
Tensor Crypto
Wai-Kong Lee1, Hwa-Jeong Seo2, Zhenfei Zhang3 and Seongoun Hwang1

1 Gachon University, Seongnam, South Korea,
waikong.lee@gmail.com,waikonglee@gachon.ac.kr,sohwang@gachon.ac.kr

2 Hansung University, Seoul, South Korea, hwajeong84@gmail.com
3 Ant Group, Hangzhou, China, zhenfei.zhang@hotmail.com

Abstract. Tensor core is a specially designed hardware included in new NVIDIA
GPU chips, aimed at accelerating deep learning applications. With the introduction
of tensor core, the matrix multiplication at low precision can be computed much
faster than using conventional integer and floating point units in NVIDIA GPU. In
the past, applications of tensor core were mainly restricted to machine learning and
mixed precision scientific computing. In this paper, we show that for the first time,
tensor core can be used to accelerate state-of-the-art lattice-based cryptosystems. In
particular, we employed tensor core to accelerate NTRU, one of the finalists in NIST
post-quantum standardization. Towards our aim, several parallel algorithms are
proposed to allow the tensor core to handle flexible matrix sizes and ephemeral key
pair. Experimental results show that the polynomial convolution using tensor core
is 2.79× (ntruhps2048509) and 2.72× (ntruhps2048677) faster than the version
implemented with conventional integer units of NVIDIA GPU. The proposed tensor
core based polynomial convolution technique was applied to NTRU public key scheme
(TensorTRU). It achieved 1.94×/1.95× (encryption) and 1.97×/2.02× (decryption)
better performance for the two parameter sets, compared to the conventional integer
based implementations in GPU. TensorTRU is also more than 20× faster than the
reference implementation in CPU and 2× faster than the AVX2 implementation,
for both encryption and decryption. To demonstrate the flexibility of the proposed
technique, we have extended the implementation to other lattice-based cryptosystems
that have a small modulus (LAC and two variant parameter sets in FrodoKEM).
Experimental results show that the tensor core based polynomial convolution is
flexible and useful in accelerating lattice-based cryptosystems that cannot utilize
number theoretic transform in performing polynomial multiplication.
Keywords: Tensor Core · Graphics Processing Unit · Post-quantum Cryptography

1 Introduction
The security of traditional Public Key Cryptography (PKC), such as RSA and ECC, relies
on one of the three hard mathematical problems: integer factorization, discrete logarithm,
or the elliptic-curve discrete logarithm problem. These hard problems can be easily solved
on a sufficiently powerful quantum computer with Shor’s algorithm [Sho99, Ber09]. This
creates the need of post-quantum PKC algorithms that can resist the threat from quantum
computers in near future.

National Institute of Standards and Technology (NIST) is in the process of selecting
one or more post-quantum cryptography algorithms through a public competition-like
process [AAAS+19]. Post-quantum candidates need to specify digital signature, public-key
encryption, and key-establishment algorithms. The evaluation criteria not only focuses on
the security aspects of an algorithm, but also looks into its implementation performance.
From the security aspects, the algorithm should be secure against both classical and

mailto:waikong.lee@gmail.com, waikonglee@gachon.ac.kr, sohwang@gachon.ac.kr
mailto:hwajeong84@gmail.com
mailto:zhenfei.zhang@hotmail.com

2 Tensor Crypto

quantum attacks. On the other hand, the performance aspects are also important, wherein
the algorithm should be evaluated on various classical platforms to show its efficiency in
practical applications.

In November 2017, 82 candidate algorithms were submitted to NIST post-quantum
competition for consideration. Out of these candidates, seven finalists and eight alternate
candidates were selected into third round, according to the announcement made by NIST
on July 2020. These selected finalists will continue to be reviewed for consideration in
standardization at the conclusion of the third round. NIST also noted that alternate
candidates may still potentially be standardized after third round.

In the third round, five and two lattice-based cryptography algorithms were selected as
finalists (i.e., KYBER, NTRU, SABER, DILITHIUM, and FALCON) and alternate
candidates (i.e., FrodoKEM and NTRU Prime), respectively. Compared with other
post-quantum cryptography candidates (e.g. multivariate, hash, code, and isogeny),
lattice-based cryptography maintains a majority share in third round.

In order to evaluate the practicality of cryptographic algorithms, many works devoted
to improve the implementation performance on various platforms, such as microcon-
trollers [KRSS19] and massively parallel processors (GPU) [BS10]. For the case of GPU,
the first implementation of NTRU was presented in 2010 [HVP10]. The work showed that
GPU can achieve very high encryption and decryption throughput by utilizing the product
form polynomial and some bit-packing techniques. Many works have been proposed to
accelerate the performance of NTRU on GPU [KY10, LKSP13, AT14, DSS+16, LGY+18].
However, previous works paid little attention on a power of new GPU tensor core, which
would be a better choice than ordinary GPU instruction set (i.e. integer/floating point
units). Tensor core is a specialized unit released by NVIDIA in its’ latest GPU architectures
(i.e. Volta, Turing and Ampere) [MDCL+18]. Many deep neural network applications
take advantages of NVIDIA tensor core to improve the training and inference performance.
However, it is unclear how cryptography implementations can exploit tensor core.

In this paper, we study how to exploit tensor core instructions to provide faster
polynomial convolution for post-quantum cryptography implementations. Our main
contributions are summarized below:

1. For the first time, a tensor core based polynomial convolution is presented. The
proposed technique can handle polynomials with a degree in multiple of 16, which
shows 3.41× faster performance compared to conventional implementation using
32-bit integer units in GPU, for polynomial degree N = 1024.

2. The first NTRU [CDH+20] implementation based on tensor core was proposed in
this paper. Since polynomials in NTRU is not a multiple of 16, some modifications
are required in order to use the tensor core based polynomial convolution. A series
of parallel algorithms, including zero padding, sign conversion and type casting, were
proposed to achieve this, resulting a high performance NTRU implementation in
GPU. The tensor core based ntruhps2048509 can achieve encryption and decryption
in 0.61µs and 1.16µs respectively, which are 3.39×/1.94× and 3.44×/1.97× faster
than AVX2 in CPU/integer units in GPU implementation, respectively.

3. The proposed tensor core based polynomial convolution can handle various polynomial
sizes. To validate this point, we have applied the proposed technique to another two
lattice-based cryptosystems: LAC and two variant parameter sets of FrodoKEM.
The tensor core based polynomial convolution in LAC and a variant of FrodoKEM
outperform integer units based implementations by 3.10× and 3.31×, respectively.
Detailed steps to efficiently utilizing the proposed technique for polynomial/matrix
multiplication in these two schemes are described in this paper.

4. The source code of tensor core based polynomial convolution is released in the public
domain at https://github.com/benlwk/Tensorcrypto. This allows researchers

https://github.com/benlwk/Tensorcrypto

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 3

to easily re-produce our results on their development environments and utilize the
tensor-core-aided lattice-based cryptography implementation for their own purposes.

We conclude the criteria of applying our technique over other lattice-based cryptography.
At a high level, our solution is applicable to all lattice-based cryptography with small
modulus, where multiplication is expressed in the form of a vector and a matrix. This
can be either an ideal lattice construction, as in NTRU and LAC, or a generic lattice
construction, as in FrodoKEM. However, schemes such as KYBER already use NTT-
based multiplications, for which our technique cannot accelerate. Therefore, we restrict
the scope of our paper to the schemes where NTT is slow or not applicable.

The remainder of this paper is organized as follows. In Section 2, we introduce related
works. In Section 3, we present a novel tensor core based polynomial convolution and
the implementation of two parameter sets in NTRU. Thereafter, we summarize our
experimental results for NTRU, LAC and FrodoKEM in Section 4. Finally, we conclude
the paper in Section 5.

2 Related Works
2.1 Overview of GPU Architecture and CUDA Programming Model
A GPU consists of thousands of cores, enabling massively parallel computation on many
interesting applications. From the hardware perspective, GPU groups many GPU cores
(e.g. 64, 128, or 192) into a Streaming Multiprocessor (SM). The memory in the GPU
can be categorized into two types: on-chip and off-chip. On-chip memory refers to the
register files and shared memory that resides near to the GPU cores. Registers are very
fast, but come in small sizes (64 ∼ 96K 32-bit words per SM). Shared memory is known
as the “user-managed cache”, which is usually used to store frequently accessed values
(e.g. look-up table or pre-cached values). Same to the registers, shared memory is fast but
small in size (48 ∼ 164K 32-bit word per SM). Off-chip memory refers to global memory,
which is essentially the DRAM. It comes with a large size (2 ∼ 16 GB), but the access
latency can be up to 300× slower than the registers.

CUDA is the Software Development Kit (SDK) introduced by NVIDIA to facilitate
the use of GPU in general purpose computing. It allows programmers to implement
generic algorithms (other than graphics) in GPU with high level programming languages
(e.g. C/C++, FORTRAN) as well as pseudo-assembly language (i.e. PTX). From the
programming perspective, many parallel threads form a block and multiple blocks form a
grid. This allows the flexible arrangement of software threads into the physical SM and
cores across many different GPU architectures. The relationship between grid, blocks, and
threads is illustrated in Figure 1.

NVIDIA GPU groups 32 threads into a warp, wherein all 32 threads execute the same
instruction in parallel. Due to this reason, the number of threads per block is usually set
as a multiple of 32 to avoid divergence in the instruction execution path. Besides that, the
shared memory also has 32 banks, allowing parallel access by all 32 threads within a warp.
Additional features like warp shuffle instruction and tensor core are also designed to work
in the warp level to maximize the efficiency of the GPU warp scheduler.

2.2 Tensor Core
In 2017, NVIDIA released Volta GPU architecture, which introduced a specialized unit
named as tensor core. This newly introduced tensor core is used to perform one matrix-
multiply-and-accumulate (MMA) on a 4× 4 matrices per clock cycle [MDCL+18]. Later
on, NVIDIA released Turing architecture that supports MMA for 16× 16 matrices with
single and half precision floating point. Recently, Ampere architecture that supports

4 Tensor Crypto

Block 1 Block N

Warp 1

Thread

1-32

. . .

Warp 2

Thread

33-64

. . .

Warp 32

Thread

992-1024

. . .

G
ri

d

. . .

. . .

Block 2

Figure 1: Relationship between grid, blocks and threads in CUDA.

double precision MMA was released, enabling the use of tensor core in generic scientific
computing applications. The latest tensor core in Ampere architecture also support new
formats (i.e. TensorFloat-32 (TF32) and Bfloat16 (BF16)) that reduces the floating point
precision but maintains the same range.

Many deep neural network applications take advantage of the NVIDIA tensor cores.
However, it is unclear how cryptography implementations can exploit this newly introduced
tensor cores. In this work, we present implementation techniques to use the tensor cores
for computing polynomial convolution in lattice-based cryptography.

2.3 Lattice-based Cryptography
Lattice-based cryptographic constructions are based on the hardness of Shortest Vector
Problem (SVP) which is approximating the minimal Euclidian length of a lattice vector.
Lattice-based cryptography is believed to be secure against both conventional and quantum
computers. Furthermore, lattice-based cryptography shows fast execution timing for key
encapsulation mechanism and signature generation. In the third round of NIST post-
quantum cryptography standardization process, five lattice-based cryptography algorithms
were selected as finalists (e.g. CRYSTALS-KYBER, NTRU, SABER, CRYSTALS-
DILITHIUM, and FALCON) and another two are selected as alternate candidates
(e.g. FrodoKEM and NTRU Prime), respectively (See Table 1). Due to its good
features in security and efficiency, most of the selected candidates in third round are lattice-
based cryptography. Many lattice-based schemes rely on polynomial multiplication, which
has high computational complexity. In order to improve the performance of polynomial
multiplication, we utilized the tensor core and show performance enhancements on lattice-
based cryptography with small modulus, such as NTRU, LAC, and two variant parameter
sets of FrodoKEM.

2.3.1 NTRU

NTRU encryption is a lattice-based one-way CPA-secure (OW-CPA) public-key encryption
scheme which was invented around 1996 [HPS98]. The security of NTRU encryption has
been reasonably-well understood and scrutinized for decades.

At a nutshell, for a polynomial ring Rq := Zq[x]/F (x), and a small parameter p, an
NTRU public key is the ratio of two small polynomials over h = g/f for some small g
and f , where f is also invertible modulo p. The NTRU assumption says that given h,
one cannot recover g and f , or to distinguish h from a random element over the ring.

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 5

Table 1: Comparison of lattice based cryptography in NIST PQC competition, PKE,
KEMs, and DS represent Public Key Encryption, Key Encapsulation Mechanisms, and
Digital Signature, respectively.
Lattice-based candidates Application Category Prime (q) NIST PQC competition
CRYSTALS-KYBER [BDK+18]

PKE/KEMs Module 3329

Round 3 finalists
SABER [DKRV18] 212

NTRU [CDH+20] Ideal 211, 212, and 213

CRYSTALS-DILITHIUM [DLL+18] DS Module 223 − 213 + 1
FALCON [FHK+18] Ideal 12289
FrodoKEM [ABD+20] PKE/KEMs Standard 215 and 216

Alternate candidatesNTRU Prime [BCLVV16] Ideal 4591, 4621, ..., 7879
LAC [LLZ+18] PKE/KEMs Ideal 251 Round 2 candidate

Table 2: Comparison of GPU computation modules used for implementing NTRU.
[HVP10] [KY10] [LKSP13] [AT14] [DSS+16] [LGY+18] This work

Integer units Tensor core

To encrypt a message polynomial m, one computes c = prh + m for that is co-prime
with q, and a randomly sampled small polynomial r. To decrypt, one then computes
cf = prg +mf ≡ mf mod p . Since f is invertible modulo p, one can extract m from mf
with f−1 mod p.

In the NIST PQC competition, there has been two flavors of the NTRU, differs in the
choice of the ring. The original NTRU scheme, known as NTRU-HPS [HPS98, HPS+17],
works over Rq := Zq[x]/(xN − 1) = φN (x)φ1(x). A newer design, referred to as NTRU-
HRSS [HRSS17], works over Zq[x]/φN (x). Note that, although NTRU-HRSS works
over Zq[x]/φN (x), computations are carried out over Rq for better efficiency. In addition,
both schemes now use a variant of FO transformation to achieve CCA-2 security. For the
purpose of this paper, we do not go in deep details of the scheme. We note, however, that
the major computation bottleneck in both schemes is the polynomial multiplication over
Rq := Zq[x]/(xN − 1), which is essentially a polynomial convolution.

2.4 Previous NTRU Implementations on GPU

The first implementation of NTRU in GPU can be dated back to 2010. Hermans et al.
[HVP10] showed that GPU can achieve very high encryption and decryption throughput
by utilizing the product form polynomial and bit-packing techniques. Product form
polynomial is no longer used in the NTRU submission to NIST. Following up this work,
Lee et al. [LKSP13] proposed a sliding window technique to pre-compute some repeating
patterns in NTRU polynomial and stored them into lookup table. With this technique,
some of the multiplication operations can be skipped. Although this work is able to achieve
high throughput, it may not be secure against side channel attack, as the look up table
leaks timing information. The NTRU modular lattice signature (NTRU-MLS) scheme
[HPS+14, DHP+20], which requires operations on large vectors, was optimized with parallel
polynomial multiplication on GPU by Dai et al. [DSS+16]. Recently, Lee et al. [LGY+18]
proposed to utilize Karatsuba algorithm to speed up the polynomial multiplication in
NTRU. The flat form (schoolbook) and Karatsutba version are constant time and fast,
but they still suffer from intensive access to the global memory [Kar63, Too63, CA69].
Unlike previous NTRU implementations on GPU, we introduce the first tensor core based
NTRU implementations on GPU (See Table 2).

6 Tensor Crypto

Algorithm 1: Schoolbook polynomial convolution.
Input: Polynomial a with degree N, Polynomial b with degree N.
Output: Polynomial c with degree N, which is the cyclic convolution of a and b.

// Accumulate each column serially
1: for k from 0 to N − 1 do
2: c[k] = 0

3: for i from 0 to k + 1 do
4: c[k] = c[k] + a[k − i]× b[i]

5: for i from 1 to N − k do
6: c[k] = c[k] + a[k + i]× b[N − i]

7: return c

3 Optimized Implementation of NTRU

3.1 Polynomial Convolution Through Tensor Core

Polynomial convolution is known as “truncated polynomial multiplication”. This is the
most time consuming operation in NTRU PKC. A straightforward way to implement
this is by schoolbook multiplication, wherein the operation exhibits high degree of par-
allelism. Referring to Algorithm 1, schoolbook polynomial convolution can be arranged
in such a way that it processes one column at a time (the k loop, lines 2-6). The i loop
first computes the multiplication and accumulation up-to k element following ordinary
schoolbook multiplication. Next, it proceeds with the remaining polynomial convolution
through cyclic computation.

Detailed illustrations are presented in Figure 2. One can observe that the operations
within the k loop are independent of each other, which allows a highly parallel implementa-
tion in GPU platform to achieve good performance. This technique was previously explored
by Dai et al. [DSS+16] and it remains the most efficient way to compute polynomial
convolution in GPU. Note that for NTRU, the polynomial convolution is performed
with 32-bit integer units (INT32). It is also possible to compute NTRU polynomial
convolution using single precision floating point units (FP32) by converting the polynomial
elements to FP32. However, FP32 has the same throughput with INT32 across many
generations of GPU architecture [NVI20]. The additional cost of type conversion back and
forth introduces non-negligible overhead, which does not make FP32 an attractive choice
compared to INT32.

Algorithm 2 shows the parallel version of schoolbook polynomial convolution that can
be implemented efficiently in GPU. This implementation utilizes P blocks to perform P
polynomial convolution, where each block computes one polynomial convolution with N
threads. Polynomials are first loaded from the global memory and cached at the shared
memory to reduce the read/write latency (lines 3-5). Next, each thread is responsible
in accumulating one column independently (lines 7-10), with the intermediate results
stored in a register (i.e. sum). Finally, results are copied to the array c which resides
in the global memory (line 11). One can also easily modify Algorithm 2 to perform
nega-cyclic convolution. In particular, instead of performing addition in line 10, one can
perform subtraction to achieve nega-cyclic convolution. Besides high parallelism, this
implementation ensures minimal access to the global memory (two reads and one write
operations), with majority of the operations resides in shared memory and registers.

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 7

Algorithm 2: Parallel schoolbook polynomial convolution in NTRU.
Input: Polynomial a with degree N, polynomial b with degree N, modulus q.
Output: Polynomial c with degree N, which is the cyclic convolution of a and b.

1: tid=thread ID
2: bid=block ID

// Copy polynomials into shared memory in parallel
3: shared_a[tid]= a[bid×N + tid]
4: shared_b[tid]= b[bid×N + tid]
5: __syncthreads() B Synchronize all the threads

// Accumulate each column in parallel with N threads
6: sum=0 B Use register to accumulate

7: for i from 0 to tid+1 do
8: sum = sum+shared_a[tid− i] × shared_b[i]

9: for i from 1 to N − tid do
10: sum = sum+shared_a[tid+ i] × shared_b[N − i]

11: return c[bid×N + tid] = sum%q

a3 a2 a1 a0

b3 b2 b1 b0

a0b0

a3b1

a2b2

a1b3

c0

a3 a2 a1 a0

b3 b2 b1 b0

a1b0

a0b1

a3b2

a2b3

c1

a3 a2 a1 a0

b3 b2 b1 b0

a2b0

a1b1

a0b2

a3b3

c2

a3 a2 a1 a0

b3 b2 b1 b0

a3b0

a2b1

a1b2

a0b3

c3

(1) (2) (3) (4)

* * * *

Figure 2: Parallel computation of polynomial convolution with integer units in GPU;
operations from (1) to (4) are performed, independently.

Note that we only need to perform the modulo operation (sum%q) at the end of the
convolution. This is because in GPU implementation, the sum is a 32-bit register that is
large enough to accommodate the two selected NTRU parameter sets. It is also possible
to use 16-bit sum, because q is in power-of-2 for NTRU. Whenever is sum experiencing
an overflow, it carries out a “free” modulo operation over it’s word size. However, this is
not beneficial to GPU as it does not support native 16-bit register.

Tensor core was introduced into GPU to accelerate MMA operations with much higher
throughput. By taking a closer look into Algorithm 1, we found that the polynomial
convolution can be expressed in the form of matrix multiplication. To achieve this,
polynomial a is first packed into a cyclic form to allow the convolution to take place,
whereas polynomial b can be stored in a column major form. This operation is illustrated
in Figure 3, where the multiplication between matrix A and B produces the same results
as in polynomial convolution. In other words, one can perform matrix-vector convolution
between polynomial a (matrix) and polynomial b (vector), using tensor core. Note that
this technique only works for the case where polynomial a can be reused repeatedly. This is
not a problem for encryption in NTRU that performs r ∗ h, where h is the public key and

8 Tensor Crypto

*

a3 a2 a1 a0

b3 b2 b1 b0

a0b0

a3b1

a2b2

a1b3

c0

*

a1b0

a0b1

a3b2

a2b3

a2b0

a1b1

a0b2

a3b3

a3b0

a2b1

a1b2

a0b3

c1c2c3

a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

b0 ? ? ?

b1 ? ? ?

b2 ? ? ?

b3 ? ? ?

=

c0 ? ? ?

c1 ? ? ?

c2 ? ? ?

c3 ? ? ?

Matrix A Matrix B Matrix C

Figure 3: Computing polynomial convolution using tensor core in GPU: Matrix A, B,
and C represent constant polynomial (e.g. public key h), non-constant polynomial (e.g.
random vectors, r), and result, respectively.

Table 3: Supported precision in tensor core.

Configuration Matrix A Matrix B Accumulator Dimension
1 half (FP16) half (FP16) single (FP32) 16× 16× 16
2 half (FP16) half (FP16) half (FP16) 16× 16× 16
3 double (FP64) double (FP64) double (FP64) 8× 8× 4
4 unsigned char (INT8) unsigned char (INT8) integer (INT32) 16× 16× 16
5 signed char (INT8) signed char (INT8) integer (INT32) 16× 16× 16

r is the random ternary polynomial. One can reuse the public key h to encrypt multiple
plaintexts, and renew the public key from time to time. On the contrary, polynomial b
does not need to be reused, so we can pack many random vectors r into matrix B.

With this proposed technique, NTRU polynomial convolution can be formulated as
matrix multiplication and accelerated through the use of tensor core, which is faster than
the conventional INT32 operations.

3.2 TensorTRU: NTRU Implementation Based on Tensor Core
3.2.1 Representing Polynomial in Floating Point

Referring to Table 1, NTRU requires the modulus q to be 211, 212 or 213 depending
on the parameter sets chosen. To allow the use of tensor core in performing polynomial
convolution, we need to ensure that the polynomial coefficients can be represented in the
supported precision in tensor core, as depicted in Table 3. Since tensor core only support
byte level integers (configurations 4 and 5), we cannot represent the NTRU polynomial
coefficients in integer due to insufficient precision. Another option would be to convert
the polynomial coefficients from integer to floating point, and then utilize one of the
three possible configurations (configurations 1-3). Since configurations 1 and 2 are having
much higher performance compared to configuration 3, we explore these two options to
implement NTRU.

The parameter sets ntruhps2048509 and ntruhps2048677 requires q= 211, which
allows the polynomial elements to be represented exactly in FP16. The accumulator needs
to be sufficiently large to hold the results of matrix multiplication. For instance, by using
q= 211 the element size is of 11-bit, so each pair of multiplication between poly_a and
poly_b produces a number with 22-bit maximum. However, one of the polynomial in
NTRU is ternary (i.e. elements are only consists of -1, 0 and 1). Since we are using

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 9

16 16

16

16

w0

w2

w1

w3

*

w0

w1

w2

w3

Matrix A Matrix B

=

Matrix C

w0

w2

w1

w3

w0

w1

w2

w3

w0 w2

w1 w3

16ⅹ16 matrix multiplication

* =

Matrix A

16

16

Matrix B Matrix C

Figure 4: Matrix multiplication: 32× 32 dimension, w: warps running in parallel, arrow
indicates the computation order.

floating point to represent the polynomial elements, the multiplication produces only
maximum 11-bit results (i.e. (211− 1)× 1 = 211− 1 and (211− 1)×−1 = −211− 1). In the
process of polynomial convolution, the accumulated value can grow up to a maximum of
N × 211 − 1. Hence, for the two selected parameter sets, the accumulator must be able to
hold at least 20-bit (log2509× log2(211 − 1)) and 21-bit (log2677× log2(211 − 1)) data for
ntruhps2048509 and ntruhps2048677, respectively. Due to this restriction, we have
utilized configuration 1 in accelerating NTRU polynomial convolution, because the single
precision accumulator can hold an integer value of 24-bit maximum. Note that in practice,
the accumulated values may well below 20-bit, because the accumulation can goes both
directions (addition or subtraction) depending on the ternary polynomials.

Another two NTRU parameters (ntruhps4096821 and ntruhrss701) can also be
implemented in tensor core with double precision using configuration 3. However, the
performance of FP64 tensor core is much slower compared to FP32, and it only supports
a smaller matrix size (8× 8). A faster FP64 tensor core released in future may open up
opportunities to apply our technique into these two parameter sets.

3.2.2 Parallel Polynomial Convolution using Tensor Core

Tensor core was developed to handle a small matrix with 16× 16 dimension as depicted
in right upper part of Figure 4, within a warp (32 threads). To handle a larger matrix,
one can utilize many warps computing different parts of the matrix, and then accumulate
the result, iteratively. Referring to Figure 4, there are three steps to complete when we
perform matrix multiplication for a 32× 32 matrix. Firstly, four warps are launched in
parallel to compute matrix multiplication on 16× 16 dimension. For instance, w0 and w2
read the same piece of data (16× 16) from Matrix A, but they read different data from
Matrix B for multiplication and accumulation. Intermediate results from this step are
stored in a temporary array. Next, the four warps proceed to compute another half of the
matrix in parallel. In other words, two iterations are required to complete a 32× 32 matrix
multiplication. Lastly, results are stored into Matrix C in parallel at different memory
locations. In general, we need (M/16)2 warps and M/16 iterations to compute M ×M
matrix multiplication in parallel. This tensor core based matrix multiplication are utilized
to compute polynomial convolution in NTRU.

Referring to Algorithm 3, the tensor core based polynomial convolution requires the
input matrices to be in multiple of 16×16. Matrix A is the constant polynomial a organized

10 Tensor Crypto

Algorithm 3: TC-PC: parallel polynomial convolution using tensor core.
Input: M ×M matrix A (constant polynomial a in cyclic form), M ×M matrix B

(non-constant polynomials b), M must be multiple of 16.
Output: M ×M matrix C, which contains the cyclic convolution of polynomial a and

many polynomial b.

// Initialize fragment a and b with 16× 16 dimension and FP16 precision
1: fragment<matrix_a, 16, 16, 16, half, row_major> a_frag
2: fragment<matrix_b, 16, 16, 16, half, col_major> b_frag

// Initialize fragment c with 16× 16 dimension and FP32 precision
3: fragment<accumulator, 16, 16, 16, float> c_frag

// Compute the warp ID and indices
4: tid=thread ID
5: bid=block ID
6: blockDim=block dimension
7: warpID = b(bid× blockDim+ tid)/32c B 32 threads per warp
8: row_idx = warpID%bM/16c × 16
9: col_idx = warpIDbM/16c × 16

10: store_idx = row_idx+ col_idx×M

11: for i from 0 to bM/16c do
12: ldA = row_idx×M + i× 16
13: ldB = col_idx×M + i× 16

// Load 16× 16 sub-matrix from Matrix A and B
14: load_matrix_sync(a_frag, A + ldA, M)
15: load_matrix_sync(b_frag, B + ldA, M)

// Perform matrix multiplication and accumulate the results in c_frag
16: mma_sync(c_frag, a_frag, b_frag, c_frag)

// Store the results from c_grat into Matrix C
17: store_matrix_sync(C + store_idx, c_frag, M, col_major)

in cyclic form (e.g. public key h in NTRU), while Matrix B consists of M non-constant
polynomials (e.g. random vector r in NTRU). Note that all matrices are stored as a
1-dimensional memory array (i.e. global memory). The algorithm first initializes two
fragments to hold the 16 × 16 sub-matrices and one fragment to hold the accumulated
results (lines 1-3). Next, it loops through Matrix A (row major) and Matrix B (column
major) to perform the matrix multiplication in parallel (lines 11-16). For each iteration,
16 × 16 sub-matrices are loaded from Matrix A and Matrix B (in global memory) to
perform matrix multiplication in parallel. (M/16)2 warps are executing in parallel, with
each warp operates on different parts of Matrix A and Matrix B as depicted in Figure 4.
Finally, the accumulated results are copied from tensor core to Matrix C in global memory
(line 17) in column major form.

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 11

509

509

C D

B

496

A

13

496

13
0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

509

509

3

3

512

E 512

(a) method 1: hybrid algorithm (b) method 2: padding with zeros

Figure 5: Handling matrix not in multiple of 16× 16 (parameter set: ntruhps2048509),
E = A+B + C +D.

3.2.3 Handling Matrix not in multiple of 16 × 16

The polynomial degree of two selected NTRU parameter sets (ntruhps2048509 and
ntruhps2048677) are N = 509 and N = 677 respectively. However, the tensor core based
matrix multiplication can only work for matrices that are a multiple of 16 × 16. This
implies that we cannot use the tensor core to accelerate these two NTRU parameter sets,
straightforwardly.

There are two methods to overcome this limitation. The first method is through a
hybrid algorithm that combines the tensor core and integer based polynomial convolution.
Figure 5a shows a high level illustration of such a hybrid algorithm. In this example
(parameter set ntruhps2048509), one can utilize tensor core to compute polynomial
convolution of 496×496 (region A), and then complete the remaining computations (region
B, C, and D) in three steps. Note that this hybrid algorithm is less efficient, because
some of the computations cannot be fully parallelized with tensor core. Albeit with this
limitation, it allows us to utilize the fast tensor core to accelerate polynomial convolution
in NTRU and other similar lattice-based cryptographic schemes. On the other hand, one
can also utilize the second method by padding zeros to poly_a to form a matrix that is a
multiple of 16× 16. Referring to Figure 5b, zeros are padded to form a matrix of 512× 512
in size. This allows us to perform polynomial convolution of N ×N completely in tensor
core, in the expense of some additional memory. The redundant storage required by this
method can go up to a maximum of (p − N) × N + (p − N) × p, where p refers to the
closest multiple of 16 that is larger than N. In this paper, we proposed to utilize second
method (i.e. zero-padding polynomial convolution), since the polynomial convolution can
be computed fully in tensor core, which is more efficient than first method (i.e. hybrid
approach).

To achieve high performance NTRU implementation in GPU, we proposed a series of
parallel algorithms to perform the following tasks efficiently:

1. Organize the polynomial in cyclic form and pad the remaining parts with zeros to
construct the matrix in multiple of 16× 16 (Algorithm 4).

2. Convert unsigned 16-bit integer (U16) polynomial element to 16-bit floating point
(FP16) format (Algorithm 5).

12 Tensor Crypto

Algorithm 4: ParCyc: parallel algorithm to arrange polynomial in cyclic form.
Input: Polynomial in with degree N.
Output: Matrix out with M ×M dimension, which is the polynomial in organized in

cyclic form and padded with zeros for unused elements.

1: tid=thread ID
2: bid=block ID

// Launch M blocks and M threads in parallel
3: if tid<N then
4: out[bid+ tid×M] = in[(tid− bid)%N]
5: else
6: out[bid+ tid×M] = 0

3. Convert the 32-bit floating point (FP32) elements back to unsigned 16-bit integer
(U16) and perform modulo operations (Algorithm 6).

. . .
Block N-1

in0

in1
in2

inN-1

inN-2

. . .

inN-1

in0
in1

inN-2

inN-3

. . .

. . .
in2

in3
in4

in1

in0

. . .

in1

in2
in3

in0

inN-1Block N-2

Block 2
Block 1

Block 0

Parallel Threads

. . .

in0
in1
in2

inN-1

inN-2

. . .

inN-1
in0
in1

inN-2

inN-3

. . .

. . .

in2
in3
in4

in1

in0

. . .

in1
in2
in3

in0

inN-1

Block

0
P

a
ra

ll
el

 T
h

re
a

d
s

0 0

0 0

0 0

0 0

...

...

...

...

Block

1

Block

N-2

Block

N-1
M

-N
 z

er
o

s

(a) Read from polynomial in (b) Write to matrix out

Figure 6: Arranging polynomial in cyclic form and store them in a matrix.

Referring to Algorithm 4 and Figure 6, the input polynomial (in) is read by N threads
in parallel, and then written to the output matrix (out). Note that each block reads in a
different cyclic form in order to achieve a high parallelism. Algorithm 5 shows the steps to
convert U16 polynomial elements into FP16 format. Lines 5-8 are only necessary if we are
dealing with ternary values; it converts -1 in integer format (i.e. 2047 when q = 2048) to
FP16 format. Lastly, Algorithm 6 first converts the elements in FP32 to INT32 format
(line 4) to keep the original precision, and then performs modulo q and store the final
results in U16 format.

With these three proposed algorithms, one can perform highly parallel polynomial
convolution for NTRU using tensor core, where the steps are given in Algorithm 7.
Three floating point matrices are first initialized to zero in CPU; this process is only
performed once. Next, the two proposed algorithms are implemented in GPU to perform
pre-processing on Matrix A and Matrix B (lines 8-9). Subsequently, tensor core is used to
perform the polynomial convolution, resulting a Matrix fp32_C in FP32 format (line
10). Lastly, this result is converted to Matrix C with U16 format and modulo with q to
obtain the final output.

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 13

Algorithm 5: ParU16toFP16: parallel algorithm to convert polynomial elements
from U16 to FP16.

Input: Matrix in with N different polynomials of degree N in U16 format.
Output: Matrix out with N different polynomials of degree N in FP16 format.

1: tid=thread ID
2: bid=block ID
3: temp = 0 B Initialize FP16 variable
4: temp = in[bid×M] + tid B Launch N blocks and N threads in parallel

5: if temp = 2047 then
6: out[bid×M] + tid] = −1 B Converting -1 from U16 to FP16
7: else
8: out[bid×M] + tid] = temp

Algorithm 6: ParFP32toU16: parallel algorithm to convert polynomial elements
from FP32 to U16 and perform modulo q.

Input: M ×M matrix in with elements in FP16 format.
Output: M ×M matrix in with elements in U16 format and modulo q.

1: tid=thread ID
2: bid=block ID
3: temp = 0 B Initialize FP32 variable

// Launch N blocks and N threads in parallel
4: temp = in[bid×M] + tid
5: out[bid×M] + tid] = temp%q

Another point to take note is that when we use the proposed technique to implement
NTRU, the polynomial convolution for decryption is slightly different from the one in
encryption. During encryption process, one computes r ∗h, where h is the public key to be
treated as a constant polynomial, while r is the non-constant and small ternary polynomial.
On the other hand, the private key f used in decryption is a small ternary polynomial to
be treated as constant polynomial. In such case, Algorithm 4 and 5 needs to be slightly
revised. In particular, lines 5-8 in Algorithm 5 should be moved to Algorithm 4 to cater
for the small ternary polynomial. In other words, one does not need to perform lines 5-8
in Algorithm 5 anymore as the input polynomial does not contain any negative value.

3.3 Ephemeral Key Pair
The proposed tensor core based polynomial convolution can be more efficient compared
to integer based implementation in GPU. So far, we have only discussed the situations
that allow the same public/private key pair to be reused for a small number of encryp-
tion/decryption. For instance, one can perform K encryption/decryption with the same
public/private key pair, and refresh the key pair before executing the next K encryp-
tion/decryption. In the previous discussion, we assume that K = N to fully exploit the
performance gain by using tensor core that operates on a square matrix. For applications
that need to refresh the key pair more frequently (i.e. K < N), we can scale the propose
technique accordingly by adjusting K, where K = 1, 2, ..., N − 1. By setting K = 1, we
refresh the key pair for every single encryption/decryption. However, due to the limitation

14 Tensor Crypto

Algorithm 7: Parallel implementation of NTRU polynomial convolution using
tensor core in GPU.

Input: polynomial a with degree N (constant polynomial), N polynomial b with degree
N (non-constant polynomials), modulus q.

Output: M ×M Matrix C, which contains the cyclic convolution of polynomial a and
many different polynomial b.

// CPU Phase:
1: fp16_A B Initialize a matrix in FP16 to store converted a
2: fp16_B B Initialize a matrix in FP16 to store converted b
3: fp32_C

B Initialize a matrix in FP32 to store results from tensor core

// GPU Phase:
4: warp_tot = (M/16)2 B Calculate total number of warps required
5: tc_threads = warp_tot× 32
6: tc_blocks = tc_threads/max_threads B Calculate number of blocks
7: tc_threads = max_threads B Limit the number of threads to max_threads
8: ParCyc< N,N > (fp16_A, a) B Algorithm 4
9: ParU16toFP16< N,N > (fp16_B, b) B Algorithm 5

10: TC-PC< tc_blocks, tc_threads > (fp16_A, fp16_B, fp32_C) B Algorithm 3
11: ParFP32toU16< N,N > (C, fp32_C) B Algorithm 6

in tensor core that only handles 16× 16 matrix, the value K must be in a multiple of 16.

Algorithm 8: NTRU polynomial convolution using tensor core with scalable
ephemeral key pair configurations.

Input: polynomial a with degree N (constant polynomial), N polynomial b with degree
K (non-constant polynomials), modulus q.

Output: K ×M Matrix C, which contains the cyclic convolution of polynomial a and
many different polynomial b.

// CPU Phase:
1: fp16_A B Initialize a matrix in FP16 to store converted a
2: fp16_B B Initialize a matrix in FP16 to store converted b
3: fp32_C

B Initialize a matrix in FP32 to store results from tensor core

// GPU Phase:
4: warp_tot = (M/16)× (K/16) B Calculate total number of warps required
5: tc_threads = warp_tot× 32
6: tc_blocks = tc_threads/max_threads B Calculate number of blocks
7: tc_threads = max_threads B Limit the number of threads to max_threads
8: ParCyc< N,N > (fp16_A, a) B Algorithm 4
9: ParU16toFP16< K,N > (fp16_B, b) B Algorithm 5

10: TC-PC< tc_blocks, tc_threads > (fp16_A, fp16_B, fp32_C) B Algorithm 3
11: ParFP32toU16< K,M > (C, fp32_C) B Algorithm 6

Referring to Algorithm 8, the number of warps required to perform TC-PC is reduced
from (M/16)2 in Algorithm 7 to (M/16)× (K/16) (line 1). Besides, the parallel blocks

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 15

Table 4: Performance of tensor core based polynomial convolution (multiple of 16× 16),
INT32, TC, and PC represent 32-bit integer units, tensor core, and polynomial convolution,
respectively.

N 32 64 128 192 256 384 512 768 1024

Time (µs) INT32-PC 0.22 0.15 0.15 0.22 0.41 0.53 0.92 2.06 3.79
TC-PC 0.27 0.16 0.11 0.12 0.18 0.20 0.33 0.64 1.11

Ratio (INT32-PC / TC-PC) 0.81 0.94 1.36 1.83 2.28 2.65 2.79 3.22 3.41

utilized to compute ParU16toFP16 and ParFP32toU16 are also reduced from N to K.
This is because polynomial a is only used to convolute with K polynomial b, where K < N .
With these small changes, the proposed technique can be used for applications that need
to refresh the key pair more frequently. Note that Algorithm 8 is less optimal compared to
Algorithm 7 as the tensor core is only used to compute M ×K matrix instead of M ×M .

3.4 Polynomial Addition
NTRU Encrypt involves polynomial convolution followed by addition to another polyno-
mial (r ∗ h+ e). Since the tensor core can perform MMA in one cycle, one can also utilize
this feature to perform MMA for NTRU Encrypt. We have utilized this feature in the
NTRU implementation. However, polynomial addition itself is a lightweight operation,
a simple parallel implementation using INT32 unit is already very efficient. Performing
the accumulation part in tensor core involves type conversion from U16 to FP16, which
introduces a small overhead. Hence, the benefit of performing polynomial addition within
the tensor core is not significant in this situation.

4 Evaluation
This section presents experimental results for the proposed tensor core based polynomial
convolution and its application to three different lattice-based cryptographic schemes.
Results are compared to the reference and AVX2 accelerated implementation found in the
NIST PQC standardization submission package. CPU implementations were evaluated on
a machine with Intel(R) Core(TM) i7-9700F clocked at 4.7 GHz with 16 GB RAM. The
GPU used in this paper is NVIDIA RTX2060 with 8 GB RAM, clocked at 1.71 GHz.

4.1 Performance Evaluation of Tensor Core Based Polynomial Convo-
lution

The first experiment aimed at demonstrating the superiority of tensor core based polynomial
convolution (TC-PC) against the conventional integer based implementation (INT32-PC).
In INT32-PC implementation, N blocks are launched, where each block computes one
polynomial convolution in parallel, with N threads. To optimize the performance of this
implementation, we stored the two polynomials (poly_a and poly_b) into the shared
memory to reduce the overhead in accessing global memory. For TC-PC implementation,
(N/16)2 warps are launched to complete the matrix multiplication. To allow a fair
comparison with INT32-PC, we set the number of warps to be close to the one in INT32-
PC for various sizes of N. The performance of both INT32-PC and TC-PC implementations
are presented in Table 4. Note that the results reported for GPU implementations are the
average time of one polynomial convolution (i.e. (total time to process N blocks)/N).

When the polynomial degree is small (N ≤ 64), INT32-PC shows better performance
compared to TC-PC. This is because TC-PC requires additional steps in reorganizing
poly_a into cyclic form and converting the polynomial elements between integer and

16 Tensor Crypto

floating point format. However, when N increases beyond 64, the benefit of using tensor
core is obvious. The speed-up gained by TC-PC against INT32-PC increases steadily when
64 > N ≤ 1024, where it records the highest speed-up of 3.41 when N = 1024. We do not
report cases beyond 1024, as the speed-up gained does not increase anymore.

4.2 Performance Evaluation of NTRU
To demonstrate the benefit of tensor core in accelerating lattice-based cryptographic
schemes, we have implemented NTRU public key encryption scheme with the parameter
sets (ntruhps2048509 and ntruhps2048677) using TC-PC and INT32-PC. Results of
our GPU implementation are presented in Table 5, where they are compared against the
reference and AVX2 implementation in CPU.

Table 5: Comparing TensorTRU against other GPU and CPU implementations; INT32,
TC, and PC represent 32-bit integer units, tensor core, and polynomial convolution,
respectively.

N Operation
CPU GPU

Time (µs) Improvement ratio
Reference AVX2 INT32-PC TC-PC (INT32-PC / TC-PC)

509
Poly. Conv. 13.26 1.51 0.92 0.33 2.79
Encrypt 21.23 2.07 1.18 0.61 1.94
Decrypt 85.47 3.99 2.29 1.16 1.97

677
Poly. Conv. 25.15 2.34 1.80 0.66 2.72
Encrypt 33.84 2.99 2.42 1.24 1.95
Decrypt 125.64 6.55 5.07 2.51 2.02

For ntruhps2048509 parameter set, TC-PC implementation is 2.79×, 1.94× and
1.97× faster than INT32-PC for polynomial convolution, encryption and decryption
respectively. A similar speed-up ratio is also observed in ntruhps2048677, wherein
TC-PC implementation is 2.72×, 1.95× and 2.02× faster than INT32-PC. We observed
that TC-PC is more than 20× faster than the reference implementation for encryption
and decryption; it is also more than 2× faster than the AVX2 implementation. This shows
that GPU can be an effective accelerator to assist the computation in CPU, especially in
server environment where the CPU cores are usually busy in handling many other tasks.

4.3 Performance Evaluation Under Ephemeral Key Pair Scenario
By changing the dimension of matrix multiplication from M ×M to M × K, one can
compute K polynomial convolutions using the proposed tensor core technique, with the
same public/private key pair. Due to the limitation of current tensor core in NVIDIA
GPU that only handles 16× 16 matrix, K has to be in multiple of 16. From Table 6, we

Table 6: Performance of tensor core based polynomial convolution for M ×K dimension
(where both M and N are 512), INT32, TC, and PC represent 32-bit integer units, tensor
core, and polynomial convolution, respectively.

K 16 32 64 128 256 384

Time (µs)
CPU AVX2 1.51

GPU INT32-PC 2.53 2.05 1.30 1.05 0.93 0.91
TC-PC 3.74 1.88 0.95 0.72 0.54 0.36

Ratio (INT32-PC / TC-PC) 0.68 1.09 1.37 1.46 1.72 2.53

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 17

Table 7: Comparing the performance of TensorTRU with other existing NTRU and
classical PKC implementations in GPU. Timing is measured in µs.

Implementation Year N GPU Core Time Techniques(original/scaled)
Post-quantum cryptography (NTRU)

[HVP10] 2010 1171 GTX280 240 (40.0/ 5.00*) Schoolbook
[LKSP13] 2013 251 GTX275 240 (3.00/0.38*) Sliding window
[LGY+18] 2018 401 GTX1080 2560 (1.97/2.63*) Karatsuba

TensorTRU 2020
251

RTX2060 1920
0.29

Schoolbook401 0.78
1171 2.15

Pre-quantum cryptography (RSA and ECC)
RSA-3072 2020 - GTX1080 2560 (3,400/4,533*) Karatsuba[OJRZCCRH20]

ECC Curve25519 2020 - TITAN V 5120 (0.01294/0.03451*) Schoolbook[GZE+20]

* Performance scaled to match the number of GPU cores in RTX2060 (1,920 cores).

observed that the proposed TC-PC is more efficient than the conventional integer based
implementation when K ≥ 32. However, the performance is not as efficient as the case of
computing M ×M , and sometimes it is even slower than AVX2. For instance, considering
the case where both M and N are 512, GPU can complete one polynomial convolution
in 0.33µs (See Table 4), which is faster than all the combinations of M × K. This is
because the same polynomial a is reused for N convolutions against polynomial b, so the
overhead of pre- and post-processing are effectively amortized. On the other hand, AVX2
can complete one polynomial convolution in 1.51µs, so it is only beneficial to employ GPU
to perform polynomial convolutions if we allow K ≥ 64. For cases where K < 64, it is
better to use AVX2 for speeding up the polynomial convolutions.

4.4 Comparison with Other NTRU Implementation in GPU

Existing NTRU implementations on GPU platforms are presented in Table 7. Note that
the previous implementations targeted different polynomial sizes and GPU devices, which
are difficult to benchmark the performance, directly. To overcome this, we have imple-
mented the NTRU encryption to different polynomial sizes (i.e. N = 251, 401, 1171). We
also scaled execution timing results of previous implementations to provide a fair compari-
son; it is calculated as T ime

1920/core , where the number of cores in our GPU device (RTX2060)
is 1920. For the case N = 1171, the performance achieved by TensorTRU is 2.32× faster
than Hermans et al. [HVP10]. TensorTRU is also 1.31× faster than the implementation
by Lee et al. [LKSP13] for N = 251. Note that the sliding window approach requires
pre-computation and storage of the polynomial in look-up table, which can vulnerable to
side channel (timing) attacks. The most recent work by Lee et al. [LGY+18] exploited
Karatsuba algorithm to split the polynomials for more efficient computation; TensorTRU
using tensor core based polynomial convolution is 3.37× faster than their implementation.
Compared to RSA that relies on expensive modular exponentiation [OJRZCCRH20] and
very large key size, TensorTRU (N = 1171) is 2108× faster. Scalar multiplication in
ECC [GZE+20] is 62× faster than TensorTRU with N = 1171, but it is not consider
safe in the post-quantum world.

18 Tensor Crypto

4.5 TensorLAC: Application to LAC

LAC is a cryptosystem based on the poly-LWE variant of the Learning with Errors problem,
which was selected as Round 2 candidate in NIST PQC competition. The modulus of
LAC is restricted to q = 251, which allows each polynomial element to fit into a single
byte [LLZ+18]. The decoding correctness in LAC relies heavily on the ability of error
correction code (Bose-Chaudhuri-Hocquenghem (BCH)) to recover errors. Even though
LAC is not selected to advance into Round 3, it won the first prize of the post-quantum
cryptography competition hosted by Chinese Association for Cryptologic Research (CACR).
LAC remains an interesting candidate due to its’ superior implementation performance
and simplicity in design.

In this paper, we have extended our idea of using tensor core to compute polynomial
convolution in LAC. Since LAC is using modulus q = 251, one can use Configuration
5 (See Table 3) to implement polynomial convolution in tensor core. The polynomial
degrees in LAC are N = 512 and N = 1024, which appear to be multiple of 16, so it can
be computed by Algorithm 7 without padding zeros. However, the polynomial convolution
in LAC is of nega-cyclic form, which implies that we cannot use Algorithm 4 to arrange
the polynomial a (constant) into cyclic form. In this section, we present Algorithm 9 to
resolve this issue. The idea is similar to Algorithm 4, except that some of the elements are
converted to nega-cyclic form (lines 4-5).

Algorithm 9: LACParCyc: parallel algorithm to arrange polynomial in nega-
cyclic form.

Input: Polynomial in with degree N.
Output: Matrix out with N ×N dimension, which is the polynomial in organized in

nega-cyclic form.

1: tid=thread ID
2: bid=block ID
3: temp = in[(tid− bid)%N] B Launch N blocks and N threads in parallel

4: if tid− bid < 0 then
5: out[bid+ tid×M] = q − temp
6: else
7: out[bid+ tid×M] = temp

The implementation of polynomial convolution in LAC is similar to NTRU; it is
presented in Algorithm 10. Since polynomial elements in LAC are already represented in
8-bit integer (U8), we can use configuration 5 in tensor core, no type conversion is required.
This reduces one step compared to Algorithm 7. Firstly, one N ×N matrix with U8 and
another one N ×N matrix with FP32 are initialize in CPU. Next, Algorithm 9 is executed
to arrange the polynomial in nega-cyclic form (line 7), followed by matrix multiplication
in tensor core (line 8). Finally, the results from tensor core (FP32) are converted to U8
and modulo by q (line 9). Note that the last step is similar to Algorithm 6, except that
we are converting the results to U8 instead of U16.

Table 8 shows the implementation results of nega-cyclic polynomial convolution LAC in
CPU (reference and AVX2) and GPU (integer units and tensor core), respectively. TC-NPC
is showing 2.93× and 3.1× higher performance compared INT8-NPC, for N = 512 and
N = 1024 respectively. These speed-up are slightly higher compared to the Tensor-TRU,
because there is no need to convert the data from INT8 to FP16 as required in NTRU.

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 19

Algorithm 10: Parallel implementation of LAC polynomial convolution using
tensor core in GPU.

Input: polynomial a with degree N (constant polynomial), N polynomial b with degree
N (non-constant polynomials), modulus q.

Output: N ×N Matrix C, which contains the nega-cyclic convolution of polynomial a
and many different polynomial b.

// CPU Phase:
1: u8cyclic_A B Initialize one matrix in U8
2: fp32_C B Initialize one matrix in FP32

// GPU Phase:
3: warp_tot = (N/16)2 B Calculate total number of warps required
4: tc_threads = warp_tot× 32
5: tc_blocks = tc_threads/max_threads B Calculate number of blocks
6: tc_threads = max_threads B Limit the number of threads to max_threads
7: LACParCyc< N,N > (u8cyclic_A, a) B Algorithm 9
8: TC-PC< tc_blocks, tc_threads > (u8cyclic_A,B, fp32_C) B Algorithm 3
9: ParFP32toU8< N,N > (C, fp32_C)

Table 8: Comparing TensorLAC against other GPU and CPU Implementations; INT8,
TC, and NPC represent 8-bit integer units, tensor core, and nega-cyclic polynomial
convolution, respectively.

Implementation (N) Operation
CPU GPU

Time (µs) Improvement ratio
Reference AVX2 INT8-NPC TC-NPC (INT8-NPC/TC-NPC)

LAC-128 (512) Poly. Conv. 55.93 4.35 1.23 0.42 2.93
LAC-192/256 (1024) Poly. Conv. 216.74 20.68 3.88 1.25 3.10

4.6 TensorFro: Application to FrodoKEM
FrodoKEM uses algebraically unstructured lattices, where its’ security is based on the
standard learning with errors problem [BCD+16]. Secrets in FrodoKEM are sampled
from a discrete Gaussian distribution over the integers. FrodoKEM is selected as an
alternate candidate in the third round of NIST PQC competition. The official FrodoKEM
parameter sets require that the modulus q = 215 and q = 216, which is too large to be
represented in FP16, so we cannot utilize tensor core to perform the matrix multiplication.
However, Frodo allows flexible configuration on its parameters to trade-off between security
level, size of modulus and the probability of decryption failure. One of the interesting
parameters is proposed by Bian et al. [BHS19], wherein the modulus can be as small
as q = 211. This parameter set allows the server side to perform only matrix-vector
multiplication (N× ñ), but it requires the client side to do much more work (N× m̃). On
the other hand, one can also utilize the parameter searching script provided by FrodoKEM
Round 3 submission [ABD+20] to obtain a parameter set with small modulus. In this
paper, we have instantiated another parameter set for FrodoKEM, which is presented
in Table 10. By restricting q = 2048 and σ = 1.0, we obtained a parameter set which
has a balanced workload between server and client, since m̃ and ñ is close to each other.
We show that the proposed tensor core technique can be utilized to accelerate the matrix
multiplication in these two variant parameter sets.

The polynomial degree N for Frodo-II and TensorFro are not in multiple of 16, so
we need to use the proposed method to pad zeros to the polynomial (refer to Figure 5b).
For Frodo-II, the server side can pack many polynomials into a matrix and perform

20 Tensor Crypto

Table 9: Parameter instantiations of FrodoKEM.

Implementation q σ N ñ m̃ Security level (bit) Error distribution
Frodo-Rec-1 [ABD+20] 215 2.8 640 8 8 141 ±12

Frodo-II [BHS19] 211 1.0 570 1 256 137 ±4
TensorFro 211 1.0 560 11 12 136 ±4

Table 10: Performance of tensor core based matrix multiplication for Frodo variants,
INT32, TC, and MM represent 32-bit integer units, tensor core, and matrix multiplication,
respectively.

Implementation (application, parameter) Time (µs) Improvement ratio
INT32-MM TC-MM (INT32-MM/TC-MM)

Frodo-II (server side, 570× 570) [BHS19] 1.35 0.44 3.07
Frodo-II (client side, 570× 512) [BHS19] 1.41 0.43 3.28

TensorFro (server side, 560× 550) 1.39 0.42 3.31
TensorFro (client side, 560× 552) 1.39 0.42 3.31

many matrix-vector multiplication using Algorithm 3. The client side can pack two N×m̃
(570 × 256 and perform matrix multiplications with tensor core. Similar technique is
also applicable to TensorFro on both client and server side by packing multiple smaller
matrices to form a larger one. Note that we do not need to arrange the polynomial in
cyclic form, since FrodoKEM does not perform convolution.

The error vectors in FrodoKEM is spanning across a larger distribution compared to
ternary values in NTRU and LAC. For instance, Frodo-II and TensorFro have error
vector with values between {-4, -3, ...0, ..., +3, +4}. When the proposed tensor core
based technique is used, the multiplication between a 11-bit (q = 2048) sample and error
vector produces a maximum of 13-bit value in floating point (i.e. (211 − 1)× 4 ≈ 213 and
(211 − 1)×−4 ≈ −213). In the process of polynomial convolution, the accumulated value
can grow up to a maximum of N × (213 − 1). Hence, for the two variant parameter sets,
the values stored in the accumulator can grow up to 23-bit (Frodo-II, log2570× (213 − 1);
TensorFro, log2560× (213 − 1)). This allows the matrix multiplication to be computed
correctly within the single precision, so we can utilize the tensor core Configuration 1.

Table 10 shows the results of matrix multiplication for Frodo variant parameter
sets. The achieved speed-up between INT32-MM and TC-MM is similar to the cases in
TensorTRU and TensorLAC.

5 Conclusion
The introduction of tensor core into GPU had stimulated many efficient implementations
of deep learning and mixed-precision scientific computing applications. In this paper, we
present the first tensor core aided cryptography implementation on GPU. The proposed
tensor core based polynomial convolution is faster than the conventional implementations
that rely on integer units in GPU. Since the proposed tensor core based polynomial
convolution is a generic algorithm, it can be applied to any sizes of matrix/polynomial.
This is proven through experimental evaluations, where the proposed techniques are used
to speed up various lattice-based cryptosystems. Although the current tensor core can only
support limited floating point precisions and integer types, we believed that the situation
may change in near future. In particular, the introduction of FP64 into tensor core recently
opens up its’ adoption into the mainstream scientific computing applications, fostering
the use of GPU in a wider range of applications. As this development trend persists, we

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 21

believe that the performance of FP64 tensor core will increase and eventually support
more parameters for lattice-base cryptography.

References
[AAAS+19] Gorjan Alagic, Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David

Cooper, Quynh Dang, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene
Peralta, et al. Status report on the first round of the NIST post-quantum
cryptography standardization process. US Department of Commerce,
National Institute of Standards and Technology, 2019.

[ABD+20] Erdem Alkim, Joppe W Bos, Léo Ducas, Patrick Longa, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghu-
nathan, and Douglas Stebila. FrodoKEM learning with errors key encap-
sulation, 2020.

[AT14] Sedat Akleylek and Zaliha Yüce Tok. Efficient interleaved Montgomery
modular multiplication for lattice-based cryptography. IEICE Electronics
Express, 11(22):20140960–20140960, 2014.

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! practical, quantum-secure key exchange from LWE.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1006–1018, 2016.

[BCLVV16] Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine Van Vredendaal. NTRU Prime. IACR Cryptol. ePrint Arch.,
2016:461, 2016.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM.
In 2018 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 353–367. IEEE, 2018.

[Ber09] Daniel J Bernstein. Introduction to post-quantum cryptography. In
Post-quantum cryptography, pages 1–14. Springer, 2009.

[BHS19] Song Bian, Masayuki Hiromoto, and Takashi Sato. Filianore: Better
multiplier architectures for LWE-based post-quantum key exchange. In
Proceedings of the 56th Annual Design Automation Conference 2019,
pages 1–6, 2019.

[BS10] Joppe W Bos and Deian Stefan. Performance analysis of the SHA-3 can-
didates on exotic multi-core architectures. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 279–293. Springer,
2010.

[CA69] Stephen A Cook and Stål O Aanderaa. On the minimum computation
time of functions. Transactions of the American Mathematical Society,
142:291–314, 1969.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost
Rijneveld, John M Schanck, Peter Schwabe, William Whyte, and Zhenfei
Zhang. NTRU algorithm specifications and supporting documentation.
2020.

22 Tensor Crypto

[DHP+20] Dipayan Das, Jeffrey Hoffstein, Jill Pipher, William Whyte, and Zhenfei
Zhang. Modular lattice signatures, revisited. Des. Codes Cryptogr.,
88(3):505–532, 2020.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and
Frederik Vercauteren. SABER: Module-LWR based key exchange, CPA-
secure encryption and CCA-secure KEM. In International Conference
on Cryptology in Africa, pages 282–305. Springer, 2018.

[DLL+18] Léo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM: Digital
signatures from module lattices. 2018.

[DSS+16] Wei Dai, Berk Sunar, John Schanck, William Whyte, and Zhenfei Zhang.
NTRU modular lattice signature scheme on CUDA GPUs. In 2016
International Conference on High Performance Computing & Simulation
(HPCS), pages 501–508. IEEE, 2016.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. FALCON: Fast-fourier lattice-based
compact signatures over NTRU. Submission to the NIST’s post-quantum
cryptography standardization process, 2018.

[GZE+20] Lili Gao, Fangyu Zheng, Niall Emmart, Jiankuo Dong, Jingqiang Lin,
and Charles Weems. Dpf-ecc: Accelerating elliptic curve cryptography
with floating-point computing power of gpus. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 494–504.
IEEE, 2020.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-
based public key cryptosystem. In International Algorithmic Number
Theory Symposium, pages 267–288. Springer, 1998.

[HPS+14] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and
William Whyte. Transcript secure signatures based on modular lattices.
In Michele Mosca, editor, Post-Quantum Cryptography - 6th International
Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014.
Proceedings, volume 8772 of Lecture Notes in Computer Science, pages
142–159. Springer, 2014.

[HPS+17] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman,
William Whyte, and Zhenfei Zhang. Choosing parameters for ntruencrypt.
In Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 -
The Cryptographers’ Track at the RSA Conference 2017, San Francisco,
CA, USA, February 14-17, 2017, Proceedings, volume 10159 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2017.

[HRSS17] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
High-speed key encapsulation from NTRU. In Wieland Fischer and Nao-
fumi Homma, editors, Cryptographic Hardware and Embedded Systems -
CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science, pages 232–252. Springer, 2017.

Wai-Kong Lee, Hwa-Jeong Seo, Zhenfei Zhang and Seongoun Hwang 23

[HVP10] Jens Hermans, Frederik Vercauteren, and Bart Preneel. Speed records for
NTRU. In Cryptographers’ Track at the RSA Conference, pages 73–88.
Springer, 2010.

[Kar63] Anatolii Karatsuba. Multiplication of multidigit numbers on automata.
In Soviet physics doklady, volume 7, pages 595–596, 1963.

[KRSS19] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffe-
len. pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4.
2019.

[KY10] Abdel Alim Kamal and Amr M Youssef. Enhanced implementation
of the NTRUEncrypt algorithm using graphics cards. In 2010 First
International Conference On Parallel, Distributed and Grid Computing
(PDGC 2010), pages 168–174. IEEE, 2010.

[LGY+18] Wai-Kong Lee, Bok-Min Goi, Wun-She Yap, Denis Chee-Keong Wong,
and Sedat Akleylek. Fast NTRU encryption in GPU for secure
IoP communication in post-quantum era. In 2018 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted Com-
puting, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1923–1928.
IEEE, 2018.

[LKSP13] Mun-Kyu Lee, Jung Woo Kim, Jeong Eun Song, and Kunsoo Park.
Efficient implementation of NTRU cryptosystem using sliding window
methods. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, 96(1):206–214, 2013.

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue,
Jingnan He, Bao Li, Kunpeng Wang, Zhe Liu, and Hao Yang. LAC:
Practical Ring-LWE based public-key encryption with byte-level modulus.
IACR Cryptol. ePrint Arch., 2018:1009, 2018.

[MDCL+18] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and
Jeffrey S Vetter. NVIDIA Tensor Core programmability, performance &
precision. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 522–531. IEEE, 2018.

[NVI20] CUDA NVIDIA. CUDA C programming guide, version 11.2. NVIDIA
Corp, 2020.

[OJRZCCRH20] Eduardo Ochoa-Jiménez, Luis Rivera-Zamarripa, Nareli Cruz-Cortés,
and Francisco Rodríguez-Henríquez. Implementation of rsa signatures
on gpu and cpu architectures. IEEE Access, 8:9928–9941, 2020.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–332,
1999.

[Too63] Andrei L Toom. The complexity of a scheme of functional elements
realizing the multiplication of integers. In Soviet Mathematics Doklady,
volume 3, pages 714–716, 1963.

	Introduction
	Related Works
	Overview of GPU Architecture and CUDA Programming Model
	Tensor Core
	Lattice-based Cryptography
	Previous NTRU Implementations on GPU

	Optimized Implementation of NTRU
	Polynomial Convolution Through Tensor Core
	TensorTRU: NTRU Implementation Based on Tensor Core
	Ephemeral Key Pair
	Polynomial Addition

	Evaluation
	Performance Evaluation of Tensor Core Based Polynomial Convolution
	Performance Evaluation of NTRU
	Performance Evaluation Under Ephemeral Key Pair Scenario
	Comparison with Other NTRU Implementation in GPU
	TensorLAC: Application to LAC
	TensorFro: Application to FrodoKEM

	Conclusion

