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Abstract

In this paper we prove quantum indifferentiability of the sponge construction instanti-
ated with random (invertible) permutations. With this result we bring the post-quantum
security of the standardized SHA-3 hash function to the level matching its security against
classical adversaries. To achieve our result, we generalize the compressed-oracle technique
of Zhandry (Crypto’19) by defining and proving correctness of a compressed permutation
oracle. We believe our technique will find applications in many more cryptographic con-
structions.
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1 Introduction

With efforts to build a quantum computer on the rise, cryptography resilient to quantum at-
tackers (i.e. attackers equipped with a large-scale quantum computer) becomes a necessity.
Post-quantum cryptography [BBD09], in other words quantum-safe (classical) cryptography, is
considered to be important enough that the NIST organized the process to standardize post-
quantum cryptographic schemes [NIS17].

A prominent primitive, used in many of the submissions to the NIST standardization pro-
cess, is the SHA-3 hash function [NIS14]. The cryptographic construction used in the design
of this hash function, is the sponge construction [Ber+07]. One of the reasons the sponge con-
struction was chosen as the backbone of this standardized hash function, was the strong se-
curity guarantees offered by the proof of its indifferentiability from a random oracle [Ber+08].
Indifferentiability [MRH04] is a notion similar to the Ransom Oracle Model (ROM) [BR93]—
where we claim a hash function is a random oracle—but much better tailored to cryptographic
constructions. To prove indifferentiability, we assume the internal function called by the con-
struction to be ideal (a uniformly random function or permutation) but also give the adversary
access to it.

For five years now, the research community has worked to rigorously prove post-quantum
security of the sponge construction [Cza+18; CHS19; Cza+19; Unr21]. One of the goals of
this line of research was to match the security level guaranteed by proofs valid for classical
adversaries. In [Cza+19] the authors managed to prove quantum indifferentiability, but with
one shortcoming, they only treated uniformly random internal functions. Now is it important
to note, that SHA-3 is based on an invertible permutation, this design choice is dictated, among
other reasons, by the cryptographic practice showing that it is much easier to design secure
permutations than one-way functions. In [Unr21] Unruh claims to prove quantum collision-
resistance of SHA-3. In ourwork, we finallymanage to close the gap between classical and post-
quantum security of SHA-3: We prove quantum indifferentiability of the sponge construction
instantiated with random permutations.

The natural proof technique suitable for indifferentiability proofs is that of lazy-sampling.
In a recent work, Zhandry developed the compressed-oracle technique [Zha19], which is the
quantum version of lazy-sampling. Until now, however, the quantum techniques did not cover
lazy-sampling of random (invertible) permutations. Changing that, is the main technical con-
tribution of this paper. Basing on the quantum game-playing framework of [Cza+19], we de-
fine a quantum compressed permutation oracle. Our result introduces errors, but they are
smaller than the leading terms in the distinguishing advantage of the indifferentiability adver-
sary. Arguably, the total bound on the distinguishing advantage that we prove is tight. Al-
though we do not show an algorithmwith a matching query complexity, our bound on the dis-
tinguishing advantage1 of O(

√
q3/2c) gives rise to security of up to Ω

(
2c/3

)
queries. A generic

collision finding algorithm for the sponge construction, e.g. from [Cza+18], is expected to run
in O

(
2c/3

)
queries to the internal function. In [Unr21], Unruh also proposes a technique for

dealingwith invertible randompermutations in a quantumworld, his approach, however, is not
suitable for indifferentiability proofs, as the permutation oracle is not efficiently simulatable.

In section 2 we give more details on the methods we use to achieve our results. The com-
pressed permutation oracle is defined and proven indistinguishable from a random permu-
tation in section 3. The main result of this paper, quantum indifferentiability of the sponge
construction instantiated with random permutations, is located in section 4. A reader mostly
interested in the application of our new technique can go directly to section 4, as we provide a
high level introduction to the main ingredients of the proof.

1By distinguishing advantage, wemean the absolute value of the difference of the probabilities that the adversary
outputs 1 when interacting with the construction or a random oracle.
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2 Preliminaries

In this section we start by going over notation used in this paper. Later we present some key
concepts that we use to achieve our results. A summary of symbols used throughout the paper
can be found in the Symbol Index.

In this paper we assume the reader has basic knowledge of quantum computing. If any
concept is not familiar though, we refer to [NC10; Wol11]. A quantum state is a unit vector in a
Hilbert space |ψ〉 ∈ Cd. We often refer to vectors of norm smaller than 1 as states aswell. Inwhat
follows we denote the Euclidean norm of a vector by ‖|ψ〉‖. The trace norm of an operator A on
a Hilbert space is defined as the trace of the absolute value of the operator: ‖A‖1 := Tr

√
A†A.

Subspaces of tensor products of several Hilbert spaces are referred to by superscripts, so if
HD =

⊗q
i=1HXi ⊗ HYi , then DX refers to

⊗q
i=1HXi , and same for Y . We write AD to denote

that A acts on register D.
We write [N ] := {0, 1, . . . , N − 1} for the set of size N . Whenever we consider sets of bits

{0, 1}n, we denote the bitwise XOR by ⊕.
To denote vectors we write ~x ∈ [N ]s. We also use set operations2 on these vectors, by

identifying them with sets with elements from ~x. We consider ~x to be always sorted in a rais-
ing fashion and contain no repetitions, so set operations are unambiguous. By ~y~x we denote
(yx1 , . . . , yxs), where s = |~x|. Vector ~y~x is sorted according to ~x.

The set of outputs of injective partial functions is denoted by

I(s | ~y) := {~y′ ∈ [N ]s : ∀i, j 6= i, y′i 6= y′j ∧ y′i 6∈ ~y}, and its size by (1)
(N)s := |I(s)| = N(N − 1) · · · (N − s+ 1), (2)

where in the definition of (N)s we use the notation I(s) := I(s | ∅).
By x ← A we denote sampling x from a distribution or getting the output of a random-

ized algorithm. By square brackets we denote (classical or quantum) oracle access to some
algorithm, we also use AH if the oracle is denoted by a more confined symbol.

An object that we make heavy use of in this paper is the random oracle:

R : {0, 1}∗ × N→ {0, 1}∗. (3)

A random oracle grants access to a function sampled from distributionR on functions {0, 1}∗×
N→ {0, 1}∗, that is defined as follows: To sample a function h← Rwe

• choose g uniformly at random from {g : {0, 1}∗ → {0, 1}∞}, where by {0, 1}∞ we denote
the set of infinitely long bitstrings,

• for each (x, `) ∈ {0, 1}∗×N set h(x, `) := bg(x)c`, that is output the first ` bits of the output
of g.

2.1 Indifferentiability

Whenever, the hash function is constructed out of a public internal function (like in the case of,
e.g., SHA-2 [NIS15] and SHA-3 [NIS14]), a security notion that includes the adversary’s access
to the internal (and publicly specified) function and aims at showing that the hash function
behaves as a uniformly random function, is indifferentiability [MRH04].

In the setting of indifferentiability the adversary is given access to two interfaces, the public
interface, denoted by “pub” and the private interface, denoted by “priv”. Indifferentiability of
a system C is phrased in terms of a distinguishing game, where the adversary distinguishes
between the real and the ideal world. In the real world, the private interface is the construc-
tion calling the internal function, denoted as Cpriv[Cpub], and the public interface is the internal

2Such as the union ∪, intersection ∩, or subtraction \.
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function Cpub. In the ideal world, where the construction is often replaced by a random oracle,
the private interface is just Rpriv

k , but the public interface is provided by a simulator that replaces
the internal function, she is also given access to the ideal system and the interface is S[Rpub

k ]. In
case of R being a random oracle both the public and the private interfaces of R are equal and
just return outputs of a random function.

Definition 1 (Indifferentiability [MRH04]). A cryptographic system C is (q, ε)-indifferentiable
from R, if there is an efficient (classical or quantum) simulator S and a negligible function ε such that
for any efficient (classical or quantum) distinguisher D with binary output (0 or 1) the advantage∣∣∣P [1← D[Cpriv

k [Cpub
k ],Cpub

k ]
]
− P

[
1← D[Rpriv

k , S[Rpub
k ]]

]∣∣∣ ≤ ε(k) , (4)

where k is the security parameter. The distinguisher makes at most q (classical or quantum) queries.

2.2 Compressed-Oracles Technique

The compressed oracle technique was developed by Zhandry [Zha19]. The key idea of this
technique is to purify a quantum-accessible random oracle so all the randomness is kept in a
quantum register. The standard oracle for a uniformly random function is defined as:

StO|x, y〉XY
∑
f∈F

1√
|F|
|f〉F =

∑
f∈F

1√
|F|
|x, y + f(x)〉XY |f〉F , (5)

where x, y ∈ X , for X = [N ], addition is done modulo N , and f is the full truth table of the
function from F := {f : X → X}3. The update procedure StO just adds the correct row of f
to adversary’s Y register. The crucial fact is that an adversary A interacting with StO acting on
the oracle register from Eq. (5) has zero probability of distinguishing it from f

$← F .
A compressed oracle CStO is an oracle with the oracle register F compressed to register

D that just holds the outputs to queries asked by the adversary A. The update procedure in
this case is more complicated but allows to keep a superposition of small database of the form
D = ((x1, y1), . . . , (xq, yq)), where q is the bound on the maximal number of quantum queries
made by A. In the case A made s < q queries, the last q − s entries hold ⊥ in the X-type part
of the entries. More details on this technique can be found in [Zha19; LZ19; Cza+19; HI19;
Chu+20; Unr21]. Similarly to StO, the distinguishing advantage between CStO and f $← F is
0.

A change of the adversary’s basis, that can be done by applying the quantum Fourier trans-
form QFTN |y〉 := 1√

N

∑
η∈[N ] ω

η·y
N |η〉, where ωN := e

2πi
N is the N -th root of unity, gives rise to

the phase oracle:

PhO|x, η〉XY
∑
f∈F

1√
|F|
|f〉F =

∑
f∈F

1√
|F|

ω
η·f(x)
N |x, η〉XY |f〉F . (6)

Similarly, by changing the adversary’s interface to the Fourier basis, we get the compressed
phase oracle CPhO. For readers less familiar with quantum accessible oracles, we note that a
quantum query does not always increase the number of input-output pairs A has knowledge
of. SayA queries (x, ηx) at some point. IfA later queries the same input with a different η, then
she updates her knowledge of f(x). If η = −ηx then she might even “forget” the query x, or—if
she interacts with a compressed oracle—remove x from the database.

Whenever we talk about CStO and CPhO, we consider them to be oracles for the uniform
distribution. Moreover, when providing the subscript X , by CPhOX we mean that functions

3In general, the standard and compressed oracle can be defined for any set of functions.
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are distributed uniformly from {f : X → X}. More on compressed oracles for different distri-
butions can be found in [Cza+19].

Building upon the compressed oracle technique the authors of [Cza+19] developed a quan-
tum game-playing framework. The key object of this framework, that we make heavy use of, is
the punctured compressed oracle. Puncturing is defined as performing a binary measurement
of the oracle register D of a compressed oracle after every query done by A. As long as the
probability of one of the outputs (say 0) is almost 1, the puncturing does not give the adver-
sary a major distinguishing advantage. The measurement, however, allows us to argue about
the adversary’s behavior conditioned on the database begin of some specific form.

The measurements in punctured oracles are binary projective measurement. We project
to databases that fulfill a given relation. A relation is a subset of all possible databases of size
bounded by q. An important relation, that we use in the reminder of this paper, is the collision
relation:

Rcoll :=
{
D ∈

q⋃
s=1

(X × Y)s : ∃i, j 6= i, xi 6= xj , yi = yj

}
, (7)

where D = ((x1, y1), . . . , (xs, ys)). Measuring a relation on the quantum compressed oracle
includes checking the actual size of the database, so it omits the entries starting with ⊥.

A formal definition of a compressed oracle H punctured on relation R, denoted by H \R, is
stated below. More details on the above concepts can be found in [Cza+19].

Definition 2 (Punctured compressed oracle H \ R, Definition 9 in [Cza+19]). Let H be a com-
pressed oracle and R a relation on its database. The punctured compressed oracle H \ R is equal to H,
except that R is measured after every query. By Find we denote the event that R outputs 1 at least once
among all queries.

2.3 Game-Playing Proofs

Game-playing proofs are a common framework used in cryptography. Originally developed by
Bellare and Rogaway [BR06] the main concept is that if two games—in other words, interactive
protocols—are identical until a “bad” event happens, then they are indistinguishable except for
the probability that this event occurs.

Using recently developed techniques, this reasoning can be applied to quantum interactive
protocols as well. Below, we present the classical and the quantum game-playing framework.
We use the statements from below in our indifferentiability proofs in section 4.

2.3.1 Classical Game-Playing Proofs

Two games are considered to be identical-until-bad if they are syntactically identical except for
code that follows after setting Bad to true. Bad is a special flag, we also write Bad to denote
the event “Bad set to true”. The main ingredient of the classical game-playing framework is the
fundamental game-playing lemma:

Lemma 3 (Fundamental lemma of game-playing, Lemma 2 in [BR06]). Let G and H be identical-
until-bad games and let A be an adversary that outputs a bit b. Then∣∣∣P[1← AH]− P[1← AG]

∣∣∣ ≤ P[Bad = 1 : AG]. (8)

2.3.2 Quantum Game-Playing Proofs

The quantum game-playing framework, developed in [Cza+19], makes use of two powerful
proof techniques. One being the compressed oracle technique by Zhandry [Zha19], the other
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being theOne-wayToHiding (O2H) lemmabyUnruh [Unr14; AHU19]. The former (whichwe
described in section 2.2), together with the idea of puncturing oracles, is used to define quan-
tum games. The latter provides the quantum counterpart of the fundamental game playing
lemma.

Here we present the version of the O2H lemma from [AHU19] that was later repurposed
to treat punctured compressed oracles in [Cza+19].

Lemma 4 (Compressed oracle O2H, Theorem 10 in [Cza+19]). Let R1 and R2 be relations on the
database of a quantum oracle H. Let A be an oracle algorithm making q quantum queries, then∣∣∣P[1← AH\R1 ]− P[1← AH\R1∪R2 ]

∣∣∣ ≤ √(q + 1)P[Find : AH\R1∪R2 ], (9)

where Find is the event that measuring R1 ∪R2 succeeds.

An important comment that relates to the main subject of this work is that the above lemma
works just as well for invertible oracles, such as random permutations. Following the proof, in
[Cza+19], we notice that it relies only on measuring the database and the general interface of
compressed oracles. These aspects do not change in our definition of the compressed permu-
tation oracle. More discussion on which, can be found in section 3.

The notion of identical-until-bad games can also be brought to the world of quantum com-
pressed oracles.

Definition 5 (Almost identical oracles, Definition 11 in [Cza+19]). Let H and G be compressed
oracles andRi, i = 1, 2 relations on their databases. We call the oracles H\R1 and G\R2 almost iden-
tical if they are equal conditioned on the events ¬Find1 and ¬Find2 respectively, i.e. for any quantum
algorithm A

P[1← AH\R1 | ¬Find1] = P[1← AG\R2 | ¬Find2]. (10)

Distinguishing advantage for almost-identical oracles can be bounded using the following
lemma.

Lemma 6 (Distinguishing almost identical punctured oracles, Lemma 12 in [Cza+19]). IfH\R1
and G \R2 are almost identical according to Def.5 then for any b ∈ {0, 1}∣∣∣P[1← AH\R1 ]− P[1← AG\R2 ]

∣∣∣ ≤ 2P[Find1 : AH\R1 ] + 2P[Find2 : AG\R2 ]. (11)

2.4 Sponge Construction

The sponge construction Sponge [Ber+07] is prominently used to design the standardized hash
function SHA-3 [NIS14]. It can be instantiated with a function or a permutation f : {0, 1}r+c →
{0, 1}r+c. The construction is divided in two phases: In the absorbing phase the padded input
message is XOR-ed block by block (blocks are r-bits long) into the first r bits of the internal
state (consisting of r + c bits) of Spongef and after each block f is applied to the whole state.
In the following squeezing phase the first r bits are output and f is applied, this repeats until `
bits of output is generated. This distinction into the first r bits and the last c bits calls for special
notation. For a state s ∈ {0, 1}r+c, the first r bits are called the outer part and are denoted by s̄,
the last c bits are called the inner part and are denoted by ŝ. By pad : {0, 1}∗ → ({0, 1}r)∗ (where
by ({0, 1}r)∗wedenote the strings consisting of an arbitrary number of r-bit blocks)wedenote a
padding function. The requirements on pad in the sponge construction are that it is an efficiently
computable injection such that |pad(m)| ≥ r and that the last bit of pad(m) is never 0 (this
ensures injectivity for inputs of different lengths). The rate of the sponge is r and the capacity is
c, these key parameters, together with the internal function and the padding function give rise
to the hash function Spongef [pad, r, c] : {0, 1}∗ × N→ {0, 1}∗, where {0, 1}∗ :=

⋃∞
n=0{0, 1}∗. In
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Algorithm 1: Spongef [pad, r, c]
Input :m ∈ {0, 1}∗, ` ≥ 0
Output: z ∈ {0, 1}`

1 p := pad(m)
2 s := (0, 0) ∈ {0, 1}r × {0, 1}c
3 for i = 1 to |p|r do // Absorbing phase
4 s := (s̄⊕cpbi, ŝ)
5 s := f(s)
6 z := s̄ // Squeezing phase
7 while |z| < ` do
8 s := f(s)
9 z := z‖s̄

10 Output z

what follows, by |p|r we denote the number of r-bit blocks in p and by cpbi we denote the i-th
r-bit block of p. The formal definition of the sponge construction is presented in Algorithm 1.

It was already noticed in [Ber+07] that one can associate a graph G = (V, E) with the in-
ternal function of a sponge. This graph is called the sponge graph and plays an important role
in indifferentiability proofs of the sponge construction [Ber+08; Cza+19]. The set of nodes of
this graph is V := {0, 1}r+c, it corresponds to all possible states of the sponge. A directed edge
connects any two nodes (s, t) whenever f(s) = t, meaning there are 2r+c edges in E . From each
node starts exactly one edge. A supernode groups the nodes with the same inner-part, thus we
have 2c supernodes and each such supernode consists of 2r nodes. Edges between nodes are
also edges between supernodes.

The initial state of any call of Sponge is the (0r, 0c) node. This node is called the root. The
first r-bit block cpb1 of the padded message p = pad(m) is then added to the outer-part of the
state and fed to the internal function f(cpb1‖0c) = s2. This evaluation of f defines the edge
(cpb1‖0c, s2) ∈ E . In the absorbing phase this operation is repeated until we run out of blocks
of p. In the squeezing phase we no longer modify the state, in other words just add 0r to the
outer part. Note that knowing just p andGwe can get to the last node traversed by Spongef (m).
This leads to the definition of a sponge path.

Definition 7 (Sponge path, Definition 3 in [Ber+08]). First, the empty string is a sponge path to
the node 0r‖0c. Then, if p is a sponge path to node s = s̄‖ŝ and there is an edge (s̄⊕a‖ŝ, t) in the sponge
graph G, p′ = p‖a is a sponge path to node t.

Given the above definition, let us say that p forms a sponge path to s, then we define a
function

SpPath(s,G) := p. (12)

Output of the above function is the input to the construction Spongef (., ` = r) that yields the
output s̄.

In indifferentiability proofs, the simulator has access to the simulator graph. The graph kept
by the simulator differs from the sponge graph discussed above by the number of edges in it.
As the simulator lazy samples the internal function f the set of edges E grows by at most one
edge per a single adversary’s query. Other than that, everything that has been said above holds.
We refer to the simulator graphG as just the (sponge) graph whenever it is clear from context.

A supernode is called rooted if there is a path (a regular path that is just a set of edges
connected by the end-start nodes) leading to it that starts in the root (the 0c-supernode). The
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setR is the set of all rooted supernodes inG. By U we denote the set of supernodes with a node
with an outgoing edge.

A simulator graph is called saturated ifR∪U = {0, 1}c. It means that for every inner state in
{0, 1}c there is an edge in G that leads to it from 0c (the root) or leads from it to another node.
Saturation will be important in the proof of indifferentiability as the simulator wants to pick
outputs of f without colliding inner parts (so not in R) and making the path leading from 0c
to the output longer by just one edge (so not in U).

3 Compressed Oracle for Random Permutations

In this section we define the compressed oracle for invertible random permutation. Our ap-
proach is rather simple, we use a compressed oracle for the uniform distribution and puncture
it on collisions. The collision-free databases can be easily inverted and the same update proce-
dure as for the forward direction provides the backward-direction oracle.

The hard part in this section is proving that our compressed permutation oracle is in fact
indistinguishable from a full permutation oracle. The full oracle keeps a superposition of all
bijective functions and responds to both forward and backward queries.

Our approach to proving indistinguishability relies on a relatively simple auxiliary good
state. The good state is generated by the adversary interacting with the compressed oracle for
the uniform distribution, after the interaction we project the database to contain only collision-
free databases. Such state is easy to handle and we can prove its closeness of the state coming
from the full permutation oracle. We then reuse the proof from [Cza+19] to show closeness of
the good state and the compressed oracle state.

In the end of this section we also provide bounds on the probability of Find for punctured
compressed permutation oracles. These results are important for our indifferentiability proof.

3.1 Definition of the Compressed Permutation Oracle

The core of the compressed permutation oracle is a compressed oracle for the uniform distri-
bution punctured on the collision relation CPhOX \Rcoll. To allow for inverse access we define
a unitary that flips the database, so the outputs become inputs and vice versa. Then queries are
handled with the same CPhOX \Rcoll procedure.

Inmore detail, we provide access to the inverse of the permutation by flipping the database:
treat the content of DY as inputs and DX as outputs and sort by DY , we call the appropriate
unitary Flip. Note that FlipD works as anticipated only if both in DY and DX there are no
collisions; The definition of Flip can be easily extended to a full unitary by, e.g., keeping the
order unchanged within a tuple with colliding outputs. We thereby obtain a (superposition)
database where the entries (yi, xi) are sorted in a rising order according to the first value. A
more detailed description of Flip is:

1. Controlled on DY copy DX to a fresh D′Y and arrange in an increasing order according
to values of yi in DY .

2. Controlled on DX and D′Y copy DY to a fresh D′X in the new order.

3. Controlled onD′ erase the oldD: Take the smallest xi inD′Y and subtract it from the first
register of DX , also subtract the corresponding yi, and so on.

A formal definition of the compressed permutation oracle CPerOX is:
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Definition 8. The compressed permutation oracle for permutations f : X → X is defined as the follow-
ing procedure:

CPerOX := CPhOX \Rcoll, (13)
CPerO−1

X := FlipD ◦ (CPhOX \Rcoll) ◦ FlipD, (14)

where Flip is defined above and CPhOX is the compressed phase oracle for the uniform distribution over
{f : X → X}.

3.2 Indistinguishability of CPerO and PerO

By PerO we denote the full oracle for a uniform distribution over permutations, technically it
is defined in the same way as PhO from Eq. (6) but we always use it with the oracle register
holding a superposition of permutations:

PerOX |x, η〉XY
∑
f∈P

1√
|P|
|f〉F =

∑
f∈P

1√
|P|

ω
η·f(x)
N |x, η〉XY |f〉F , (15)

whereP := {f : X → X : f is a bijection} . Themain statement of this section is the correctness
of the compressed permutation oracle.

Theorem 9 (Correctness of CPerOX ). No quantum algorithm A making at most q quantum queries
can distinguish CPerOX from the full permutation oracle PerOX except for a small error:∣∣∣P [1← APerOX

]
− P

[
1← ACPerOX

]∣∣∣ ≤ 18q5/2

N − q
, (16)

where N = |X |.

Before getting into the proof of the main statement we suggest the reader to go over the ob-
servation presented in Appendix A. The observation is a theorem stating the distinguishability
advantage of any adversary trying to discern a uniformly random function from a random per-
mutation using a single quantum query. The approach to the proof of Theorem 17 is quite
related to that from of proof of Theorem 9.

In the following three paragraphs we define and provide some useful notation on the two
important classes of quantum states that we will make heavy use of.
The permutation states First we go over the full permutation oracle. The state that results from
A interacting with the full permutation oracle PerO is

|ΨPerO〉AF :=
∑
~x,~η,w

α~x,~η,w|ψ(~x, ~η, w)〉A

∑
~y~x∈I(s)

1√
(N)s

ω~η·~y~xN︸ ︷︷ ︸
(∗): effective queries

∑
~yX\~x∈I(N−s|~y~x)

|y0, y1, . . . , yN−1〉F , (17)

where registerAholds all of the adversary’s state, this includes herwork register, query register,
and any other auxiliary registers she decides to use. We denote it by ψ(~x, ~η, w), where w can
be any value of finite size. In the above state ~x = (x1, . . . , xs) is the set of effective queries. As
querying a quantumoracle can result in “un-querying” a value, by ~xwedenote only the queried
values that are entangled with the oracle register after all q queries of A. For these queries we
also have ηxi 6= 0 for all xi ∈ ~x. The size of ~x is s and s ≤ q.

The permutation state is the partial trace of the above state

ρPerO := TrF |ΨPerO〉AF 〈ΨPerO| =
∑

~x,~x′,~x′′

ρPerO(~x ∪ ~x′, ~x ∪ ~x′′), (18)
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where in the above sums we have ~x′ ∩ ~x = ∅, ~x′′ ∩ ~x = ∅, and ~x′′ ∩ ~x′ = ∅. Moreover ~x ∪ ~x′ and
~x ∪ ~x′′ range over X q. The state is defined as

ρPerO(~x ∪ ~x′, ~x ∪ ~x′′) := TrF |ΨPerO(~x ∪ ~x′)〉AF 〈ΨPerO(~x ∪ ~x′′)|, (19)

where |ΨPerO(~x ∪ ~x′)〉AF is the branch of the superposition in |ΨPerO〉 corresponding to effective
queries in ~x ∪ ~x′.

Below we define well-formed matrices. The intuition behind well-formed matrices is that
they are parts of quantum states resulting from the interaction of an adversary with the full
permutation oracle. They are natural parts of density matrices corresponding to A interacting
with PerO.

Definition 10. A vector is well-formed if it is of the form from Eq. (17). Coefficients α~x,~η,w can be
such that the overall state is sub-normalized.

A matrix iswell-formed if it is of the form from Eq. (19) with the vectors being well formed.

The good states In what follows we write ~x to denote the effective queries. The state |ΨGood〉AD
corresponds to the adversary’s state after q queries. The size of the database is s = |~x|. After
q queries s can range from 0 to q and the joint state of A and the oracle can be a superposition
over different database sizes. We denote the outputs given to A by ~y := (y1, . . . , ys). We define
the good state as:

|ΨGood〉AD :=
∑
~x,~η,w

α~x,~η,w|ψ(~x, ~η, w)〉A
∑

~y∈I(s)

1√
(N)s

ω~η·~yN
∑

ys+1,...,yq∈[N ]

1√
N q−s

|(x1, y1), . . . , (xs, ys), (⊥, ys+1), . . . , (⊥, yq)〉D. (20)

The good state is also defined as running the adversary and giving her access to the compressed
standard oracle CPhOX . After q queries we project register D to collision free databases.

Inverse queries In what follows we treat elements of tuples of effective queries ~x as pairs in
{+,−}×X , where the first entry signifies the interface (forward or backward) of the permuta-
tion. We don’t write it explicitly throughout this paper because it is not necessary for the main
argument. We just note that a query value always implicitly contains the interface it was made
to.

Below we write the part corresponding to effective queries of an adversary that queries x1
in the forward direction and y2 in the backward direction:

∑
f∈P

1√
N !
ω
η1f(x1)
N ω

η2f−1(y2)
N |f〉F = 1√

N !
∑

zx1∈[N ]
ω
η1zx1
N |zx1〉

∑
sy2 6=x1

ω
η2sy2
N |sy2〉

∑
z1 6∈{zx1 ,y2}

|z1〉
∑

~z∈I(N−2|{zx1 ,y2,z1})
|z2〉 · · · |zN−2〉, (21)

where the second line is correct only if y2 6= zx1 . The above equation exemplifies that the form
we wrote the states from Eqs. (17, 20) is suitable to capture inverse queries.

Proof of Theorem 9. We first simplify the distinguishing advantage to include interaction with
the punctured oracle conditioned on ¬Find:∣∣∣P [1← APerO

]
− P

[
1← ACPerO

]∣∣∣
≤
∣∣∣P [1← APerO

]
− P

[
1← ACPerO | ¬Find

]
P
[
¬Find

]∣∣∣+ P
[
Find

]
(22)

≤
∣∣∣P [1← APerO

]
− P

[
1← ACPerO | ¬Find

]∣∣∣+ P
[
Find

]
. (23)
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In the first step above we write down the right term as P[1 ← ACPerO] = P[1 ← ACPerO |
¬Find]P

[
¬Find

]
+ P[1 ← ACPerO | Find]P

[
Find

]
. Next we use the triangle inequality and

bound P[1 ← ACPerO | Find] ≤ 1. If an adversary outputs 1 with greater probability when she
interacts with PerO we instead considerA′ that operates exactly likeAwith the only difference
that she flips the output. The second inequality is a result of this reasoning and bounding
P
[
¬Find

]
≤ 1.

By ΦAD
CPerO we denote the joint state ofA and the databaseD conditioned on¬Find (ΦA

CPerO is
the same state after a partial trace overD). To generate the final answer, any quantumalgorithm
has to perform a quantummeasurement, let us denote byQ1 is themeasurement corresponding
to A outputting 1. Then we have∣∣∣P [1← APerO

]
− P

[
1← ACPerO | ¬Find

]∣∣∣
=
∣∣∣Tr (Q1ρ

A
PerO

)
− Tr

(
Q1ΦA

CPerO

)∣∣∣ ≤ 1
2

∥∥∥ρAPerO − ΦA
CPerO

∥∥∥
1
, (24)

where the inequality above comes from the fact that trace distance gives the optimal measure-
ment for distinguishing two states [NC10]. Using the bound from Eq. (24) we bound Eq. (23)
as follows:

Eq. (23) ≤ 1
2

∥∥∥ρAPerO − ΦA
CPerO

∥∥∥
1

+ P
[
Find

]
(25)

≤ 1
2

∥∥∥ρAPerO − ρAGood

∥∥∥
1

+ 1
2

∥∥∥ρADGood − ΦAD
CPerO

∥∥∥
1

+ P
[
Find

]
≤ 18q5/2

N − q
, (26)

where in the second inequality we use the triangle inequality and the fact that trace distance is
decreasing under partial trace. The final bound is a simplification (using the assumption that√
q ≥ N−q

N−5q and q ∈ O( 4√N)) of bounds from Lemma 11 and Lemma 13 that are proven in the
reminder of this section.

In the following lemmawe prove a bound on the trace distance of the full permutation state
and the good state.

Lemma 11. The permutation and good states are close in trace distance:

1
2

∥∥∥ρAPerO − ρAGood

∥∥∥
1
≤ 1

2
5q2

N − 5q . (27)

Proof. To prove the statement we first observe that ρGood is diagonal in the effective queries.
Moreover the diagonal terms of ρPerO are equal to the good state. The only difference in the two
states are the off-diagonal parts of ρPerO. The main idea of our proof is that one can “reduce”
the off-diagonal part to the diagonal part of a state generated by a slightly different adversary.
This reduction introduces the factor resulting in the final bound on the distance of the states.

Diagonal terms Let us consider two worlds an adversary A can be in. In the ideal world she
interacts with the full permutation oracle, resulting in the joint state from Eq. (17). In the real
world she interacts with a compressed oracle for the uniform distribution. In the real world,
afterA’s interaction we project the database register to collision-free databases, resulting in the
good state from Eq. (20).

One can see that the outputs in the part of the oracle register corresponding to the effective
queries are the same in both cases. However, by saving the inputs in register DX , the density
matrix reduced to the adversarial register will differ. The good densitymatrix ρGood will consist
solely of terms diagonal in effective queries ~x. Note however that these—diagonal in queries—
terms in ρPerO are exactly the same. One can see it by taking the state from Eq. (17), fixing the

11



branch of superposition corresponding to a single ~x, and calculating ρPerO(~x, ~x). Tracing over
the oracle register F results in a sum over ~y~x ∈ I(s). For |ΨGood〉 from Eq. (20) with a fixed ~x
the same operations will lead to the same matrix (the coefficients are the same because we take
the same A and the sum over ~y is the same for diagonal terms). The sum over ~x is the whole
diagonal. As the good state has no off-diagonal terms but gives the same diagonal terms we
have ∑

~x

ρPerO(~x, ~x) = ρGood. (28)

Reducing the off-diagonalsBelowwe state and prove the claim that awell-formed off-diagonal
matrix can be reduced to a well-formed matrix that is “closer” to the diagonal.

Claim 12. Any well-formed matrix (i.e. following Definition 10) ρPerO(~x ∪ ~x′ ∪ {x}, ~x ∪ ~x′′), for
any ~x, ~x′, ~x′′, {x} with empty intersections, can be reduced to a sum of well-formed matrices that do not
include the effective query x:

ρPerO(~x ∪ ~x′ ∪ {x}, ~x ∪ ~x′′) = − s

N − s

(
ρ̃UPD

PerO(~x ∪ ~x′, ~x ∪ ~x′′)

+ ρ̃ADD
PerO(~̂x ∪ ~x′, ~̂x ∪ ~x′′) + ρ̃REMPerO(~x ∪ ~x′, ~x ∪ ~̂x

′′
)

+ ρ̃REMPerO(~x ∪ ~x′, ~x ∪ ~x′′) + ρ̃REMPerO(~x ∪ ~x′, ~x ∪ ~x′′)
)
, (29)

where s := |~x ∪ ~x′ ∪ ~x′′|, ~̂x is the set ~x with a single element added, and ~x is ~x with a single element
removed. The same element is added and removed when ~̂x and ~x appears in both inputs to ρ̃PerO. Over-
line and hat notation works the same for other sets. Detailed definition of the new matrices can be found
in the proof.

Proof. Let us inspect ρPerO(~x∪ ~x′ ∪ {x}, ~x∪ ~x′′) in more detail. Below we have t := |~x|, t′ := |~x′|,
and t′′ := |~x′′| (and s = t+ t′ + t′′):

ρPerO(~x ∪ ~x′ ∪ {x}, ~x ∪ ~x′′) =
∑
~η,~η′

∑
w,w′

α~x∪~x′∪{x},~η,wᾱ~x∪~x′′,~η′,w′

|ψ(~x ∪ ~x′ ∪ {x}, ~η, w)〉A〈ψ(~x ∪ ~x′′, ~η′, w′)|
1

(N)t+t′+t′′
∑

~z~x∈I(t)
ω~η~x·~y~xN ω̄

~η′
~x
·~y~x

N

∑
~y~x′∈I(t′|~y~x)

ω
~η~x′ ·~y~x′
N ω̄

~η′
~x′ ·~y~x′
N

∑
~y~x′′∈I(t′′|~y~x∪~y~x′ )

ω
~η~x′′ ·~y~x′′
N ω̄

~η′
~x′′ ·~y~x′′
N

1
N − t− t′ − t′′

∑
yx 6∈~y~x∪~y~x′∪~y~x′′

ωηx·yxN . (30)

To reduce the effective query of xwe evaluate the last sum in the above formula
1

N − t− t′ − t′′
∑

yx 6∈~y~x∪~y~x′∪~y~x′′
ωηx·yxN

= 1
N − t− t′ − t′′

Nδηx,0︸ ︷︷ ︸
=0

−
t∑
i=1

ω
ηx·yxi
N −

t′∑
i′=1

ω
ηx·yx′

i′
N −

t′′∑
i′′=1

ω
ηx·yx′′

i′′
N

 . (31)

We note that the result of evaluating the sum are changes to other effective queries held by the
state.

Given the above observation, we define the matrices from the statement of the lemma. We
can write the initial matrix as

ρPerO(~x ∪ ~x′ ∪ {x}, ~x ∪ ~x′′)

= − s

N − s
Tr
FAW̃
|Ψ̃PerO(x; ~x ∪ ~x′)〉〈Ψ̃PerO(~x ∪ ~x′′)|, (32)
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where |Ψ̃PerO(x; ~x∪~x′)〉 and |Ψ̃PerO(~x∪~x′′)〉 arewell-formedvectors. The former vector is defined
as the branch of the superposition from Eq. (17) corresponding to ~x ∪ ~x′ with the effective
queries (the part marked with (∗)) changed to

∑
x̃∈~x∪~x′∪~x′′

1√
s
|x̃〉

AW̃

∑
~y~x∪~x′∪~x′′∈I(s)

1√
(N)s

ω
~η·~y~x∪~x′∪~x′′
N ωηx·yx̃N . (33)

The latter vector is the original |ΨPerO(~x∪~x′′)〉with the additional register
∑
x̃∈~x∪~x′∪~x′′

1√
s
|x̃〉

AW̃
.

Note that without that the trace would be ill-defined. The numerator s in Eq. (29) comes from
the normalization of the new register.

To prove that |Ψ̃PerO(x; ~x ∪ ~x′)〉 is well-formed we define a new adversary Ã based on the
initial A. Our vector is the result of subtracting the states generated by the two adversaries.
If a vector is a branch of the superposition generated by a valid adversary, then naturally it is
well-formed.

The new adversary Ã first prepares a fresh register 1√
s

∑
x̃∈~x∪~x′∪~x′′ |~̃x〉AW̃ . Next, after every

query performed by A, the new Ã immediately applies PerO† controlled on AX holding x, so
uncomputes the query x. Next (immediately after the uncomputation of x), Ã appliesPerOAW̃Y

controlled on AX being x. To sum up, whenever the old adversary would query x, the new
adversary queries a superposition of x̃ instead. It is crucial to note that if there was no effective
query to x then Ã generates the same state as A.

Say that Ã produces the vector |Ψ̃PerO(~x ∪ ~x′)〉 and A the vector |ΨPerO(~x ∪ ~x′)〉, then

|Ψ̃PerO(x; ~x ∪ ~x′)〉 := |Ψ̃PerO(~x ∪ ~x′)〉 − |ΨPerO(~x ∪ ~x′)〉. (34)

Now that we showed that |Ψ̃PerO(x; ~x ∪ ~x′)〉 is a well-formed state we define the different
matrices in the right hand side of Eq. (29). The new vector is a sum of five well-formed vectors,
they are well-formed because they are just branches of the superposition constituting a well-
formed vector:

|Ψ̃PerO(x; ~x ∪ ~x′)〉 = |Ψ̃PerO
UPD (x; ~x ∪ ~x′)〉+ |Ψ̃PerO

ADD(~̂x ∪ ~x′)〉

+ |Ψ̃PerO
REM(x; ~x ∪ ~x′)〉+ |Ψ̃PerO

REM(x; ~x ∪ ~x′)〉+ |Ψ̃PerO
REM(~x ∪ ~x′)〉. (35)

The vectors in the right-hand side of Eq. (35) come from updating one of the other queries,
adding a new query to a query from ~x′′, or removing a query from ~x or ~x′. The branch corre-
sponding to ηx 6= −ηx̃ (for any x̃ ∈ ~x ∪ ~x′) is denoted by |Ψ̃PerO

UPD (x; ~x ∪ ~x′)〉. The branch where
x̃ ∈ ~x′′ and ηx 6= ηx̃ is marked with the subscript ADD. State |Ψ̃PerO

REM(~x ∪ ~x′)〉 denote the branch
where x̃ ∈ ~x′′ and ηx = ηx̃. The branches where for some x̃ ∈ ~x ∪ ~x′ we have ηx = −ηx̃ are
denoted by the states in Eq. (35) with subscript REM. The first two REM states correspond to
removing a query to ~x or ~x′.

The matrices in the right hand side of Eq. (29) are defined by taking the partial trace over
registers FAW̃ of the states from Eq. (35) multiplied by 〈Ψ̃PerO(~x ∪ ~x′′)|.

By using Claim 12 recursively on the new well-formed matrices from Eq. (29), we reduce
every matrix ρPerO(~x ∪ ~x′ ∪ {x}, ~x ∪ ~x′′) to a well-formed matrix diagonal in effective queries.
We combine the diagonal matrices from Eq. (29) that are a result of the same number d of
recursive steps. The diagonal matrices that we get are well-formed. This is because they are
a sum of well-formed vectors coming from Claim 12, that are reduced off-diagonal terms of
matrices with distinct effective queries. Intuitively speaking, we sum the branches we picked
apart in the proof of Claim 12.
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More concretely we have

ρPerO =
∑

~x,~x′,~x′′

ρPerO(~x ∪ ~x′, ~x ∪ ~x′′) (36)

=
2q−2∑
d=1

tmax(d)∑
t=1

(
t+d−1∏
s=t

s

N − s

) ∑
~x:|~x|=t

ρ̃dPerO(~x, ~x), (37)

where in the first sum ~x∩~x′ = ∅, ~x∩~x′′ = ∅, and ~x′∩~x′′ = ∅. The sum over d goes over the depth
of recursion. The bound in the sum over t is just the maximal number of effective queries on
the diagonal, this number depends on d but is bounded by q so we do not calculate it strictly.
The product over s is the factor coming from applying Claim 12 recursively d times. The matrix

ρ̃dPerO(~x, ~x) = Tr
FAW̃

(
|Ψ̃PerO

1 (d; ~x)〉〈Ψ̃PerO
2 (d; ~x)|+ |Ψ̃PerO

2 (d; ~x)〉〈Ψ̃PerO
1 (d; ~x)|

)
(38)

for some |Ψ̃PerO
1 (d; ~x)〉 and |Ψ̃PerO

2 (d; ~x)〉 that are well-formed vectors holding a sum of vectors
from Claim 12. The parameter d signifies the vectors contributing to Eq. (38), it is not crucial
to keep track of it but we supply it for completeness.

Final bound Now we can define

|Ψ̃Good(d; ~x)〉 := |Ψ̃Good
1 (d; ~x)〉+ |Ψ̃Good

2 (d; ~x)〉. (39)

First of all, |Ψ̃Good
i (d; ~x)〉 for i ∈ {1, 2} are defined as the same vectors as |Ψ̃PerO

1 (d; ~x)〉 but gen-
erated by A interacting with a compressed oracle for the uniform distribution and projected to
injective databases at the end.

Finally we can calculate the norm of the off-diagonal terms of the permutation state. By ±
denote adding and removing the state:∥∥∥∥∥

2q−2∑
d=1

tmax(d)∑
t=1

(
t+d−1∏
s=t

s

N − s

) ∑
~x:|~x|=t

(
ρ̃dPerO(~x, ~x)± |Ψ̃Good(~x)〉〈Ψ̃Good(~x)|

) ∥∥∥∥∥
=
∥∥∥∥∥

2q−2∑
d=1

tmax(d)∑
t=1

(
t+d−1∏
s=t

s

N − s

) ∑
~x:|~x|=t

(
Tr
FAW̃
|Ψ̃PerO

1 (d; ~x)〉〈Ψ̃PerO
1 (d; ~x)|

+ Tr
FAW̃
|Ψ̃PerO

2 (d; ~x)〉〈Ψ̃PerO
2 (d; ~x)|+ |Ψ̃Good(d; ~x)〉〈Ψ̃Good(d; ~x)|

)∥∥∥∥∥ (40)

≤
2q−2∑
d=1

tmax(d)∑
t=1

(
t+d−1∏
s=t

s

N − s

)∥∥∥∥∥ ∑
~x:|~x|=t

(
Tr
FAW̃
|Ψ̃PerO

1 (d; ~x)〉〈Ψ̃PerO
1 (d; ~x)|

+ Tr
FAW̃
|Ψ̃PerO

2 (d; ~x)〉〈Ψ̃PerO
2 (d; ~x)|+ |Ψ̃Good(~x)〉〈Ψ̃Good(~x)|

)∥∥∥∥∥ (41)

≤ 2
2q−2∑
d=1

tmax(d)∑
t=1

(
t+d−1∏
s=t

s

N − s

)
, (42)

where the first equality comes from the fact that the cross terms of |Ψ̃Good(~x)〉〈Ψ̃Good(~x)| equal
ρ̃sPerO(~x, ~x), and the first inequality follows from the triangle inequality. The bound on the norm
comes from the observation that Tr

FAW̃
|Ψ̃PerO

1 (d; ~x)〉〈Ψ̃PerO
1 (d; ~x)| + |Ψ̃PerO

2 (d; ~x)〉〈Ψ̃PerO
2 (d; ~x)|

can be interpreted as a partial trace over registers FAW̃B of the density matrix of the state
|Ψ̃PerO

1 (d; ~x)〉|1〉B + Tr
FAW̃
|Ψ̃PerO

2 (d; ~x)〉|2〉B . Both matrices are well-formed so their norm is
bounded by 1.
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To bound
∑2q−2
d=1

∑tmax(d)
t=1

(∏t+d−1
s=t

s
N−s

)
we first bound s

N−s ≤
t+d−1
N−2q . Next we integrate the

product by t:
tmax(d)∑
t=1

(
t+d−1∏
s=t

s

N − s

)
≤

q∑
t=1

(
t+ d− 1
N − 2q

)d
≤
∫ q

1
dt
(
t+ d− 1
N − 2q

)d
(43)

=

(
(d+ q − 1)d+1 − dd+1

) (
1

N−2q

)d
d+ 1 ≤ 3q

2

( 3q
N − 2q

)d
. (44)

Next we sum over d to get the final bound:

2q−2∑
d=1

3q
2

( 3q
N − 2q

)d
=

9q2 − 9qq2q
(

1
N−2q

)2q−2

2(N − 5q) ≤ 5q2

N − 5q . (45)

This concludes the proof.
The second important lemma provides a bound on the distance of the good state and the

punctured oracle state conditioned on ¬Find and P
[
Find

]
.

Lemma 13. The good state and the compressed permutation states are close in trace distance:

1
2

∥∥∥ρADGood − ΦAD
CPerO

∥∥∥
1
≤ 1

2 ·
2q5/2

(N − q) , (46)

moreover the probability of Find in this case is

P
[
Find

]
≤ 2q(1 + q)

N
+ 3q2(1 + q)2

N
√
N − q

+ 3q3(1 + q)2(1 + q2)
2N(N − q) , (47)

that for q ∈ O( 4√N) is just 7q(1+q)
N .

Proof. We observe that the effective queries and the database register are essentially the same
in ρCPerO and ρCPhO\Rcoll and then use Claim 21 and Lemma 13 from [Cza+19]. The proof of
Lemma 13 from [Cza+19] does not depend on the particular form of queries or the adversary,
hence all results translate to our case.

3.3 Punctured Compressed Permutation Oracle

In the proof of indifferentiability we puncture the compressed permutation oracle. So not only
we puncture on regular collisions, but also on collisions in a part of the output (we call them
inner-collisions). The inner-collisions relation is defined as:

Rinner :=
{
D ∈

q⋃
s=1

(
{0, 1}r+c

)2s
: ∃i, j 6= i, yi, yj ∈ DY : ŷi = ŷj ∨ ŷi = 0c

}
, (48)

whereD = ((x1, y1), . . . , (xs, ys)), and by ŷ we denote the last c bits of y ∈ {0, 1}r+c. To use the
O2H lemma we just need to bound probability of Find for the combined relation (regular and
inner collisions). In the proof of Lemma 13 in [Cza+19], the authors state the following bound
on P

[
Find

]
, that can be applied to the adversary interacting with CPerO{0,1}r+c punctured on

Rinner:
P
[
Find : A[CPerO{0,1}r+c \Rinner]

]
≤

q∑
i=1

(
5
i−1∑
j=1

max
s≤j−1

{
b(s+ 1)3/2√
N(N − b(q))

}

+ max
s≤i−1


√

b3(s)
N2(N − b(q)) + 2

√
b(s+ 1)
N


)2

, (49)
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where N = 2r+c.
In our case, of regular collisions combined with inner-collisions we have

b(s) = s− 1 + 2rs. (50)

So the final bound is

P
[
Find : A[CPerO{0,1}r+c \Rinner]

]
≤ 6q

2

2c +
√

30q4√2r
2c
√

2c − 2q + 50q62r

2c(2c − 2q) , (51)

which for q ∈ O( 4√2c−r) simplifies to 86 q
2

2c .

4 Indifferentiability of Sponges with Random Permutations

In this section we use the new technique to prove quantum indifferentiability of the sponge
construction instantiated with a random permutation. We present proofs both of classical and
quantum indifferentiability. Our proof of quantum security mimics the structure of the clas-
sical one. This approach is the same as in [Cza+19] and we hope will similarly lead to easier
understanding of the second proof.

In our proofs we follow the (quantum) game-playing framework. Classical games make
have use of lazy-sampled functions and “Bad” events. The key statement in classical game-
playing proofs is the fundamental game-playing lemma (Lemma 3). It states that two games
are identical until the bad event occurs. Moreover the fundamental lemma provides a bound
depending on the probability of the bad event. The quantum game-playing framework gives
us similar tools that are based on the compressed oracle technique and the O2H lemma.

In the quantum case, the role of bad events is played by punctured oracles, defined in Def. 2.
Thanks to measurement that occur after every query we can condition on the content of quan-
tumdatabases. That is a feature that allows to follow the classical proof so closely. The quantum
version of the fundamental game-playing lemma is the O2H lemma. The second distinguisha-
bility bound that we use is shown in Lemma 6.

The general idea behind both indifferentiability proofs is that if there are no inner-collisions,
then the outputs of the sponge construction are uniformly distributed. We condition on random
permutations that do not have inner-collisions (in the q queries made by the adversary) using
the (quantum) game-playing framework. All the details on sponge-specific notation used in
this section are located in section 2.4.

To save space we present multiple algorithms in one. To do that we follow a convention
where only the boxed algorithms perform the boxed operations. In our case there are actually
more than two algorithms, so that the color of the box also matters.

In both proofs we denote the random oracle, defined in Eq. (3), by R. Moreover, we omit
the second input and fix the output length to a single r-bit block.

4.1 Classical Indifferentiability of Sponges with Random Permutations

First we will present a slightly modified proof of indifferentiability from [Ber+08]. We modify
the proof, so that our classical and quantum proofs are more similar. We also introduce more
steps in the proof, as wewant to keep a slow paste of statements so that each transition between
games is clear, in that we follow the style of proof of [Cor+05]. Before we state the theorem,
let us briefly go over lazy sampling of a random permutation. Specifically for permutations
f : {0, 1}r+c → {0, 1}r+c, sampling done in two stages, first sampling the inner part of the
output and then the outer part.

ByD we denote the set of outputs of previous queries. In the language of the sponge graph
D−1 is the set of nodes with outgoing edges and D is the set of nodes with incoming edges. By

16



D̂we denote the set of supernodes with all nodes having an incoming edge. ByD(t̂) we denote
the set of nodes in the supernode t̂with an incoming edge.

We need to define a procedure to lazy-sample outputs of a random permutation. The obvi-
ous solution of sampling uniformly from {0, 1}r+c \D is not good enough as wewant to sample
the inner part before the outer part and retain the step-by-step structure of our proof. Instead
we are going to first sample uniformly from {0, 1}r+c \ D but then discard the outer state. The
value of the inner state t̂ is then effectively sampled from {0, 1}c with weights |{0,1}

r\D(t̂)|
|{0,1}r+c\D| . We

call this distribution C. At this point we will be introducing bad events concerning the inner
part of the sampled state. To sample the outer statewe just sample uniformly from {0, 1}r\D(t̂).
We denote this distribution by A(t̂).

In the case of the inverse of the random permutation we use a similar distribution but in
the above definitions we take D−1—i.e. the set of nodes with outgoing edges—in both C and
A. We denote those distributions by C−1 and A−1(t̂) respectively.

For the proof of indifferentiabilitywe also need anupper boundon the probability of finding
a collision in the inner part of outputs of a uniformly random function f : {0, 1}r+c → {0, 1}r+c.
Considering how Sponge is definedwewant a bound on finding collisions and zero-preimages.
We define the bound as a function of the number of queries q to f :

bcoll(q) := q(q + 1)
2c+1 . (52)

The bound can be found with standard techniques, a detailed derivation is presented in sec-
tion 5.1 of [Cza+19].

The bound on P[Bad] in our proof for randompermutations is the same as in the case of ran-
dom functions [Cza+19]. We achieve a slightly weaker bound than in [Ber+08] because in our
gradual argument we first sample from the set of inner states excluding only “full” supernodes
D̂.

With these additional comments in mind we can proceed with the classical indifferentiabil-
ity result.

Theorem 14 (Spongewith permutations, classical indifferentiability). Spongef [pad, r, c] calling
a random permutation f is (q, ε)-indifferentiable from a random oracle (defined in Eq. (3)) for classical
adversaries for any q < |2c| and ε = 7 q(q+1)

2c+1 .

Proof. In Algorithm 2 we present the indifferentiability simulators.

Game 1We start with the real world where the distinguisherA has access to a random permu-
tation f : {0, 1}r+c → {0, 1}r+c and the construction Spongef using this function. The formal
definition of the first game is

Game 1 :=
(
1← A[Spongef , (f, f−1)]

)
. (53)

Game 2 In the second gamewe introduce the simulator S2—defined in Algorithm 2—that lazy-
samples the random permutation f . The definition of the second game is

Game 2 :=
(
1← A[SpongeS2 , (S2,S−1

2 )]
)
, (54)

where by S−1 we denote the backward interface of S. Because the simulator S2 perfectly models
a random permutation and we use the same function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (55)
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Algorithm 2: Classical S2, S3 , S4 , permutations
State : Current sponge graph G
Interface: f , forward queries
Input : s ∈ {0, 1}r+c
Output : f(s)

1 if s has no outgoing edge then // Fresh query
2 if ŝ ∈ R ∧R ∪ U 6= {0, 1}c then // ŝ-rooted, no saturation

3 t̂← C, if t̂ ∈ R ∪ U , set Bad1 = 1

4 Construct a path to s: p := SpPath(s,G)
5 if ∃x : p = pad(x) then
6 t̄← A(t̂)
7 t̄ := R(x)

8 else
9 t̄← A(t̂)

10 t := (t̄, t̂)
11 else
12 t

$← ({0, 1}r+c) \ D
13 Add an edge (s, t) to E .
14 Set t to the vertex at the end of the edge starting at s
15 Output t

Interface: f−1, backward queries
Input : s ∈ {0, 1}r+c
Output : f−1(s)

16 Construct the sponge graph G
17 if s has no incoming edge then // Fresh query

18 t̂← C−1, if t̂ ∈ R, set Bad2 = 1

19 t̄← A−1(t̂)
20 t := (t̄, t̂)
21 Add an edge (t, s) to E .
22 Set t to the vertex at the beginning of the edge ending at s
23 Output t
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Game 3 In the next step we modify S2 to S3. The game is then

Game 3 :=
(
1← A[SpongeS3 , (S3,S−1

3 )]
)
. (56)

Wemade a single change in S3 compared to S2, we introduce the “bad” event Bad := Bad1∨Bad2
that marks the difference between algorithms. We use this event as the bad event in Lemma 3.
With such a change of the simulators we can use Lemma 3 to bound the difference of probabil-
ities:

|P[Game 3]− P[Game 2]| ≤ P[Bad = 1]. (57)

It is now quite easy to bound P[Bad = 1] as this is the probability of finding a collision or a
preimage of the root in the set {0, 1}c having made q random samples. Then we have that

P[Bad = 1] ≤ bcoll(q), (58)

where the inequality comes from the fact that not all queries are made to rooted nodes.

Game 4 In this step we introduce the random oracle R but only to generate the outer part of the
output of f . The game is defined as

Game 4 :=
(
1← A[SpongeS4 , (SR

4 , S−1
4 )]

)
. (59)

Now we need to observe that if Bad = 0 the outputs are identically distributed.

Claim 15. Given that Bad = 0, Game 4 and Game 3 are identical:

|P[Game 4 | Bad = 0]− P[Game 3 | Bad = 0]| = 0. (60)

Proof. If Bad = 0, the inner-part is distributed in the same way in both games, so the only
difference in distributions can come from the outer part. Given our discussion in section 2.4,
though, if there are no inner-collisions, then the outer part is distributed uniformly at random.
This reasoning is also presented in Lemma 1 and Lemma 2 of [Ber+07].

The two games are identical-until-bad, this implies that the probability of setting Bad to one
in both games is the same P[Bad = 1 : Game 3] = P[Bad = 1 : Game 4]. Together with the
above claim we can derive the advantage:

|P[Game 4]− P[Game 3]| Claim 15=
∣∣∣∣∣P[Game 4 | Bad = 0]

· (P[Bad = 1 : Game 3]− P[Bad = 1 : Game 4]])︸ ︷︷ ︸
=0

+ P[Game 3 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1] + P[Game 4 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1]
∣∣∣∣∣ (61)

≤ 2P[Bad = 1] ≤ 2bcoll(q). (62)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. The simulator is the same and the game is

Game 5 :=
(
1← A[R, (SR

4 ,S−1
4 )]

)
. (63)

Conditioned on Bad = 0, the outputs of the simulator in Games 4 and 5 are the same and
consistent with R. To calculate the adversary’s advantage in distinguishing between the two
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games we can follow the proof of Lemma 6. We change R\R1 toGame 5, G\R2 toGame 4, and
event Find to Bad = 1. As the derivation of Lemma 6 uses no quantum mechanical arguments
and the assumption holds—the games are identical conditioned on Bad = 0—the bound holds:

|P[Game 5]− P[Game 4]| ≤ 4P[Bad1 = 1] ≤ 4bcoll(q). (64)

Collecting and adding all the differences yields the claimed ε = 7bcoll(q).

4.2 Quantum Indifferentiability of Sponges with Random Permutations

In the proof of quantum security we will be using CPerO{0,1}r+c and puncture it on parts of the
database, concretely on the inner parts of outputs. Tomaintain the structure of the proof similar
to the classical case we still write the simulators to include separate procedures for sampling
the inner and the outer part of the output. In fact though we sample both parts at once and
puncture only on a part of the database. This change is only a semantic one, and the core of
reasoning is the same. We use the fact that we can use the O2H lemma between two punctured
oracles.

We denote the part of CPerO{0,1}r+c responsible for sampling the inner part by ĈPerO{0,1}r+c

and the part of CPerO{0,1}r+c responsible for sampling the outer part by CPerO{0,1}r+c . The
correct understanding of this notation is that in fact there is just the single CPerO{0,1}r+c applied
and is punctured on all relations at once. In case of any statements dividing the calls to the inner
and outer parts, we just move all the operations between the calls in the pseudocode to before
of the first oracle.

Another important detail concerns the type of oracle we consider. For the sake of presen-
tation we chose the basis used for the adversary’s queries to be the standard basis. This is not
how we defined CPerO, but the change does not influence the applicability of the compressed
permutation oracle. We just need to keep in mind that the oracle used in this section is ac-
tually HTAYr+cCPerO{0,1}r+cHTAYr+c, where CPerO{0,1}r+c is the oracle defined in Definition 8 and
HTn|y〉 :=

∑
η∈{0,1}n(−1)y·η|η〉 is the Hadamard transform.

In Game 4 of the classical proof, we replace the sampled outer part with the output of the
random oracle. Note that before the classical simulator terminates she saves the full sate in the
sponge graph. There are two issues with doing the same in the quantum simulator. First of all,
we cannot save information that we have not provided the adversary with. This would cause
to increase the distinguishing advantage and not necessarily by a negligible amount. Second
of all, we sample a random permutation, so without saving all the outputs we could cause
collisions we could not track.

To solve both these problemswe do not save the oracle outputs inD. However, at the begin-
ning of each run of the simulator we reprepare the sponge graph and the missing values inD.
To prepare the sponge graph we query R on all necessary inputs to f̂ , i.e. on the inputs that are
consistent with a path from the root to a rooted node. This is done gradually by iterating over
the length of the paths. We begin with the length-0 paths, i.e. with all inputs in the database
D̂ where the inner part is the all zero string. If the outer part of such an input (which is not
changed by the application of SpPath) is equal to a padding of an input, that input is queried to
determine the outer part of the output of f , creating an edge in the sponge graph. We can con-
tinue with length-1 paths. For each entry of the database D̂, check whether the input register
is equal to a node in the current partial sponge graph. If so, the entry corresponds to a rooted
node. Using the entry and the edge connecting its input to the root, a possible padded input
to Sponge is created using SpPath. If it is a valid padding, R is queried to determine the outer
part of the output of f , etc.

We denote by UG the unitary that acting on |0〉 constructsG including edges consistent with
queries held by the quantum compressed database from register D. Similarly we define UR∪U
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to temporarily create a description of the set of supernodes that are rooted or have an outgoing
edge.

It is important to note that the “IF” statements in the quantum simulator are in fact quantum
controlled operations. To correctly perform the controlled operation we postpone the measure-
ments occurring in punctured oracles to after uncomputing of G andR∪ U .

We define the function corresponding to the probability of Find, it follows from Eq. (51):

bQcoll(q) := 86q
2

2c . (65)

Below we state and prove the main result of this paper, quantum indifferentiability of
sponges with random permutations. Inspecting in more detail Eq. 51, we see that for q ∈
O
(
2c/3

)
the bound approaches a constant. This number of queries also trivializes the final

bound in the theorem below. Considering the complexity of the inner-collision-finding algo-
rithm from [Cza+18], which is also of the order O

(
2c/3

)
, we can state that our bound is tight,

at least in the presence of an external random oracle.

Theorem 16 (Spongewith permutations, quantum indifferentiability). Spongef [pad, r, c] calling
a random permutation f is (q, ε)-indifferentiable from a random oracle (defined in Eq. (3)) for quantum
adversaries for any q ∈ O( 4√2c−r) (which is trivially q < |2c|) and ε = 13q5/2

2r+c−q+688 q
2

2c+
√

86(q + 1) q2

2c .

Proof. In Algorithm 3 we describe the simulators we use in this proof.

Game 1We start with the real worldwhere the distinguisherA has quantum access to a random
permutation f : {0, 1}r+c → {0, 1}r+c and the construction Spongef using this function. The
formal definition of the first game is

Game 1 :=
(
1← A[Spongef , (f, f−1)]

)
. (66)

Game 2 In the second gamewe introduce the simulator S2—defined in Algorithm 3—that lazy-
samples the random permutation f . The definition of the second game is

Game 2 :=
(
1← A[SpongeS2 , (S2,S−1

2 )]
)
, (67)

where by S−1 we denote the backward interface of S. The simulator S2 models the quantum
random permutation with errors given in Theorem 9:

|P[Game 2]− P[Game 1]| ≤ 13q5/2

2r+c − q . (68)

Game 3 In the next step we modify S2 to S3. The game is then

Game 3 :=
(
1← A[SpongeS3 , (S3,S−1

3 )]
)
. (69)

Wemade a single change in S3 compared to S2, we introduced puncturing on the relationR∪U
in the forward direction andR in the backward direction. With such a change of the simulators
we can use Lemma 4 to bound the difference of probabilities:

|P[Game 3]− P[Game 2]| ≤
√

(q + 1)P[Find : A[SpongeS3 ,S3]], (70)

where Find denotes the success of the measurement in the punctured oracle. We can bound
P[Find : A[SpongeS3 ,S3]] using Eq. (51):

P[Find : A[SpongeS3 , S3]] ≤ bQcoll(q). (71)

21



Algorithm 3: Quantum S2 , S3 , S4 , permutations
State : Quantum compressed database register D
Interface: f , forward queries
Input : |s, v〉XY ∈ H⊗2

{0,1}r+c

Output : |s, v ⊕ f(s)〉XY
1 Apply UR∪UUG to register D and two fresh registers
2 if s ∈ R ∧R ∪ U 6= {0, 1}c then // s-rooted, no saturation

3 Apply ĈPerO
XYDG

{0,1}r+c , (ĈPerO{0,1}r+c \ (R∪ U))XYDG , result: t̂

4 Construct a path to s: p := SpPath(s,G)
5 if ∃x : p = pad(x) then

6 Apply CStOXYDG
{0,1}r+c , result: t̄

7 Write x in a fresh register XR, apply RXXRY DG , uncompute x from XR, result:
t̄ // Random oracle

8 else
9 Apply CPerOXYDG

{0,1}r+c , result: t̄
10 t := (t̄, t̂), the value of the output stored in D
11 else
12 Apply CPerOXYDG

{0,1}r+c , result t
13 Uncompute G andR∪ U
14 Output |s, v + t〉XY

Interface: f−1, backward queries
Input : |s, v〉 ∈ H⊗2

{0,1}r+c

Output : |s, v + f−1(s)τ〉
15 Apply UR∪U ◦ UG to registers D and two fresh registers

16 Apply ĈPerO
−1XYDG
{0,1}r+c , (ĈPerO{0,1}r+c \ R)−1XYDG , result t̂

17 Apply CPerO−1XYDG
{0,1}r+c , result: t̄

18 t := (t̄, t̂), the value of the output saved to D
19 Uncompute G andR∪ U
20 Output |s, v + t〉XY
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Game 4 In this step we introduce the random oracle R but only to generate the outer part of the
output of f . The game is defined as

Game 4 :=
(
1← A[SpongeS4 , (SR

4 , S−1
4 )]

)
. (72)

Thanks to the classical argument, Claim 15 we have that S4 and S3 are identical until bad, as in
Definition 5. Then we can use Lemma 6 to bound the advantage of the adversary

|P[Game 4]− P[Game 3]| ≤ 4P[Find : A[SpongeS3 , (S3,S−1
3 )]] ≤ 4bQcoll(q) (73)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. The simulator is the same and the game is

Game 5 :=
(
1← A[R, (SR

4 ,S−1
4 )]

)
. (74)

The advantage is

|P[Game 5]− P[Game 4]| ≤ 4P[Find : A[SpongeS4 , (SR
4 , S−1

4 )]] ≤ 4bQcoll(q), (75)

conditioned on¬Find, outputs of the private interface are the same, then the games are identical
until bad and we can use Lemma 6 to bound the advantage of the adversary.

Saturation certainly does not occur for q < 2c as the database in every branch of the su-
perposition increases by at most one in every query. Collecting the differences between games
yields the claimed ε = 13q5/2

2r+c−q + 8bQcoll(q) +
√

(q + 1)bQcoll(q).
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A Single-query Distinguisher

One interesting, in our opinion, observation concerning the permutation oracle is that a single
query conveys a different amount of information depending on the number of previous queries.
Note that the first query not only informs us that f(x) = y but also that the output on all other
x′ 6= x in not y. The more queries we make, the more “negative” information we have. The
importance of the above observation is confirmed with the indistinguishability bound for a
single-query distinguisher.

Theorem 17. Given quantum access to a function sampled either according to the uniform distribution
U over functions from {f : [N ] → [N ]} or the uniform distribution over permutations P, we have
that for all quantum distinguishers making a single quantum query to the oracle, the distinguishability
advantage is at most 1

N−1 : ∣∣∣∣ P
f←U

[
1← Af

]
− P
f←P

[
1← Af

]∣∣∣∣ ≤ 1
N − 1 . (76)

Moreover there is a distinguisher B that has advantage 1
2(N−1) .

Proof. Lets us inspect the indistinguishability bound for the uniform distribution over functions
U and the uniform distribution over permutations P:∣∣∣∣ P

f←U

[
1← Af

]
− P
f←P

[
1← Af

]∣∣∣∣ =
∣∣∣Tr (Q1ρ

A
U

)
− Tr

(
Q1ρ

A
P

)∣∣∣ (77)

≤ 1
2

∥∥∥ρAU − ρAP∥∥∥1
(78)

where Q1 is the measurement corresponding to A outputting 1. The inequality above comes
from the fact that trace distance gives the optimal measurement for distinguishing two states
[NC10]. Register A holds all of the adversary’s state, this includes her work register, query
register, and any other auxiliary registers she decides to use.

We model the oracle access with the full phase oracle. The adversary’s initial state is:

|ψ0〉A :=
∑
x

∑
ηx,w

αx,ηx,w|x, ηx, w〉AXYW , (79)

the states ρU and ρU are defined as the partial trace of the joint adversary-oracle state after a
single query to PhOU or PhOP, respectively. The full definitions of the reduced states are:

ρU =
∑
x,x′

∑
ηx,η′x′ ,w,w

′

αᾱ′
∑
y,yx′

1
N2ω

ηxyx
N ω̄

η′
x′yx′

N |x, ηx, w〉〈x′, η′x′ , w′| (80)

ρP =
∑
x,x′

∑
ηx,η′x′ ,w,w

′

αᾱ′
∑

y,yx′ 6=yx

1
N(N − 1)ω

ηxyx
N ω̄

η′
x′yx′

N |x, ηx, w〉〈x′, η′x′ , w′|, (81)

where we write α and α′ for αx,ηx,w and αx′,η′
x′ ,w

′ respectively.
First of all we see that terms with x′ = x are equal, in this case in both states the sum over

yx and yx′ simplify to just a single sum over yx ∈ [N ]. The off-diagonal (so for x′ 6= x) terms
are a bot more complicated to calculate. Let us notice that

∑
y,yx′ 6=yx =

∑
y,yx′
−
∑
y,yx′=yx , this
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splits the difference ρU − ρP into two parts:

ρU − ρP =
( 1
N2 −

1
N(N − 1)

)
∑

x,x′ 6=x

∑
ηx,η′x′ ,w,w

′

αᾱ′
∑
y,yx′

ωηxyxN ω̄
η′
x′yx′

N |x, ηx, w〉〈x′, η′x′ , w′|

+
∑

x,x′ 6=x

∑
ηx,η′x′ ,w,w

′

αᾱ′
∑

y,yx′=yx

1
N(N − 1)ω

ηxyx
N ω̄

η′
x′yx′

N︸ ︷︷ ︸
= 1
N−1 δηx,η′

x′

|x, ηx, w〉〈x′, η′x′ , w′| (82)

= − 1
N − 1ρU + 1

N − 1DAY (|ψ0〉〈ψ0|), (83)

whereDA(ρ) :=
∑
a|a〉A〈a|ρ|a〉A〈a|denotes themap that outputs the diagonal entries in register

A.
Finally we have

1
2

∥∥∥ρAU − ρAP∥∥∥1
= 1

2

∥∥∥∥− 1
N − 1ρU + 1

N − 1DAY (|ψ0〉〈ψ0|)
∥∥∥∥

1
(84)

≤ 1
2

1
N − 1 ‖ρU‖1 + 1

2
1

N − 1 ‖|ψ0〉〈ψ0|‖1 = 1
N − 1 , (85)

where we use the triangle inequality and the fact that any CPTP (Completely Positive Trace-
Preserving) map, like D, can only decrease the norm of a state.

Now we present the distinguisher B. We define B such that she performs the optimal mea-
surement, and hence has advantage ‖ρU − ρP‖1, as stated in Eq. (78). Now let us consider the
initial state of B, it does not have a work register and is the following state:

|ψB
0 〉A :=

∑
x∈{x1,x2}

1√
2
|x, η〉AXY , (86)

where η 6= 0 and x1 and x2 are any distinct inputs. We know that the diagonal (in x) terms
are equal, no matter if B interacts with U or P, and the only part of the state that influences
the trace distance is the off-diagonal. We know that in the state after interaction with a random
function, Eq. (80), in the branch of superpositionwhere x 6= x′ the sum

∑
y,yx′

1
N2ω

ηxyx
N ω̄

η′
x′yx′

N =
δηx,0δη′

x′ ,0
. We observe that, as we have set η 6= 0, the off-diagonal part of ρU (the case with

x 6= x′) is 0.
The above discussion leads to the following equality:∣∣∣∣ P

f←U

[
1← Bf

]
− P
f←P

[
1← Bf

]∣∣∣∣ = 1
2

∥∥∥ρAU − ρAP∥∥∥1
(87)

= 1
2

1
N − 1

∥∥∥∥∥∥
∑

x∈{x1,x2}

∑
x′∈{x1,x2},x′ 6=x

1
2 |x, η〉〈x

′, η|

∥∥∥∥∥∥
1

= 1
2(N − 1) , (88)

where the last equality comes from the definition of the trace norm: ‖A‖1 =
∑
λ |λ|, where λ

are the eigenvalues of the matrix A.
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Symbol Index

|x| Cardinality of a set x / length of a string x/
absolute value

A Distribution of outer part of outputs of a ran-
dom permutation

17

Bad A "bad" event in a game. 5
C Distribution of inner part of outputs of a ran-

dom permutation
17

Rcoll The collision relation. 5
CPerOX Compressed Permutation Oracle 8
CPhOX Compressed Phase Oracle 4
CStOX Compressed Standard Oracle, for the

unifrom distribution over functions from
{f : X → X}.

4

D The set of outputs of queries 16
E The set of edges of a sponge graph 7
Find Event of measurement of the relation R re-

turning 1
5

Flip Algorithm flipping the database in the stan-
dard basis, inputs are outputs and vice versa.

8

F The set of functions [N ]→ [N ]. 4
|ΨGood〉 The ofA interacting with CPhOX projected to

injective databases.
10

HTn The Hadamard transform 20
I(s) The set of s-element tuples with distinct en-

tries.
3

Rinner The inner-collision relation. 15
|ψ〉 A quantum state, a normalized or sub-

normalized vector in a Hilbert space.
O (n) Complexity class "big O"
pad Padding function 6
SpPath(s,G) Function constructing an input to Sponge

leading to a given node
7

P The set of permutations [N ]→ [N ]. 9
PerO Full permutation oracle 9
PhO Phase Oracle, QFTYN ◦ StO ◦ QFT†YN 4
QFTN The Quantum Fourier Transform 4
R A random oracle. 3
R The set of rooted supernodes 8
Spongef [pad, r, c] Sponge construction with the internal func-

tion f , capacity c, and rate r
7

StO Standard Oracle 4
U The set of supernodes with outgoing edges 8
V The set of vertices of a sponge graph 7
⊕ Bitwise XOR 3
X A finite set, X = [N ]. 4
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