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Abstract. Deep learning-based side-channel analysis (SCA) represents the de facto
standard in the profiling SCA. Still, this does not mean it is trivial to find neural
networks that perform well for any setting. Based on the developed neural network
architectures, we can distinguish between small neural networks that are easier to
tune and less prone to overfitting but can have insufficient capacity to model the
data. On the other hand, large neural networks would have sufficient capacity but
can overfit and are more difficult to tune. This brings an interesting trade-off between
simplicity and performance.
This paper proposes using a pruning strategy and recently proposed Lottery Ticket
Hypothesis to improve the deep learning-based SCA. We demonstrate that we can
find smaller neural networks that perform on the level of larger networks, where we
manage to reduce the number of weights by more than 90% on average. What is
more, we obtain neural networks that are smaller than state-of-the-art, and still, we
manage to outperform previous top results in a number of settings. Additionally, we
show that pruning can help prevent overfitting and the effects of imbalanced data,
reaching top attack performance for small networks when larger networks do not
manage to break the target at all.
Keywords: Side-channel Analysis · Deep learning · Lottery Ticket Hypothesis ·
Pruning

1 Introduction
Several side-channel analysis (SCA) approaches exploit various sources of information leak-
age in the devices. Common examples of side channels are timing [Koc96], power [KJJ99],
and electromagnetic (EM) emanation [QS01]. Besides a division based on side channels,
it is possible to divide SCA based on the attacker power into non-profiling and profiling
attacks. Non-profiling attacks require fewer assumptions but often require thousands of
measurements (traces) to break a target, especially if protected with countermeasures.
Profiling attacks are considered one of the strongest possible attacks as the attacker has
control over a clone device to build its complete profile [CRR02]. The attacker then
uses this profile to target other similar devices to recover the secret information. The
history of profiling side-channel analysis (SCA) is relatively short, and in less than 20
years, we can distinguish among several research directions. The first direction used
techniques like (pooled) template attack [CRR02, CK14] or stochastic models [SLP05]
and managed to improve the attack performance over non-profiling attacks significantly.
Then, the second direction moved toward machine learning in SCA, and again, a plethora
of results [PHJ+17, HZ12, LPB+15] indicated machine learning could outperform other
profiling SCAs. More recently, as the third direction, we see a change of focus to deep
learning techniques. Intuitively, we can find at least two reasons for this: 1) deep learning
can break targets protected with countermeasures, and 2) deep learning does not re-
quire pre-processing like feature selection [PHJB19] or dimensionality reduction [APSQ06].
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While the SCA community progressed quite far in the deep learning-based SCA in just a
few years, there are many knowledge gaps. One example would be how to successfully and
systematically find neural networks that manage to break various targets.

Thus, we still need to find approaches that allow designing neural networks that perform
well for various targets. Even more, we would want to have an approach that manages to
transform a good performing architecture for one setting into a good performing architecture
for some different setting. Finally, it would be ideal if the top-performing architectures could
be small (so they are more computationally efficient, and hopefully, easier to understand).
Unfortunately, this is not an easy task as all possible neural networks’ search space is huge,
and there are no general guidelines on how to construct a neural network that will break the
target. Current efforts mainly concentrate on finding better hyperparameters by random
search [PCP20], Bayesian optimization [WPP20], reinforcement learning [RWPP21], or
following a specific methodology [ZBHV19, WAGP20]. Still, there are alternatives to how
to provide neural networks that are small and perform well.

In the machine learning domain, there is a technique called pruning (or sparsification)
that refers to a systematical removal of parameters from existing neural networks. Com-
monly, pruning is used on large neural networks that show good performance, and the goal
is to produce a smaller network with similar performance. While pruning [Jan89, BOFG20]
is a rather standard technique in deep learning, it has not been investigated before for SCA
to the best of our knowledge. Similarly, the lottery ticket hypothesis [FC18] attracted quite
some attention in the machine learning community, but none (as far as we know) in the
SCA community. On the other hand, there are several attempts at creating methodologies
for deep learning-based SCA [ZBHV19, WAGP20], but there are some issues. First, it is
not easy to use those methodologies and generalize for other datasets or neural network
architectures. Second, the conflicting results among those methodologies indicate it is
difficult to find a single approach that works the best for everything.

This paper applies the recent Lottery Ticket Hypothesis in the profiling side-channel
analysis. After training a (relatively large) neural network, we apply the pruning process
by removing the activity of small weights from the neural network. We then re-initialize
the pruned neural network with the same initial weights set for the original large neural
network. The pruned and re-initialized network shows equal or, most of the time, superior
performance compared to the large trained network. We emphasize:
• Pruning is convenient for large neural networks. Finding efficient and small networks

is more difficult than starting with a large model and then pruning it. In this paper,
we consider neural network architectures with up to 1M trainable parameters.
• Pruning has two main advantages for SCA: (1) if one finds a large model that

generalizes well, pruning favors explainability and interpretability. (2) Pruning acts
as a strong regularizer, which is important for noisy and small SCA datasets.

The results demonstrate that when the large network cannot reach a successful attack
(low guessing entropy), applying the lottery ticket hypothesis leads to a successful key
recovery, even when the number of profiling traces is low. More importantly, we verify that
when training a large deep neural network provides guessing entropy close to a random
guess, a pruned and re-initialized neural network can successfully recover the key. Our
main contributions are:

1. We introduce the pruning approach into profiling SCA, enabling us to propose a
“methodology” that can work on top of other approaches. Our approach applies
to any neural network, regardless of whether it is selected randomly or obtained
through some other methodology. Naturally, depending on how good is the original
network, the results from our approach can differ.

2. As reported in this paper, we can find smaller and better performing networks by
using the pruning methodology, even when the original network does not work.

3. We demonstrate that the Lottery Ticket Hypothesis holds for SCA, which is a
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significant finding due to different metrics used in SCA.
4. We investigate how pruning can be a useful strategy when using a single neural

network to attack the whole key (and not just a single key byte as commonly reported
in the literature). Indeed, pruning and re-initializing proved to be very powerful
options for adjusting the neural network to different settings.

2 Background
2.1 Notation
Let calligraphic letters like X denote sets, and the corresponding upper-case letters X
denote random variables and random vectors X over X . The corresponding lower-case
letters x and x denote realizations of X and X, respectively. Next, let k be a key candidate
that takes its value from the keyspace K, and k∗ the correct key. We define a dataset as a
collection of traces T, where each trace ti is associated with an input value (plaintext or
ciphertext) di and a key ki. When considering only a specific key byte j, we denote it as
ki,j , and input byte as di,j .

The dataset consists of |T | traces. From |T | traces, we use N traces for the profiling
set, V traces for the validation set, and Q traces for the attack set. Finally, θ denotes the
vector of parameters to be learned in a profiling model, and H denotes the hyperparameters
defining the profiling model.

2.2 Supervised Machine Learning in Profiling SCA
Supervised machine learning considers the machine learning task of learning a function
f mapping an input X to the output Y (f : X → Y )) based on input-output pairs.
The function f is parameterized by θ ∈ Rn, where n represents the number of trainable
parameters.

Supervised learning happens in two phases: training and test, which corresponds to
SCA’s profiling and attack phases. Thus, in the rest of this paper, we use the terms
profiling/training and attack/testing interchangeably. As the function f , we consider a
deep neural network with the Softmax output layer.

1. The goal of the training phase is to learn parameters θ′ that minimize the empirical
risk represented by a loss function L on a dataset T of size N .

2. In the attack phase, the goal is to make predictions about the classes

y(t1, k∗), . . . , y(tQ, k∗),

where k∗ represents the secret (unknown) key on the device under the attack (or
the key byte). The outcome of predicting with a model f on the attack set is a
two-dimensional matrix P with dimensions equal to Q× c (the number of classes c
depends on the leakage model as the class label v is derived from the key and input
through a cryptographic function and a leakage model). To reach the probability
that a certain key k is the correct one, we use the maximum log-likelihood approach:

S(k) =
Q∑

i=1
log(pi,v). (1)

The value pi,v denotes the probability that for a key k and input di, we obtain the
class v.

Note that with machine learning algorithms, we are interested in reaching good gener-
alization, where it refers to how well the concepts learned by a machine learning model
apply to previously unseen examples. At the same time, we aim to avoid underfitting and
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overfitting. Overfitting happens when a model learns the detail and noise in the training
data, negatively impacting the model’s performance on unseen data. Underfitting happens
with a model that cannot model the training data or generalize to unseen data.

In SCA, an adversary is not interested in predicting the classes in the attack phase
but obtaining the secret key k∗. To estimate the effort required to obtain the key, we will
use the guessing entropy (GE) or success rate metrics [SMY09]. An attack outputs a key
guessing vector g = [g1, g2, . . . , g|K|] in decreasing order of probability, which means that
g1 is the most likely key candidate and g|K| the least likely key candidate. The success rate
is the average probability that the secret key k∗ is the first element of the key guessing
vector g. Guessing entropy is the average position of k∗ in g. Commonly, averaging is done
over 100 independent experiments to obtain statistically significant results. As common in
the deep learning-based SCA, we consider multilayer perceptron (MLP) and convolutional
neural networks (CNNs) (details in Appendix A).

2.3 Datasets and Leakage Models
During the execution of the cryptographic algorithm, the processing of sensitive information
produces a specific leakage. In this paper, we consider the Hamming weight leakage model
since the considered datasets leak in this leakage model 1.There, the attacker assumes the
leakage is proportional to the sensitive variable’s Hamming weight. When considering a
cipher that uses an 8-bit S-box, this leakage model results in nine classes (c = 9).

ASCAD Datasets. The first target platform we consider is an 8-bit AVR microcon-
troller running a masked AES-128 implementation [BPS+20]. There are two versions of the
ASCAD dataset. The first version of the ASCAD dataset has a fixed key and 50 000 traces
for profiling and 10 000 for testing.The second version of the ASCAD dataset has random
keys, and it consists of 200 000 traces for profiling and 100 000 for testing. For both versions,
we attack the key byte 3 unless specified differently. For the ASCAD dataset, the third
key byte is the first masked byte. For ASCAD with the fixed key, we use a pre-selected
window of 700 features, while for ASCAD with random keys, the window size equals 1 400
features. These datasets are available at https://github.com/ANSSI-FR/ASCAD.

CHES CTF 2018 Dataset. This dataset refers to the CHES Capture-the-flag (CTF)
AES-128 dataset, released in 2018 for the Conference on Cryptographic Hardware and
Embedded Systems (CHES). The traces consist of masked AES-128 encryption running on
a 32-bit STM microcontroller. We use 45 000 traces for the training set (CHES CTF Device
C), containing a fixed key. The attack set consists of 5 000 traces (CHES CTF Device
D). The key used in the training and validation set is different from the key configured
for the test set. CHES CTF 2018 trace sets contain the power consumption of the full
AES-128 encryption, with a total number of 650 000 features per trace. The raw traces were
pre-processed in the following way. First, a window resampling is performed, and later we
concatenated the trace intervals representing the processing of the masks (beginning of the
trace) with the first samples (processing of S-boxes) located after an interval without any
particular activity (flat power consumption profile). The resulting traces have 2 200 features.
The original dataset is available at https://chesctf.riscure.com/2018/news 2.

3 Related Works
The goal of finding neural networks that perform well in SCA is probably the most ex-
plored direction in machine learning-based SCA. The first works commonly considered
multilayer perceptron and reported good results even though there were not many available
details about hyperparameter tuning or the best-obtained architectures [GHO15, MHM14,

1In Appendix D, we provide some results for the ID leakage model also.
2The link to download processed traces will be provided after paper review.

https://github.com/ANSSI-FR/ASCAD
https://chesctf.riscure.com/2018/news
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YZLC12, HPGM16]. In 2016, Maghrebi et al. made a significant step forward in the pro-
filing SCA as they investigated the performance of convolutional neural networks [MPP16].
Since the results were promising, this paper started a series of works where deep learning
techniques (most dominantly MLP and CNNs) were used to break various targets efficiently.

Soon after, works from Cagli et al. [CDP17], Picek et al. [PHJ+18], and Kim et
al. [KPH+19] demonstrated that deep learning could efficiently break implementations
protected with countermeasures. While those works also discuss hyperparameter tuning, it
was still not straightforward to understand the effort required to find the neural networks
that performed well. This effort became somewhat clearer after Benadjila et al. investigated
hyperparameter tuning for the ASCAD dataset [BPS+20]. Indeed, while considering only
a subset of possible hyperparameters, the tuning process was far from trivial.

Zaid et al. proposed a methodology for CNNs for profiling SCA [ZBHV19]. While
the methodology has limitations, the results obtained are significant as they reached top
performance with never smaller deep learning architectures. This direction is further
investigated by Wouters et al. [WAGP20] who reported some issues with [ZBHV19] but
managed to find even smaller neural networks that perform similarly well. Perin et al.
conducted a random search in pre-defined ranges to build deep learning models to form
ensembles [PCP20]. Their findings showed that even random search (when working on some
reasonable range of hyperparameters) could find neural networks that perform extremely
well. Finally, van ver Valk et al. used a technique called mimicking to find smaller neural
networks that perform like the larger ones [vKPB20]. Still, the authors did not use pruning
but run experiments until they found a smaller network that outputs the same results as
the larger one. Thus, the approaches are significantly different.

Thus, while the methodologies mentioned in the previous paragraph work as evident in
the excellent attack performance, there are still questions left unanswered. What is clear
is that we can reach good results with (relatively) small neural networks. What remains
to be answered is how to adapt those methodologies for different datasets, or can we find
even smaller neural network architectures that perform as well (or even better). We aim
to provide the answers to those questions in this work.

4 The Lottery Ticket Hypothesis (LTH)
The Lottery Ticket Hypothesis was originally proposed by Franke and Carbin in [FC18]:
"Lottery Ticket Hypothesis: a randomly initialized dense neural network contains a
sub-network that is initialized such that - when trained in isolation - it can match the test
accuracy of the original network after training for at most the same number of iterations".

Simplified, the hypothesis assumes that randomly initialized deep neural networks
contain sub-networks that, when trained in isolation (without considering other parts of
the network), reach test accuracy comparable to the original network in a similar number
of iterations. The sub-networks are obtained by (weight) pruning the original network. The
authors of [FC18] observed that the sub-network obtained after pruning (with a sparsity
level of P%) provides superior performance when re-initialized with the weights used to
initialize the original weights. These top-performing sub-networks are then called the
winning tickets. The sparsity denotes the percentage of the removed network (e.g., 90%
sparsity on an MLP consisting of one hidden layer with 100 neurons would remove 90
neurons).

4.1 One-shot Pruning
Pruning is a popular deep learning method to reduce a trained model’s size while keeping
efficient computation during inference time and minimal accuracy loss. One of the main
reasons for pruning is compression, allowing complex trained models to run on devices with
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limited resources. However, to find an efficient pruned network, the large overparameterized
baseline model (the baseline model refers to the trained neural network architecture that
is not pruned) still needs to be trained before applying pruning to remove unnecessary
weights.

As we show in the experimental results section, we apply the Lottery Ticket Hypothesis
on public (and protected) AES datasets, which also works when considering other than
accuracy performance metrics (e.g., success rate, guessing entropy). The process starts
by training an overparameterized neural network model for a single target AES key byte.
Afterward, the model is pruned according to a pre-selected method (here we pruned
the smallest weights), and this pruned model is re-initialized and re-trained (with more
efficiency, e.g., fewer epochs) for all AES key bytes. Therefore, the lottery ticket hypothesis
reduces the complexity of deep learning in profiling SCA. We give the one-shot pruning
procedure for LTH in Algorithm 1.

Algorithm 1 One-shot Pruning.
1: procedure one-shot pruning(original neural network f , original dataset x, random initial

weights θ0, training epoch θj , trained weight θj , pruning ratio P%, mask m)
2: θj ← Pretrain Model f(x,θ0) for j epochs
3: m ← Prune P% of the smallest weights from θj

4: for i=1 to j do
5: Train f(x,θ0�m)
6: end for
7: end procedure

In the pruning process, the “smallest weights” are selected according to their absolute
magnitude. In a neural network, the activations in a forward propagation are mostly
affected by larger weight values. Therefore, pruning the smallest weights remove those
weights that are not significantly impacting the predictions.

In Figure 1, we depict one-shot pruning procedure. The first part of the figure displays
the reference training procedure with no pruning where the weights at the beginning of
the training process are different from those at epochs A and B. The lower figure shows
the setup when we prune the smallest weights and are left to choose whether we randomly
initialize the remaining weights or re-initialize them from the original weights.

4.2 Winning Tickets in Profiling SCA
In [FC18], a winning ticket is defined as a sub-network that, when trained in isolation (after
being re-initialized with the same baseline model initial weights), provides classification
accuracy equivalent or superior to the baseline model. For profiling SCA, we define
a winning ticket as a sub-network that provides a test guessing entropy lower than or
equivalent to the guessing entropy obtained from the original baseline model. Note that
hyperparameters defined for the baseline model (which affects the total number of training
parameters) and the number of profiling traces directly affect the chances to identify a
winning ticket as demonstrated in Section 5. In Appendix B, we provide results indicating
how the number of epochs for the baseline model affects pruned model’s performance.

Recall, pruning refers to the removal of neurons (neuron-based pruning) or weight
connections (weight-based pruning) from the neural network activity. The most popular
pruning technique consists of keeping a number of weight connections based on their weight
value. This means that the smallest weights are pruned out from the model 3. However,
one should note that the concept of winning ticket does not imply that pruning is applied
to well-selected pruned weights or neurons. For instance, if one prune a certain percentage

3Similarly, pruning can be considered as keeping the largest weights in model.
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Figure 1: One-shot pruning procedure for LTH.

of elements selected at random and the remaining sub-network still performs as well as
the baseline model, the resulting model is still called a winning ticket. Obviously, pruning
techniques should also be explored to find a sub-network with more efficiency. In Section 5,
we provide an extensive set of experimental results showing that pruning the smallest
weights provides excellent results for SCA. Still, we do not claim that pruning, e.g., random
weights, would not give good results for specific settings.

Deep learning-based SCA requires, ideally, the selection of the smallest possible neural
network architecture that provides good generalization for a given target. Small models
are faster to train and easier to interpret. The challenge of finding a well-performing small
architecture may grow proportionally to the difficulty of the evaluated side-channel dataset
(misalignment, noise, countermeasures). Nevertheless, side-channel traces usually provide
a low signal-to-noise ratio, and regularization techniques play an important role in leakage
learnability. Small models are self-regularized, mainly because they offer less capacity to
overfit the training set. This justifies the importance of finding winning tickets in SCA.
Regardless of the evaluated dataset, starting from a large baseline model and applying
the Lottery Ticket Hypothesis improves the chances to create a small and efficient neural
network model.

5 Experimental Results
This section provides experimental results with different neural network architectures
and three publicly available SCA datasets. First, we describe the chosen MLP and CNN
models. Next, we demonstrate that the Lottery Ticket Hypothesis procedure can provide,
in numerous cases, superior results compared to the performance of the baseline model.
In Appendix B, we provide results analyzing the influence of the number of epochs on
the attack performance of baseline and pruned models. Appendix C provides additional
results showing pruning helps when considering the success rate metric also.

5.1 Baseline Neural Networks
In our experiments, we define six different baseline models: three MLPs and three CNNs.
Here, the main idea is to demonstrate how pruning and weight re-initialization (the Lottery
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Ticket Hypothesis) provide different SCA results if the baseline model varies in size or
capacity. The models are selected based on the sizes of commonly used architectures from
the related works [ZBHV19, WAGP20, PCP20].

Table 1 lists the hyperparameter configurations for MLP4, MLP6, and MLP8 models.
The main idea is to verify how pruning and re-initialization work for MLP architectures
with different numbers of dense layers and, consequently, different number of trainable
parameters. Note that we have not selected very large neural network models. All of
them contain less than one million trainable parameters. Here, the goal is to demonstrate
that even a moderately-sized model can be significantly reduced according to the Lottery
Ticket Hypothesis procedure presented in Algorithm 1 and still keep or provide improved
profiling SCA results.

The principle also holds for the chosen CNN models. Table 2 shows three CNN
architectures, denoted as CNN3, CNN4, and CNN4-2. We defined relatively small CNNs
(but still larger than state-of-the-art in, e.g., [ZBHV19]), which are sufficient to break the
evaluated datasets. CNN3 has only one convolution layer, while CNN4 and CNN4-2 contain
two convolution layers each. In particular, CNN4-2 has larger dense layers compared to
CNN4 to allow more complex relations to be found between the input-output data pairs.
It is important to notice that we are defining the same models for three different datasets,
and it is expected that for baseline models (without pruning), the performance might not
be optimal for all evaluated datasets. Although it is out of this paper’s scope to identify
one model that generalizes well for all scenarios, we demonstrate that applying the Lottery
Ticket Hypothesis procedure is a step forward in this important deep learning-based SCA
research direction.

Table 1: MLP architectures (batch size 400, learning rate 0.001, ADAM, selu activation
functions). Number of parameters vary for different datasets due to different input layer
dimensions.

Layer MLP4 MLP6 MLP8

Dense_1 200 neurons 200 neurons 200 neurons

Dense_2 200 neurons 200 neurons 200 neurons

Dense_3 200 neurons 200 neurons 200 neurons

Dense_4 200 neurons 200 neurons 200 neurons

Dense_5 - 200 neurons 200 neurons

Dense_6 - 200 neurons 200 neurons

Dense_7 - - 200 neurons

Dense_8 - - 200 neurons

Softmax 9 neurons 9 neurons 9 neurons

Parameters (ASCAD Random Keys) 402 609 483 009 563 409

Parameters (ASCAD Fixed Key) 262 609 343 009 423 409

Parameters (CHES CTF 2018) 562 609 643 009 723 409

We also provide experimental results demonstrating that the procedure described in
Section 4 depends on several aspects such as the number of profiling traces, number of
parameters in the baseline (original) network, and sparsity level in the pruning process.
By identifying the optimal sparsity level for pruning, we can drastically improve the
performance of re-initialized sub-networks. Moreover, in some scenarios, we show that
even when a large baseline model cannot recover the key, the pruned and re-initialized
sub-network succeeds, especially when the number of profiling traces is small.



Guilherme Perin, Lichao Wu and Stjepan Picek 9

Table 2: CNN architectures (batch size 400, learning rate 0.001, ADAM, selu activation
function). Number of parameters vary for different datasets due to different input layer
dimensions.

Layer CNN3 CNN4 CNN4-2

Conv1D_1 16 filters
ks=10, stride=5

16 filters
ks=10, stride=5

16 filters
ks=10, stride=5

MaxPool1D_1 ks=2, stride=2 ks=2, stride=2 ks=2, stride=2

- BatchNorm BatchNorm BatchNorm

Conv1D_2 - 16 filters
ks=10, stride=5

16 filters
ks=10, stride=5

MaxPool1D_2 - ks=2, stride=2 ks=2, stride=2

- - BatchNorm BatchNorm

Dense_1 128 neurons 128 neurons 256 neurons

Dense_2 128 neurons 128 neurons 256 neurons

Softmax 9 neurons 9 neurons 9 neurons

Parameters (ASCAD Random Keys) 302 713 47 305 124 489

Parameters (ASCAD Fixed Key) 159 353 32 969 95 817

Parameters (CHES CTF 2018) 466 553 63 689 157 257

Interpreting Plots:

This section’s results are given in terms of guessing entropy for different baseline models,
datasets, and sparsity levels. The sparsity level is provided in the x-axis, where we apply
pruning to the trained baseline neural network from 1% up to 99%. In each plot, there is
a green line that represents the resulting guessing entropy for the baseline model without
pruning. Thus, the green line is shown together with the plots to indicate what would be
the obtained guessing entropy when baseline models are trained for 300 epochs without
any pruning. Use consider 300 epochs in order to skip possible underfitting scenarios. The
models we consider have at most 1 million trainable parameters, and with 300 epochs,
there are no extreme overfitting cases. The blue line is the resulting guessing entropy
after the trained baseline model is pruned according to the indicated sparsity level (x-axis)
and initialized with random weights and trained for 50 epochs. Finally, the red line is
the resulting guessing entropy from the same previous pruned model and re-initialized
with initial weights from the baseline model and trained for 50 epochs. For each sparsity
level, each experiment is repeated ten times. Therefore, each plot results from training
98× 2× 10 = 1 960 pruned models.

We briefly discuss the limits that pruning and the Lottery Ticket Hypothesis offer
regarding the results and their explainability:

1. Pruning allows making smaller neural networks that perform on the level or even
better than larger neural networks.

2. The Lottery Ticket Hypothesis assumes that there will be smaller, good performing
sub-networks, so-called winning tickets.

3. Winning tickets in profiling SCA allow reaching small sub-networks with good attack
performance, as measured with GE and SR.

4. Pruning and LTH are not methods to provide explainability. However, a pruned model
represents a small model which favors explainability (e.g., visualization techniques)
and interpretability (e.g., what classes are better classified by the pruned model).
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(a) 30 000 profiling traces. (b) 40 000 profiling traces. (c) 50 000 profiling traces.

Figure 2: ASCAD Fixed Key, MLP4

(a) 30 000 profiling traces. (b) 40 000 profiling traces. (c) 50 000 profiling traces.

Figure 3: ASCAD Fixed Key, MLP6

5.2 ASCAD with a Fixed Key

Figures 2, 3, and 4 provide results for the ASCAD fixed key dataset when MLP4, MLP6,
and MLP8 are used as baseline models, respectively, for different number of profiling
traces. There, we can immediately conclude that pruning and re-initializing the neural
network according to the LTH procedure provides similar results regardless of the size of
MLP. Additionally, the number of profiling traces used in each model does not affect these
pruned models’ performance. If the pruned models are initialized with random weights,
the model’s performance is directly related to model size and the number of profiling
traces. Adding more profiling traces improves the behavior of the model that is randomly
initialized, approaching the model’s behavior that is re-initialized. The baseline model
performs better than the pruned model that uses random initialization if the percentage
of pruned weights is larger than 50% (for MLP8), and the number of profiling traces is
sufficient to build a strong model. For the pruned model that is re-initialized, the baseline
model performs better only if we prune more than 90% of weights. Interestingly, we can
observe a marginally better performance of the pruned and re-initialized model for MLP6
if the number of profiling traces is low (30 000). This happens as the large (baseline) model
has too much capacity, and it starts to overfit.

Next, we give results for three different CNN architectures. Figures 5 and 6 indicate
that for 30 000 training traces, as the dataset is small, the baseline model generally performs
well but shows signs of overfitting. Then, pruning up to 60% of weights improves the
performance regardless of the weight initialization procedure. Increasing the number of
traces shows improved behavior for the baseline model as now we require larger architecture
to reach the full capacity. Still, carefully selected sub-networks are sufficient to break
the target, even when pruning 80% of weights. Going to a more complex architecture
(CNN4), the baseline model performs better than the CNN3 model as it has a stronger
feature selection. Simultaneously, pruning enables similar performance where the larger
the training set, the smaller the differences between weight initialization procedures (re-
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(a) 30 000 profiling traces. (b) 40 000 profiling traces. (c) 50 000 profiling traces.

Figure 4: ASCAD Fixed Key, MLP8

(a) 30 000 profiling traces. (b) 40 000 profiling traces. (c) 50 000 profiling traces.

Figure 5: ASCAD Fixed Key, CNN3

(a) 30 000 profiling traces. (b) 40 000 profiling traces. (c) 50 000 profiling traces.

Figure 6: ASCAD Fixed Key, CNN4

(a) 30 000 profiling traces. (b) 40 000 profiling traces. (c) 50 000 profiling traces.

Figure 7: ASCAD Fixed Key, CNN4-2

initialization or random). In Figure 7, we consider the most complex CNN architecture.
Interestingly, for 40 000 and 50 000 traces, we observe an even better performance of
pruned networks, meaning that the baseline network overfits and using more profiling
traces enables stronger attack performance for sub-networks.
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(a) 60 000 profiling traces. (b) 100 000 profiling traces. (c) 200 000 profiling traces.

Figure 8: ASCAD Random Keys, MLP4

(a) 60 000 profiling traces. (b) 100 000 profiling traces. (c) 200 000 profiling traces.

Figure 9: ASCAD Random Keys, MLP6

5.3 ASCAD with Random Keys
In this section, we provide results for the ASCAD random keys dataset, as introduced in
Section 2.3. Again, we apply the LTH procedure for a different number of profiling traces
(60 000, 100 000, and 200 000) on the six different baseline models (MLP4, MLP6, MLP8,
CNN3, CNN4, and CNN4-2).

Figure 8 shows results for different number of profiling traces and the MLP4 baseline
model. This MLP model has four dense layers, and it can be considered a small model,
which is sufficient for the ASCAD dataset for a large number of profiling traces (above
100 000), as indicated by the baseline model guessing entropy results. However, if the
number of profiling traces is reduced (60 000), the guessing entropy result for the baseline
model trained for 300 epochs shows worse results due to overfitting. On the other hand,
applying the Lottery Ticket Hypothesis on this MLP4 baseline model shows good results
even when the number of profiling traces is reduced. Comparing the blue and red lines, we
can also verify that re-initializing the pruned model to the initial baseline model weights
shows superior results for higher sparsity levels (% of pruned weights).

The observations are confirmed in Figures 9 and 10 for MLP models with more capacity
(MLP6 and MLP8). Indeed, profiling sets that are too small cause overfitting for the
baseline model, which can be easily resolved following the pruning method. Notice that
the random initialization always works worse than re-initialization, and it also gives more
irregular behavior due to the randomness in the process. This confirms that the Lottery
Ticket Hypothesis is valid in the profiling SCA context. As shown in Figure 9, pruning
approximately 90% of the weights from the baseline model results in a successful attack
when weights are set to the initial baseline weights.

Comparing Figures 9 and 10, the larger baseline models tend to provide less successful
results when the Lottery Ticket Hypothesis procedure is applied. Larger baseline models
may overfit training data more easily, and, as a consequence, the pruning process is applied
to a model that might overfit. The solution for this problem is to consider early stopping
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(a) 60 000 profiling traces. (b) 100 000 profiling traces. (c) 200 000 profiling traces.

Figure 10: ASCAD Random Keys, MLP8

(a) 60 000 profiling traces. (b) 100 000 profiling traces. (c) 200 000 profiling traces.

Figure 11: ASCAD Random Keys, CNN3

for the baseline model training. This way, pruning would be applied to the baseline model
weights when they reach the best training epoch. To confirm our hypothesis, we can
consider Figure 10c. The baseline model (MLP8) is trained on 200 000 profiling traces
for 300 epochs and does not overfit, as seen in the baseline model’s guessing entropy. In
this case, the pruned model performance (when weights are re-initialized to the initial
baseline model weights) is as good as for smaller baseline models trained on the same
number of profiling traces (see, e.g., Figure 9c). The CNN architectures selected for this
analysis show better GE results for the baseline model when more profiling traces are
used. However, when less profiling traces are used, as is the case of results provided in
Figures 11b, 12b, and 13b, the baseline guessing entropy is not reaching 1 (only for CNN3
it reaches minimum GE of 4 when trained on 200 000 traces). Adding more profiling
traces helps, but the number of profiling traces should align with the model complexity.
The evaluated CNN models worked well for the ASCAD fixed key dataset, as shown in
the last section. However, these models (especially CNN4 and CNN4-2) appear to be
less appropriate for the ASCAD random keys dataset. In such cases, pruning plays an
important role to (partially) overcome this. After pruning, it is possible to reach very low
GE values (under 5) for a specific percentage of pruned weights. In particular, results
show pruning plus weight re-initialization is better than pruning plus random initialization.
For all cases, we can prune up to around 50% of weights and still reach good performance
even though we use (relatively) simple CNN architectures.

5.4 CHES CTF 2018
For the CHES CTF 2018 dataset, we repeated the experiments on the same neural network
architectures defined in Tables 1 and 2. In this case, we observed much better results
for MLPs compared to the CNN performances. Thus, for this dataset and MLPs, we
confirmed the practical advantage of considering the Lottery Ticket Hypothesis procedure
in profiling SCA.



14 The Lottery Ticket Hypothesis in SCA

(a) 60 000 profiling traces. (b) 100 000 profiling traces. (c) 200 000 profiling traces.

Figure 12: ASCAD Random Keys, CNN4

(a) 60 000 profiling traces. (b) 100 000 profiling traces. (c) 200 000 profiling traces.

Figure 13: ASCAD Random Keys, CNN4-2

(a) 20 000 profiling traces. (b) 30 000 profiling traces. (c) 40 000 profiling traces.

Figure 14: CHES CTF 2018, MLP4

Figure 14 shows the guessing entropy for different sparsity levels on three different
number of profiling traces: 20 000, 30 000, and 40 000. As indicated by the green line in
Figures 14a, 14b, and 14c, the baseline guessing entropy cannot reach 1 for MLP4 trained
on 300 epochs. Adding more profiling traces helps, but still GE stays above 1. When
the network is pruned, we can immediately see how GE improves, especially for sparsity
levels around 80% to 95%. The re-initialization of pruned weights with the initial baseline
weights shows better results than pruning with the random initialization. Figures 15 and 16
confirm our observations as more profiling traces is required for good attack performance
for the baseline model, especially as the architecture becomes more complex. On the other
hand, we can prune up to 95% of weights if we re-initialize the pruned model and still
reach superior attack performance.

Results for CNNs on the CHES CTF 2018 dataset are acceptable (i.e., converging to
GE close to 1) for the CNN3 architecture only, as shown in Figure 17. There, we see
the benefit of adding more profiling traces as the baseline model overfits. Still, some
sub-networks are providing better attack performance. For CNN4 and CNN4-2 (Figures 18
and 19), the baseline model provides poor performances when trained on 300 epochs.
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(a) 20 000 profiling traces. (b) 30 000 profiling traces. (c) 40 000 profiling traces.

Figure 15: CHES CTF 2018, MLP6

(a) 20 000 profiling traces. (b) 30 000 profiling traces. (c) 40 000 profiling traces.

Figure 16: CHES CTF 2018, MLP8

(a) 20 000 profiling traces. (b) 30 000 profiling traces. (c) 40 000 profiling traces.

Figure 17: CHES CTF 2018, CNN3

We postulate this happens as the baseline model has a significantly larger capacity than
needed, so it either overfits or underfits, becoming similar to random guessing. In other
words, CNN4 and CNN4-2 on smaller profiling sets (lower than 30 000 traces) show no
generalization for the baseline model, indicating that these two models are not compatible
with the target dataset. Even with those models, we can observe how the Lottery Ticket
Hypothesis reduces guessing entropy for specific sparsity level ranges. Observing Figures 18
and 19, for sparsity levels around 70%, the pruned model re-initialized with the initial
baseline weights can reach significantly lower guessing entropy (GE < 70) after training for
50 epochs. Increasing the number of attack traces (we consider only 2 000 attack traces)
could lead to successful key recovery, which is particularly interesting if we consider that
a baseline model provided performance close to random guessing. When the number of
profiling traces is increased to 40 000 traces (Figures 18c and 19c), the baseline model
shows slightly better results and pruning plus re-initialization still improves the attack
performance. In this case, we can verify that pruning plus random initialization might not
be a good procedure, as the guessing entropy results are inferior to the baseline model
results.
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(a) 20 000 profiling traces. (b) 30 000 profiling traces. (c) 40 000 profiling traces.

Figure 18: CHES CTF 2018, CNN4

(a) 20 000 profiling traces. (b) 30 000 profiling traces. (c) 40 000 profiling traces.

Figure 19: CHES CTF 2018, CNN4-2

5.5 Applying LTH on Small Neural Networks (Case Study: Methodol-
ogy CNN Architecture [ZBHV19])

In [ZBHV19], the authors proposed a methodology to construct efficient CNNs for profiled
side-channel analysis. Results were further improved in [WAGP20]. For the ASCAD fixed
key dataset and the Hamming weight leakage model of an S-box output (byte 3) on AES
encryption round 1, the built CNN architecture contains only 14 235 trainable parameters.
The target dataset contains 50 000 profiling traces, which is a large number for such a
small architecture. In this section, we evaluate the Lottery Ticket Hypothesis procedure
on this small model. The baseline model is trained for 50 epochs; the same number defined
in [ZBHV19] We note that the neural networks in [ZBHV19] were developed for the ID
leakage model. We adapt it by changing the number of classes from 256 to 9. While this
may not be a completely fair comparison, we believe it is very interesting as it shows that
pruning can be used to efficiently adapt from one neural network architecture and leakage
model into another one. We give results for the ID leakage model in Appendix D.

Figure 20a shows results for different the model trained with 50 000 profiling traces.
Pruning is applied from 1% up to 99% of trainable weights. Note that this CNN architecture,
which is already small, can be even reduced to 50% of its original size and still achieve
successful key recovery. An interesting fact is that this time re-initialization of weights
according to the Lottery Ticket Hypothesis procedure provides similar results to re-
initializing the weights randomly. In this case, we found that the LTH procedure mostly
shows advantages for the minimum baseline model sizes. To confirm our hypothesis, we
increased the size of the CNN architecture [ZBHV19] from 14 235 to 28 653 by doubling
the number of neurons in dense layers from 10 to 20. The guessing entropy results in
Figure 20b demonstrate that the LTH procedure allows successful key recovery when
sparsity level reaches 80%, while random initialization after pruning reaches GE = 1 for a
maximum of 74% of sparsity.
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(a) 50 000 profiling traces (14 235 parame-
ters).

(b) 50 000 profiling traces (28 653 parame-
ters).

Figure 20: ASCAD fixed key dataset, CNN Architecture [ZBHV19] with different number
of parameters.

5.6 Summary of Results
Table 3 gives the percentages of the pruned weights that result in the successful key
recovery. Notice that only when the baseline model is not successful, it happens that the
pruned model is not successful. Even in those cases, pruned models can show much better
performance. In general, we can prune most of the weights in a network and still obtain
good attack performance. The more complex architectures commonly used somewhat
lower pruning rates as the relations that such networks find tend to be more complex.
Using more traces also usually increases the maximally allowed pruning percentage.

5.7 Attacking the Full Key with One Pruned Model
The previous section demonstrated that pruning and re-initializing the pruned model with
initial baseline weights is very efficient when focusing on one AES key byte. The only draw-
back in the procedure presented above is identifying the optimal sparsity level percentage
to obtain a stable and successful (winning ticket) model. This section demonstrates that
such a procedure is only needed for one single key byte when attacking the full AES key.
Once a pruned model is created and the correct amount of pruned weights is defined, this
pruned model can be directly applied to the remaining key bytes.

In this section, we only consider CHES CTF 2018 dataset. After identifying that for
MLP4 and CNN3 (we consider those two models since they reached the best results as
discussed in the previous section), a sparsity level of 80% shows good results when applying
the LTH procedure, we train the baseline models for 20 epochs on the first key byte (key
byte 0) and re-use the pruned model with 80% of sparsity on the remaining 15 key bytes.
Results for MLP4 model are shown in Figure 21.

As shown in Figure 21a, the average guessing entropy 4 for the 16 AES key bytes is
lower after the processing of 50 epochs. Analyzing GE during training, as illustrated in
Figure 21b indicates that the baseline model converges faster than the pruned models.
However, because the baseline model is over-parameterized, it starts to show overfitting
after approximately 20 epochs, which results in GE increase for more epochs. Using the
LTH procedure with the same baseline model for all key bytes, we achieve a stable guessing
entropy even processing 50 epochs. This immediately shows that LTH brings an advantage
compared to retraining the same baseline model for different key bytes, and no expensive
early stopping mechanism (such as calculating guessing entropy for each epoch) needs to

4Guessing entropy is averaged over 16 key bytes.
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Table 3: % of pruned weights that leads to successful byte key recovery with the LTH
procedure.

Dataset / Traces 30 000 40 000 50 000

ASCAD Fixed Key - MLP4 1% - 88% 1% - 88% 1% - 87%

ASCAD Fixed Key - MLP6 1% - 86% 1% - 86% 1% - 87%

ASCAD Fixed Key - MLP8 1% - 88% 1% - 85% 1% - 87%

ASCAD Fixed Key - CNN3 1% - 60% 1% - 68% 1% - 73%

ASCAD Fixed Key - CNN4 - 1% - 44% 1% - 63%

ASCAD Fixed Key - CNN4-2 - 1% - 60% 1% - 63%
Dataset / Traces 60 000 100 000 200 000

ASCAD Random Keys - MLP4 64% - 88% 1% - 90% 1% - 90%

ASCAD Random Keys - MLP6 71% - 87% 1% - 89% 1% - 90%

ASCAD Random Keys - MLP8 56% - 75% 1% - 71% 1% - 83%

ASCAD Random Keys - CNN3 - 1% - 78% 1% - 80%

ASCAD Random Keys - CNN4 - - 1% - 71%

ASCAD Random Keys - CNN4-2 - - 1% - 73%
Dataset / Traces 20 000 30 000 40 000

CHES CTF 2018 - MLP4 88% - 96% 84% - 96% 74% - 97%

CHES CTF 2018 - MLP6 89% - 93% 81% - 95% 66% - 96%

CHES CTF 2018 - MLP8 84% - 92% 80% - 91% 68% - 90%

CHES CTF 2018 - CNN3 - 1% - 78% 76% - 88%

CHES CTF 2018 - CNN4 - - -

CHES CTF 2018 - CNN4-2 - - -

be adopted during training. Finally, we consider the setup where we prune 90% of weights
(Figure 22. We can see even better results considering the number of attack traces to reach
as low as possible GE. More precisely, the pruning and re-initialization procedure works
the best. Similar to the previous case, the baseline model has the best performance in the
beginning epochs, but it soon starts to overfit. On the other hand, pruned models do not
overfit even considering the full training process, and they reach better average GE.

Figures 23 and 24 show results for CHES CTF 2018 dataset and CNN3. There, we can
verify that using the same pruned model according to LTH procedure on all 16 key bytes
outperforms the baseline model trained separately for each key byte.

5.8 General Observations
Based on the conducted experiments, we provide several general observations:
• If the baseline model works poorly for a limited set of attack traces, pruning might
still improve performance.

• If the baseline works well and does not overfit, then pruning maintains the performance
but produces smaller networks.

• If there are not enough profiling traces for the model capacity, it will overfit, and
pruning can help avoid that.

• More profiling traces improves pruning results, but it also reduces differences between
weight initialization techniques.
• Pruning and weight re-initialization procedure works the best, provided the neural
network architectures are large enough to utilize the winning tickets.
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(a) GE vs. attack traces. (b) GE vs. epochs..

Figure 21: Average guessing entropy for the full AES key for the CHES CTF 2018 dataset
for MLP4. Baseline model is trained for 20 epochs on the first key byte. Pruning with
80% of sparsity level is applied and the same pruned model (following the LTH procedure)
is trained for 50 epochs on all key bytes

(a) GE vs. attack traces (b) GE vs. epochs..

Figure 22: Average guessing entropy for the full AES key for the CHES CTF 2018 dataset
for MLP4. Baseline model is trained for 20 epochs on the first key byte. Pruning with
90% of sparsity level is applied and the same pruned model (following the LTH procedure)
is trained for 50 epochs on all key bytes

• Pruning can improve the attack results as indicated by various SCA performance
metrics.

• Pruning represents a strong option when considering a neural network model trained
for one key byte to be applied for other key bytes.

6 Conclusions and Future Work
This paper discussed how pruning could improve the attack performance for deep learning-
based side-channel analysis. We considered the recently proposed Lottery Ticket Hypothesis
that assumes there are small sub-networks in the original network that perform on the
same level as the original network. To the best of our knowledge, both of those concepts
were never before investigated in profiling SCA. Our experimental investigation confirms
this hypothesis for profiling SCA, which allows us to prune up to 90% of weights and still
reach good attack performance. Thus, we manage to reach the same attack performance
for significantly smaller networks (easier to tune and faster to train). Interestingly, we
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(a) GE vs. attack traces (b) GE vs. epochs..

Figure 23: Average guessing entropy for the full AES key for the CHES CTF 2018 dataset
for CNN3. Baseline model is trained for 20 epochs on the first key byte. Pruning with
70% of sparsity level is applied and the same pruned model (following the LTH procedure)
is trained for 50 epochs on all key bytes

(a) GE vs. attack traces (b) GE vs. epochs..

Figure 24: Average guessing entropy for the full AES key for the CHES CTF 2018 dataset
for CNN3. Baseline model is trained for 20 epochs on the first key byte. Pruning with
80% of sparsity level is applied and the same pruned model (following the LTH procedure)
is trained for 50 epochs on all key bytes

show that extremely small and state-of-the-art models can be pruned and maintain the
same attack performance. What is more, we show how pruning helps in cases when a large
network overfits or has issues due to imbalanced data. In such cases, pruning, besides
resulting in smaller architectures, enables improved attack performance.

As future work, we plan to consider more sophisticated pruning techniques and the ID
leakage model. Finally, as discussed, pruning allows smaller neural networks and good
performance but does not provide insights into neural networks’ explainability. It could be
interesting to consider various feature visualization techniques to evaluate the important
features before and after the pruning.
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A Machine Learning Techniques
We consider two common choices in machine learning-based SCA: multilayer perceptron
(MLP) and convolutional neural networks (CNNs).

A.1 Multilayer Perceptron
The multilayer perceptron is a feed-forward neural network that maps sets of inputs onto
sets of appropriate outputs. MLP consists of multiple layers (at least three: an input layer,
one hidden layer, and one output layer) of nodes in a directed graph, where each layer is
fully connected to the next one.

A.2 Convolutional Neural Networks
Convolutional neural networks commonly consist of three types of layers: 1) convolution
layers, 2) pooling layers, and 3) fully-connected layers. The convolution layer computes
neurons’ output connected to local regions in the input, each computing a dot product
between their weights and a small region they are connected to in the input volume. Pooling
decrease the number of extracted features by performing a down-sampling operation along
the spatial dimensions. The fully-connected layer (the same as in MLP) computes either
the hidden activations or the class scores.
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B Analyzing the Number of Epochs for the Baseline and
Pruned Models

Results provided in previous sections demonstrate that an over-parameterized baseline
model can be drastically reduced in size and still provide good (or even better) results if
following the Lottery Ticket Hypothesis procedure. We showed for three different datasets
and six neural network architectures that there is a range of sparsity levels that we can
apply to obtain successful key recovery results. However, in those examples, we fixed the
number of baseline training epochs to 300 and the number of pruned model epochs to 50
in all scenarios. This section provides experiments demonstrating the number of baseline
trained epochs does not need to be very large to provide good results. More precisely, this
means there are already sub-networks that are the winning tickets after a short training.
Moreover, we also show the pruned and re-initialized model requires a very small number
of epochs to reach low guessing entropy. A theory that explains why the baseline model
needs short training is called early structure adaption [DDZ+19]. Intuitively, this theory
states that “identifying weights for later elimination happens early in the training process
and weights are rarely re-added late in the process”. This phenomenon can also be a
consequence of learning rate schedule mechanisms. However, keeping the learning rate
fixed does not exclude the existence of early structure adaption by the model. This section
considers several scenarios, and we note that the rest of the scenarios are aligned.

As illustrated in Figure 25a, for the ASCAD fixed key dataset with the MLP4 model,
the pruned model when weights are randomly initialized requires at least 35 epochs to reach
successful key recovery, regardless of the number of trained epochs for the baseline model.
This analysis emphasizes that training the baseline model before pruning is irrelevant
concerning profiling side-channel analysis performance if the weights are randomly initialized
after pruning. On the other hand, as shown in Figure 25b, a successful key recovery attack
can be implemented by following the LTH procedure with 80% of sparsity, training the
baseline model for not more than 20 epochs, and by re-initializing and training the pruned
model for no more than five epochs. More importantly, when the baseline model is not
even trained (zero epochs), the pruned and re-initialized model requires no more than 20
epochs to reach the successful key recovery. This does not directly mean that the weights
initialization was correctly done. What we can conclude is that MLP4 is over-parameterized
and pruning it to 80% (by removing the smallest initial weights) and training the pruned
model is successful for the considered dataset.

In Figure 26, we depict results for the CNN3 model and ASCAD fixed key. The results
confirm the observations from the MLP4 model, where we see that with the random
initialization, the network requires around 20 epochs to break the target, regardless of the
training duration for the baseline model. The only difference from the MLP4 case is that
the results are somewhat better due to a better-performing architecture. CNN3 requires
somewhat longer training after re-initialization, but in general, around ten epochs is enough.
There is an interesting spot around 30 epochs for the baseline model that performs the
best after pruning. This indicates that the model overfits significantly and influences the
behavior of winning tickets also. Finally, we depict that the results for MLP4 model and
ASCAD random keys in Figure 27. The behavior is similar to previous cases where after a
short training of the baseline model (20 epochs), we can train the pruned and re-initialized
model for five epochs only and break the target. If we use random initialization for the
same performance level, we need to train the neural network approximately three times
longer.
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(a) Pruning with random initialization. (b) Pruning with re-initialization (LTH).

Figure 25: Guessing entropy results for the ASCAD fixed key dataset (30 000 profiling
traces) with the MLP4 baseline model. The sparsity level for pruning is set to 80% and
the attack set has 2 000 traces.

(a) Pruning with random initialization. (b) Pruning with re-initialization (LTH).

Figure 26: Guessing entropy results for the ASCAD fixed key dataset (30 000 profiling
traces) with the CNN3 baseline model. The sparsity level for pruning is set to 60% and
the attack set has 2 000 traces.

C Guessing Entropy and Success Rate Results
Up to now, we considered guessing entropy as a metric of success. As the results show
that the pruned (and re-initialized) models can reach better attack performance than the
baseline model, it is clear that the probabilities for each trace xi in the matrix P change to
indicate more fit key candidates. Now, we briefly concentrate on the question of whether
the LTH procedure changes the whole probability matrix (so, even less likely guesses), or
most of the changes happen for the most likely key.

In green, we depict all cases where the pruned network (LTH) performs better than
the baseline network (BS). We give results for GE in Tables 4 and 5 for MLP and CNN,
respectively. For MLP architectures, we manage to improve GE in all but two cases (or at
least to maintain the GE value with a smaller architecture). For CNNs, there are more
cases where the LTH procedure results in deteriorated GE values, but also where it works,
it reduces GE significantly, e.g., ASCAD random keys, CNN4_2, and 100 000 traces, where
we reduce GE from 74 to 6.

The success rate (SR) results are presented in Tables 6 and 7 for MLP and CNN,
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(a) Pruning with random initialization. (b) Pruning with re-initialization (LTH).

Figure 27: Guessing entropy results for the ASCAD Random keys dataset (100 000 profiling
traces) with the MLP4 baseline model. The sparsity level for pruning is set to 80% and
the attack set has 2 000 traces.

respectively. Note that these tables represent specific pruning rates, but the results for
other rates are aligned with the presented results. In Table 6, observe how using more
training traces increases the chances that the LTH results will be better. This is especially
clear for the ASCAD random keys dataset, where for all settings, LTH shows better results.
Even more important, we can see that the improvements due to LTH can be very significant
(e.g., CNN3, where we see improvement from 80.6% to 99.3%). At the same time, for
simpler networks, we observe fewer improvements due to LTH. Table 7 presents CNN
results and confirms our observations. More training traces and more complex networks
increase the benefit of using LTH. In general, we see that pruning can significantly improve
the SR results. For instance, for ASCAD random keys and MLP6, we increase SR from
23.9% for the baseline architecture to 92.9% for the architecture with 80% of pruned
weights. Thus, we reach significantly better attack performance for a significantly smaller
neural network. We also note the ASCAD fixed key dataset and CNN3 for 30 000 training
traces where we observe that the baseline model reached 27.4%, which happened as all the
measurements were classified as belonging to the HW 4. Interestingly, we see that pruning
can help to avoid the imbalanced dataset problem [PHJ+18].

D Applying LTH on Small Neural Networks with the ID
leakage model (Case Study: Methodology CNN Archi-
tecture [ZBHV19])

In Figures 28, 29, and 30, we give results for the ID leakage model when considering the
ASCAD with fixed key dataset. We consider the CNN architecture from [ZBHV19] and
give results for a different number of profiling traces. The number of trainable parameters’
differences stems from the different number of neurons in the fully-connected layer (10
vs. 20 neurons). As it can be seen, both pruning and reinitialization, and pruning and
random initialization give good results, similar to the scenario with the HW leakage model
(cf. Section 5.5). These results show that pruning can (and should) be used for the ID
leakage model also.

Interestingly, we do not see a significant increase in the allowed pruning percentage
for the larger neural network architecture. This is a consequence of having more output
classes, making the classification problem more difficult, which means that small changes
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Table 4: Final guessing entropy for MLPs after the processing of 2 000 traces in the attack
phase and for 80% of weight pruning in the LTH procedure.

BS | LTH BS | LTH BS | LTH

Dataset / Traces 30 000 40 000 50 000

ASCAD Fixed Key - MLP4 2.0 | 2.0 3.0 | 2.0 1.0 | 1.0

ASCAD Fixed Key - MLP6 7.0 | 1.0 1.0 | 1.0 2.0 | 1.0

ASCAD Fixed Key - MLP8 5.0 | 1.0 2.0 | 1.0 1.0 | 1.0

Dataset / Traces 60 000 100 000 200 000

ASCAD Random Keys - MLP4 7.0 | 1.0 1.0 | 1.0 1.0 | 1.0

ASCAD Random Keys - MLP6 14.0 | 1.0 1.0 | 1.0 1.0 | 1.0

ASCAD Random Keys - MLP8 50.0 | 66.0 5.0 | 36.0 1.0 | 1.0

Dataset / Traces 20 000 30 000 40 000

CHES CTF 2018 - MLP4 8.0 | 5.0 6.0 | 2.0 3.0 | 1.0

CHES CTF 2018 - MLP6 21.0 | 10.0 21.0 | 2.0 1.0 | 1.0

CHES CTF 2018 - MLP8 28.0 | 5.0 6.0 | 2.0 3.0 | 1.0

Table 5: Final guessing entropy for CNNs after the processing of 2 000 traces in the attack
phase and for 80% of weight pruning in the LTH procedure.

BS | LTH BS | LTH BS | LTH

Dataset / Traces 30 000 40 000 50 000

ASCAD Fixed Key - CNN3 12.0 | 2.0 5.0 | 2.0 5.0 | 2.0

ASCAD Fixed Key - CNN4 6.0 | 58.0 4.0 | 21.0 6.0 | 4.0

ASCAD Fixed Key - CNN4_2 8.0 | 25.0 7.0 | 4.0 8.0 | 3.0

Dataset / Traces 60 000 100 000 200 000
ASCAD Random Keys - CNN3 19.0 | 9.0 6.0 | 1.0 2.0 | 1.0

ASCAD Random Keys - CNN4 77.0 | 69.0 30.0 | 15.0 4.0 | 2.0

ASCAD Random Keys - CNN4_2 77.0 | 24.0 74.0 | 6.0 6.0 | 1.0

Dataset / Traces 20 000 30 000 40 000

CHES CTF 2018 - CNN3 40.0 | 44.0 7.0 | 7.0 21.0 | 19.0

CHES CTF 2018 - CNN4 85.0 | 83.0 99.0 | 113.0 107.0 | 64.0

CHES CTF 2018 - CNN4_2 137.0 | 110.0 91.0 | 111.0 98.0 | 65.0

in the architecture size are not so noticeable.
We can prune around 70% to 85% of weights and still reach the same attack performance.

Compared (smaller neural network) to results from Wouters et al. [WAGP20], we manage
to reduce the network size (62.1% vs. 87%) while keeping the same performance level
(while [WAGP20] reported somewhat worse GE due to their methodology). Considering
our approach to be simpler and easier to apply (no arbitrary architecture decisions), we
believe pruning represents the go-to option for deep learning-based SCA architecture
design.
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Table 6: Success rates (in %) after the processing of 2 000 traces in the attack phase and
for 80% of weight pruning in the LTH procedure.

Dataset / Traces 30 000 40 000 50 000

BS | LTH BS | LTH BS | LTH

ASCAD Fixed Key - MLP4 85.3 | 75.9 66.5 | 80.3 86.4 | 89.0

ASCAD Fixed Key - MLP6 41.4 | 88.1 89.5 | 92.5 85.4 | 90.9

ASCAD Fixed Key - MLP8 48.9 | 92.7 83.8 | 95.0 86.7 | 95.7
Dataset / Traces 60 000 100 000 200 000

BS | LTH BS | LTH BS | LTH

ASCAD Random Keys - MLP4 45.5 | 91.9 88.7 | 99.6 99.4 | 100.0

ASCAD Random Keys - MLP6 23.9 | 92.2 97.2 | 100.0 97.7 | 100.0

ASCAD Random Keys - MLP8 3.9 | 11.9 47.9 | 69.5 96.7 | 100.0
Dataset / Traces 20 000 30 000 40 000

BS | LTH BS | LTH BS | LTH

CHES CTF 2018 - MLP4 32.8 | 45.2 42.9 | 72.1 61.4 | 86.7

CHES CTF 2018 - MLP6 11.3 | 27.8 12.6 | 68.4 95.8 | 93.3

CHES CTF 2018 - MLP8 6.3 | 44.0 34.3 | 75.5 57.6 | 97.6

Table 7: Success rates (in %) after the processing of 2 000 traces in the attack phase and
for 60% of weight pruning in the LTH procedure.

Dataset / Traces 30 000 40 000 50 000

BS | LTH BS | LTH BS | LTH

ASCAD Fixed Key - CNN3 27.4 | 72.2 47.1 | 72.0 52.0 | 80.7

ASCAD Fixed Key - CNN4 44.7 | 7.65 57.2 | 34.15 48.11 | 59.105

ASCAD Fixed Key - CNN4-2 35.4 | 14.4 39.0 | 61.0 36.11 | 64.11

Dataset / Traces 60 000 100 000 200 000

BS | LTH BS | LTH BS | LTH

ASCAD Random Keys - CNN3 15.7 | 36.3 48.0 | 92.7 80.6 | 99.3

ASCAD Random Keys - CNN4 5.73 | 8.8 25.47 | 28.97 63.05 | 82.45

ASCAD Random Keys - CNN4-2 4.4 | 16.9 1.6 | 44.9 43.7 | 94.3

Dataset / Traces 20 000 30 000 40 000

BS | LTH BS | LTH BS | LTH

CHES CTF 2018 - CNN3 6.7 | 2.5 53.56 | 38.22 50.0 | 37.22

CHES CTF 2018 - CNN4 0.05 | 0.325 0.088 | 0.059 1.433 | 2.0

CHES CTF 2018 - CNN4-2 0.05 | 0.0 0.0 | 0.056 1.625 | 2.75
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(a) 30 000 profiling traces (16 960 parame-
ters).

(b) 30 000 profiling traces (33 840 parame-
ters).

Figure 28: ASCAD fixed key dataset, CNN architecture [ZBHV19] with different number
of parameters.

(a) 40 000 profiling traces (16 960 parame-
ters).

(b) 40 000 profiling traces (33 840 parame-
ters).

Figure 29: ASCAD fixed key dataset, CNN architecture [ZBHV19] with different number
of parameters.

(a) 50 000 profiling traces (16 960 parame-
ters).

(b) 50 000 profiling traces (33 840 parame-
ters).

Figure 30: ASCAD fixed key dataset, CNN architecture [ZBHV19] with different number
of parameters.
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