
No Silver Bullet: Optimized Montgomery
Multiplication on Various 64-bit ARM Platforms

No Author Given

No Institute Given

Abstract. In this paper, we firstly presented optimized implementa-
tions of Montgomery multiplication on 64-bit ARM processors by taking
advantages of Karatsuba algorithm and efficient multiplication instruc-
tion sets for ARM64 architectures. The implementation of Montgomery
multiplication can improve the performance of (pre-quantum and post-
quantum) public key cryptography (e.g. CSIDH, ECC, and RSA) imple-
mentations on ARM64 architectures, directly. Last but not least, the per-
formance of Karatsuba algorithm does not ensure the fastest speed record
on various ARM architectures, while it is determined by the clock cycles
per multiplication instruction of target ARM architectures. In particular,
recent Apple processors based on ARM64 architecture show lower cycles
per instruction of multiplication than that of ARM Cortex-A series. For
this reason, the schoolbook method shows much better performance than
the sophisticated Karatsuba algorithm on Apple processors. With this
observation, we can determine the proper approach for multiplication
of cryptography library (e.g. Microsoft-SIDH) on Apple processors and
ARM Cortex-A processors.

Keywords: Montgomery Multiplication · ARM64 Processor · Public
Key Cryptography · Software Implementation.

1 Introduction

The modular reduction is the fundamental building block of conventional pub-
lic key cryptography (e.g. RSA [15], El-Gamal [5], and ECC [10, 13]) to post-
quantum cryptography (e.g. RLWE [12], SIDH [4], and CSIDH [2]). One of the
most well-known modular reduction techniques is Montgomery algorithm [14].
This approach replaces the complicated division operation for the modular re-
duction in relatively simple multiplication operations. For this reason, efficient
implementations of Montgomery multiplication on target processors have been
actively studied. In this paper, we firstly introduce the optimized Montgomery
multiplication on ARM64 processors and show the impact on public key cryp-
tography protocols (i.e. CSIDH)1. Furthermore, we found that recent Apple
processors provide the multiplication instruction with very low latency. This

1 The proposed method is applicable to RSA, and ECC, as well.



2 No Author Given

nice feature leads to the new direction to implement the multiplication on Ap-
ple processors (i.e. simple schoolbook approach rather than sophisticated Karat-
suba algorithm with additional routines). With this observation, we can improve
the performance of cryptography libraries based on Karatsuba algorithm (e.g.
Microsoft-SIDH) on recent Apple processors by replacing the multiplication to
the schoolbook method2.

1.1 Contribution

– Optimized Montgomery multiplication on ARM64 architecture This
paper presents the optimized implementation of Montgomery multiplication
by taking advantages of Karatsuba algorithm and efficient multiplication
instruction sets of ARM64 architectures. The proposed implementation is
evaluated on both ARM Cortex-A and Apple A processors for benchmark-
ing tests.

– Efficient implementation of CSIDH on ARM64 architecture The
implementation of CSIDH is accelerated through the proposed Montgomery
multiplication. Full protocols of CSIDH-P511 are evaluated on 64-bit ARM
Cortex-A and Apple A processors. In order to prevent the timing attack on
the protocol, the implementation ensures the constant timing.

– In-depth performance evaluation on ARM64 architecture Depend-
ing on ARM64 architectures (i.e. ARM Cortex-A and Apple A), same pro-
gram code leads to different performance results. We analyze the perfor-
mance of Montgomery multiplication and CSIDH on both architectures. Fi-
nally, we show that Karatsuba algorithm is not the best solution across all
ARM64 architectures, since it introduces a number of addition operations
than school-book methods.

The remainder of the paper is structured as follows: We review the related
work on Montgomery multiplication, Karatsuba algorithm, and ARM64 pro-
cessors in Section 2. We present the optimized implementation of Montgomery
multiplication on ARM64 processors and its use cases (i.e. CSIDH) in Section 3.
In Section 4, we present results on various 64-bit ARM platforms (ARM Cortex-
A and Apple A processors). We end with conclusions in Section 5.

2 Related Works

2.1 Montgomery Multiplication

Montgomery multiplication consists of multiplication and reduction parts. The
multiplication can be implemented in different ways by altering the order of
operands and intermediate results. The operand-scanning method performs a
multiplication in a row-wise manner. This approach is suitable for processors
with many registers to retain long intermediate results as many as possible.

2 https://github.com/microsoft/PQCrypto-SIDH/tree/master/src



Montgomery Multiplication on ARM64 3

Algorithm 1 Montgomery Reduction

Require: An m-bit modulus M , Montgomery radix R = 2m, two m-bit operands A
and B, and m-bit pre-computed constant M ′ = −M−1 mod R

Ensure: Montgomery product (Z = (A ·B) ·R−1 mod M)
1: T ← A ·B
2: Q← T ·M ′ mod R
3: Z ← (T + Q ·M)/R
4: if Z ≥M then Z ← Z −M end if
5: return Z

The alternative approach is the Comba (i.e. product-scanning) method [3]. Par-
tial products are computed in a column-wise manner and only small number of
registers is required to maintain the intermediate result. Furthermore, since all
partial products of each word of the result are computed and added, consecu-
tively, the final result word is obtained directly and no intermediate results have
to be stored or loaded in the algorithm In [6], a hybrid-scanning method com-
bining two aforementioned methods is presented. Afterward, several optimized
implementations for multiplication were suggested by caching operands [7, 16].
However, the complexity of partial products for N -word multiplication is N2.

Karatsuba algorithm computes a N -word multiplication with only three N/2-
word partial products compared to four N/2-word that are required by aforemen-
tioned multiplication methods [9]. The number of partial products is estimated
by N log23, which is a great improvement compared to N2 of the standard mul-
tiplication. The previous multiplication on ARM64 processors mainly utilized
the Karatsuba algorithm for optimal performance since it reduces the number
of complicated multiplication.

Montgomery algorithm was firstly proposed in 1985 [14]. Montgomery algo-
rithm avoids the division in modular multiplication by introducing simple shift
operations (i.e. division by 2). Given two integers A and B and the modulus M ,
to compute the product P = A · B mod M in Montgomery method, operands
A and B are firstly converted into Montgomery domain (i.e. A′ = A ·R mod M
and B′ = B · R mod M). For efficient computations, Montgomery residue R is
selected as a power of 2 and constant M ′ = −M−1 mod 2n is pre-computed. To
compute the product, following three steps are conducted: (1) compute T = A·B;

(2) perform Q = T ·M ′ mod 2n; (3) calculate Z = (T+Q·M)
2n and (4) compute

final reduction Z ← Z −M if Z ≥ M . Detailed descriptions of Montgomery
reduction is available in Algorithm 1.

There are two approaches, including separated and interleaved ways, for
Montgomery multiplication. The interleaved approach reduces the number of
memory access for the intermediate result, but many implementations on ARM64
selected the separated approach. The separated implementation can employ the
most optimal approach for multiplication and reduction operations each. In this
paper, we also selected the separated approach. Both multiplication and Mont-
gomery reduction parts are optimized with Karatsuba algorithm. In particular,
we utilized the Karatsuba based Montgomery reduction by [18].



4 No Author Given

Implementation Multiplication Montgomery Reduction Application

Liu et al. [11] Karatsuba – –
Seo et al. [17] Karatsuba Product Scanning SIKE
Seo et al. [19] Karatsuba Product Scanning SIKE
Jalali et al. [8] Operand Scanning Operand Scanning CSIDH, RSA, ECC
This work Karatsuba Karatsuba CSIDH, RSA, ECC

Table 1. Comparison of Montgomery multiplication on 64-bit ARMv8 Cortex-A pro-
cessors.

In Table 1, the comparison of Montgomery multiplication on 64-bit ARMv8
Cortex-A processors is given. Previous works [11,17,19] target for Montgomery
friendly prime and it’s application is limited to only SIKE due to the special
prime form. On the other hand, the proposed Montgomery multiplication is
targeting for random prime and it’s applications are CSIDH, RSA, and ECC.

2.2 64-bit ARMv8 Processors

ARMv8 is a 64-bit architecture for high-performance embedded applications.
The 64-bit ARMv8 processors support both 32-bits (AArch32) and 64-bits (AArch64)
architectures. It provides 31 general purpose registers which can hold 32-bit val-
ues in registers w0-w30 or 64-bit values in registers x0-x30. ARMv8 processors
started to dominate the smartphone market soon after the release in 2011 and
nowadays they are widely used in various smart phones (e.g. iPhone and Sam-
sung Galaxy series) and laptop (e.g. MacBook Air and MacBook Pro). Since
the processor is used primarily in embedded systems, smart phones and laptop
computers, efficient and compact implementations are of special interest in real
world applications. ARMv8 processors support powerful 64-bit wise unsigned
integer multiplication instructions. Proposed implementation of modular multi-
plication uses the AArch64 architecture and makes extensive use of the following
multiply instructions:

– MUL (unsigned multiplication, low part):
MUL X0, X1, X2 computes X0 ← (X1 × X2) mod 264.

– UMULH (unsigned multiplication, high part):
UMULH X0, X1, X2 computes X0 ← (X1 × X2)/264.

The two instructions above are required to compute a full 64-bit multiplica-
tion of the form 128-bit← 64×64-bit, namely, the MUL instruction computes the
lower 64-bit half of the product while UMULH computes the higher 64-bit half.

For the addition and subtraction operations, ADDS and SUBS instructions
ensure 64-bit wise results, respectively. Detailed descriptions are as follows:

– ADDS (unsigned addition):
ADDS X0, X1, X2 computes {CARRY,X0} ← (X1 + X2).

– SUB (unsigned subtraction):
SUBS X0, X1, X2 computes {BORROW,X0} ← (X1 − X2).

Further details of ARMv8-A architecture can be found in official documents [1].



Montgomery Multiplication on ARM64 5

3 Proposed Implementations

3.1 Optimization of Montgomery multiplication

One of the most expensive operation for public key cryptography is modular
multiplication. In this paper, we present the optimal modular multiplication
implementation in the separated way for 64-bit ARM architectures.

First, the multi-precision multiplication is performed by following the Karat-
suba algorithm. 2-level Karatsuba computations are performed for 512-bit multi-
plication on 64-bit ARM architectures (i.e. 128 → 256 → 512) [17]. Karatsuba’s
method reduces a multiplication of two N -limb operands to three multiplica-
tions, which have a length of N

2 -limb. These three half-size multiplications can
be performed with any multiplication techniques that we covered before (e.g.,
operand scanning method or product scanning method). Taking the multiplica-
tion of N -limb operand A and B as an example, we represent the operands as
A = AH · 2

N
2 + AL and B = BH · 2

N
2 + BL. The multiplication P = A · B can

be computed according to the following equation by using additive Karatsuba’s
method:

AH ·BH · 2n + [(AH +AL)(BH +BL)−AH ·BH −AL ·BL] · 2n
2 +AL ·BL (1)

We further optimized the memory access by using general purpose regis-
ters to retain operands as many as possible since the access speed of register is
much faster than that of memory. In particular, Karatsuba multiplication needs
to update operands but these operands are used in following computations. In
this case, we keep operands in general purpose registers to avoid frequent mem-
ory loading operations where the memory access incurs read-write-dependency
problems.

Multiplication and reduction operations are implemented in one function to
avoid the function call and register push/pop instructions. Furthermore, the
intermediate result of 512-bit multiplication is 1024-bit wise and this can be
stored in 16 general purpose registers (i.e. 16 = 1024/64) in the ideal case.
By maintaining the whole intermediate result in general purpose registers, 16
memory load and 16 memory store operations are optimized away.

However, part of intermediate results are stored in STACK memory since
Karatsuba approach requires a number of registers to retain operands and in-
termediate results. The stored result is directly used in the following modular
reduction operation.

For the computation of Montgomery reduction, the product (Q← T ·M ′ mod
R) is performed (Step 2 of Algorithm 1) in ordinary way. Afterward, the product
Q·M is computed in a hybrid way (Step 3) [18]. The complexity of N -word origi-
nal Montgomery reduction is N2+N word-wise multiplications, while the hybrid

Montgomery reduction is 7N2

8 + N word-wise multiplications. In particular, the
hybrid Montgomery reduction consists of two 256-bit Montgomery reduction in
product-scanning approach and two 256-bit (1-level) Karatsuba multiplication
operations (i.e. 128→ 256).



6 No Author Given

Modulus M Quotient Q Temporal registers Constant M ′

8 4 15 1
Table 2. Register utilization for Montgomery reduction on ARM64.

28 out of 31 registers are utilized for 512-bit Montgomery reduction on the
ARM64 architecture. The detailed register utilization is given in Table 2. When
we perform the hybrid Montgomery reduction (T+Q·M

2n ), computations (QL ·ML

and QH · ML) are performed in sub-Montgomery reduction and others (QL ·
MH and QH ·MH) are performed in Karatsuba multiplication, where L and H
represent lower and higher parts of operand.

In Algorithm 2, the optimized implementation of 256-bit sub-Montgomery
reduction on ARM64 processors is given. Partial products of reduction are per-
formed in the product-scanning way. Three ARM64 instructions (MUL, UMULH,
and ADD) are mainly utilized for partial products. Since multiplication opera-
tions require 6 clock cycles in Cortex-A series, the utilization of result directly
incurs pipeline stalls [17]. In Line 1 of Algorithm 2, the quotient (Q0) is generated
with 64-bit wise. This is simply performed with single mul instruction. In Line
2∼5, the quotient (Q0) is directly utilized, which incurs pipeline stalls. In Line
6∼7, the result of multiplication (T0 and T1), which is computed in Line 2∼3,
is accumulated to the intermediate result. This approach avoids the read-write
dependency. In Line 10, the register is initialized with xzr instruction and the
carry is obtained in C0 register. In Line 11, the quotient (Q1) is generated but
it is not utilized directly. In particular, the accumulation step (Line 12∼15) is
performed with partial products in previous steps. This does not incur the read-
write dependency. Following computations (after Line 16 to end) are performed
in the similar way (i.e. read-write dependency free).

After the sub-Montgomery reduction, the remaining part is performed with
the Karatsuba algorithm [17]. The additive Karatsuba algorithm performs the
addition on the operand. This updates operands which cannot be used again. In
the proposed implementation, we cached the operand in registers and this avoids
the memory access for the operand re-loading. Afterward, one sub-Montgomery
reduction and one Karatsuba multiplication are performed. Lastly, the final re-
duction is performed in the masked way in order to ensure the constant timing
implementation. Firstly the intermediate result is subtracted by the modulus.
When the borrow bit is captured, it sets the masked modulus. Otherwise, the
modulus is set to zero. The result is subtracted by the masked modulus.

In conclusion, the proposed 512-bit Montgomery multiplication is performed
in two steps as follows:

2− level Karatsuba multiplication → hybrid reduction (1− level Karasuba)



Montgomery Multiplication on ARM64 7

Algorithm 2 Optimized implementation of 256-bit sub-Montgomery reduction
on ARM64 processors.

Input: Modulus (M0-M3), intermediate results (C0-C3), constant (M INV), temporal
registers (T0-T3).

Output: Intermediate results (C0-C3), quotient (Q0-Q3).
1: mul Q0, C0, M INV { Q0 ← C0 × M’}

2: mul T0, Q0, M0 { T ← Q × M}
3: umulh T1, Q0, M0

4: mul T2, Q0, M1

5: umulh T3, Q0, M1

6: adds C0, C0, T0 {Accumulation of intermediate result}
7: adcs C1, C1, T1

8: adcs C2, C2, xzr

9: adcs C3, C3, xzr

10: adc C0, xzr, xzr

11: mul Q1, C1, M INV { Q1 ← C1 × M’}
12: adds C1, C1, T2

13: adcs C2, C2, T3

14: adcs C3, C3, xzr

15: adc C0, C0, xzr

16: . . . {Omit}

17: mul T2, Q3, M3

18: umulh T3, Q3, M3

19: adds C1, C1, T0 {Accumulation of intermediate result}
20: adcs C2, C2, T1

21: adc C3, C3, xzr

22: adds C2, C2, T2

23: adcs C3, C3, T3



8 No Author Given

Company ARM

Platform Odroid-C2 Raspberry-pi4
Core Cortex-A53(@1.5GHz) Cortex-A72(@1.5GHz)
OS Ubuntu 16.04 Ubuntu 20.10
Released 2014 2015
Revision ARMv8.0-A ARMv8.0-A
Decode 2-wide 3-wide
Pipeline depth 8 15
Out-of-order × O

Branch prediction Conditional O

Execution ports 2 8
Table 3. Comparison of ARMv8-A cores on ARM Cortex-A processors.

Company Apple

Platform iPad mini5 iPhone SE2 iPhone12 mini
Core A12(Vortex@2.49GHz) A13(Lightning@2.65GHz) A14(Firestorm@3.10GHz)
OS iPadOS 14.4 iOS 14.4 iOS 14.4
Released 2018 2019 2020
Revision ARMv8.3-A ARMv8.4-A ARMv8.4-A
Decode 7-wide 8-wide 8-wide
Pipeline depth 16 16 –
Out-of-order O O –
Branch prediction – – –
Execution ports 13 13 –

Table 4. Comparison of ARMv8-A cores on Apple A processors.

3.2 Acceleration of Public Key Cryptography

The proposed implementation of Montgomery multiplication is efficiently opti-
mized. We can directly apply the proposed Montgomery multiplication to the
CSIDH library by [8]. CSIDH is a variant of isogeny-based cryptography that of-
fers (conjecturally) post-quantum secure non-interactive key exchange with tiny
public keys and practical performance.

We checked the improved CSIDH implementation based on the proposed
Montgomery multiplication passed the CSIDH tests and public-key validations.
Furthermore, the conventional public key cryptography based on random prime
(RSA and ECC) can also take advantages of the proposed method.

4 Evaluation

The proposed implementation is evaluated on the various ARM64 architectures,
which is largely divided into ARM Cortex-A and Apple A series. Detailed spec-
ifications for each processor are given in Table 3 and 4.

In Table 5 and 6, the comparison of clock cycles for 512-bit Montgomery
multiplication and constant-time CSIDH-P511 on 64-bit ARM architectures is



Montgomery Multiplication on ARM64 9

Implementation
Odroid-C2 Raspberry-pi4

Timing [cc×106]
[8]/Opt

Timing [cc×106]
[8]/Opt

[8] Opt [8] Opt

Montgomery multiplication 1,309 cc 1,044 cc 1.25 973 cc 792 cc 1.23

Alice key generation 14,374 12,392 1.16 11,892 9,864 1.21
Bob key generation 14,386 12,392 1.16 12,098 9,916 1.22

Validation of Bob’s key 58 50 1.16 43 35 1.21
Validation of Alice’s key 58 50 1.16 43 35 1.21

Alice shared key generation 14,252 12,628 1.13 11,570 10,099 1.15
Bob shared key generation 14,544 12,555 1.16 12,453 10,114 1.23
Alice total computations 28,684 25,070 1.14 23,504 19,998 1.18
Bob total computations 28,988 24,998 1.16 24,594 20,065 1.23

Table 5. Comparison of clock cycles (×106) for Montgomery multiplication (for 512-
bit) and (constant-time) CSIDH-P511 on 64-bit Odroid-C2 and Raspberry-pi4.

Implementation
iPad mini5 iPhone SE2 iPhone12 mini

Timing [cc×106]
[8]/Opt

Timing [cc×106]
[8]/Opt

Timing [cc×106]
[8]/Opt

[8] Opt [8] Opt [8] Opt

Montgomery multiplication 167 cc 233 cc 0.71 154 cc 235 cc 0.65 150 cc 214 cc 0.69

Alice key generation 1,210 1,694 0.71 1,086 1,692 0.64 1,131 1,548 0.73
Bob key generation 1,212 1,681 0.72 1,086 1,693 0.64 1,132 1,557 0.73

Validation of Bob’s key 8 11 0.71 7 11 0.65 7 10 0.72
Validation of Alice’s key 8 11 0.71 7 11 0.66 7 10 0.72

Alice shared key generation 1,216 1,705 0.71 1,090 1,690 0.64 1,127 1,572 0.72
Bob shared key generation 1,214 1,681 0.72 1,084 1,706 0.64 1,135 1,546 0.73
Alice total computations 2,434 3,410 0.71 2,183 3,393 0.64 2,265 3,130 0.72
Bob total computations 2,433 3,373 0.72 2,177 3,409 0.64 2,274 3,113 0.73

Table 6. Comparison of clock cycles (×106) for Montgomery multiplication (for 512-
bit) and (constant-time) CSIDH-P511 on 64-bit iPad mini5, iPhone SE2, and iPhone12
mini.

given. Proposed implementations of 512-bit modular multiplication achieved per-
formance enhancements than the school-book method [8] by 1.25× and 1.23×
on Odroid-C2 and Raspberry-pi4, respectively. Since the approach is a generic
method, we can apply the proposed method to larger operand sizes without
difficulties. Furthermore, Montgomery multiplication is the fundamental opera-
tion in PKC. For the case study, we ported the implementation of Montgomery
multiplication to CSIDH implementation. The performance of key exchange is
improved by 1.16× and 1.23× than previous works on Odroid-C2 and Raspberry-
pi4, respectively.

On the other hand, proposed implementations on Apple platforms show the
opposite performance result. The schoolbook method based 512-bit modular
multiplication achieved performance enhancements than proposed method by
0.71×, 0.65× and 0.69× on iPad mini5, iPhone SE2, and iPhone12 mini, respec-
tively. The performance of key exchange is degraded by 0.71×, 0.64×, and 0.72×
than previous works on Odroid-C2 and Raspberry-pi4, respectively.



10 No Author Given

Platform MUL UMULH ADD MUL/ADD UMULH/ADD

Odroid-C2 2.37 3.93 0.90 2.62 4.34
Raspberry-pi4 3.02 4.03 0.64 4.65 6.20

iPad mini5 0.57 0.57 0.42 1.34 1.34
iPhone SE2 0.49 0.49 0.37 1.31 1.31
iPhone12 mini 0.55 0.51 0.37 1.47 1.38

Table 7. Comparison of cycles per instruction on ARM64.

Implementation ADD/SUB MUL/UMULH LDR/STR

Schoolbook Method [8] 297 265 134
Karatsuba Algorithm 522 214 70

Table 8. Number of instructions for 512-bit Montgomery multiplication methods.

In Table 7, the comparison of cycles per instruction on ARM64 is given. The
timing is measured with the average cycles after performing 1,000 times of each
iteration without read-write dependency. The timing also includes function call
and push/pop instructions. In ARM Cortex-A series, ratios of MUL

ADD and UMULH
ADD

are 2.62∼4.34 and 4.65∼6.20 for Odroid-C2 and Raspberry-pi4 boards, respec-
tively. This shows that the multiplication operation is more expensive than the
addition operation on the target ARM Cortex-A architecture. For this reason,
Karatsuba algorithm, which replaces multiplication operations into addition op-
erations is effective on ARM Cortex-A series. On the other hand, ratios of MUL

ADD

and UMULH
ADD on Apple A series are 1.34, 1.31, and 1.47∼1.38 for iPad mini5,

iPhone SE2, iPhone12 mini, respectively. This is unique features of advanced
ARM architectures. Unlike previous architectures, multiplication operations are
efficiently performed and the complexity between addition and multiplication is
narrow. This leads to different conclusion (i.e. best implementation technique)
in Apple A series.

In Table 8, the number of instructions for Montgomery multiplication meth-
ods is given. The schoolbook method (i.e. operand-scanning) requires 297 addi-
tion, 265 multiplication, and 134 memory access instructions, respectively. Com-
pared with the Karatsuba algorithm, 225 addition instructions are optimized
away but it requires 51 multiplication and 64 memory access instructions, more
than the Karatsuba approach. Due to the efficient multiplication instruction on
Apple A processors, reducing the number of multiplication by sacrificing the ad-
dition operation is not effective. For this reason, even though processors based
on ARM64 architecture, the implementation technique should be different de-
pending on cycles per multiplication instruction. This observation is useful for
optimization of public key cryptography on ARM64 architecture. For example,
Montgomery multiplication of Microsoft-SIDH library is based on the Karatsuba
algorithm. This library can be improved by using operand-scanning method on
Apple A products.



Montgomery Multiplication on ARM64 11

5 Conclusion

In this paper, we presented optimized Montgomery multiplication implementa-
tions for the 64-bit ARM Cortex-A processors. Proposed implementations uti-
lized the Karatsuba algorithm and ARMv8-A specific instruction sets. This work
shows that proposed implementations on ARM Cortex-A platforms are more ef-
ficient than previous works.

However, the platform with low multiplication latency (e.g. Apple A pro-
cessors) achieved the better performance with the schoolbook method. This is
because the evaluation of previous works is usually conducted on ARM Cortex-A
processors. With the observation on this paper, the implementation should be
evaluated on various ARM platforms for fair comparison and practicality.

The obvious future work is improving the Microsoft-SIDH library on Apple A
processors by utilizing the schoolbook method or other approaches (i.e. product-
scanning and hybrid-scanning). Furthermore, we will investigate the multiplica-
tion method for various integer lengths. Lastly, the proposed implementation
will be the public domain and other cryptography engineers can directly use
them for their cryptography applications.

References

1. ARM: ARM architecture reference manual: ARMv8, for ARMv8-A architecture
profile (2020)

2. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: International Conference on the The-
ory and Application of Cryptology and Information Security. pp. 395–427. Springer
(2018)

3. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM systems journal
29(4), 526–538 (1990)

4. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
diffie-hellman. In: Annual International Cryptology Conference. pp. 572–601.
Springer (2016)

5. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

6. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: International workshop on cryptographic
hardware and embedded systems. pp. 119–132. Springer (2004)

7. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryptog-
raphy on embedded microprocessors. In: International Workshop on Cryptographic
Hardware and Embedded Systems. pp. 459–474. Springer (2011)

8. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Towards optimized and
constant-time CSIDH on embedded devices. In: International Workshop on Con-
structive Side-Channel Analysis and Secure Design. pp. 215–231. Springer (2019)

9. Karatsuba, A.: Multiplication of multidigit numbers on automata. In: Soviet
physics doklady. vol. 7, pp. 595–596 (1963)

10. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of computation 48(177),
203–209 (1987)



12 No Author Given

11. Liu, Z., Järvinen, K., Liu, W., Seo, H.: Multiprecision multiplication on ARMv8.
In: 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH). pp. 10–17.
IEEE (2017)

12. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

13. Miller, V.S.: Use of elliptic curves in cryptography. In: Conference on the theory
and application of cryptographic techniques. pp. 417–426. Springer (1985)

14. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
computation 44(170), 519–521 (1985)

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

16. Seo, H., Kim, H.: Multi-precision multiplication for public-key cryptography on
embedded microprocessors. In: International Workshop on Information Security
Applications. pp. 55–67. Springer (2012)

17. Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange. IACR Transactions
on Cryptographic Hardware and Embedded Systems pp. 1–20 (2018)

18. Seo, H., Liu, Z., Nogami, Y., Choi, J., Kim, H.: Hybrid Montgomery reduction.
ACM Transactions on Embedded Computing Systems (TECS) 15(3), 1–13 (2016)

19. Seo, H., Sanal, P., Jalali, A., Azarderakhsh, R.: Optimized implementation of SIKE
round 2 on 64-bit ARM Cortex-A processors. IEEE Transactions on Circuits and
Systems I: Regular Papers 67(8), 2659–2671 (2020)


