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Abstract

Existing Byzantine fault-tolerant (BFT) state-machine replication (SMR) protocols in the
standard (bounded) synchrony and weak synchrony models rely on equivocation detection to
ensure safety. To perform a commit (or output a transaction block), this detection inherently
requires O(n2) communication overhead among n nodes and waiting for O(∆) time, where
∆ is the worst-case network delay. The quadratic communication overhead limits scalability.
Moreover, as the typical network latency δ tends to be much smaller than ∆, 51% honest-
majority (and hence synchronous or weakly synchronous) solutions become slow as compared
to 67% honest-majority asynchronous protocols working at network speed.

The observation that SMR commits do not have to be treated separately motivates this
work. We propose UCC (Unique Chain Commit) rule, a novel yet simple rule for hash chains
where extending a block by including its hash is treated as a vote for the block and all its direct
and indirect parents. When a block obtains f+1 such votes, where f is the maximum number of
faulty nodes in the system, we commit the block and its parents. We use this UCC rule to design
Apollo, an SMR protocol with rotating leaders which has a linear communication complexity.
Apollo proposes and commits a block every δ time units with every block having a latency of
(f + 1)δ. When compared to existing works which use equivocation detection, we improve the
optimistic commit latency when (f + 1)δ < 2∆. We prove the security of our protocol in both
standard and weak synchrony models. We also implement and compare Apollo with the state
of the art protocol, and demonstrate Apollo having commit latencies independent of and less
than the ∆ parameter, and also show significant gains in response rates with increasing n. For
instance, when n = 3, Apollo can commit blocks of size 2000 as fast 3 ms. For n = 65, Apollo
produces 3x more committed transactions per second than the state of the art Sync HotStuff
protocol.

1 Introduction

In fault-tolerant distributed computing, State Machine Replication (SMR) [27] is a fundamental
building block that is receiving renewed attention due to its potential to support blockchains. At its
core, an SMR protocol coordinates a set of nodes of a deterministic service so that, collectively, they
implement the abstraction of a single, correct server, even when a subset of nodes turn malicious
(or Byzantine). Most protocols perform this coordination using a leader that the others follow,
though this leader can change by design or in response to faults.

All the nodes behave correctly during most of the lifetime of a Byzantine fault-tolerant SMR
protocol. Therefore it is important for SMR protocols to be efficient (in terms of cryptographic
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operations and communication complexity) in this optimistic case, i.e., when all the leader(s) are
correct. With this motivation, we want an optimistically efficient SMR protocol that uses the
worst case parameters (∆), expensive communication (such as quadratic or cubic), and expensive
cryptography (threshold signatures) only when needed, i.e., when things are not optimistic, or bad.

In the standard synchrony model, the parameter ∆ bounds the worst-case delay for messages
sent between any two correct nodes. This bound is a conservative estimate of message delivery
times when the network is at its worst during adverse scenarios such as congestion or downtime of
networking components. For instance, an NTP network surveys measure the delay between a node
and its time-synchronization peer, which serve as an indirect measurement of network latencies.
Minar [25] showed that the hosts experience a mean delay of 33 ms, a standard deviation of 115 ms,
and 10−3% of nodes encounter latencies as high as 10s. Therefore, we clearly observe a disparity
between everyday/regular latency and the worst case latency, which influences the choice of ∆.

Recent synchronous SMR protocols [3, 28, 20, 12, 14] primarily use the lack of equivocation in
O(∆) time as a means to guarantee safety. Consider optimistic network conditions with the real
network speed being δ, where 0 ≈ δ � ∆, and the leader(s) of all these protocols are correct. Still,
every proposal experiences a delay of O(∆) +O(δ) to get committed, since we want to ensure that
there are no equivocating proposals. We are sure that there is no equivocation only after hearing
no complaints in 2∆ time. This discourages use of large ∆ parameters as it affects everyday
performance and encourages setting the protocol parameter ∆ as close to δ as possible. However,
setting ∆ too small is risky and can result in the limit of f faulty nodes to be exceeded artificially,
since the standard synchrony model treats any correct node that is unreachable within ∆ time as
faulty.

Guo et al. [20] proposed an alternate model called the weak synchrony model which relaxes the
standard synchrony assumption. In this model, the ∆ bound needs to hold true for only n−f nodes
in the system in any round of the protocol. The remaining f nodes consist of Byzantine nodes and
nodes that experience network partitioning for an arbitrary (but finite) duration for whom the ∆
bound can be violated. The weak synchrony model is a more practical model when compared to
standard synchrony, since it allows correct nodes to go offline for a brief period, while not being
classified as faulty. Despite being a stronger model, existing protocols [20, 14, 3, 28] in this model
also have commit rules, and thus commit latencies, that are dependent on the ∆ parameter.

Partially synchronous [9, 10, 19, 31, 13] and asynchronous protocols [17, 24] on the other hand,
sacrifice fault tolerance by tolerating 33% Byzantine faults, but in return enjoy commit latencies of
O(δ), where δ is the actual network speed, but more importantly, independent of ∆, if the network
had one. These models make minimal to no assumptions on the network, and therefore manage to
be responsive, i.e., the commit latency depends on receiving a number of messages, which depends
on the actual network speed δ.

In this work, we first observe that the dependence on ∆ mainly stems from the need to detect
equivocation. We make a second observation that Proof-of-work systems [26, 30] (such as Bitcoin)
have an informal rule that after observing 6 blocks extending a block B, the block B is deemed as
final, i.e., the probability of the block B being rejected and replaced with another block by another
correct node is negligible. We naturally ask ourselves, how many blocks do we need to observe
before we are sure that a block B is final, in a permissioned network. It turns out that the answer
is f + 1, where f is the maximum number of faults tolerated in the system, provided: (i) each of
the f + 1 blocks are from unique nodes, and (ii) we use a hash chain, i.e., every block contains the
hash of the previous block.

Based on these observations, we develop a responsive consensus rule called the Unique Chain
Commit (UCC) rule, which theoretically commits one block every δ time, with a per-block commit
latency of (f + 1)δ. Our consensus rule and the associated protocol Apollo rely on ∆ only to detect
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Table 1: Theoretical comparison of the best case of Apollo with best case of related works.
Here, best case means the leaders are always correct and the f faults are not the leaders.

Protocol Latency #
Signing

# Sig.
Verifica-

tions

Comm.
Compl.

Block
Period

Network No Lock
Step

Streamlet [12] 12∆ + 12δ O(n) O
(
n2
)

O
(
n2
)

2∆ + 2δ Std. Sync x

Dfinity [21, 2] 6∆ + 6δ O(n) O
(
n2
)

O
(
n2
)

2∆ + 2δ Std. Sync x

Opt Sync [28] 2∆ + 2δ O(n) O
(
n2
)

O
(
n2
)

2δ Std. Sync X

Sync HS [3] 2∆ + 2δ O(n) O
(
n2
)

O
(
n2
)

2δ Std. Sync X

PiLi [14] 65∆ + 2δ O(n) O
(
n2
)

O
(
n2
)

5∆ Weak Sync X

Sync HS [3] 2∆ + 8δ O(n) O
(
n2
)

O
(
n2
)

2δ Weak Sync X

Apollo (f + 1)δ O(1) O(n) O(n) δ Weak Sync X

Block Period is defined as the time between two successive block proposals.
# Signing and # Sig. Verifications are the number of signature generation and verification operations
performed by all the nodes in the system per proposal/block.
A protocol is said to have No Lock step if different nodes can be at different rounds at any point in time.

Table 2: Theoretical comparison of the worst case of Apollo with the worst case of re-
lated works. Here, worst case means f consecutive leaders (with view change for some protocols)
crashed/equivocated.

Protocol Latency Signature
Complexity

Verification
Complexity

Comm.
Complexity

Streamlet [12] O(f∆) O(fn) O
(
fn2

)
O
(
fn2

)
Dfinty [21, 2] O?(f∆) O

(
fn2

)
O
(
fn3

)
O
(
fn3

)
Sync HS [3] O(p?∆) +O(f∆) O(fn) O

(
fn2

)
O
(
fn2

)
Opt Sync [28] O(p?∆) +O(f∆) O(fn) O

(
fn2

)
O
(
fn2

)
PiLi [14] O(f∆) O(fn) O

(
fn2

)
O
(
fn2

)
Apollo O(f∆) O(fn) O

(
fn2

)
O
(
fn2

)
O?(g) denotes O(g) with high probability.
p? denotes the number blocks proposed before the leader crashes. In Sync HotStuff [3], a leader is blamed
only if p blocks are not proposed in 2p+ 4 time. If p′ blocks are proposed by time t, then the nodes wait
for p? = (2p′ + 4− t) time before blaming the leader.
Signature Complexity and Verification Complexity are the complexity of signature generation and
verification operations.

a crashed leader. Asymptotically, for large enough n, fδ outgrows any fixed worst-case network
delay ∆ (since f = bn−1

2 c grows with n). However, if δ � ∆, or if the system size n is sufficiently
small, then fδ < ∆ can hold true. Our UCC rule and Apollo protocol provides an alternative
network-dependent commit latency of (f + 1)δ over the existing fixed latency equivocation-based
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protocols which have O(∆) commit latencies. Our UCC rule and the Apollo protocol are secure
in both standard and weak synchrony models. We also observe Apollo as being highly suitable for
CPS settings. According to Table 1, in the best case, every node running Apollo signs and verifies
only 1 digital signature per block and has a communication complexity of O(n) per block, both of
which contribute to energy efficiency.

1.1 Novelty and Key ideas

UCC (Unique Chain Commit) Rule. Consider a permissioned system with blocks proposed
in every round by different nodes. At a high level, we use the idea that if a block B proposed in
round r includes the hash of its parent block from the previous round r−1, then it implicitly votes
for the chain consisting of parent blocks linked by their hashes. In SMR protocols so far, quorum
certificates (i.e., a vector of signatures of more than 50% or 66.67% of the nodes in the system),
were always built for every block of every round. We instead treat blocks proposed in subsequent
rounds {r+ 1, . . . , r+ f + 1} from different leaders, as a certificate for the block proposed in round
r as long as they are linked to each other through a hash chain. We term this rule as the Unique
Chain Commit (UCC) rule.

Linearity. Recent synchronous SMR protocols [3, 28, 14, 12] require O(n2) communication in
both the standard and weak synchrony models, even when all the nodes are correct. The quadratic
communication is fundamentally necessary in these schemes as every step involves multicasts, so
that the equivocation of proposals can be detected. We overcome this by using a round-based
pipeline in the Apollo protocol, where in every round, a new leader (different from the last f
leaders) proposes a block after receiving the block from the previous leader. Since we only need a
block from the previous leader to propose a block, we achieve linear communication complexity in
the optimistic case, which is also sufficient to handle equivocations by the leader.

Responsiveness. In the optimistic cases, i.e., when all the proposers are correct, our UCC rule
allows Apollo to commit at network speed, i.e., at speeds independent of ∆. Apollo commits a
block every δ time, with a latency of (f + 1)δ per block. We define block period as the time between
two successive block proposals in a protocol. Our Apollo protocol needs f + 1 blocks to extend a
chain to commit the chain, leading to a per-block latency of (f + 1)δ. Since, in every round, a new
block gets f + 1 extensions, we commit a block every δ time and thus have a block period of δ.
This is another benefit of not depending on equivocation detection.

Relative timers. Existing works either use fixed epochs or rounds [12, 14, 20] or view-relative
blame timers [3, 28], where the blamer timer counts the number of proposals received since the
last view change. Our UCC rule allows Apollo to use round-relative blame timers which are blame
timers relative to the last proposal, and hence the latest round. When a node receives a block for
round r it can send it to the leader of round r + 1 and wait for 2∆.

Synchronization protocol. A block in Apollo requires f more blocks to be proposed after it,
in order to commit it. If n (and therefore f) is large or if δ ≈ ∆, then blocks suffer high latency.
Some specific transactions could be time-sensitive, or some clients may require faster commits. We
present a chain synchronization protocol that achieves this (Section 5). We show that this can be
achieved by using any Byzantine Agreement protocol for the standard or weak synchrony models.

1.2 Summary of related works

Recently, several SMR/blockchain protocols [10, 14, 13, 31, 3, 12, 20] have emerged, in the standard
synchrony, weak synchrony and partial synchrony models. For instance, Proof-of-Stake (PoS)
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blockchain protocols require a rotating leader based consensus protocol, where the leader is chosen
randomly, and whose probability of being a leader for an epoch/round is directly proportional to
the amount of stake invested by the node. Therefore, permissioned consensus protocols are of
interest in this area. In our literature review, we focus on works that are similar to our work and
use standard synchrony or weak synchrony assumptions. We give a summary of related works and
compare it with this work in Table 1 and Table 2.

Guo et al. [20] first proposed the weak synchrony1model. They showed how to achieve Byzantine
Agreement in that model. Later, PiLi [12] proposed an improved SMR protocol in this model. The
latest work, Sync HotStuff [3] also proposes a protocol in the weak synchrony model, but it calls
the model the mobile sluggish fault model.

Sync HotStuff [3], Dfinity [21, 2], Streamlet [12] and PiLi [14], are SMR protocols with standard
and weak synchrony network assumptions. Sync HotStuff [3] provides three protocols, one of
which is an SMR protocol for weak synchrony. The original Dfinity protocol [21] is a white-paper
that does not give all the details for the protocol. The details of the protocol are embedded in
their implementation which is not yet open sourced. Abraham et al. [2] give a non-lock step
version of Dfinity consensus that we analyze and use to compare with Apollo. Streamlet [12]
includes blockchain protocols for the partial and standard synchrony models. We use their standard
synchrony variant for comparison. PiLi [14] is a blockchain protocol designed for the weak synchrony
model.

Sync HotStuff. Sync HotStuff [3] proposes three protocols: (a) an SMR protocol for standard
synchrony, (b) an SMR protocol for mobile sluggish faults, and (c) an SMR protocol with optimistic
responsiveness in the mobile sluggish fault model. They use the term mobile sluggish fault model
instead of weak synchrony as defined by Guo et al. [20]. Their protocol uses a fixed leader and
runs in views. In a view, the leader can propose as many blocks as it wishes as soon as it has a
certificate for the latest block. This gives rise to the extra δ between two successive block proposals.
Their protocol for weak synchrony requires a certificate on the successor of the block, and f + 1
PRE-COMMIT messages before starting the 2∆ timer, all of which gives rise to a theoretical latency
of 2∆ + 8δ time after proposing to commit a block. Since all of these steps occur in parallel, two
consecutive proposals are only delayed by 2δ.

In contrast, Apollo outputs two blocks for every block proposed by Sync HotStuff, with a net
of 100% theoretical improvement in throughput. Comparing block latencies with Sync HotStuff,
Apollo performs worse than Sync HotStuff when fδ > 2∆ and so when n > 4∆

δ . For example, if
δ = 1ms and ∆ = 1s, then for n > 4000, we theoretically start having worse block latencies than
Sync HotStuff. We find that Sync HotStuff is the state of the art synchronous SMR protocol for
both standard synchrony as well as the weak synchrony model and therefore treat is as our baseline.

PiLi. PiLi [14] proposes a blockchain (SMR) protocol, specifically for the weak synchrony model.
Rounds in PiLi are called epochs. Every epoch consists of one propose and one vote step. Each
epoch r lasts for 5∆ as stated explicitly by Chan et al. [14], if the leader of epoch r + 1 cannot
get a strongly notarized block (greater than 3

4n votes) but only a notarized block (greater than n
2

votes). This leads to a block period of 5∆ between two successive proposals. However, the commit
rule that is employed is: after observing 13 consecutive notarized (certified with > f votes) blocks,
commit the prefix after removing the top 8 blocks. The commit rule also states that before voting
it must observe that there is no conflicting notarization for a block with the same epoch number.

1Guo et al. [20] introduced the χ-weak synchrony model, where χ is the fraction of nodes that are online at any
given time in the system. They show that the condition χ ≥ 0.5 is necessary and sufficient to achieve Byzantine
Agreement. We refer to this model as the weak synchrony model. PBFT [11] also defines another weak synchrony
model, but it is not used in any other literature.
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This gives an additional 2∆ time before two successive proposals. Since we now require 13 blocks
to be notarized before committing a block, we therefore must wait for 13 epochs, giving rise to the
numbers in Table 1.

All of the above synchronous (both standard and weak synchrony) SMR protocols have one
thing in common: detect equivocation and commit after ensuring that there is no equivocating
blocks or proposals. Their influence can be clearly observed in the quadratic communication and
quadratic signature verification complexity in Table 1.

On optimistic responsiveness. Sync HotStuff [3], OptSync [28] and PiLi [14] support a mode
called optimistic responsiveness. In this mode, they assume > 3

4n nodes along with the leader(s)
are correct and the network delivers messages for the correct nodes in O(δ), which allows the
protocols to commit in O(δ). This is a different assumption that is made on the system and the
leader. However, when compared to an optimistically responsive protocol, our protocol suffers a
worse block latency, but we provide a trade-off between latency and throughput (block period).

1.3 Contributions

This work makes the following contributions:

1. We develop a novel consensus rule called UCC (Unique Chain Commit), which avoids the need
to detect equivocation. This rule is allows us to go beyond the minimum commit latency of
O(∆) in optimistic scenarios of correct leaders, concretely when (f + 1)δ < 2∆, where δ is
the real or actual network speed and ∆ is the worst case network delay.

2. We develop Apollo, an optimistically linear SMR protocol for standard and weak synchronous
models using the UCC rule. It has the following features: (i) The Apollo protocol has O(n)
communication complexity when all the leaders are correct and O(n2) when a leader crashes
or equivocates. (ii) Apollo is efficient in terms of cryptographic operations. It uses 1 signature
generation and n− 1 signature verification operations per round in total for all the nodes in
the system. This is critical for resource-constrained devices where energy is limited. (iii) In
the optimistic cases, Apollo commits one block every δ time and every block has a latency
of (f + 1)δ. (iv) Apollo uses round-relative timers where blame timers are based on the
last received block, instead of view-relative blame timers based on the number of proposals
received since the last view change or fixed O(∆) rounds.

3. We also present a synchronization protocol that allows nodes to commit to bypass the UCC
rule and safely commit a consistent chain, i.e., commit the block with the largest height,
possibly for time-sensitive transactions or periodically, without waiting for f+1 suffix blocks.
We use a black-box Byzantine Agreement protocol in the standard or weak synchrony model
and show how to achieve synchronization without breaking safety of Apollo.

4. We implement both Apollo, Sync HotStuff [3] and Sync HotStuff (Round Robin) in Rust [6], to
contrast our protocol with existing works. Our implementation of Sync HotStuff in Rust has
better numbers (20− 30 Kops/s more) for Sync HotStuff than reported in the original paper.
We show that Apollo is the best round robin protocol, and its performance is comparable
and close, within 3.33% of Sync HotStuff for n = 3 and a block size of 2000 transactions with
optimistic latencies of 3 ms which until now was achievable only by asynchronous protocol.
For n = 65, and a block size of 400 transactions, thanks to its linear computation and
communication complexity, Apollo has a 3x better response rate (i.e., committed transactions
per second) than Sync HotStuff. Finally, we find that our Rust code-base for both Sync
HotStuff and Apollo to be a contribution to the community.
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5. With its linear communication and signature complexities as compared to the quadratic
signatures and communication complexities of Sync HotStuff, Apollo is highly suitable for
energy-constrained environments. Towards demonstrating this capability, we also analyze
Apollo in a battery-restricted distributed CPS setting where nodes communicate over Blue-
tooth low-energy (BLE) channels. We observe that Apollo consumes 4.5× and 8× lesser
energy than Sync HotStuff for SMR for the leader respectively in the n = 3 and n = 5 CPS
nodes system. For increasing values of n, this gap will increase significantly.

Paper Organization. The rest of the paper is organized as follows: Section 2 describes the
system model, notation and definitions. Section 3 introduces the Unique Chain Commit (UCC)
rule. Section 4 describes Apollo with details and security proofs. Section 5 introduces and describes
the head synchronization protocol. Section 6 evaluates Apollo our implementation with the state-
of-the-art SMR protocols for various system parameters. Section 7 discusses Apollo in the context
of Cyber-Physical Systems (CPS).

2 Preliminaries

2.1 System Model

In this work, our system N := {p1, . . . , pn} consists of n nodes participating in the SMR protocol,
of which f may suffer Byzantine faults; we assume n > 2f . We refer to a node as correct in an
execution if it never fails. We denote signed messages from pi by 〈·〉pi . We denote f + 1 signatures
on the same message m as a certificate C(m). Similar to [21, 3, 28, 14, 13, 31], we assume a threshold
(BLS [8]) signature scheme to reduce the size of the certificates to O(1).

Network. We consider two network models: standard synchrony and weak synchrony.
1. Standard synchrony assumes that there is a known value ∆ such that if a correct node sends

a message to another correct node, then the message is received by the latter within ∆ time from
when it was sent by the former. We assume that faults in this model occur adaptively, i.e., the
set of nodes chosen by the adversary to fail can grow monotonically up to f nodes as the protocol
progresses.

2. Weak synchrony networks [20, 14, 3] follow standard synchrony for message delivery for all
> n/2 nodes. At each time t, the network designates a set Ot ⊆ N of correct nodes as online. The
weak synchrony model entails the following assumptions. First, at every time t, at least (n+ 1)/2
nodes are online; i.e., |Ot| > n/2 for all times t. Second, if a correct node pi ∈ Ot0 sends a message
to correct node pj at time t0, then pj receives this message sometime in the interval (t0, t1], where
t1 is the earliest time ≥ t0 + ∆ at which pj ∈ Ot1 . If such a time t1 does not exist, then pj might
never receive the message.
We use the term multicast to mean a sendall operation where a node sends a message to all its
connected nodes.

Delays. We use two delays in this work: ∆ refers to the synchrony bound, i.e., the worst case
network delay, and δ refers to the optimistic (actual/real) network speed2.

2In the real world, the parameter δ varies between pairs of nodes, instances of time, and size of the message.
However, for the theoretical analysis, we assume that a single δ value is the optimistic delay time, violation of which
implies that we are not in the optimistic scenario.
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2.2 SMR — State Machine Replication

In an SMR protocol (Definition 2.1), we wish to execute a state machine distributed across different
nodes. The state of the distributed state machine must be consistent, i.e., no two correct nodes
must output different states at any point. We instantiate the state machine using a distributed
shared log. The log consists of sequences of blocks with inputs to the state machine. As long as
the correct nodes agree on the ordering of blocks in the log, they will have a consistent state. We
define clients as entities (possibly internal) that want to use, i.e., they provide inputs to, and/or
obtain outputs from, the state machine.

Definition 2.1 (SMR — State Machine Replication [3]). Assume a system of n nodes N :=
{p1, . . . , pn}, f of which are Byzantine faults.

1. Safety. If two correct nodes pi, pj ∈ N commit to blocks Bk and B?
k, respectively, at the

same log height k, then Bk = B?
k.

2. Liveness. Each client request is eventually committed by all correct nodes.

2.3 Blocks and Hash-chains

The nodes agree on a chain, which we define as a sequence of blocks, where blocks consist of
commands (or transactions) from the clients. The commands are inputs to the state machine. We
define the height of a block as the position of the block in this sequence or the chain. We define
the first block as the genesis block to have a height 0. We assume that all the nodes use the same
genesis block before starting the protocol. We denote a block at height k as Bk, and therefore the
genesis block is B0.

A block Bk at height k must always include the hash of the block Bk−1 at height k − 1. We
define this hash as the parent hash or the parent pointer. We define Bk−1 as the parent of Bk. We
also define Bk as the child of Bk−1. We define a block Bk′ at height k′ < k as the ancestor of Bk,
or an indirect parent of Bk, if we can reach Bk′ by following the parent pointers of Bk. We also
define Bk as the indirect child of Bk′ .

By default, the genesis block is defined to be always valid. We inductively define the validity of
the child of a valid block. The child B of a valid block B′ is valid, if B contains the hash of B′ and
it satisfies other validity conditions imposed by the state machine and the underlying protocol.

Finally, we define a valid chain C := {B0, . . . , B`} as a sequence of valid blocks starting with
the genesis block B0. We define the chain to be of size ` if the highest height of blocks in the chain
is `. Note that we exclude the genesis block when counting the size.

Since, every block also includes the hash of its parent, we obtain a tamper-resistance property,
i.e., given a valid chain of size `, {B0, . . . , Bk−1, Bk, Bk+1, . . . , B`} and particular block at height k, it
is not possible to obtain another valid chain of blocks of the form {B0, . . . , Bk−1, B

?
k, Bk+1, . . . , B`}

since changing a block naturally changes its hash thereby rendering all its direct and indirect
children invalid members of the chain. In other words, it is not possible to change any ancestor of
a block and we call this property as tamper resistance in Lemma 2.1.

Lemma 2.1 (Tamper resistance of hash-chains). Let C := {B0, . . . , B`} and C? := {B?
0 , . . . , B

?
` }

be two valid chains of size `. If B` = B?
` , then B`−1 = B?

`−1, . . ., B0 = B?
0 , which implies C = C?.

Given a chain C := {B0, . . . , B`} we define B` as the head of the chain. Let C and C? be two
chains of size ` and `′ respectively with ` < `′. We define truncation of chain C? to size ` as C?[: `].
We say that C is a prefix of C? if C = C?[: `], and we denote that C is a prefix by using the set
notation as C ⊆ C?. We define a common prefix chain C′ for C and C? as the chain of size `′′ ≤ `,
such that C[: `′′] = C?[: `′′], and we denote using the set notation C′ = C ∩ C?. Note that, for any
two valid chains C and C?, C0 ∈ C ∩ C?, where C0 := {B0} contains the genesis block.
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3 Unique Chain Commit (UCC) Rule

3.1 Certificates Revisted

In this section, we revisit quorum certificates. A quorum is a set of nodes, and a quorum certificate
for a message consists of signatures by its members. In asynchronous SMR protocols (e.g., [10, 9,
31, 11, 12, 13]) quorum certificates with quorums of size f + 1 and 2f + 1 are used. For instance, in
Casper [10], a chain is finalized if there are more than 2n

3 stakeholders (a 2f +1 quorum certificate)
who vote for it or its children.

Synchronous SMR protocols [3, 1, 28, 14, 12] typically improve the fault tolerance from n > 3f
to n > 2f by detecting equivocation since every round terminates in a finite time. However, we
observe the following about equivocation: (1) Equivocation is a chain fork (multiple valid chains),
when hash-chains are used. (2) Resolving equivocations translates into a fork-resolution problem.
Therefore, given two chains C and C?, we need some weighting mechanism that determines which
chain must be accepted by the correct nodes.

The chain weight problem. With these observations, it is clear that we need to determine a
method to resolve forks. For a permissioned system in the standard and weak synchrony models
tolerating f Byzantine nodes, a weight of f + 1 votes (or an f + 1 quorum certificate) on a block
(and thus the parent chain) is insufficient to remove equivocation detection. Consider a Byzantine
leader pL. It can propose two blocks B and B?. If two correct nodes vote for B and B? respectively,
without being aware of the existence of the other block, then with the votes from the f Byzantine
nodes, both the blocks can obtain sufficient votes and weight. This violates safety and therefore
this weight mechanism is insufficient. We show how to solve this in the next subsection.

3.2 Commit Rule

Moving away from fixed leaders. For standard synchrony and weak synchrony, consider a
round-robin method of selecting leaders. This has several interesting properties: (1) We are guar-
anteed one correct leader every f+1 rounds. (2) We are assured of one irreplacable correct proposed
block in rounds where the leaders are correct. By irreplacable, we mean no node can prove that this
block is false, such as by providing f+1 complaints. (3) The weight of the chain can be determined
by ensuring that no alternate chain can get committed, i.e., the chain is also irreplacable.

New chain weights. Instead of counting the number of votes on a block as the weight of the
block, we instead informally define the chain weight as follows:

The weight of a chain is defined as the number of children for the head of the chain.

For permissioned systems in standard and weak synchrony models, when the weight of a chain
prefix exceeds f , it is safe to commit the chain.

This is because all the correct nodes propose only block per height. There can exist multiple
chains, unbeknownst to a correct leader, but when a correct leader proposes a block, it fixes the
block at that height. At this point, all we need to do is to ensure that a correct proposal is always
extended by correct nodes. We can ensure this by stating that a valid block can be rejected if there
are f + 1 explicit votes against it. By explicit votes, we mean f + 1 signed messages (also known
as blame messages) against the proposer of the block, the round, or the block itself.

Any node in such a system can be sure that the maximum length of a forked chain cannot
exceed f , which occurs when f continuous leaders are Byzantine. In other words, for a given chain
C, only the suffix Cs consisting of the last f blocks can be different according to different correct
nodes.
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Rethinking certificates. Based on our earlier discussion on quorum certificates, we can look at
a f + 1 weighted chain as the f + 1 quorum certificate for the chain. In all the consensus literature
so far, certificates consisted of signatures on a particular message/block, and use O(1) such quorum
certified blocks in the commit rules. However, we look at f + 1 proposals extending a hash-chain
as a certificate to the chain.

Commit rule. Due to the interesting tamper resistance property (Lemma 2.1) provided by the
hash chain, we now formally introduce our commit rule in Definition 3.1.

Definition 3.1 (UCC Rule). On observing any valid chain C := {B0, . . . , B`} of size ` (with ` > f),
commit the prefix chain C[: `− f ].

Safety. A correct leader finalizes the hash-chain when it proposes a block. We ensure that correct
proposals are always committed by the other nodes. Naturally, since the system only has f faults
in a set of {Bi, . . . , Bi+f+1}, at least one leader is correct and therefore pins at least one of the
blocks (we do not know which). No other Byzantine node can produce a longer alternate chain
because of the tamper resistance property. Therefore Bi is pinned (directly or indirectly) and it is
always safe to commit block Bi and all its ancestors in the chain. We have done without trying to
detect equivocation by purely knowing that there are only f faults in the system.

Discussion. The UCC commit rule has several advantages:
1. It is pipeline friendly, i.e., every new block adds a weight of 1 to all its ancestors. Thus,

every new block helps in committing the (f + 1)th parent.
2. The UCC rule allows us to commit new blocks with a frequency of O(δ), with every block

having a delay of O(fδ).
In related works such as Sync HotStuff [3], the optimistic latency is 2∆ + O(δ). They also

claim that it is not possible to do better than ∆ while tolerating more than n/3 faults. We are the
first ones to show that we can commit before ∆, by avoiding equivocation detection and employing
the UCC rule, and when δ � ∆ or f and n are sufficiently small, i.e., f < ∆/δ. Our protocol
encourages pessimistic choices of ∆ as it does not affect the latency of commit.

4 Apollo Protocol

In this section, we discuss the Apollo protocol which uses the UCC rule (Definition 3.1) to build a
pipelined, linear SMR protocol for the standard and weak synchrony models.

Proposer sets. We define a proposer set P consisting of all nodes N . As nodes agree on misbehav-
ior from leaders (by committing blocks that contain proof of equivocation/no progress of leaders),
we remove the nodes from the proposer set. This allows us to eventually stabilize on a set of leaders
of size n− f that are correct and online.

In the weak synchrony model however, some correct nodes can become unresponsive or tem-
porarily experience network partition and thus not be in Ot. Therefore removal of nodes from the
proposer set on crash cannot be made permanent as in the case of standard Synchrony. Doing so
can make P → ∅. So we place a constraint that the size of the proposer set |P| must be at-least
n − f , after which we replace a faulty node with a node that has the highest blocks proposed so
far, but not in the proposer set, with ties broken arbitrarily.

4.1 Overview

The protocol proceeds in rounds. In every round, a known leader (derived from P) builds a
candidate block extending the highest block known to it. We give a high level overview of Apollo
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in Figure 1. Note that the round number and the height of the block need not be the same, since
some rounds may not have blocks.

p1

p2

p3

p4

p5
t = 0 δ 2δ 3δ 4δ

B1 B2

B3

B4

Propose B1 Propose B2 Propose B3 Propose B4
. . .

Relay B1 Relay B2 Relay B3
. . .

. . .

Figure 1: Overview of the Apollo Protocol in the optimistic case, when all the leaders are
correct. The proposer for round r + 1 can immediately propose as soon as it receives the block for round
r. Hence, Apollo has a block period of δ, as it does not have to collect votes and certificates for the previous
block unlike existing protocols.

Let Lr be the leader of round r.

1. Propose. On receiving block Bk−1 for round r − 1, the leader Lr for round r proposes a block

Bk :=
〈
H
(
Br−1

)
, cmds

〉
L

by multicasting 〈propose, Bk〉Lr
extending the previous block Bk−1 from the

previous leader.

2. Relay. On receiving a valid proposal for round r, forward it to the next leader Lr+1, start timer
blame-timerr+1 to alarm in 2∆ time (refer Figure 3).

3. (Non-blocking) Commit. On receiving a valid chain of blocks C := {B0, . . . , B`} commit blocks
C[: `− f ] if ` > f .

Figure 2: Rounds in Apollo protocol

In Figure 1, the node p1 is the leader for the first round and performs the Propose step. It
proposes a block B1 extending the genesis block since it is the first proposal, but generally nodes
extend the block proposed by the leader for the previous round. The node p2 proposes the next
block B2 immediately after receiving the block B1. We want to ensure that a correct leader is
always able to propose. However, a Byzantine leader can try to slow down the protocol and may
not send its proposal to the next leader. To overcome this, all correct nodes forward the proposals
of the current round to the next leader. This is shown in Figure 1 as the Relay step.

The propose and relay steps keep following each other with different leaders from P. Addition-
ally, in every round, the correct nodes commit blocks after removing the top f blocks from the
hash-chain received from the latest proposal. We give technical details in Figure 2.
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Let Lr and Lr+1 be the leaders of round r and r + 1 respectively.

1. Blames. The node pi, on detecting the following conditions does:

(a) No-progress blame. If blame-timerr has passed and no valid block was proposed by leader Lr,
then multicast 〈r,NPBlame〉i along with the latest known local block Bk for round r − 1. Wait for
a blame certificate C(r,NPBlame). Treat the blame certificate as a virtual block for round r and
continue with the relay step (Step 2) of Figure 2. Also multicast the certificate C(r,NPBlame) to
all the nodes.

(b) Equivocation. If there exists two blocks B and B? proposed by node pj ∈ N in round r?

obtained directly or indirectly, multicast a 〈r,EQBlame〉 message and the two equivocating blocks
B and B? with signatures.

2. Remove leader (optional). On committing a block with a equivocation blame 〈r,EQBlame〉i or a
certificate of C(r,NPBlame), remove the leader from the proposer set.

Figure 3: Handling Byzantine behaviour in Apollo protocol

4.2 Handling Byzantine Faults

In this section, we describe and give an overview of Apollo during equivocation and crashes of
nodes. A concise technical description is presented in Figure 3.

Block equivocation. A leader can equivocate by sending different blocks to different correct
nodes. As stated earlier, unlike existing synchronous SMR protocols [1, 3], Apollo does not need
to detect equivocation to preserve safety or liveness. Consider a leader Lr equivocating in round r.
At least one of the blocks reaches the next leader Lr+1 through the Relay step. It will immediately
propose the next block. In general, an equivocation is detected by correct nodes in two ways:

1. A correct node whose head of the chain is Bk′ may obtain a block Bk from some leader Lr with
k′ < k and an unknown parent hash. It will immediately request all the blocks Bk′ , . . . , Bk−1

until Bk connects to the node’s local chain. If Lr cannot provide valid ancestors within
2∆, then the correct node blames Lr. A correct Lr can always respond to such queries and
therefore not get blamed by correct nodes. When the parent block is received, a correct node
may realize equivocations due to contradiction with the local chain.

2. A correct node can get two different blocks during the Relay step (Step 2) of the protocol.

In both of these cases, the correct nodes multicast the proofs of equivocation to all the other
nodes if it detected the equivocation directly or via equivocation blame from others. Note that this
is basically a reliable broadcast of equivocation blame. All correct nodes include the equivocation
blame as a meta-transaction in their future proposals until it is committed.

It is important to not act on the equivocation until it is committed through some block. This
is because we do not use timing guarantees and we do not rely on ∆ to ensure that all nodes have
detected and agreed on the equivocation. Instead, we rely on the fact that sufficient correct nodes
have extended the block containing the equivocation blame and therefore all other correct nodes
must know that the node has equivocated by then (or will know once the network partition clears
or the unresponsive nodes become prompt).

Crashed leaders. We reiterate that we always want a correct leader to be always able to propose
blocks. Consider leaders Lr and Lr+1 for rounds r and r + 1 respectively. Let Lr not propose any
block to any node. Now, the correct nodes at this point in time, could be processing/waiting for
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blocks at different rounds ≤ r−1. The first correct node to finish processing the block Bk for round
r − 1, will wait for 2∆ time (we will describe soon why to wait for 2∆) after relaying Bk before
blaming Lr. Upon timing out, a correct node cannot be sure if all the correct nodes are waiting for
a proposal for round r, since our protocol can proceed at network speed for some nodes but slowly
for other correct nodes (i.e., messages are delivered toward the end of the ∆ delay). Therefore,
some correct nodes can be waiting for a block for round r, whereas others may be waiting for blocks
at rounds r′ < r. This case can also occur if Byzantine leaders send the proposals to some correct
nodes, who will then be ahead in round number when compared to the nodes that did not receive
the proposals.

In any case, upon timing out, a correct node on time out for round r, sends the latest block Bk
to all the correct nodes in order to synchronize the round for all nodes to r−1. We do this multicast
only after a time out and not for every round in order to obtain the desired linearity in the steady
state as this step has a communication complexity of O(n2) if n − f nodes time out. We know
that within 2∆ all nodes will relay the proposal to Lr and then blame when it does not respond.
On collecting f + 1 such blame messages, all the correct nodes build a virtual block for round r
consisting of blames against Lr. Using threshold signatures, this block has O(1) size. From this
point, we continue with the relay (Step 2) of this virtual block to Lr+1 just as though we received
a proposal with this virtual block from Lr.

Why multicast blames? We always multicast blame certificates/ equivocations to all the other
nodes. We do this because the leader Lr of a round r could be Byzantine and can trigger a time out
for some correct nodes for round r but later produce a valid block Bk for round r. By multicasting
the blame certificates/equivocations to all the other nodes, the correct nodes will include the blame
certificate as a meta transaction, which will eventually be committed thereby ensuring that the
leader Lr cannot cause such delays in the future.

Blame timers. Apollo using UCC Rule allows us to use round-relative timers, i.e., blame based
on the latest round. Unlike Sync HotStuff [3], which uses view-relative timers, where in a view
v, the condition for triggering a no-progress blame is to not receive p blocks in (2p+ 4)∆ time.
Assume that the first 1000 proposals are made at network speed after which the leader crashes. In
Sync HotStuff, the nodes needlessly wait for 2004∆ before blaming the leader. We overcome this,
since our timers are always rooted to the last received block.

Why 2∆ timeout is sufficient? Again, we want to ensure that a correct leader is always able
to propose and is not incorrectly blamed. Every node forwards the previous block to the current
leader. This will take ∆ time in the worst case. A correct leader will then immediately propose
since it has a block to extend. It will take another ∆ for this block to reach the correct node in
the worst case. Therefore waiting for a total of 2∆ after relaying the block is always sufficient for
a correct node to ensure that it does not blame a correct leader.

4.3 Security Analysis in Standard Synchrony

In this section, we prove the safety of Apollo protocol in standard synchrony. The commit rule
employed by Apollo from Definition 3.1 guarantees that no two conflicting blocks will be committed
by any correct node. On a high-level, we want the following important properties to ensure security:

1. Correct leaders are always able to propose.

2. Correct proposals are always committed.
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Valid proposals. In the commit rule in Figure 2, we mention valid proposals. The definition of
valid proposals vary with the network assumption of standard or weak synchrony.

Definition 4.1 (Valid proposal). A valid proposal for round r consists of a block Bk extending the
parent Bk−1 from round r′ < r, and contains blame certificates C(r′′,NPBlame) for r′ < r′′ < r.

For the standard synchrony assumption, we add an additional constraint to chain validity (apart
from the definitions from Section 2.3):

Definition 4.2 (Valid chain for standard synchrony). A valid chain C := {B0, . . . , B`} of size `
consists of:

• Hash chain of blocks (from Section 2.3), i.e., for any i ∈ [0, `), Bi−1 is the parent of Bi, or

• A block Bk extending the parent block Bj with valid blame certificates C(i,NPBlame) or of the
type C(i, 〈r,EQBlame〉) with equivocating blocks, as virtual blocks for round i, where i ∈ (j, k),
j ∈ [1, k), and k ∈ [1, `].

Definition 4.2 defines a valid chain to be a chain consisting of valid blocks including blame
certificates serving as virtual blocks. The standard synchrony allows this as the assumption dictates
that in the lifetime of the protocol only f nodes can crash/equivocate. From the tamper resistance
property (Lemma 2.1), we are guaranteed that a Byzantine node cannot go back in time and replace
older proposals with virtual blocks, thus ensuring the protocol safety.

We first prove that a block proposed by a correct node will always be committed.

Theorem 4.1 (Correct commit for correct leaders). For any round r ≥ 1, if the leader Lr is correct
and proposes a block Bk, then Bk will be committed by all correct nodes in round r + f + 1.

Proof. Safety. To understand why this is true, let us take a look at what a Byzantine leader Lr+1

of round r + 1 can do with Bk. The Byzantine leader can decide to not extend the block. The
only way to do this is to obtain f + 1 blames against the correct leader. This is not possible for a
correct leader. Let pi be the earliest node to reach round r, either via a time out from round r− 1
and obtaining a blame certificate, or by obtaining a block Bk−1 for round r−1. Let t be the global
clock time at this point. Before time t, all correct nodes are waiting for blocks for rounds r′ < r.
Now, pi forwards its block (virtual or real) for round r − 1 at time t. The leader Lr being correct,
will respond to all the nodes with a block Bk for round r by time t + 2∆. Therefore, no correct
node will time out for Lr, and Lr can always respond to block requests from correct nodes.

Liveness. A Byzantine leader Lr+1 can extend B using two proposals Bk+1 and B?
k+1. In this

case, eventually some version of the chain with one of the two proposals Bk+1 or B?
k+1, will be

f + 1 long, when the (f + 1)th leader proposes a block. This ensures that B is committed. If
f consecutive leaders decide not to extend B, then after obtaining blame certificates for the f
Byzantine leaders, the next leader will extend Bk and thus commit Bk by f + 1 rounds.

Now, we prove the safety of the commit rule.

Theorem 4.2 (Commit safety). For any height k ≥ 0, if two correct nodes commit to blocks B
and B?, then B = B?.

Proof. For k = 0, the proof is trivial since the genesis block B0 is agreed upon by assumption.
Assume that two correct nodes commit to two blocks Bk and B?

k with B?
k 6= B?

k for some
height k. This implies that there exist two valid (refer Definition 4.2) chains {Bk, . . . , Bk+f} and
{B?

k, . . . , B
?
k+f}. From the tamper resistance property (Lemma 2.1), this implies that there are two
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proposals for all blocks starting from height k to k + f . This implies f + 1 nodes equivocated or
have blame certificates. This is a violation of the assumption that only f nodes in the system are
Byzantine. Therefore, we cannot obtain two chains as described previously.

To prove liveness, from Theorem 4.1, we know that in one of the nodes in rounds k? ∈ {k, . . . , k+
f} is correct, and therefore is eventually (by round k? + f + 1) committed, thereby committing B.
We prove it formally in Theorem 4.3.

Theorem 4.3 (Apollo liveness). Assuming standard synchrony, the Apollo protocol always makes
progress, and commits blocks with a period of at most 6∆.

Proof. Because the clocks of different nodes might be different, we use a global clock time unknown
to the nodes but only for external observers observing the protocol to measure the difference in
time. Let t be the current global clock time, and let the first correct node be reach round r at
this time, by obtaining a blame certificate or a block for round r − 1. In the worst case, due to
network delay or due to Byzantine nodes, a correct node will blame a crashed leader Lr for round
r at time t + 2∆, followed by sending the block to all the nodes, which will reach all the correct
nodes in ∆ at time t+ 3∆. After this step, all the correct nodes will reach round r. Now all these
correct nodes forward the block for round r− 1 to the crashed leader again and wait for 2∆ before
sending a blame at time t+ 5∆. This blame takes an additional ∆ time to reach all other correct
nodes at time t+ 6∆. At this point, we commit one block, because this virtual block extends the
local chain of every correct node. Therefore in the worst case, it can take 6∆ for a block to be
committed, but we will always make progress. The 6∆ wait only occurs f times in the lifetime of
networks assuming standard synchrony. If all the nodes are correct, but the network is slow, then
we progress with a period of ∆ always.

Theorem 4.2 and Theorem 4.3 prove that Apollo is a secure SMR protocol under the standard
synchrony assumption.

4.4 Security Analysis in Weak Synchrony

In this section, we prove the safety of Apollo protocol in weak synchrony. A constraint in the weak
synchrony model is that nodes can be offline. The key difference in the proof, lies in the definition
of valid chain. In this model, the network can adaptively go down so that there can be indefinitely
long chains of blame certificates, and therefore we cannot safely treat blame certificates as virtual
blocks and help commit blocks.

Consider the following scenario. The nodes who are leaders in every round become offline in
every round, i.e., Lr /∈ Ot for every round at the corresponding global clock time t. This can
continue indefinitely, and the protocol can never make any progress. This is not just a limitation
of Apollo, but of all the existing SMR protocols [3, 14] in this model.

The above limitation also implies that we need to revise our definition of valid blocks as we can
no longer treat a blame certificate as a virtual block at that height. We give the revised definition
of valid chain in Definition 4.3.

Definition 4.3 (Valid chain for weak synchrony). A valid chain C := {B0, . . . , B`} of size ` consists
of a hash chain of blocks Bi of round r, where i ∈ (0, `], extending the parent block Bi−1 of round
r′ < r with Bi containing blame certificates or equivocation blames with equivocating blocks for
every round j ∈ (r′, r).

We first observe that if the proposer for round r, obtains a block for round r− 1, and is online,
then its proposal cannot get a blame certificate.
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Lemma 4.4. Let pi ∈ N , be the proposer for round r. Let it obtain a block from round r − 1 at
time t. If pi is online at time t and proposes B , then B cannot obtain a blame certificate.

Proof. In the time interval t′ ∈ (t, t+ ∆], Ot′ can change at most once (by model definition). But
the size of Ot′ is bn+1

2 c which is at least f + 1, and therefore some f + 1 correct and online nodes
will hear this proposal, and thus never blame pi. This ensures that B, and thus a proposal for
round r, can never obtain a blame certificate.

Theorem 4.5 (Commit safety for weak synchrony). For any height k ≥ 0, if two correct nodes
commit to blocks B and B?, then B = B?.

Proof. Let pi, pj ∈ N , be two nodes that commit to blocks Bk and B?
k at height k. For the

weak synchrony model, this implies that there exist two chains C := {Bk, . . . , Bk+f+1} and C? :=
{B?

k, . . . , B
?
k+f+1} through which pi and pj commit to Bk and B?

k respectively.
Assume Bk 6= B?

k. This implies Bk+1 6= B?
k+1, . . . , Bk+f+1 6= B?

k+f+1 (from Lemma 2.1) and
since a block cannot have two parents. From Definition 4.3, we also know that no block Bi and B?

i

can be virtual blocks, i.e., are blame certificates or equivocation blames, for i ∈ {k, . . . , k+ f + 1}.
If all the blocks at height k ≤ i ≤ k + f + 1 are from the same rounds, then f + 1 nodes have

equivocated, and are therefore Byzantine, which contradicts our assumption that there are only f
Byzantine nodes in the system.

Assume that some b ≤ f nodes are Byzantine. Now, there are d = f − b correct nodes, that can
be offline at any time t.

Let us start from the block at height j with j = k initially with d = f and c = 0. We show that
by the time j = k + f + 1, the chain grows f + 1 long, Bk = B?

k.
If the proposer for Bj is a Byzantine node, increment j ← j + 1, d ← d − 1, c ← c + 1 and

repeat the analysis.
If the proposer for height j is a correct and online node, then from Lemma 4.4, all future online

nodes obtain Bj , and the round can never obtain a blame certificate. Therefore, Byzantine nodes
cannot extend or equivocate blocks after height j. The analysis terminates with Bj = B?

j which
results in Bk = B?

k.
If the proposer for height j is an offline node, then the online nodes will build a blame (from

the No-progress Blame step in Figure 3), and continue with the next proposer for height j + 1.
The blame step results in all of these nodes sending their latest blocks, again ensuring that all the
correct and online nodes extend the same block for height j − 1, leading to Bk = B?

k.
Now, an offline proposer can propose a block at height j, which is delivered to another offline

proposer for height j + 1, which can propose a block for height j + 1. However, this series of
steps can only occur up to 0 ≤ d ≤ f rounds, eventually leading to one of the above scenarios.
Whenever, a node becomes online, it receives messages from all previous online nodes, leading to
a synchronization of chains which ensures that this correct node will not extend another block at
height j − 1 and thus Bk = B?

k.
Therefore, by the time j = k + f + 1, we have ensured that one of the above scenarios will be

encountered, all of which lead to: if any correct node observes a block at height k+ f + 1, then Bk
= B?

k.

Theorem 4.6 (Apollo liveness for weak synchrony with strong — GST assumption). Apollo pro-
tocol achieves liveness in weak synchrony assuming the existence of a strong - Global Stabilization
Time GSTs.

16



Proof. The protocol can stop making progress, when the network keeps making the leaders be-
come unresponsive, leading to long chains of blame certificates. After time t = GSTs, this stops
happening, and the protocol makes progress, and commits blocks.

Theorem 4.7 (Apollo liveness for weak synchrony with weak - GST assumption). Apollo protocol
achieves liveness in weak synchrony assuming the existence of a weak - Global Stabilization Time
GSTw.

Proof. We must use the proposer sets in order to achieve liveness under the weak - GST assumption.
After some time t = GSTw, when there are n − f nodes that are persistently online, the proposer
set P stabilizes to these n− f nodes, and Apollo enjoys liveness.

4.5 Discussion

To the best of our knowledge, we are the first to deviate from the philosophy of detecting equivoca-
tion in a n > 2f setting by using sufficient number of proposals to commit a block. In this section,
we explore how this work can be observed through the lens of some classic protocols.

Parallels to Dolev-Strong. The UCC rule can also be viewed as pipelined, linearized and hash-
chained version of the original Dolev-Strong protocol [16]. In the classic Dolev-Strong broadcast
protocol (which tolerates f < n), a node accepts a value in round 1 ≤ i ≤ f + 1, if there are i
signatures (including the sender’s) for a value. And finally in round f + 1, it accepts a value if
there is only value accepted so far.

In UCC, our rounds 0 ≤ i ≤ ∞, go on forever. On a high level, for the standard synchrony
version, a block B is committed/accepted in round i if there are f + 1 implicit votes on it, where
each vote is in the form of an extension of the block or blame certificate, which occurs naturally
for all blocks proposed before round i− f − 1. Our pipeline ensures that the Dolev-Strong rule can
be pipelined for multiple broadcast instances since every block extension counts as support for all
its parents.

Parallels to Phase-King. The Phase-King algorithm [5] is another classic protocol which uses a
gradecast protocol to achieve consensus in f+1 rounds by introducing King consistency, a property
where if the leader or king of a round is correct, then all the nodes output the same value and have
a grade g = 1 along with the standard validity property (to recall, it states that if all the nodes
have the same input v, then all the correct nodes output v). Our UCC rule can be viewed as a
pipelined application of Phase King [5] applied per block.

For standard synchrony, our UCC rule, also has a similar property, where if the leader of a
round r is correct a proposes v for height k, then the block is pinned, i.e., no node will output a
different v′ for height k. Just like the Phase-King algorithm, the nodes cannot detect when this
occurs, and therefore must continue on till f + 1 rounds after which they are sure that there must
have a correct king/leader.

Another reason why we draw attention to classical protocols is because classical results also
apply to the UCC rule. For instance, using random beacon or OLE (oblivious leader election) it
is shown how to achieve expected constant round agreement [23, 18], by simply choosing the king
randomly. The same results can also be translated to UCC.

Parallels to Casper [10]. In our work, we treat the f + 1 suffix as a certificate analogous to
super-majority votes from stakeholders in PoS protocols [10, 19]. Casper [10] uses the rule that if
2f + 1 stake votes on a branch of the chain, then the prefix of the such a chain is safe to commit.
The UCC rule can be viewed as generalization of Casper, where every one of the 2f+1 explicit vote
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is converted into an implicit vote by extending the chain, thereby contributing to the throughput
by doing useful work.

On hash-chains. Another question that arises is whether we can remove hash-chains. The UCC
rule requires tamper-resistance (refer Lemma 2.1). Removing the hash-links with simple counters
do not work and violates safety. However, the chaining need not be explicit or consists of hashes as
we have described. The chaining can be made implicit by including the signature of the previous
block as input before signing the current block.

5 Head Synchronization

We observe that any particular block always incurs a commit latency of O(fδ), even in optimistic
conditions. Depending on the choice of ∆, urgency of some transactions, for sufficiently large n
and therefore f , or at regular intervals, we may wish to synchronize the heads of all the correct
nodes. In other words, we want all the nodes to catch up to the head of the chain. We give a
synchronization protocol with this exact goal: To synchronize the heads of chains of all the correct
nodes.

Requirement. During synchronization, we can potentially have correct nodes with different
heads at different heights. This happens because different nodes see the synchronization certificate
at different heights, or different forks due to equivocation by the previous leaders. At the end of
synchronization, we want all the nodes to commit to the head of the chain, so that the nodes accept
new blocks from new leaders without breaking the hash-chain.

Sync certificate. Depending on the use case, we make the nodes sign a message 〈Sync, v〉.
Interested parties (clients or nodes) can collect 〈Sync, v〉 from at least f + 1 nodes to build a
synchronization certificate C(Sync, v). This can be done by nodes periodically at fixed wall clock
times (such as 12 AM everyday), at fixed block intervals (every 1000 blocks), or with the assistance
of a client such as for high priority transactions with high fees, or based on an internal client
hierarchy (some clients may be special and more important). After obtaining the sync certificate,
it is sent to a correct node to start the synchronization protocol.

Safety. At the end of the synchronization protocol, we want to ensure that all correct nodes agree
on the same height, and start accepting blocks from the same leader so that Apollo protocol can
resume correctly. The latter can be solved by simply resetting P. Theoretically, the former requires
running a Byzantine Agreement (BA) protocol (which we recall in Definition 5.1) among all the
nodes, whose validity condition guarantees that if all the correct nodes start with the same input
Bhead, then all correct nodes output the same block; otherwise a consistent block is output by all
correct nodes.

Definition 5.1 (Byzantine Agreement). Let the set N := {p1, . . . , pn}, be the nodes in the system,
f of which are Byzantine. Each correct node has an input vi. A protocol ΠBA is said to be a BA
protocol if it satisfies the following conditions:

(i) Safety. If any two correct nodes pi, pj ∈ N output outi and outj respectively, then outi =
outj.

(ii) Validity. If all correct nodes start with the same value v, then for any correct node pi,
outi = v.

(iii) Termination. All correct nodes pi ∈ N eventually output a value outi.
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The above validity requirement alone is sufficient in not sufficient to ensure safety for the weak
synchrony setting. Some nodes could be sluggish while the other nodes are synchronizing. A
sluggish node may become prompt after synchronization, and may accept incorrect blocks in the
wrong view. To resolve this, we certify the first f + 1 proposals in every view. This ensures that
the head after synchronizing cannot get f + 1 proposals without being certified and therefore a
sluggish node cannot commit stale blocks beyond the head.

Let ΠBA be a black-box BA protocol that satisfies Definition 5.1 when n > 2f . Let v be the current view.

1) Relay sync certificate. On receiving a synchronization certificate C(Sync, v) directly, or via mul-
ticast from another node, multicast the message 〈C(Sync, v), Bhead, Bc〉 to all the other nodes with
the latest head block Bhead and highest committed block Bc. Wait for 2∆ and stop accepting new
proposals. Update head blocks and committed blocks if longer chains are received from others.

2) Byzantine agreement. Run the protocol ΠBA with blocks {Bc, . . . , Bhead} as input.

3) Resume. When the BA protocol outputs B? ← ΠBA, send vote for B? and send it to the first leader
after resetting P.

4) New view validate. In the new view v+1, the first f+1 proposals are only valid if they are certified,
i.e., block Br contains C

(
Br−1

)
. This entails that during the proposal step for the first f + 1 blocks in

a view, the proposer first sends a block, and the remaining nodes on verifying the correctness of the
block, send a vote to the proposer, who finally proposes the certified block.

Figure 4: Description of a generic synchronization protocol for Apollo using a black-box BA protocol
ΠBA.

View. Similar to some SMR protocols [11, 3, 9], we use a counter called view to denote a view
number. In PBFT [11] and Sync HotStuff [3], a view represents blocks proposed by a single leader,
and a view change corresponds to changing a leader. In Apollo protocol, we look at views as
proposals from an imaginary virtual leader (in the head), and a view change as changing this
virtual leader. We observe that view change protocols are Byzantine Agreement protocols that
smoothly transition into steady state protocol with the next leader.

Limitations and bounds. Since view change protocols are a form of BA, and we require BA,
our synchronization protocol is also bound by the limitations of BA. A pessimistic lower bound by
Dolev & Strong [16] states that for synchronous networks, agreement tolerating f Byzantine nodes,
requires at least f + 1 rounds to reach agreement in the worst case. This is true for view change
protocols as well when f continuous leaders are Byzantine, they can trigger f consecutive view
changes. We are also bound by the same bound and we can hope for early termination only when
the Byzantine nodes follow the synchronization protocol, otherwise the synchronization protocol
will also take ≥ f rounds.

Since we make the connection that a synchronization is the same as a view change in Sync
HotStuff [3] and all we need is to achieve efficient Byzantine Agreement. We assume the existence
of a black-box BA protocol ΠBA, and show how to construct a secure Synchronization protocol for
Apollo in Figure 4.

Security Analysis for Synchronization

Theorem 5.1 (Secure synchronization). If ΠBA is a secure BA protocol in the standard or weak
synchrony model, then the synchronization protocol defined in Figure 4 guarantees all the properties
from Definition 2.1.
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Proof. Since ΠBA is a secure BA protocol, we know that all correct nodes output and commit to
the same chain C. Therefore, all correct nodes commit to the same chain C after synchronization
for standard synchrony.

However, in the weak synchrony model, let some correct nodes be unresponsive before, and
throughout the synchronization protocol. Now, Byzantine nodes can trick the nodes into accepting
incorrect chains by emulating messages as though no synchronization occurred. In this case, the
unresponsive nodes can commit blocks only up to the last block in C. The Byzantine nodes can
keep adding equivocated blocks extending C up to f − 1 blocks, since at least one correct node
is unresponsive. After which, all the blocks contain the synchronization certificate, which ensures
that all correct nodes move to the synchronized chain.

6 Performance Analysis and Experiments

Setup. We ran all of our experiments on AWS c5.4x-large instances. These machines have 16
vCPUs, 32 GB RAM, 8 GB of storage. The instances are deployed in a Virtual Private Cloud, a
separate subnet for the protocol nodes. AWS advertises 10 Gigabit networking for these instances.

We implement both Sync HotStuff and Apollo in Rust [6]. We perform several optimizations to
both Sync HotStuff as well as Apollo. Interested readers can refer to Appendix B for the details.

Transactions. In our implementation, a transaction tx := (data, request) consists of a vector of
bytes data and request. data is a serialized 8-byte unsigned integer serving as the transaction ID.
The request field is the payload of the transaction, containing data for the transaction such as data
for a write request. In our experiments, we use the size parameter p to denote the size of request
sent by the client.

Block. In our implementation, we use a block format that is common to both Sync HotStuff and
Apollo, and separate the protocol specific fields into the proposal message. A block B contains a

header header :=
〈
hr′ , L, r, ~C(Blame), ~tx, ~resp

〉
, , where r′ < r, hr′ is the hash of the parent block

of round r′, r is the round where L proposed the block, and ~C is a vector of blame certificates from
round r′ till the height r, ~tx is a vector containing the hashes of the transactions included in the
block, and ~resp is filled with response data of size p for every transaction when sending the blocks
to the clients.

Clients. We use two types of clients: the first kind, used in Sync HotStuff and HotStuff, waits for
f+1 acknowledgements from the server to be sure that it is safe to commit a block. This is necessary
for safety, as the block on its own does not contain any information that proves finality. The second
kind is specific to Apollo. Observe that in our protocol, the UCC rule can be applied by anyone in
the system, including the clients. Therefore, in Apollo, the proposer simply acknowledges blocks
to all its connected clients, and the clients can finalize blocks using the same rule. Considering
light-weight clients, in Apollo a single node can provide a block and the signed headers for the next
f+1 blocks and convince the client correctly that the state in the block is final. We take advantage
of this feature in the client for Apollo.

Measurement details. Our implementation of the client uses a window parameter w called
the work load analogous to the public implementation for Sync HotStuff; it always maintains w
outstanding commands. As soon as some blocks are committed, fresh commands are issued to
maintain w outstanding commands. Upon receiving a transaction, a node adds it to its pending
transaction buffer. The leader starts the proposal when sufficient transactions (sufficient to build
a block with b transactions) are received.
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In Sync HotStuff, when a block is committed, the nodes acknowledge the block by forwarding
the block to all the connected clients. The client on receiving f + 1 such block acknowledgements,
records the time and computes the latency for the transaction. In Apollo, the proposer for a round
also proposes the block to its clients, and the clients apply the UCC rule independently to commit
blocks.

6.1 Latency estimation

In order to estimate the practical values for δ and ∆ and to observe the relationship between δ and
∆, we run the following experiment.

Experiment. We build ping-client and echo nodes in our implementation. The ping-client node
streams a count of c messages of size m in bytes to an echo node. The echo node simply echos
the messages it receives back to the sender. The ping-client then measures the round trip time for
every message, and outputs it at the end of the experiment.
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(a) In this experiment, we send c = 106 ping mes-
sages (containing fixed data) of size m to an echo
server, and measure the round trip time (RTT) for
every ping.
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Figure 5: Latency distribution between two nodes in AWS networks.

By sending pings continuously to an echo server and measuring the round trip times, from
Figure 5a, we can clearly see that δ is actually very small (by 3 orders) most of the time. From
Figure 5b however, weobserve that the ping time shoots up unpredictably. To assume bounded
synchrony, we have to assume the worst of these values as ∆, and that implies setting ∆� δ. The
weak synchrony model allows such unexpected ∆ violations as long as these are limited to a small
set of nodes and for a sufficiently small duration of time (as long as we can buffer).

As a takeaway from this experiment and also as cautioned in Sync HotStuff [3], we can draw
the conclusion that for practical synchronous SMR protocols, we require large values of ∆, thereby
motivating protocols that avoid the use of ∆ in its commit rule.

For our experiments, we use the value of ∆ for our protocols as 50ms in conjunction with the
value used in the original Sync HotStuff paper, so that we can compare and contrast our results
with numbers from their paper.
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Figure 6: Offered load (w) vs. Response rate (Kops/s) for Sync HotStuff - Round Robin variant
for various block sizes. The latency shoots as soon as the optimal point for w crosses b/3∆.

6.2 Synchronous round robin protocols

In this section, we evaluate round robin protocols in general. We make simplifying assumptions
to Sync HotStuff’s view change protocol and implement a round robin variant of Sync HotStuff
with every round consisting of 3∆. Note that this is still lower than some of the other round based
protocols mentioned in Table 1. We present the response rate vs. latency in Figure 6. We observe
that Sync HotStuff RR can produce 1

3∆ blocks every second as its response rate. Therefore, in
order to achieve a response rate of, say 100 Kops/s, we need a block size b of approximately 15K.
We can clearly conclude that round robin protocols that rely on ∆ bounds, need bigger block sizes,
which leads to larger wait times for clients to get their transactions committed.

Jumping ahead, in Figure 7a, we observe that Apollo, despite being a round robin protocol,
initially lags behind Sync HotStuff stable leader protocol because of the overheads induced by the
round robin structure. The proposers of a round robin protocol are not always ready to immediately
propose since they may not yet be aware that it is their turn to propose, whereas in a stable leader
protocol, there is practically no lag as the leader can immediately propose after finishing with the
previous proposal and obtaining the certificate. However, as the block size increases due to UCC
being independent of ∆, we observe that with increasing block sizes, this gap is quickly closed by
Apollo, thereby demonstrating the efficiency of the commit rule.

6.3 Performance Evaluation

Basic performance. In this set of experiments, we measure the performance of Apollo and Sync
HotStuff with varying system parameters.

Experiment. We run both variants of Sync HotStuff, and Apollo using n = 3 instances. We denote
the block size b as the number of transactions in a block. We use one client that maintains w
pending commands and waits until 1, 000, 000 transactions are committed, after which the client
reports the response rate (total number of transactions committed/total time) and the average
latency of transactions (time between sending and committing).

Figure 7a, Figure 7b, and Figure 7c show our results for various block sizes. We would also
like to note that these numbers are better than the numbers reported for Sync HotStuff in their
original paper.

We also observe that the latency for Sync HotStuff is constant for most response rates, until
after some point, the system quickly saturates and the latency shoots up. But looking plainly at
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(Kops/s) for various block sizes.
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(c) Offered load (w) vs. Latency for various block
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ious payloads.

0 20 40 60 80 100 120

Offered Load w (in Kops)

0

50

100

150

200

250

300

R
es

po
ns

e
R

at
e

(i
n

K
op

s)

Sync HotStuff (p0)

Apollo (p0)

Sync HotStuff (p128)

Apollo (p128)

Sync HotStuff (p1024)

Apollo (p1024)

(e) Offered load (w) vs. Response rate
(Kops/s) for various payloads.
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Figure 7: Basic performance statistics for Apollo and Sync HotStuff with system parameters:
system size n = 3, delay ∆ = 50ms, payload p = 0 and block size b = 400.

Figure 7a for Apollo, one might be tempted to draw the same conclusion for Apollo. This is not the
case, and we show the variation of these two metrics, i.e., response rate and latency, with respect
to the third parameter w in Figure 7b and Figure 7c. In Figure 7b, we can clearly see that with the
current experiment design used in evaluating Sync HotStuff, Apollo always manages to extract the
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maximum throughput from the clients, irrespective of w. In Figure 7c, we can see the benefit of
using a commit rule that is independent of ∆. Under optimistic conditions, we can clearly observe
latencies of about 3−5 ms� ∆, which was typically only enjoyed by asynchronous protocols, until
now. At this scale, with n = 3, this is almost the same as HotStuff using the 2-chain rule without
the signatures but with higher fault tolerance.

Payload. In this set of experiments, we measure the impact of the size of payloads on consensus.

Experiment. We use the same setup used previously, except we fix the block size to b = 400.
This block size is not an advantage for Apollo, but we choose the same because this allows us to
compare the work with existing literature. This experiment emulates real world SMR protocols
where the actual transaction could be read/write request, and therefore apart from responding to
the client with the committed transactions, a node may also need to provide a client with the
response after committing the transaction, and similarly, the client may include payloads as a part
of its transaction. At this point, we stop comparing ourselves with Sync HotStuff-rotating leader
variant, as it is too slow.

In Figure 7d, we present the response rate vs. latency curves for Sync HotStuff: stable leader
variant and Apollo. We can clearly see that at lower payloads Sync HotStuff enjoys better perfor-
mance than Apollo consistent with the results from Figure 7a, but as the payload increases we see
a drop in the performance of Sync HotStuff. This is because a Sync HotStuff client requires f + 1
nodes in the system to provide the payload to the client, resulting in a bottleneck if the payload is
too large, as the client socket is always busy writing. This results in increased latency as measured
by the client, which also drops the response rate of the system.

However, Apollo being a round-robin protocol employing the UCC rule means that only the
proposer will be sending the payload to all its connected clients, and the node has n − 1 turns
before the next time the socket is needed. Similarly, the client will also be receiving proposals
from multiple sockets at the same time, and with our efficient work stealing concurrency, this
means parallelism for the clients as well. Therefore, we observe almost no loss in response rate and
latency in Apollo as compared to the p = 0 case.

Once again, Figure 7e shows that Apollo once again manages to extract the maximum response
rate from the system, and Figure 7f shows how we can commit much below the ∆ bound despite
larger payloads.

Delay and System size. In this set of experiments, we measure the impact of the maximum
network delay ∆ on the performance, i.e., the response rate and commit latency of Sync HotStuff
and Apollo.

Remark. Sync HotStuff and Apollo behave differently for different values of w. In the original
paper [3], the numbers reported have a hidden parameter w that varies, to obtain the points where
the response rate is maximum and the latency is the minimum. With that strategy, Apollo gets the
maximum throughput starting from very low w values, with the lowest latencies, but Sync HotStuff
suffers for those values of w. Therefore, in this work, to be fair to both the protocols, we compare
Apollo and Sync HotStuff for the same values of w, thereby observing different curves from what
is presented in the original paper [3].

Experiment. We use the same setup as described in the previous experiments. We setup n = 2f+1
instances for different values of faults f . For instance, in Figure 8a, a f32 curve uses n = 65.

Figure 8a shows how the response rates for Sync HotStuff and Apollo react to changing worst
case network assumption ∆. As expected, the response rate for Apollo is independent of the
worst case network delay assumption. On the other hand, we can clearly observe Sync HotStuff’s
performance dropping as n increases. This is because at larger ∆ parameters, Sync HotStuff needs
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Figure 8: Delay and System size statistics for Apollo and Sync HotStuff with system parameters:
faults f = n/2, block size b = 400 and payload p = 0.

larger w to prevent starving at thus remain at the optimal response rates. Also, note that for
larger f such as 32, the response rates of Apollo is 3x more than that of Sync HotStuff. This is
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because no matter the number of nodes, every block produces implies some block being committed,
and therefore the response rate depends on how fast new blocks can be produced, whereas in Sync
HotStuff a new block requires more and more signatures to form certificates which block the next
proposal.

Figure 8b shows how the latency is affected by the worst case network delay parameter ∆. We
observe that the general trend is for the latency to increase as n increases for both the protocols.
For Sync HotStuff, the change is slow (due to the stable leader), whereas the impact of increasing
f and therefore n is directly felt by the latency in Apollo. For instance, one can clearly observe the
doubling of latencies in Figure 8b as f doubles from 16 to 32.

System load. In this experiment, we measure the performance of Sync HotStuff and Apollo with
increasing system load.

Experiment. We use the same setup as described previously. This time, we measure the perfor-
mance impact on performance (response rate and latency) with increasing the offered load (w).

Figure 8c demonstrates the performance of Sync HotStuff and Apollo with varying system load
as n increases. From our experiments, we observe that Sync HotStuff is less tolerant to increases
loads as n increases as the slope of the lines increase. Apollo however always manages to saturate
the response rate and the block production.

Figure 8d demonstrates the performance with respect to latency. Apollo even though trades
latency with increasing n performs better with increasing payloads than Sync HotStuff at higher
system loads since all the proposals need to managed by a single leader. We also observe transactions
occasionally being committed extremely fast (not shown in the figures) as sometimes the round robin
executes perfectly leading to all proposers being ready to propose immediately.

Scalability. In this set of experiments, we measure the scalability of Apollo when compared to
Sync HotStuff as f (and thus n) grows.

Figure 8e demonstrates the scalability of the system, to produce responses and f and thus n
grows. We show these numbers for 2 different values of w, to show variation with w, and also for
two different ∆ parameters for Sync HotStuff. As f grows, we clearly observe a loss in response
rate for all the protocols, at a fixed w. For Sync HotStuff we observe that for the same block size
and same load, the throughput keeps falling. This is also true for Apollo, but its decline is more
gradual.

Figure 8f presents the other half of the picture presented in Figure 8e. From Figure 7a, we know
that for Sync HotStuff, eventually after some point the latency shoots up with no improvement in
throughput indicating system saturation. Firstly, we observe these saturations at lower values of w
as n increases. Therefore, looking back at Figure 8e, we can conclude that the throughput of the
system indeed drops as n increases.

The Apollo protocol is no exception to this, however, we observe that the drop in response
rates is not as drastic as that of Sync HotStuff, and can therefore sustain higher response rates as
n increases, thereby indicating improved performance with increasing n, and thus scalability. We
note here that this offers a trade-off. Depending on the use-case, if the system needs to sustain
high response rates then Apollo is an ideal choice, however if latency is a concern then a deeper
study may be required depending on the expected loads w.

7 CPS Performance

SMR also finds use in the distributed Cyber-Physical Systems (CPS). Distributed CPS are a con-
nected network of embedded devices deployed in physical spaces to collect and process information.
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These devices are light-weight in nature and run with limited resources. One of the major concerns
in this setting is minimizing devices’ energy consumption to last longer. An example of their usage
is in the field of precision agriculture, where distributed CPS are deployed to monitor humanly un-
manageable, large farmlands (the “sensing” aspect). These systems are also programmed to take
affirmative actions in the form of adaptive actuation of sensors in response to various environmental
conditions changes, making them prone to cyber-attacks. According to the recent U.S. Department
for Homeland Security (DHS) report [7], intentional/malicious falsification of data can disrupt crop
and livestock sectors. Along with this, the introduction of rogue data into a sensor network also
has detrimental consequences like damaging crops or herds. SMR ensures the system’s safety and
liveness under Byzantine faults and is a crucial tool for building fault-tolerant CPS. However, ex-
isting SMR protocols [3, 28, 20, 12, 14] are not optimized for energy efficiency and are expensive
to run on these devices.

Table 3: Energy statistics for Apollo and Sync HotStuff CPS nodes in the optimistic case

Protocol System size Type Energy (in mJ)

Apollo

3
Leader 628.38

Replica 886.2

5
Leader 628.38

Replica 886.2

Sync HotStuff

3
Leader 2954.03

Replica 2972.53

5
Leader 4796.88

Replica 5103.15

We evaluated Sync HotStuff and Apollo in a distributed CPS environment. The environment
consists of a distributed test-bed of n = 3, and n = 5 NUCLEO F401-RE embedded devices, com-
municating using Bluetooth Low Energy (BLE) advertisements as broadcast links. We used BLE
advertisements to communicate between devices because they are energy-efficient communication
media. Although BLE advertisements’ are not a reliable way of transferring data, we use redundant
transmissions to ensure high message delivery reliability. As the number of devices receiving the
advertisements increases, BLE transmissions’ redundancy factor will also increase, increasing the
energy consumption. However, in our case, the number of devices does not vary by a considerable
number, making it safe to assume that all the devices within the range of BLE communication to
the leader will reliably receive messages without incurring additional energy expense. The devices
use SHA256 for generating block hashes and sign messages using the Secp256r1 ECDSA signature
scheme. We set the block size b = 1 with a transaction consisting of 16 bytes.

We implemented SMR on the test-bed using both Apollo and Sync HotStuff and measured the
energy consumed per block using the SALEAE Logic Pro 8 and the INA-169 current sensor. We
measured the energy consumed for the SMR by subtracting the average energy consumed by the
device’s OS in a sleep mode, for the same time. We report the energy measurements in Table 3.

From Table 3, we can clearly observe that Apollo consumes significantly lesser energy than Sync
HotStuff, making it a more energy-efficient choice. The low energy consumption of Apollo is due
to its constant per node signature and linear communication complexity. The energy consumption
for Apollo does not change with respect to n because we are using BLE advertisement packets as
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multicast links. The rate of increase of energy consumption with respect to n is higher for Sync
HotStuff because of its quadratic signature and communication complexity per block commit.

8 Conclusion

In this work, we develop UCC Rule, that is efficient (energy-wise, communication and computation-
wise) and does not rely on equivocation unlike classical synchronous protocols. We also develop
Apollo, an SMR protocol based on this rule, that commits a block every δ, with a block latency of
O(fδ) per block, uses relative timers and is view-change free in both the standard synchrony and
weak synchrony models. We also show how to synchronize the head of the chain at any instant,
using any Byzantine Agreement protocol.
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A Weak Synchrony

Guo et al. [20] first proposed the χ-weak synchrony model, and PiLi [14] first proposed an SMR
protocol in the weak synchrony model where rounds proceed in units of ∆. Sync HotStuff [3]
renamed the model to mobile sluggish fault model while adapting χ-weak synchrony (informally)
to the non-lock step model, and deals with corruptions at instants of time, instead of rounds as in
PiLi [14].

Liveness Assumptions. Finally, in the weak synchrony model, an assumption of persistently
online nodes is necessary to guarantee any form of eventual progress, i.e., liveness. This is analogous
to the Partial Synchrony - Type II liveness parameter called GST (Global Stabilization Time). The
weak synchrony model also assumes two relaxed GST assumptions in order to guarantee liveness.
The GST GST used in partial synchrony, assumes the existence of some time GST GST unknown
to the system, after which the network holds the standard synchrony assumption for all correct
nodes.

The strong-GST parameter in the weak synchrony model, defined in Definition A.1, models a
similar liveness assumption, and assumes that all the correct nodes become persistently online after
some time GSTs unknown to the nodes beforehand (and cannot be estimated).

Definition A.1 (Strong - Global Stabilization Time [20]). Strong - Global Stabilization Time GSTs,
is defined to be the first round after which all correct nodes are online, i.e., communicate with each
other in ∆ time.

The strong-GST parameter can be a very strong restriction to impose on the adversary. In order
to weaken this restriction, PiLi [14] introduces a weaker parameter, which we term the weak-GST
parameter. This parameter, defined in Definition A.2 dictates that there must exist some fixed
n− f nodes, which are persistently online after time GSTw. The adversary is still allowed to place
other extra correct nodes in the partition.

Definition A.2 (Weak - Global Stabilization Time [20]). Weak - Global Stabilization Time GSTw,
is defined to be the first round after which there exist more than n/2 correct nodes (denoted by O),
which are persistently online afterwards.
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B Implementation Details

We implement protocols in Rust due to its strong memory safety and program correctness guaran-
tees. We use the tokio runtime to drive our protocol. Our codebase is inspired from the design in
Diem [4] as well as Sync HotStuff. We implemented two variants of Sync HotStuff: a stable leader
and a round robin variant, and Apollo in this framework for a fair comparison. Analogous to the
implementation in Sync HotStuff, we also treat a certificate as a compact vector of ED25519 sig-
natures. Our entire codebase consists of 7.3K lines of Rust code. The consensus modules consists
of about ≈ 800 lines of Rust code for Apollo, and ≈ 1.3K lines for Sync HotStuff, both of which
includes consensus code for the clients as well as the nodes.

We choose to re-implement Sync HotStuff (stable leader and round-robin) instead of using the
authors’ public implementation, for the following reasons:

1. The public implementation is adapted from HotStuff [31], a partially synchronous SMR pro-
tocol, yielding a more complex implementation than necessary. We rewrote Sync HotStuff
from scratch to build a cleaner implementation.

2. The public implementation is optimized for stable leaders, and updates the transaction pool
only on commit. Employing this policy, for Apollo is not optimal, as nodes will update the
transaction pool after f + 1 blocks are proposed with the same transactions. Changing this
policy, in the public implementation also requires a major re-write of their implementation.

3. The underlying networking library salticidae [15] only allows multicasts and does not pro-
vide an interface to send point-to-point messages, which we require for Apollo. Therefore, we
have to re-write the underlying networking library as well.

4. The client for Apollo is special since it can also apply the UCC rule on its own and decide
finality on its own. However, the client in Sync HotStuff and HotStuff uses f + 1 acknowl-
edgements over TLS connections as a mechanism to ensure finality of the blocks.

5. We want, and have created, a general purpose synchronous networking library with a net-
working module that is protocol agnostic, a consensus layer that is network agnostic, and a
crypto module that is instantiation agnostic, i.e., does not know what the underlying digi-
tal signature scheme is. With the compile time guarantees from Rust, our codebase is also
guaranteed to be thread safe and memory-leak free.

6. Our Rust codebase is of independent interest for implementing other synchronous crypto-
graphic/distributed system protocols.

Optimizations. We perform several optimizations in our implementation so that we get the
maximum performance from both implementations. In particular, we perform the following opti-
mizations:

• Runtimes. We use the tokio runtime [29] for our implementation. This allows us to spawn
as many non-blocking IO tasks as we want, and the runtime will schedule available tasks on
CPUs. Tokio is also efficient for networking as it lets the operating system wake the process
up when sockets are ready for use (read and write).

• Tasks. With Tokio for both Sync HotStuff and Apollo, we spawn a task that is responsible
for communication with a peer (a client or a protocol node). We add manager tasks that read
messages from any peer that has a message, and writes to peers whenever a message is ready
to be written. With tokio, multiple messages can be written to/read from sockets in parallel.
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• Reactors. We implemented separate reactor/runtimes for the protocol networking module,
the client networking module, and the consensus module. This prevents starvation, as we
have clients that are constantly bombarding the server with transactions, and this must not
slow down the consensus protocol or receiving messages from the other protocol nodes.

• Channels. We observed that the implementation of a channel mattered to the protocol. For
example, Sync HotStuff performed better with a particular channel implementation (tokio
channels), whereas Apollo performed better using futures channels. We used the channel
implementation that is most favorable to the protocol.

• Non-blocking proposal. Our Sync HotStuff and Apollo implementations carefully spawn tasks,
so that a proposal is not blocked by long tasks. For instance, when including payloads for
transactions, we ship a committed transaction to a separate channel that adds payload and
communicates with all the connected peers. This way, the propose step finishes quickly and
does not need to wait until the committed block with the payload is received by the client.

• Porting optimizations. We also implemented and ported all the optimizations found in the
existing public implementation of Sync HotStuff. For instance, we used a request-response
paradigm, where only hashes are used everywhere except during a block proposal. If the
block is already present, this saves significant network I/O as the node can query its local
chain to get the block. The voting step in Sync HotStuff and the relay step in Apollo uses
this optimization.

• Lock-free. Our code design avoids using locks such as Mutex, Semaphore or Read-Write
Locks, but instead uses message passing and is designed to ensure that no two threads need
to share data. However, for big pieces of data such as proposals, blocks, and config files we
use atomic reference counted objects, which gives all threads a shared immutable reference
without having to copy the underlying object.

• Reduce network I/O. We reduce the number of fields sent over the network. For instance, in
a block, we have to compute the hash to check the validity of the block, and so we do not
send the hash of a block over the network, but we fill it on getting a new block.

32


	Introduction
	Novelty and Key ideas
	Summary of related works
	Contributions

	Preliminaries
	System Model
	SMR — State Machine Replication
	Blocks and Hash-chains

	Unique Chain Commit (UCC) Rule
	Certificates Revisted
	Commit Rule

	Apollo Protocol
	Overview
	Handling Byzantine Faults
	Security Analysis in Standard Synchrony
	Security Analysis in Weak Synchrony
	Discussion

	Head Synchronization
	Performance Analysis and Experiments
	Latency estimation
	Synchronous round robin protocols
	Performance Evaluation

	CPS Performance
	Conclusion
	Weak Synchrony
	Implementation Details

