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Abstract. Xagawa and Yamakawa (PQCrypto 2019) proved the trans-
formation SXY can tightly turn DS secure PKEs into IND-qCCA secure
KEMs in the quantum random oracle model (QROM). But transfor-
mations such as KC, TPunc that turn PKEs with standard security
(OW-CPA or IND-CPA) into DS secure PKEs still suffer from quadratic
security loss in the QROM. In this paper, we give a tighter security
reduction for the transformation KC that turns OW-CPA secure deter-
ministic PKEs into modified DS secure PKEs in the QROM. We use
the Measure-Rewind-Measure One-Way to Hiding Lemma recently in-
troduced by Kuchta et al. (EUROCRYPT 2020) to avoid the square-root
advantage loss. Moreover, we extend it to the case that underlying PKEs
are not perfectly correct. Combining with other transformations, we fi-
nally obtain a generic KEM from any IND-CPA secure PKE. Our security
reduction has roughly the same tightness as the result of Kuchta et al.
without any other assumptions and we achieve the stronger IND-qCCA
security. We also give a similar result for another KEM transformation
achieving the same security notion from any OW-CPA secure determin-
istic PKE.

Keywords: Key encapsulation mechanism · Quantum chosen ciphertext
security · Quantum random oracle model

1 Introduction

Key encapsulation mechanism (KEM) is a foundational cryptography primitive.
It can be used to construct efficient hybrid encryption using the KEM/DEM
paradigm [8]. Indistinguishability under chosen ciphertext attacks (IND-CCA)
is widely used as the desired security notion for KEM and public-key encryp-
tion (PKE). With the development of quantum computer, we need to develop
cryptographic schemes that would be secure against both quantum and classical
computers. In this paper, we consider the indistinguishability under quantum
chosen ciphertext attacks (IND-qCCA) for KEM in the quantum random oracle
model (QROM).



In the quantum world, one can deal with superposition states, which brings
more capabilities to the adversaries. To achieve the security against quantum ad-
versaries, we have to base our cryptographic constructions on quantum-resistant
assumptions. But it is not sufficient if adversaries can interact with honest par-
ties using quantum communication. Boneh et al. [6] argued that quantum ran-
dom oracle model should be used instead of random oracle model (ROM) [4].
In the QROM, hash functions are modeled as public oracles similarly as ROM
but with quantum access. Furthermore, Boneh and Zhandry [7] introduced the
IND-qCCA security notion for PKE, where adversaries can make quantum queries
to the decryption oracle. Their goal is to construct classical systems that remain
secure even when implemented on a quantum computer, thereby potentially giv-
ing the attacker the ability to issue quantum queries. Following it, Xagawa and
Yamakawa [22] considered the IND-qCCA security for KEM, where adversaries
can make quantum queries to the decapsulation oracle. Note that different from
PKE, there is no challenge messages queried by the adversary in the IND-CCA
game for KEM. All interactions with the adversary use quantum communication.
Therefore, the corresponding IND-qCCA security in the QROM is the security
notion against fully quantum adversaries for KEM.

To achieve the IND-CCA security, generic transformations such as Fujisaki-
Okamoto (FO) transformation [10, 11] are usually used. They can transform a
weakly secure (one-wayness under chosen plaintext attacks (OW-CPA) or indis-
tinguishability under chosen plaintext attacks (IND-CPA)) PKE to a IND-CCA
one. Dent [9] gave the KEM version of FO. Hofheinz, Hövelmanns and Kiltz [12]
analysed it in a modular way, decomposing it into two transformations named
T and U/⊥. They also introduced some variants of transformation U/⊥ named
U/⊥
m, U

⊥ and U⊥m, and they gave a detailed result about them in the classical set-
ting. Subsequent works [5,13,15–18] are devoted to the analysis in the quantum
setting. The core tool used in these analysis is the One-Way to Hiding (O2H)
Lemma [21] and its variants [2,5,12,18]. Roughly speaking, the O2H lemma can
be used to construct a one-wayness adversary from a distinguisher.

Recently, Kuchta et al. [18] introduced a new O2H variant named Measure-
Rewind-Measure One-Way to Hiding (MRM O2H) Lemma. It is the first variant
to get rid of the square-root advantage loss, and using this lemma, they gave
a security proof for FO from IND-CPA security to IND-CCA security without
the square-root advantage loss for the first time. Their security proof is nearly
tight for low query depth attacks. The case of (relatively) low query depth at-
tacks tends to be of high practical interest, since it corresponds, for instance,
to massively parallelized attacks, which are the standard approach to deal with
high computation costs in practical cryptanalysis. However, their proof doesn’t
apply to the IND-qCCA security. As argued in [7, 22], in order to be immune
to quantum superposition attacks, quantum chosen ciphertext security is worth
investigating. On the other hand, Saito, Xagawa and Yamakawa [20] introduced
a new security notion named disjoint simulatability (DS). Intuitively, disjoint
simulatability means that we can efficiently sample “fake ciphertexts” that are
computationally indistinguishable from real ciphertexts (“simulatability”), while
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the set of possible fake ciphertexts is required to be (almost) disjoint from the
set of real ciphertexts (“disjointness”). In addition, they gave a transformation
named SXY which can tightly turn DS secure PKEs into IND-CCA secure KEMs.
Furthermore, they find it can be easily extended to the stronger IND-qCCA secu-
rity tightly also [22]. However, transformations KC and TPunc introduced in [20]
from standard secure (OW-CPA or IND-CPA) PKEs to DS secure PKEs still suffer
from quadratic security loss, so is the KEM combined with transformation SXY.

Our Contributions In this paper, we analyse two generic KEMs and we prove
that they achieve IND-qCCA security from standard security without quadratic
security loss in the QROM. At the heart of our result is a tighter security re-
duction for the transformation KC. We modify the definition of DS and we use
the MRM O2H lemma to prove that the transformation KC can transform a
OW-CPA secure deterministic PKE (dPKE) into a modified DS secure PKE with-
out the square-root advantage loss. Moreover, we don’t require the underlying
PKE to be perfectly correct as before.

The first KEM we analysed is SXY ◦ KC ◦ T and the second KEM is SXY ◦ KC.
We give an overview in Fig. 1. The upper part and the lower part of Fig. 1
are the two KEMs respectively. The second KEM is relatively simple, and it is
the combination of transformation KC and transformation SXY. Xagawa and
Yamakawa has already proved transformation SXY can tightly turn δ-correct
DS secure dPKEs into IND-qCCA secure KEMs in the QROM (Lemma 5 [22]).

IND-CPA
δ-correct rPKE

OW-CPA
dPKE

DS
dPKE

IND-qCCA
KEM

SXY

Theorem 3

KC

Theorem 1

T

Lemma 6 [5]

OW-CPA
δ-correct dPKE

DS
δ-correct dPKE

IND-qCCA
δ-correct KEM

SXY

Lemma 5 [22]

KC

Theorem 2

Fig. 1. Overview of KEMs.

In the previous security proofs of KC [17, 20], some variants of O2H lemmas
are used. However, they all incur a quadratic loss of security. The MRM O2H
lemma doesn’t suffer from it, but it requires the simulator can simulate both G
and H. In our case, the simultor doesn’t know the m∗ ∈ S, however, the simultor
can simulte G (or H) that should be reprogrammed at m∗ by testing whether
the queried m satisfies Enc(pk,m) = c∗ or not instead. With a detailed analysis,
the MRM O2H lemma can be applied to prove the second property of DS even if
the underlying PKE is not perfectly correct. But it is difficult to satisfy the first
requirement of DS with imperfectly correct underlying PKEs in KC. However, we
find that the DS notion in [20] is slightly stronger, so we make a modification

3



to its definition to relax the requirement. With this new DS notion, we get rid
of the perfectly correctness requirement in KC. And finally we prove that the
transformation KC can turn δ-correct OW-CPA secure dPKEs into δ-correct DS
secure dPKEs without the square-root advantage loss in Theorem 2.3

The underlying PKE of above KEM is dPKE. If we want to let the underlying
PKE be a rPKE (randomized PKE), we can apply the transformation T first.
And this yields the first KEM. Although there exists results of transformation
T that it can turn δ-correct IND-CPA secure rPKEs into OW-CPA secure dPKEs
(Lemma 6 [5]), we cannot simply append it to the proof of the second KEM.
The reason is that the concept of δ-correct doesn’t apply to the resulting dPKE
of T directly, though the resulting dPKE is not perfectly correct. So actually,
Theorem 1 and Theorem 3 are different from corresponding Theorem 2 and
Lemma 5 [22]. In the proof of Theorem 3, we use the method in [12, 15] to
deal with it. In the proof of Theorem 1, we make a direct analysis to get a
better result. Specifically, we use a different Bad event than that in the proof of
Theorem 2 to separate the case that a “bad” message is chosen.

Here we give a comparision of KEM transformations from IND-CPA secure

PKEs in the QROM in Table 1. Kuchta et al.’s [18] proof of FO
/⊥ achieves the

best known security bound of KEMs from IND-CPA security to IND-CCA security
in the QROM. Xagawa and Yamakawa [22] gave the first KEM to achieve the
stronger IND-qCCA security. And Jiang et al. [17] improved the security bound
of Tpunc. But the security bound of the combination scheme is still larger than
the first one in certain settings. Our proof of KEM := SXY ◦ KC ◦ T achieves the
IND-qCCA security with tighter security bound than the second one, roughly the
same as the first one. What’s more, it doesn’t need any other requirements.

Table 1. Comparision of KEM transformations from IND-CPA secure PKEs in the
QROM. The “Security bound” column shows the dependence of the approximate up-
per bound on attacker’s advantage Adv(A) against the KEM in terms of the attacker
advantage ε against the underlying PKE, and A’s total query number q or query depth
d to quantum random oracles.

Transformation
Underlying

security
Achieved
security

Security
bound

Other
requirements

FO/⊥ := U/⊥ ◦ T [18] IND-CPA IND-CCA d2ε T(PKE,G) is η-injective.
SXY ◦ TPunc [17, 22] IND-CPA IND-qCCA

√
qε PKE is perfectly correct.

SXY ◦ KC ◦ T [This work] IND-CPA IND-qCCA d2ε -

3 In the main body of the paper, Theorem 2 actually follows Theorem 1. Here we
reverse the order of introduction.
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2 Preliminaries

2.1 Notation

For a finite set S, |S| denotes the cardinality of S, and we denote the sampling of

a uniformly random element x from S by x
$← S, while we denote the sampling

according to some distribution D by x← D. US denotes the uniform distribution
over S. By JBK we denote the bit that is 1 if the Boolean statement B is true,
and otherwise 0.

We denote deterministic computation of an algorithm A on input x by y :=
A(x). We denote algorithms with access to an oracle O by AO. Unless stated
otherwise, we assume all our algorithms to be probabilistic and denote the com-
putation by y ← A(x). We also use the notation y := A(x; r) to make the
randomness r explicit. By Time(A) we denote the running time of A.

Some algorithms such as Gen need a security parameter λ ∈ N as input.
However, we usually omit it for simplicity. We say a function is negligible in λ
if f(λ) = λ−ω(1). PPT stands for probabilistic polynomial time.

2.2 Quantum Computation

We refer to [19] for basic of quantum computation. In this subsection we mainly
present several useful lemmas.

Quantum Random Oracle Model Following [3, 6], we review a quantum
oracle O as a mapping

|x〉 |y〉 → |x〉 |y ⊕O(x)〉 ,

where O : {0, 1}n → {0, 1}m, x ∈ {0, 1}n and y ∈ {0, 1}m. Roughly speaking,
the quantum random oracle model (QROM) is an idealized model where a hash
function is modeled as a publicly and quantumly accessible random oracle, while
adversaries are only given classical oracle access in the classical random oracle
model (ROM).

Lemma 1 ( [20, Lemma 2.2]). Let l be an integer. Let H : {0, 1}l ×X → Y
and H′ : X → Y be two independent random oracles. If an unbounded time
quantum adversary A makes a query to H at most qH times, then we have∣∣∣Pr[1← AH,H(s,·)|s← {0, 1}l]− Pr[1← AH,H′ ]

∣∣∣ ≤ qH · 2−l+1
2

where all oracle accesses of A can be quantum.

Lemma 2 (Generic Distinguishing Problem with Bounded Probabili-
ties [1,13,14]). Let X be a finite set, and let λ ∈ [0, 1]. F1 : X → {0, 1} is the
following function: For each x ∈ X, F1(x) = 1 with probability λx (λx ≤ λ), and
F1(x) = 0 else. F2 is the constant zero function. Then, for any algorithm A issu-
ing at most q quantum queries to F1 or F2, |Pr[1← AF1 ]−Pr[1← AF2 ]| ≤ 8q2λ.
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Lemma 3 (Measure-Rewind-Measure One-Way to Hiding [18, Lemma
3.3]). Let G,H : X → Y be random functions, z be a random value, and S ⊆ X
be a random set such that G(x) = H(x) for every x /∈ S. The tuple (G,H, S, z)
may have arbitrary joint distribution. Furthermore, let AO be a quantum oracle
algorithm which queries oracle O with query depth d. Then we can construct an
algorithm DG,H(z) such that Time(DG,H) ≈ 2 · Time(AO) 4 and

Adv(AO) ≤ 4d · Adv(DG,H).

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr
H,z

[1← AH(z)], Pright := Pr
G,z

[1← AG(z)],

and
Adv(DG,H) := Pr

G,H,S,z
[T ∩ S 6= ∅|T ← DG,H(z)].

2.3 Public-Key Encryption

Definition 1 (PKE). A (randomized) public-key encryption scheme ((r)PKE) is
defined over a message spaceM, a ciphertext space C, a public key space PK and
a secret key space SK. It consists of a triple of algorithms PKE = (Gen,Enc,Dec)
defined as follows.

− Gen→ (pk, sk) is a randomized algorithm that returns a public key pk ∈ PK
and a secret key sk ∈ SK.

− Enc(pk,m) → c is a randomized algorithm that takes as input a public key
pk and a message m ∈ M, and outputs a ciphertext c ∈ C. If necessary,
we make the used randomness of Enc explicit by writing c := Enc(pk,m; r),

where r
$← R and R is the randomness space.

− Dec(sk, c)→ m/ ⊥ is a deterministic algorithm that takes as input a secret
key sk ∈ SK and a ciphertext c ∈ C and returns either a message m ∈ M
or a failure symbol ⊥ /∈M.

A deterministic public-key encryption scheme (dPKE) is defined the same way,
except that Enc is a deterministic algorithm.

Definition 2 (Correctness [12]). A public-key encryption scheme PKE is δ-
correct if

E

[
max
m∈M

Pr[Dec(sk, c) 6= m|c← Enc(pk,m)]

]
≤ δ,

where the expectation is taken over (pk, sk)← Gen. We say the PKE is perfectly
correct if δ = 0.

4 Actually, from the proof of lemma 3.2 and lemma 3.3 in [18], we
have Time(DG,H) ≈ Time(BG,H

i ) + Time(CG,H
i ) ≈ Time(BG,H

i ) +(
Time(BG,H

i ) + 2
(
Time(AO

i )− Time(BG,H
i )

))
≈ 2 · Time(AO).
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Remark 1. Above correctness definition is in the standard model, there is no
random oracle relative to the PKE. But we still use this definition in the random
oracle model if random oracles have no effect on it.

Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
space M. We now define three security notions for it. We say the PKE is
GOAL-ATK secure if AdvGOAL-ATK

PKE,A is negligible for any PPT adversary A.

Definition 3 (OW-CPA). The One-Wayness under Chosen Plaintext Attacks
(OW-CPA) game for PKE is defined in Fig. 2, and the OW-CPA advantage of an
adversary A against PKE is defined as AdvOW-CPA

PKE,A := Pr[OW-CPAAPKE ⇒ 1].

GAME OW-CPA GAME IND-CPA
(pk, sk)← Gen (pk, sk)← Gen

m∗
$←M b

$← {0, 1}
c∗ ← Enc(pk,m∗) (m∗0,m

∗
1, st)← A1(pk)

m′ ← A(pk, c∗) c∗ ← Enc(pk,m∗b)
return Jm′ = m∗K b′ ← A2(pk, c∗, st)

return Jb′ = bK

Fig. 2. Games OW-CPA and IND-CPA for PKE.

Definition 4 (IND-CPA). The Indistinguishability under Chosen Plaintext At-
tacks (IND-CPA) game for PKE is defined in Fig. 2, and the IND-CPA advan-
tage of an adversary A = (A1,A2) against PKE is defined as AdvIND-CPA

PKE,A :=

2|Pr[IND-CPAAPKE ⇒ 1]− 1/2|.

Definition 5 (IND-qCCA [7]). The Indistinguishability under quantum Cho-
sen Ciphertext Attacks (IND-qCCA) game for PKE is defined in Fig. 3, and the
IND-qCCA advantage of an adversary A = (A1,A2) against PKE is defined as

AdvIND-qCCA
PKE,A := |Pr[IND-qCCAAPKE ⇒ 1]− 1/2|.

Saito, Xagawa and Yamakawa [20] introduced a new security notion named
DS for dPKE. Here we give a modified version and we keep the name unchanged
in this paper.

Definition 6 (DS, modified from [20]). Let DM denote an efficiently sam-
pleable distribution on a set M. A deterministic public-key encryption scheme
PKE = (Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is DM-
disjoint-simulatable (DS) if there exists a PPT algorithm S that satisfies the
followings.

− (Disjointness:)

DisjPKE,S := Pr[c ∈ Enc(pk,M)|(pk, sk)← Gen, c← S(pk)]

is negligible.
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GAME IND-qCCA Deca(
∑

c,m ψc,m |c,m〉)
(pk, sk)← Gen return

∑
c,m ψc,m |c,m⊕ fa(c)〉

b
$← {0, 1}

(m∗0,m
∗
1, st)← ADec⊥

1 (pk) fa(c)

c∗ ← Enc(pk,m∗b) if c = a

b′ ← ADecc∗
2 (pk, c∗, st) return m′ :=⊥

return Jb′ = bK else return m′ := Dec(sk, c)

Fig. 3. Game IND-qCCA for PKE.

− (Ciphertext-indistinguishability:) For any PPT adversary A,

AdvDS-IND
PKE,DM,A,S :=∣∣∣∣Pr[1← A(pk, c∗)|(pk, sk)← Gen,m∗ ← DM, c∗ := Enc(pk,m∗)]

−Pr[1← A(pk, c∗)|(pk, sk)← Gen, c∗ ← S(pk)]

∣∣∣∣
is negligible.

Remark 2. In the original definition of DS, the first condition is “statistical dis-
jointness”:

DisjPKE,S := max
(pk,sk)∈Gen(1λ;R)

Pr[c ∈ Enc(pk,M)|c← S(pk)]

is negligible, where λ is the security parameter and R denotes the randomness
space for Gen. We relax this condition to “disjointness” as we find it is sufficient
to prove those theorems we needed.

2.4 Key Encapsulation Mechanism

Definition 7 (KEM). A key encapsulation mechanism (KEM) is defined over a
key space K, a ciphertext space C, a public key space PK and a secret key space
SK. It consists of a triple of algorithms KEM = (Gene,Enca,Deca) defined as
follows.

− Gene→ (pk, sk) is a randomized algorithm that returns a public key pk ∈ PK
and a secret key sk ∈ SK.

− Enca(pk)→ (c, k) is a randomized algorithm that takes as input a public key
pk and outputs a ciphertext c ∈ C as well as a key k ∈ K.

− Deca(sk, c)→ k/ ⊥ is a deterministic algorithm that takes as input a secret
key sk ∈ SK and a ciphertext c ∈ C and returns either a key k ∈ K or a
failure symbol ⊥ /∈ K.

Definition 8 (Correctness [12]). A key encapsulation mechanism KEM is δ-
correct if

Pr[Deca(sk, c) 6= k|(pk, sk)← Gene, (c, k)← Enca(pk)] ≤ δ.
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Let KEM = (Gene,Enca,Deca) be a key encapsulation mechanism with key
space K. Following the definition of IND-qCCA for PKE, the KEM version for it
can be defined similarly. We say the KEM is IND-qCCA secure if AdvIND-qCCA

KEM,A is
negligible for any PPT adversary A.

Definition 9 (IND-qCCA [22]). The IND-qCCA game for KEM is defined in
Fig. 4, and the IND-qCCA advantage of an adversary A against KEM is defined
as AdvIND-qCCA

KEM,A := |Pr[IND-qCCAAKEM ⇒ 1]− 1/2|.

GAME IND-qCCA Decaa(
∑

c,k ψc,k |c, k〉)
(pk, sk)← Gene return

∑
c,k ψc,k |c, k ⊕ fa(c)〉

b
$← {0, 1}

(c∗, k∗0)← Enca(pk) fa(c)

k∗1
$← K if c = a

b′ ← ADecac∗ (pk, c∗, k∗b ) return k′ :=⊥
return Jb′ = bK else return k′ := Deca(sk, c)

Fig. 4. Game IND-qCCA for KEM.

3 Tighter Proofs for the Transformation KC

In this section, we give a tighter security reduction for the transformation KC [20]
that transforms OW-CPA secure dPKEs into DS secure dPKEs without the perfect
correctness requirement of underlying PKEs.

Transformation KC To a deterministic public-key encryption scheme PKE =
(Gen,Enc,Dec) with message space M, and a hash function H : M → {0, 1}n,
we associate PKE′ := KC[PKE,H]. The algorithms of PKE′ = (Gen′,Enc′,Dec′)
are defined in Fig. 5.

Gen′ Enc′(pk,m) Dec′(sk, (c, d)) S(pk)

(pk, sk)← Gen c := Enc(pk,m) m′ := Dec(sk, c) m∗ ← UM
return (pk, sk) d := H(m) if m′ =⊥ or H(m′) 6= d c∗ := Enc(pk,m∗)

return (c, d) return ⊥ d∗
$← {0, 1}n

else return m′ return (c∗, d∗)

Fig. 5. PKE′ = (Gen′,Enc′,Dec′) := KC[PKE,H] with simulator S.

Before we prove the security of KC, we first review the transformation T
introduced in [12].

9



Transformation T To a public-key encryption scheme PKE0 = (Gen0,Enc0,
Dec0) with message space M and randomness space R, and a hash function G :
M→R, we associate PKE := T[PKE0,G]. The algorithms of PKE = (Gen,Enc,
Dec) are defined in Fig. 6.

Gen Enc(pk,m) Dec(sk, c)

(pk, sk)← Gen0 c := Enc0(pk,m;G(m)) m′ := Dec0(sk, c)
return (pk, sk) return c if m′ =⊥ or Enc0(pk,m

′;G(m′)) 6= c
return ⊥

else return m′

Fig. 6. PKE = (Gen,Enc,Dec) := T[PKE0,G].

Next, we give a lemma related to the transformation T. It roughly speaks that
there is a high probability the ciphertext corresponding to a randomly chosen
message has only one preimage with regard to PKE := T[PKE0,G].

Lemma 4. Let PKE0 = (Gen0,Enc0,Dec0) be a δ-correct rPKE with message
space M and randomness space R. We define a set with respect to fixed (pk, sk)
and G ∈ ΩG :

Scollision(pk,sk),G := {m ∈M|∃m′ 6= m,Enc0(pk,m′;G(m′)) = Enc0(pk,m;G(m))},

where ΩG denotes the set of all functions G :M→R.
Then we have

Pr[m∗ ∈ Scollision(pk,sk),G|(pk, sk)← Gen0,G
$← ΩG,m

∗ $←M] ≤ 2δ.

Proof. From the definition of δ-correct, we have

E
(pk,sk)←Gen0

[
max
m∈M

Pr[Dec0(sk, c) 6= m|c← Enc0(pk,m)]

]
≤ δ.

The inequality still holds when the m is chosen at random, i.e.,

E
(pk,sk)←Gen0

[
E

m
$←M

Pr[Dec0(sk, c) 6= m|c← Enc0(pk,m)]

]
≤ δ.

We represent above inequality in a different form with equivalent meaning:

Pr[Dec0(sk, c) 6= m|(pk, sk)← Gen0,m
$←M, c← Enc0(pk,m)] ≤ δ.

Then, we make the randomness used by Enc0 explicit:

Pr[Dec0(sk,Enc0(pk,m; r)) 6= m|(pk, sk)← Gen0,m
$←M, r

$← R] ≤ δ.
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It equals that:

Pr[Dec0(sk,Enc0(pk,m;G(m))) 6= m|(pk, sk)← Gen0,m
$←M,G

$← ΩG] ≤ δ.

Here we define a set in which messages cannot be decrypted correctly with
respect to fixed (pk, sk) and G:

Serror(pk,sk),G := {m ∈M|Dec0(sk,Enc0(pk,m;G(m))) 6= m}.

Finally, we have

Pr[m∗ ∈ Scollision(pk,sk),G|(pk, sk)← Gen0,G
$← ΩG,m

∗ $←M]

≤2Pr[m∗ ∈ Scollision(pk,sk),G ∩ S
error
(pk,sk),G|(pk, sk)← Gen0,G

$← ΩG,m
∗ $←M]

≤2Pr[m∗ ∈ Serror(pk,sk),G|(pk, sk)← Gen0,G
$← ΩG,m

∗ $←M]

=2Pr[Dec0(sk,Enc0(pk,m
∗;G(m∗))) 6= m∗|(pk, sk)← Gen0,m

∗ $←M,G
$← ΩG]

≤2δ,

where the first inequality follows from the fact that m∗ is chosen randomly and
|Scollision(pk,sk),G \ S

error
(pk,sk),G| ≤ |S

collision
(pk,sk),G ∩ S

error
(pk,sk),G| for fixed (pk, sk) and G. ut

Now we are ready to prove the security of KC in the QROM. In particular,
we prove it in two cases. The first case is that the underlying dPKE is derived
from T, as opposed to a general δ-correct dPKE in the second case. In both cases,
underlying PKEs don’t need to be perfectly correct.

Previous proofs [17, 20] use some variants of O2H lemma, but they all incur
a quadratic loss of security. Kuchta et al. [18] rencently introduced the MRM
O2H lemma (Lemma 3) without the square-root advantage loss. We apply it to
KC and we avoid the square-root advantage loss in the proof accordingly.

Theorem 1 (Security of KC in the QROM, case 1). Let PKE be a dPKE
transformed from PKE0 by T, i.e., PKE := T[PKE0,G]. PKE0 is a δ-correct rPKE
with message space M and randomness space R. Let G : M→R, H : M →
{0, 1}n be hash functions modeled as quantum random oracles. PKE′ := KC[PKE,
H] and S is the algorithm defined in Fig. 5. Then we have DisjPKE′,S ≤ 2−n+2δ.
Moreover, for any adversary A against the DS-IND security of PKE′ issuing
quantum queries to H with depth dH, there exists an adversary B against the
OW-CPA security of PKE such that

AdvDS-IND
PKE′,UM,A,S ≤ 4dH · (AdvOW-CPA

PKE,B + 2δ)

and Time(B) ≈ 2 · Time(A).

Proof. We first define two events:

Bad := [m∗ ∈ Scollision(pk,sk),G|(pk, sk)← Gen,G
$← ΩG,m

∗ $←M],

11



where Scollision(pk,sk),G is defined in Lemma 4, and Lemma 4 says that Pr[Bad] ≤ 2δ as
Gen equals Gen0;

Disj := [(c∗, d∗) ∈ Enc′(pk,M)|(pk, sk)← Gen′, (c∗, d∗)← S(pk)].

Then, we have

DisjPKE′,S = Pr[Disj]

= Pr[Disj ∧ Bad] + Pr[Disj ∧ Bad]

≤ Pr[Disj ∧ Bad] + Pr[Bad]

≤ 2−n + 2δ,

where the first equality follows from the definition of DS and the last inequality
follows from the fact that if Bad doesn’t happen, the only possibillity that Disj
happens is the second part d∗ of the element returned by S collides with the
unique value which is H(m∗). The probability of this is 2−n as d∗ is chosen
uniformly at random.

To prove the rest of the theorem, we consider games in Fig. 7. From the
definition of DS, we have

AdvDS-IND
PKE′,UM,A,S = |Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]|.

GAMES G0 −G2

(pk, sk)← Gen; H
$← ΩH

G
$← ΩG

m∗
$←M

c∗ := Enc(pk,m∗) = Enc0(pk,m
∗;G(m∗))

d∗ := H(m∗) //G0, G2

d∗
$← {0, 1}n //G1

H′ := H; Sc∗ := {m ∈M|Enc(pk,m) = c∗} //G2

for each m ∈ Sc∗ , H′(m)
$← {0, 1}n //G2

b← AH,G(pk, (c∗, d∗)) //G0 −G1

b← AH′,G(pk, (c∗, d∗)) //G2

return b

Fig. 7. Games G0 −G2 for the proof of Theorem 1.

Notice that H′, d∗ in game G2 are randomly distributed as H, d∗ in game G1,
and they are independent of each other and A’s other view (G, pk, c∗) in both G1

and G2, that is, the environments of A in G1 and G2 have the same distribution.
It follows that

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].
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The only difference between game G0 and game G2 is that A is interacted
with H or H′ respectively. Therefore, applying Lemma 3 with X = M, Y =
{0, 1}n, G = H, H = H′, S = Sc∗ , z = (G, pk, (c∗, d∗)) 5 and A, we can construct
algorithm D, with run-time ≈ 2 ·Time(A) and making oracle calls to H, H′ and
G in game G3, such that

|Pr[GA0 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ 4dH · Pr[T ∩ Sc∗ 6= ∅],

where T is the output of D and game G3 is described in Fig. 8.

GAME G3

(pk, sk)← Gen; H
$← ΩH

G
$← ΩG

m∗
$←M

c∗ := Enc(pk,m∗) = Enc0(pk,m
∗;G(m∗))

d∗ := H(m∗)
H′ := H; Sc∗ := {m ∈M|Enc(pk,m) = c∗}
for each m ∈ Sc∗ , H′(m)

$← {0, 1}n

T ← DH,H′,G(pk, (c∗, d∗))
if T ∩ Sc∗ 6= ∅
m′ := any element ∈ T ∩ Sc∗

else m′ :=⊥
return Jm′ = m∗K

Fig. 8. Game G3 for the proof of Theorem 1.

The game G3 actually can be seen as the OW-CPA game for PKE, in which
an adversary B invokes the algorithm D. More specifically, the OW-CPA game
for PKE and the adversary B against PKE we construct are described in Fig. 9.
We note that B cannot directly compute H(m∗) because m∗ is unknown for B,
but B can choose a random value d∗ ∈ {0, 1}n as H(m∗) in advance and simulate
H using it, i.e., B returns d∗ if Enc(pk,m) = c∗, else returns H(m), where m is
D’s query to H. Furthermore, if Bad doesn’t happen, the set Sc∗ has only one
element, m∗, and the environments of D in game G3 and game OW-CPABPKE have
the same distribution. In other words, B can simulate the environment for D as

5 Like the note of [2, Theorem 1], if we want to consider an adversary AH,F (), we can
instead write AH(F ) where F is a complete (exponential size) description of F since
there is no assumption on the size of z. From another point of view, we can simply
extend the Lemma 3 to cover this case explicitly by letting D forward A’s queries
to the additional oracles and send the replies back to A.
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in game G3 perfectly in the case that Bad doesn’t happen. Therefore, we have

AdvOW-CPA
PKE,B = Pr[OW-CPABPKE ⇒ 1]

= Pr[B ⇒ m∗]

≥ Pr[B ⇒ m∗ ∧ Bad]

= Pr[T ∩ Sc∗ 6= ∅ ∧ Bad],

where the final equality holds for the same reason that if Bad doesn’t happen,
the set Sc∗ has only one element, m∗.

GAME OW-CPABPKE BG(pk, c∗)

(pk, sk)← Gen H′
$← ΩH; d∗

$← {0, 1}n

G
$← ΩG H := H′; Sc∗ := {m ∈M|Enc(pk,m) = c∗}

m∗
$←M for each m ∈ Sc∗ , H(m) := d∗

c∗ := Enc(pk,m∗) T ← DH,H′,G(pk, (c∗, d∗))
= Enc0(pk,m

∗;G(m∗)) if T ∩ Sc∗ 6= ∅
m′ ← BG(pk, c∗) return any element ∈ T ∩ Sc∗

return Jm′ = m∗K else return ⊥

Fig. 9. Game OW-CPABPKE for the proof of Theorem 1.

Combining above formulas with the following simple inequality:

Pr[T ∩ Sc∗ 6= ∅] ≤ Pr[T ∩ Sc∗ 6= ∅ ∧ Bad] + Pr[Bad],

we finally obtain

AdvDS-IND
PKE′,UM,A,S = |Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]|

= |Pr[GA0 ⇒ 1]− Pr[GA2 ⇒ 1]|
≤ 4dH · Pr[T ∩ Sc∗ 6= ∅]

≤ 4dH · (Pr[T ∩ Sc∗ 6= ∅ ∧ Bad] + Pr[Bad])

≤ 4dH · (AdvOW-CPA
PKE,B + 2δ).

ut

Theorem 2 (Security of KC in the QROM, case 2). Let PKE be a δ-correct
dPKE with message space M. Let H :M→ {0, 1}n be a hash function modeled
as a quantum random oracle. PKE′ := KC[PKE,H] and S is the algorithm defined
in Fig. 5. Then we have DisjPKE′,S ≤ 2−n + δ. Moreover, for any adversary A
against the DS-IND security of PKE′ issuing quantum queries to H with depth
dH, there exists an adversary B against the OW-CPA security of PKE such that

AdvDS-IND
PKE′,UM,A,S ≤ 4dH · (AdvOW-CPA

PKE,B + δ)

and Time(B) ≈ 2 · Time(A).
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Proof. The proof is essentially the same as Theorem 1’s proof, except for the
definition of Bad:

Bad := [∃m ∈M, Dec(sk,Enc(pk,m)) 6= m|(pk, sk)← Gen].

From the fact that PKE is deterministic and the definition of δ-correct, we
have

Pr[Bad] ≤ δ.

Then, we complete the proof. ut

Remark 3. PKE′ remains δ-correct.

4 QCCA-Secure Generic KEM in the QROM

In this section, we prove that DS secure dPKEs can be converted to IND-qCCA
secure KEMs by transformation SXY [20] in the QROM. In particular, we also
consider two cases corresponding to the two cases in Sect. 3. The first case is
that the underlying dPKE is derived from KC ◦ T6, as opposed to a general δ-
correct dPKE in the second case. In both cases, underlying PKEs don’t need to
be perfectly correct. Note that the second case was proved in [22], we present it
here as a lemma.

At last, we combine results in this paper and get two IND-qCCA secure generic
KEMs without quadratic security loss in the QROM. One is based on rPKEs and
the other is based on dPKEs.

Transformation SXY To a deterministic public-key encryption scheme PKE′ =
(Gen′,Enc′,Dec′) with message space M and ciphertext space C, and two hash
functions H1 :M→K, H2 : {0, 1}l×C → K, we associate KEM := SXY[PKE′,H1,
H2]. The algorithms of KEM = (Gene,Enca,Deca) are defined in Fig. 10.

Gene Enca(pk) Deca((sk, s), c)

(pk, sk)← Gen′ m← DM m′ := Dec′(sk, c)

s
$← {0, 1}l c := Enc′(pk,m) if m′ =⊥ or Enc′(pk,m′) 6= c

return (pk, (sk, s)) k := H1(m) return k′ := H2(s, c)
return (c, k) else return k′ := H1(m

′)

Fig. 10. KEM = (Gene,Enca,Deca) := SXY[PKE′,H1,H2].

6 T is the point and KC can be replaced by other suitable transformations.
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Theorem 3 (IND-qCCA Security of SXY in the QROM, case 1). Let PKE′

be a dPKE transformed from PKE0 by KC ◦ T, i.e., PKE′ := KC[T[PKE0,G],H].
PKE0 is a δ-correct rPKE with message space M, ciphertext space C and ran-
domness space R. Let G : M→R, H : M → {0, 1}n, H1 : M→K, H2 :
{0, 1}l×C×{0, 1}n → K be hash functions modeled as quantum random oracles.
Suppose that PKE′ is DM-disjoint-simulatable with a simulator S. Then for any
adversary A against the IND-qCCA security of KEM := SXY[PKE′,H1,H2] issus-
ing qG and qH2 quantum queries to G and H2, there exists an adversary B against
the DS-IND security of PKE′ such that

AdvIND-qCCA
KEM,A ≤ AdvDS-IND

PKE′,DM,B,S + DisjPKE′,S + qH2 · 2
−l+1

2 + (16q2G + 2) · δ

and Time(B) ≈ Time(A).

Proof. We use a game-hopping proof. The proof is essentially the same as the
following Lemma 5 [22]’s proof, except for two more games. We insert game G0.5

and G3.5 into G0, G1 and G3, G4 respectively. Besides, we replace the event Acc
with another event Bad. The overview of all games is given in Table 2.

Table 2. Summary of games for the proof of Theorem 3.

Decryption of
Game H1 c∗ k∗0 k∗1 valid c invalid c G/G′ justification

G0 H1(·) Enc′(pk,m∗) H1(m
∗) random H1(m) H2(s, c) G

G0.5 H1(·) Enc′(pk,m∗) H1(m
∗) random H1(m) H2(s, c) G′ Lemma 2

G1 H1(·) Enc′(pk,m∗) H1(m
∗) random H1(m) Hq(c) G′ Lemma 1

G1.5 H′q(Enc′(pk, ·)) Enc′(pk,m∗) H1(m
∗) random H1(m) Hq(c) G′ Bad

G2 Hq(Enc′(pk, ·)) Enc′(pk,m∗) H1(m
∗) random H1(m) Hq(c) G′ Bad

G3 Hq(Enc′(pk, ·)) Enc′(pk,m∗) Hq(c∗) random Hq(c) Hq(c) G′ Conceptual
G3.5 Hq(Enc′(pk, ·)) Enc′(pk,m∗) Hq(c∗) random Hq(c) Hq(c) G Lemma 2
G4 Hq(Enc′(pk, ·)) S(pk) Hq(c∗) random Hq(c) Hq(c) G DS-IND

GAME G0: This is the original game, IND-qCCAAKEM.
Let G′ be a random function such that G′(m) is sampled according to the uni-

form distribuion over Rgood(pk,sk),m
:= {r ∈ R|Dec0(sk,Enc0(pk,m; r)) = m}. Let

ΩG′ be the set of all functions G′. Define δ(pk,sk),m =
|R\Rgood

(pk,sk),m
|

|R| as the frac-

tion of bad randomness and δ(pk,sk) = maxm∈M δ(pk,sk),m. With this notation
δ = E[δ(pk,sk)], where the expectation is taken over (pk, sk)← Gen0.

GAME G0.5: This game is the same as G0 except that we replace G by G′

that uniformly samples from “good” randomness at random, i.e., G′
$← ΩG′ .

GAME G1: This game is the same as G0.5 except that H2(s, c) in the de-
capsulation oracle is replaced with Hq(c) where Hq : C × {0, 1}n → K is another
random oracle. We remark that A is not given direct access to Hq.
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GAME G1.5: This game is the same as G1 except that the random oracle
H1(·) is simulated by H′q(Enc

′(pk, ·)) where H′q is yet another random oracle. We
remark that the decapsulation oracle and generation of k∗0 also use H′q(Enc

′(pk, ·))
as H1(·) and that A is not given direct access to H′q.

GAME G2: This game is the same as G1.5 except that the random oracle
H1(·) is simulated by Hq(Enc

′(pk, ·)) instead of H′q(Enc
′(pk, ·)). We remark that

the decapsulation oracle and generation of k∗0 also use Hq(Enc
′(pk, ·)) as H1(·).

GAME G3: This game is the same as G2 except that k∗0 is set as Hq(c
∗) and

the decapsulation oracle always returns Hq(c) as long as c 6= c∗. We denote the
modified decapsulation oracle by Deca′.

GAME G3.5: This game is the same as G3 except that we switch G′ back
to the ideal random oracle G.

GAME G4: This game is the same as G3.5 except that c∗ is set as S(pk).
The above completes the descriptions of games. We clearly have

AdvIND-qCCA
KEM,A = |Pr[G0 ⇒ 1]− 1/2|

by the definition. We upperbound this by the following claims.

Claim 1. We have

|Pr[G0 ⇒ 1]− Pr[G0.5 ⇒ 1]| ≤ 8q2Gδ,

|Pr[G3 ⇒ 1]− Pr[G3.5 ⇒ 1]| ≤ 8q2Gδ.

Proof. Following the same analysis as in the proof of [15, Theorem 1], we can
show that the distinguihing problem between G0 and G0.5 is essentially the dis-
tinguishing problem between G and G′, which can be converted into a distinguish-
ing problem between F1 and F2, where F1 is a function such that F1(m) is sampled
according to Bernoilli distribution Bδ(pk,sk),m , i.e., Pr[F1(m) = 1] = δ(pk,sk),m and
Pr[F1(m) = 0] = 1−δ(pk,sk),m, and F2 is a constant function that always outputs
0 for any input. Thus, conditioned on a fixed (pk, sk) we obtain by Lemma 2,
|Pr[G0 ⇒ 1|(pk, sk)] − Pr[G0.5 ⇒ 1|(pk, sk)]| ≤ 8q2Gδ(pk,sk). By averaging over
(pk, sk)← Gen0 we finally obtain

|Pr[G0 ⇒ 1]− Pr[G0.5 ⇒ 1]| ≤ 8q2GE[δ(pk,sk)] = 8q2Gδ.

In the same way, we have

|Pr[G3 ⇒ 1]− Pr[G3.5 ⇒ 1]| ≤ 8q2Gδ.

ut

Claim 2. We have

|Pr[G0.5 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ qH2 · 2
−l+1

2 .

Proof. This is obvious from Lemma 1. ut
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Claim 3. We define an event:

Bad := [∃m ∈M,Rgood(pk,sk),m = ∅|(pk, sk)← Gen0].

Then we have Pr[Bad] ≤ δ and

|Pr[G1 ⇒ 1]− 1/2| ≤ |Pr[G1 ⇒ 1 ∧ Bad]− 1/2|+ δ.

Proof. By the definition, we have

Pr[Bad]

= Pr[∃m ∈M,Rgood(pk,sk),m = ∅|(pk, sk)← Gen0]

= Pr[∃m ∈M, δ(pk,sk),m = 1|(pk, sk)← Gen0]

= Pr[δ(pk,sk) = 1|(pk, sk)← Gen0]

≤ E[δ(pk,sk)]

= δ.

Then we have

|Pr[G1 ⇒ 1]− 1/2|
= |Pr[G1 ⇒ 1 ∧ Bad] + Pr[G1 ⇒ 1 ∧ Bad]− 1/2|
≤ |Pr[G1 ⇒ 1 ∧ Bad]− 1/2|+ Pr[G1 ⇒ 1 ∧ Bad]

≤ |Pr[G1 ⇒ 1 ∧ Bad]− 1/2|+ Pr[Bad]

≤ |Pr[G1 ⇒ 1 ∧ Bad]− 1/2|+ δ

as we wanted. ut

Claim 4. We have

Pr[G1 ⇒ 1 ∧ Bad] = Pr[G1.5 ⇒ 1 ∧ Bad].

Proof. From the definition of G′, if Bad doesn’t happen, any message can be
decrypted correctly for the PKE′, i.e., Dec′(sk,Enc′(pk,m)) = m for all m ∈
M. Therefore, Enc′(pk, ·) is injective. And if H′q(·) is a random function, then
H′q(Enc

′(pk, ·)) is also a random function. Remarking that access to H′q is not
given to A, it causes no difference from the view of A if we replace H1(·) with
H′q(Enc

′(pk, ·)). ut

Claim 5. We have

Pr[G1.5 ⇒ 1 ∧ Bad] = Pr[G2 ⇒ 1 ∧ Bad].

Proof. We say that a ciphertext c is valid if we have Enc′(pk,Dec′(sk, c)) = c
and invalid otherwise. We remark that Hq is used only for decrypting an invalid
ciphertext c as Hq(c) in G1.5. This means that a value of Hq(c) for a valid c is
not used at all in G1.5.
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On the other hand, any output of Enc′(pk, ·) is valid if Bad doesn’t happen.
Since H′q is only used for evaluating an output of Enc′(pk, ·), a value of H′q(c) for
an invalid c is not used at all in G1.5.

Hence, it causes no difference from the view of A if we use the same random
oracle Hq instead of two independent random oracles Hq and H′q. ut

Claim 6. We have

Pr[G2 ⇒ 1 ∧ Bad] = Pr[G3 ⇒ 1 ∧ Bad].

Proof. Since we set H1(·) := Hq(Enc
′(pk, ·)), for any valid c and m := Dec′(sk, c),

we have H1(m) = Hq(Enc
′(pk,m)) = Hq(c). Therefore, responses of the decap-

sulation oracle are unchanged. We also have H1(m
∗) = Hq(c

∗). ut

Claim 7. We have

|Pr[G3 ⇒ 1 ∧ Bad]− 1/2| ≤ |Pr[G3 ⇒ 1]− 1/2|+ δ.

Proof. We have

|Pr[G3 ⇒ 1 ∧ Bad]− 1/2|
= |Pr[G3 ⇒ 1]− Pr[G3 ⇒ 1 ∧ Bad]− 1/2|
≤ |Pr[G3 ⇒ 1]− 1/2|+ Pr[G3 ⇒ 1 ∧ Bad]

≤ |Pr[G3 ⇒ 1]− 1/2|+ Pr[Bad]

≤ |Pr[G3 ⇒ 1]− 1/2|+ δ.

ut

Claim 8. There exists a quantum adversary B such that

|Pr[G3.5 ⇒ 1]− Pr[G4 ⇒ 1]| = AdvDS-IND
PKE′,DM,B,S

and Time(B) ≈ Time(A).

Proof. We construct an adversary B, which is allowed to access two random
oracles Hq and H2, against the disjoint simulatability as follows.

BHq,H2(pk, c∗): It picks b← {0, 1}, sets k∗0 := Hq(c
∗) and k∗1

$← K, and invokes

b′ ← AH1,H2,Deca′(pk, c∗, k∗b ) where A’s oracles are simulated as follows.

− H1(·) is simulated by Hq(Enc
′(pk, ·)).

− H2 can be simulated because B has access to an oracle H2.
− Deca′ is simulated by filtering c∗ and using Hq(·), that is, on input

∑
c,k ψc,k

|c, k〉, B returns
∑
c 6=c∗,k ψc,k |c, k ⊕ Hq(c)〉+

∑
k ψc∗,k |c∗, k ⊕ ⊥〉.

Finally, B returns Jb′ = bK.
This completes the description of B. It is easy to see that B perfectly simulates

G3.5 if c∗ = Enc′(pk,m∗) and G4 if c∗ = S(pk). Therefore, we have

|Pr[G3.5 ⇒ 1]− Pr[G4 ⇒ 1]| = AdvDS-IND
PKE′,DM,B,S

and Time(B) ≈ Time(A). ut
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Claim 9. We have

|Pr[G4 ⇒ 1]− 1/2| ≤ DisjPKE′,S .

Proof. Let Bad′ denote the event that c∗ is in Enc′(pk,M) in G4. Then we have

Pr[Bad′] = DisjPKE′,S .

When Bad′ does not occur, i.e., c∗ /∈ Enc′(pk,M), A obtains no information
about k∗0 = Hq(c

∗). This is because queries to H1 only reveal Hq(c) for c ∈
Enc′(pk,M), and Deca′(c) returns ⊥ if c = c∗. Therefore, we have

Pr[G4 ⇒ 1|Bad′] = 1/2.

Combining the above, we have

|Pr[G4 ⇒ 1]− 1/2|
= |Pr[Bad′] · (Pr[G4 ⇒ 1|Bad′]− 1/2) + Pr[Bad′] · (Pr[G4 ⇒ 1|Bad′]− 1/2)|
≤ Pr[Bad′] + |Pr[G4 ⇒ 1|Bad′]− 1/2|
= DisjPKE′,S

as we wanted. ut

Combining all claims above, we obtain the following inequality:

AdvIND-qCCA
KEM,A = |Pr[G0 ⇒ 1]− 1/2|

≤ |Pr[G0.5 ⇒ 1]− 1/2|+ 8q2Gδ

≤ |Pr[G1 ⇒ 1]− 1/2|+ qH2 · 2
−l+1

2 + 8q2Gδ

≤ |Pr[G1 ⇒ 1 ∧ Bad]− 1/2|+ δ + qH2 · 2
−l+1

2 + 8q2Gδ

= |Pr[G1.5 ⇒ 1 ∧ Bad]− 1/2|+ δ + qH2 · 2
−l+1

2 + 8q2Gδ

= |Pr[G2 ⇒ 1 ∧ Bad]− 1/2|+ δ + qH2 · 2
−l+1

2 + 8q2Gδ

= |Pr[G3 ⇒ 1 ∧ Bad]− 1/2|+ δ + qH2 · 2
−l+1

2 + 8q2Gδ

≤ |Pr[G3 ⇒ 1]− 1/2|+ 2δ + qH2 · 2
−l+1

2 + 8q2Gδ

≤ |Pr[G3.5 ⇒ 1]− 1/2|+ 2δ + qH2 · 2
−l+1

2 + 16q2Gδ

≤ |Pr[G4 ⇒ 1]− 1/2|+ AdvDS-IND
PKE′,DM,B,S + qH2 · 2

−l+1
2 + (16q2G + 2)δ

≤ AdvDS-IND
PKE′,DM,B,S + DisjPKE′,S + qH2 · 2

−l+1
2 + (16q2G + 2) · δ.

ut
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Lemma 5 (IND-qCCA Security of SXY in the QROM, case 2 [22, Theo-
rem 4.1]). Let PKE′ be a δ-correct dPKE with message spaceM and ciphertext
space C. Let H1 : M→K, H2 : {0, 1}l × C → K be hash functions modeled
as quantum random oracles. Suppose that PKE′ is DM-disjoint-simulatable with
a simulator S. Then for any adversary A against the IND-qCCA security of
KEM := SXY[PKE′,H1,H2] issusing qH2 quantum queries to H2, there exists an
adversary B against the DS-IND security of PKE′ such that

AdvIND-qCCA
KEM,A ≤ AdvDS-IND

PKE′,DM,B,S + DisjPKE′,S + qH2 · 2
−l+1

2 + 2δ

and Time(B) ≈ Time(A).

Remark 4. Lemma 5 still holds with our modified definition of DS. The only
thing that needs to be changed is “Pr[Bad] ≤ DisjPKE1,S” in [22, Lemma 4.8],
which should be replaced with “Pr[Bad] = DisjPKE1,S” as (ek, dk)← Gen1 exactly
in the proof.

Remark 5. KEM remains δ-correct.

We also need the following lemma about the security of transformation T.
It is a version without the square-root advantage loss at the cost of stronger
security requirement of the underlying PKE.

Lemma 6 (Security of T in the QROM [5, Theorem 1]). Let PKE0 be
a rPKE with messages space M and random space R. Let G : M→R be a
hash function modeled as a quantum random oracle. Then for any adversary A
against the OW-CPA security of PKE := T[PKE0,G] issusing qG quantum queries
to G with depth dG, there exists an adversary B against the IND-CPA security of
PKE0 such that

AdvOW-CPA
PKE,A ≤ (dG + 2) ·

(
AdvIND-CPA

PKE0,B +
8(qG + 1)

|M|

)
and Time(B) ≈ Time(A).

Finally, we can get the security results of the two KEMs. For simplicity, we
assume the number of parallel queries is np for all oracle algorithms. And we use
AP in the following proofs to denote the adversary against the scheme P.

Combining Lemma 6 with Theorem 1 and Theorem 3, we obtain the following
result for the IND-qCCA security of KEM := SXY ◦ KC ◦ T from the IND-CPA
security of a δ-correct rPKE in the QROM.

Corollary 1 (IND-qCCA Security of SXY ◦ KC ◦ T in the QROM). Let
PKE0 be a δ-correct rPKE with message spaceM, ciphertext space C and random-
ness space R. Let G :M→R, H :M→ {0, 1}n, H1 :M→K, H2 : {0, 1}l×C×
{0, 1}n → K be hash functions modeled as quantum random oracles. Then for any
adversary A against the IND-qCCA security of KEM := SXY[KC[T[PKE0,G],H],
H1,H2] issusing qG, qH, qH1 and qH2 quantum queries to G, H, H1 and H2 with

21



depth dG, dH, dH1 and dH2 , there exists an adversary B against the IND-CPA
security of PKE0 such that

AdvIND-qCCA
KEM,A ≤ 4d′H(d′G + 2) ·

(
AdvIND-CPA

PKE0,B +
8(q′G + 1)

|M|

)
+ (16q2G + 8d′H + 4) · δ + qH2 · 2

−l+1
2 + 2−n

and Time(B) ≈ 2 · Time(A), where d′H := dH + dH1 , d
′
G := 2(dG + dH + 2dH1 + 1)

and q′G := 2(qG + qH + 2qH1 + np).

Proof. From the construction of APKE′ in the proof of Theorem 3, we can know
that APKE′ issues qG+qH1 , qH+qH1 queries to G, H with depth dG+dH1 , dH+dH1 .
Furthermore, from the construction of APKE in the proof of Theorem 1 and the
construction of D in the proof of Lemma 3, we can know that APKE issues at
most (qG + qH1)× 2 + (qH + qH1)× 2 + 2np queries to G with depth (dG + dH1)×
2 + (dH + dH1)× 2 + 2, where the first part comes from D’s twice invocation to
APKE′ , the second part comes from D’s queries to H and H′, and the third part
comes from APKE’s checking to the set T returned by D. ut

Combining Theorem 2 with Lemma 5, we obtain the following result for the
IND-qCCA security of KEM := SXY ◦ KC from the OW-CPA security of a δ-correct
dPKE in the QROM.

Corollary 2 (IND-qCCA Security of SXY ◦ KC in the QROM). Let PKE be
a δ-correct dPKE with message space M and ciphertext space C. Let H : M →
{0, 1}n, H1 :M→K, H2 : {0, 1}l × C × {0, 1}n → K be hash functions modeled
as quantum random oracles. Then for any adversary A against the IND-qCCA
security of KEM := SXY[KC[PKE,H],H1,H2] issusing qH, qH1 and qH2 quantum
queries to H, H1 and H2 with depth dH, dH1 and dH2 , there exists an adversary
B against the OW-CPA security of PKE such that

AdvIND-qCCA
KEM,A ≤ 4d′H · AdvOW-CPA

PKE,B + (4d′H + 3) · δ + qH2 · 2
−l+1

2 + 2−n

and Time(B) ≈ 2 · Time(A), where d′H := dH + dH1 .

Proof. From the construction of APKE′ in the proof of Lemma 5, we can know
that APKE′ issues qH + qH1 queries to H with depth dH + dH1 . ut
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