N,q,β∞
problem is hard and it is

binding if the SKS2
N,q,16σC

√
νN

problem is hard, see [BDL+18, Section 4].

2.5 Zero-Knowledge Proof of Linear Relations

Let [[y]], [[y′]] be commitments as above such that y′ = αy + β for some public
values α, β ∈ Rq. The protocol ΠLin in [ABG+21, Figure 1] is a zero-knowledge

proof of knowledge, with ℓ2 bound BC = 2σC

√
N on the responses zi, for the

relation:

RLin =

{
(x,w)

x = (α, β, [[y]], [[y′]]), w = (y, ry, ry′ , f, f ′) :
Open([[y]], y, ry, f) = Open([[y′]], α · y + β, ry′ , f ′) = 1

}
When applying the Fiat-Shamir transform [FS87], we let the challenge c ∈ C
be the output of a hash-function applied to the full transcript. Then, we get
the proof πL = (c, z1, z2), where each zi is of size kN log2(6σC) bits. We can
compress each zi to get a proof of total size 2(k−n)N log2(6σC) bits by checking
an approximate equality instead, as described in [ABG+21, Section 3.2]. We
denote by

πL ← ΠLin((y, ry, ry′ , fy, fy′); (α, β, [[y]], [[y′]])), and

0 ∨ 1← ΠLinV((α, β, [[y]], [[y
′]]);πL),

the run of the proof and verification protocols, respectively, where the verification
protocol ΠLinV performs the checks as in the last step in [ABG+21, Figure 1] and
also verifies that c was computed correctly with respect to the transcript. ΠLin

is a sound proof of knowledge in the ROM if the SKS2N,q,2BC
problem is hard.

4



2.6 Amortized Zero-Knowledge Proof of Bounded Openings

Let A be a publicly known r × v-matrix over Rq, let s1, s2, . . . , sτ be bounded
elements in Rv

q and let Asi = ti for i ∈ [τ ]. Letting S be the matrix whose
columns are si and T be the equivalent matrix for ti, Baum et al. [BBC+18]
give a efficient amortized zero-knowledge proof of knowledge for the relation:

RA =

{
(x,w)

∣∣∣∣ x = (A,T ), w = S :
∀i ∈ [τ ] : ti = Asi ∧ ||si||2 ≤ 2 ·BA

}
The protocol ΠA is depicted in [BBC+18, Figure 1]. We use a challenge

matrix C with entries sampled from the set CA = {0, 1}. For security parameter
λ, we define the number of parallel protocol instances to be n̂ = λ + 2. Denote
by

πA ← ΠA(S; (A,T )), and 0 ∨ 1← ΠAV((A,T );πA),

the run of the proof and verification protocols, respectively, where the ΠA-
protocol, using Fiat-Shamir, produces a proof of the form πA = (C,Z), where
C is the output of a hash-function applied to the full transcript, and the ΠAV-
protocol consists of the two checks in the last step in [BBC+18, Figure 1]. The
verification bound on each column of Z is BA =

√
2vNσA. Note that σA, and

also BA, depends on the norm of S (see rejection sampling in Section 2.1). Hence,
the bound we can prove depends on the number of equations in the statement.
ΠA is a sound proof of knowledge in the ROM if the SKS2N,q,2BA

problem is
hard.

3 The Verifiable Decryption Protocol

The protocol is direct. The prover starts by decrypting the ciphertext (u, v)
to obtain the underlying plaintext m as m = (v − us mod q) mod p. Then, he
commits to the noise d = er+e′′−se′ in the ciphertexts as [[d]]. Finally, he proves
two statements in zero-knowledge: 1) the linear relation p[[d]] = v−m−u[[s]] holds
modulo q with respect to the noise and a public commitment to the secret key,
and 2) the value committed to in [[d]] is shorter than some bound B < q/2p.

More precisely, we present a proof protocol for the following relation:

RDec =

 (x,w)
x = ((a, b), [[s]], (u1, v1), . . . , (uτ , vτ ),m1, . . . ,mτ ),
w = (s, rs, fs) such that Open([[s]]; s, rs, fs) = 1
∧ ∀i ∈ [τ ] : pdi = vi −mi − uis ∧ ∥di∥∞ < q/2p.


Here, we assume that either a trusted dealer generated the public key and

secret key together with a commitment to the secret key, or that the prover
already has proved in zero-knowledge that the public key is well formed and that
the secret key is committed to in [[s]], using any exact proof from the literature.

The verifiable decryption protocol ΠDec, for prover P, goes as following:

1. P takes as input a set of ciphertexts (u1, v1), . . . , (uτ , vτ ) and ([[s]], s, rs, fs).

5



2. P runs Dec on input s and (ui, vi) for all i ∈ [τ ] to obtain messagesm1, . . . ,mτ .
3. P extracts noise di by computing di = (vi−mi−uis)/p mod q for all i ∈ [τ ].
4. P commits to all di as [[di]], and proves p[[di]] = vi −mi − ui[[s]] using ΠLin.
5. P uses protocol ΠA to prove that all ∥di∥2 are bounded by BA ≤

√
2vNσA.

6. P outputs messages {mi}τi=1, commitments {[[di]]}τi=1 and proofs {πLi
}τi=1, πA.

A verifier V runs the verification protocol ΠDecV which checks that all proofs
{πLi
}τi=1 and πA are valid with respect to (a, b), {(ui, vi)}τi=1 and {mi}τi=1.

Theorem 1. The verifiable decryption protocol ΠDec is a complete, sound and
zero-knowledge proof protocol in the ROM for relation RDec when BA < q/(4p

√
N).

Proof. We prove each of the properties as following:

Completeness. It follows directly that ΠDec is complete if the encryption scheme
is correct, which is the case when ∥v − su∥ < q/2, and the protocols ΠLin and
ΠA are complete. Hence, we only need to make sure that ∥v − su∥ < q/2. The
protocol ΠA guarantees that the noise is bounded as ∥di∥2 ≤ 2BA. It follows

that if BA < q/(4p
√
N) then ∥di∥∞ < q/2p, and the decryption is correct.

Special soundness. The soundness of the protocol follows directly from the un-
derlying zero-knowledge protocols ΠLin and ΠA. With the use of rewinding we
can either extract the secret key s or the noise di (which reveals the secret key)
or some short vectors breaking the SKS2 problem for the given parameters.

Honest-verifier zero-knowledge. The zero-knowledge property follows directly
from the underlying zero-knowledge protocols ΠLin and ΠA, which are both
honest-verifier zero-knowledge. Hence, with input messages m1, . . . ,mτ we can
simulate the decryption proof by sampling uniformly random values di, commit-
ting to them as [[di]] and then simulating all the proofs πLi

and πA subsequently.

4 Performance

4.1 Parameters and Size

From the verifiable decryption protocol in Section 3 we get that the statement
consists of τ ciphertexts (ui, vi) and messages mi. Each element ui and ui are
uniformly elements in Rq of size N log2 q bits each. The messages are elements
in Rq with coordinates modulo p, and hence, are of size N log2 p bits. Each proof

πL are of size 2(k−n)N log2(6σC) bits, for σC = 11νβ∞
√
kN , and the proof πA

is of size (k+1)n̂N log2(6σA) bits. However, the norm bound BA depends on the
number of equations being proved at once, and hence, if τ is large it is beneficial
to prove smaller batches, e.g., of size N , instead of all equations at once.

As a concrete example, we set p = 2, β∞ = 1 and let D be the ternary
distribution over Rq. It then follows that, for honestly generated ciphertexts,

6



p q N β∞ M k n n̂ ν σC BC σA BA

2 ≈ 250 2048 1 3 3 1 130 36 ≈ 215.9 ≈ 222.4 ≈ 234.4 ≈ 241.5

Table 1. Example parameters for the verifiable decryption protocol with at least 128
bits of security against quantum adversaries ensuring correct decryption for honestly
generated ciphertexts. Rejection sampling success probability is set to be ≈ 1/3.

∥v − us∥∞ ≤ p(2N + 1). Furthermore, we get the following bound for ∥di∥∞:

∥di∥∞ ≤ 2
√
NBA =

√
8(k + 1)NτσA ≤

√
8(k + 1)Nτ · 0.675

∥∥S′C ′∥∥
2

≤ 2
√
(k + 1)Nτ · (4kN

√
NσC + p(2N + 1))

≤ 2
√
(k + 1)Nτ · (4kN

√
N · 11 · ν ·

√
kN + p(2N + 1)).

Thus, setting k = 3, n = 1, n̂ = 130, ν = 36 and τ = N = 2048 gives us
∥di∥∞ ≈ 248, and we can safely set q ≈ 250 to get correctness. We claim at least
128 bits security against a quantum adversary for these parameters using the
LWE estimator by Albrecht et al. [APS15] with the BKZ.qsieve cost model. A
smaller N results in smaller noise, but the size of q would give lower security.

Message mi Ciphertext (ui, vi) Commitment [[di]] Proof πLi Proof πA Proof πDec

0.256 KB 25.6 KB 25.6 KB 19 KB 2.4τ KB 47τ KB

Table 2. Sizes for parameters p = 2, q ≈ 250 and N = 2048 computing proof πDec =
({[[di]], πLi}τi=1, πA), where shortness proofs πA is amortized over batches of size 2048.

4.2 Implementation and Timings

We provide a proof-of-concept implementation of our protocol in C++ using the
NTL-library [Sho21]. The implementation was benchmarked on an Intel Core i5
running at 2.3GHz with 16 GB RAM. The timings are given in Table 3. The
implementation is very simple, consists of a total of 350 lines of code, and is
available online⋆. A comparison of NTL to NFLlib [ABG+16] indicates that an
optimized implementation could provide speedup by an order of magnitude.

Noise [[di]] Proof ΠLin Verification ΠLinV Proof ΠA Verification ΠAV Proof πDec

6τ ms 59τ ms 15τ ms 25τ ms 12τ ms 90τ ms

Table 3. Amortized time per instance over τ = 2048 ciphertexts.

4.3 Comparison

We compare to the verifiable decryption protocols by Lyubashevsky et al. [LNS21]
and Gjøsteen et al. [GHM+21]. As noted by [GHM+21, Section 8], the protocol
by Boschini et al. [BCOS20] give proof sizes of approximate 90 KB, which is
roughly twice the size of πDec. Furthermore, the run time is several minutes per
ciphertext, which would deem it unusable for larger sets of ciphertexts.

⋆ https://github.com/tjesi/verifiable-decryption-BGV.

7

https://github.com/tjesi/verifiable-decryption-BGV


Comparison to Lyubashevsky et al. (PKC 2021). They give a verifiable
decryption protocol for the Kyber encapsulation scheme for a ring of dimen-
sion N = 256 and modulus q = 3329 with secret and noise values bounded by
β∞ = 2. The proof of correct decryption is of size 43.6 KB. We note that our
proof is of approximately the same size but with a plaintext space of 2048 bits
instead of only 256 bits. We expect our proof size to be smaller than theirs for
ciphertexts encoding larger messages, but note that they can provide efficient
proofs for single ciphertexts for small moduli while our protocol is only efficient
in the amortized setting for ciphertext moduli at least 50 bits. Furthermore, our
protocol is much simpler, as [LNS21] make use of partially splitting rings and
automorphisms by combining proofs of multiplication and range proofs – making
the protocol difficult to implement in practice. They do not provide timings.

Comparison to Gjøsteen et al. (EPRINT 2021). They give a verifiable
decryption protocol ΠZKPCD for the BGV encryption scheme. However, because
of their noise drowning techniques, they are forced to use a moduli of at least
q ≈ 262. Their proof size is also depending on the soundness parameter λ, giving a
proof of size 16λ KB per ciphertext. For an interactive protocol with λ = 10 they
get a proof of size 3.5× larger than our proof, and for a non-interactive protocol
with λ = 100 their proof size is 35× larger than ours. They have not implemented
their protocol, but estimate a cost of at least ≈ 100λ µs per ciphertext using
NFLlib [ABG+16], which is similar to our protocol for reasonable values of λ.

They also sketch a protocol ΠDistDec [GHM+21, Section 8], requiring q ≈ 2110

and N = 4096. This protocol gives a proof of size ≈ 516 KB per ciphertext, a
factor 11 larger than our proof. They do not provide timings for this protocol.

References

ABG+16. Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-
Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast lattice
library. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages
341–356. Springer, Heidelberg, February / March 2016.

ABG+21. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and
Thor Tunge. Lattice-based proof of shuffle and applications to electronic
voting. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 227–251. Springer, Heidelberg, May 2021.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van
Oorschot, editor, USENIX Security 2008, pages 335–348. USENIX Asso-
ciation, July / August 2008.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 2015.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
669–699. Springer, Heidelberg, August 2018.

BCOS20. Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner.
Efficient post-quantum SNARKs for RSIS and RLWE and their applications
to privacy. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum

8



Cryptography - 11th International Conference, PQCrypto 2020, pages 247–
267. Springer, Heidelberg, 2020.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume
11035 of LNCS, pages 368–385. Springer, Heidelberg, September 2018.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, edi-
tor, ITCS 2012, pages 309–325. ACM, January 2012.

CMM19. Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Lattice-based proof of
a shuffle. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.
Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599
of LNCS, pages 330–346. Springer, Heidelberg, February 2019.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

CWF13. Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively
accountable anonymous messaging in verdict. In Samuel T. King, editor,
USENIX Security 2013, pages 147–162. USENIX Association, August 2013.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

FWK21. Valeh Farzaliyev, Jan Willemson, and Jaan Kristjan Kaasik. Improved
lattice-based mix-nets for electronic voting. Cryptology ePrint Archive,
Report 2021/1499, 2021. https://ia.cr/2021/1499.

GHM+21. Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, and
Tjerand Silde. Verifiable decryption in the head. Cryptology ePrint Archive,
Report 2021/558, 2021. https://eprint.iacr.org/eprint-bin/getfile.
pl?entry=2021/558&version=20210503:201150&file=558.pdf.

HM20. Thomas Haines and Johannes Müller. SoK: Techniques for verifiable mix
nets. In Limin Jia and Ralf Küsters, editors, CSF 2020 Computer Security
Foundations Symposium, pages 49–64. IEEE Computer Society Press, 2020.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knap-
sacks are collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP 2006, Part II, volume 4052 of
LNCS, pages 144–155. Springer, Heidelberg, July 2006.

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Juan
Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 215–241.
Springer, Heidelberg, May 2021.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS. Springer, Heidelberg, May / June
2010.

LW18. Fucai Luo and Kunpeng Wang. Verifiable decryption for fully homomorphic
encryption. In Liqun Chen, Mark Manulis, and Steve Schneider, editors,
ISC 2018, volume 11060 of LNCS, pages 347–365. Springer, Heidelberg,
September 2018.

Sho21. Victor Shoup. Ntl: A library for doing number theory, 2021. https://

libntl.org/index.html.

9

https://ia.cr/2021/1499
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2021/558&version=20210503:201150&file=558.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2021/558&version=20210503:201150&file=558.pdf
https://libntl.org/index.html
https://libntl.org/index.html

	Short Paper: Verifiable Decryption for BGV

