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Abstract

Outsourcing computation allows resource limited clients to access computing on demand.
Various types of clusters, grids, and clouds, such as Microsoft’s Azure and Amazon’s EC2, form
today’s outsourced computing infrastructure. A basic requirement of outsourcing is providing
guarantee that the computation result is correct. We consider an automated and efficient way
of achieving assurance where the computation is replicated and outsourced to two contractors
by a smart contract that will decide on the correctness of the computation result, by comparing
the two received results. We show that all previous incentivized outsourcing protocols with
proven correctness fail when automated by a smart contract, because of copy attack where a
contractor simply copies the submitted response of the other contractor. We then design an
incentive mechanism that uses two lightweight response-checking protocols, and employ mone-
tary reward, fine, and bounty to incentivize correct computation. We use game theory to model
and analyze our mechanism, and prove that it has a single Nash equilibrium, corresponding to
the contractors’ strategy of correctly computing the result. Our work provides a foundation for
incentivized computation in the smart contract setting and opens new research directions.

1 Introduction

Outsourcing computation to cloud enables a client to access computational resources of cloud
providers on demand and benefit form unlimited applications that are offered by third party cloud
providers. Outsourcing computation has also been considered in distributed computation settings
such as SETI@home [25], where the aim is to employ unused computational resources of computing
nodes around the world to obtain solution to large computational problems, and has found diverse
applications such as finding COVID vaccine [19].

Verifying computation results. An essential requirement for the outsourcing scenarios above
is for the client to be able to efficiently verify the correctness of the received computation results.
Verifying computation dates back to the work of Babai [2] on proof systems, which was followed
by a large body of influential works in theoretical computer science [12, 15]. The rise of cloud
computing inspired verifiable computation systems for the cloud setting with strict efficiency re-
quirement for the verifier (e.g., verification cost logarithmic in the input size) [11, 10, 7]. Purely
cryptographic systems that use a single computing node [11, 10, 31], while attractive theoretically,
have limited applications in practice because of high computation and communication cost, rigidity
of parameters, and the challenge of correct implementation of complex cryptographic algorithms
[14, 30].
An attractive approach to verifying the computation result is to replicate the computation on
different computing nodes, and accept the result as correct if all nodes generate the same response.

1



This approach is natural and efficient for the client (Problem Giver), who only needs to compare the
received responses. The challenge, however, is to design a sound decision procedure that correctly
decides on the correct computation result when responses do not match.
Belenkiy et al. [4] initiated formalization of this problem using a rational adversary model when the
Problem Giver hires two rational Contractor(s) (two is the minimum number for the replication
approach) to perform the computation. They used game theoretic analysis to prove that by choosing
the monetary values of reward, fine, and bounty (extra reward in certain settings), the contractors
can be incentivized to perform their respective computations correctly. More specifically, they
proved that the game of incentivized computation has a single Nash equilibrium that corresponds
to the contractors using Diligent (honest) strategy. The decision protocol of the Problem Giver is
to compare the responses, and accept if they match. The case of mismatch was handled through
extra assumptions on the system such as high probability of one of the clouds being diligent, or
re-outsourcing to two new clouds. It resulted in several followup works [17, 20].

Rational and cryptographic adversaries. Active adversary for analyzing security protocols are
modelled as (i) malicious adversaries that can arbitrarily deviate from the protocol, and (ii) rational
adversaries, that have defined utilities and deviate from the protocol to maximize their utility.
Guaranteeing correctness for computation outsourced to two potentially malicious contractors is
only possible if one can assume that one of the two contractors is honest. Else, no assurance about
the results can be given.
This assumption, however, cannot be made when the client simply chooses two contractors among
a number of bidding ones. In fact, if the client were able to obtain such a guarantee, then it would
be likely that they could actually determine which of the two is the trustworthy one (e.g., through
reputation or other side information). Using rational adversary model, however, does not require
this assumption. The model captures deviating behaviour of clouds, whose goal is to cut their cost
and receive the reward with minimum work. The model was used to analyze deployed outsourcing
systems such as Truebit [28] that uses a smart contract and replicated computation to provide
correctness guarantee for outsourced computation. This is the adversary model that we use in this
paper.

Smart contracts for incentivized outsourcing. A blockchain-based smart contract (SC) is a public
program that resides on the blockchain and runs on the underlying consensus based computation
platform that ensures trusted execution of the program. Using smart contracts to manage incen-
tivized outsourcing protocols, in addition to the attractive properties of guaranteed correctness and
transparency of SC execution, has the very important property of support for native transfer of
fund between user accounts, which is essential in incentivized protocols. SC computation, however,
is very expensive (each instruction is run by the consensus nodes in the blockchain) and so the
main computation must be performed off-chain.
Using smart contract to perform the decision process in Belenkiy et al. [4] model would appear
as an attractive way of building an outsourcing service with provable correctness: (i) Problem
Giver sends the computation description to the SC, (ii) SC chooses two contractors to perform the
computation; (ii) if their submitted results match SC accepts and rewards the contractors, else,
uses followup procedures, such as running the protocol with another set of two contractors, are
employed to obtain the result. Using monetary compensation, according to Belenkiy et al. , will
ensure that with a high probability the protocol will produce correct results. (We omit details such
as registration fees and the like.)
In this work we show that this SC managed protocol based on an incentivized protocol with provable
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correctness, will completely fail because of a new attack that is possible in the SC environment,
calledcopy attack, in which a contractor will wait for the other contractor to send its response, and
copy and submit the same response. Copy attack perfectly matches the rationality assumption, as
it minimizes the computation of the copying contractor, and is possible because of (i) the inherent
delay in communication with the blockchain due to the consensus algorithm, and (ii) that the SC
cannot hold a secret and communication with it will be in plaintext. The attack undermines the
independence of the two computations, which is the basis of correctness by replication, and thereby
incentivizes computing nodes not to perform the correct computation.

An overview of our results. We consider outsourcing to two independent rational contractors
using a smart contract, define possible strategies of the contractors in the new setting, and design
two challenge and response protocols used by the SC to detect deviating contractors, that together
with monetary incentives will provably result in correct computation result. Our proof is game
theoretic and uses Nash equilibrium as the solution concept.
Defining the game. Copy attack results in a “waiting deadlock” which could leave the parties waiting
indefinitely: each contractor waits to see the result of the other contractor. Rational contractors
however can avoid this deadlock by using randomized submission time. The SC will use time limits
to ensure timely completion of the results, and challenge-response protocols together with the
payments to influence the behaviour of the players. The game is between the the two contractors,
each wanting to maximize their utility. More details below.

Strategies. We start with the two basic strategies introduced in [4]: Diligent (D) strategy where
the contractor follows the protocol, and Lazy (L) where the contractor uses a shortcut algorithm
that produces the correct result with probability q < 1 (and so there is a probability that the cloud
be rewarded) We assume the same algorithm is used by all Lazy contractors1. This is effectively
the worst case in the sense that two Lazy contractors will have matching results and in Belenkiy
et al. protocol, they both will receive the reward (and SC will accept the matching result). In the
SC setting, however, there are four new attractive strategies: a basic Guess (G) strategy, where
the computation result is simply guessed, and three variations of copy strategy, where the copy
attacker uses one of the three basic strategies as a backup in case that its copy attempt fails. That
is, a Copy attacker will choose a random time (within a well-defined interval) to copy; however, if
there is no published result by the other contractor, it will use its backup strategy, which is one of
the three basic types (D, L, G).

The protocol. Each contractor will submit a response that is a pair (y, z) where y is the computation
result, and z is a fingerprint of the execution trace that we define as the Merkle root of a tree where
leaves are ordered in time, and each represents an intermediate computation state. (That is, the first
recorded state is the leftmost, followed by the second intermediate state, etc.). Matching results will
happen when both contractors use Diligent, Lazy, or Copy strategies, and so to guarantee the correct
final result (incentivize Diligent behavior), SC must use extra checking protocols. We introduce two
challenge and response cryptographic subprotocols between the SC and the contractors, to enable
the SC to detect deviating contractors. The first subprotocol is called the Match Check protocol,
which is a single-round challenge and response protocol that is used when the two responses match,
and is used to detect if one of the responses is a copied value. The protocol allows the SC to decide
if (y, z) is obtained through a computation or is copied, or randomly generated by the G strategy.
(We note that if one contractor simply guesses a response, and the second contractor can copy,
and the results would match.) The second subprotocol is called the Mismatch Check protocol,

1The same assumption as [4, 17]
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and is used when the two responses do not match. The subprotocol is a multi-round challenge
and response bisection protocol that allows the SC to correctly and efficiently decide between two
responses, where one is obtained through D strategy, and the second is by a cloud that uses L
strategy. Proving correctness of computation is by showing that the choices of incentive values lead
to a single Nash Equilibrium for the game with the strategy pair (D,D).
The challenge in designing incentives and analyzing the system is partly due to the fact that the
two subprotocols cannot separate (L,L) from (D,D), and (L,G) from (D,G). That is, the Match
Checkprotocol will accept the responses of two (L,L) contractors, and Mismatch Checkprotocol,
when used for non-matching responses of contractors with strategy pair (L,G), will accept the
contractor with strategy L. Using reasonable assumptions on the system parameters (Section 4),
we prove that our solution achieves correctness of the computation result (Theorem 4.1).

Contributions: We show that copy attack has a devastating effect on all known incentivized
systems [4, 17, 20]. Our game theoretic analysis requires a much wider set of strategies to capture
SC setting in the game analysis, and analyse incentivization that leads to correct computation. Our
system design is optimal in the following sense. Firstly, in Appendix B, we prove that all previous
two-party incentivized protocols fail against a Copy attacker when taken directly to the SC setting.
Secondly, match checking, mismatch checking, and bounty are all necessary components of the
design. In particular, in Appendix C, we show that without using the match checking protocol,
only using mismatch checking together with bounty is not be effective. This is shown by giving
game theoretic analysis for both cases of with and without bounty (on top of mismatch checking),
and proving that in both cases the Nash equilibrium will correspond to (CG,CG). These analyses
lay the foundation of incentivized outsourcing to multiple rational contractors in the SC setting.
Copy attack in related works. Avizheh et al. [1] showed that copy attack will break security of an
outsourcing protocol due to Canetti et al. [5] in the malicious adversary model when used in the
SC setting. The protocol in [5] provided provable security against malicious adversary assuming at
least one contractor was honest. Avizheh et al. showed security of the protocol can be restored by
adding a single challenge and response step, executed when the two responses match. Restoring
correctness guarantee in incentivized outsourcing in SC setting, however, needs a completely new
protocol and overhaul of the mechanism design and analysis as given in this paper.

2 Preliminaries

Smart Contracts. A blockchain is a decentralized distributed ledger system that maintains a
sequence of blocks that are ordered groups of transactions that are agreed upon by all system
participants using a consensus algorithm. Blockchain systems allow users to have accounts and
make transactions to other accounts. A smart contract is a trusted program that runs on a dis-
tributed ledger system (e.g., Ethereum), and its computation, communication, and stored values
are transparent. More details can be found in [23].
Strategic Games. A strategic game is a model of interactive decision making where players
choose their actions simultaneously and independently. A player’s utility is their received payments
minus their costs. We consider two-player games that can be described by a table, with rows and
columns labelled by possible strategies (actions) of players 1 and 2, respectively. Each cell of the
table contains a pair of real numbers corresponding to the utilities of players 1 and 2, respectively.
The goal of a player is to maximize their utility. Nash equilibrium corresponds to a cell of the table
where every player’s strategy is the best response, given the other player’s strategies. Therefore, no
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single rational player would deviate from the equilibrium. In the computational setting, negligible
differences in the utilities may be ignored, and players should be implementable in probabilistic
polynomial time. For details, refer to [21].
Incentivizing correct computation. Belenkiy et al. [4] proposed an incentive mechanism that
includes (i) reward, the money paid to a contractor that correctly performs the computation, (ii)
fine, the money charged to a contractor that is detected to have produced an incorrect result, and
(iii) bounty, which is the money that is paid to a contractor that correctly performs the computation
while the other contractor is detected to return an incorrect result. The two contractors use
two strategies D or L. Using game theoretic analysis, Belenkiy et al. proved that the game of
incentivized computation has a single Nash equilibrium, which corresponds to both contractors
performing the computation correctly.
Merkle Hash Tree is a binary tree that is constructed over a sequence of data elements D =
(d1, · · · , dn) using a collision-resistant hash function. The leaves of the tree are the hash values of
elements of D, and an internal node is the hash of the concatenation of its two child nodes. A Merkle
tree construction starts from the leaves and moves to the root that is denoted by z = MHroot(D).
The proof of consistency for the element di with respect to the root z, called Merkle proof, is denoted
by pi = MHproof (D, di), and consists of the hash values of the siblings of nodes along the path from
H(di) to the root. Given a Merkle proof pi for the element di and the root z for the data sequence
D, the V erifyMHProof(z, i, di, pi) function verifies consistency of di, with respect to the Merkle
tree with root z using the proof pi. The function is efficiently (logarithmic in the sequence length)
and publicly computable, and outputs True if the verification succeeds, and False otherwise.
Representing computation and its trace. The response of a contractor consists of a cal-
culated value, together with commitment to the computation trace. We express a computation
using a Turing machine (TM) and an input tape that initially stores the input. A computation
state corresponds to a Turing machine configuration (state, head, tape) and is stored as a reduced
configuration defined by [5]:

(state, head, tape[head];MHroot(tape))

where tape[head] denotes the tape content at the location of the head, and MHroot denotes the
root of a Merkle Hash tree over the tape. A contractor uses the sequence of computation states
to express the execution trace of their computation. Let the jth reduced configuration be denoted
by rcj = (sj , hj , vj , rtj), where sj and hj represent the state and head position, respectively, vj
represents the tape at the given head position, tape[head] , and rtj = MHroot(tj) is the root of
the Merkle tree on the tape tj at that stage. Let RC = (rc1 · · · rcn), denote the sequence of
reduced configurations of the Turing Machine, and let z denote the root of the Merkle tree that is
constructed over RC. Figure 1 visualizes a sample reduced configuration with its Merkle tree, and
the Merkle tree built over the sequence of reduced configurations, resulting in the z value.

3 Model

We consider a setting with three types of entities: (i) a Problem Giver who wants to outsource
the computation of a deterministic function2 f() on an input x, (ii) a set of Contractors who are
incentized to perform the computation, and (iii) a Smart Contract (SC) that interacts with the
parties.

2A randomized algorithm can be outsourced after de-randomization using a pseudorandom generator.
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State Head Tape[Head]

Tape[0] Tape[1] Tape[N]...

H(Tape[0],
Tape[1])

H(Tape[N-1],
Tape[N])

MHroot(Tape)

...

Reduced Configuration 1 (rc1)

H(rc1) H(rc2) H(rcn)...

H(H(rc1),
H(rc2))

H(H(rcn-1),
H(rcn))

z

...

Figure 1: Merkle tree built on the sequence of reduced configurations. A reduced configuration
includes the root of the Merkle tree built on the tape of that state.

The SC receives deposits from the participants, and after receiving responses from the contractors,
executes a Judge protocol that decides on the computation result based on the received responses
and possibly additional interactions with the contractors, and performs money transfers to/from
contractors’ accounts as specified by the protocol. The Problem Giver makes the required deposit
to the SC in advance, and expects to obtain the correct computation result. A Contractor is rational
and wants to maximize its utility that is expressed as the net reward. The SC is a transparent
trusted program that runs on the blockchain consensus computer and executes the prescribed
protocol. The SC can be created by the Problem Giver, or by an established service provider.
Outsourced computation. The Problem Giver wants the value of a function f() on an input
x. The function is expressed by a Turing Machine (TM) for the computation of f() on the input
tape that contains x. The response of a contractor is a pair (y, z) where y is the computation
result (if correct, y = f(x)), and z is the root of a Merkle hash tree that is constructed on the
sequence of reduced configurations of the TM’s computation. SC randomly chooses two contractors,
from a pool of available contractors. The pool is large enough that we can assume the two chosen
contractors are independent.

Goals of Incentivized Outsourced Computation are the following:
1. The result received by the Problem Giveris correct with overwhelming probability.
2. Contractors are incentivized to participate and correctly perform the computation.
3. The computation and communication at the SC is minimal.

An implied goal of the system is that a contractor that has correctly performed the computation
is always rewarded.

Strategies. There are two basic strategies, (i) Diligent (D) that correctly executes f(x), and (ii)
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Lazy (L), where the contractor deviates from correct calculation to reduce its computation cost.
A lazy algorithm is referred to as a q-algorithm, and generates the correct result (not the correct
response) with a non-negligible chance q (generating the correct response has negligible probability
ε). A q-algorithm can be any maliciously constructed algorithm that performs fewer computation
steps and produces an acceptable value for the computation. It can simply skip some steps of
the original computation; but in all cases the contractor has a computation trace that matches its
committed root of execution tree. For example, a SETI@Home [25] image processing program can
simply skip processing some pixels of the image. We assume all all Lazy contractors use the same
algorithm and so their computation results match. Thus, without additional measures, they will
receive the reward. Belenkiy et al. [4] made the same assumption, inspired by the case that the same
SETI@Home [25] fake clients were downloaded by multiple participants (see [4]). A maliciously
constructed program can be made available to rational contractors, who will be attracted to the
reduced computation and the possibility of not being caught.

New strategies. We consider a new basic Guess (G) strategy, where a contractor guesses the
value of f(x). The strategy has negligible cost and because of copy attack, can lead to matching
results. The main difference between G and L strategies is that a (G,G) strategy pair will not lead
to matching responses (negligible chance), while an (L,L) pair will output matching responses. By
requiring the Merkle hash of the computation to be included in the contractor’s response, the prob-
ability that two submitted guessed responses match will be negligible even when the computation
result itself (f(x)) is from a small domain.
Copy strategy allows a contractor to completely skip the computation. A Copy contractor waits for
the “other” contractor to submit its response to the SC and copies and submits that response as its
own. This strategy is possible because of (i) SC’s transparency of computation and communication,
and (ii) the time interval between submitting a transaction to the blockchain network, and having
it published on the blockchain. Copy strategy is very attractive because it allows a contractor
to produce a matching result, and receive the reward with negligible work. However, since both
contractors can use this strategy, both contractors may end up waiting indefinitely. To overcome
this deadlock, a contractor will use a random time that is chosen from an appropriate range [T1, T2],
and copies the published response if exists; else, it resorts to one of the basic strategies. This leads
to Copy-Diligent (CD), Copy-Lazy (CL), and Copy-Guess(CG) strategies. Thus we obtain a total
of six strategies (including D,L,G), for the contractors as below.

• Diligent (D): Computes using the original algorithm. The response will always be accepted
and rewarded. The cost is cost(1).

• Lazy (L): Computes using a q-algorithm that is assumed common for all Lazy contractors.
The result will be correct with probability q, and the cost will be cost(q). With the use of
hashing, the response (result together with the hash of the computation) will be correct only
with negligible probability. This is a very critical observation on the Lazy contractors, first
made by [4].

• Guess (G): Creates a random bit string that matches the format of the submission to the
SC. The response will be correct with probability ε, and the cost is cost(ε) .

• Copy: The contractor chooses a random time from a time period; if the “other” contractor
has sent its response, it copies the response; else the contractor continues with one of the
original strategies: D, L, and G. There are three variations: Copy-Diligent (CD), Copy-Lazy
(CL), and Copy-Guess (CG). The cost of successful copying is cost(ε).

Towards a sound Judge protocol in the SC setting. A first approach towards constructing a
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Judge protocol is to base it on the Belenkiy et al. [4] protocol with proved correctness: (i) if the two
responses match, the Judge protocol outputs the result rewarding the contractors, (ii) else (when
the responses differ) the Judge uses additional steps to identify the correct result and the contractor
that is Diligent (if any). Belenkiy et al. and the follow-up works [20, 17] use extra assumptions or
approaches such as running the protocol multiple times, implying that, in a mismatched response
produced by a strategy pair (D,L) the Diligent contractor is identifiable. The following theorem
proves that in the SC setting this Judge protocol cannot produce correct result for the Problem
Giverusing reward, bounty, and fine as incentive.

Theorem 3.1. The incentivized computation protocol, with the possible contractor strategies
D,L,CG and the Judge protocol above (based on [4, 20, 17]) in the smart contract setting, has
a single Nash equilibrium that corresponds to the (CG,CG) strategy pair, leading to incorrect com-
putation result for the Problem Giver. Proof is in the Appendix.

Algorithm 1 Problem Giver

Set f, r, f(), x, τSC .
Deposit 2r to the SC account.
Wait τSC .
Obtain the result y and any fines collected from SC.

Algorithm 2 Contractor

Deposit f to the SC account.
Obtain f, r, f(), x, τSC from the SC.
Run the strategy (D,L,G,CD,CL, or CG), obtaining the result y and the hash z.
Submit the response (y, z) to the SC.
If accepted by the SC, obtain r and get back the deposit of f .

Algorithm 3 Copy contractor

Deposit f to the SC account.
Obtain f, r, f(), x, τSC from the SC.
Pick a random time t in [T1, T2].
At time t, check the SC.
if there is already a response (y, z) stored at the SC then

Submit the same response (y, z) to the SC.
else

Run the strategy (D,L, or G) according to the type, obtaining the result y′ and the hash z′.
Submit the response (y′, z′) to the SC.

end if
If accepted by the SC, obtain r and get back the deposit of f .

4 A Judge Protocol with Guaranteed Correctness

We first introduce notations that are used to express the working of the system, and then give
(reasonable) assumptions that will be used in the game analysis. Pseudocodes for the Problem
Giver and the contractors are in Algorithms 1, 2, and 3.
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Notations:
• y, z: The response of a contractor, which includes the result y of the computation, together

with the Merkle root z of the computation trace.
• r: The reward of a contractor in two cases, (i) when the SC receives two matching responses,

and (ii) when the SC receives two conflicting responses, but the contractor succeeds in the
Mismatch Check protocol.

• f : The fine charged to a contractor when their response is detected as incorrect. The fine
can be enforced by requiring the contractors to make a deposit at the start of the protocol.

• cost(1): The cost of the original algorithm, run by the Diligent contractors.
• cost(q): The cost of a q-algorithm, run by the Lazy contractors.
• cost(ε): The cost of guessing and copying both. ε is a negligible value.
• τD, τL:, : Time to compute the function using tD and L strategies.
• τD: Time to compute the function using the Diligent strategy.
• τL: Time to compute using the Lazy strategy.
• τN : Network delay between a contractor and the SC.
• τSC : Smart Contract deadline for receiving computation results.
• qS : The probability that the copying is successful for a Copy contractor, when the other con-

tractor also uses Copy strategy. (Interestingly, our results turn out to be nicely independent
of the actual value of this probability.)

• q0: The probability that neither contractor can copy the other’s response (because of closeness
of random times). Note that q0 + 2qS = 1 since either one of the contractors could copy or
neither could, when both contractors use Copy (they cannot both copy).

• f(): The function to compute, picked by the Problem Giver.
• x: The input to the function, picked by the Problem Giver.
• y: The result submitted by a contractor. Ideally, we want that y = f(x).
• z: The Merkle tree root submitted by a contractor.
• A contractor’s strategies are: D: Diligent, L: Lazy, G: Guess, CD: Copy-Diligent, CL:

Copy-Lazy, CG: Copy-Guess.
• C refers to a Copy contractor (CD,CL, or CG) who could successfully copy.

System Parameters and Assumptions:
1. r > cost(1). That is, the reward of performing the computation correctly exceeds the cost of

the computation. Otherwise, a rational contractor will not join the system.
2. All Lazy contractors use the same deterministic q-algorithm. This represents for example,

downloading a fake client. Therefore, the result of two Lazy contractors always match.
3. A q-algorithm produces correct computation result with probability q, per [4]. Note that

this only holds for the correctness of the computation result y = f(x), which is part of a
contractor’s response. The probability of producing the correct response (which also includes
the Merkle hash) is negligible. When two Lazy contractors get matched, they produce the
same response.

4. When a Lazy contractor is matched against a Diligent contractor, the probability that their
responses (y, z) match, is negligible. This is because the Lazy and Diligent algorithms are
different in at least one step, and so their corresponding execution trace on the same input x
and their associated Merkle roots, will be different with overwhelming probability. Similarly,
when a Guessing contractor gets matched against a non-copy contractor, the probability that
they return the same response is negligible. The probability of guessing a response that
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matches the response of another G,L, or D amounts to correct guessing of binary strings
that are at least 128 or 160 bits (Merkle root), and so is negligible. 3

5. The cost of a q-algorithm is cost(q), and cost(1) > cost(q). (Otherwise there is no need to
employ a q-algorithm.)

6. We assume cost(q) > cost(ε). Thus, guessing and copying constitute the least costly actions.

7. Once a computation result is produced, it will be submitted to the SC. That is, a contractor
will not add additional delay to the computation.

8. A contractor knows a good estimate of the computation time of different strategies, as well
as network delay. That is, in particular, it knows upper bounds on τD > τL and τN .

9. The interval [T1, T2] that is used by the Copy contractors is [τD + τN , τSC − τN ]. That is, a
copying contractor waits for a non-copy contractor to produce and submit its response.

10. The probability that two Copy contractors pick very close random times such that neither have
the opportunity to copy from the other is negligible. This can happen if the first contractor
cannot copy because no result is published, and the second contractor’s time is too close to
the first contractor to receive its published value. Note that the random time can always be
selected at coarser intervals (e.g., at multiples of τN ). We assume the probability of selecting
the exact same (coarse) time is negligible.

11. The computation deadline, τSC , is set by the smart contract and is public. This time satisfies
τSC > τD + τN so that a Diligent strategy can succeed.

12. The interval [T1, T2] that is used by the Copy contractors is [τD + τN , τSC − τN − T ] where
T is τD if the contractor is Copy-Diligent, τL if the contractor is Copy-Lazy, negligible if the
contractor is Copy-Guess.

13. τSC >> 2τD + 2τN such that Copy-Diligent is a viable strategy (a CD contractor can wait
for a D contractor to finish, and if there is still no submitted response, can still execute its
own Diligent computation).

Assumptions (7), (8) and (9) imply that the copy strategy C will be used after the contractor that
uses D, L, or G strategy has completed and submitted its computation, and the result can be seen
by the copying contractor. This implies a Copy contractor always succeeds copying the response
of a non-copy contractor. Assumption (10) implies that when two Copy contractors play against
each other, one of them will succeed in copying (i.e., q0 is negligible). We show that our results
turn out to be independent of this assumption and we only use it for simplicity of the presentation
and analysis.

4.1 The New Judge protocol

Let the two contractors be denoted by Pi, i = 1, 2, each constructing a response using their chosen
strategy and sending the pair (yi, zi), i = 1, 2, to the SC. For the Diligent strategy, we have yi =
f(x). Upon the receipt of both responses, the SC runs the following Judge protocol:

• If (y1, z1) = (y2, z2), run the Match Check protocol.
• Else, when (y1, z1) 6= (y2, z2), run the Mismatch Check protocol.

3Recall that the difference between G and L strategies is that the response submitted by two L contractors will
match, whereas the response submitted by two G contractors will not match, except with negligible probability. Thus,
the Lazy contractor paradigm is enough to model submitting matching guesses (e.g., using the same pseudorandom
seed).
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Algorithm 4 Match Check

Let ni, i = 1, 2 denote the lengths of RCi, i = 1, 2.
Judge generates two PRNs, rand1 and rand2.
Judge→ Pi : randi, i = 1, 2
Pi → Judge : (rcirandi , rc

i
randi+1,MHProof(RCi, rcirandi),

MHProof(RCi, rcirandi+1), p
i
randi

), i = 1, 2.
Judge uses V erifyComittedReducedStep() on the submitted response.
The result of a contractor who passes the verification will be accepted.

Algorithm 5 Mismatch Check Protocol

n′ = min{n1, n2}, where ni is the length of the sequence of reduced configurations of Pi.
zi = MHroot(RCi), i = 1, 2
Perform Committed Binary-Search (Algorithm 6)given zi = MHroot(RCi), i = 1, 2, with the
two contractors to find the smallest j, where rc1j = rc2j and rc1j+1 6= rc2j+1.
Judge → Pi : j , i=1,2.
Pi →Judge :
(rcij ,MHProof(rcij , RC

i), rcij+1,MHProof(rcij+1, RC
i), pij)

Judge verifies using V erifyCommittedReducedStep().
Result of Pi is accepted if the output is True.

Checking matching submissions. Matching responses occur in all variations of Copy, and also
for strategy pairs (L,L) and (D,D), and to have guaranteed correctness one must use extra checks.
We prove this in Appendix C by showing that the equilibrium corresponds to (CG,CG) when the
Match Check subprotocol (Algorithm 4) is not employed (instead, matching responses are simply
accepted), but only Mismatch Check subprotocol (Algorithm 5) is used.
Note that a strategy pair (L,L) will result in a matching responses, and the Match Check protocol
will be run. The challenged steps, however, will be responded consistently with the committed roots,
and because there could be a good chance that the Match Check protocol chooses a computation
step that is the same in the q-algorithm as the original computation, the Lazy approach will remain
undetected. For example, consider a Lazy approach where the contractor skips the last several steps
of the correct computation. This cuts down the cost of computation, and will not be detected by
the Judge protocol when two L responses are received, and so the computation result will be
incorrect. Our outsourcing mechanism with fines, rewards, and bounties will result in the desired
(Diligent) equilibrium nevertheless. Additionally, for (L,C) strategy pair, it is possible again that
the challenged step of the q-algorithm is the same as the correct algorithm, and L strategy will
mistakenly be identified as D, whereas C will be penalized, since it cannot respond to the challenge
as it did not perform any computation. Copying is bad with the new Match Check protocol, since
it cannot respond to the Judge challenges.

Checking mismatching submissions. When the submitted responses do not match, the SC
needs to decide which one to accept (if any). The goal is to distinguish a D strategy against L or G
strategies (as well as variation of copy strategies that result in similar strategy pairs). The protocol
will correctly identify D against L or G, but incorrectly reward L against G. In the case of (G,G)
pair, both contractors will be fined. Yet, this is enough to achieve the desired Diligent equilibrium
as we show. The Committed Binary-Search protocol is a modified version of [5] such that each

11



Algorithm 6 Committed Binary-Search Protocol

Input: ng, nb, z
1 = MHroot(RC

1), z2 = MHroot(RC
2)

repeat
w = (nb − ng)/2 + ng
Problem Giver → P1, P2 : w
Pi → Problem Giver : rciw,MHproof (rciw, RC

i) i=1,2
if V erifyMHProof(zi, w, rciw, p

i
w) = False then

Declare i as Cheater, Exit.
end if
if (rc1w = rc2w), then
ng = (nb − ng)/2 + ng,

else
nb = (nb − ng)/2 + ng

end if
until nb = ng + 1

Strategies Match Check Result Strategies Mismatch Check Result

D,D D + D+ D,L D + L−
D,C D + C− D,G D + G−
L,L L+ L+ L,G L+ G−
L,C L+ C− G,G G− G−
G,C G− C−

Table 1: Judge protocol results. The worst-case for the Problem Giver is assumed. There is no
ordering of the contractors since the result would be symmetric (e.g., D,C and C,D are the same
in this representation). + indicates being rewarded, − indicates being fined.

query is verified against the submitted Merkle root, and at the end, since the responses are different,
finds the first step where the two computation traces of the contractors differ. We present further
details in Appendix A. The protocol is efficient and finishes in one round, significantly reducing the
need for extra assumptions in Belenkiy et al. [4] or re-outsourcing as in [17].
Table 1 visualizes the Judge protocol results. Observe that when two Copy contractors get matched,
the cases boil down to one of the cases in the table: (CD,CD) boils down to (D,C) since one (either
P1 or P2) copies and the other executes the computation Diligently, and similarly (CL,CL) boils
down to (L,C) and (CG,CG) boils down to (G,C). The Judge protocol identifies a Diligent
contractor (if any) and always rewards them (never fines Diligent contractors). But, the Judge
protocol may also incorrectly reward non-diligent contractors with incorrect responses.
Remark. We note that neither the Mismatch Check and Match Check protocols, nor the bounty
usage alone, can lead to an equilibrium that corresponds to the correct result. However, with a well
designed combination of them, we achieve the desired mechanism. This is an innovative aspect of
our work.
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P1, P2 D L G CD CL CG

D uD, uD uDB, u− uDB, u− uDB, u− uDB, u− uDB, u−
L - uL, uL uLB, u− uLB, u− uLB, u− uLB, u−
G - - u−, u− u−, u− u−, u− u−, u−
CD - - - uCDB, uCDB uCDB, uCLB uCDB, u−
CL - - - - uCLB, uCLB uCLB, u−
CG - - - - - u−, u−

Table 2: Utility table, with copy protection. Note that the utilities in the table represent a symmetric
game (not a symmetric matrix), thus unnecessary cells are omitted.

4.2 Game Analysis

Our Judge protocol design results in Table 2. Below, we detail the utilities in the table (we follow
the row order):

• The utility of the strategy D against another D is uD = r−cost(1): The results would match,
and the contractor will receive the reward, while paying the cost of the computation.

• The utility of the strategy D against others is r − cost(1) + b(1 − ε): The Judge protocol
will identify the diligent versus others, except with negligible probability, as discussed. The
Diligent contractor will obtain the reward and the bounty. We approximate this utility as
r − cost(1) + b(1− ε) ≈ r − cost(1) + b and denote as uDB.

• The utility of the others against theD strategy is rε−f(1−ε)−cost(q) < 0: The Judge protocol
will catch them against Diligent. We approximate this as rε−f(1−ε)−cost(q) ≈ −f−cost(q)
which is negative, and denote it in the table with u−.

• The utility of strategy L, against another L is uL = r − cost(q): They both return the same
response, will be able to pass the Judge protocol (since we assume the worst-case q-algorithm),
hence they both get the reward. In any case, they pay the cost of the q-algorithm.

• The utility of the L strategy against other non-Diligent strategy (G,CD,CL,CG) is r −
cost(q) + b(1 − ε): The Judge protocol may (mistakenly) reward the L strategy and provide
extra bounty, while fining the others. We approximate this utility as r− cost(q) + b(1− ε) ≈
r − cost(q) + b and denote it as uLB.

• The utility of the G strategy against any strategy, and the utility of copy variants
(CD,CL,CG) against any non-copy strategy are all u−. This is because they cannot re-
spond properly to the challenges of Judge (guessing cannot respond to Mismatch Check and
successful copying cannot respond to Match Check), and will be fined. This also applies to
CG against CG, since in that case one of them will act like G in practice and the other will
successfully copy.

• The utility of a CD contractor against any other Copy contractor is uCDB = qSu− + (1 −
qS)uDB: When it can successfully copy, which happens with probability qS , it will be caught
by the new Judge protocol, thereby getting fined and obtaining negative utility. But, when
it cannot copy, which happens with probability (1 − qS), it will act Diligently, and will help
catch the other contractor, obtaining uDB.

• The utility of a CL contractor against any other Copy contractor is uCLB = qSu− + (1 −
qS)uLB: When it can successfully copy, which happens with probability qS , it will be caught
by the new Judge protocol, thereby getting fined and obtaining negative utility. But, when
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it cannot copy, which happens with probability (1 − qS), it will act Lazily, but will not be
caught by the Judge protocol. Instead, it will be seen as helping to catch the other contractor,
thereby obtaining uLB.

Intuitively, Guess or Copy-Guess strategies will fail with our Match Check protocol, since they will
be caught and fined. Moreover, being completely Diligent is better than being Copy-Diligent, since
the latter will be caught and fined when it successfully copies. Similarly, being Lazy is better than
being Copy-Lazy. Using bounties with our Judge protocol with two checking protocols Mismatch
Check and Match Check results in an all-Diligent equilibrium.

Theorem 4.1. Under the reasonable assumptions stated in Section 4, and if b > cost(1), then the
pair of strategies (D,D) gives the only computational Nash equilibrium of the strategic game in
Table 2.

Proof. Observe that since u− is negative, and G and CG strategies always get u−, they are not
rational anymore. Thus, we focus on D,L,CD,CL.
We start by trivial observations about the utilities:

uDB > uCDB (1)

uLB > uCLB (2)

since qS > 0.
Next, with a series of best-response type of arguments, we show the equilibrium is (D,D).
First, observe that L is the best response against CL due to equations (12), (1) and (2).
Second, realize that the same set of equations also imply that L is the best response against CD.
Third, we show that D is the best response against L because

uDB > uL

r − cost(1) + b > r − cost(q) (3)

which holds as long as

b > cost(1)− cost(q)
b > cost(1) (4)

as stated in the theorem. This means, while L is the best response against all Copy strategies, if a
contractor should choose L, then the other contractor is better of being D.
Lastly, D is the best response against D since uD > u−. In plain words, when the other contractor
is Diligent, we should be Diligent as well, as all other options get negative utility. Therefore, no
contractor has incentive to deviate from this (D,D) equilibrium.

Corollary. The (D,D) strategy pair results in correct computation result for the Problem Giver.
Together with bounties, our Judge protocol, which is an efficient verification mechanism run with
every pair of submissions, disincentivizes free riding and incentivizes Diligent behavior.
An interesting property of the bounties in our setting is that while using them partly help change
the equilibrium, they will not be used when all contractors are rational and hence act Diligently.
Thus, bounty should not be seen as an extra expense for the Problem Giver.
Finally, we argue that Theorem 4.1 holds even when assumption (10) is invalid. To show this,
consider a fine-grained version of uCDB. When this CD contractor could successfully copy, with
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probability qS , then it will be penalized with negative utility u−. Thus, the qSu− part does not
change. When it could not copy and therefore resorts to the Diligent strategy, it is guaranteed that
it will get the reward (since it is Diligent), but about the bounty, there are two cases: Either the
other contractor could copy, which happens with probability qS for the other contractor, in which
case this contractor would get the bounty, or the other Copy contractor resorted to its backup
strategy, which happens with probability q0. The latter results in the following options:

• The other contractor is CD or CL: No bounty will be obtained. The utility of this contractor
would be uD.

• The other contractor is CG: The other contractor will be caught, and this contractor will
obtain bounty together with the reward, resulting in uDB.

Putting all these together, what we have is that qSu− + qSuDB + q0uD or qSu− + qSuDB + q0uDB,
where the latter is exactly uCDB, and the former is upper bounded by uCDB since uDB > uD.
Thus, our utility table above put an upper bound utility for CD against another Copy contractor.
A very similar argument holds for CL against other Copy contractors. The following are the cases
when the other Copy contractor resorted to its backup strategy:

• The other contractor is CD: This contractor will be caught and penalized, obtaining negative
utility u−.

• The other contractor is CL: No bounty will be obtained. The utility of this contractor would
be uL.

• The other contractor is CG: The other contractor will be caught, and this contractor will
obtain bounty together with the reward, resulting in uLB.

Putting together, we have qSu−+ qSuLB + q0u− or qSu−+ qSuLB + q0uL or qSu−+ qSuLB + q0uLB.
The last one is exactly uCLB, and the first two are upper bounded by uCLB since uLB > u− and
uLB > uL.
The fact that the values uCDB and uCLB used in Theorem 4.1 were upper bounds mean that
equations (1) and (2) still hold using their fine-grained versions. Therefore, the theorem holds even
without assumption (10).

5 Related Work

There is a large body of works on outsourcing and delegation of computation with correctness and
verifiability properties. Below we review the most relevant works in two groups.

Malicious Adversary Model. Interactive proof systems follow the seminal works of Goldwasser
et al. [12] and Babai and Moran [3] that consider a single malicious prover, and has led to the
development of verifiable computation systems [10] (see a survey [31] for more).
Canetti et al. [5, 6] refereed delegation protocols [9] provide correctness in presence of a single
malicious contractor. Avizheh et al. [1] showed that [5] is vulnerable to copy attack in the SC
setting. The protocol in [5] requires secure channels and cannot be used in SC setting.
Using replicated computation for integrity checking has been used in works such as [29]. These works
do not provide formal cryptographic or game theoretic modelling and analysis of their systems.

Rational Adversary Model. Outsourcing computation to multiple independent rational entities
has been popularized by projects such as SETI@Home [25] and Rosetta@Home [22] where idle
CPU time of the users were employed for computing on scientific data. In these systems, the main
goal is distributing the computation load among a number of contractors, although replication is
also used to provide some level of integrity. Participation of clients is on altruistic basis using an
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unfungible leader board status. Indeed, fake clients had been employed by rational contractors,
thereby resulting in incorrect results [18].
The focus of this paper is on designing an efficient mechanism that can be used by a smart contract,
with two rational contractors, both of which can deviate from the correct computation. This is
similar to the settings in [13, 8, 24, 26, 27, 16], with the key addition of SC that automates (takes
the role of) the referee (judge) protocol to decide on the correct computation result.
Belenkiy et al. [4] were the first to define Diligent and Lazy strategies, when outsourcing to two
rational contractors simply comparing the returned responses. They argued the need to use fines
in addition to reward, to achieve correctness. They further showed that using bounty for a con-
tractor who performed Diligently against a Lazy contractor will lead to a single Nash equilibrium
corresponding to correct results. They argued that Guess strategy need not be considered by using
a “hash of the computation” that can be required for the submitted response, and will prevent the
chance of a guess to match the correct response that is produced by a correct computation.
Küpçü [17] extended the framework of [4] to multiple contractors, and added altruistic and malicious
contractors to the framework in addition to the rational ones. The protocol uses the results of
potentially multiple rounds of outsourcing to arrive at a correct decision.
All above works in the rational setting assume that the Problem Giver directly interacts with the
contractors, and communication channels can be secured (e.g., using TLS). Thus, in that setting,
copy attack need not be considered. All these works are vulnerable to copy attack in the SC setting
considered here.
Copy attack. When SC is used to automate outsourcing as a service, all previous incentivized
protocols must be revisited to provide security against copy attack. Our results in Appendix C
showed that a basic Judge protocol with only Match Check, even with considering bounty, cannot
disincentivize dishonest behavior, and in Section 4 we showed how to guarantee correctness for the
computation result. Compared to Avizheh et al. [1] in the malicious model, the challenge of our work
is developing a realistic game theoretic model for the setting that captures real world restrictions
of a smart contract environment, and design a set of assumptions and bounds on timing of the
events without being prescriptive on the exact times. Such a refined description of the world is not
necessary in malicious adversary model of [1], which relies on the assumption of the honesty of one
contractor. Without this assumption, the SC does not have any reference point upon receiving two
responses, and needs more complex check protocols and incentive analysis to guarantee correctness.

6 Concluding Remarks

The rise of blockchain, the attractive prospect of automating outsourcing with the possibility of
using a native crypto-currency for implementing incentives, have been our motivation to study
incentivized protocols in the SC setting. Surprisingly, however, because of the Copy attack, none
of the previously known protocols with provable game theoretic correctness can guarantee correct
results in this setting. We proposed an SC based incentivization mechanism with two checking
protocols that guarantees correctness of the results. Our work is the first step to analyze incentivized
SC outsourcing systems through replication. Our final Judge protocol with the two Mismatch Check
and Match Check protocols is the first outsourcing protocol with guaranteed correct computation
result, and lays the foundation for the more general case of multiple contractors. One of the
challenges of our work was to provide an abstract model of the smart contract environment and
behaviour of rational parties that realistically captures the effect of Copy attack. Extending our
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work to multi-contractor setting will significantly complicate this model and increase the range of
available strategies, including collusion strategies. We leave it as future work.
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A Judge Subprotocols

Verifying a Single Step of a Committed Computation. Consider two reduced configurations rc1 =
(s1, h1, v1, r1) and rc2 = (s2, h2, v2, r2) that are claimed to be consecutive, and a proof of consistency
p1 for the first configuration where p1 = MHproof(t1, h1) where t1 is the rc1 configuration tape.
In [5], it is shown that the referee can efficiently verify this claim by simulating a single step of the
Turing machine on (s1, h1, v1), and comparing the results with the values in rc2, and outputs True
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if the claim is valid and rc2 is consistent with the reduced state that results from a correct single
step starting from rc1, and False, otherwise.
We introduce V erifyCommittedReducedStep(rc1, rc2, p1) that requires the published root of RC,
and takes as input rc1,MHproof (RC, rc1), rc2,MHproof (RC, rc2), p1), where MHproof (RC, rci)
is the consistency proof of rci against the published MHroot(RC). Our modified
V erifyCommittedReducedStep() first checks the consistency of rci with the published root, and
if True, proceeds to the single step verification as above.
Committed Binary-search Protocol. The protocol is described in Algorithm 6. It uses a binary-
search subprotocol similar to [5], but with the extra checking of the proof MHproof (rciw, RC

i)
that verifies reduced configuration rciw against the Merkle root of RCi. This check is critical to
prevent the copy attack during this phase, and ensures that the submitted reduced configuration
belongs to the committed Merkle root. The binary search works as follows. Assume that zi =
MHroot(RC

i), i = 1, 2, for the two contractors are published. The SC asks each contractor to send
the number of computation steps needed for f(x), takes the smaller of the two as nb (bad index),
and sets ng (good index) to 1. The SC then asks for the reduced configuration at (nb−ng)/2 +ng,
together with the proof of consistency of the reduced configuration with respect to the corresponding
zi. Depending on the match/mismatch of the two reduced configurations, a new query for the
reduced configuration at the half interval point [ng, (nb − ng)/2 + ng] or [(nb − ng)/2 + ng, nb] will
be formed. This process is repeated until nb = ng + 1.

B Incentivized Computation in the SC Setting with Incorrect
Equilibrium

We now formally show that Belenkiy et al. and follow-up works [4, 20, 17] all lead to incorrect
results for the Problem Giver in the equilibrium, when taken directly to the SC setting.
Analysis of the problem. First, among the copy strategies, Copy-Guess (CG) is the only
(rational) meaningful strategy. The reason is the following: When a Copy contractor succeeds
in copying, the result will be accepted regardless of the Copy contractors’ type (since the Judge
protocol is only run when (y1, z1) 6= (y2, z2), but this is not the case when copying succeeds), and
therefore the reward will be obtained. This happens even when two Copy contractors get matched,
due to assumption (10). Since the Guess strategy has the lowest cost (see assumptions (5) and (6),
the CG strategy dominates the other copy strategies. Hence, in the rest of our analysis here, we will
only consider CG as the copy strategy. Furthermore, CG is always better than G, since copying
may result in a better utility, while its fallback strategy (if copying is unsuccessful) is guessing
anyway. Therefore, in our formal analysis below, we will consider the two originally-considered
strategies (D,L) together with the new CG strategy.
Belenkiy et al. introduce bounty is an extra compensation that a contractor receives if they help
to identify a “cheating” contractor. That is, the bounty is only paid when the two responses do
not match. When Judge protocol identifies one response as correct and the other as incorrect,
the contractor who submitted the correct response gets the bounty, in addition to the reward.
Unfortunately, in the SC setting, even using bounty, the equilibrium leads to incorrect results for
the Problem Giver.
This can be seen using Table 3. Below, we detail the utilities in the table (we follow the row order):

• The utility of the strategy D against D or C is uD = r − cost(1): The results would match,
and the contractor will receive the reward, while paying the cost of the computation.
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P1, P2 D L CG

D uD, uD uDB, u− uD, uC
L - uL, uL uL, uC
CG - - uC , uC

Table 3: Utility table of Belenkiy et al. and follow-up works in the SC setting. Note that the
utilities in the table represent a symmetric game (not a symmetric matrix), thus unnecessary cells
are omitted.

• The utility of the strategy D against L is r− cost(1) + b(1− ε): When D is matched against
L, the probability that they return the same response is negligible as in assumption (4).4

The Diligent contractor will additionally obtain the bounty otherwise. We approximate this
utility as r − cost(1) + b(1− ε) ≈ r − cost(1) + b and denote as uDB.

• The utility of the L strategy against the D strategy is rε− f(1− ε)− cost(q) < 0: We use ε
as the negligible probability that the responses match and then approximate it as zero. This
means rε − f(1 − ε) − cost(q) ≈ −f − cost(q) which is negative, and we simply denote it in
the table with u−.

• The utility of the Copy strategy CG against any other strategy is uC = r − cost(ε): They
always end up submitting the same answer: Either they manage to copy the other’s answer,
or the other Copy contractor copies their answer. Hence they always obtain the reward, and
only pay cost(ε).

• The utility of strategy L, against another non-Diligent strategy (L or CG) is uL = r−cost(q):
If the other contractor is L or CG, they both return the same result, hence they both get the
reward. In any case, the contractor pays the cost of the q-algorithm.

Theorem B.1. Under the reasonable assumptions that are stated in Section 4, the pair of strategies
(CG,CG) gives the only computational Nash equilibrium of the strategic game in Table 3.

Proof. First, we show that if the other contractor is L, then the best response is D. This can be
shown by proving two inequalities (uC > uL and uDB > uC). First, we show:

uC > uL

r − cost(ε) > r − cost(q) (5)

which is obvious since cost(q) > cost(ε). Second, we have:

uDB > uC

r − cost(1) + b > r − cost(ε) (6)

We note that previous works [4, 20, 17] set b > r > cost(1), which implies that uDB > uC .5

Next, consider that the other contractor is D. We show that the best response is CG. To show
that, we need to show uC > uD and uC > u−. The one involving the negative utility u− is obvious:

uC > u−

r − cost(ε) > 0 (7)

4Obtaining the same result has probability q, but same response has probability ε
5In the case that b < cost(1) − cost(ε), we would have CG as the best response against L, still making the proof

valid.
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per assumptions (1), (5), and (6). The other inequality is:

uC > uD

r − cost(ε) > r − cost(1) (8)

which is obvious since cost(1) > cost(ε). Hence, (D,D) cannot be an equilibrium.
Lastly, we need to discuss what this contractor should do when the other contractor is CG. Observe
that equations (8) and (5) already show that this contractor should not be Diligent or Lazy, and
instead should also be CG. This makes the strategy pair (CG,CG) the only Nash equilibrium.

Corollary. The computation result returned to the Problem Giver by the SC is incorrect, failing
to achieve the foremost goal of outsourced computation in Section 3.

C Analysis without Match Check

We show that using the Mismatch Check protocol without the Match Check protocol does not lead
to the desired equilibrium of (D,D) strategy pair. In this extended world, the six strategies defined
are available to the contractors, and the SC employs the Mismatch Check protocol. The limited
Judge protocol runs Mismatch Check when (y1, z1) 6= (y2, z2), but does not run the Match Check.
Essentially, when the two contractors, denoted by Pi, i = 1, 2, each send a pair (yi, zi), i = 1, 2, the
SC runs the following Judge protocol.

• If (y1, z1) = (y2, z2), reward both contractors and accept y1 as the computation result.
• Else, when (y1, z1) 6= (y2, z2), run an interactive Mismatch Check protocol with the two

contractors.
This Judge protocol identifies a Diligent contractor (if any) and definitely rewards them. For
example, in the case of the mismatch between a Guessing contractor and a Diligent contractor, the
Diligent contractor always wins because the computation step that differs between the two will be
run by the SC according to the specification of the correct algorithm that is known to the SC. But,
the Judge protocol may also incorrectly reward non-diligent contractors with incorrect responses.
This is because, the Committed Binary-Search will only be run when the two responses do not
match, and when the two responses are from a Lazy contractor and a Guessing contractor, the
Lazy contractor that has run the q-algorithm and has committed to a Merkle root with respect to
the RC sequence of the q-algorithm, could be able to correctly answer the SC queries against G.
Overall, it is possible that non-diligent contractors may also get the reward, instead of being fined.
The Judge protocol, however, will never fine a Diligent contractor.
Lastly, among the copy strategies, Copy-Guess (CG) is the only (rational) meaningful strategy in
this setting. The reason is the following: When a Copy contractor succeeds in copying, the result
will be accepted regardless of the Copy contractors’ type (since the Mismatch Check protocol is
only run when (y1, z1) 6= (y2, z2), but this is not the case when copying succeeds), and therefore
the reward will be obtained. This happens even when two Copy contractors get matched, due to
assumption (10). Since the Guess strategy has the lowest cost (see assumptions (5) and (6), the
CG strategy dominates the other copy strategies. Hence, in the rest of our analysis in this section,
we will only consider CG as the copy strategy.
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P1, P2 D L G CG

D uD, uD uD, u− uD, u− uD, uC
L - uL, uL uL, u− uL, uC
G - - u−, u− uC , uC
CG - - - uC , uC

Table 4: Utility table, without bounty. Note that the utilities in the table represent a symmetric
game (not a symmetric matrix), thus unnecessary cells are omitted.

C.1 Without Bounty

Table 4 gives the utilities of P1 and P2, when the contractors use the strategies listed in Section
3. The utilities are symmetric, and so we only need to discuss the upper half of the table. We first
analyse the system without bounty, and then in Section C.2, we consider bounty.
Observe that a Diligent contractor would always receive the reward, and G and L strategies may
receive the reward with some probability. As noted in the discussion above, a Copy contractor al-
ways succeeds against non-Copy strategies. Moreover, since we are interested in the computational
Nash equilibrium, we ignore negligible factors and for simplicity of presentation, show them as zero.
To simplify the presentation, we use u− notation to denote any utility that is negative. Below, we
detail the utilities in the table (we follow the row order):

• The utility of the D strategy, independent of the other contractor is uD = r − cost(1): They
obtain the reward, and pay the cost of the original algorithm.

• The utility of the L strategy against the D strategy is rε− f(1− ε)− cost(q) < 0: Remember
that when a Lazy and Diligent contractor get matched against each other, the probability
that they return the same response is negligible as in assumption (4). Hence, we use ε as the
negligible probability and then approximate it as zero. This means rε− f(1− ε)− cost(q) ≈
−f − cost(q) which is negative, and simply denote in the table with u−.

• The utility of the G strategy, against non-Copy strategies (D, L, or G) is rε − f(1 − ε) −
cost(ε) < 0: Similar to the reasoning above, rε − f(1 − ε) − cost(ε) ≈ −f − cost(ε) which is
negative, and we simply denote it in the table with u−.

• The utility of the Copy strategy CG against any other strategy is uC = r − cost(ε): They
always end up submitting the same answer: Either they manage to copy the other’s answer,
or the other Copy contractor copies their answer. Hence they always obtain the reward, and
only pay cost(ε). 6

• The utility of strategy L, against any non-Diligent strategy (L,G, or CG) is uL = r−cost(q):
If the other contractor is L or CG, they both return the same result, hence they both get
the reward. If the other is G, then the Judge protocol may still mistakenly identify this L
contractor as Diligent, and would provide the reward, depending on the q-algorithm. Since
we assume the worst-case q-algorithm, we assume that L is not caught against G, and is
indeed rewarded. In any case, they pay the cost of the q-algorithm.

Before providing the full theorem and its proof, we provide the intuition regarding the equilibrium.
Observe that a Copy-Guess strategy always obtains the reward, with minimal cost. This is because,

6We simplified the cost of Guess and Copy strategies both as cost(ε). This is why the G strategy obtains uC

against Copy strategies (since Copy contractors will simply copy the guessed response and the two results will always
match, thereby not being caught by the Judge protocol).
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when matched against a non-Copy contractor, the Copy contractor will simply copy their response,
and the Judge protocol will not perform verification: the response will be accepted and the contrac-
tors will be rewarded. When two Copy contractors get matched, then either P1 or P2 will manage
to copy (discarding the negligible probability that neither could copy due to very similar random
timings). In this case, again both responses will match, regardless of which one guessed and which
one copied, and the Judge protocol will accept that response without further verification. Below,
we formally prove that (CG,CG) is the equilibrium.

Theorem C.1. Under the reasonable assumptions that are stated in Section 4, the pair of strategies
(CG,CG) gives the weak computational Nash equilibrium of the strategic game in Table 4.

Proof. We will prove that CG is the best response against any other strategy, making (CG,CG)
pair the (weak) equilibrium.
First, consider that the other contractor is D. We show that the best response is CG. To show
that, we need to show uC > uD and uC > u−. The one involving the negative utility u− is obvious:

uC > u−

r − cost(ε) > 0 (9)

per assumptions (1), (5), and (6). The other inequality one is:

uC > uD

r − cost(ε) > r − cost(1) (10)

which is obvious since cost(1) > cost(ε).
Next, we show that if the other contractor is L, then the best response is again CG. This can
be shown by proving three inequalities (uC > uD and uC > u− and uC > uL), two of which are
already proven above, and the other one we prove below:

uC > uL

r − cost(ε) > r − cost(q) (11)

which is obvious since cost(q) > cost(ε).
Next is to show that CG is the best response against G. This can be proven via three inequalities
(uC > u− and uC > uD and uC > uL). Indeed, equations (9), (10), and (11) already show that
CG is the best response against G.
Lastly, we need to discuss what this contractor should do when the other contractor is CG. Observe
that equations (10) and (11) already show that this contractor should not be Diligent or Lazy. This
contractor is indeed indifferent between G and CG strategies in this case. This makes the strategy
pair (CG,CG) the weak Nash equilibrium.

Corollary. The computation result returned to the Problem Giver by the SC is incorrect, failing
to achieve the foremost goal of outsourced computation in Section 3.

C.2 With Bounty

Bounty is an extra compensation that a contractor receives if they help to identify a “cheating”
contractor. That is, the bounty is only paid when the two responses do not match. When Judge
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P1, P2 D L G CG

D uD, uD uDB, u− uDB, u− uD, uC
L - uL, uL uLB, u− uL, uC
G - - u−, u− uC , uC
CG - - - uC , uC

Table 5: Utility table, with bounty. Note that the utilities in the table represent a symmetric game
(not a symmetric matrix), thus unnecessary cells are omitted.

protocol identifies one response as correct and the other as incorrect, the contractor who submitted
the correct response gets the bounty, in addition to the reward. Belenkiy et al. [4] showed that
this extra payment of bounty will result in a unique Nash equilibrium that corresponds to the two
contractors using Diligent strategy, resulting in the Problem Giver obtaining the correct computa-
tion result. In this section, we show that bounty in the SC setting is not enough to incentivize the
correct behavior.
This can be seen using the right side of Table 1. In the first two rows of the right side of the table,
the Diligent contractor will obtain the bounty, whereas in the last row, no contractor obtains the
bounty. The interesting case is the third row, where L and G contractors’ responses are compared.
As described earlier, both strategies can respond correctly to a single challenge. However, the
mismatch between the two responses reduces to a single computation step that will be performed
by the SC, and could accept the response of L, as L has performed a computation, which, on the
queried step, may match the correct computation. The G strategy, however, will fail because its
rc’s do not belong to a computation.
Bounty only affects the utilities below:

1. The utility of the strategyD against L orG strategies, including bounty, is r−cost(1)+b(1−ε):
When D is matched against L or G, the contractor will additionally obtain the bounty unless
both responses match, which has negligible probability due to hashing. We approximate this
utility as r − cost(1) + b(1− ε) ≈ r − cost(1) + b and denote as uDB.
Remark: There is no change for D versus other strategies (D or CG), since they will return
the same response and hence no one obtains the bounty.

2. The utility of the L strategy against G strategy, including bounty is r−cost(q)+b(1−ε): When
L is matched against G, except with negligible probability that the responses match, the Judge
protocol may (mistakenly) reward the L strategy and provide extra bounty, while fining the
G strategy of the contractor. Similarly, we approximate this utility as r− cost(q) + b(1− ε) ≈
r − cost(q) + b and denote it as uLB.

Thus three cells in the table will be affected (D vs L, D vs G, L vs G), resulting in Table 5 for the
case with bounty.
Bounty does not help in our setting, because copying is still a meaningful strategy. Note that
when the copier succeeds to copy, both responses would be the same, and hence the Match Check
protocol would not be run, and no one obtains the bounty. Furthermore, as discussed above,
bounty incentivizes both Diligent and Lazy strategies. The following theorem formally states that
the equilibrium does not change with the bounty in our framework.

Theorem C.2. Under the reasonable assumptions that are stated in Section 4, the pair of strategies
(CG,CG) gives the weak computational Nash equilibrium of the strategic game in Table 5.
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Proof. Observe that, when the other contractor is Diligent, CG is still the best response, as shown
by equations (9), (10), and (11).
Further, uLB > uDB, meaning that it is better to be Lazy than Diligent against G, since:

uLB > uDB

r − cost(q) + b > r − cost(1) + b (12)

which holds because cost(q) < cost(1).
Moreover, when the other contractor is Lazy, it is better to be Diligent than Guessing, since:

uDB > u−

r − cost(1) + b > 0 (13)

which is the case due to assumption (1).
Therefore, (CG,CG) strategy pair remains a weak equilibrium.

We further show that the desirable matchings (D,D or D,L or D,G or D,CG) that result in the
acceptance of the correct result by the Problem Giver cannot be made an equilibrium regardless of
the amount of bounty employed. Note that with the Judge protocol run by the SC, at least one of
the contractors need to be Diligent for the accepted result to be correct.

Theorem C.3. No non-negative value of the bounty can make (D,D) or (D,L) or (D,G) or
(D,CG) strategy pair to be an equilibrium of the strategic game in Table 5.

Proof. (outline) Firstly, if the other contractor isD, we already showed that CG is the best response.
Hence, (D,D) cannot be an equilibrium.
Second, (D,CG) cannot be an equilibrium either, since if the other contractor is CG, then this
contractor should be CG or G as discussed in the proof of Theorem C.1.
Third, (D,G) cannot be an equilibrium, since if the other contractor is G, then this contractor
should better be L than D as shown in the proof of Theorem C.2.
Lastly, (D,L) cannot be an equilibrium, since if the other contractor is L, and then this contractor
chooses the D strategy, then the other contractor would switch to CG as shown above.

Corollary. The computation result returned to the Problem Giver by the SC is incorrect, failing
to achieve the foremost goal of outsourced computation in Section 3.
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