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Abstract

In this paper we propose the linear hull construction for block ci-
phers with quadratic Maiorana-McFarland structure round functions.
The search for linear trails with high squared correlations from our
Maiorana-McFarland structure based constructive linear cryptanalysis
is linear algebraic. Hence from this linear algebraic essence, the space
of all linear trails has the structure such that good linear hulls can
be constructed. We apply our method to construct better linear hulls
for the Simon and Simeck block cipher family. Then for the Simon2n
and its variants, we prove the lower bound 1

2n on the potential of the
linear hull with the fixed input and output masks at arbitrary long
rounds, under independent assumptions. We argue that for Simon2n
the potential of the realistic linear hull of the Simon2n with the linear
key-schedule should be bigger than 1

22n .

On the other hand we prove that the expected differential proba-
bility (EDP) is at least 1

2n under the independence assumptions. It is
argued that the lower bound of EDP of Simon2n of realistic differen-
tial trails is bigger than 1

22n . It seems that at least theoretically the
Simon2n is insecure for the key-recovery attack based on our new con-
structed linear hulls and key-recovery attack based on our constructed
differential trails.
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1 Introduction

In symmetric-key primitives, in particular in recent permutation based hash
constructions and the candidates in NIST lightweight cryptography compe-
tition, the algebraic degree of many round functions is two. For example
in Keccak, Subterranean, Gimli, Ascon, Simon and Simeck, see [11, 21, 10,
23, 8, 30, 32, 5, 55, 49], the round functions or the nonlinear layers are
algebraic degree two Boolean permutations. In this paper we propose the
Maiorana-McFarland structure based linear cryptanalysis for block ciphers,
which is suitable to algebraic degree two Boolean round functions with the
Maiorana-McFarland structure.

Linear cryptanalysis was proposed and applied to key-recovery attack
on DES in 1993-1994 by M. Matsui in [42, 43]. The basic ingredient in
linear key-recovery attack on the block ciphers is the linear approximations
with high correlations. The idea of the linear hull of an approximations was
introduced by Nyberg in [48] and analysed in [46, 2, 6, 35], such that the
required plaintext-ciphertext pairs for key-recovery attack decreased signif-
icantly. We refer to [3, 4, 5, 20, 24] for linear cryptanalysis of block ciphers
such as the Simon and PRESENT. In particular the linear attack in [24]
gave a first attack on the 28 round PRESENT, and the attack on the 45
round Simon96/144 in [34].

Differential cryptanalysis was initiated from the classical paper [13] and
has been one of the basic analysis tool to evaluate the security margin of
block ciphers. We refer to [33, 25] for independence assumptions and ex-
pected differential probability calculation. There have been many works
[15, 30, 39, 41] on differential cryptanalysis of Simon based on computer-
aided search of good differential trails.

The Maiorana-McFarland class of bent functions was given in the pa-
per [44]. The concept of Maiorana-MacFarland class Boolean functions in
[44, 47, 17, 16] was introduced basically for the construction of good cryp-
tographic Boolean functions. However our motivation in this paper is to
establish good linear hulls and construct many differential trails with the
fixed input and output differences from the Maiorana-McFarland structure
of Boolean round functions. In the Maiorana-McFarland structure based lin-
ear cryptanalysis of block ciphers with degree two restricted Boolean round
functions, the search of good linear trails is linear algebraic. Then linear
trails with high squared correlations can be constructed and searched more
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efficiently than previous approaches. We apply our method to construct the
linear hulls for the Simon variants and the Simeck block cipher. It is possi-
ble that this method can also be partially extended to higher degree round
function block ciphers. We also propose the Maiorana-McFarland structure
based constructive differential cryptanalysis such that many good differen-
tial trails with fixed input and output differences can be constructed and the
expected differential probability can be lower bounded. This paper is the
first work to apply the Maiorana-McFarland structure of round functions to
cryptanalysis of block ciphers systematically.

The Simon family is a family lightweight block ciphers designed and
presented by NSA in 2013. NSA did not provide security analysis and design
rationale. For the description of Simon block cipher family we refer to [8].
Its version Simon2n, where n ∈ {16, 24, 32, 48, 64}, is defined as follows. The
Boolean mapping f : Fn

2 −→ Fn
2 is a permutation defined by

f(x) = S1(x) · S8(x) + S2(x),

where x ∈ Fn
2 , · is the bit-wise multiplication, Si is the shift of bits to the

left by i positions. The round function on F2n
2 is defined by

Li = f(Li−1) +Ri−1 + ki,

Ri = Li−1.

Then (L0, R0) is the plaintext, after r rounds, (Lr−1, Rr−1) is the ciphertext.
When the parameter (1, 8, 2) is replaced by (a, b, c) the Simon variant with
the parameter triple (a, b, c) using

fa,b,c(x) = Sa(x) · Sb(x) + Sc(x)

was considered in [30]. Notice that there are(
n

2

)
· n

possibilities of parameter triples (a, b, c)’s. For Simon2n the sizes of master
keys are mn bits where 2 ≤ m ≤ 4. For Simon32/64 the designed num-
ber of rounds is 32, for Simon48/72 and Simon48/96 the designed number
of rounds is 36. For Simon64/96 the designed number of rounds is 42, for
Simon64/128 the designed number of rounds is 44. For Simon96/96 the de-
signed number of rounds is 52 and 54 for Simon96/144. For Simon128/128

3



the designed number of rounds is 68, 69 for Simon128/192 and 72 for Si-
mon128/256.

When the parameter triple is (5, 0, 1) this is the Simeck block cipher fam-
ily, see [55]. The designed numbers of rounds for Simeck32/64, Simeck48/96.
Simeck64/128 are 32, 36 and 44.

The Simon and Simeck are key-alternating block ciphers. We refer the
description of key scheduling to [8, 9, 55]. The round keys for Simon
k0, k1, k2, . . . , are produced from the master keys k0, k1, . . . , km−1, where
m = 2, 3, 4, as follows

ki+2 = ki
⊕

(I
⊕

S−1)S−3ki+1

⊕
Ci,

ki+3 = ki
⊕

(I
⊕

S−1)S−3ki+2

⊕
Di,

ki+4 = ki
⊕

(I
⊕

S−1)(S−3ki+3

⊕
ki+1)

⊕
Ei,

where Ci, Di and Ei are round-dependent constants. Notice that the key
schedule for Simon is linear. We refer to [55] for key scheduling for Simeck.
The recursion is defined by ki+4 = ki

⊕
f(ki+1)

⊕
C
⊕
zi, where C and zi

are constants depending on block size and f is the same function f(5,0,10)
used in the data path. This key scheduling is not linear.

2 Previous results and our contribution

2.1 Previous cryptanalysis of Simon and Simeck

We refer to [1, 3, 4, 5, 20, 39, 34] for the linear and differential cryptanalysis
of the Simon. For differential cryptanalysis and rotational-XOR cryptanal-
ysis of the Simon, see [15, 41]. Integral attack and impossible differential
attack on the Simon were presented in [32]. The most successful attacks on
the Simon and Simeck are from linear (hull) cryptanalysis and differential
cryptanalysis in [34]. In [30] exact and explicit-computable differential and
linear behaviour of the Simon-like round functions are derived and optimal
differential and linear characteristics of the Simon variants are searched by
computer-aided SAT/SMT solvers. The optimal differential and linear trails
were searched by their explicit calculations of differential probability formu-
la in Theorem 3 and explicit expression of squared correlation in Theorem
5 of [30]. For general parameters (a, b, c) satisfying gcd(a − b, n) = 1 and
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a < b optimal differential trails for 10 rounds of Simon32, Simon48 and Si-
mon64 were searched and presented in Appendix D of [30]. As analysed by
Kölbl-Leander-Teissen in [30], 20 parameter triples are optimal for Simon32,
Simon48 and Simon64 with respect to 10 rounds differential attack. The
computer-aided search results about differential tails in [30] was verified in
[39]. In [32] it was argued that (4, 1, 7) and (12, 5, 3) belong to the above
parameter triples with optimal security against differential attack have the
same security level against integral and impossible differential attacks as
the original Simon. We refer linear hull cryptanalysis and linear analysis
using super rounds of the Simon to [4, 20, 5, 40, 3]. For the latest and
known best linear and differential cryptanalysis of the Simon and Simeck,
we refer to [7, 31, 49, 51, 34]. For a nice survey on various attacks on the
Simon family before 2017, we refer to [9]. The present best attack results
are key-recovery attacks due to [34] based on linear hulls, for example, an
attack against 45-round Simon96/144, an attack against 42 round Simeck64.

2.2 Our contribution

We present the Maiorana-McFarland structure based linear cryptanalysis
and differential cryptanalysis. In particular when the round functions are
of algebraic degree two the squared correlation can be expressed directly
from the restricted Maiorana-McFarland structure. The search of good lin-
ear trails is reduced to a search for target vectors satisfying some linear
algebraic properties. In this framework linear hulls can be constructed by
linear algebra techniques. This leads to better attacks based on linear hull
for Simon2n and its variants. To the best of our knowledge this is the first
effort to construct good linear hulls from the structures of round functions,
not from the search.

Based on our linear algebraic search of linear trails of the Simon, bet-
ter linear hulls than the best previous known results in [3, 20, 34] can be
constructed directly. The space of all linear trails in our presentation has
the structure such that linear trails for Simon variants can be operated.
We apply our method to construct better linear hulls for the Simon and
Simeck block cipher family. Then for Simon2n we prove the lower bound 1

2n

on the potentials of the constructed linear hulls of arbitrary rounds under
independent assumptions. Then it is argued for Simon2n with the linear
key schedule, the constructed linear hulls with the fixed input mask and the
output mask at arbitrary rounds has its potential strictly bigger than 1

22n
. It
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seems that theoretically Simon2n and its variants using linear key schedule
are insecure for the key-recovery attack based on our new constructed linear
hulls. This method seems possible to extend to multiply linear or multidi-
mensional linear cryptanalysis.

We prove that the expected differential probability (EDP) of Simon2n
of arbitrary rounds with some fixed input and output differences is at least
1

2n under independence assumption. We argue that even when lower bound
EDP over realistic differential trails, the lower bound is strictly bigger than

1
22n

. Combining with the Maiorana-McFarland structure based linear hull
construction described as above, at least theoretically Simon is not secure
because of its degree two Maiorana-McFarldand structure round function.

2.3 Outline of our arguments

The main results in this paper are the lower bounds on the potential and the
expected differential probability (EDP) for Simon2n and its variants, under
the following two independent assumptions, we refer to [33, 25].
1) The linear approximations or differentials of different rounds are inde-
pendent;
2) The linear trails or differential trails are independent.

If these two assumptions are assumed, we prove that the lower bound
1

2n on the potential and the lower bound 1
2n on EDP for Simon2n of arbi-

trary long rounds with some fixed input and output differences. However
for key-alternating block ciphers such as Simon the above assumptions are
not realistic. We argue that the lower bound of potential for the linear key
schedule Simon2n, is strictly bigger than 1

22n
, and the EDP for Simon2n

with linear key schedule is bigger than 1
22n

. The basic point is that though
the realistic potential and EDP are not so big as 1

2n when the above two
independent assumptions are assumed, they are still strictly larger than the
threshold 1

22n
.

2.4 No dominant trail

From the construction of linear hull and many differential trails with the
fixed input and output differences, it is easy to see that for a given trail
there are many trails produced from this trail with probabilities not much
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decreased. This is easy to verify under the above two independent assump-
tions. Even in the realistic case, this non-dominant property seems true.

3 The Maiorana-McFarland structures and the struc-
ture finding algorithm

Definition 3.1. Let Φ : Fm
2 −→ Fn

2 be a Boolean mapping. If there exists
some variables xi1 , . . . , xih , where i1, . . . , ih are distinct indices in the set
{1, 2, . . . ,m} such that for each component

Φ = (Φ1, . . . ,Φn),

we have
Φt(x1, · · · , xm) = Σh

j=1G
j
txij +Gt,

where Gjt , Gt are Boolean functions of variables in the set {x1, . . . , xm} −
{xi1 , . . . , xih}, we say that the Boolean mapping Φ has a Maiorana-McFarland
structure at the variables xi1 , . . . , xih . The variables in {x1, . . . , xm} −
{xi1 , . . . , xih} are called non-Maiorana-McFarland variables. We call the
number h the Maiorana-McFarland number of Φ. The Boolean mapping Gj

is Gj = (Gjt )t=1,...,m : Fm−h
2 −→ Fm

2 .

Definition 3.2. Let Φ : Fm
2 −→ Fn

2 be a Boolean mapping. If there
exists some variables xi1 , . . . , xih , where i1, . . . , ih are distinct indices in the
set {1, 2, . . . ,m} such that for each component

Φ = (Φ1, . . . ,Φn),

we have
Φt(x1, · · · , xm) = ΣH

j=1G
j
tfj +Gt,

where Gjt , Gt are Boolean functions of variables in the set {x1, . . . , xm} −
{xi1 , . . . , xih} and f1, . . . , fH are functions of variables in the set {xi1 , . . . , xih},
we say that the Boolean mapping Φ has a generalized Maiorana-McFarland
structure at the variables xi1 , . . . , xih . The variables in {x1, . . . , xm} −
{xi1 , . . . , xih} are called non-Maiorana-McFarland variables. We call the
number h the Maiorana-McFarland number of Φ. The Boolean mapping Gj

is Gj = (Gjt )t=1,...,m : Fm−h
2 −→ Fm

2 .
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It is obvious that a linear Boolean mapping L : Fn
2 −→ Fm

2 has the full
Maiorana-McFarland structure and the Maiorana-McFarland number is n.
An arbitrary Boolean mapping has at least the Maiorana-McFarland number
1. If Φ : Fm

2 −→ Fn
2 has a Maiorana-McFarland structure at the variables

xi1 , . . . , xih , then when the variables in {x1, . . . , xm}−{xi1 , . . . , xih} are giv-
en fixed values, Φ is an affine mapping from Fh

2 to Fn
2 .

If some Boolean permutations in a symmetric-key primitives have large
Maiorana-McFarland number h, this is a weakness of this symmetric-key
primitive to the adversary. We now establish an algorithm to find the
Maiorana-McFarland structures of Boolean mappings. It is clear that there
is a one-variable Maiorana-McFarland structure for an arbitrary Boolean
mapping. Hence it is a goal for our algorithm to find the Maiorana-McFarland
number h as large as possible for a Boolean mapping Φ : Fm

2 −→ Fn
2 ,

Φ(x1, . . . , xm) = (φ1(x1, . . . , xm), . . . , φn(x1, . . . , xm)).

Route. Write

Φ = Φ1(x1, . . . , x̂i1 , . . . , xm)xi1 + Φ′1(x1, . . . , x̂i1 , . . . , xm),

where Φ1 and Φ′1 are just Boolean mappings from Fm−1
2 to Fn

2 . Here
x1, . . . , x̂i1 , . . . , xm are m − 1 variables x1, . . . , xi1−1, xi1+1, . . . , xm. In this
step the target is to find an index i1 such that Φ1 is a Boolean mapping
from Fm−j1

2 to Fm
2 with the maximal possible j1.

When j1 = 1 then the Maiorana-McFarland number of Φ is (at least) 1
and the algorithm stops.

When j1 > 1 we continue the Route for the Boolean mapping Φ′1 for
an index xi2 which does not appear in Φ1. Hence after this step we have
Φ = Φ1(x1, . . . x̂i1 , . . . , x̂i2 , . . . , xm)xi1 + Φ2(x1, . . . x̂i1 , . . . , x̂i2 , . . . , xm)xi2 +
Φ′2(x1, . . . x̂i1 , . . . , x̂i2 , . . . , xm). The Maiorana-McFarland number of Φ is (at
least) 2. Here Φ1 is a Boolean mapping from Fm−j1

2 to Fn
2 , Φ2 is a Boolean

mapping from Fm−j2
2 to Fn

2 , Φ′2 is a Boolean mapping from Fm−2
2 to Fn

2 .

If j1 = 2 or j2 = 2 the algorithm stops. Otherwise we repeat the Route to
Φ′2. This process can continue to one step and we get h Maiorana-McFarland
structure variables of the Boolean mapping Φ.
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Let g be a fixed round function g : Fn
2 −→ Fn

2 , the block cipher can be
modeled as follow.

x = w0,

w1 = g(w0,K1),

w2 = g(w1,K2),

· · · · · · ,

wNr = g(wNr−1,KNr),

y = wNr ,

where Nr is number of rounds, K1,K2, . . . ,KNr are Nr round keys in Fm
2 ,

w is the plaintext and y is the ciphertext.

We consider the following Boolean mapping Gt : Fn+tm
2 −→ Fn

2 defined
by

Gt(x,K1, . . . ,Kt) = g(Gt−1(Gt−2,K1, . . . ,Kt−1),Kt)

and check if these Gt’s have the Maiorana-McFarland structures at many
variables. If many Maiorana-McFarland structure variables can be found in
Gt, by fixing the values of not many non -Maiorana-McFarland variables,
Gt is linear. This weakness can be used to cryptanalysis this block cipher.

From the previous analysis the following Maiorana-McFarland criterion
for the compositions of block ciphers seems reasonable.

The Maiorana-McFarland structure criterion for block ciphers.
The Maiorana-McFarland number of Gr1 ’s should be 1 for r1 ≤ r, where r is
the real round of this block cipher. Hence for any given Gr1 , we should take
random fixed values of some random variables and then apply the Maiorana-
McFarland structure finding algorithm to check the Maiorana-McFarland
number of above Gr1 ’s with these fixed values, for r1 = 1, 2, . . . , r. These
Maiorana-McFarland numbers can not be large.

However it is difficult to get a compact algebraic normal form for sever-
al round compositions of round functions, the above Maiorana-McFarland
structure finding algorithm is not so help to find the real such structures of
these compositions. The problem of Maiorana-McFarland structure finding
in block ciphers without the ANF is interesting and important. We calculate
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the compositions of Simon block ciphers of very few rounds and found that
the Maiorana-McFarland numbers are small.

4 The Maiorana-McFarland structure based linear
cryptanalysis

4.1 General facts

For a Boolean mapping f : Fn
2 −→ Fn

2 , the Walsh coefficient of f with the
input mask α and the output mask β in Fn

2 is defined by

f̂(α, β) = Σx∈Fn2 (−1)<β,f(x)>+<α,x>.

The squared correlation is

C2(α, β) = (
f̂(α, β)

2n
)2.

For independent assumptions we refer to [33, 25].

Given input mask α and output mask β the potential of a linear hull
with the fixed input mask α and output mask β is

ELP (α, β) = Σ(γ0,...,γr)C
2(α, β, γ0, . . . , γr),

we refer to [48, 20, 34]. In general linear hull attack requires O( 1
ELP (α,β))

plaintext-ciphertext pairs to succeed. Linear hull effect means that this po-
tential is significantly larger than the squared correlation of individual linear
trail with fixed intermediate masks. As proved in Theorem 1 of [48] (or see
[6] Section 5), if the plaintext X and the key K are independent and the key
K is uniformly distributed, the the bias of the linear approximation with
the input mask at the plaintext and output mask at the ciphertext is indeed
the sum of all correlation squares over all linear trails over all keys. We refer
to [14, 26, 27, 28, 45, 2, 35] for multiply linear cryptanalysis and multidi-
mensional linear cryptanalysis. For Simon block ciphers, we refer to [6] for
analysing of linear hulls and dependent linear trail contribution calculation,
as compared to the paper [52].
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4.2 Squared correlation calculation

The following restricted Maiorana-McFarland structure of the Boolean map-
ping f of algebraic degree two makes the calculation of Walsh coefficients and
squared correlation directly. Suppose that the algebraic degree two Boolean
mapping f has the Maiorana-McFarland number h and has the Maiorana-
McFarland structure expansion f(x1, . . . , xn) = F1x1 + · · ·+Fhxh +Fh+1 +
Fh+2, where Fi : Fn−h

2 −→ Fn
2 are Boolean mapping of the (n − h) vari-

ables {xh+1, . . . , xn} for i = 1, . . . , h+ 1. Fh+2 is a linear mapping from the
variables x1, . . . , xh to Fn

2 . Here for general degree two Boolean mapping
f with the Maiorana-McFarland structure, Fh+1 need not to be linear and
there are possible some degree two terms in Fh+1. We restrict ourselves to
the case Fh+1 is linear. The round functions of Simon variants are typical
such degree two restricted Maiorana-McFarland Boolean mappings.

For such a restricted Maiorana-McFarland degree two Boolean mapping
f , when (x1, . . . , xh) ∈ Fh

2 is fixed,

(−1)Σhj=1xh<β,Fj>+<α1,x1>+<β·Fh+2,x1>+<α2,x2>+<β·Fh+1,x2>,

where x1 = (x1, . . . , xh) and x2 = (xh+1, . . . , xn), can be calculated. Here
α1 and α2 are the first h bit vector and the last n − h bit vector of α. Fj ,
j = 1, . . . , h are considered as length n vectors with entries of linear func-
tions of xh+1, . . . , xn. Fh+1 is considered as n × (n − h) matrix and Fh+2

is considered as n × h matrix. When the Maiorana-McFarland structure
variables x1, . . . , xh are fixed < α1,x1 > + < β · Fh+2,x1 > is a fixed 0 or
1. When the round function f is of degree two the Maiorana-McFarland
structure-based calculation of Walsh coefficients and squared correlation is
direct as follows.

When the round function f is of algebraic degree two, then F1, . . . , Fh
are linear mappings from Fn−h

2 to Fn
2 . They are considered as n × (n − h)

matrices. For any given nonzero β ∈ Fn
2 , we define a linear mapping Bβ as

follows
Bβ(F ) = (< β,Fj >)1≤j≤h.

This is a h × (n − h) matrix. For 2h possibilities of x1F1 + · · · + xhFn
when x1, . . . , xh take over all vectors in Fh

2 , we denote the linear sub-
space of Fh

2 of (x1, . . . , xh) ∈ Fh
2 such that x1F1 + · · · + xhFh satisfying

β · (x1F1 + · · ·+xhFh) = 0, that is, (x1, . . . , xh) is in the kernel of the linear
mapping Fh

2 −→ Fn−h
2 defined by Bβ(F ), by Wβ,F1,...,Fh . The dimension of
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this subspace is h− rank(Bβ(F )).

For fixed x1, when α2 + β · Fh+1 is not in the image of Bβ, then

(−1)Σhj=1xj<β,Fj>+<α1,x1>+<β·Fh+2,x1>+<α2,x2>+<β·Fh+1,x2>

is zero since

Σh
j=1xh < β,Fj > + < α2,x2 > + < β·Fh+1,x2 > + < α1,x1 > + < β·Fh+2,x1 >

is a nonzero linear function on Fn−h
2 . When α2 + β ·Fh+1 is in the image of

Bβ, then

f̂(α, β) = 2n−hΣx1∈x0
1+Wβ,F1,...,Fh

(−1)<α1,x1>+<β·Fh+2,x1>,

where x0
1 satisfies

Σh
i=1x

0
iβ · Fi = α2 + β · Fh+1.

In this case if α1 + β · Fh+2 = 0, then we have

f̂(α, β) = 2n−rank(Bβ(F )).

More importantly when < α1 + β · Fh+2,x1 >= 0 for any given x1 ∈ x0
1 +

Wβ,F1,...,Fh we also have

f̂(α, β) = 2n−rank(Bβ(F )).

From the above analysis we have the following result.

Theorem 4.1. When α2 + βFh+1 is not in the image of Bβ, then

f̂(α, β) = 0, when α2 + βFh+1 is in the image of Bβ, we have

f̂(α, β) = 2n−hΣx1∈x0
1+Wβ,F1,...,Fh

(−1)<α1,x1>+<β·Fh+2,x1>,

where x0
1 satisfies

Σh
i=1x

0
iβ · Fi = α2 + β · Fh+1.

Moreover we have |f̂(α, β)| ≤ 2n−rank(Bβ(F )).

Corollary 4.1. Only when α1 + β · Fh+2 has zero inner product with
each vector in the affine space x0

1 + Wβ,F1,...,Fh and α2 + β · Fh+1 is in the
image of Bβ, we have

|f̂(α, β)| = 2n−rank(Bβ(F )).
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We have
f̂(α, β) = 0

in other cases.

The following statement is direct from Theorem 4.1.

Corollary 4.2. Only when (α1 + β ·Fh+2) is in the linear span of n−h
columns of Bβ, and α2 + β · Fh+1 is in the linear span of βF1, . . . , βFh, we
have

|f̂(α, β)| = 2n−rank(Bβ(F )).

We have
f̂(α, β) = 0

in other cases.

Proof. If (α1 + β · Fh+2) is in the linear span of n − h columns of Bβ,
then < α1 + β · Fh+2,x1 >= 0 for all x1 ∈ Wβ,F1,...,Fh . Then the exponent
of −1 is fixed and determined by x0

1. The conclusion follows.

4.3 Feistel round function

In the case that the round function T of is a Feistel map T : F2n
2 −→ F2n

2

defined by
F(x,y) = (f(x) + y,x).

We need to computer the squared correlation of this function T. Apply-
ing Corollary 4.1 to this round function we have the following result. Here
γ1 and γ2 are the Maiorana-McFarland structure variable part and the re-
maining variable part of a vector γ ∈ Fn

2 . Here we only need the restricted
Maiorana-McFarland structure of the algebraic degree two Boolean mapping
f .

Theorem 4.3. Set α = (L(α), R(α)) ∈ F2n
2 and β = (L(β), R(β)) ∈

F2n
2 . Only when

1)L(α)1 +L(β) ·Fh+2 +R(β)1 is in the linear span of n−h columns of BL(β);
2) L(α)2 + L(β) · Fh+1 +R(β)2 is in the linear span of h rows of BL(β);
3)L(β) +R(α) = 0,
Then we have T̂ (α, β) = 22n−rank(BL(β)(F )).
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Proof. From the formula

T̂ (α, β) = Σy(−1)<L(β)+R(α),y>Σx(−1)<L(β),f(x)>+<R(β)+L(α),x>,

we get the conclusion immediately.

4.4 Computer-aided search

Optimal linear trail. Then the search for optimal r-round linear trails is
equivalent to the following problem to find vectors β0, β1, . . . , βr satisfying
the following conditions. Here F1, . . . , Fh+1 are considered as n × (n − h)
binary matrices and Fh+2 is considered as an n× h binary matrix.

1) (βi1 + βi+1 ·Fh+2) is in the linear span of n− h columns of Bβi+1 , and

βi2 + βi+1 · Fh+1

is in the linear span of βi+1 · F1, . . . , β
i+1 · Fh;

Here βi1 is the Maiorana-McFarland structure variable part of the vec-
tor βi and βi2 is the non-Maiorana-McFarland structure variable part of the
vector βi.

2)Σi=1rank(Bβi) is as small as possible. The squared correlation is

1

2
2(Σrank(Bβi))

.

Local optimal. Find one β1 with rank(Bβ1) as small as possible, such
that there is another β2 satisfying 1) and rank(Bβ2) is as small as possible.
Then for each given βi we need to find one βi+1 satisfying 1) with smallest
possible rank(Bβi+1).

It seems that in almost all cases the local optimal does not lead to the
global optimal. Hence the reasonable search strategy for global optimal lin-
ear trail is to restrict to these βi’s such that the ranks of corresponding Bβi ’s
are smaller than a certain threshold.
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4.5 Computer-aided search for Feistel round function

Linear trail. Then the search for optimal r-round linear trails is equivalent
to the following problem to find vectors (β0,0) −→ (0, β0) −→ (β0, β1) −→
(β1, β2) −→ · · · −→ (βi, βi+1) −→ (βi+1, βi+2) −→ · · · satisfying the follow-
ing conditions.

1) (βi1 + βi+1 · Fh+2) + βi+2
1 is in the linear span of n − h columns of

Bβi+1 , (βi2 + βi+1 · Fh+1) + βi+2
2 is in the linear span of h rows of Bβi+1 .

2)Σi=1rank(Bβi) is as small as possible. The squared correlation of this
linear trail is

1

22(Σrank(Bβi ))
.

5 The Maiorana-McFarland structure based linear
cryptanalysis of the Simon variants

In this Section we apply the Maiorana-McFarland structure-based linear
cryptanalysis to the Simon variants. Around 1

n of all Simon variant parame-
ter triples are figured out as weakest. We construct linear trails of arbitrary
r rounds of Simon variants Simon2n with probability 1

22r−2 for these weakest
parameter triples. Our results show that for some parameter triples, the con-
structive arbitrary round good linear trails from the Maiorana-McFarland
structure-based linear cryptanalysis can be obtained directly. This is out of
reach of the computer-aided search/solver used in [30].

For the Simon variant parameter triple (a, b, c), since gcd(a − b, n) = 1
we can assume that a is odd and b is even. We now expand the function

fa,b,c(x) = Sa(x) · Sb(x) + Sc(x)

where x = (x1, . . . , xn)τ ∈ Fn
2 , as

x1F1 + x3F3 + · · ·+ xn−1Fn−1 +G1 +G2,

where F1, F3, . . . , Fn−1 are functions of x2, x4, . . . , xn, and G1 is the odd-
position part of Sc(x) and G2 is even-position part of Sc(x). The bit at the
i-th position of fa,b,c(x) is

xi+axi+b + xi+c.
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Then it is clear we can take the Maiorana-McFarland coordinates i1, i2, . . . , in/2
as all odd position coordinates. The coefficient vector Fi of xi is

(0, . . . , xi+a−b, 0, . . . , 0 . . . , 0, xi+b−a, 0, . . . , 0)τ

where only nonzero coordinates are xi+a−b at the i− b position and xi+b−a
at the i− a position.

Proposition 5.1 We assume that gcd(a−b, n) = 1. Then rank(Bβ) = 1
when and only when wt(β) = 1 or wt(β) = 2 and the difference of the two
nonzero positions of β is |a − b|. Suppose that wt(β) = t and there are
exactly u ≤ b t2c pairs of nonzero positions with difference |a − b| with each
nonzero position counted once, then

rank(Bβ) = t− u.

Proof. This is direct computation. We assume a is odd and b is even.
In the case β has only one non-zero i-th position, there are the following
two possibilities. If i is odd, Bβ has only one non-zero entry at i+a

2 column

and i+b+1
2 row. If i is even, Bβ has only one non-zero entry at i+b

2 column
and i+a+1

2 row. The indices should be calculated module n. The conclusion
follows directly.

Here the pairs of positions means that these pairs of indices are i1, i2, ..., il,
. . . , j1, j2, . . . , jl satisfy j1 − i1 = b − a = 7, . . . , jl − il = b − a = 7., and
j1, j2, . . . , jl is out of the set {i1, . . . , il}. That is, each index can not be
counted more than once in pairs.

Proposition 5.2. In one of the following cases we have one arbitrary
r-round linear trail of probability 1

22r−2 for the Simon variant with the pa-
rameter triple (a, b, c).
1) 2c ≡ 0 mod n or;
2) b ≡ c mod n or;
3) b+ c ≡ 0 mod n.

Proof. We construct the linear trail in the case 3). Let β ∈ Fn
2 be a vec-

tor supported only at an arbitrary odd-position. Then the following linear
characteristic satisfies the requirement. (β,0) −→ (0, β) −→ (β, Sc(β)) −→
(Sc(β), S2c(β)) −→ (S2c(β), S3c(β)) −→ (S3c(β), S4c(β)) −→ (S4c(β), S5c(β)) −→
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· · ·.

The linear trail in case 1) can be constructed as follows. (β,0) −→
(0, β) −→ (β, Sc(β)) −→ (Sc(β),0) −→ (0, Sc(β)) −→ (Sc(β), S2c(β)) −→
(S2c(β),0) −→ · · ·.

The linear trail in case 2) can be constructed as follows. (β,0) −→
(0, β) −→ (β, Sc(β)) −→ (Sc(β), β) −→ (β,0) −→ (0, β) −→ (β, Sc(β)) −→
(Sc(β), β) −→ (β,0) −→ · · ·.

Computer-aided search for linear trails of the Simon variants

We assume that a is odd and b is even. β ∈ Fn
2 and Bβ is a n

2 ×
n
2 matrix

which is determined as follows. Suppose that β has only one non-zero i-th
position. If i is odd, Bβ has only one non-zero entry at i+a

2 column and
i+b+1

2 row. If i is even, Bβ has only one non-zero entry at i+b
2 column and

i+a+1
2 row. The indices should be calculated module n

2 . Then Bβ is deter-
mined from the linearity.

Then rank(Bβ) = 1 when and only when wt(β) = 1 or wt(β) = 2 and
the difference of the two nonzero positions of β is b− a = 7.

Example 1. For β = (1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0), the matrix
Bβ is a rank 2 matrix as follows.



0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Search. The search for optimal r-round linear trails for the Simon

variants are equivalent to the following problem to find vectors (β1,0) −→
(0, β1) −→ (β1, β2) −→ (β2, β3) −→ · · · −→ (βi, βi+1) −→ (βi+1, βi+2) −→
· · · satisfying the following conditions.
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1) The odd-position part of the vector (βi + Sc(βi+1) + βi+2) is in the
linear span of n2 columns of Bβi+1 , the even-position part of (βi+Sc(βi+1)+
βi+2) is in the linear span of n

2 rows of Bβi+1 .

2)Σrank(Bβi) is as small as possible, where rank(Bβi) can be calculated
from Proposition 5.1. Then the squared correlation of the corresponding
linear trail is

1

22(Σrank(Bβi ))
.

Our search strategy is to restrict to these masks such that their cor-
responding ranks are smaller than a certain threshold. This is reason-
able not only for the Simon variants including the Simeck but also for
other lightweight block cipher families. On the other hand we observe
that the above search has no structural connection for various parameters
n = 16, 24, 32, 48, 64 since S2 and the formation of the matrix Bβ. It has to
search for each n and there is no transformation from chains of vectors in
Fn

2 satisfying connecting condition 1) to chains of vectors in F2n
2 satisfying

connecting condition 1).

Proposition 5.3. Around 3n
2n+1 fraction vectors of all nonzero vectors

β in Fn have their B matrices with their ranks 1. Around 9n(n−2)
2n+2 fraction

vectors of all nonzero vectors β in Fn have their B matrices with their ranks
2. Around 9n(n−1)(n−2)

2n+1 fraction vectors of all nonzero vectors β in Fn have
their B matrices with their ranks 3.

Proof. This is direct from Proposition 5.1.

For Simon32, n = 16, around 1
256 fractions of vectors in F16

2 have their B
matrices with rank 2. For Simon48, n = 24 around 297

222
fractions of vectors

in F24
2 have their B matrices with rank 2.

6 Linear hull construction

The connecting condition 1) in the search for linear trails for Simon variant
block ciphers as showed in the previous section is totally linear-algebraic.
Hence this gives some ”structures” on the whole set of linear trails, which is
suitable to do linear hull, multiple linear or multidimensional linear crypt-
analysis, see [48, 14, 26, 27, 28]. As noticed in [6, 2] for Simon block ciphers,
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linear trails with intermediate masks should be counted carefully to grantee
the potential formula in [48] is correctly used. In our counting of different
linear trails for Simon variant block ciphers, only linear trails with different
intermediate masks on the left sides are counted. Hence the potential for-
mula in [48] can be used in our linear hull construction.

6.1 Operations on linear trails

Proposition 6.1. Let β : (β1,0) −→ (0, β1) −→ (β1, β2) −→ (β2, β3) −→
· · · −→ (βt−1, βt) be a chain of vectors satisfying the connecting condition 1).
The operation Sc(x) = (xc, xc+1, . . . , x1, . . . , xc−1), where x = (x1, . . . , xn) ∈
Fn

2 . For positive integer c, Sc(β) is the chain of vectors sc(βi). When c is
even, Sc(β) is another chain of vectors satisfying the condition 1).

Proof. From Proposition 5.1 the contribution of rows and columns from
B matrices are shifted by Sc, therefore the conclusion follows.

Proposition 6.2. Let β : (β1,0) −→ (0, β1) −→ (β1, β2) −→ (β2, β3) −→
· · · −→ (βt−1, βt) and γ : (γ1,0) −→ (0, γ1) −→ (γ1, γ2) −→ (γ2, γ3) −→
· · · −→ (γt−1, γt) be two chains of t vectors in Fn

2 satisfying the connecting
condition 1). Suppose that for any 1 coordinate in the supp(βi+1)

⋂
supp(γi+1),

the columns and rows corresponding to this 1 in Bβi+1 and Bγi+1 are not used
to construct βi+2 or γi+2 for all i = 0, . . . , t− 2. Then the sum of these two
chains of vectors β+γ : (β1+γ1,0) −→ (0, β1+γ1) −→ (β1+γ1, β2+γ2) −→
(β2 + γ2, β3 + γ3) −→ · · · −→ (βt−1 + γt−1, βt + γt) satisfies the con-
necting condition 1). In particular if supp(βi+1)

⋂
supp(γi+1) = ∅, for

i = 0, . . . , t − 2, the sum of two chains of vectors satisfies the connecting
condition 1).

Proof. This is direct from the condition 1).

Proposition 6.3. Let β : (β1, β2) −→ (β2, β3) −→ · · · −→ (βt−1, βt)
be a chain of vectors satisfying the connecting condition 1). Then βreverse :
(βt, βt−1) −→ (βt−1, βt−2) −→ · · · −→ (β2, β1) is a chain of vectors satisfy-
ing the connecting condition 1).

Proof. This is direct from the condition 1).

From Proposition 6.3 we can glue two chains of vectors such that the
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first and the last two vectors are fixed arbitrary vectors in F2n
2 . Then we

can get a linear trail with the arbitrary input mask and output mask.

Proposition 6.1, Proposition 6.2 and Proposition 6.3 can be used to con-
struct many linear trails with the same input mask and output mask, the
correlation squares have to be calculated for each such linear trails. This
can be completed with the aid of computer search about the condition

supp(βi+1)
⋂
supp(γi+1) = ∅

and the squared correlation calculations. The ”structures” of the whole set
of linear trails can be used to do better linear hull construction. Notice our
method is essentially different with the papers [24, 34].

Computer-aided search for linear hull construction 1.

For Simon2n we do the the following several steps to construct a good
linear hull.

The 1st step: Construct a chain of vectors satisfying connecting condition
1), of length equal to the required round number, such that the Hamming
weights of each vector in this chain is small, for example, upper bounded by
3 or 4. Operation in Proposition 6.3 can help to get such a chain of vectors.
Set γmain is the squared correlation of this main linear trail. For example,
γmain might be 1

26n
.

The 2nd step: Construct many short chains of vectors satisfying the
connecting condition 1), of the length smaller than n

2 with vectors with low
Hamming weights. The first vector is of the form (0, β1) and the last vector
is of the form (βu,0), where u ≤ n

2 . In many cases long linear trail in the
1st step is the glue of short chains of vectors found in the second step. That
is, search of short chains of vectors satisfying the connecting condition 1)
and with the small rank sum is sufficient.

The 3rd step: Using Proposition 6.2, to check if the intersection of sup-
ports of vectors in short chains in the 2nd step and some intervals of the
1st step chain is empty. If it is, we can add short chains to this interval of
the main chain constructed in the 1st step, to get a new chain of vectors
satisfying the connecting condition 1) from Proposition 6.2. If the intersec-
tion is not empty, using the operation Sc with an even positive integer c to
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move the supports of these short chains and test if the intersection is empty.
Then in this way, a lot of new chains of vectors satisfying the connecting
condition 1) and with the same input mask and output mask as the main
linear trail constructed in the 1st step can be obtained.

In general the squared correlations of these Proposition 6.2 operated new
linear trails are lower bounded by γmain

2T
for some positive integer T , if the

number of new linear trails is very large, the good linear hull is obtained.
More importantly, the linear trails in this hull has low Hamming weight in-
termediate masks.

Example 2. Consider the following 7 vectors in F16
2 ,

β1 = (0000000100000000),

β2 = (0000010010000000),

β3 = (1001000100000000),

β4 = (0000000010010011),

β5 = (1000000000000100),

β6 = (0000010000000001),

β7 = 0.

This is a chain of vectors satisfying the connecting condition 1) and the B
matrices have their ranks at most 3. The rank sum of B matrices is 11.
Since β6 is of Hamming weight 1 we can operate on this short chain Sc(β)
of vectors by Proposition 6.1, where c is an even number, and then glue to
get long chain of vectors. We also can add some short chains of vectors of
the form Sc(β) to the long chain of vectors from Proposition 6.2.

Example 2 was included in the early version of my Maiorana-McFarland
structure cryptanalysis paper on February, 2021. That paper was submitted
to some conference and was not posted. This example illustrates that for
Simon2n, the main part of potential of linear hull is from linear trails with
very closing squared correlations, not dominating trails.
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6.2 Linear hull construction

We observe that if the input mask is fixed, in each step to construct βi+2 the
columns and rows of the matrix Bβi+1 can be used span a linear subspace of
Fn

2 of the dimension equal to 2rank(Bβi+1). We only need the output mask
is the same.

The construction of linear trails is as follows. From arbitrary first α1,
the chains of vectors satisfying 1) are constructed in each step by using all
possible αi+2 of the form

αi + Sc(αi+1) + v,

where v takes all 22rank(Bαi+1 ) possible vectors in the linear subspace of Fn
2

spanned by rows and columns of the matrix Bαi+1 as in the condition 1).
Then we have a lot of chains of vectors as in the following Proposition 6.4.

Proposition 6.4. For Simon2n or Simon variant with cipher size 2n,
from an arbitrary input mask (0, α1) after arbitrary round R, we can con-
struct a linear hull with the fixed output mask (αR, αR+1). The potential is
bigger than or equal to 1

22n
. The complexity to list all linear trails in this lin-

ear hull is 22ΣRi=1(rank(Bαi )), where α : (0, α1) −→ (α1, α2) −→ (α2, α3) −→
· · · −→ (αR, αR+1) is a chain of vectors in Fn

2 satisfying the condition 1).

Proof. For intermediate masks we only use different linear trails with
different left components. Hence the problem indicated in [6] doe not happen
in our linear hull construction. From the first α1, in each step to construct
αi+2 from αi and αi+1 we use contributions from the linear span of rows and
columns in the matrix Bαi+1 such that Bαi+2 has the maximal possible rank.
Then we have a chain of vectors α : (0, α1) −→ (α1, α2) −→ (α2, α3) −→
· · · −→ (αR, αR+1) is a chain of vectors in Fn

2 satisfying the condition 1).
For any other possible choices of αi+2, the corresponding linear trails has
squared correlations not smaller than the potential of this chain. Then the
squared correlation of each such linear trail is at least

1

22ΣRi=1(rank(Bαi ))
.

We give the proof that the sum of squared correlations of above linear
trails is 1. First of all we fixed all α1, . . . , αR, then there exact 22rank(B

αR
)
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possible αR+1, the sum of all these 22rank(B
αR

) linear trails is

22rank(B
αR

)

2ΣRi=12rank(Bαi )
=

1

2ΣR−1
i=1 2rank(Bαi )

.

Then we fixed all α1, . . . , αR−1 and sum all squared correlations over all
possible (αR,αR+1). Notice the number of all such possible (αR, αR+1) is
upper bounded by 2rank(B

αR
)+rank(B

αR+1 )). The sum of squared correlations
is exact

22rank(B
αR−1 )

2ΣR−1
i=1 2rank(Bαi )

=
1

2ΣR−2
i=1 2rank(Bαi )

.

Continue this process the sum of all linear trails is exact 1.

There are at most 22n output masks (αR, αR+1)’s in F2n
2 . By collecting

linear trails with the same last two vectors in the chain of vectors among
all above linear trails, we get a linear hull with the same input and output
mask. The potential is at least 1

22n
. The conclusion follows.

Computer-aided listing of all linear trails in the hull 2.

Set a = 1, b = 8 and c = 2. β ∈ Fn
2 and Bβ is a n

2 ×
n
2 matrix defined as

follows. Suppose that β has only one non-zero i-th position. If i is odd, Bβ
has only one non-zero entry at i+1

2 column and i+9
2 row. If i is even, Bβ has

only one non-zero entry at i+8
2 column and i+2

2 row. The indices should be
calculated module n

2 . Then Bβ is determined from the linearity.

Search. To find a chain of vectors (0, α1) −→ (α1, β2) −→ (α2, α3) −→
· · · −→ (αi, αi+1) −→ (αi+1, αi+2) −→ · · · satisfying the following condi-
tions.

1) The odd-position part of the vector (αi + Sc(αi+1) + αi+2) is in the
linear span of n2 columns of Bαi+1 , the even-position part of (αi+Sc(αi+1)+
αi+2) is in the linear span of n

2 rows of Bαi+1 .

2) In each step to construct αi+2 from the condition 1), we want find
one such αi+2 with the maximal possible rank(Bαi+2).

3) Collecting linear trails with the last two vectors fixed.
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4) Among 232 possible last two vectors or output masks, there is at least
one such output mask such the sum of squared correlations of linear trails
with this fixed last two vectors or output mask, is at least 1

232
.

Using this search the required chains (linear trails) of vectors with the
fixed two first vectors (input mask) and last two vectors (output mask) in
Theorem 6.1 can be found. However there are too many linear trails and
this search in Theorem 6.1 is not good enough to construct a nice linear hull.

We observe that if for some αi+1, the matrix Bαi+1 is of rank n
2 , then

αi+2 can be an arbitrary vector in Fn
2 . In the above Proposition 6.4 the

αi+2 after this vector in the chain can have the maximal rank. Hence the
total rank sum in Proposition 6.4 and the complexity to list all linear trails
in Proposition 6.4 is large.

6.3 Glue of chains of vectors and the sum of the squared
correlations

Let α : (0, α1) −→ (α1, α2) −→ (α2, α3) −→ · · · −→ (αR, αR+1) be a
chain of vectors satisfying the connecting condition 1), and β : (0, β1) −→
(β1, β2) −→ · · · −→ (βR

′
, βR

′+1) be another chain of vectors satisfying the
connecting condition 1). Assume than (αR, αR+1) = (βR

′+1, βR
′
). From

Proposition 6.3 we have a glued chain of vectors α
⊙
β : (0, α1) −→ (α1, α2) −→

(α2, α3) −→ · · · −→ (αR, αR+1) = (βR
′+1, βR

′
) −→ (βR

′
, βR

′−1) −→ · · · −→
(β1,0). Using these glued chains of vectors linear trails with the same input
mask and the same output mask can be obtained. We need to calculate the
sum of squared correlations of all such glued linear trails.

We start from an arbitrary α1 and reach a vector αR with that the prop-
erty the rank(BαR) = n

2 . Similarly we start from an arbitrary (0, β1) and

reach vector βR
′

with the property the rank(BβR′ ) = n
2 . Then the above

glued chains of vectors can be obtained, except that some αR+2 and βR
′+1

can not be matched.

Theorem 6.1. From an arbitrary nonzero fixed first two vectors in Fn
2 ,

after at most n
2 vectors we have a chain of vectors satisfying the connecting

condition 1) such that the B matrices of the last two vectors are of the full
rank n

2 . The sum of the squared correlations of above glued linear trails with
the fixed input mask (0, α1), where α1 ∈ Fn

2 is an arbitrary nonzero vector,
and the fixed output mask of the the form (β1,0) where β1 ∈ Fn

2 is an arbi-
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trary nonzero vector, is at least 1
2n .

Proof. The first conclusion follows from a direct calculation. As in the
proof of Proposition 6.4 we sum over fixed previous vectors, the only missing
vector is αR+2 and βR

′+1.

For example we begin with (α1, α2) and get a lot of differential trails
with the end output difference (αt, αt+1), where αt can be two arbitrary
vectors in Fn

2 . From Proposition 6.3 there are a lot of differential trails of
the form (βt

′+1, βt
′
) −→ (βt

′
, βt

′−1) −→ · · · −→ (β2, β1), where βt
′+1 and

βt
′

can be two arbitrary vectors in Fn
2 . Since both αt+1 and αt can be arbi-

trary vectors in Fn
2 , we glue all these vectors (βt

′+1, βt
′
’s to some (αtαt+1)’s

for which they are the same. In this way in the sum of Proposition 6.4 only
missing part is αt+1. The conclusion follows.

From Proposition 5.3 the fraction of linear trails with these intermediate
masks with low rank B matrices in the hull is significant. Since low rank B
matrix implies that the low Hamming weight of the intermediate masks, it
seems that in both Proposition 6.4 and Theorem 6.1, the fraction of linear
trails with low Hamming weight masks in the constructed linear hull is not
small.

Secondly for Simon2n, for a fixed squared correlation product (fixed rank
sum), there are many linear trails (chain of vectors satisfying the connecting
condition 1)) with the same rank sum. This observation shows that it seems
not good to pick up only several linear trails with the largest squared corre-
lation product, we should search a batch of linear trails with large squared
correlation product. Basically in Simon2n and its variant case, no domi-
nating linear trail, and there are many linear trails with the very closing
squared correlations.

6.4 Independent linear trails for linear key schedules

In this subsection we show hoe to construct linear trails which are indepen-
dent for key schedule in the Simon. The main point of the construction is
the linearity of the key schedule of Simon round keys.

Notice that the round keys are only XORed at left n bits and the key
schedule is linear, then from Lemma 1 in [2], if two linear trails are not equal
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then they are independent. Hence for two linear trail with masks of the form
(a1, . . . ,aR) and (a′1, . . . ,a

′
R), if (a1 ·A1 + ·+aRAR) · (k0, . . . , kmn−1)τ ∈ Fn

2

is not equal to (a′1 ·A1+·+a′RAR)·(k0, . . . , kmn−1)τ ∈ Fn
2 , where A1, . . . ,AR

are 16×64 matrices determined from the linear key schedule of Simon or its
variants and k0, . . . , kmn−1 are the mask keys, then these two linear trails
are independent. Notice that there are 2n possible values. Hence if for each
such a value of if (a1 · A1 + · + aRAR) · (k0, . . . , kmn−1)τ , pick up only a
linear trail among the linear trails constructed in Theorem 6.2, with the
maximal squared correlation. Then the sum of squared correlations of such

independent linear trails is at least
1
2n

2n = 1
22n

. However the potential is 1
22n

only when for each value of (a1 ·A1 + ·+aRAR) · (k0, . . . , kmn−1)τ ∈ Fn
2 , the

squared correlations of all these linear trails are the same. This is not true
from a direct computation for Simon2n block cipher. Hence we have the
following result. Actually from the above argument the realistic potential
should be much larger.

Theorem 6.2. For Simon 2n and its variants of at least n rounds, with
the linear key schedule, we can construct a linear hull with the fixed input
mask (0, α1), where α1 ∈ Fn

2 is an arbitrary nonzero vector, and the fixed
output mask of the the form (β1,0) where β1 ∈ Fn

2 is an arbitrary nonze-
ro vector. These linear trails in this linear hull are independent for rounds
keys. The potential of this linear hull is bigger than 1

22n
.

Actually in the process to pick out the linear trail of the largest squared
correlation for each value in Fn

2 of the intermediate sum, only the average
lower bound in given in the above argument of Theorem 6.3, hence the real
potential should be much larger than 1

22n
. Observe Proposition 5.3 the low

Hamming weight requirement is reasonable.

Computer-aided search for liner hull construction 3.

The 1st Step: Using Proposition 6.3 to get many chain of low Hamming
weight vectors in Fn

2 . The length is the number of required round in the
design. In this way, the input mask and the output mask is the same.

The 2nd Step: Check if the sum of the intermediate masks and round
keys as above is the same, if the value is the same, only the linear trail with
the largest squared correlation is picked out.
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Finally we try to find such chain of vectors as more as possible. Then we
get a linear hull consisting of linear trails which are independent for round
keys. To calculate the potential of this linear hull to check if it is bigger
than 4

22n
.

From the theoretical argument in Theorem 6,3 if without the low Ham-
ming weight requirement in the 1st step, the potential should be large than

1
22n

.

6.5 Independence for different rounds

We observe that for a linear trail such that α0 · k0, . . . , αR · kR are linear
independent linear forms on Fmn

2 of master keys, where k0, . . . ,kR are round
keys from the master keys, then the linear approximation of different rounds
are linear independent, because the key schedule of Simon is linear. Hence
the chains of vectors satisfying the connecting condition 1) lead to linear
dependent form of master keys is at most 1

2 in all summation in Proposi-
tion 6.4, Theorem 6.1 and 6.2. Thus the summation in potential over these
round-linear-independent linear trails of the constructed linear hull should
be half of the summation as above. From this argument the real potential
summing over round-linear-independent linear trails is also bigger than 1

22n
.

7 Linear hull construction for Feistel block ciphers
with degree two restricted Maiorana-McFarland
structure round functions

We observe the connecting condition 1) for the Feistel block ciphers with
the degree two restricted Maiorana-McFarland round functions in Section
4.3.

Connecting condition 1). The search for optimal r-round linear trail-
s is equivalent to the following problem to find vectors in Fn

2 , (β0,0) −→
(0, β0) −→ (β0, β1) −→ (β1, β2) −→ · · · −→ (βi, βi+1) −→ (βi+1, βi+2) −→
· · · satisfying the following conditions.

1) (βi1 + βi+1 · Fh+2) + βi+2
1 is in the linear span of n − h columns of

Bβi+1 , (βi2 + βi+1 · Fh+1) + βi+2
2 is in the linear span of h rows of Bβi+1 .
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Similarly as the case for Simon we can consider the similar results as
Theorem 6. 1 and 6.2 for this block cipher. In general the sum of squared
correlations of all glued linear trails is at least 1

2n . The main problem is
if the conclusion in Theorem 6.3 is true for the key-scheduling. The case
of Simon and variants with linear key schedule are showed that linear hull
with the large ELP can be constructed and the linear trails in the hull are
independent.

Theorem 7.1. Let Feistel(f) be a key-alternating Feistel block cipher
with the degree two restricted Maiorana-McFarland round function f . The
length of this block cipher is 2n. Suppose the required number of rounds
is large and the key schedule is linear. Then there is a linear hull with its
potential at least 1

22n
.

We speculate that the Feistel structure is not the key for the construc-
tion of above linear hull. It seems that the degree two restricted Maiorana-
McFarland round functions lead to the existence of this kind of linear hull.

8 The EDP of the Simon variants

8.1 Differential probability

For the Simon variant parameter triple (a, b, c), since gcd(a − b, n) = 1 we
can assume that a is odd, b is even, a < b and c is even. Consider the
Boolean permutation

fa,b,c(x) = Sa(x) · Sb(x) + sc(x),

for an input difference vector α supported only at the coordinate xi, the
output difference ∆αfa,b,c = fa,b,c(x + α) + fa,b,c(x) is

(0, . . . , xi+a−b, 0, . . . , 1, 0 . . . , xi+b−a, 0, . . . , 0)τ

where only nonzero coordinates are xi+a−b at the i−b position, 1 at the i−c
position and xi+b−a at the i−a position. Let e = (0000000100000000), then
∆e(f) = f(x + e) + f(x) = (000001x1500000000x1). This simple example
shows that for an input difference vector α, the output difference vector β
can not be arbitrary since the 6-th coordinate is always 1.
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For an input difference vector α supported at xi1 , xi2 , xit , if there is
no pair (i, j) in i1 < i2 < · · · < it satisfying j − i = b − a, the out-
put difference ∆α(fa,b,c) is the sum of above output differences. This out-
put difference is an affine mapping Uα from Fn−t

2 to Fn
2 , where Fn−t

2 is
the space of all variables {x1, . . . , xn} − {xi1 , . . . , xit} and Fn

2 is the space
of all variables x1, . . . , xn. If the input difference vector α is supported
at xi1 , xi2 , xit , and there are pairs (i, j) in i1 < i2 < · · · < it satisfying
j − i = b− a, the output difference at some coordinate position is of the for
(xi−a+1)(xj−b+1)+xi−axj−b = xi−a+xj−b+1. The output difference is an
affine mapping Uα from Fn

2 to Fn
2 . The differential probability from α to β

is zero when β is not in the image of Uα and is 1
2dim(Uα) when β 6= 0 is in the

image of Uα. This calculation of differential probability was obtained in [30].

The differential trail is of the form (α2, α1) −→ (α3, α2) −→ · · · −→
(αi+1, αi) −→ (αi+2, αi+1), where αi ∈ Fn

2 . The connecting condition is as
follows,

αi+2 = ∆αi+1fa,b,c + αi,

where fa,b,c is the round function in Simon variant block cipher. Then
from the above calculation of differential probability we can re-write the
connecting condition as

αi+2 = v + ai,

where the non-zero v is in the image Uαi+1 . However if (αi+2, αi+1) = (0,0)
implies that (αi+1, αi) = (0,0). Hence in the connecting condition we allow
v to be zero. We call such a chain of difference vectors admissible. The dif-
ferential probability of an admissible chain of difference vectors (differential
trail) is

1

2ΣRj=1 dim(U
αj

)
.

When α = 0, Uα is assumed zero.

8.2 EDP lower bound under independence assumptions

Then we have the following operations on differential trails as in the linear
hull case.

Proposition 8.1. Let β : (β2, β1) −→ (β3, β2) −→ · · · −→ (βt, βt−1)
be an admissible chain of difference vectors. Then βreverse : (βt−1, βt) −→
(βt−2, βt−1) −→ · · · −→ (β1, β2) is another admissible chain of difference
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vectors.

Proof. From the connecting condition

αi+2 = v + αi,

where v is in the image of the affine mapping Uαi+1 , then

αi = v + αi+2.

Then (αi+2, αi+1) −→ (αi, αi+1) satisfies the connecting condition. The
conclusion follows immediately.

From an arbitrary nonzero fixed input difference vector, at the first round
the input difference vector is (α2, α1) 6= 0, at each next round connecting, we
use all output difference vectors (α3, α2) satisfying the connecting condition

α3 = v + α1,

where v can take arbitrary vectors in the image of the affine mapping Uα2 .
Continue this process we get many differential trails with the non-zero dif-
ferential probabilities.

Proposition 8.2. The sum of differential probabilities over all above
admissible chains of difference vectors is 1. Then from an arbitrary input
difference after arbitrary long rounds, there exists an output difference vec-
tor such that the corresponding EDP is at least 1

22n
.

Proof. The proof is similar to the proof of Proposition 6.4. If we fix the
first j − 1 vectors in the admissible chain, in the step to get the j-th vector,
we get 2dim(Uα) next round nonzero difference vectors. Hence the sum is
always 1. The second conclusion follows immediately.

We start from an input difference (α2, α1), and reach a vector (αt, αt−1)
with the property that the dimension of the image of the affine mapping
Uαt is n. Similarly we start from an output difference (αR+1, αR) and reach
vector (αt

′
, αt

′−1) with the property that the dimension of the affine map-
ping Uαt′ is n. Then (αt+2, αt+1) and (αt

′+2, αt
′+1) can be arbitrary vectors

in F2n
2 . From Proposition 8.1 the above two admissible chains of difference

vectors can be glued to an admissible chain of difference vectors.
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Theorem 8.1. For some fixed nonzero input difference vector (α2, α1) ∈
F2n

2 , and some nonzero output difference vector (αR+1, αR) ∈ F2n
2 , we have

a set of admissible chains of difference vectors (differential trails) with in-
put difference vector (α2, α1) at the 1st round and output difference vector
(αR+1, αR) at the R-th round, such that the sum of the differential probabil-
ity is at least 1

2n .

Proof. This is similar to the proof of Theorem 6.1, we sum over fixed
previous vectors, the only missing vector is αt+1 and αt

′+1.

For example we begin with (α2, α1) and get a lot of differential trails
with the end output difference (αt+1, αt), where αt and αt can be two ar-
bitrary vectors in Fn

2 . From Proposition 8.1 there are a lot of differential
trails of the form (βt

′
, βt

′+1) −→ (βt
′−1, βt′) −→ · · · −→ (β1, β2), where βt

′

and βt
′+1 can be two arbitrary vectors in Fn

2 . Since both αt+1 and αt can
be arbitrary vectors in Fn

2 , we glue all these vectors (βt
′
, βt

′+1)’s to some
possible (αt+1, αt)’s for which they are the same. In this way in the sum of
Proposition 8.2 only missing part is αt+1. The conclusion follows.

8.3 Real EDP lower bound for key scheduling

It is obvious for two different admissible chains of difference vectors, the set-
s of points satisfying different input-output difference relations are disjoint.
Hence the main problem is the existence of the realistic difference trails,
that is, we need to argue that the expected differential probability over all
realistic differential trails is strictly bigger than O( 1

22n
) for Simon2n. When

the EDP is summed over all admissible chains of difference vectors in which
the algebraic equations establishing this differential trail are independent,
this is very close the real probability when the key schedule is used. We ob-
serve that there are 2n+mn free variables are used in Simon2n. Therefore,
if the total number of algebraic equations to establish the differential trial
is smaller than 2n + mn the differential trail seems realistic. It seems even
EDP is only summed over such realistic difference trails, the lower bound is
strictly bigger than O( 1

22n
).
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9 Conclusion

Linear cryptanalysis initiated from [42] is a general method to analysis block
ciphers, and the key-recovery attack based on linear hull proposed in [48] is
a powerful extended version. In this paper we show that when the round
functions of the block ciphers have the restricted Maiorana-McFarland struc-
ture and of degree two, the search of linear trails of these block ciphers are
essentially linear algebraic and better linear hull can be constructed. Theo-
retically for Simon2n, the potentials of our new constructed linear hulls are
bigger than 1

2n under independent assumptions. Similarly the lower bound
1

2n on the expected differential probability over all differential trails with
the some fixed input and output differences for the Simon2n, is given under
independence assumptions. We then argue that the potential and EDP of
the realistic linear hull or the realistic differential trails for the Simon2n, are
strictly bigger than 1

22n
. The lower bounds for the potential and the EDP

shows that at least theoretically the Simon2n with linear key schedule is
insecure.
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