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Abstract. Attribute-based encryption (ABE) is a cryptographic primi-
tive which supports fine-grained access control on encrypted data, mak-
ing it an appealing building block for many applications. Pair encodings
(Attrapadung, EUROCRYPT 2014) are simple primitives that can be
used for constructing fully secure ABE schemes associated to a predi-
cate relative to the encoding. We propose a generic transformation that
takes any pair encoding scheme (PES) for a predicate P and produces a
PES for its negated predicate P . This construction finally solves a prob-
lem that was open since 2015. Our techniques bring new insight to the
expressivity and generality of PES and can be of independent interest.
We also provide, to the best of our knowledge, the first pair encoding
scheme for negated doubly spatial encryption (obtained with our trans-
formation) and explore several other consequences of our results.

1 Introduction

Attribute-based encryption (ABE) is a form of public-key encryption that gener-
alizes the traditional single-recipient variant, providing fine-grained access con-
trol on the encrypted data. In this new paradigm, ciphertexts and keys have
attributes attached and the decryption ability of a key on a ciphertext is deter-
mined by a potentially complex access control policy involving these attributes.
More concretely, an ABE scheme for predicate P guarantees that the decryption
of a ciphertext ctx with a secret key sky is successful if and only if the ciphertext
attribute x and the key attribute y verify the predicate, i.e., P (x, y) = 1.

ABE was first conceived by Sahai and Waters [SW05] and later introduced
by Goyal et al. [GPSW06]. Originally, ABE was designed in the flavour of key-
policy ABE (KP-ABE), where value x is a Boolean vector, value y is a Boolean
function and predicate P (x, y) is defined as y(x) ?= 1. On the other hand, in the
analogous version, ciphertext-policy ABE (CP-ABE), the roles of values x and
y are swapped. Nowadays, the notion of ABE has been generalized and, thanks
to a considerable effort by the community of cryptographers, there exist efficient
schemes for a rich variety of predicates. For example, identity-based encryption
(IBE) [Sha84] can be obtained as P (x, y) := x ?=y, zero-inner product encryption
(ZIPE) [KSW08] can be obtained by setting P (x,y) := 〈x,y〉 ?= 0, where x and
y belong to some vector space; other examples are span programs [KW93], non-
monotonic access structures [OSW07], hierarchical IBE [LW11], large universe
ABE [RW13], polynomial size circuits [GVW13], or regular languages [Wat12].



Despite such a great progress in the field, designing better schemes in terms
of size, performance, security and expressivity became an excessively hard and
tedious task. Until two astonishing works appeared in 2014.

Modular frameworks for ABE. In 2014, Wee [Wee14] and Attrapadung [Att14]
independently proposed two generic and unifying frameworks for designing attri-
bute-based encryption schemes for different predicates. Both works define a sim-
ple primitive called encoding and follow the dual system methodology by Lewko
and Waters [LW10, Wat09] to construct a compiler that, on input an encod-
ing (for certain predicate P ), produces a fully secure attribute-based encryption
scheme for P . Wee defines so-called predicate encodings, an information-theoretic
primitive inspired by linear secret sharing, while Attrapadung introduces the no-
tion of pair encodings, a similar primitive that admits both information-theoretic
and computational security definitions. These frameworks remarkably simplify
the design and study of ABE schemes: the designer can focus on the construc-
tion of the simpler encoding (for the desired predicate), which requires weaker
security properties that are more easily verifiable. In fact, the potential of this
new frameworks is evidenced by the invention of new constructions and perfor-
mance improvements on existing primitives. Although these frameworks were
designed over composite-order groups, they were both extended, in [CGW15]
and [Att16] respectively, to the prime-order setting (under the Matrix-DH as-
sumption). Subsequent works propose variations and extensions of these modular
frameworks [AC16, AC17, CMP17], some of them even redefining the core en-
coding primitive [KSGA16] (defining so-called tag-based encodings). However,
note that the frameworks based on pair encodings are the most general and ex-
pressive1 and they have led to breakthrough constructions such as constant-size
ciphertext KP-ABE (with large universes) [Att14], fully-secure functional en-
cryption for regular languages [Att14], constant-size ciphertext CP-ABE [AC16]
or completely-unbounded KP-ABE for non-monotone span programs (NSP) over
large universes [Att19]. Note that, even nowadays, it is still unknown how to con-
struct any of these powerful schemes based on predicate encodings or tag-based
encodings.

Generic predicate transformations. In order to further simplify the design of
these encodings, a common practice is to develop techniques to modify or com-
bine existing ones. For example, the DUAL transformation, that swaps the ci-
phertext attribute and the key attribute, or the AND transformation, that joins
two predicates in conjunction, can be achieved for pair encodings [Att14, AY15].
Among many applications, these transformations can be used to build dual-
policy attribute-based encryption (DP-ABE) [AI09, AY15]; or to enhance any
encoding with direct revocation of keys by combining (in conjunction) the orig-
inal encoding with, e.g., an encoding for broadcast encryption.

In the framework of [CGW15], Ambrona et al. [ABS17] designed new general
transformations for the DUAL, OR and AND connectors and, remarkably, the

1 In fact, it is known that predicate encodings are a subclass of pair encodings [ABS17].
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NOT transformation (that negates the predicate of the encoding). This func-
tionally complete set of Boolean transformers provides a rich combination of
predicates and arguably broadens the expressivity of the framework, however,
such a negation is limited to the framework based on predicate encodings. De-
signing a similar negation transformation that is applicable to all pair encoding
schemes (PES) is a very appealing problem, since it would facilitate the design
of new encodings and would immediately expand the expressivity of the PES
framework by applying it to all existing ones. Note that, as we have already
mentioned, pair encodings have proven themselves to be significantly more ex-
pressive than any other related framework.

However, recent works have considered the problem of designing such a gen-
eral negation to be intrinsically hard [AC17, Att19] (see our discussion in Sec-
tion 3, we also refer to this section for more details about relevant related works).
To the best of our knowledge, a general NOT transformation that is applicable
to the framework of pair encodings does not exist in the literature.

1.1 Our contribution

We pursue the study of pair encoding schemes and establish several general
results that can lead to performance improvements, and new encodings that
broaden their scope.

Generic negation of pair encodings. We propose a generic transformation that
takes any pair encoding scheme for a predicate P and produces a pair encoding
scheme for its negated predicate, P . Our transformation is applicable to pair en-
codings that follow the most recent and refined definition given in [AC17]. Our
construction finally solves a problem that was open since 2015, when several
other transformation for pair encodings (like conjunction or duality) were pro-
posed [AY15], but no generic negation was provided (nor designed in subsequent
works). In fact, several works had suggested that finding such a transformation
was non-obvious [AC17, Att19], since it relates to the problem of generically
finding a short “certificate” of security of the encoding. We elaborate on this
idea in Section 3.

Algebraic characterization of pair encodings. En route to designing our generic
negation, we define an algebraic characterization of PES that brings new insight
to their expressivity and generality and can be of independent interest. Our
characterization allows us to express the security of a pair encoding scheme as
the (in)existence of solutions to a system of matrix equations. This is the bridge
that allows us to leverage Lemma 1, a very powerful result from linear algebra
(commonly used in cryptography), in order to design and prove our generic
negation.

New encodings. Our generic negation facilitates the design of new pair encoding
schemes. It will immediately provide us with a negated version of any encoding,
something particularly useful for encodings for which a negated counterpart is
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not known. A relevant example of a PES with (previously) unknown negation is
the case of doubly spatial encryption.

Doubly spatial encryption [Ham11] is an important primitive that generalizes
both spatial encryption and negated spatial encryption [AL10]. A negated doubly
spatial encryption scheme serves as its revocation analogue and can lead to pow-
erful generalizations in the same way that negated (standard) spatial encryption
unifies existing primitives, e.g. it subsumes non-zero-mode inner-product encryp-
tion (IPE) [AL10]. In Section 6.1 we provide, to the best of our knowledge, the
first pair encoding scheme for negated doubly spatial encryption, obtained with
our transformation.

Other implications of our results. We believe the results presented in this work
improve our understanding of pair encodings and how expressive they are. In
particular, we now know that the set of predicates that can be expressed with
PES is closed under negation. In Section 6.2, we elaborate on the conclusions
we could derive from this fact as well as discuss how our generic transformation
can also lead to performance improvements when implementing ABE schemes.
Furthermore, note that our generic negation is compatible with the very re-
cent framework proposed by Attrapadung [Att19], designed to perform dynamic
pair encoding compositions. We believe our new transformation complements his
work, where the proposed non-monotone formulae composition was only semi-
generic (but dynamic), because he had to rely on encodings for which a negated
version was available.

2 Preliminaries

2.1 Notation

We write s←$ S to denote that s is uniformly sampled from a set S. For integers
m,n, we define [m,n] as the range {m, . . . , n} and we denote by [n] the range
[1, n]. We use the same conventions for matrix-representations of linear maps
on finite-dimensional spaces. For a ring R, we define vectors v ∈ Rn as column
matrices, denote the transpose of a matrix A by A> and its trace by tr(A). We
denote by |v| the length or dimension of vector v and by vi its i-th component,
for all i ∈ {1, . . . , |v|}. Similarly, Ai denotes the i-th row of matrix A (we do not
use this notation when the name of the matrix already contains a subindex). We
denote by span(A) the linear column span of matrix A. We denote the identity
matrix of dimension n by In, a zero vector of length n by 0n and a zero matrix of
m rows and n columns by 0m×n. We denote by eni the i-th vector of the standard
basis of an n-dimensional space, for all i ∈ [n]. We sometimes denote en1 by 1n.
Similarly, we denote by 1m×n the matrix 1m1>n, i.e., a null matrix of m rows and
n columns whose component in the first row and first column is 1. Given two
matrices A and B, we denote by A⊗B their Kronecker product.

We consider a bilinear group generator G that takes a security parameter
λ ∈ N and outputs the description of a bilinear group (p,G1, G2, Gt, g1, g2, e)
where G1, G2 and Gt are cyclic groups of order p (for a λ-bits prime p), g1
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and g2 are generators of G1 and G2 respectively and e : G1 × G2 → Gt is a
(non-degenerate) bilinear map, satisfying e(ga1 , g

b
2) = e(g1, g2)

ab for all a, b ∈ N.
Observe that the element gt = e(g1, g2) generates Gt.

2.2 Attribute-based encryption

Attribute-based encryption (ABE) [SW05] is a form of of public-key encryption
that supports fine-grained access control of encrypted data.

Definition 1 (Attribute-based encryption). An ABE scheme for predicate
P : X × Y → {0, 1} consists of four probabilistic polynomial-time algorithms:

• Setup(1λ,X ,Y) → (mpk,msk), on input the security parameter λ and at-
tribute universes X ,Y, outputs a master public key and a master secret key,
defining a key space K.

• Enc(mpk, x)→ (ctx, τ), on input mpk and a ciphertext attribute x∈X , out-
puts a ciphertext ctx and a symmetric encryption key τ ∈ K.

• KeyGen(msk, y) → sky, on input the master secret key and a key attribute
y ∈ Y, outputs a secret key sky.

• Dec(mpk, sky, ctx, x)→ τ/⊥, on input sky and ctx, outputs a symmetric key
τ ∈ K if P (x, y) = 1 or ⊥ otherwise.

Correctness. For all λ ∈ N, x ∈ X and y ∈ Y such that P (x, y) = 1, it holds:

Pr

 (msk, pk)← Setup(1λ)
sky ← KeyGen(msk, y)

(ctx, τ)← Enc(mpk, x)
: Dec(mpk, sky, ctx, x) = τ

 = 1 .

Security. Informally, an ABE scheme is secure if no probabilistic polynomial-
time (PPT) adversary can distinguish the symmetric encryption key associated
to a ciphertext ctx? (for some attribute x?) from a uniformly chosen one from K,
even after requesting several secret keys for attributes y of their choice, as long
as they all satisfy P (x?, y) = 0.

In this work we focus on pair encodings (see the next section) as a building
block for constructing ABE schemes and we refer to Appendix B.1 for a formal
security definition of ABE, which we do not state here. Instead, we will formally
state and reason about the security requirements for pair encodings.

2.3 Pair encodings

We consider the refined definition of pair encodings introduced by Agrawal and
Chase in [AC17].
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Definition 2 (Pair encoding). A pair encoding scheme (PES) for a predicate
family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par) consists of the following
deterministic and efficiently computable algorithms:

• Param(par): on input certain parameters outputs an integer n, specifying the
number of common variables, denoted by b = (b1, . . . , bn).

• EncKey(N, y): on input N ∈ N and y ∈ Y(N,par), outputs a vector of polyno-
mials k = (k1, . . . , km3) in the non-lone variables r = (r1, . . . , rm1), the lone
variables r̂ = (α, r̂1, . . . , r̂m2

) and the common variables b.

• EncCt(N, x): on input N ∈ N and x ∈ X(N,par), outputs a vector of polyno-
mials c = (c1, . . . , cw3

) in the non-lone variables s = (s0, s1, . . . , sw1−1), the
lone variables ŝ = (ŝ1, . . . , ŝw2) and the common variables b.

• Pair(N, x, y): on input N ∈ N and attributes x and y, outputs a pair of
matrices (E,E′) with coefficients in ZN of dimensions w1×m3 and w3×m1

respectively.

We require that the following properties be satisfied:

reconstructability: For every κ = (N, par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, the following equation holds symbolically:

s>Ek + c>E′r = αs0 ,

where k← EncKey(N, x), c← EncCt(N, y) and (E,E′)← Pair(N, x, y).

structural constraints: The polynomials produced by EncKey only contain
monomials of the form α, ribj or r̂i′ for some i ∈ [m1], j ∈ [n] and i′ ∈ [m2].
On the other hand, the polynomials produced by EncCt only contain monomials
of the form sibj or ŝi′ for some i ∈ [0, w1−1], j ∈ [n] and i′ ∈ [w2].

security (non-reconstructability): For all κ∈ (N, par), x∈Xκ and y ∈Yκ
such that Pκ(x, y) = 0, and for every pair of matrices E and E′, over ZN ,
s>Ek + c>E′r 6= αs0, where k← EncKey(N, x) and c← EncCt(N, y).

Remark 1. Observe that m1 and w1 represent2 the number of non-lone variables
r and s respectively; m2 and w2 represent the number of lone variables r̂ and
ŝ respectively; and m3 and w3 represent the number of polynomials produced
by EncKey and EncCt respectively. Also note that m3 may depend on the key
attribute y and w3 may depend on the ciphertext attribute x. We will use this
notation throughout the paper.

Agrawal and Chase [AC17] showed that an encoding with the non-reconstruc-
tability property (coined non-trivially broken) satisfies the symbolic property, a

2 In some literature, the number of non-lone ciphertext variables is defined as w1+1,
since the special variable s0 is treated separately. Observe that our vector of non-lone
variables ranges from s0 to sw1−1, this is for the sake of notation in further sections.

6



concept introduced by them which is a sufficient condition to build attribute-
based encryption in the standard model under the so-called q-ratio assumption.

We refer to Appendix B.2 for details about how the compiler from PES to
fully secure ABE works. In this work we directly reason about PES and do not
need to explicitly define such a compiler. However, for the sake of understanding,
we provide an intuition of how a PES can be used to create an ABE scheme in
the following section.

Example 1 (PES for identity-based encryption). The following is a pair encoding
scheme for the IBE predicate P (x, y) := x ?= y, for x, y ∈ ZN . (With m1 = 1,
m2 = 0, m3 = 2 and w1 = 2, w2 = 0, w3 = 1.)

EncKey(N, y) := {α+r1b1, r1(yb2+b3)} EncCt(N, x) := {s0b1+s1(xb2+b3)} .

Furthermore, in this case Param is an algorithm that simply outputs n = 3
and Pair(N, x, y) returns matrices E = I2 and E′ = −I1. For reconstructability,
observe that

(
s0 s1

)
Ek + c>E′

(
r1
)

equals s0α+ s1r1(yb2 + b3)− s1r1(xb2 + b3)
which equals αs0 whenever x = y, as desired.

Arguing security, i.e., non-reconstructability whenever x 6= y, is a little trick-
ier. One needs to show that for all matrices E ∈ Z2×2

N , E′ ∈ ZN , the above linear
combination is never equal to αs0. This could be done by unfolding the list of
polynomials in s⊗ k, c⊗ r into a matrix A with w1m3 + w3m1 rows (as many
as polynomials) and as many columns as different monomials appear in them,
where the element at row i and column j of the matrix represents the coefficient
of the j-th monomial in the i-th polynomial. (Let the first column be the one
associated to monomial αs0.) One could then argue security by checking that
the row span of A does not contain the vector (1 0 . . . 0) when P (x, y) = 0.

However, there is a simpler way of proving non-reconstructability. Simply
evaluate the polynomials produced by EncKey and EncCt in:

b1 ← −1 b2, s0, r1, α← 1 b3 ← −y s1 ← (x−y)−1 .

Since all the polynomials evaluate to 0, but αs0 evaluates to 1 6= 0, it must
be impossible to symbolically reconstruct αs0 with some pair of matrices E,E′.
Otherwise, we would have a contradiction:

0 = s>E0m3
+ 0>w3

E′r = s>Ek(r, b) + c(s, b)>E′r = αs0 = 1 .

The above variable substitution that vanishes all polynomials, but does not
vanish polynomial αs0 can be considered to be a short “certificate” of the security
of the scheme (and it is well-defined as long as x 6= y). We elaborate on this
interesting method for arguing security in Section 3. �

2.4 ABE from PES

The compiler from pair encodings to attribute-based encryption is defined over
bilinear groups implemented as dual system groups (DSG) [CW13, CW14, AC17].
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Here, we define a simplified version of the compiler and avoid DSG for simplic-
ity, but note that the actual scheme produced by these compilers uses vectors
of group elements where we write single group elements. We provide a complete
description of the compiler from [AC17] in Appendix B.2.

Informally, the symmetric encryption key is computed as τ := gαs0t , where
s0 is fresh randomness and gαt is part of the master public key. Both ciphertexts
and keys are made of group elements (created based on the recipe given by the
corresponding PES polynomials). It is possible to recover τ when the predicate
is satisfied. More concretely, for k← EncKey(x) and c← EncCt(y), the compiler
could be summarized as follows:

mpk :=
{
gαt , g

b
1

}
(ctx, τ) :=

(
{gs1 , g

c(s,ŝ,b)
1 }, gαs0t

)
msk :=

{
α, b

}
sky :=

{
gr2 , g

k(r,r̂,b)
2

}
Decryption is done by pairing gs1 with gk2 , gc1 with gr2 , and linearly combining

the resulting elements, according to the coefficients given by Pair(x, y), obtaining
αs0 in the exponent.

2.5 Linear algebra tools

In order to prove the validity of our generic negation of pair encodings, we will
use a very powerful result from linear algebra that has been widely used in the
literature [Bei11, AC16, AC17, ABS17]. It states that given a field K, a matrix
A ∈ Km×n and a vector z ∈ Km, it holds that Av 6= z for all v ∈ Kn if and
only if there exists a vector w ∈ Km such that w>A = 0n and w>z = 1. We
refer to [Bei11, Claim 2] for a formal proof.

Here, for the sake of presentation, we state a variant of the above result,
which can be shown to be equivalent, but that facilitates its application in the
proof of Lemma 2.

Lemma 1. Let V and W be vector spaces over a field K. Let f : V → W be a
linear operator and let z ∈W . We have that:

z 6∈ Im(f) ⇔ ∃ϕ ∈W ∗ such that ϕ ◦ f = 0 ∧ ϕ(z) = 1 .

Here, W ∗denotes the dual space of W , i.e., the set of all linear maps ϕ : W → K.

3 Overview of our generic negation transformation

Our starting point is the generic negation for the (less expressive) framework
of predicate encodings from [ABS17]. In order to achieve their transformation,
Ambrona, Barthe, and Schmidt first defined an algebraic characterization of
predicate encodings where the security of the encoding (previously defined as an
equality between distributions) was redefined into a purely algebraic statement
related to the existence of solutions to a linear system of equations. This observa-
tion allowed them to link the notions of security and non-reconstructability and
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define what they coined the implicit predicate of an encoding. This implies, in a
nutshell, that all functions mapping attributes into matrices define a valid predi-
cate encoding for a certain predicate, informally defined as all pairs of attributes
(x, y) that map into matrices that lead to reconstructability.

Now that security has been proven to be equivalent to non-reconstructability,
and given the simple structure of predicate encodings (which are essentially
matrices over Zp), it is possible to find a short “witness” of non-reconstructability
by simply finding a solution to a dual system of equations.3 What we want to
highlight here is that their new understanding of predicate encodings allows
them to view both reconstructability and non-reconstructability as essentially
the same kind of property. This suggests that one may be able to build a generic
negation of predicate encodings by transposing the matrices induced by them.4

This is in fact what the negation by Ambrona et al. does, but extra care is
needed to make things really work.

Unfortunately, in the case of pair encodings things are not as simple. Their
structure is significantly more convoluted, involving abstract polynomials that
do not allow the kind of reasoning that was possible before (standard linear
algebra). However, in 2017, Agrawal and Chase introduced a new security no-
tion applicable to pair encodings called the symbolic property [AC17]. They also
showed how to adapt the previous modular frameworks [AC16, Att16] to define
a compiler that takes pair encodings satisfying the symbolic property and pro-
duces fully secure predicate encryption schemes under the q-ratio assumption, a
new q-type assumption proposed by them that is implied by other assumptions
of this kind [LW12]. This symbolic property can be seen as a generalization of
the “trick” that we have used in Example 1 to argue the security of the encoding.
The main difference is that scalar variables in the PES may be substituted by
vectors or matrices (not necessarily scalars as in our example) in such a way
that, after the substitution, all the polynomials evaluate to zero, but there is
an extra constraint relating the inner product of the vectors that replaced the
special variables that guarantees that αs0 is non-zero. As mentioned by Attra-
padung [Att19], the above methodology generalizes the well-known Boneh-Boyen
cancellation technique for identity-based encryption [BB11]. What is remarkable
about this idea is that the substitution can be used as a “witness” or “certificate”
(as coined by the authors of [AC17]) of the security of the scheme. Furthermore,
Agrawal and Chase also showed that any pair encoding that is not trivially bro-
ken satisfies the symbolic property, a result that is closely related to the algebraic
characterization of privacy on predicate encodings from [ABS17].

It may seem that after these relevant results on pair encodings, and the sim-
ilarity with those in the framework of predicate encodings, we are in a position
to define a generic negation transformation for pair encodings. However, the

3 Recall that ∀v : Av 6= z ⇔ ∃w : A>w = 0 ∧ z>w = 1 for all compatible A and z.
4 That way, the witness of non-reconstructability can be used as the linear combina-

tion for decryption (reconstructability) in the negated encoding and vice versa: the
solution for reconstructability can be used as the witness of security in the negated
encoding.
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more involved structure of pair encodings makes it difficult to find and prove a
valid conversion. In fact, recent works have considered the problem of design-
ing such a general negation to be non-trivial (see [Att19, Appendix L.5]), since
in the framework of pair encodings it is generally hard to find the mentioned
“certificates” that can be interpreted as a short proof of security. (Note that
any possible NOT transformation would, at least implicitly, use such certificates
as decryption credentials for the transformed encoding, whereas the decryption
credentials of the original encoding would become the security certificate of the
negated one.)

In order to construct a valid negation of pair encodings, we first need to
treat them in a simplified manner, closer to linear algebra. To do so, we provide
an algebraic characterization of pair encodings (Section 4), whose security can
be expressed as a system of matrix equations, very similar to the statement i)
from Lemma 2. Intuitively, we split the polynomials produced by the encod-
ing into layers, each being a matrix that corresponds to one of the (common,
lone or non-lone) variables. We then show how the security of the scheme can
be expressed as a linear system involving these matrices. Our characterization
makes an structural assumption on the form of the pair encoding (that can be
made without loss of generality and has been used in the literature for other
purposes [AC17, Att19]). Namely, we assume that EncKey only produces one
polynomial that depends on α, which is of the form α + r1b1. This assumption
introduces a “symmetry” between the nature of key and ciphertext polynomials
(now that the special variable α is out of the way) that allows us to express the
security of the PES as the symmetric algebraic statement of Definition 3. The
next step is to leverage Lemma 1 in order to prove our following lemma, linking
the inexistence of a solution to the system in i) with the existence of a solution
to ii). This is the main tool on which we base our negation transformation. The
last (but non-trivial) step is to define a new encoding (in algebraic form) such
that the solution from statement ii) serves as a decryption credential for it.

Lemma 2. Let K be a field, let n ∈ N and let {Ai, Bi, Ci}i∈[n], Â, B̂ be matrices:

Ai ∈ K`×m Bi ∈ Kr×s Ci ∈ Kr×m

Â ∈ K`×m̂ B̂ ∈ K r̂×s,

for certain `,m, r, s, m̂, r̂ ∈ N and every i ∈ [n]. The following are equivalent:

i) There do not exist X,Y with X ∈ Kr×`, Y ∈ Ks×m such that:

∀i ∈ [n]. XAi +BiY = Ci ∧ XÂ = 0r×m̂ ∧ B̂Y = 0r̂×m .

ii) There exist Z1, . . . , Zn ∈ Km×r and ZA ∈ Km̂×r, ZB ∈ Km×r̂ such that

A1Z1 + · · ·+AnZn + ÂZA = 0 ×̀r

∧ Z1B1 + · · ·+ ZnBn + ZBB̂ = 0m×s

∧
∑n
i=1 tr(CiZi) = 1 .
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Proof. Let f be the linear map defined as

f : (X,Y ) 7→ (XA1+B1Y, . . . , XAn+BnY, XÂ, B̂Y ) .

Observe that the first statement of the lemma is equivalent to saying that

(C1, . . . , Cn, 0r×m̂, 0r̂×m) 6∈ Im(f) ,

which, by Lemma 1 is equivalent to the existence of ϕ : W → K, where in this
case W := (Kr×m)n ×Kr×m̂ ×K r̂×m, such that

ϕ ◦ f = 0 and ϕ(C1, . . . , Cn, 0r×m̂, 0r̂×m) = 1 ,

which is equivalent to the existence of matrices Z1, . . . , Zn ∈ Km×r and ZA ∈
Km̂×r, ZB ∈ Km×r̂ such that

∀X,Y. tr
(∑n

i=1(XAi+BiY )Zi
)

+ tr
(
XÂZA

)
+ tr

(
B̂Y ZB

)
= 0 (1)

and tr
(
C1Z1 + · · ·+ CnZn

)
+ tr

(
0r×m̂ZA

)
+ tr

(
0r̂×mZB

)
= 1 , (2)

which is equivalent to the second statement of the lemma, quod erat demonstran-
dum. To see why, note that equation (2) is present in both cases and observe
that if the second statement of the lemma holds, then (for any X,Y ) we have

0 = tr
(
0 ×̀r
)

+ tr
(
0m×s

)
= tr

(
X
(
A1Z1 + · · ·+AnZn + ÂZA

))
+ tr

((
Z1B1 + · · ·+ ZnBn + ZBB̂

)
Y
)

= tr
(∑n

i=1XAiZi
)

+ tr
(
XÂZA

)
+ tr

(∑n
i=1 ZiBiY

)
+ tr

(
ZBB̂Y

)
†
= tr

(∑n
i=1XAiZi

)
+ tr

(
XÂZA

)
+ tr

(∑n
i=1BiY Zi

)
+ tr

(
B̂Y ZB

)
= tr

(∑n
i=1(XAi+BiY )Zi

)
+ tr

(
XÂZA

)
+ tr

(
B̂Y ZB

)
,

where in † we have used the fact that the trace is invariant under cyclic permu-
tations. Finally, to see the converse, note that if equation (1) holds for any X,Y ,
it must hold for Y = 0s×m, which would imply that for every X ∈ Kr×`,

tr
(
X
(
A1Z1 + · · ·+AnZn + ÂZA

))
= 0 ,

but that can only happen if A1Z1 + · · ·+AnZn + ÂZA is the zero matrix.

Analogously, evaluating (1) on X = 0r×̀ , we get

tr
(
B1Y Z1+ · · ·+B1Y Zn

)
+tr

(
B̂Y ZB

) †
= tr

((
Z1B1+ · · ·+ZnBn+ZBB̂

)
Y
)

= 0 ,

for every Y ∈ Ks×m, which can only happen if Z1B1 + · · ·+ZnBn +ZBB̂ is the
null matrix. �
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4 Characterization of pair encodings

In this section we propose a characterization of pair encodings that will be used
to define our generic transformation for the negated predicate.

The first step towards our characterization is to assume that only one poly-
nomial from EncKey depends on α and is of the form α + r1b1. This assump-
tion is without loss of generality5, and has been utilized before in the litera-
ture [AC17, Att19]. The rest of polynomials can be expressed as k = Byr+Cyr̂,
for some matrix By whose terms are linear polynomials in ZN [b1, . . . , bn], and
some matrix Cy with coefficients in ZN . Given that α + r1b1 is always present,
for the sake of notation, we redefine m3 to be the total number of polynomials
produced by KeyGen excluding α+ r1b1. Similarly, the polynomials from EncCt
can be expressed as c = B′xs + C ′xŝ. Such an analogy in the form of k and c
(only achieved after getting rid of variable α) allows us to express the encodings
in an algebraic form, amenable to be combined with different results of linear
algebra.

Definition 3 (Algebraic pair encoding). An algebraic pair encoding scheme
for a predicate family Pκ : Xκ ×Yκ → {0, 1} indexed by κ = (N, par) consists of
the following deterministic and efficiently computable algorithms:

• Paramalg(par): on input certain parameters outputs an integer n ∈ N.

• EncKeyalg(N, x): on input N ∈ N and x ∈ X(N,par), outputs a list of n+1
matrices with coefficients in ZN , (B1, . . . , Bn, C), where Bj has dimension
m3 ×m1, for j ∈ [n], and C has dimension m3 ×m2.

• EncCtalg(N, y): on input N ∈ N and y ∈ Y(N,par), outputs a list of n+1
matrices with coefficients in ZN , (B′1, . . . , B

′
n, C

′), where B′j has dimension
w3 × w1, for j ∈ [n], and C ′ has dimension w3 × w2.

Furthermore, for every κ = (N, par), x ∈ Xκ and y ∈ Yκ, Pκ(x, y) = 1 if and
only if there exist matrices E ∈ Zw1×m3

N and E′ ∈ Zw3×m1

N such that

EB1 +B′
>
1E
′ = 1w1×m1

∧ EC = 0w1×m2

∧ EBj +B′
>
jE
′ = 0w1×m1

, j ∈ [2, n] ∧ C ′
>
E′ = 0w2×m1

(3)

where (B1, . . . , Bn, C)← EncKeyalg(N, x) and (B′1, . . . , B
′
n, C

′)← EncCtalg(N, y).

Theorem 1 (Characterization). There exists a pair encoding for predicate
family Pκ if and only if there exists an algebraic pair encoding for Pκ. Further-
more, there is an efficient conversion in both directions.

The above theorem is a consequence of our following two lemmas.

5 An easy way of arguing that this is w.l.o.g. is to apply the generic dual transformation
defined in [AY15] twice. (Note that the dual operation is an involution and a double
application of it would preserve the original predicate.)
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Lemma 3 (From algebraic to standard). Let (Paramalg,EncKeyalg,EncCtalg)
be an algebraic pair encoding scheme for predicate family Pκ : Xκ×Yκ → {0, 1}.
Then, algorithms (Param,EncKey,EncCt,Pair) (defined below) constitute a pair
encoding scheme for Pκ.

• Param(par) := run n← Paramalg(par), output n and let b = (b1, . . . , bn).

• EncKey(N, x) := run (B1, . . . , Bn, C) ← EncKeyalg(N, x), output the vector
of polynomials given by α + r1b1 and (b1B1 + · · · + bnBn)r + Cr̂, where
r = (r1, . . . , rm1

) and r̂ = (r̂1, . . . , r̂m2
).

• EncCt(N, y) := run (B′1, . . . , B
′
n, C

′) ← EncCtalg(N, y), output the vector of
polynomials given by (b1B

′
1 + · · ·+ bnB

′
n)s +C ′ŝ, where s = (s0, . . . , sw1−1)

and ŝ = (ŝ1, . . . , ŝw2
).

• Pair(N, x, y) := find matrices (E,E′) satisfying equation (3), that exist if
and only if Pκ(x, y) = 1, output

((
1w1
−E
)
,−E′

)
.

Proof. Observe that the structural constraints on the polynomials of EncKey and
EncCt are satisfied. To see reconstructability, simply note that for any N ∈ N,
x ∈ Xκ and y ∈ Yκ with P (x, y) = 1, and for (E,E′) satisfying (3), it holds:

s>
(
1w1 −E

)( α+ r1b1
(b1B1 + · · ·+ bnBn)r + Cr̂

)
−
(
s>
(
b1B

′
1
>

+ · · ·+ bnB
′
n
>
)

+ ŝ>C′
>
)
E′r

= s0(α+ r1b1)− sb1 (1w1×m1) r = s0α.

For security, note that if the new pair encoding were trivially broken, there would
exist a pair (x, y) ∈ Xκ × Yκ with Pκ(x, y) = 0, and matrices E,E′ satisfying
equation (3). For details about this fact, we refer to the proof Lemma 4 (the
part about reconstructability). �

Lemma 4 (From standard to algebraic). Let (Param,EncKey,EncCt,Pair)
be a pair encoding scheme6 for predicate family Pκ : Xκ × Yκ → {0, 1}. Then,
algorithms (Paramalg,EncKeyalg,EncCtalg) (defined below) constitute an algebraic
pair encoding scheme for Pκ.

• Paramalg(par) := Param(par).

• EncKeyalg(N, x) := run (α+ r1b1,k)← EncKey(N, x), and let m3 = |k|. For
j ∈ [n], define matrix Bj as the matrix whose element at the `-th row and
i-th column is the coefficient of monomial ribj in polynomial k`. Define C as
the matrix whose element at the `-th row and i′-th column is the coefficient of
monomial r̂i′ in polynomial k`, for i ∈ [m1], i′ ∈ [m2] and ` ∈ [m3]. Output
(B1, . . . , Bn, C).

• EncCtalg(N, y) := run c← EncCt(N, y). For j ∈ [n], define matrix B′j as the
matrix whose element at the `-th row and (i+1)-th column is the coefficient

6 Recall that we are assuming, without loss of generality, that the first polynomial
produced by EncKey is α+ r1b1 and that α does not appear anywhere else.
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of monomial sibj in polynomial c`. Define C ′ as the matrix whose element at
the `-th row and i′-th column is the coefficient of monomial ŝi′ in polynomial
c`, for i ∈ [0, w1−1], i′ ∈ [w2] and ` ∈ [w3]. Output (B′1, . . . , B

′
n, C

′).

Proof. Note that the structural constraints on the PES enforce that for every
N ∈ N, x ∈ Xκ and y ∈ Yκ, (α + r1b1,k) ← EncKey(N, x), c ← EncCt(N, y),
(B1, . . . , Bn, C)← EncKeyalg(N, x), (B′1, . . . , B

′
n, C

′)← EncCtalg(N, y), it holds:

k = (b1B1 + · · ·+ bnBn)r + Cr̂ and c = (b1B
′
1 + · · ·+ bnB

′
n)s + C ′ŝ .

Now, note that, due to reconstructability of the original encoding, for any N ∈ N,
x ∈ Xκ and y ∈ Yκ such that P (x, y) = 1, if we let

((
v E

)
, E′
)
← Pair(N, x, y),

it holds:

s>
(
v E

)(α+ r1b1
k

)
+ c>E′r = αs0 ,

which is equivalent to s>Ek + c>E′r = −s0r1b1 ∧ v = 1w1
, but then:

s>E
(
(b1B1 + · · ·+ bnBn)r + Cr̂

)
+
(
s>(b1B

′
1
>

+ · · ·+ bnB
′
n
>
) + ŝ>C′

>)
E′r = −s0r1b1

and because the above equality must hold symbolically, it must be the case that
EB1 + B′1E

′ = 1w1×m1
and EBj + B′jE

′ = 0w1×m1
for every j ∈ [2, n]. Moreover,

EC = 0w1×m2
and C ′

>
E′ = 0w2×m1

. Finally, note that the non-reconstructability
of the original encoding enforces that the above system does not have a solution
when Pκ(x, y) = 0. �

5 Generic negation of algebraic pair encodings

Although the general definition of pair encodings defines polynomials with coef-
ficients over ZN for an arbitrary integer N ∈ N. In this section we assume that
N is a prime number and write p instead. The reason is that our transformation
for the negated encoding leverages a result from linear algebra (our Lemma 2)
which requires that the underlying structure be a field. Note that this restriction
does not significantly weaken our result, since prime-order groups are preferred
over composite over groups.

Theorem 2. Let (Paramalg,EncKeyalg,EncCtalg) be an algebraic pair encoding
for a predicate family Pκ : Xκ×Yκ → {0, 1}. The encoding (Pair,EncKey,EncCt)
described in Figure 1 is an algebraic pair encoding for the predicate family Pκ
given by P (x, y) = 1⇔ P (x, y) = 0 for all x ∈ Xκ, y ∈ Yκ.

Proof. We need to show that whenever P (x, y) = 0, there exist matrices E and
E′ of dimension w1×(1+m1n+m2) and (w1+w1n+w2)×m1 respectively, with co-
efficients in Zp, such that:

EB0 +B′0
>
E′ = 1w1×m1

∧ EC = 0w1×m3

∧ EBj +B′j
>
E′ = 0w1×m1

, j ∈ [n+1] ∧ C ′
>
E′ = 0w3×m1

, (4)
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Let (Paramalg,EncKeyalg,EncCtalg) be an algebraic pair encoding scheme. We define
the following (algebraic) PES:

• Param(par) := run n← Paramalg(par), output n+2.

• EncKey(p, x) := run (B1, . . . , Bn, C)← EncKeyalg(p, x), and let:

B0 :=


1>m1

1m1n×m1

0m2×m1

 Bi :=


0>m1

en
i ⊗ Im1

0m2×m1

 Bn+1 :=


1>m1

0m1n×m1

0m2×m1

 C :=


0>m3

B>1
...
B>n
C>

 .

Output (B0, B1, . . . , Bn+1, C).

• EncCt(p, y) := run (B′1, . . . , B
′
n, C

′)← EncCtalg(p, y), letB′0 be the zero matrix
of w1(1+n)+w2 rows and w1 columns and let:

B′i :=


0w1×w1

−en
i ⊗ Iw1

0w2×w1

 B′n+1 :=


Iw1−1w1×w1

0w1n×w1

0w2×w1

 C′ :=



0w1×w3

B′1
>

...

B′n
>

C′>

 .

Output (B′0, B
′
1, . . . , B

′
n+1, C

′).

Fig. 1. Generic negation of algebraic pair encoding schemes.

where (B0, . . . , Bn+1, C) ← EncKey(p, x), (B′0, . . . , B
′
n+1, C

′) ← EncCt(p, y).
Now, our original encoding guarantees that P (x, y) = 0 if and only if there
do not exist matrices E, E′ such that:

EB1 +B′1
>
E′ = 1w1×m1

∧ EC = 0w1×m2

∧ EBj +B′j
>
E′ = 0w1×m1

, j ∈ [2, n] ∧ C ′>E′ = 0w2×m1
,

for (B1, . . . , Bn, C) ← EncKey(p, x) and (B′1, . . . , B
′
n, C

′) ← EncCt(p, y). But
that is equivalent, in virtue of Lemma 2, to the existence of Z1, . . . , Zn ∈ Zm1×w1

p ,
ZA ∈ Zm2×w1

p and ZB ∈ Zm1×w2
p such that:7

B1Z1 + · · ·+BnZn + CZA = 0m3×w1

∧ Z1B
′
1
>

+ · · ·+ ZnB
′
n
>

+ ZBC
′>= 0m1×w3

∧ tr(1w1×m1
Z1) = 1 . (5)

7 To see why, set the matrices in Lemma 2 to Ai := Bi, Bi := B′i
>
, for i ∈ [n] and

C1 := 1w1×m1
, Cj := 0w1×m1

for j ∈ [2, n]. Also, Â := C and B̂ := C′
>
.
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Now, for certain v ∈ Zw1
p and V ∈ Zm1×w1

p we can consider the matrices:

E :=
(
v |Z>1 . . . Z>n |Z>A

)
and E′ :=

(
V |Z1 . . . Zn |ZB

)>
, (6)

and observe that they satisfy all the equations in (4) if we set v to be the first
column of Z>1 multiplied by −1 (with the exception that v1 = 0) and we set V
to be the null matrix except for its first row, that is set to −v>.

To conclude, observe that the converse is also true, i.e., if the equations in (4)
admit a solution, then (5) is satisfiable. To see this, note that the left-hand side
equations of (4) imply that any solution to them must be of the form of (6) for
certain v, V , Z1, . . . , Zn, ZA, ZB. Furthermore, the right-hand side equations of
(4) guarantee that such matrices Zi, for i ∈ {1, . . . , n,A,B} satisfy (5). Therefore,
we have shown that P (x, y) = 0 iff the equations in (4) have a solution. �

Observe that, in general, if (m1,m2,m3, w1, w2, w3, n) are the parameters of
the original encoding, our negated transformation will produce an encoding with
parameters n = n+2 and:

m1 = m1 m2 = m3 m3 = 1 +m1n+m2

w1 = w1 w2 = w3 w3 = w1(1 + n) + w2 − 1 .

Note that, although the negated encoding may seem to have a much larger
size compared to the original one, the matrices associated to the new encoding
are actually very sparse and thus, our transformation will barely impact the
performance of the ABE scheme build from the negated encoding.

Furthermore, note that our generic negation is compatible with the promising
dynamic pair encoding composition technique very recently proposed by Attra-
padung [Att19]. We believe our new transformation complements his work which
could only achieve non-monotone formulae composition in a semi-generic (but
dynamic) manner, since the composition had to rely on encodings for which a
negated version was available.

6 Consequences of our results

Since Attrapadung introduced the notion of pair encoding schemes and the mod-
ular framework for constructing fully secure ABE from them [Att14], there have
been several works [AC17, AC16, Att19] refining this framework and propos-
ing new encoding schemes for different predicates, that sometimes enjoy extra
properties (e.g., constant ciphertext size). The community has made a signifi-
cant effort on building the negated version of most of the encodings from the
literature, which in some cases is significantly more involved. However, there are
still encodings for which not negation is known. Our generic transformation puts
an end to this situation, since we can now take any encoding and immediately
obtain its negated counterpart. A relevant example of a PES with (previously)
unknown negation is the case of doubly spatial encryption.
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6.1 PES for negated doubly spatial encryption

Doubly spatial encryption [Ham11] is an important primitive that generalizes
both spatial encryption8 [BH08] and negated spatial encryption, defined by At-
trapadung and Libert [AL10]. It can be used to capture complex predicates and
build flexible revocation systems. Its relevance is evidenced by the fact that a
variant of it, called key-policy over doubly spatial encryption (defined by Attra-
padung [Att14]), generalizes KP-ABE and leads to efficient unbounded KP-ABE
schemes with large universes and KP-ABE with short ciphertexts. Given a field
K, the doubly spatial predicate, over sets X := Kd×Kd×` and Y := Kd×Kd×`′ ,
P ((x, X), (y, Y )), is defined as 1 if and only if the affine spaces x+span(X) and
y + span(Y ) intersect.

In the same way that negated spatial encryption generalizes spatial encryp-
tion and serves as its revocation analogue, unifying existing primitives (for
example, it subsumes non-zero-mode IPE), negated doubly spatial encryption
is a more expressive and very powerful primitive that deserves our attention.
However, to the best of our knowledge, there does not exist a general pair en-
coding scheme for negated doubly spatial encryption in the literature. Attra-
padung [Att14] provided a pair encoding for doubly spatial encryption and a
negated version, for which he had to restrict one of the attributes (originally the
ciphertext attribute) to be confined to just a vector instead of a general affine
space. This encoding gave birth to the first fully-secure negated spatial encryp-
tion scheme, but it is not the negated version of doubly spatial encryption. In
the rest of this section, we describe how to obtain the first, to the best of our
knowledge, pair encoding scheme for negated doubly spatial encryption without
restrictions.

We start from the following PES for doubly spatial encryption (over ZN )
from [Att14]. (With m1 = 1, m2 = 0, m3 = `′+1 and w1 = 1, w2 = 0, w3 = `+1.)

Param(par)→ d+ 1 and let b = (b0, b
′) = (b0, b1, . . . , bd)

EncKey(N, (y, Y )) := {α+ r1b0 + r1y
>b′, r1Y

>b′}
EncCt(N, (x, X) := { s0b0 + s0x

>b′, s0X
>b′} .

We refer to [Att14] for a proof of security and reconstructability.

In order to apply our negated transformation to this encoding, we first need
to modify it so that it satisfies our structural assumption (see the first para-
graph of our Section 4). For this, we can apply the conversion defined by Attra-
padung [Att19, Section 4]. If we do so, we will get and encoding with m1 = 2,
m2 = 0, m3 = `′+1 and w1 = 2, w2 = 0, w3 = `+2 that looks as follows (after
renaming some variables):

8 Spatial encryption is already a quite powerful predicate, that generalizes hierarchical
identity-based encryption (HIBE).
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PES for predicate P ((x, X), (y, Y )) = 1⇔ (x+ span(X))∩ (y + span(Y )) = ∅.

Where X := Zd
N × Zd×`

N and Y := Zd
N × Zd×`′

N for integers N, d, `, `′.

• Param(par)→ d+ 4 and let b = (b0, b
′, t, u, v) with b′ = (b1, . . . , bd).

• EncKey(N, (y, Y )) :={
r1(b0 + t), r2u+ r̂1, r1v+ r̂1, (Yj r̂

′+ r2bj + r̂1yj)j∈[d]
}

(also α+ r1b0).

• EncCt(N, (x, X)) :={
s0t− ŝ1, s1v − ŝ1, s1u− ŝ2, (Xj ŝ

′ − s1bj + ŝ2xj)j∈[d]
}

.

Here, r := (r1, r2), r̂ := (r̂1, r̂
′) with r̂′ := (r̂2, . . . , r̂`′+1), and s := (s0, s1),

ŝ := (ŝ1, ŝ2, ŝ
′) with ŝ′ := (ŝ3, . . . , ŝ`+2).

Fig. 2. Simplified PES for negated doubly spatial encryption.

Param(par)→ d+ 3 and let b = (b0, b
′, bd+1, bd+2) with b′ = (b1, . . . , bd)

EncKey(N, (y, Y )) := {r1bd+2 + r2bd+1 + r2y
>b′, r2Y

>b′} (also α+ r1b0)

EncCt(N, (x, X) := {s0b0 + s1bd+2, s1bd+1 + s1x
>b′, s1X

>b′} .

Applying our negation transformation to the above encoding, we obtain the
pair encoding described in Figure 3 (presented in Appendix A), where we have
renamed9 some common variables for the sake of readability. In Appendix A.1
we show how we can slightly simplify the encoding from Figure 3 and derive
the encoding that we present in Figure 2. Our Theorem 2 guarantees that it
is a valid encoding for the negated doubly spatial encryption predicate, but we
provide an independent proof in Appendix A.2.

The process of applying our generic negation by hand may seem tedious (but
it seems necessary if we want to give an explicit description of an encoding that is
parametric in size, like the one for negated doubly spatial encryption). However,
notice that this process can be easily delegated to a computer, which does not
need to have an explicit definition of the negated encoding. Instead, it can start
from the non-negated encoding and apply the negation on the fly.

6.2 Other implications of our transformation

Expressivity of pair encoding schemes. A very important and long-standing open
question about pair encoding schemes is how expressive they really are. They
have led to breakthrough constructions such as constant-size ciphertext KP-
ABE (with large universes) [Att14], fully-secure functional encryption for regu-
lar languages [Att14], completely-unbounded KP-ABE for non-monotone span

9 Before applying the transformation, we rename b0 7→ t, bd+1 7→ u, bd+2 7→ v. After
the transformation, the two new common variables are named b0 and w respectively.
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programs (NSP) over large universes [Att19]. However, it is still unknown where
their limit is. We believe our results bring new insight to answer this question
and improve our understanding of pair encodings and their expressivity.

For example, there exist pair encodings for regular languages, where key
attributes represent deterministic finite-state automata (DFSA), ciphertext at-
tributes represent (arbitrarily long) words, and the predicate is defined as 1 iff
the automaton accepts the word. However, building ABE for context-free lan-
guages (CFL) from pairings is still an important open problem, so it would be
desirable to understand whether CFL can be constructed from pair encoding
schemes. Our results imply that:

The set of predicates that can be expressed with PES is closed under negation.

This tells us new non-trivial information about what predicates can be expressed
with a PES. In particular, it suggests that building PES for context-free lan-
guages may be harder than we think or even impossible. Note that context-free
languages are not closed under complementation [HU79] and, consequently, if
we can build a PES for CFL, we could build a PES for a predicate class that
is strictly more powerful than CFL (at least the union of CFL and coCFL10).
Of course, this reasoning does not allow us to roundly conclude anything, but it
serves as an evidence of the difficulty of this problem.

Potential performance improvements. Not only does our generic transformation
broaden the class of predicates that can be captured by pair encoding schemes,
but it also can lead to efficiency improvements in actual ABE constructions. Ob-
serve the peculiar structure of the negated encodings produced with our trans-
formation from Figure 1. All of the matrices associated to common variables,
Bi and B′i, have a fixed structure that is independent of the key attribute and
the ciphertext attribute respectively (only the part associated to lone variables
is dependent on the attributes). Furthermore, observe that they are arguably
sparse. We can conclude that all pair encoding schemes admit a representation
(an encoding for the same predicate) in this form, since we can always apply
our transformation twice, leveraging the fact that the negation is an involution.
However, in many cases it may be simpler to arrive at the mentioned structure
more directly, by simply applying linear combinations and variable substitutions.
What is important is that such a representation always exists.

This observation opens the possibility of splitting the computation of cipher-
texts and secret keys into an offline part (before the attribute value is known)
and an online part (once the attribute has been determined). Observe that such a
strategy can bring significant performance improvements, given that operations
involving common variables require a group exponentiation per matrix coeffi-
cient (since the common variables are available in the master public key in the
form of group elements, with unknown discrete logarithm)11, whereas operations
involving lone variables can be batched together, reducing the number of expo-
nentiations (one can do linear algebra over the field ZN and perform one single

10 We denote by coCFL the class of languages whose complement is context-free.
11 See the ABE compiler from PES described in Appendix B.2.
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exponentiation at the end). This is because the value of lone variables is freshly
sampled during the computation and, therefore, known. This approach would
not only reduce the online encryption and key generation time, but also the
total time, since the offline computation can be reused for different attributes
after it has been computed once.

7 Conclusions and future work

Pair encodings are a simple, yet powerful, tool for building complex fully secure
attribute-based encryption schemes. In this work, we have presented a generic
transformation that takes any pair encoding scheme and negates its predicate.
This construction finally solves a problem that was open since 2015 [AY15] and
that has been considered to be non-obvious by several recent works [AC17,
Att19]. Along the way, we have defined new results that improve our under-
standing of pair encodings and can be of independent interest, including a new
encoding (previously unknown) for negated doubly spatial encryption, obtained
with our transformation.

We propose several directions for future work. On the theoretical side, it
would be interesting to explore whether our negation transformation can lead to
simpler encodings as in [ABS17]. In their work, Ambrona et al. show how, apply-
ing their negation to an encoding for monotone span programs [KW93] and after
performing some simplifications, the new encoding is more compact and leads
to an ABE that is twice as fast as the original one. The fact that the encoding is
negated does not spoil its usage, since span programs are closed under negation
and can be tweaked to implement the original functionality. The same technique
of negating the encoding also results into a successful simplification in the case of
arithmetic span programs. We believe the same kind of phenomenon can occur
when negating pair encodings with our technique, potentially producing simpler
encodings.

A very recent work [AT20] provides a new framework for constructing ABE
schemes that support unbounded and dynamic predicate compositions whose
security is proven under the standard matrix Diffie-Hellman assumption (gen-
eralizing the result by Attrapadung [Att19], which achieved the same kind of
composition under the q-ratio assumption). The work by Attrapadung and To-
mida [AT20] enables generic conjunctive and disjunctive compositions (which
lead to monotone Boolean formula compositions). Extending their techniques in
order to design a generic negation under standard assumptions is a very appeal-
ing direction for future work. (Note that the negation that we have provided in
this work is applicable to the framework of Agrawal and Chase [AC17], thus it
also relies on the less standard q-ratio assumption.)

On the practical side, it would be interesting to implement and evaluate
the performance improvements that we propose in Section 6.2, exploiting the
singular structure of the encodings produced by our transformation.
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per Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 627–656. Springer, Heidelberg, April / May 2017.

AI09. Nuttapong Attrapadung and Hideki Imai. Dual-policy attribute based en-
cryption. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages 168–185.
Springer, Heidelberg, June 2009.
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A Pair encoding for negated doubly spatial encryption

A.1 Building the encoding

A direct application of our negated transformation (Figure 1) to the encoding
for doubly spatial encryption from [Att14] (after minor modifications so that it
satisfies our structural constraints) leads to the encoding from Figure 3. This
encoding can be simplified, as the following reasoning shows that not all the
polynomials are needed for reconstructability.

The only way to get polynomial s0r1b0 (and consequently αs0) as a linear
combination of polynomials from L = s ⊗ k ∪ c ⊗ r is through the two first
polynomials in the key (multiplied by s0): s0r1b0 + s0r1w and s0r1b0 + s0r1t.
For that, we need to express monomial s0r1w or monomial s0r1t as a linear
combination of other polynomials in L. The former is impossible to obtain (since
monomial s0r1w does not appear in any other polynomial in L). The latter can be
achieved only through polynomial r1s0t−r1ŝ1 ∈ L. Again, that requires to arrive
at polynomial r1ŝ1, which is present only in r1s1v−r1ŝ1. Furthermore, r1s1v can
only be (additionally) found in s1r1v + s1r̂1. However, s1r̂1 is present in several
polynomials in L, namely: s1r2u+s1r̂1 and s1(Yj r̂

′+r2bj+r̂1yj)j∈[d]. The former
contains a monomial, s1r2u, that only additionally appears in r2s1u− r2ŝ2, but
r2ŝ2 is only present in polynomials r2(Xj ŝ

′ − s1bj + ŝ2xj)j∈[d].
Consequently, reconstructability will be possible if there exist coefficients βj

and γj for all j ∈ [0, d] such that:

s1r̂1 = β0(s1r2u+ s1r̂1) +
∑
j∈[d] βjs1(Yj r̂

′ + r2bj + r̂1yj)

+ γ0(r2s1u− r2ŝ2) +
∑
j∈[d] γjr2(Xj ŝ

′ − s1bj + ŝ2xj) .

Considering the different monomials in both sides of the equation, we deduce:

s1r̂1 : 1 = β0 +
∑
j∈[d] βjyj

s1r2u : 0 = β0 + γ0
s1r̂
′ : 0`′ =

∑
j∈[d] βjYj

r2ŝ2 : 0 = −γ0 +
∑
j∈[d] γjxj

s1r2bj : 0 = βj − γj ∀j ∈ [d]
r2ŝ
′ : 0` =

∑
j∈[d] γjXj

Consequently, reconstructability is possible if there exist coefficients βj for all
j ∈ [d] such that:

1 =
∑
j∈[d] βj(yj − xj) ∧ 0`′ =

∑
j∈[d] βjYj ∧ 0` =

∑
j∈[d] βjXj .

But this is equivalent to y−x /∈ span(Y )∪ span(X) (see Lemma 1) which holds
if and only if the predicate is true, as needed.

All the polynomials in the key and the ciphertext which have not been used
for reconstructability can be eliminated. Figure 2 describes the resulting encod-
ing after this simplification.

A.2 Arguing security

Our Theorem 2 guarantees that the encoding from Figure 3 is secure. Note that
removing polynomials cannot change security (only spoil reconstructability), so
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PES for predicate P ((x, X), (y, Y )) = 1⇔ (x+ span(X))∩ (y + span(Y )) = ∅.

Where X := Zd
N × Zd×`

N and Y := Zd
N × Zd×`′

N for integers N, d, `, `′.

• Param(par)→ d+ 5 and let b = (b0, b
′, t, u, v, w) with b′ = (b1, . . . , bd).

• EncKey(N, (y, Y )) :={
r1(b0 + w), r1(b0 + t), r2t, r2v, r1u, r2u+ r̂1, r1v + r̂1,

(Yj r̂
′ + r2bj + r̂1yj)j∈[d], (r1bj)j∈[d]

}
(and also α+ r1b0).

• EncCt(N, (x, X)) :={
s1w, s1t, s0t− ŝ1, s1v − ŝ1, s1u− ŝ2, s0u, s0v

(Xj ŝ
′ − s1bj + ŝ2xj)j∈[d], (s0bj)j∈[d]

}
.

Here, r := (r1, r2), r̂ := (r̂1, r̂
′) with r̂′ := (r̂2, . . . , r̂`′+1), and s := (s0, s1),

ŝ := (ŝ1, ŝ2, ŝ
′) with ŝ′ := (ŝ3, . . . , ŝ`+2).

Fig. 3. PES for negated doubly spatial encryption.

the simpler scheme presented in the main body (Figure 2) must also be secure.
Nevertheless, we provide an independent proof of its security, for the sake of
completeness.

Proof (Security of the encoding from Figure 2). Assume the predicate is false,
i.e., the affine spaces x + span(X) and y + span(Y ) intersect. Let z ∈ ZdN be a

vector in their intersection and let zx ∈ Z`N and zy ∈ Z`′N be such that:

x +Xzx = z = y + Y zy .

Observe that all the polynomials in EncKey(N, (y, Y )) and EncCt(N, (x, X))
(see Figure 2) evaluate to zero on the following substitution:

(b, r̂′, ŝ′)← (z, zy, zx) r1, s1, r̂1, ŝ2, u, t, α← 1 b0, s0, r2, ŝ1, v ← −1 ,

but polynomial αs0 evaluates to −1 (6= 0). As explained in Example 1, this is
an evidence of the security of the encoding.

B Additional definitions

B.1 Security of attribute-based encryption

An ABE scheme is adaptively secure if there exists a negligible ε such that for all
PPT adversaries A, and all sufficiently large λ ∈ N, AdvABEA (λ) < ε(λ), where:

AdvABEA (λ) := Pr


(mpk,msk)← Setup(1λ,X ,Y)

x? ← AKeyGen(msk,·)(mpk)
(ctx? , τ)← Enc(mpk, x?)

b ←$ {0, 1}; τ0 := τ ; τ1←$ K
b′ ← AKeyGen(msk,·)(ctx? , τb)

: b′ = b

− 1

2
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where the advantage is defined to be zero if some of the queries y made by
A to the KeyGen oracle violates the condition P (x?, y) = 0.

B.2 Attribute-based encryption from pair encodings

In order to explain how to build attribute-based encryption from pair encodings,
we need to introduce the notion of dual system groups (DSG) [CW13, CW14,
AC17], since the compilers from pair encodings into ABE [Att16, AC16] rely on
DSG in a black-box way.

Dual System Groups

A dual system group is a tuple of six efficiently computable algorithms:

• SampP(1λ, 1n): on input the security parameter and an integer n, outputs
public parameters pp and secret parameters sp such that:

◦ The public parameters, pp, include a triple of abelian groups (G,H,Gt)
(that are Zp-modules for some λ-bits prime p), a non-degenerate bilinear
map e : G×H→ Gt, an homomorphism µ (defined over H) and additional
parameters required by SampP and SampH.

◦ Given pp, it is possible to uniformly sample to H.

◦ The secret parameters, sp, include a distinguished element h∗ ∈ H (dif-

ferent from the unit) and additional parameters required by ŜampG and

ŜampH.

• SampG(pp) and ŜampG(pp, sp) output an element from Gn+1.

• SampH(pp) and ŜampH(pp, sp) output an element from Hn+1.

• SampGT is a function defined from Im(µ) to Gt.

Additional conditions are required for correctness and security:

projective: For all public parameters, pp, every h ∈ H and all coin tosses σ,
it holds SampGT(µ(h);σ) = e(g0, h), where (g0, g1, . . . , gn)← SampG(pp; r).

associative: Let (g0, g1, . . . , gn)← SampG(pp), (h0, h1, . . . , hn)← SampH(pp),
it holds e(g0, hi) = e(gi, h0) for every i ∈ [n].

H-subgroup: SampH(pp) is the uniform distribution over a subgroup of Hn+1.

orthogonality: h∗ ∈ Kernel(µ).

non-degeneracy: For every (h0, h1, . . . , hn) ← SampH(pp), h∗ ∈ 〈h0〉. Fur-

thermore, for every (ĝ0, ĝ1, . . . , ĝn)← ŜampG(pp, sp), (α←$ Zp; return e(ĝ0, h∗)α)
is the uniform distribution over Gt.
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left-subgroup indistinguishability: (pp, g) ≈c (pp, g·ĝ).

right-subgroup indistinguishability: (pp, h∗, g·ĝ, h) ≈c (pp, h∗, g·ĝ, h·ĥ).

parameter-hiding: (pp, h∗, ĝ, ĥ) ≡ (pp, h∗, ĝ·ĝ′, ĥ·ĥ′).

Where, ≈c denotes a distinguishing probability upper-bounded by a negligi-
ble function on λ and, for any n ∈ N, the above elements are sampled as:

(pp, sp)← SampP(1λ, 1n)

g ← SampG(pp) ĝ ← ŜampG(pp, sp) ĝ′ := (1G, ĝ
z1
0 , . . . , ĝ

zn
0 )

h← SampG(pp) ĥ← ŜampG(pp, sp) ĥ′ := (1H, ĥ
z1
0 , . . . , ĥ

zn
0 )

for z1, . . . , zn←$ Zp.

Remark. Observe that we have presented the version of dual system groups
defined in [CGW15]. Other works consider slightly different conditions (e.g., the
non-degeneracy of [AC16]). However, the widely used instantiation of DSG from
k-lin given in [CGW15] also satisfies the properties of those variations.

ABE from pair encodings

Given a pair encoding scheme {Param,EncKey,EncCt,Pair} (see Definition 2) for
a predicate family Pκ : Xκ ×Yκ → {0, 1} indexed by κ = (N, par) (let λ = |N |),
an attribute-based encryption scheme can be constructed as follows:

• Setup(1λ,Xκ,Yκ): let n← Param(par) and run the DSG generation algorithm
SampP(1λ, 1n) to obtain pp and sp. Let msk←$ H and mpk := (pp, µ(msk)).
Output (mpk,msk).

• Enc(mpk, x): run EncCt(N, x) to obtain polynomials cx(s, ŝ, b). For every
` ∈ [w3], let the `-th polynomial in cx be∑

i∈[w2]

γ(`)

i ŝi +
∑

i∈[0,w1−1]

∑
j∈[n]

γ(`)

{i,j}sibj

for some coefficients γ(`)

i and γ(`)

{i,j} in Zp. Now, run SampG to produce

(ĝ{i,0}, ĝ{i,1}, . . . , ĝ{i,n})← SampG(pp) for i ∈ [w2]

(g{i,0}, g{i,1}, . . . , g{i,n})← SampG(pp) for i ∈ [0, w1−1]

(g{0,0}, g{0,1}, . . . , g{0,n})← SampG(pp;σ)

Observe that we have made explicit the coin tosses, σ, used in the last

sampling. Setup ctx :=
(
ct0, ct1, . . . , ctw1−1, c̃t1, . . . , c̃tw3

)
and define the
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symmetric encryption key as τ := SampGT(µ(msk);σ), where cti := g{i,0}
for every i ∈ [0, w1−1]; and for every ` ∈ [w3], c̃t` is computed as

c̃t` :=
∏
i∈[w2]

ĝ
γ
(`)
i

{i,0} ·
∏

i∈[0,w1−1]

∏
j∈[n]

g
γ
(`)
{i,j}
{i,j} .

Output (ctx, τ).

• KeyGen(msk, y): run EncKey(N, y) to obtain polynomials ky(r, r̂, b). For ev-
ery ` ∈ [m3], let the `-th polynomial in ky be

φ(`)α+
∑
i∈[m2]

φ(`)

i r̂i +
∑
i∈[m1]

∑
j∈[n]

φ(`)

{i,j}ribj

for some coefficients φ(`), φ(`)

i and φ(`)

{i,j} in Zp. Now, run SampH to produce

(ĥ{i,0}, ĥ{i,1}, . . . , ĥ{i,n})← SampH(pp) for i ∈ [m2]

(h{i,0}, h{i,1}, . . . , h{i,n})← SampH(pp) for i ∈ [m1]

Define the secret key as sky :=
(
sk1, . . . , skm1 , s̃k1, . . . , s̃km3

)
, where ski :=

h{i,0} for every i ∈ [m1]; and for every ` ∈ [m3], s̃k` is computed as

s̃k` := mskφ
(`)
·
∏

i∈[m2]

ĥ
φ
(`)
i

{i,0} ·
∏

i∈[m1]

∏
j∈[n]

h
φ
(`)
{i,j}
{i,j} .

Output sky.

• Dec(mpk, sky, ctx, x): run Pair(N, x, y) to obtain matrices E,E′ (note that y
is assumed to be extractable from sky, whereas x is explicitly included as an
input to Dec). Define:

τ :=
∏
i∈[w1]

∏
`∈[m3]

e(cti−1, s̃k`)
Ei,̀ ·

∏
`∈[w3]

∏
i∈[m1]

e( c̃t`, ski)
E′,̀i

Output the symmetric encryption key τ .
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