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Abstract

Noise, which cannot be eliminated or controlled by parties, is an incredible facilitator of
cryptography. For example, highly efficient secure computation protocols based on independent
samples from the doubly symmetric binary source (BSS) are known. A modular technique
of extending these protocols to diverse forms of other noise without any loss of round and
communication complexity is the following strategy. Parties, beginning with multiple samples
from an arbitrary noise source, non-interactively, albeit securely, simulate the BSS samples.
After that, they can use custom-designed efficient multi-party solutions using these BSS samples.

Khorasgani, Maji, and Nguyen (EPRINT–2020) introduce the notion of secure non-interactive
simulation (SNIS) as a natural cryptographic extension of concepts like non-interactive simula-
tion and non-interactive correlation distillation in theoretical computer science and information
theory. In SNIS, the parties apply local reduction functions to their samples to produce samples
of another distribution. This work studies the decidability problem of whether samples from the
noise (X,Y ) can securely and non-interactively simulate BSS samples. As is standard in analyz-
ing non-interactive simulations, our work relies on Fourier-analytic techniques to approach this
decidability problem. Our work begins by algebraizing the simulation-based security definition
of SNIS. Using this algebraized definition of security, we analyze the properties of the Fourier
spectrum of the reduction functions.

Given (X,Y ) and BSS with noise parameter ε, the objective is to distinguish between the
following two cases. (A) Does there exist a SNIS from BSS(ε) to (X,Y ) with δ-insecurity? (B)
Do all SNIS from BSS(ε) to (X,Y ) incur δ′-insecurity, where δ′ > δ? We prove that there
is a bounded computable time algorithm achieving this objective for the following cases. (1)
δ = O(1/n) and δ′ = positive constant, and (2) δ = positive constant, and δ′ = another (larger)
positive constant. We also prove that δ = 0 is achievable only when (X,Y ) is another BSS,
where (X,Y ) is an arbitrary distribution over {−1, 1} × {−1, 1}. Furthermore, given (X,Y ),
we provide a sufficient test determining if simulating BSS samples incurs a constant-insecurity,
irrespective of the number of samples of (X,Y ).

Handling the security of the reductions in Fourier analysis presents unique challenges be-
cause the interaction of these analytical techniques with security is unexplored. Our technical
approach diverges significantly from existing approaches to the decidability problem of (insecure)
non-interactive reductions to develop analysis pathways that preserve security. Consequently,
our work shows a new concentration of the Fourier spectrum of secure reduction functions, unlike
their insecure counterparts. We show that nearly the entire weight of secure reduction functions’
spectrum is concentrated on the lower-degree components. The authors believe that examin-
ing existing analytical techniques through the facet of security and developing new analysis
methodologies respecting security is of independent and broader interest.
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1 Introduction

Noise, which cannot be eliminated or controlled by parties, is an incredible facilitator of cryp-
tography. Using interaction and private independent randomness, mutually distrusting parties
can leverage such correlated noise to compute securely over their private data. For example, Ra-
bin [44, 45] and Crépeau [9] constructed general secure computation [53, 23] protocols from erasure
channels. Such correlated noise seems necessary for secure computation because it is impossible that
shared randomness alone can enable general secure multi-party computation [20, 35, 36]. Crépeau
and Kilian [10, 11] proved that samples from noisy channels, particularly the binary symmetric
channels, suffice for general secure computation. After that, a significant body of highly influential
research demonstrated the feasibility of realizing general secure computation from diverse and un-
reliable noise sources [30, 31, 13, 32, 12, 49, 50, 29, 7]. In particular, random samples from these
noisy channels suffice for general secure computation while incurring a small increase in round and
communication complexity [48].

There are highly efficient secure computation protocols from the correlated samples of the doubly
symmetric binary source. A doubly symmetric binary source with parameter ε, represented by
BSS(ε), provides the first party independent and uniformly random elements x1, . . . , xn ∈ {−1, 1}.
For every i ∈ {1, . . . , n}, the second party gets a correlated yi ∈ {−1, 1} such that yi = xi with
probability (1 − ε); otherwise, yi = −xi with probability ε. These protocols efficiently use these
samples (vis-à-vis, the number of samples required to compute an arbitrary circuit of fixed size
securely) and have a small round and communication complexity [32, 48, 26, 25]. A modular
technique of extending these protocols to diverse forms of other noise without any loss of round
and communication complexity is the following strategy. Parties begin with multiple samples of
an arbitrary noise source (X,Y ), and they securely convert them into samples of (U, V ) = BSS(ε)
without any interaction, a.k.a., secure non-interactive simulation [28].1

(xn, yn) ∼ (X,Y )⊗n

xn yn

u′ = fn(xn) v′ = gn(yn)

Figure 1: SNIS model.

Secure non-interactive simulation. Khorasgani, Maji, and
Nguyen [28] introduced the notion of secure non-interactive sim-
ulation (SNIS) of joint distributions. The high-level objective of
this cryptographic primitive is to non-interactively and securely
simulate samples from a distribution (U, V ) when the parties al-
ready have multiple independent samples from another distribution
(X,Y ). This cryptographic primitive is a natural cryptographic ex-
tension of highly influential concepts in theoretical computer science
and information theory, like, non-interactive simulation (beginning
with the seminal works of Gács and Körner [18], Witsenhausen [47],
and Wyner [51]), and non-interactive correlation distillation [42, 40, 52, 4, 8]. This primitive is
also a constrained version of one-way secure computation [19, 1], allowing no interaction between
the parties. The sequel succinctly presents the intuition underlying this concept (for a formal
simulation-based definition, refer to Appendix E).

Refer to Figure 1 for the following discussion. Let (X,Y ) be a joint distribution over the sample
space X × Y. The system samples n independent samples drawn according to the distribution
(X,Y ). That is, (xn, yn) ∼ (X,Y )⊗n. The system delivers the samples xn to Alice and yn to
Bob. Alice applies a local reduction function fn : X n → U to her sample xn ∈ X n and outputs
u′ = fn(xn). Similarly, Bob applies a local reduction function gn : Yn → V to his sample yn ∈ Yn
and outputs v′ = gn(yn).

The case of private randomness. The definition of SNIS allows private randomness for the

1One can determine the noise characteristic of the BSS samples after gathering the samples of (X,Y ).
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parties. However one can assume that the reduction functions are deterministic, without loss
of generality. The original work of [28] introduced a derandomization that is sample preserving.2

This derandomization, however, increases the insecurity of the deterministic reduction to δ1/9, if the
randomized reduction has insecurity δ. Some of our results shall rely on this derandomization result.
However, for some of our applications we develop a new derandomization technique to obtain better
results. This new derandomization result takes additional samples to securely and non-interactively
simulate the private independent randomness of both parties (refer to Appendix F).3 Henceforth,
we assume that the reduction functions are deterministic, without loss of generality.

Intuitive definition. There exists a secure non-interactive joint simulation (SNIS) of (U, V )
from (X,Y ) with insecurity tolerance δ ∈ [0, 1] [28] if the following three conditions are satisfied.

1. The correctness of the non-interactive simulation ensures that the distribution of the joint sam-
ples (u′, v′) when (xn, yn) ∼ (X,Y )⊗n is δ-close to the distribution (U, V ) (in the statistical
distance).

2. The security against an adversarial Alice insists that there exists a (randomized) function
SimA : U → X n such that the joint distribution (Xn, fn(Xn), gn(Y n)) is δ-close to the joint
distribution (SimA(U), U, V ).

3. Similarly, the security against an adversarial Bob insists that there exists a function SimB : V →
Yn such that the joint distribution (fn(Xn), gn(Y n), Y n) is δ-close to the joint distribution
(U, V, SimB(V )).

Tersely, one represents this secure reduction as (U, V ) vδfn,gn (X,Y )⊗n. The general decidability

problem of whether (U, V ) reduces to (X,Y )⊗n within a particular tolerance of insecurity remains
unresolved (even for the gap-version).

Problem statement. In general, given two noise sources (X,Y ) and (U, V ), one needs to
determine whether there exists a secure non-interactive simulation of (U, V ) samples from the
samples of (X,Y ). More formally, given the source distribution (X,Y ), the target distribution
(U, V ), and an insecurity tolerance δ ∈ [0, 1], does there exist n ∈ N and reduction functions fn
and gn witnessing a secure non-interactive reduction? Our work studies this decidability problem
(referred to as decidability of SNIS) specifically for the case where (U, V ) = BSS(ε). The similar
decidability problem for the (insecure) non-interactive reduction was extraordinarily challenging
and was resolved only recently [22]. Consequently, exploring the particular case of (U, V ) = BSS
while simultaneously studying the (previously unexplored) interplay of Fourier-analytic techniques
with security is already a complex undertaking.

Relation to the decidability of non-interactive simulation. Starting with the seminal
works of Gács and Körner [18], Witsenhausen [47], and Wyner [51], deciding whether non-interactive
simulation (NIS) of (U, V ) using (X,Y ) is possible or not has been a challenging problem. Only
recently, progress on the decidability of (the gap-version of) the general problem was made [22, 14,
21].

Our decidability problem studies the general decidability of non-interactive simulation with the
additional constraint of security. There is no outright evidence of whether our decidability problem
reduces to this existing literature. In particular, the tests of [22] do not extend to the decidability

2If randomized reduction functions take n samples of (X,Y ) as input to produce m(n) samples of (U, V ), then
there are deterministic random functions that take n samples of (X,Y ) as input and output m(n) samples of (U, V ).

3The idea of this derandomization result is the following. Assume that (X|Y ) has average min-entropy. Alice can
use some samples to perform a suitably long random walk on an appropriate expander graph to deterministically
extract the average min-entropy of (X|Y ) to generate her private randomness. Even the existence of such a graph
suffices to demonstrate the existence of the deterministic reduction. Similarly, Bob uses some other samples to extract
his private randomness.
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of SNIS because they rely on generating samples from correlated Gaussians, which is insecure (see
Appendix D for a discussion). This technical challenge requires our approach to diverge from
the existing literature on non-interactive simulation’s decidability [22, 14, 21]. Our work proves
a concentration of the Fourier spectrum specific to secure reductions, distinguishing them from
their insecure counterparts. The authors believe that examining existing analytical techniques
through the facet of security and developing new analysis methodologies respecting security is of
independent and broader interest. The specific problem of SNIS, owing to its significant similarity
with (insecure) non-interactive simulation, is an appropriate representative target application to
develop this analytic toolkit for secure constructions.

Comparison with [28]. Both our work and [28] consider (statistical) SNIS. However, there
is a slight difference in the scope of the problems, and the techniques that these papers use. [28]
considers the feasibility and rate characterization when (X,Y ) and (U, V ) are both noises from
binary symmetric or erasure sources. Our work considers (the gap-decidability of) the feasibility
problems pertaining to (U, V ) being a binary symmetric noise source and (X,Y ) can be an arbitrary
distribution, which makes the analysis significantly challenging. For example, our work relies on the
use of Markov operators, Efron-Stein (orthogonal) decomposition, and Junta theorems in addition
to the Fourier analysis over general domains. [28] relies on Fourier analysis over the Boolean
hypercube. Since our work does not consider rate, for some of our results, we employ a different
derandomization of SNIS that does not degrade the security significantly. The derandomization
of [28] emphasized preserving the sampling complexity, i.e., the number of samples of (X,Y ) used
in the derandomized reductions is identical to the number of samples before derandomization.
Furthermore, similar to [28], we discover a Fourier concentration result as well. However, in our
case, the spectrum of secure reductions is concentrated on lower weights (rather than exactly one
weight, as in [28]).

1.1 Our Contribution
Our paper algebraizes the simulation-based security definition of SNIS to enable the algebraic

treatment of our problem (refer to Claim 1). This algebraization ensures that the insecurity of
simulation-secure SNIS is a two-factor approximation of the insecurity of algebraic-secure SNIS. For
example, perfectly simulation-secure SNIS remains perfectly algebraic-secure SNIS, and statistically
simulation-secure SNIS remains statistically algebraic-secure SNIS. In the sequel, consequently, we
rely only on the algebraic definition of security.

Our results prove the feasibility to distinguish whether a SNIS with δ-insecurity exists or any
SNIS must be δ′-insecure, where δ′ > δ. That is, we solve the gap-version of the decidability
problem, similar to the literature of decidability in NIS [22, 14, 21]. This gap is inherent to this
area’s technical tools (see, for example, the discussion in [14]).

Result I. A distribution is redundancy-free if both its marginal distributions have full support.
We say that (X,Y ) is a 2-by-2 distribution, if Supp(X) = Supp(Y ) = 2. Unless specified, a general
distribution (X,Y ) has arbitrary support-size (even Supp(X) 6= Supp(Y ) is permitted).

Informal Theorem 1. Given a redundancy-free general distribution (X,Y ) and (U, V ) = BSS(ε′),
we prove that there is a bounded computable time algorithm that distinguishes between the following
two cases, for any positive constants α and β.

1. BSS(ε′) reduces to (X,Y )⊗n with δn ≤ α/n insecurity.
2. Any reduction of BSS(ε′) to (X,Y )∗ has δ ≥ β insecurity.

[25] present techniques of using BSS(ε′) samples that have constant β∗ insecurity into (fully-
secure) secure computation protocols. This result helps identify whether samples from the source
(X,Y ) can produce BSS samples below the constant β∗ insecurity tolerance threshold of the [25]’s
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protocol. If the insecurity of the BSS(ε′) is at most α∗/n, then they can use a more efficient protocol
of [25].

Typically, in cryptography, one insists on δn being negligible in n. Our result applies even for
the case of δn = O(1/n) insecurity as well. It is instructive to remind the reader that our result
does not imply that either BSS(ε′) reduces to (X,Y ) with O(1/n)-insecurity, or this reduction must
incur constant insecurity. Our result states that it is possible to distinguish these two cases (we
solve a promise problem). Theorem 6 presents the formal restatement of this result.

Furthermore, we prove that certain distributions (X,Y ) can yield a SNIS to BSS(ε′) only
with constant-insecurity. The following result is a corollary of (the technical) Informal Theorem 4
discussed later in this section.

Corollary 1. For any ε′ ∈ (0, 1
2), any ρ ∈ [0, 1], and any 2-by-2 joint distribution (X,Y ) of maximal

correlation4 ρ, the insecurity of any protocol for non-interactive secure simulation of BSS(ε′) from
(X,Y ) using arbitrary number of independent samples is at least

1

4
min

((
(1− 2ε′)2 − ρ2k

)2
,
(

(1− 2ε′)2 − ρ2(k+1)
)2
)
,

where k ∈ N such that ρk ≥ (1− 2ε′) > ρk+1.

Observe that our result states that even using many samples of (X,Y ) does not help securely
realize BSS(ε′) with statistically small insecurity. This result demonstrates the power of interaction
in secure computation protocols because samples from any complete [32] (X,Y ) can securely realize
samples from BSS(ε′) using an interactive protocol.

A similar phenomenon, where a functionality incurs constant insecurity irrespective of the proto-
col’s complexity, occurs in other characterization problems in cryptography. For example, functions
like the Kushilevitz function [34] or the oblivious transfer functionality [16] incur constant inse-
curity [37, 27] irrespective of the round or communication complexity of the secure computation
protocol.

Result II. If one is interested in perfectly secure SNIS, then we prove that (X,Y ) must be
BSS(ε), such that (1 − 2ε)k = (1 − 2ε′), where k ∈ N and (X,Y ) is a joint distribution over
{−1, 1} × {−1, 1}.

Informal Theorem 2. If a perfectly secure SNIS of BSS(ε′) from a 2-by-2 joint distribution (X,Y )
exists, then (X,Y ) must be BSS(ε) and (1− 2ε′) = (1− 2ε)k, for some k ∈ N.

[28] proved a restricted version of this result. They show that if (X,Y ) = BSS(ε), then (1 −
2ε)k = (1 − 2ε′), and the parity reduction realizes the SNIS. Theorem 1 formally restates this
informal theorem.

Result III. We know that efficiently general secure computation can be founded on (sufficiently
small) constant-insecure samples of BSS(ε′), see, for example, [25]. So, it suffices to realize BSS(ε′)
securely with constant insecurity. Towards this objective, we demonstrate that it is possible to
distinguish whether BSS(ε′) reduces to (X,Y )n with δ-insecurity, where δ is a constant, or any
SNIS of BSS(ε′) from (X,Y )∗ is c · δ-insecure, where c > 1 is a constant depending on (X,Y ) and
ε′.

Informal Theorem 3. Given a 2-by-2 redundancy-free distribution (X,Y ) and (U, V ) = BSS(ε′),
we prove that there is a bounded computable time algorithm that distinguishes between the following
two cases, for any positive constant α.

4The maximal correlation of (X,Y ) is defined in Section 2.4 and is efficiently computable.
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1. BSS(ε′) reduces to (X,Y )⊗n with δ ≤ α insecurity.
2. Any reduction of BSS(ε′) to (X,Y )n has insecurity δ > c · α insecurity.

We emphasize that the constant c depends on the distribution (X,Y ) and the noise parameter
ε′. We remind the reader that c · δ must be less than one; otherwise, item 2 above is always false.
Theorem 4 is the formal restatement of this result.

1.2 Technical Contribution
We summarize two technical tools that are central to most of the results presented above.

The authors think that these results highlighting analytical properties of cryptographically secure
constructions are of independent and broader interest. First, we prove a necessary condition for
SNIS of BSS(ε′) from (X,Y )∗ with δ → 0 insecurity.

Informal Theorem 4. Let (X,Y ) be a 2-by-2 redundancy-free joint distribution with maximal
correlation ρ and BSS(ε′), where ε′ ∈ (0, 1

2), reduces to (X,Y )⊗n with δn → 0 insecurity, then
(1− 2ε′) = ρk, for some k ∈ N.

We emphasize that this test is not sufficient. Corollary 1, presented above, is a consequence of
this result (formally restated as Theorem 3).

Finally, we prove a concentration of the Fourier spectrum for secure reductions.

Informal Theorem 5. Let (X,Y ) be a general joint distribution with maximal correlation ρ and
BSS(ε′) reduces to (X,Y )⊗n with (any) δn insecurity via reduction functions fn and gn. Then, for
some k ∈ N, and the Fourier weight of both fn and gn on degrees > k is at most c · δn.

The constant c above depends on the maximal correlation ρ and the noise parameter ε′. Fur-
thermore, we clarify that the Fourier weight of fn and gn is with respect to their input distributions
being the marginal distributions Xn and Y n, respectively. Our work extends the Fourier concentra-
tion property to the much more general case, that is, when the source is an arbitrary distribution
and the target is a BSS, which requires biased Fourier analysis over larger alphabet set. The
connection between secure simulation and the Fourier concentration is surprising and new. We
show that the Fourier spectrum is concentrated on lower order terms. In particular, when the
source is a 2-by-2 distribution, it is concentrated on one degree. This generalizes one of the Fourier
concentration results of [28].

We use this result (Theorem 2 restates the formal version) to highlight how our technical
approach diverges from the techniques of [22, 14, 21] for NIS-decidability. In NIS-decidability, [22,
14, 21] rely on the invariance principle [39] to arrive at a similar conclusion as Theorem 2. However,
the invariance principle preserves correlation but not the security of the reduction. Consequently,
our technical approach uses appropriate junta theorems [17, 33] to circumvent this bottleneck. (See
Appendix D for more detailed discussions).

As evidenced from our technical approach, an essential contribution of our work is establishing
analysis pathways that emphasize security preservation. Our work highlights new challenges in
harmonic analysis introduced by the security constraints. In the algebraization of security, Markov
operators are needed to capture security. The analytic properties of Markov operators does not
combine well with the standard Fourier basis. Therefore, the Efron-Stein (orthogonal) decompo-
sition is necessary. Advances in Fourier analysis for Markov operators and Junta’s theorems shall
naturally lead to improvements of our results.

1.3 Technical Overview
Our proof for general distributions (X,Y ) also extend to the case of Supp(X) 6= Supp(Y ).

However, for the simplicity of presentation, we consider Supp(X) = Supp(Y ) to present the main
technical ideas.
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The proofs of the decidability problems Informal Theorem 3 and Informal Theorem 1 follow a
sequence of steps described below. Let ε′ ∈ (0, 1/2), ρ′ = 1− 2ε′ and (X,Y ) be an arbitrary finite
joint distribution with maximal correlation ρ (refer to Section 2.4 for the definition). Let πx and
πy be the marginal distribution of X and Y , respectively. Let T be the Markov operator associated
with (X,Y ) (see Section 2.5 for the formal definition).

Step 0: Derandomization. As elaborated in the introduction, we can use the deradomization
result of [28] or our derandomization result (Theorem 8) appropriately to assume that the reduction
functions are deterministic without loss of generality. Informal Theorem 3 uses our derandomization
result Theorem 8 and all other results use the derandomization result of [28].

Step 1: Algebraization of Security. We first give an algebraized definition of SNIS of
BSS from any finite joint distribution (see Definition 1). We show that if the insecurity in the
simulation-based definition is δ, then it is at most 2δ in the algebraic definition, and vice-versa
(refer to Claim 1). This result implies that the gap version of SNIS with respect to the simulation-
based definition is decidable if and only if the gap version of SNIS with respect to the algebraic
definition is decidable.

For brevity, we shall use fn to represent fn(Xn) and gn to represent gn(Y n) in this document.

Claim 1. Let (X,Y ) be a finite distribution over (X ,Y) with probability mass distribution π. Let πx
and πy be the two marginal distributions. Let fn, gn : X n → {−1, 1} such that fn ∈ L2(X n, πx⊗n),
gn ∈ L2(Yn, πy⊗n), and δ is some insecurity parameter. Let T and T , respectively, be the Markov
operator and the adjoint Markov associated with the source distribution (X,Y ). Then, the following
statements hold.

1. If BSS(ε′) vδfn,gn (X,Y )⊗n, then it holds that E[fn] ≤ δ, E[gn] ≤ δ, ‖T⊗ngn − ρ′ · fn‖1 ≤ 2δ,

and
∥∥∥T⊗nfn − ρ′ · gn∥∥∥

1
≤ 2δ.

2. If E[fn] ≤ δ, E[gn] ≤ δ, ‖T⊗ngn − ρ′ · fn‖1 ≤ δ, and
∥∥∥T⊗nfn − ρ′ · gn∥∥∥

1
≤ δ, then it holds that

BSS(ε′) v2δ
fn,gn

(X,Y )⊗n.

Appendix A proves Claim 1.
Step 2: Fourier Concentration of Reduction Functions. Consider a pair of reduction

function fn, gn : Ωn → {−1, 1} that achieve δ insecurity. The Fourier tail of a function is the
summation of the square of all high-degree Fourier coefficients. We show that the Fourier tail of
the reduction functions fn and gn is O(δ). The technical tool to prove this result relies on the
orthogonal (Efron-Stein) decomposition technique (defined in Section 2.6). Suppose the maximal
correlation of (X,Y ) is strictly less than 1. Our result additionally relies on Fourier properties of
Markov operators (refer to Proposition 5, Proposition 6) from [39] stating that the higher order
terms in the Efron-Stein decomposition of T⊗ngn have significantly smaller L2 norm compared to
the L2 norm of the corresponding higher order terms in the Efron-Stein decomposition of gn. This
ability of the Efron-Stein decomposition to exponentially degrade the higher-order terms of T⊗ngn
is crucial to our proof strategy. The definition of security implies that when we apply the Markov
operator and then adjoint operator on gn, the result function TT

⊗n
gn is close to a scaling of gn.

As a consequence, the Fourier tail of gn is small.
In the setting of Informal Theorem 1 (δn = O(1/n)), it implies that the total influence (refer to

Section 2.3) of the reduction function is bounded from above by a constant that does not depend
on n (refer to Corollary 2). This step does not change the reduction functions but gives Fourier
concentration property of the reduction functions.

Step 3: Dimension Reduction by Applying Junta Theorem. In Informal Theorem 3,
when the insecurity bound δ is sufficiently small, the Fourier tails of reduction functions is small
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enough so that we can apply Bourgain’s Junta Theorem (over biased measures) [6, 33]. In Informal
Theorem 1, applying the generalized Friedgut’s Junta Theorem [17] for function with constant total
influence also gives us two junta functions. In both cases, this step always gives us two constant-size
junta functions f̃n, g̃n : Ωn → {−1, 1} that are close to the two original reduction functions fn, gn

in L1 norm, respectively. Our proof shows that if BSS(ε′) vδfn,gn (X,Y )⊗n, then BSS(ε′) vΘ(δ)

f̃n,g̃n

(X,Y )⊗n. Since f̃n and g̃n are junta functions, it is clear that there exists n0 ∈ N and functions
fn0 , gn0 : Ωn0 → {−1, 1} such that BSS(ε′) vδ′

f̃n,g̃n
(X,Y )⊗n if and only if BSS(ε′) vδ′fn0 ,gn0 (X,Y )⊗n0

for any δ′ (refer to Theorem 7, Theorem 5).
Step 4: Solving the Decidability Problems. This step is identical to the step in [22,

14, 21]. Once we have the constant n0, an algorithm for deciding the SNIS problems works as
follows. The algorithm brute forces over all possible reduction functions fn0 , gn0 : Ωn0 → {−1, 1}.
If the algorithm finds any functions fn0 , gn0 such that BSS(ε′) vδfn0 ,gn0 (X,Y )⊗n0 , it outputs Yes.

Otherwise, it returns No.
Remainder of the results. Finally, we give an overview for Informal Theorem 2 and Informal

Theorem 4. Let ε′ ∈ (0, 1/2), ρ′ = 1− 2ε′ and (X,Y ) be an arbitrary 2-by-2 joint distribution with
maximal correlation ρ. Let πx and πy be the marginal distribution of X and Y , respectively. Let
T be the Markov operator associated with (X,Y ).

First, we show that if there exist a sequence δn converging to 0 and sequences of reduction
functions fn, gn such that we can simulate BSS(ε′) with δn insecurity using reduction functions
fn, gn, then (ρ′)2 = ρ2k for some positive integer k using biased Fourier analysis over Boolean
hypercube. The main technical tool is a generalization of the equation TρχS = ρχS to correlated
spaces, that is, TφS = ρ · ψS and TψS = ρ · φS , where Tρ is the Bonami-Beckner noise operator,
T and T are the Markov operator and the adjoint operator associated with the source distribution
(X,Y ), and χS , φS , ψS are Fourier bases over the uniform measure, πx-biased measure, and πy-
biased measure, respectively (Claim 4). With this additional technical tool, we can further prove
that the Fourier spectrum of reduction functions (mostly) concentrated on a constant degree k.
This helps us to show that there exists a constant c such that minS⊆[n](ρ

′2 − ρ|S|)2 ≤ c · δn for

infinitely many n, which implies that ρ′2 = ρ2k for some k ∈ N since δn converges to 0.
In the perfect security case, the Fourier spectrum of the reduction functions fn, gn over biased

measures πx, πy, respectively, are all concentrated on some constant degree k (Claim 2). We show
that there does not exist any such functions unless both the measures πx, πy are uniform (Claim 3).

Figure 2 summarizes the high-level overview of the dependence between our technical results,
i.e., which results are used to prove which results. Since Subsection 1.1 presents the most sophisti-
cated results first but our results are proven in a sequential manner, the informal theorem numbers
do not align with the theorem numbers. To address this situation, we have a more elaborate version
of Figure 2 in the appendix as Figure 3, which explicitly mentions the informal theorem along with
their respective (formal) theorems.

1.4 Organization of the Paper
Section 2 introduces the preliminary notations and definitions. We present the perfect-SNIS

characterization (Informal Theorem 2) in Section 3. The concentration of the Fourier spectrum for
secure reductions (Informal Theorem 5) is presented in Section 4. The other technical contribution
(Informal Theorem 4) and lower bound for minimum insecurity (Corollary 1) is given in Section 5.
Section 6 and Section 7 present the decidability results Informal Theorem 3 and Informal Theorem 1,
respectively.
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Claim 11

Claim 10

Claim 4

Proposition 7

Claim 3Claim 2

Proposition 6

Claim 6

Claim 5

Claim 8 Claim 9

Theorem 1

Claim 7

Theorem 3 Theorem 2

Corollary 2

Proposition 5

Imported Theorem 2

Claim 1Theorem 5

Imported Theorem 3

Theorem 7

Theorem 4 Theorem 6

Figure 2: The diagram of claims, propositions and theorems. An arrow from one result to another
result means that the first result is used to prove the second result. Highlighted nodes represent
our final results.

2 Preliminaries

2.1 Notation
We denote [n] as the set {1, 2, . . . , n} and N<m = {0, 1, . . . ,m−1}. For two functions f, g : Ω→

R, the equation f = g means that f(x) = g(x) for every x ∈ Ω. We use X ,Y,U ,V, or Ω to denote
the sample spaces, and π usually denotes a probability distribution. (X ,Y) is a joint probability
space. For xn ∈ X n, we represent xi ∈ X as the i-th coordinate of xn. A Boolean function is a
{−1, 1}-valued function. Sometimes we omit the n when it is clear from the context.

Correlated Spaces. We usually use (X,Y ) to denote the joint distribution over (X ,Y) with
probability mass function π, and πx, πy to denote the marginal probability distributions of X and
Y , respectively. Sometimes we will use (X × Y, π) to denote the joint distribution. In this paper,
we always use the following notation for the expectation of functions fn ∈ L2(X n, πx⊗n), gn ∈
L2(Yn, πy⊗n) over correlated spaces.

E[fn] := E
xn∼πx⊗n

[fn(xn)], E[gn] := E
yn∼πy⊗n

[gn(xn)]

E[fngn] := E
(xn,yn)∼π⊗n

[fn(xn) · gn(yn)]

We say that a joint distribution (X,Y ) is redundancy-free if the sizes of the support of the
two marginal distributions πx, πy are |X | and |Y|, respectively. In this paper, we consider only
redundancy-free joint distributions.

Statistical Distance. The statistical distance (total variation distance) between two distri-
butions P and Q over a finite sample space Ω is defined as SD (P,Q) = 1

2

∑
x∈Ω|P (x)−Q(x)|.

Doubly Binary Symmetric Source. A binary symmetric source with flipping probability
ε ∈ (0, 1), denoted as BSS(ε), is a joint distribution over the sample space {−1, 1} × {−1, 1}
such that if (X,Y ) ∼ BSS(ε), then Pr[X = 1, Y = −1] = Pr[X = −1, Y = 1] = ε/2, and
Pr[X = 1, Y = 1] = Pr[X = −1, Y = −1] = (1 − ε)/2. We write ρ = |1− 2ε| to denote the
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correlation of the source BSS(ε). If (X,Y ) is a BSS(ε) source, then (−X,Y ) is a BSS(1− ε) source.
So, without loss of generality, we can assume that ε ∈ (0, 1

2 ].

2.2 Secure Non-interactive Simulation: Definition
Appendix E recalls the notion of secure non-interactive simulation of joint distributions using

a simulation-based security definition as defined in [28].
In this paper we are mainly focus on the case that the target distribution is a BSS. We give an

algebrized definition of simulating BSS from any distribution as follows.

Definition 1 (Algebraic Definition). Let (X,Y ) be correlated random variables distributed ac-
cording to (X × Y, π). We say that BSS(ε′) vδfn,gn (X,Y ) if there exist reduction functions

fn ∈ L2(X n, πx⊗n), gn ∈ L2(Yn, πy⊗n) such that

1. Correctness: E[fn] ≤ δ, E[gn] ≤ δ, and E[fngn] ≤ δ.
2. Corrupted Alice: ∥∥T⊗ngn − ρ′ · fn∥∥1

≤ δ,
where T is the Markov operator (defined in Section 2.5) associated with the source distribution
(X,Y ).

3. Corrupted Bob: ∥∥∥T⊗nfn − ρ′ · gn∥∥∥
1
≤ δ,

where T is the adjoint Markov operator(defined in Section 2.5) associated with (X,Y ).

We provide a proof showing that this algebraic definition and the original (simulation-based)
definition of SNIS are 2-approximate, in term of insecurity parameter, of each other in Appendix A.
Next, we describe the decidability problem of SNIS as follows.

Problem 1. Let (X,Y ) be a joint distribution over the sample space (X ,Y), and (U, V ) be a
joint distribution over the sample space (U ,V), and let δ, δ′ > 0 be some insecurity parameters,
distinguish between the following two cases:

1. There exists a positive integer n, and functions fn : X n → U and gn : Yn → V such that
(U, V ) vδfn,gn (X,Y )⊗n.

2. For every positive integer n, and for every reduction functions fn : X n → U and gn : Yn → V,
we have (U, V ) 6vδ′fn,gn (X,Y )⊗n.

Remark 1. When δ′ = cδ for some constant c > 1, we call it multiplicative gap-SNIS. When
δ′ = δ+ ε for some ε > 0, we call it additive gap-SNIS. Note that cδ multiplicative gap is the same
as (c− 1)δ additive gap. When considering δ = o(1), the first item would be there exist a sequence
of insecurity bound δn and a sequence of reduction functions fn, gn such that for infinitely many n,
(U, V ) vδnfn,gn (X,Y )⊗n, and the second item is the same.

2.3 Fourier Analysis Basics
We recall some background in Fourier analysis over product measure that we will use in this

paper. We follow the notation of [43].

2.3.1 Fourier Analysis over Higher Alphabet
Definition 2. Let (Ω, π) be a finite probability space where |Ω| ≥ 2 and π denote a probabil-
ity distribution over Ω. Let π⊗n denote the product probability distribution on Ωn such that
π⊗n(x1x2 . . . xn) =

∏n
i=1 π(xi). For n ∈ N, we write L2(Ωn, π⊗n) to denote the real inner product

space of functions f : Ωn → R with inner product

〈f, g〉π⊗n = E
xn∼π⊗n

[f(xn)g(xn)].
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Moreover, the Lp-norm of a function f ∈ L2(Ωn, π⊗n) is defined as

‖f‖p := E
xn∼π⊗n

[|f(xn)|p]1/p.

Definition 3. A Fourier basis for an inner product space L2(Ω, π) is an orthonormal basis φ0, φ1, . . . , φm−1

with φ0 ≡ 1, where by orthonormal, we mean that for any i 6= j, 〈φi, φj〉 = 0 and for any i,
〈φi, φi〉 = 1.

It can be shown that if φ0, φ1, . . . , φm−1 is a Fourier basis for L2(Ω, π), then the collection
(φ)α∈Nn<m (each αi ∈ {0, 1, . . . ,m− 1}) is a Fourier basis for L2(Ωn, π⊗n).

Definition 4. Fix a Fourier basis φ0, φ1, . . . , φm−1 for L2(Ω, π), then every f ∈ L2(Ωn, π⊗n) can
be uniquely written as f =

∑
α∈Nn<m f̂(α)φα where f̂(α) = 〈f, φα〉. The real number f̂(α) is called

the Fourier coefficient of f on α.

For α ∈ N<mn , we denote |α| := |{i ∈ [n] : αi 6= 0}|. The Fourier weight of f at degree k is defined
as W k[f ] :=

∑
α:|α|=k f̂(α)2. The Fourier weight of f at degree strictly greater than k is defined

as W>k[f ] :=
∑

α:|α|>k f̂(α)2. We say that the degree of a function f ∈ L2(Ωn, π⊗n), denoted by

deg(f), is the largest value of |α| such that f̂(α) 6= 0. For every coordinate i ∈ [n], the i-th influence
of f , denoted by Infi[f ], is defined as Infi[f ] :=

∑
α : αi 6=0 f̂(α)2. And the total influence is defined

as Inf(f) :=
∑n

i=1 Infi[f ] =
∑

α|α|f̂(α)2 =
∑n

k=1 k ·W k[f ].

Proposition 1. For any real-valued function f ∈ L2(Ωn, π⊗n), if deg(f) = k for some k ∈ N.
Then Inf(f) ≤ k.

2.3.2 Biased Fourier Analysis over Boolean Cube.
In the special case when Ω = {−1, 1}, we define the product Fourier basis functions φS for

S ⊆ [n] as

φS(x) =
∏
i∈S

φ(xi) =
∏
i∈S

(
xi − µ
σ

)
,

where p = π(−1), µ = 1− 2p, σ = 2
√
p
√

1− p.

Definition 5 (Junta Function). A function f : Ωn → {−1, 1} is called a k-junta for k ∈ N if it
depends on at most k of its inputs coordinates; in other words, f(x) = g(xi1 , xi2 , . . . , xik), where
i1, i2, . . . , ik ∈ [n]. Informally, we say that f is a “junta” if it depends on only a constant number
of coordinates. We also say that f is ε-close to a k-junta function h if ‖f − h‖1 ≤ ε.

2.4 Maximal Correlation
We recall the definition of maximal correlation of a joint distribution and its properties in this

subsection.

Definition 6 (Maximal Correlation [24, 47, 2, 46, 3]). Let (X,Y ) be a finite joint distribution
over (X ,Y) with probability mass function π. The Hirschfeld-Gebelein-Renyi maximal correlation
of (X,Y ) is defined as follows:

ρ(X;Y ) := max
(f,g)∈S

E[fg],

where S represents the set of all real-valued function f ∈ L2(X , πx) and g ∈ L2(Y, πy) satisfying
the following two conditions:

E[f ] = E[g] = 0,
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E[f2] = E[g2] = 1.

In case that S = ∅ (which happens precisely when at least one of X and Y is constant almost
surely), ρ(X;Y ) is defined to be 0.

For example, the maximal correlation of BSS(ε) is |1− 2ε| for every ε ∈ [0, 1]. Note that
maximal correlation of any distribution is always between 0 and 1.

Imported Theorem 1 (Tensorization [47]). If (X1, Y1) and (X2, Y2) are independent, then

ρ(X1, X2;Y1, Y2) = max{ρ(X1;Y1), ρ(X2, Y2)}

and so if (X1, Y1), (X2, Y2) are i.i.d., then ρ(X1, X2;Y1, Y2) = ρ(X1;Y1).

The following proposition shows that maximal correlation is an easily computable quantity.

Proposition 2 ([47]). The maximal correlation of a finite joint distribution (X,Y ) is the second
largest singular value of the Markov operator T (defined in Section 2.5) associated with (X,Y ), in
other words, it is the square root of the second largest eigenvalue of the Markov operator TT , where
T is the adjoint Markov operator of T .

2.5 Markov Operator
Definition 7 (Markov Operator [38]). Let (X,Y ) be a finite distribution over (X ,Y) with prob-
ability mass distribution π. The Markov operator associated with this distribution, denoted by T ,
maps a function g ∈ Lp(Y, πy) to a function Tg ∈ Lp(X , πx) by the following map:

(Tg)(x) := E[g(Y ) | X = x],

where (X,Y ) is distributed according to π. Furthermore, we define the adjoint operator of T ,
denoted as T , maps a function f ∈ Lp(X , πx) to a function Tf ∈ Lp(Y, πy) by the following map:

(Tf)(y) = E[f(X) | Y = y].

Note that the two operators T and T have the following property.

〈Tg, f〉πx = 〈g, Tf〉πy = E[fn(Xn)gn(Y n)].

The example below illustrates the Markov operator and its adjoint.

Example 1. When X = Y = {−1, 1} and π(1, 1) = a, π(1,−1) = b, π(−1, 1) = c, and π(−1,−1) =
d, where 0 ≤ a, b, c, d ≤ 1 and a + b + c + d = 1. Then πx(1) = a + b, π(−1) = c + d, πy(1) =
a+ c, π(−1) = b+ d. For any function f ∈ Lp({−1, 1}, πx) and g ∈ Lp({−1, 1}, πy), we have

(Tg)(1) =
a

a+ b
· g(1) +

b

a+ b
· g(−1)

(Tg)(−1) =
c

c+ d
· g(1) +

d

c+ d
· g(−1)

(Tf)(1) =
a

a+ c
· f(1) +

c

a+ c
· f(−1)

(Tf)(−1) =
b

b+ d
· f(1) +

d

b+ d
· f(−1)

Note that, in this case, the maximal correlation of (X,Y ) is

ρ =
|ad− bc|√

(a+ b)(c+ d)(a+ c)(b+ d)
.

When a = d = (1 + ρ)/4 and b = c = (1 − ρ)/4, the operator T is the Bonami-Beckner operator,
denoted as Tρ.
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Proposition 3. [47] Let (X,Y ) be a finite distribution over (X ,Y) with probability mass distri-
bution π. Let T and T be the Markov operator and the adjoint Markov operator associated with
(X,Y ). Let (X × X , µ) be the distribution whose associated Markov operator is TT and µx = πx.
Then, the marginal distributions of (X ×X , µ) are the same, in other words, µx = µy. Furthermore,
we have ρ(X × X , µ) = ρ2, where ρ is the maximal correlation of (X,Y ).

This result shows that for f ∈ L2(X , πx), we have (TT )f ∈ L2(X , πx).

2.6 Efron-stein Decomposition
We shall use Efron-stein decomposition as one of the main technical tools to prove Informal

Theorem 2 and Informal Theorem 5.

Definition 8 (Efron-Stein decomposition). Let (Ω1, µ1), (Ω2, µ2), . . . , (Ω`, µ`) be discrete probability
spaces and let (Ω, µ) =

∏`
i=1(Ωi, µi). The Effron-Stein decomposition of f : Ω→ R is defined as

f =
∑
S⊆[n]

f=S

where the functions f=S satisfy:

• f=S depends only on xS.
• For all S 6⊆ S′ and all xS′, E[f=S(XS′)|XS′ = xS′ ] = 0

Proposition 4 ([15]). Efron-Stein decomposition exists and is unique.

The following propositions give the relation between Markov operators and Efron-stein decom-
positions. The first proposition shows that the Efron-Stein decomposition commutes with Markov
Operator.

Proposition 5 ([38, 39] Proposition 2.11). Let (Xn, Y n) be a joint distribution over (X n×Yn, π⊗n).
Let Ti be the Markov operator associated with (Xi, Yi). Let T⊗n = ⊗ni=1Ti, and consider a function
gn ∈ Lp(Yn, πy⊗n). Then, the Efron-Stein decomposition of gn satisfies:

(T⊗ngn)=S = T⊗n(g=S
n ).

The next proposition shows that T⊗ngn depends on the low degree expansion of gn.

Proposition 6 ([39] Proposition 2.12). Assuming the setting of Proposition 5 and let ρ be the
maximal correlation of the distribution (X,Y ). Then for all gn ∈ Lp(Yn, πy⊗n) it holds that∥∥T⊗ng=S

n

∥∥
2
≤ ρ|S|

∥∥g=S
n

∥∥
2
.

The next proposition shows the connection between Fourier decomposition and Efron-Stein
decomposition.

Proposition 7 ([43] Proposition 8.36). Let f ∈ L2(Ωn, π⊗n) have the orthogonal decomposition
f =

∑
S⊆[n] f

=S, and let {φH}H∈Ωn be an orthonormal Fourier basis for L2(Ωn, π⊗n). Then

f=S =
∑

α : Supp(α)=S

f̂(α)φα

In particular, when Ω = {−1, 1} we have f=S = f̂(S)φS.

This implies that
∥∥f=S

∥∥2

2
=
∑

α : Supp(α)=S f̂(α)2. Therefore, it holds thatW k[f ] =
∑
|S|=k

∥∥f=S
∥∥2

2
,

and W>k[f ] =
∑
|S|>k

∥∥f=S
∥∥2

2
.
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3 SNIS Characterization: BSS from 2-by-2 Distribution

In this section we present the characterization result for SNIS of BSS from any arbitrary 2-by-2
distribution with 0-insecurity (perfect security). First we restate the Informal Theorem 2 as follows.

Theorem 1. [Perfect-SNIS Characterization] Let ε′ ∈ (0, 1/2) and (X,Y ) be an arbitrary 2-by-2
joint distribution. Suppose there exists n ∈ N and Boolean functions fn, gn : {−1, 1}n → {−1, 1}
such that BSS(ε′) v0

fn,gn
(X,Y )⊗n. Then, the distribution (X,Y ) must be a BSS with flipping

probability ε such that (1− 2ε′) = (1− 2ε)k for some positive integer k ≤ n.

It follows from Theorem 1 that the perfect SNIS of BSS from any arbitrary 2-by-2 source
distribution is decidable in polynomial time.

Remark 2. The characterization of SNIS of BSS from arbitrary 2-by-2 distribution with o(1)
insecurity bound remains open.

3.1 Claims needed for Theorem 1
We state all the claims that are needed to prove Theorem 1, and provide their proofs in Sec-

tion 3.4.

Claim 2. Let (X,Y ) be a 2-by-2 joint distribution over ({−1, 1}, {−1, 1}) with probability mass
distribution π and ε′ ∈ (0, 1/2). Suppose there exist n ∈ N, and fn, gn : {−1, 1}n → {−1, 1} such
that BSS(ε′) v0

fn,gn
(X,Y ). Then, the following statements hold:

1. There exists a positive integer k such that ρ′ = ρk, where ρ is the maximal correlation of the
source distribution (X,Y ) and ρ′ = 1− 2ε′.

2. Furthermore, the Fourier weights of both fn, gn are entirely concentrated on degree k, that is,
W k[fn] = W k[gn] = 1, where the Fourier coefficients of fn, gn are with respect to the inner
products over πx

⊗n and πy
⊗n, respectively.

Claim 3. Suppose f is a Boolean function in L2({−1, 1}n, π⊗n) such that W k[f ] = 1. Then, it
must be the case that the distribution π is the uniform distribution over {−1, 1}.

3.2 Proof of Theorem 1
Suppose there exists n ∈ N and Boolean functions fn, gn : {−1, 1}n → {−1, 1} such that

BSS(ε′) v0
fn,gn

(X,Y )⊗n. Then, by Claim 2, we have (1 − 2ε′) = ρk for some k ∈ N, and

W k[fn] = W k[gn] = 1, where ρ is the maximal correlation of (X,Y ). By Claim 3, both the
marginal distribution πx and πy must be uniform distribution over {−1, 1}, which implies that the
joint distribution (X,Y ) is a BSS(ε) for some ε ∈ (0, 1). Using the fact that the the maximal
correlation of BSS(ε) = 1− 2ε, one concludes that (1− 2ε′) = (1− 2ε)k.

3.3 Technical Contribution: Properties of Markov Operators and Fourier Bases
over Correlated Space

In this subsection, we prove some technical results showing relation between maximal correla-
tion, Markov operators, and Fourier bases. We will use them as one of the main technical tools to
prove Claim 2, Claim 3 and Theorem 3.

Let (X,Y ) be a joint distribution over ({−1, 1}, {−1, 1}) with probability mass function π. Let
T and T be the Markov operator and the adjoint Markov operator associated with (X,Y ). Suppose

π =

[
a b
c d

]
for 0 ≤ a, b, c, d such that a+b+c+d = 1. Let p = c+d and q = b+d. Let {φS}S⊆[n] be
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a biased Fourier basis for L2(X n, πx⊗n), and {ψS}S⊆[n] be a biased Fourier basis for L2(Yn, πy⊗n)
defined as follows.

φS(x) =

n∏
i=1

(
xi − µx
σx

)
, and ψS(x) =

n∏
i=1

(
yi − µy
σy

)
,

where µx = 1− 2p, µy = 1− 2q, σx = 2
√
p
√

1− p, and σy = 2
√
q
√

1− q. Assuming these settings,
we claim the following results.

Claim 4. The following equalities hold.

T⊗nψS = ρ|S| · φS , and T
⊗n
φS = ρ|S| · ψS ,

where ρ = ad−bc√
pq(1−p)(1−q)

. Furthermore, the following equations hold.

(TT )
⊗n
φS = ρ2|S| · φS , and (TT )

⊗n
ψS = ρ2|S| · ψS .

Remark 3. The quantity ρ defined in the above claim has the same magnitude as the maximal
correlation of the joint distribution (X,Y ). When ad > bc, it is exactly the maximal correlation
of (X,Y ). This result can be viewed as a generalization of equation Tρ

⊗nχS = ρ|S| · χS , where
Tρ is the Bonami-Beckner noise operator, and χS : {−1, 1}n → {−1, 1} is the function defined as
χS =

∏
i∈S xi (a Fourier basis over the uniform measure).

We provide a proof of Claim 4 in Appendix B. The following result is a corollary of Claim 4.

Claim 5. For any S,H ⊆ [n], the following equalities hold.

T̂⊗nψS(H) = T̂
⊗n
φS(H) =

{
ρ|S| if H = S

0 otherwise.

̂
(TT )

⊗n
φS(H) =

̂
(TT )

⊗n
ψS(H) =

{
ρ2|S| if H = S

0 otherwise.

3.4 Proofs of claims used in Theorem 1
In this subsection, we present the proofs of the two claims used to prove Theorem 1.

Proof of Claim 2. We shall use orthogonal (Efron-Stein) decomposition to prove this claim. We
write fn and gn in terms of the orthogonal decomposition as follows.

fn =
∑
S⊆[n]

f=S
n , and gn =

∑
S⊆[n]

g=S
n

By linearity of the Markov operator and by Proposition 5,

T⊗ngn = T⊗n

∑
S⊆[n]

g=S
n

 =
∑
S⊆[n]

T⊗ng=S
n =

∑
S⊆[n]

(T⊗ngn)=S ,

T
⊗n
fn = T

⊗n

∑
S⊆[n]

f=S
n

 =
∑
S⊆[n]

T
⊗n
f=S
n =

∑
S⊆[n]

(T
⊗n
fn)=S

14



It follows from the perfect security assumption that T⊗ngn = ρ′ · fn and T
⊗n
fn = ρ′ · gn. Since

T⊗ngn = ρ′ · fn and by uniqueness of the orthogonal decomposition, it must be the case that
T⊗ng=S

n = ρ′ · f=S
n for every S. Similarly, we also have T

⊗n
f=S
n = ρ′ · g=S

n for every S. These two
equations imply that

(TT )
⊗n
f=S
n = ρ′2 · f=S

n .

By Proposition 7 and Claim 4, we have

(TT )
⊗n
f=S
n = (TT )

⊗n
(f̂n(S) · φS) = f̂n(S) · (TT )

⊗n
φS = f̂n(S) · ρ2|S| · φS , and

ρ′2 · f=S
n = ρ′2 · f̂n(S) · φS

It implies that f̂n(S) · (ρ′2 − ρ2|S|) = 0 for every S. So for every S either f̂n(S) = 0 or ρ′2 = ρ2|S|

. Since there exists S∗ such that f̂n(S∗) 6= 0, it must be the case that ρ′2 = ρ2k, where k = |S∗|.
Furthermore, f̂n(S) = 0 for every S satisfying |S| 6= k, in other words, W k[fn] = 1. Analogously,
we can show that W k[gn] = 1.

Proof of Claim 3. Let φS =
∏
i∈S
(xi−µ

σ

)
be a Fourier basis over L2({−1, 1}n, π⊗n), where p =

Pr[π(x) = −1], µ = 1− 2p, σ = 2
√
p
√

1− p. Since W k[f ] = 1, it can be written as

f(x) =
∑
|S|=k

f̂(S)φS(x) =
∑
|S|=k

f̂(S)

(
xi − µ
σ

)
.

Substitute x = 1 = (1, 1, . . . , 1) ∈ {−1, 1}n and x = −1 = (−1,−1, . . . ,−1) ∈ {−1, 1}n yields

f(1) =

(
1− µ
σ

)k ∑
|S|=k

f̂(S), and f(−1) =

(
−1− µ
σ

)k ∑
|S|=k

f̂(S)

It it clearly that
∑
|S|=k f̂(S) 6= 0 since f(1) 6= 0. Using the fact that f is boolean-valued function,

we have f(1)2 = f(−1)2. Therefore, we have

(
1− µ
σ

)2k
∑
|S|=k

f̂(S)

2

=

(
−1− µ
σ

)2k
∑
|S|=k

f̂(S)

2

It implies that (
1− µ
σ

)2k

=

(
−1− µ
σ

)2k

,

which can happen only when µ = 0. In other words, π is a uniform distribution over {−1, 1}, which
completes the proof.

4 Concentration of the Fourier Spectrum for Secure Reductions

We restate Informal Theorem 5 formally as the following theorem in this section, which will be
used as a main technical lemma to prove Informal Theorem 3 and Informal Theorem 1.

Theorem 2. Let ρ ∈ [0, 1] and ε′ ∈ (0, 1/2). Suppose there exists n ∈ N, a finite joint distribution
(X,Y ) over (Ω,Ω) with probability mass function π and reduction functions fn, gn : Ωn → {−1, 1}
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such that BSS(ε′) vδnfn,gn (X,Y )⊗n for some δn ≥ 0 and the maximal correlation of (X,Y ) is ρ.
Then, the following bounds hold.

W>k[fn] :=
∑

S : |S|>k

f̂n(S)2 ≤ (1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δn, and

W>k[gn] :=
∑

S : |S|>k

ĝn(S)2 ≤ (1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δn,

where ρ′ = 1− 2ε′, fn ∈ L2(Ωn, πx
⊗n), gn ∈ L2(Ωn, πy

⊗n), and k ∈ N such that ρk ≥ ρ′ > ρk+1.

We provide the proof of Theorem 2 in Subsection 4.2. Intuitively, Theorem 2 says that the
Fourier spectrum of reduction functions are mostly concentrated on low degree weights. As a
consequence, when δn = O(1/n), the total influences of reduction functions are bounded from
above. We state it as following and prove it in Subsection 4.3.

Corollary 2. Assuming the setting of Theorem 2, if δn = c0/n for some constant c0 > 0, then we
have

Inf(fn) ≤ k +
(1 + ρ′)2c0

(ρ2(k+1) − ρ′2)2
, and Inf(gn) ≤ k +

(1 + ρ′)2c0

(ρ2(k+1) − ρ′2)2

4.1 Required Claims for Theorem 2
Assuming the setting of Theorem 2 and the following notation, we state the claims that are

needed to prove Theorem 2. We provide the proofs of these claims in Appendix C. Let T and T
denote respectively the Markov operator and the corresponding adjoint operator associated with
the distribution (X,Y ). Note that fn ∈ L2(Ωn, πx

⊗n), gn ∈ L2(Ωn, πy
⊗n), T⊗ngn ∈ L2(Ωn, πx

⊗n),

and T
⊗n
fn ∈ L2(Ωn, πy

⊗n). Let fn =
∑

S⊆[n] f
=S
n , and gn =

∑
S⊆[n] g

=S
n be the Efron-stein

decompositions of fn and gn.

Claim 6.
∥∥∥(TT )

⊗n
fn − ρ′2 · fn

∥∥∥
1
≤ (1 + ρ′)δn, and

∥∥∥(TT )
⊗n
gn − ρ′2 · gn

∥∥∥
1
≤ (1 + ρ′)δn. Further-

more, we have
∥∥∥(TT )

⊗n
fn − ρ′2 · fn

∥∥∥2

2
≤ (1 + ρ′)2δn, and

∥∥∥(TT )
⊗n
gn − ρ′2 · gn

∥∥∥2

2
≤ (1 + ρ′)2δn.

Intuitively, Claim 6 says that a noisy version of reduction functions is close to their scaling
version in both L1 and L2 norms.

Claim 7. For every S ⊆ [n] such that |S| > k, the following bound holds.∣∣∣∥∥T⊗nf=S
n

∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2

∣∣∣ ≥ ∣∣∣ρ2|S| ·
∥∥f=S

n

∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2

∣∣∣
Claim 8. The following equation holds.∥∥∥(TT )

⊗n
fn − ρ′2 · fn

∥∥∥2

2
=
∑
S⊆[n]

∥∥∥(TT )
⊗n
f=S
n − ρ′2 · f=S

n

∥∥∥2

2

In particular, when Ω = {−1, 1}, we have∥∥∥(TT )
⊗n
fn − ρ′2 · fn

∥∥∥2

2
=
∑
S⊆[n]

f̂n(S)2
(
ρ2|S| − ρ′2

)2

The identities in Claim 8 are Parseval-like equations for the composition of Markov operator
and its adjoint operator applying on a function. The next claim says that the both operators T
and T are contractive.

Claim 9. The following inequalities hold.∥∥T⊗ngn∥∥1
≤ ‖gn‖1 = 1, and

∥∥∥T⊗nfn∥∥∥
1
≤ ‖fn‖1 = 1.
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4.2 Proof of Theorem 2
Assuming Claim 6, Claim 7, Claim 8, we present a proof of Theorem 2 as follows. Clearly, the

function (TT )
⊗n
fn − ρ′ · fn is bounded from above by 1 + ρ′. So it follows from Claim 6 and that∥∥∥(TT )

⊗n
fn − ρ′ · fn

∥∥∥2

2
≤ (1 + ρ′)2δn.

Let fn =
∑

S⊆[n] f
=S
n be the Efron-Stein decomposition of f . Then, we have∥∥∥(TT )

⊗n
fn − ρ′2 · fn

∥∥∥2

2
=
∑
S⊆[n]

∥∥∥(TT )
⊗n
f=S
n − ρ′2 · f=S

n

∥∥∥2

2
Claim 8

≥
∑

S : |S|>k

∥∥∥(TT )
⊗n
f=S
n − ρ′2 · f=S

n

∥∥∥2

2

≥
∑

S : |S|>k

∣∣∣∥∥∥(TT )
⊗n
f=S
n

∥∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2

∣∣∣2 Triangle Inq.

≥
∑

S : |S|>k

∣∣∣ρ2|S| ·
∥∥f=S

n

∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2

∣∣∣2 Claim 7

≥
∑

S : |S|>k

(ρ2(k+1) − ρ′2)2 ·
∥∥f=S

n

∥∥2

2

= (ρ2(k+1) − ρ′2)2
∑

S : |S|>k

∥∥f=S
n

∥∥2

2

Recall thatW>k[fn] =
∑

S : |S|>k
∥∥f=S

n

∥∥, thereforeW>k[fn] ≤ (1+ρ′)2

(ρ2(k+1)−ρ′2)2
·δn. Similarly, W>k[gn] ≤

(1+ρ′)2

(ρ2(k+1)−ρ′2)2
· δn, which completes the proof.

4.3 Proof of Corollary 2
Let m be the size the domain Ω. From the basic formula of total influence and the fact that∑
α∈N<mn f̂(α)2 =

∑n
i=1W

i(fn) = 1, we have

Inf(fn) =
∑

α∈N<mn

|α|f̂n(α)2

=

n∑
i=1

i ·W i(fn)

≤ k ·
k∑
i=1

W i(fn) + n ·W>k(fn)

≤ k · 1 + n · c
n
· (1 + ρ′)2

(ρ2(k+1) − ρ′2)2
Theorem 2

= k + c · (1 + ρ′)2

(ρ2(k+1) − ρ′2)2

Analogously, Inf(gn) ≤ k + (1+ρ′)2c
(ρ2(k+1)−ρ′2)2

, which completes the proof.

5 Lower Bound for Minimum Insecurity

We restate both Informal Theorem 4 and Corollary 1 as the following theorem.
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Theorem 3. Let ε′ ∈ (0, 1/2) and let (X,Y ) be a redundancy-free 2-by-2 joint distribution with
maximal correlation ρ. Suppose there exists a sequence δn ∈ [0, 1] converging to 0, and a sequence
of reduction functions fn, gn such that BSS(ε′) vδnfn,gn (X,Y )⊗n. Then, there exists k ∈ N such that

(1− 2ε′) = ρk.
On the other hand, if (1 − 2ε′) 6= ρk for any k ∈ N, then the insecurity of any protocol for

non-interactive secure simulation of BSS(ε′) from (X,Y ) using arbitrary number of independent
samples is at least

1

4
min

((
(1− 2ε′)2 − ρ2k

)2
,
(

(1− 2ε′)2 − ρ2(k+1)
)2
)
,

where k ∈ N such that ρk > (1− 2ε′) > ρk+1.

Theorem 3 gives a necessary condition for SNIS of BSS(ε′) from an arbitrary 2-by-2 source
distribution with o(1)-insecurity. As consequences, if (1 − 2ε′)2 6= ρ2k for every k ∈ N, any secure
protocol simulating BSS(ε′) has constant insecurity. Furthermore, using our proof technique we
can derive an explicit lower bound for the minimum insecurity.

Proof of Theorem 3. Let ρ′ = 1− 2ε′. Let T and T denote, respectively, the Markov operator and
the corresponding adjoint operator associated with the distribution (X,Y ). Let π be the probability
mass function of (X,Y ). Moreover, note that fn ∈ L2(Ωn, πx

⊗n) and gn ∈ L2(Ωn, πy
⊗n). Applying

Claim 8 yields∥∥∥(TT )
⊗n
fn − ρ′2 · fn

∥∥∥2

2
=
∑
S⊆[n]

∥∥∥(TT )
⊗n
f=S
n − ρ′2 · f=S

n

∥∥∥2

2
=
∑
S⊆[n]

f̂n(S)2
(
ρ2|S| − ρ′2

)2

Together with Claim 6, it implies that

min
S⊆[n]

(
ρ2|S| − ρ′2

)2
≤ (1 + ρ′)2

1− (1+ρ′)2δn
ρ2(k+1)−ρ2k

· δn.

Now, since BSS(ε′) vδnfn,gn for infinitely many n and limn→∞ δn = 0, we have

min
S

(
ρ2|S| − ρ′2

)2
≤ lim

n→∞

(1 + ρ′)2

1− (1+ρ′)2δn
ρ2(k+1)−ρ2k

· δn = lim
n→∞

δn = 0.

Therefore, it must be the case that there exists S∗ such that ρ′2 = ρ2k, where k = |S∗|.
Next, applying Claim 8 yields∥∥∥(TT )

⊗n
fn − ρ′ · fn

∥∥∥2

2
=
∑
S⊆[n]

f̂n(S)2
(
ρ2|S| − ρ′2

)2
≥ min

S⊆[n]

(
ρ2|S| − ρ′2

)2

By Claim 6, we have (1 + ρ′)2δn ≥ minS⊆[n]

(
ρ2|S| − ρ′2

)2
. This implies that

δn ≥
1

4
min

((
ρ′2 − ρ2k

)2
,
(
ρ′2 − ρ2(k+1)

)2
)
.
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6 Decidability of SNIS: BSS from 2-by-2 Distribution

In this section, we formally restate Informal Theorem 3.

Theorem 4 (Decidability-Multiplicative-Gap-2-by-2). Let (X,Y ) be a 2-by-2 distribution over
({−1, 1}, {−1, 1}) with maximal correlation ρ and probability mass function π. Let p = πx(−1)

and q = πy(−1). Let ε′ ∈ (0, 1/2), ρ′ = 1 − 2ε′, κ = (1+ρ′)2

(ρ2(k+1)−ρ′2)2
, where k ∈ N such that

ρk ≥ (1 − 2ε′) > ρk+1. There exist c > 0, δ0 > 0, and n0 ∈ N, such that the following statement
holds. For any insecurity parameter δ < δ0, there is an algorithm running in bounded computable
time O(22n0 ) that distinguishes between the following two cases.

1. There exist n ∈ N and reduction functions fn, gn : {−1, 1}n → {−1, 1} such that BSS(ε′) vδfn,gn
(X,Y )⊗n.

2. For all n ∈ N, and reduction functions fn, gn : {−1, 1}n → {−1, 1}, it must be the case that
BSS(ε′) 6vc·δfn,gn (X,Y )⊗n.

One can set δ0, c, n0 as follows:

n0 = 2kM/η16k
p + 2kM/η16k

q , δ0 = min(δ0(p), δ0(q)) ,

δ0(p) := min(η16k
p /(M · κ), (d/κ− 1)4 · η16k

p /(2κ · 10644)) ,

δ0(q) := min(η16k
q /(M · κ), (d/κ− 1)4 · η16k

q /(2κ · 10644)) ,

c = 5(κ+ 1) , ηp = (1 + p−1/2(1− p)−1/2)−1/2 , ηq = (1 + q−1/2(1− q)−1/2)−1/2 ,

and M is a global constant (refer to Imported Theorem 2). Furthermore, in the first case, the
algorithm outputs a pair of reduction functions fn0 , gn0 such that BSS(ε′) vcδfn0 ,gn0 (X,Y )⊗n0.

The following result is the main technical lemma for the proof of the above theorem.

Theorem 5 (Dimension Reduction 2-by-2). Let (X,Y ) be a 2-by-2 distribution over ({−1, 1}, {−1, 1})
with maximal correlation ρ and probability mass function π. Let p = πx(−1) and q = πy(−1). Let

ε′ ∈ (0, 1/2), ρ′ = 1 − 2ε′, κ = (1+ρ′)2

(ρ2(k+1)−ρ′2)2
, where k ∈ N such that ρk ≥ (1 − 2ε′) > ρk+1

and fix d ≥ κ. There exists 0 < δ0 < 1, n0 ∈ N, such that for any 0 < δ < δ0, for any
n ∈ N, any reduction functions fn, gn : {−1, 1}n → {−1, 1} satisfying BSS(ε′) vδfn,gn (X,Y )⊗n,

there exist functions fn0 , gn0 : {−1, 1}n0 → {−1, 1} such that BSS(ε′) v(1+4d)δ
fn0 ,gn0

(X,Y )⊗n0. Further-

more, n0 is a computable function in the parameters of the problem. In particular, one may take
n0 = 2kM/η16k

p + 2kM/η16k
q and δ0 = min(δ0(p), δ0(q)), where

δ0(p) := min(η16k
p /(M · κ), (d/κ− 1)4 · η16k

p /(2κ · 10644))

δ0(q) := min(η16k
q /(M · κ), (d/κ− 1)4 · η16k

q /(2κ · 10644))

where k ∈ N such that ρk ≥ (1 − 2ε′) > ρk+1, and M is a global constant (refer to Imported
Theorem 2) and

ηp = (1 + p−1/2(1− p)−1/2)−1/2, and ηq = (1 + q−1/2(1− q)−1/2)−1/2.

We provide the proof of Theorem 5 in Section 6.2 and the proof of Theorem 4 in Section 6.1.
We highlight that the following junta theorem is the key to prove Theorem 5.

Imported Theorem 2 (Kindler and Safra[33]). There exists a constant M such that for every k ∈
N the following holds. Let f : {−1, 1}n → {−1, 1} be a Boolean function, define ε :=

∑
|S|>k

∣∣∣f̂(S)
∣∣∣2,

where f̂(S) is with respect to p biased measure, denote τ := η16k
p /M (where ηp = (1 + p−1/2(1 −

p)−1/2)−1/2 = O(p1/4)). If ε < τ then f is (1 + 1064η−4k
p (2ε)1/4)ε-close to a (k/τ)-junta.
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6.1 Proof of Theorem 4
Assuming Theorem 5, we prove the Theorem 4 as follows. According to Claim 1, it suffices to

decide the problem with respect to our algebraic definition.
In the following, assuming (X,Y ) is a 2-by-2 distribution, we prove that we can decide the

problem for the constant c = 5(1 + κ) and any δ < δ0 where δ0 is introduced in Theorem 5. For
YES instance, there exists n ∈ N and reduction functions fn, gn : {−1, 1}n → {−1, 1} satisfying
BSS(ε′) vδfn,gn (X,Y )⊗n. Then, for an appropriate choice of parameters in Theorem 5, there

exists functions fn0 , gn0 : {−1, 1}n0 → {−1, 1} such that BSS(ε′) v(1+4d)δ
fn0 ,gn0

(X,Y )⊗n0 where n0 is

introduced in that theorem. Moreover, we set d = 1 + κ in Theorem 5. This implies the following:

E[fn0 ] ≤ (5 + 4κ)δ, E[gn0 ] ≤ (5 + 4κ)δ, E[fn0gn0 ] ≤ (5 + 4κ)δ ,∥∥T⊗n0gn0 − ρ′ · fn0

∥∥
1
≤ (5 + 4κ)δ , and

∥∥∥T⊗n0fn0 − ρ′ · gn0

∥∥∥
1
≤ (5 + 4κ)δ ,

for δ < δ0 (for δ0 refer to Theorem 5 ).
For NO instance, for all n, in particular n = n0, there are no reduction functions fn0 , gn0 : {−1, 1}n0 →

{−1, 1} satisfying the following inequalities:

E[fn0 ] ≤ (5 + 5κ)δ, E[gn0 ] ≤ (5 + 5κ)δ, E[fn0gn0 ] ≤ (5 + 5κ)δ ,∥∥T⊗n0gn0 − ρ′ · fn0

∥∥
1
≤ (5 + 5κ)δ , and

∥∥∥T⊗n0fn0 − ρ′ · gn0

∥∥∥
1
≤ (5 + 5κ)δ.

Now, we brute force over all possible functions fn0 , gn0 : {−1, 1}n0 → {−1, 1} to check if there exists

any function satisfying BSS(ε′) v(5+4κ)δ
fn0 ,gn0

(X,Y )⊗n0 or not. If such reduction functions exist, then

the algorithm outputs YES, and outputs NO otherwise. This brute force can be done in O
(
22n0

)
time.

6.2 Dimension Reduction
The proof of Theorem 5 follows from the step 2 and step 3 as described in Subsection 1.3.

Let (X,Y ) be a 2-by-2 distribution over ({−1, 1}, {−1, 1}) such that X and Y are respectively
p-biased and q-biased distribution, and ε′ ∈ (0, 1/2). Let δ < δ0, which will be specified later. We
denote k to be the positive integer such that ρk ≥ ρ′ > ρk+1. Let M be the global constant in the
Imported Theorem 2. It follows from Theorem 2 that W>k[fn] ≤ κδ and W>k[gn] ≤ κδ, where

κ = (1+ρ′)2

(ρ2(k+1)−ρ′2)2
.

We shall apply Imported Theorem 2 on function fn. First, we set ε = κ·δ. We require δ ≤ (d/κ−
1)4·η16k

p /(2κ·10644) (for d ≥ κ) to have κ(1+1064η−4k
p (2κδ)1/4) ≤ d and so (1+1064η−4k

p (2ε)1/4)ε <

dδ. Moreover, we need to have δ < η16k
p /(M · κ) to satisfy the condition ε < τ in the theorem. So

we set δ0(p) := min(η16k
p /(M · κ), (d/κ− 1)4 · η16k

p /(2κ · 10644)). Moreover, Jp = k/τ = kM/η16k
p .

Similarly, we can apply Imported Theorem 2 on gn and get δ0(q) := min(η16k
q /(M · κ), (d/κ− 1)4 ·

η16k
q /(2κ · 10644)) and Jq = k/τ = kM/η16k

q . We set δ0 = min(δ0(p), δ0(q)). It implies that there

exist two junta functions f̃n, g̃n : {−1, 1}n → {−1, 1} such that they are 2dδ-close to fn, gn in L1

norm, respectively.∥∥∥fn − f̃n∥∥∥
1

= 2 Pr[fn(xn) 6= f̃n(xn)] ≤ 2dδ , and‖gn − g̃n‖1 = 2 Pr[gn(xn) 6= g̃n(xn)] ≤ 2dδ.

Furthermore, f̃n and g̃n depend on Jp = kM/η16k
p and Jq = kM/η16k

q variables, respectively. Next,
we show that the insecurity obtained when simulating BSS(ε′) from (X,Y ) using the reduction
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functions f̃n, g̃n is at most (1 + 4d)δ. By triangle inequality and the contraction property of
averaging operator, in particular Markov operator, we have∥∥∥T⊗ng̃n − ρ′f̃n∥∥∥

1
≤
∥∥T⊗ng̃n − T⊗ngn∥∥1

+
∥∥T⊗ngn − ρ′fn∥∥1

+
∥∥∥ρ′fn − ρ′f̃n∥∥∥

1

≤ ‖gn − g̃n‖1 +
∥∥T⊗ngn − ρ′fn∥∥1

+ ρ′
∥∥∥(fn − f̃n)

∥∥∥
1

≤ 2dδ + δ + 2ρ′dδ = (1 + (2 + 2ρ′)d)δ ≤ (1 + 4d)δ

Similarly, we have
∥∥∥T⊗nf̃n − ρ′g̃n∥∥∥

1
≤ (1 + 4d)δ. Since fn, gn are 2dδ-close in L1-norm to f̃n, g̃n,

and E[fn] ≤ δ, E[gn] ≤ δ, it follows that E[f̃n] ≤ (1 + 2d)δ and E[f̃n] ≤ (1 + 2d)δ. Using the fact
that f̃n and g̃n are respectively Jp-junta and Jq-junta, there exist n0 = Jp + Jq = O(k) and two
functions fn0 , gn0 : Ωn0 → {−1, 1} such that∥∥∥T⊗ng̃n − ρ′f̃n∥∥∥

1
=
∥∥T⊗n0gn0 − ρ′fn0

∥∥
1
≤ (1 + 4d)δ,∥∥∥T⊗nf̃n − ρ′g̃n∥∥∥

1
=
∥∥T⊗n0fn0 − ρ′gn0

∥∥
1
≤ (1 + 4d)δ, and

E[fn0 ] = E[f̃n] ≤ (1 + 2d)δ, E[gn0 ] = E[g̃n] ≤ (1 + 2d)δ.

It implies that BSS(ε′) v(1+4d)δ
fn0 ,gn0

(X,Y )⊗n0 , which completes the proof.

7 Decidability of SNIS: BSS from Arbitrary m-by-m Source

In this section, we shall restate and prove Informal Theorem 1.

Theorem 6 (Decidability-Additive-Gap). Let (X,Y ) be a redundancy-free finite distribution over
(Ω,Ω) with maximal correlation ρ and probability mass function π. Let ε′ ∈ (0, 1/2) and δ > 0 be
an arbitrary insecurity parameter. There exists an algorithm running in bounded computable time
O(2|Ω|

n0
) that distinguishes between the following two cases:

1. There exist a sequence of insecurity parameters δn = O(1/n) and a sequence of reduction func-
tions fn, gn : Ωn → {−1, 1} such that for infinitely many n, we have BSS(ε′) vδnfn,gn (X,Y )⊗n.

2. For all n ∈ N, and reduction functions fn, gn : Ωn → {−1, 1}, it is the case that BSS(ε′) 6vδfn,gn
(X,Y )⊗n.

One may take n0 = (1/λ)O((k+κ·c0)/δ), where k ∈ N satisfying ρk ≥ ρ′ > ρk+1, ρ′ = 1 − 2ε′,

κ = (1+ρ′)2

ρ2(k+1)−ρ′2 , and λ is such that any outcome over (Ω, πx) and (Ω, πy) has probability at least λ.

The following result is the main technical lemma for the proof of the above theorem.

Theorem 7. Let (X,Y ) be a redundancy-free finite distribution over (Ω,Ω) with maximal corre-
lation ρ and probability mass function π. Let ε′ ∈ (0, 1/2). For any constant δ′ > 0, there exists
n0 ∈ N such that for any sequence of insecurity parameters δn ≤ c0/n, for some constant c0 > 0,
and any sequence of reduction functions fn, gn : Ωn → {−1, 1} satisfying BSS(ε′) vδnfn,gn (X,Y )⊗n,

there exist functions fn0 , gn0 : Ωn0 → {−1, 1} such that BSS(ε′) v5δ′
fn0 ,gn0

(X,Y )⊗n0.

Furthermore, n0 is a computable function in the parameters of the problem. In particular, one

may take n0 = (1/λ)O((k+κ·c0)/δ′), where k ∈ N satisfying ρk ≥ 1− 2ε′ > ρk+1, κ = (1+ρ′)2

ρ2(k+1)−ρ′2 , and

λ is such that any outcome over (Ω, πx) and (Ω, πy) has probability at least λ.
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To prove this, we shall apply Imported Theorem 3. Intuitively, it says that, for any Boolean-
valued functions with the total influence at most K, there exits a 2O(K)-junta function that is close
to the given function in L1-norm.

Imported Theorem 3. Friedgut’s Junta Theorem for general product space domains[17,
43]: Let (Ω, π) be a finite probability space such that every outcome has probability at least λ. If
f ∈ L2(Ωn, πn) has range {−1, 1} and 0 < ε ≤ 1, then f is ε-close to a (1/λ)O(I[f ]/ε)-junta
h : Ωn → {−1, 1}, i.e., Prxn∼π⊗n [f(xn) 6= h(xn)] ≤ ε.

7.1 Proof of Theorem 6
Assuming Theorem 7, we present the proof of Theorem 6 as follows. At a high level idea the

proof is similar to the proof of Theorem 4. Suppose we are in YES instance, then let δ′ = δ/5
and invoke Theorem 7 to get the constant n0 ∈ N. Then, we are sure that there exist reduction
functions fn0 and gn0 such that BSS(ε′) vδfn0 ,gn0 (X,Y )⊗n0 .

Now, suppose we are in NO instance, then for any n (in particular for n = n0) we have
BSS(ε′) 6vδfn,gn (X,Y )⊗n. We brute force over all functions fn0 , gn0 : Ωn → {−1, 1} for n0 mentioned

in Theorem 7. If there exists any pair of reduction functions fn0 , gn0 satisfying BSS(ε′) vδfn0 ,gn0
(X,Y )⊗n0 , output YES, otherwise output NO. The running time of this algorithm is O(2|Ω|

n0
).

7.2 Dimension Reduction
The proof of Theorem 7 is similar to the proof of Theorem 5 except applying Friedgut’s junta

theorem instead of Kindler and Safra’s junta theorem in the dimension reduction step.
This section presents the proof of Theorem 7. Let (X,Y ) be a finite distribution over (Ω,Ω),
and ε′ ∈ (0, 1/2). Let δ′ > 0. For any n ≥ c0/δ

′, which implies that δn = c0/n ≤ δ′, satisfying
BSS(ε′) vδnfn,gn (X,Y )⊗n, it follows from Corollary 2 that the total influence of both fn and gn are

at most k+κ · c0. By Imported Theorem 3, there exist two J-junta functions f̃n, g̃n : Ωn → {−1, 1}
such that∥∥∥fn − f̃n∥∥∥

1
= 2 Pr[fn(xn) 6= f̃n(xn)] ≤ 2δ′ , ‖gn − g̃n‖1 = 2 Pr[gn(xn) 6= g̃n(xn)] ≤ 2δ′ ,

and |J | = (1/λ)O((k+κ·c0)/δ′), where λ is the constant defined in Imported Theorem 3. Next, we show
that the insecurity obtained when simulating BSS(ε′) from (X,Y ) using the reduction functions
f̃n, g̃n is at most 5δ′. By Triangle inequality and the contraction property of averaging operator, in
particular Markov operator, we have∥∥∥T⊗ng̃n − ρ′f̃n∥∥∥

1
≤
∥∥T⊗ng̃n − T⊗ngn∥∥1

+
∥∥T⊗ngn − ρ′fn∥∥1

+
∥∥∥ρ′fn − ρ′f̃n∥∥∥

1

=
∥∥T⊗n(g̃n − gn)

∥∥
1

+
∥∥T⊗ngn − ρ′fn∥∥1

+
∥∥∥ρ′(fn − f̃n)

∥∥∥
1

≤ ‖gn − g̃n‖1 +
∥∥T⊗ngn − ρ′fn∥∥1

+ ρ′
∥∥∥(fn − f̃n)

∥∥∥
1

≤ 2δ′ +
c0

n
+ ρ′(2δ′) ≤ 5δ′

Similarly, we have
∥∥∥T⊗nf̃n − ρ′g̃n∥∥∥

1
≤ 5δ′. Since fn, gn are δ′-close in L1-norm to f̃n, g̃n, and

E[fn] ≤ 2δ′, E[gn] ≤ 2δ′, it follows that E[f̃n] ≤ 3δ′ and E[f̃n] ≤ 3δ′. Using the fact that f̃n and g̃n
are junta functions, there exist n0 = (1/λ)O((k+κ·c0)/δ′) and two functions fn0 , gn0 : Ωn0 → {−1, 1}
such that ∥∥∥T⊗ng̃n − ρ′f̃n∥∥∥

1
=
∥∥T⊗n0gn0 − ρ′fn0

∥∥
1
, and
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∥∥∥T⊗nf̃n − ρ′g̃n∥∥∥
1

=
∥∥T⊗n0fn0 − ρ′gn0

∥∥
1
, and

E[fn0 ] = E[f̃n] ≤ 3δ′, and E[gn0 ] = E[g̃n] ≤ 3δ′.

It implies that BSS(ε′) v5δ′
fn0 ,gn0

(X,Y )⊗n0 , which completes the proof.
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A Proof of Claim 1

We use a hybrid-argument to prove this claim. Without loss of generality, we can assume that
the simulator will reverse sample xn from the input u. That is, for every u ∈ {−1, 1} the SimA

outputs xn with probability 0 if xn 6∈ f−1
n (u) since if there is such an xn we can construct a new

simulator that shifts the probability of that xn to the probability of some other element in f−1(u)
and achieve the security at least as good as the original simulator. Observe that on an input
u ∈ {−1, 1} a “good” simulator should reverse sample xn, which implies that any “good” simulator
behaves almost the same as SimA.

From these observations, we define a SimA(u) as follows. On input u, it outputs xn with
probability 2 Pr[Xn = xn] if xn ∈ f−1

n (u) and with probability 0 otherwise. Effectively, SimA(U)
outputs xn with Pr[Xn = xn]. First, we claim that

SD
( (

SimA(U), U, V
)
, (Xn, fn(Xn), gn(Y n))

)
=
∥∥T⊗ngn − ρ′fn∥∥1

.

Intuitively, the quantity |T⊗ngn(xn)− ρ′fn(xn)| measures how good the simulation is on input
xn. Note that it might be the case that SimA(x) is not a valid simulator if for any u ∈ {−1, 1},
2
∑

xn∈f−1(u) Pr[Xn = xn] 6= 1.

Forward Implication. If BSS(ε′) vδfn,gn (X,Y )⊗n, there exists a simulator SimA : {−1, 1} →
Ωn such that

SD ( (SimA(U), U, V ) , (Xn, fn(Xn), gn(Y n)) ) ≤ δ.

By the discussion above, it must be the case that Sim(A) is δ-close to SimA. Therefore, by triangle
inequality, one can conclude that∥∥T⊗ngn − ρ′fn∥∥1

≤ SD ( (SimA(U), U, V ) , (Xn, fn(Xn), gn(Y n)) ) + δ ≤ 2δ

The inequalities E[fn] ≤ δ follows from the fact that fn(Xn) is δ-close to U , which is a uniform

distribution for BSS. Similarly, we have E[gn] ≤ δ and
∥∥∥T⊗nfn − ρ′gn∥∥∥

1
≤ 2δ.

Reverse Implication. Suppose there exist function fn, gn such that E[fn] ≤ δ, E[gn] ≤
δ, ‖T⊗ngn − ρ′ · fn‖1 ≤ δ, and

∥∥∥T⊗nfn − ρ′ · gn∥∥∥
1
≤ δ. Recall that if 2

∑
xn∈f−1(u) Pr[Xn = xn] 6=

1, then SimA is not a valid simulator. However, this will not be an issue since from the fact that

E[fn] ≤ δ, we can construct a valid simulator SimA from SimA with incurring at most additional δ
insecurity. Therefore, the simulation error is at most 2δ.

We provide more details of the discussion above as follows. Suppose SimA(u) outputs xn

with probability 2(Pr[Xn = xn] + εxn) if xn ∈ f−1
n (u), and with probability 0 otherwise, where

εxn ∈ [0, 1]. This implies that SimA(U) outputs xn with probability Pr[Xn = xn] + εxn . Clearly
SD (SimA(U), Xn) ≤ δ, which implies that

∑
xn |εxn | ≤ δ. Similarly, E[fn(Xn)] ≤ δ since SD (fn(Xn), U) ≤

δ.
Observe that, for a fixed xn ∈ f−1(1), the three quantities 1

2 |(T
⊗ngn)(xn)− ρ′fn(xn)|, and

|Pr[gn(Y n) = 1|Xn = xn, ]− (1− ε′)|, and |Pr[gn(Y n) = −1|Xn = xn]− ε′| are the same. Using
this fact, we have ∥∥T⊗ngn − ρ′ · fn∥∥1

= E
∣∣(T⊗ngn − ρ′ · fn)(Xn)

∣∣
=
∑
xn

Pr[Xn = xn] ·
∣∣(T⊗ngn)(xn)− ρ′ · fn(xn)

∣∣
=
∑
xn

Pr[Xn = xn] ·
∣∣(T⊗ngn)(xn)− ρ′ · fn(xn)

∣∣
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=
∑
xn

Pr[Xn = xn] ·
∣∣Pr[gn(Y n) = 1|Xn = xn]− (1− ε′)

∣∣
+
∑
xn

Pr[Xn = xn] ·
∣∣Pr[gn(Y n) = −1|Xn = xn]− ε′

∣∣
= SD

( (
SimA(U), U, V

)
, (Xn, fn(Xn), gn(Y n))

)
Using this equation, one can verify that, by triangle inequality,

SD ( (SimA(U), U, V ) , (Xn, fn(Xn), gn(Y n)) )

≥ SD
( (

SimA(U), U, V
)
, (Xn, fn(Xn), gn(Y n))

)
−
∑
xn

|εxn |

=
∥∥T⊗ngn − ρ′ · fn∥∥1

−
∑
xn

|εxn |

which implies that ‖T⊗ngn − ρ′ · fn‖1 ≤ 2δ since
∑

xn |εxn | ≤ δ. With an analogous argument, one

can show that
∥∥∥T⊗nfn − ρ′ · gn∥∥∥

1
≤ 2δ and E[gn] ≤ δ.

The proof of the other direction is similar.

B Omitted Proofs in Section 3

B.1 Proof of Claim 4
In the following expressions, (Xn, Y n) is always sampled from π⊗n. For every xn ∈ Ωn, we have

T⊗nψS(xn) = E[ψS(Y n)|Xn = xn]

= E
yn∼(Y n|Xn=xn)

∏
i∈S

(
yi − µy
σy

)
=
∏
i∈S

E
yi∼(Yi|Xi=xi)

(
yi − µy
σy

)
=
∏
i∈S

ρ ·
(
xi − µx
σx

)
Claim 10

= ρ|S|φS(xn)

Similarly, we also have T
⊗n
φS = ρ|S|ψS .

Claim 10. The following equation holds.

E
yi∼Yi|Xi=xi

(
yi − µy
σy

)
= ρ ·

(
xi − µx
σx

)
Proof. We do case analysis on xi.
Case 1: If xi = 1, the left hand side can be simplified as

E
yi∼Yi|Xi=1

(
yi − µy
σy

)
=

a

a+ b
· 1− µy

σy
+

b

a+ b
· −1− µy

σy

=
a

a+ b
· 2(b+ d)

2
√
b+ d

√
a+ c

+
b

a+ b
· −2(a+ c)√

b+ d
√
a+ c
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=
ad− bc

(a+ b)
√
b+ d

√
a+ c

The right hand side can be rewritten as

ρ ·
(

1− µx
σx

)
= ρ · 2(c+ d)

2
√
a+ b

√
c+ d

=
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
· (c+ d)√

a+ b
√
c+ d

=
ad− bc

(a+ b)
√
b+ d

√
a+ c

Case 2: If xi = −1, the left hand side can be simplified as

E
yi∼Yi|Xi=−1

(
yi − µy
σy

)
=

c

c+ d
· 1− µy

σy
+

d

c+ d
· −1− µy

σy

=
c

c+ d
· 2(b+ d)

2
√
b+ d

√
a+ c

+
d

c+ d
· −2(a+ c)√

b+ d
√
a+ c

=
bc− ad

(c+ d)
√
b+ d

√
a+ c

The right hand side can be rewritten as

ρ ·
(
−1− µx
σx

)
= ρ · −2(a+ b)

2
√
a+ b

√
c+ d

=
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
· −(a+ b)√

a+ b
√
c+ d

=
bc− ad

(c+ d)
√
b+ d

√
a+ c

In either of the cases, it’s always the case that Eyi∼Yi|Xi=xi
(
yi−µy
σy

)
= ρ ·

(
xi−µx
σx

)
, which

completes the proof.

C Omitted Proofs in Section 4

First we prove that if a real-valued function is bounded and its L1 norm is bounded, then the L2

norm of this function is also bounded.

Claim 11. Suppose f ∈ L2(Ω, µ) such that ‖f‖1 ≤ α and |f(x)| ≤ β for every x ∈ Ω. Then, we
have ‖f‖22 ≤ αβ.

Proof. We have

‖f‖22 = E[f(x)2] = E[|f(x)|2] ≤ E[|f(x)| · β] = β · E[|f(x)|] = β · ‖f‖1 ≤ αβ.
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C.1 Proof of claims needed in Theorem 2
First we recall the notation. Let ρ ∈ [0, 1] and ε′ ∈ (0, 1/2). Let (X,Y ) be a joint distribution

over (Ω,Ω) with probability mass function π and maximal correlation ρ. Let T and T denote
respectively the Markov operator and the corresponding adjoint operator associated with the dis-
tribution (X,Y ). Note that fn ∈ L2(Ωn, πx

⊗n), gn ∈ L2(Ωn, πy
⊗n), T⊗ngn ∈ L2(ωn, πx

⊗n), and

T
⊗n
fn ∈ L2(ωn, πy

⊗n). Let fn =
∑

S⊆[n] f
=S
n , and gn =

∑
S⊆[n] g

=S
n be the Efron-stein decompo-

sitions of fn and gn.

C.1.1 Proof of Claim 6

Since BSS(ε′) vδnfn,gn (X,Y )⊗n, we have two inequalities ‖T⊗ngn − ρ′fn‖1 ≤ δn and
∥∥∥T⊗nfn − ρ′gn∥∥∥

1
≤

δn. Note that (TT )
⊗n
fn ∈ L2(Ωn, πx

⊗n). Applying triangle inequality and contraction property of
averaging operator, we get ∥∥∥(TT )

⊗n
fn − ρ′2fn

∥∥∥
1

≤
∥∥∥(TT )

⊗n
fn − ρ′T⊗ngn

∥∥∥
1

+
∥∥ρ′T⊗ngn − ρ′2fn∥∥1

=
∥∥∥T⊗n (T⊗nfn − ρ′gn)∥∥∥

1
+ ρ′

∥∥T⊗ngn − ρ′fn∥∥1

≤
∥∥∥T⊗nfn − ρ′gn∥∥∥

1
+ ρ′

∥∥T⊗ngn − ρ′fn∥∥1

≤ (1 + ρ′)δn

Similarly, we have
∥∥∥(TT )

⊗n
gn − ρ′2 · gn

∥∥∥
1
≤ (1 + ρ′)δn. Next, by a direct application of Claim 11

yields ∥∥∥(TT )
⊗n
fn − ρ′2 · fn

∥∥∥2

2
≤ (1 + ρ′)2δn, and

∥∥∥(TT )
⊗n
gn − ρ′2 · gn

∥∥∥2

2
≤ (1 + ρ′)2δn.

C.1.2 Proof of Claim 7

By Proposition 6, we have
∥∥T⊗nf=S

n

∥∥
2
≤ ρ|S|

∥∥f=S
n

∥∥
2
, which implies that

∥∥T⊗nf=S
n

∥∥
2
≤

ρ|S|
∥∥f=S

n

∥∥
2
≤ ρ′

∥∥f=S
n

∥∥
2

when |S| > k. Therefore, we have∥∥T⊗nf=S
n

∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2
≤ ρ2|S| ·

∥∥f=S
n

∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2
≤ 0

Taking the absolute value of both sides yields∣∣∥∥T⊗nf=S
n

∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2

∣∣ ≥ ∣∣∣ρ2|S| ·
∥∥f=S

n

∥∥
2
− ρ′2 ·

∥∥f=S
n

∥∥
2

∣∣∣.
C.1.3 Proof of Claim 8

By orthogonal property of Efron-Stein decomposition and the commute property (Proposi-
tion 5), we have

∥∥∥(TT )
⊗n
fn − ρ′2 · fn

∥∥∥2

2
=

∥∥∥∥∥∥(TT )
⊗n
(∑

S

f=S
n

)
− ρ′2 ·

∑
S⊆[n]

f=S
n

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑
S⊆[n]

(
(TT )

⊗n
f=S
n − ρ′2 · f=S

n

)∥∥∥∥∥∥
2

2
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=
∑
S⊆[n]

∥∥∥(TT )
⊗n
f=S
n − ρ′2 · f=S

n

∥∥∥2

2

When Ω = {−1, 1}, let φS and ψS be two Fouier basis with respect to πx and πy respectively. We
have ∑

S⊆[n]

∥∥∥(TT )
⊗n
f=S
n − ρ′2 · f=S

n

∥∥∥2

2

=
∑
S⊆[n]

∥∥∥(TT )
⊗n
(
f̂n(S) · φS

)
− ρ′2 · f̂n(S) · φS

∥∥∥2

2
Claim 4

=
∑
S⊆[n]

f̂n(S)2 ·
∥∥∥(TT )

⊗n
φS − ρ′2 · φS

∥∥∥2

2

=
∑
S⊆[n]

f̂n(S)2 ·
∑
R⊆[n]

(
̂

(TT )
⊗n
φS(R)− ρ′2 · φ̂S(R)

)2

Parseval

=
∑
S⊆[n]

f̂n(S)2
(
ρ2|S| − ρ′2

)2
Claim 5

which completes the proof.

C.1.4 Proof of Claim 9
By triangle inequality, we have∥∥T⊗ngn∥∥1

= E
xn∈πx⊗n

|E[gn(Y n)|Xn = xn]| ≤ E
xn∈πx⊗n

E[|gn(Y n)||Xn = xn] = E
xn∈πx⊗n

1 = 1

where (Xn, Y n) is sampled according to π. Since the range of gn is {−1, 1}, it is clearly that

‖gn‖1 = 1. Similarly
∥∥∥T⊗nfn∥∥∥

1
≤ ‖fn‖1 = 1.

D Discussion on The Techniques Used in Related Work

In this section, we shall first review the approaches used in [22, 14, 21] to prove that the non-
interactive simulation (NIS) problem is decidable and then discuss the bottlenecks of using them
to prove the decidability of the secure non-interactive simulation (SNIS) problem.

In [22], for the first time, the authors prove that the gap version of NIS is decidable. They
solve this problem for the case that the target distribution is a 2-by-2 joint distribution. Their
main contribution is reducing the problem to the case that the source distribution is one sample of
correlated Gaussian distribution. Then, combining Witsenhausen [47], and an invariance principle
introduced in [41, 39] (inspired by Borell’s noise stability theorem [5]) provides them with a precise
characterization of joint distributions that can be simulated from a correlated Gaussian distribution.
However, when the target distribution is k-by-k for some k > 2, then their approach is not enough
for two main reasons: First, Borrel’s theorem is not available for k > 2, second, for k > 2 it is not
the case that a distribution (U, V ) can be specified by E[U ],E[V ] and Pr[U = V ].

The authors of [14] manage to address this issue by following a similarly high-level framework of
using regularity lemma and invariance principle introduced in [22] and some more advanced tech-
niques like a new smoothing argument inspired by learning theory and potential function argument
in complexity theory. In [21], the authors use a different approach from [14], and they combine the
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framework of [22] with a new result (NIS from Gaussian sources) to solve the problem for general
k ≥ 2.

Finally, they use Witsenhausen’s theorem to simulate this threshold function applied on a
Gaussian sample using a constant number of source samples.

Next, we discuss the bottlenecks of using these approaches to proving the decidability of SNIS
problem. We do not see a straightforward way of applying these approaches to SNIS problem.
All three papers reduce the reduction functions to low degree functions by a smoothening step.
However, this step does not seem to apply to the SNIS setting. The first reason is that smoothening
might not preserve the security conditions. Moreover, the second reason is that it changes the range
of functions to non-Boolean values, preventing Friedgut’s junta theorem used in our technique.
Consequently, we need to do rounding in the later step. While rounding preserves the correlation
in NIS, it likely does not maintain the security conditions in secure-NIS. Furthermore, simulating
correlated Gaussians from independent samples using the central limit theorem is insecure. It is
unclear whether one can simulate correlated Gaussian samples securely or not.

Finally, we discuss in more detail the bottleneck of applying the approach in [22] to SNIS
problem. The invariance principle guarantees that the correlation of two low-influential functions
is almost the same as the correlation of appropriate threshold functions applied on one sample of
a ρ-correlated Gaussian distribution. Lemma 1 is one of the key steps in [22].

Definition 9 (Gaussian Stability). [22] Let Φ be the cumulative distribution function (CDF) of a
standard N (0, 1) gaussian distribution and (G1, G2) be a ρ-correlated gaussian distribution. Given
ρ ∈ [−1, 1] and µ, ν ∈ [−1, 1], define

Pµ(G1) := sign

(
Φ−1

(
1 + µ

2

)
−G1

)
Qν(G2) := sign

(
Φ−1

(
1 + ν

2

)
−G2

)
Γρ(µ, ν) := E[Pµ(G1) ·Qν(G2)]

Γρ(µ, ν) := − E[Pµ(G1) ·Q−ν(G2)].

Note that E[Pµ(G1)] = µ and E[Qν(G2)] = ν = E[−Q−ν(G2)].

Lemma 1 (Simulating Threshold on gaussians). [47] For any joint distribution (X,Y ) with max-
imal correlation ρ, any arbitrary ζ > 0, there exists n ∈ N (n = O( 1+ρ

α·(1−ρ)3·ζ2 )) such that for all

µ, ν ∈ [−1, 1], there exist functions Pµ : Xn → [−1, 1] and Qν : Y n → [−1, 1] such that |E[Pµ]− µ| ≤
ζ/2, |E[Qν ]− ν| ≤ ζ/2 and ∣∣E[Pµ(Xn)Qν(Y n)]− Γρ(µ, ν)

∣∣ ≤ ζ
Now, we claim that above lemma does not necessarily provide us with a secure simulation. The

reason is that for µ = ν = 1
2 , the joint distribution (Pµ(G1), Qν(G2)) is BSS when (G1, G2) is a

ρ-correlated Gaussian distribution. Suppose that the parameter of this BSS is ε′. Now, if we choose
(X,Y ) to be a redundancy-free 2-by-2 joint distribution with a maximal correlation τ such that
there is no integer k satisfying τ2k = (1−2ε′)2, according to Corollary 1 there will be a lower bound
on minimum insecurity. This implies that the constructions in Lemma 1 might be insecure.
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E Secure Non-Interactive Simulation: Definition

We recall the notion of secure non-interactive simulation of joint distributions using a simulation-
based security definition as defined in [28].

If there exists reductions functions fn, gn such that the insecurity is at most δ(n) as defined
above then we say that (U, V ) reduces to (X,Y )⊗n via reduction functions fn, gn with insecurity at

most δ(n), represented by (U, V ) vδ(n)
fn,gn

(X,Y )⊗n. Suppose (X,Y ) is a joint distribution over the
sample space X × Y, and (U, V ) be a joint distribution over the sample space U × V. For n ∈ N,
suppose fn : X n → U and gn : Yn → V be two reduction functions.

In the real world, we have the following experiment.

1. A trusted third party samples (xn, yn)
$←− (X,Y )⊗n, and delivers xn ∈ X n to Alice and yn ∈ Yn

to Bob.
2. Alice outputs u′ = fn(xn), and Bob outputs v′ = gn(yn).

The following conditions are required for the security.

1. The case of no corruption. Suppose the environment does not corrupt any party. So,
it receives (U, V ) as output from the two parties in the ideal world. In the real world, the
simulator receives (fn(Xn), gn(Y n)) as output. If this reduction has at most δ(n) insecurity,
then the following must hold.

SD ( (U, V ) , (fn(Xn), gn(Y n)) ) ≤ δ(n).

2. The case of Corrupt Alice. Suppose the environment statically corrupt Alice. In the real
world, the simulator receives (Xn, fn(Xn), gn(Y n)). In the ideal world, we have a simulator
SimA : U → X n that receives u from the ideal functionality, and outputs (SimA(u), u) to the
environment. The environment’s view is the random variable (SimA(U), U, V ). If this reduction
has at most δ(n) insecurity, then the following must hold.

SD ( (SimA(U), U, V ) , (Xn, fn(Xn), gn(Y n)) ) ≤ δ(n).

3. The case of Corrupt Bob. Analogously, there exists a simulator for Bob SimB : V → Yn and
the following must hold if this reduction has at most δ(n) insecurity.

SD ( (U, V, SimB(V )) , (fn(Xn), gn(Y n), Y n) ) ≤ δ(n).

Definition 10 (Secure Non-interactive Simulation). Let (X,Y ) be a joint distribution over the
sample space (X ,Y), and (U, V ) be a joint distribution over the sample space (U ,V). We say that
the distribution (U, V ) can be securely and non-interactively simulated using distribution (X,Y ),
denoted as (U, V ) v (X,Y ), if there exists n0 ∈ N such that for every n ≥ n0 there exist reduction
functions fn : X n → U , gn : Yn → V, and insecurity bound δ(n) satisfying

(U, V ) vδ(n)
fn,gn

(X,Y )⊗n, and lim
n→∞

δ(n) = 0.

F Derandomization

In this section, we shall show that without loss of generality, we can assume that the reduction
functions are deterministic.

34



Theorem 8. Let (U, V ) and (X,Y ) be two joint distributions. Let n ∈ N and ν(n) ≥ 0. Suppose
there exist randomized reduction functions f : X n × RA → V, and g : Yn × RB → U such that

(U, V ) vν(n)
f,g (X,Y )⊗n. Then, there exist η ∈ N, and deterministic reduction functions f ′ : X η → U ,

and g′ : Yη → V such that (U, V ) v4ν(n)
f ′,g′ (X,Y )⊗η. In particular, when RA = RB = {0, 1}k

(uniform bits), where k ≤ nc for some constant c, and ν(n) ≥ 2−n
c
, then η = O(nc).

Theorem 8 shows that for any two randomized reduction functions whose insecurity bound is
ν(n), there always exist deterministic reductions using more samples while the insecurity bound
is guaranteed to be 4ν(n). This result implies that in order to solve gap decidability of SNIS, it
suffices to assume that the reductions are deterministic.

F.1 Preliminaries
First, we mention some tools that we will use in our proofs.

The min-entropy of a random variable X is defined as follows:

H∞(X) = min
x

(
log

1

Pr[X = x]

)
.

Let (X,Y ) be a joint distribution. The average min-entropy of the conditional distribution X|Y is
defined as

H∞(X|Y ) = log

(
1

Ey[maxx(Pr[X = x|Y = y])]

)
,

which is equal to − log
(
Ey[2−H∞(X|Y=y)]

)
.

The convolution of two functions f, g : {0, 1}n → R is a function (f ∗ g) : {0, 1}n → R defined as

(f ∗ g)(xn) =
1

2n

∑
yn∈{0,1}n

f(yn)g(xn ⊕ yn).

Suppose X and Y are two functions which represents the probability distribution over {0, 1}n, then
2n(X ∗ Y ) is the function that corresponds to the probability distribution of X ⊕ Y . It can be

verified that (f ∗ g)
∧

(S) = f̂(S) · ĝ(S). This implies that (X ⊕ Y )
∧

(S) = 2n · X̂(S) · Ŷ (S). Therefore,
if X1, X2, . . . , Xη are η random variables defined over {0, 1}n, then

⊕η
i=1Xi

∧

(S) = 2n(η−1)
η∏
i=1

X̂i(S). (1)

Moreover, it follows from Cauchy-Schwarz inequality and Parseval’s identity that

2SD (X,Y ) ≤ 2n
√∑
S 6=∅

(X̂(S)− Ŷ (S))2.

In particular, we have:

2SD (X,Un) ≤ 2n
√∑
S 6=∅

X̂(S)2. (2)
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F.2 Proof of Theorem 8
We will use the following lemma to to prove Theorem 8.

Lemma 2. Let ε > 0 and let Uk denote the uniform distribution over {0, 1}k. Suppose (X,Y ) is a
joint distribution over X ×Y such that H∞(X|Y ) 6= 0. Then, there exist η ∈ N, and a deterministic
extractor Ext : X η → {0, 1}k such that

SD
(

(Ext(Xη), Y η), (Uk, Y η)
)
≤ ε,

where (Xη, Y η) denotes η i.i.d samples of the joint distribution (X,Y ).

Proof. First, we prove the case k = 1. Since H∞(X|Y ) is non-zero, there always exists a hash
function h : X → {0, 1} such that H∞(h(X)|Y ) is non-zero. Define Ext(Xη) =

⊕η
i=1 h(Xi). By

convolution property of Fourier coefficients,

(
⊕
h(Xi)|Y η = yη)
∧

(S) = 2η−1
∏

(h(Xi)|Yi = yi)
∧

(S)

We have

SD
(
(Ext(Xη), Y η), (U1, Y η)

)
= E

yη
SD
(
(Ext(Xη)|Y η = yη), (U1|Y η = yη)

)
(i)

≤ E
yη

√∑
S 6=∅

(
⊕
h(Xi)|Y η = yη)
∧

(S)2

(ii)

= 2η−1 E
yη

√∑
S 6=∅

∏
(h(Xi)|Yi = yi)
∧

(S)2

(iii)

≤ 2η−1

√
E
yη

∑
S 6=∅

∏
(h(Xi)|Yi = yi)
∧

(S)2

(iv)

= 2η−1

√∑
S 6=∅

∏
E
yi

(h(Xi)|Yi = yi)
∧

(S)2

(v)

= 2η−1

√√√√∑
S 6=∅

(
E
y1

(h(X1)|Y1 = y1)
∧

(S)2

)η
(vi)

= 2η−1

√(
E
y1

(h(X1)|Y1 = y1)
∧

({1})2

)η
In above, (i) is achieved from (2) for n = 1, (ii) is achieved from (1) for n = 1, (iii) is achieved
from Jensen’s inequality, (iv) holds because of the linearity property of expectation and the fact
that the samples are independent, (v) holds because the samples have identical distribution, (vi)
holds because n = 1 and the only non empty set S is {1}.

Therefore, if Ey1 (h(X1)|Y1 = y1)
∧

({1})2 < 1
4 (strictly less than 1

4), then we can choose η suffi-
ciently large to make

SD
(
(Ext(Xη), Y η), (U1, Y η)

)
arbitrarily small.

We claim that if h(X1) is not a deterministic function of Y1, then

E
y1

(h(X1)|Y1 = y1)
∧

({1})2 <
1

4
.
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Suppose that Pr[h(X1) = 1|Y1 = y1] = py1 and Pr[h(X1) = 0|Y1 = y1] = 1−py1 , then (h(X1)|Y1 = y1)
∧

({1})2 =

(1
2−py1)2 ≤ 1

4 and equality holds if and only if py1 = 0 or 1. Therefore, Ey1 (h(X1)|Y1 = y1)
∧

({1})2 ≤
1
4 and equality holds if and only if for each y1, we have (h(X1)|Y1 = y1)

∧

({1})2 = 1
4 if and only if for

each y1, it happens that py1 = 0 or 1 if and only if h(X1) is a deterministic function of Y1 if and
only if H∞(h(X)|Y ) = 0.

For extracting k random bits, the error will be k times the error of extracting 1 random bit
(according to the inequality SD ((A,B), (C,D)) ≤ SD (A,C) + SD (B,D) when A and B are inde-
pendent and C and D are independent because we use different disjoint blocks of bits to extract
the random bits.)

Remark. Suppose Ey1 (h(X1)|Y1 = y1)
∧

({1})2 = 1
4 − ε for some constant ε > 0. Then

SD
(
(Ext(Xη), Y η), (U1, Y η)

)
≤ (1− 4ε)η/2

2
.

If we set (1−4ε)η/2

2 = ν(n)/k, then we need η = O(log( k
ν(n))) samples to produce k random bits with

error at most ν(n).
Now, we are ready to prove Theorem 8.

of Theorem 8. In the following, for any distributions A,B, we use the notation A
ν
≈ B whenever

the statistical distance between A and B is at most ν. Moreover, without loss of generality we
assume that private randomness of each party is a set of uniform independent bits. We also use Uk
to denote uniform distribution over set {0, 1}k.

Since (U, V ) vν(n)
f,g (X,Y )⊗n, there exist mA,mB ∈ N and simulators SimA : U → X n×{0, 1}mA

and SimB : V → Yn × {0, 1}mB such that

( U, V )
ν(n)
≈ ( f(Xn,UmA), g(Y n,UmB ) )

( SimA(U), U, V )
ν(n)
≈ ( (Xn,UmA), f(Xn,UmA), g(Y n,UmB ) )

( U, V, SimB(V ) )
ν(n)
≈ ( f(Xn,UmA), g(Y n,UmB ), (Y n,UmB ) )

Suppose that there is an extractor Ext such that

(Ext(XnA), Y nA)
ν(n)
≈ (UmA , Y nA)

and

(XnB ,Ext(Y nB ))
ν(n)
≈ (XnB ,UmB )

for nA, nB ∈ N. Let

m = n+ nA + nB

I1 = {1, . . . , n}
I2 = {n+ 1, . . . , n+ nA}
I3 = {n+ nA + 1, . . . ,m}
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J1 = {n+ 1, . . . , n+mA}
J2 = {n+ 1, . . . , n+mB}

and define deterministic functions f ′ : Xm → U and g′ : Ym → V such that for any x ∈ Xm,
f ′(x) = f(xI1 ,Ext(xI2)) (where xI1 and xI2 denote the respectively x1, . . . ,xn and xn+1, . . . ,xn+nA)
and for any y ∈ Ym, g′(y) = f(yI1 ,Ext(yI3)).

Define Sim∗A : U → Xm and Sim∗B : V → Ym such that for each u ∈ U ,

Sim∗A(u) = (SimA(u)I1 ,x
′,x′′)

where SimA(u)I1 denotes the first n bits of the output string of simulator SimA on input u, and
x′ ∼ Ext−1(SimA(u)J1) and x′′ ∼ XnB and for each v ∈ V,

Sim∗B(v) = (SimB(v)I1 ,y
′′,y′ )

where y′′ ∼ Y nA and y′ ∼ Ext−1( SimB(v)J2). We shall prove the following:

( U, V )
4ν(n)
≈

(
f ′(Xm), g′(Y m)

)
(3)

( Sim∗A(U), U, V )
4ν(n)
≈

(
Xm, f ′(Xm), g′(Y m)

)
(4)

( U, V, Sim∗B(V ) )
4ν(n)
≈

(
f ′(Xm), g′(Y m), Y m

)
(5)

We have:

( f ′(Xm), g′(Y m) ) = ( f(Xm
I1 ,Ext(X

m
I2 )), g(Y m

I1 ,Ext(Y
m
I3 )) )

Note that since I2 ∩ I3 = ∅, Ext(Xm
I2

) is independent of Ext(Y m
I3

). According to the data processing
inequality (SD (f(A), f(B)) ≤ SD (A,B)), and the inequality SD ((A,B), (C,D)) ≤ SD (A,C) +
SD (B,D) (when A and B are independent and C and D are independent), we have:

SD
(
f(Xm

I1 ,Ext(X
m
I2 )), g(Y m

I1 ,Ext(Y
m
I3 )) , f(Xm

I1 ,U
mA
A ), g(Y m

I1 ,U
mB
B )

)
≤ SD

(
(Xm

I1 ,Ext(X
m
I2 )), (Y m

I1 ,Ext(Y
m
I3 )) , (Xm

I1 ,U
mA
A ), (Y m

I1 ,U
mB
B )

)
≤ E

xI1 ,yI1

SD
( (

Ext(Xm
I2 ) | xI1 , Ext(Y m

I3 ) | yI1
)
, (UmAA | xI1 ,U

mB
B | yI1)

)
≤ SD

(
Ext(Xm

I2 ),UmAA )
)

+ SD
(
Ext(Y m

I3 ),UmBB
)

≤ 2ν

This implies that

( f ′(Xm), g′(Y m) ) = ( f(Xm
I1 ,Ext(X

m
I2 )), g(Y m

I1 ,Ext(Y
m
I3 )) )

2ν
≈ ( f(Xm

I1 ,U
mA
A ), g(Y m

I1 ,U
mB
B ) )

ν
≈ (U, V )

which implies (3) by using triangle inequality. Moreover, let f(Xm
I1
,UmAA ) = F , and g(Y m

I1
,UmBB ) =

G

SD
(

( Sim∗A(U), U, V ), ( Xm, f ′(Xm), g′(Y m) )
)
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Claim 11

Claim 10

Claim 4

Proposition 7

Claim 3Claim 2

Proposition 6

Claim 6

Claim 5

Claim 8 Claim 9

Theorem 1

Informal Theorem 2

Claim 7

Theorem 3

Theorem 2 Informal Theorem 5

Corollary 2

Proposition 5

Imported Theorem 2

Informal Theorem 4 & Corollary 1

Claim 1Theorem 5

Imported Theorem 3

Theorem 7

Theorem 4

Informal Theorem 3

Theorem 6

Informal Theorem 1

Figure 3: The diagram of claims, propositions, theorems and informal theorems. An arrow from one
result to another result means that the first result is used to prove the second result. Highlighted
nodes represent our final results.

= SD
( ( (

SimA(U)I1 ,Ext
−1(SimA(U)J1), XnB

)
, U, V

)
,
(
Xm, f ′(Xm), g′(Y m)

) )
≤ SD

( ( (
SimA(U)I1 ,Ext

−1(SimA(U)J1), XnB
)
, U, V

)
, ( Xm, F,G) )

)
+ SD

(
( Xm, F,G) ) ,

(
Xm, f ′(Xm), g′(Y m)

) )
≤ SD

( (
SimA(U)I1 ,Ext

−1(SimA(U)J1), XnB
)
, U, V

)(
(Xm

I1 , X
m
I2 , X

m
I3 ), f(Xm

I1 ,U
mA
A ), g(Y m

I1 ,U
mB
B )

)
+ 2ν

≤ SD
(

( SimA(U)I1 , U, V ),
(
Xm
I1 , f(Xm

I1 ,U
mA
A ), g(Y m

I1 ,U
mB
B )

) )
+ SD

( (
Ext−1(SimA(U)J1), XnB

)
, (Xm

I2 , X
m
I3 )
)

+ 2ν

≤ ν + ν + 2ν = 4ν,

which implies the security definition for corrupt Alice (4). The proof of security for corrupt Bob
(5)) is similar and we skip it. This completes the proof.
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