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Abstract. Gaussian sampling over the integers is one of the fundamen-
tal building blocks of lattice-based cryptography. In particular, it can’t
be avoided in trapdoor sampling until now. However, it’s still a challeng-
ing work how to construct a generic, efficient, and isochronous Gaussian
sampler. In this paper, our contribution is three-fold.
First, we propose a secure, efficient exponential Bernoulli sampling algo-
rithm. It can be applied to Gaussian samplers based on rejection sam-
plings. We apply it to FALCON, a candidate of round 3 of the NIST
post-quantum cryptography standardization project, and reduce its sig-
nature generation time by 13.66%-15.52%.
Second, we develop a new Gaussian sampler based on rejection sam-
pling. Our Algorithm can securely sample from Gaussian distributions
with different standard deviations and arbitrary centers. We apply it
to PALISADE (S&P’18), an open-source lattice cryptography library.
The new implementation of trapdoor sampling in PALISADE has better
performance while resisting timing attacks.
Third, we improve the efficiency of the COSAC sampler (PQC’20). The
new COSAC sampler is 1.46x-1.63x faster than the original and has the
lowest expected number of trials among all Gaussian samplers based on
rejection samplings. But it needs a more efficient algorithm sampling
from the normal distribution to improve its performance.

Keywords: Lattice-based cryptography · Gaussian sampler · Rejection
sampling · Timing attacks · Trapdoor.

1 Introduction

Lattice-based cryptography has gained much attention due to its many attrac-
tive features. It allows us to build various powerful cryptographic primitives,
such as fully homomorphic encryption [16], and has conjectured security against
quantum computers [40,34]. Most lattice-based cryptographic schemes are based
on two main average-case problems, the short integer solution (SIS) problem [2],
the learning with errors (LWE) problem [38], and their analogs over rings [28,26].
Discrete Gaussian distributions are at the core of security reduction proofs from



the worst-case lattice problems to the average-case problems [30,6]. Therefore,
they have great significance to the theoretical security of lattice-based crypto-
graphic schemes.

In practice, it’s notoriously difficult to sample from discrete Gaussian dis-
tributions effectively and securely, as demonstrated by numerous side-channel
attacks [18,14,35,5] against the Gaussian sampler in the BLISS signature [10].
For this reason, some schemes replace Gaussian distributions with other distri-
butions [25,39], like uniform distributions or binomial distributions, even if this
ordinarily leads to performance and security degradation.

However, discrete Gaussian distributions are ineluctable in some situations.
One prominent example is trapdoor sampling [17,33,29]. Trapdoor sampling can
be used to construct many powerful cryptographic applications, including sig-
nature [17,37], (hierarchical) identity-based encryption ((H)IBE) [17,1,12], and
attribute-based encryption (ABE) [41], etc. There are two extensively used trap-
door sampling algorithms at present. The first one is proposed by Gentry, Peik-
ert, and Vaikuntanathan [17] (GPV trapdoor sampler), while the second one is
proposed by Micciancio and Peikert [29] (MP trapdoor sampler). Both of them
require to sample from the Gaussian distributions over the integers with differ-
ent standard deviations and arbitrary centers [12,37,15,21,11]. To resist timing
attacks, the former should be isochronous concerning the standard deviation-
s, centers, and outputs, while the latter should be isochronous concerning the
centers and outputs. In some lattice cryptography libraries, such as PALISADE
[7,8,19], it’s one of the fundamental building blocks to sample from the Gaussian
distributions over the integers. So it’s important to propose a Gaussian sampler
over the integers which are generic, efficient, and isochronous.

To sample from the distributions with different standard deviations and ar-
bitrary centers, there are two strategies to design Gaussian samplers over the
integers. One is based on the convolution theorems of discrete Gaussian distribu-
tions, and another is based on rejection samplings. The convolution sampler [31]
belongs to the former. It’s easy to make its running time independent of the stan-
dard deviations and centers. However, its efficiency highly relies on online/offline
skills, and its whole running time is not competitive. For the Gaussian samplers
based on rejection samplings, the most important problem is how to retain the
security and generality at the same time. Karney’s sampler [24], the COSAC
sampler [42], and FALCON’s sampler [20] are three recently proposed Gaussian
samplers based on rejection samplings. Karney’s sampler doesn’t consider how
to resist timing attacks, while the running time of the COSAC sampler may re-
veal the standard deviations. FALCON’s sampler can resist timing attacks, but
it’s only suitable for the distributions with small standard deviations. One no-
ticeable feature of Gaussian samplers based on rejection samplings is that they
always need to sample an exponential Bernoulli variable Bp with a probability
p = exp(−x) (x ≥ 0) being true. It’s an important time-consuming module, and
a mainstream solution is approximating the exponential function by a polyno-
mial [43,4].
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To implement the trapdoor sampling algorithm, the lattice cryptography li-
brary PALISADE [7] employs the convolution sampler and Karney’s sampler as
the Gaussian samplers over the integers. The convolution sampler is only used
in the offline phase, as it doesn’t seem easy to get an efficient implementation
of the convolution sampler. PALISADE employs Karney’s sampler to obtain a
more efficient implementation, although Karney’s sampler can’t resist timing at-
tacks. Thus, it deserves more effort to design a generic, efficient, and isochronous
Gaussian sampler over the integers.

1.1 Our Contribution

In this paper, we mainly focus on Gaussian samplers over the integers based on
rejection samplings. We first propose an exponential Bernoulli sampling algo-
rithm sampling the exponential Bernoulli variables. It’s a basic tool to construct
the Gaussian samplers based on rejection samplings. Then we utilize the discrete
Gaussian distribution with a small standard deviation as the basic distribution
and design a new Gaussian sampler based on rejection sampling. The COSAC
sampler is also a Gaussian sampler based on rejection sampling. It uses the nor-
mal distribution as the basic distribution. We reduce the expected number of
trials of the COSAC sampler to improve its efficiency. Therefore our contribution
is three-fold.

The inspiration of our exponential Bernoulli sampling algorithm comes from
von Neumann’s algorithm that samples from the exponential distribution. Com-
pared with the mainstream method approximating the exponential function by
a polynomial [43], our algorithm has the following advantages:

• Our algorithm has higher efficiency while retaining the security in rejec-
tion sampling scenes. On the one hand, we derive the improvement of per-
formance from avoiding computing the exponential function and reducing
floating-point operations significantly. On the other hand, because the sam-
pling values in rejection sampling scenes are public and revealed by the
execution of the algorithm, and the running time of our sampling algorithm
is independent of its input, our algorithm could resist timing attacks.

• Our algorithm is essentially more straightforward to be implemented with
only integer operations and has better numerical stability.

• We apply our algorithm to FALCON [37], a lattice-based signature scheme
of the third-round candidates in the NIST post-quantum cryptography stan-
dardization project (NIST PQ project). When the LDL tree has been built
upon the secret key, the signature generation time of the new implementation
decreases 13.66%− 15.52% than the original.

We derive the idea of our new Gaussian sampler from Karney’s sampler [24]
and FALCON’s sampler [20]. We employ the Rényi divergence [3,36], a tool which
in recent years is used in the security proofs of many lattice-based cryptographic
schemes, to prove that our sampling algorithm resists timing attacks. Specifically,
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we show that our sampling algorithm is isochronous [20] with respect to its inputs
(i.e. standard deviation and center) and output (i.e. the sampling value). Our
discrete Gaussian sampling algorithm has the following advantages:

• Our Gaussian sampler can sample from the distributions with different stan-
dard deviations and arbitrary centers.

• Our Gaussian sampler can adaptively hide the information of standard de-
viation or center in different applications. Additionally, when our sampler
hides the information of both of them, we could adjust the parameter C(σ)
in Algorithm 4 according to different minimum standard deviations required
by different cryptographic schemes, such that our sampler has the best per-
formance.

• We replace Karney’s sampler in PALISADE with our Gaussian sampler to
speed up the online phase of the MP trapdoor sampler. The running time of
the G-lattice sampling algorithm in the online phase decrease by 44.12%.

The core of our new COSAC sampler is to adjust the rejection sampling strat-
egy according to the center. The expected number of trials of the new COSAC
sampler is half of that of the original. As the standard deviation increases, the
expected number of trials of the new sampler converges to 1, which is the best
in theory for the algorithms based on rejection samplings. However, the new
COSAC sampler is only 1.46x-1.63x faster than the original due to the addi-
tional operations to hide the center and output. It is not faster than our new
Gaussian sampler and needs a more efficient algorithm sampling from the normal
distribution to improve its performance.

2 Preliminaries

2.1 Notations

Let R, Z, N be the set of real numbers, integers and non-negative integers re-
spectively. We use the notation Bp to denote the Bernoulli distribution with
parameter p. For a distribution D, we use the notation x ← D to mean that x
is chosen according to the distribution D. If S is a set, then x← S means that
x is sampled uniformly at random from S. We denote the logarithm with base
2 by log and the one with base e by ln.

2.2 Gaussian Distributions

For any σ, c ∈ R with σ > 0, the Gaussian function with parameters σ and c over

R is defined as ρσ,c(x) = exp(− (x−c)2
2σ2 ). We denote the normal (or continuous

Gaussian) distribution with parameters σ and c over R by N (c, σ2), which has
the probability density function ρσ,c(x)/(σ

√
2π). For any countable set S ( R,

we denote ρσ,c(S) by the sum
∑
x∈S ρσ,c(x). If ρσ,c(S) is finite, we define the

discrete Gaussian distribution with parameters σ and c over S as DS,σ,c(x) =
ρσ,c(x)/ρσ,c(S), and denote the distribution by DS,σ,c. The parameter σ (resp. c)
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is often called the standard deviation (resp. center) of the distribution. Note that
when c = 0, we omit it in index notation, e.g. ρσ(x) = ρσ,0(x) and DS,σ(x) =
DS,σ,0(x).

2.3 Smooth Parameter

The smooth parameter is a lattice quantity proposed by Micciancio and Regev
[30]. For ε > 0, the smooth parameter ηε(Λ) of a lattice Λ is the smallest value
σ > 0 such that ρ 1

σ
√

2π
(Λ∗\{0}) ≤ ε, where Λ∗ denotes the dual of Λ. In the

literature, some definitions of the smooth parameter scale our definition by a
factor

√
2π.

Lemma 1 ([30]). For any positive real ε > 0, we have ηε(Z) ≤ η+ε (Z):

η+ε (Z) =
1

π

√
1

2
ln

(
2 +

2

ε

)
.

The following lemma states that the total Gaussian measure over Z, i.e.
ρσ,c(Z), is essentially the same for any center c when the standard deviation σ
exceeds the smoothing parameter ηε(Z).

Lemma 2 ([30,17]). For any ε ∈ (0, 1), σ > ηε(Z) and c ∈ R, we have

ρσ,c(Z) ∈
[

1− ε
1 + ε

, 1

]
· ρσ(Z).

We may need the following lemma to make the running time of a discrete
Gaussian sampling algorithm independent of σ. This lemma is implicit in [20].

Lemma 3 ([20], implicit in Lemma 7). For any ε > 0, σ > η+ε (Z), we have:

ρσ(Z) ∈ [1, 1 + 2ε] · σ
√

2π.

To handle the infinite domain of the distribution DZ,σ,c, the analysis and
design of the algorithms usually take advantage of the rapid decay of Gaussian
distributions to approximate the original distribution DZ,σ,c by sampling from a
finite domain. The next lemma is useful in determining the tailcut parameter.

Lemma 4 ([17]). For any ε > 0, σ ≥ ηε(Z), c ∈ R and t > 0, we have:

Pr
x←DZ,σ,c

[|x− c| ≥ tσ] ≤ 2 exp

(
− t

2

2

)
· 1 + ε

1− ε
.
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2.4 Rényi Divergence

We recall the definition of the Rényi divergence, which is extensively used in the
cryptographic security proof currently.

Definition 1 ([3]). Let P, Q be two distributions such that Supp(P) ⊆ Supp(Q).
For a ∈ (1,+∞), we define the Rényi divergence of order a by

Ra(P,Q) =

 ∑
x∈Supp(P)

P(x)a

Q(x)a−1

 1
a−1

.

In addition, we define the Rényi divergence of +∞ by

R∞(P,Q) = max
x∈Supp(P)

P(x)

Q(x)
.

The Rényi divergence is not a distance, as it is neither symmetric nor does it
verify the triangle inequality, which makes it less convenient than the statistical
distance. On the other hand, it does verify cryptographically useful properties.
We recall some important properties of the Rényi divergence from [3].

Lemma 5 ([3]). Let a ∈ (1,+∞]. Let P and Q denote distributions with
Supp(P) ⊆ Supp(Q). Then the following properties hold:

• Data Processing Inequality. For any function f , where f(P) (resp.
f(Q)) denotes the distribution of f(y) induced by sampling y from P (resp.
Q), we have:

Ra(f(P), f(Q)) ≤ Ra(P,Q).

• Multiplicativity. For two families of distributions (Pi)i, (Qi)i,

Ra(
∏

i
Pi,
∏

i
Qi) =

∏
i
Ra(Pi,Qi).

• Probability Preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)
a
a−1 /Ra(P,Q) and Q(E) ≥ P(E)/R∞(P,Q).

In practice, when we approximate the original distribution DZ,σ,c by sampling
from a finite set, we can use the following lemma to bound the Rényi divergence
between the real distribution and the ideal distribution.

Lemma 6 ([36]). Let P and Q be two distributions such that Supp(P) ⊆
Supp(Q). For any x ∈ Supp(P), there exists δ > 0 such that P(x)Q(x) ≤ 1 + δ.

Then, for a ∈ (1,+∞):

Ra(P,Q) ≤ 1 + δ.
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When the algorithm involves floating-point numbers, we usually use the dou-
ble type or 64-bit integers to approximate floating-point numbers, which results
in the relative error between the real distribution and the ideal distribution.
The following lemma shows that a bound of δ on the relative error between two
distributions implies a bound O(δ2) on the log of the Rényi divergence.

Lemma 7 ([36]). Let P and Q be two distributions of the same support S.
Suppose that the relative error between P and Q is bounded: ∀x ∈ S, ∃δ > 0,

such that
∣∣∣P(x)Q(x) − 1

∣∣∣ ≤ δ. Then, for a ∈ (1,+∞):

Ra(P,Q) ≤
(

1 +
a(a− 1)δ2

2(1− δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2
.

2.5 Isochronous Algorithm

When an algorithm is applied to different scenarios, the sensitive variables of
the algorithm may be different. To resist against timing attacks, we only need
to keep the running time of the algorithm from leaking sensitive parameters
for a particular scenario. In this work, when we show that our algorithms are
provably resistant against timing attacks, we use the following definition of the
isochronous algorithm to capture this idea.

Definition 2 ([20]). Let A be a (probabilistic or deterministic) algorithm with
set of input variables I, set of output variables O, and let S ⊆ I ∪ O be the set
of sensitive variables. We say that A is perfectly isochronous with respect to S
if its running time is independent of any variables in S.

In addition, we say that A statistically isochronous with respect to S if there
exists a distribution D independent of all the variables in S, such that the running
time of A is statistically close (for a clearly identified divergence) to D.

2.6 Von Neumann’s Algorithm

Von Neumann’s algorithm can sample a variable from the exponential distribu-
tion and avoid floating-point operations. It’s the foundation of our exponential
Bernoulli sampling algorithm. We review it in Algorithm 1.

Lemma 8. The variable x output by Algorithm 1 obeys the exponential distri-
bution.

Proof. We first analyze the probability that n is odd in step 8 of Algorithm 1
for any x2 ∈ [0, 1). If n = n0 in step 8, there are n0 + 1 variables u1, u2, ..., un0+1

uniformly sampled from [0, 1) in step 3 and step 7. These variables satisfy that
x2 > u1 > ... > un0

and un0
≤ un0+1. The probability that u1, ..., un0

are all less
than x2 is xn0

2 . In addition, the probability that they are in descending order,
which is one of the possible n0! permutations, is xn0

2 /n0!. As un0 ≤ un0+1, the
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Algorithm 1: Von Neumann’s Algorithm

Output: A variable x from the exponential distribution
1: x1 ← 0
2: x2 ← [0, 1), n← 0
3: t1 ← x2, t2 ← [0, 1)
4: while t1 > t2 do
5: n← n+ 1
6: t1 ← t2, t2 ← [0, 1)
7: end while
8: if n is odd then
9: x1 ← x1 + 1

10: goto step 2
11: end if
12: x← x1 + x2
13: return x

probability that n = n0 in step 8 is xn0
2 /n0!−xn0+1

2 /(n0+1)!. For any x2 ∈ [0, 1),
the probability that n is even in step 8 is

1− x2 +
x22
2!
− x32

3!
+ ... = exp(−x2).

Because x2 is sampled from [0, 1) uniformly, the probability that n is odd

averaged over x2 is
∫ 1

0
(1 − exp(−x2))dx2 = exp(−1). Thus, the probability

density that the algorithm terminates with a particular value of x1 and x2 is
exp(−(x1 + x2)), as required. ut

3 A Tool: Exponential Bernoulli Sampling Algorithm

In this section, we propose a tool, the exponential Bernoulli sampling algorith-
m, to construct the Gaussian samplers based on rejection samplings. We first
introduce the basic algorithm and analyze its precision. Then we show how to
design an isochronous algorithm in the particular application. Finally, we apply
it to the FALCON signature.

3.1 Basic Exponential Bernoulli Sampling Algorithm

Our exponential Bernoulli sampling algorithm is derived from von Neumann’s
algorithm presented in Algorithm 1. One important step of proving the correct-
ness of Algorithm 1 is to show that the probability that n is even after the while
loop equals exp(−x2). Inspired by the proof, we can sample a Bernoulli variable
with probability exp(−x) being true utilizing the step 3 - step 7 in Algorithm 1
for any x ∈ [0, 1). In order to sample for any x ≥ 0, let x = u1 ln 2 + u2 where
u1 is a non-negative integer and 0 ≤ u2 < ln 2, then exp(−x) can be written
as exp(−x) = 2−u1 exp(−u2). The first part 2−u1 can be sampled efficiently in
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binary form, and the second part exp(−u2) can be sampled efficiently too as
u2 ∈ [0, 1). We present the basic exponential Bernoulli sampling algorithm in
Algorithm 2.

Algorithm 2: Basic Exponential Bernoulli Sampling Algorithm

Input: x ≥ 0
Output: b← Bexp(−x)
1: u1 ← bx/ ln 2c, u2 ← x− u1 · ln 2
2: r1 ← {0, 1, ..., 2u1 − 1}
3: b1 ← (r1 = 0)
4: n← 0
5: r2 ← u2, r3 ← [0, 1)
6: while r2 > r3 do
7: n← n+ 1
8: r2 ← r3, r3 ← [0, 1)
9: end while

10: b2 ← (n is even)
11: b← b1 & b2
12: return b

When we apply Algorithm 2 to a cryptographic scheme, it is necessary to
bound the relative error of Algorithm 2 to quantify the security loss of the cryp-
tographic scheme after implementing Algorithm 2 by the floating-point number.
Theorem 1 explains the relationship between the relative error of Algorithm 2
and the precision of its floating-point numbers.

Theorem 1. Let P (R) be the probability that the variable b of the real algorithm
is true where the floating numbers of Algorithm 2 keep λ bits after the decimal
point. Let P (I) be the probability that the variable b of the ideal algorithm is true.
Then the relative error between P (R) and P (I) satisfies that

|P (R) − P (I)|
P (I)

≤ 2−λ + 2−λ+3.

Proof. Obviously, if λ is infinite, Algorithm 2 is an ideal Bernoulli sampling
algorithm. So we only need to analyze the difference between the finite case (i.e.

the real algorithm) and the infinite case (i.e. the ideal algorithm). Let P
(R)
1 and

P
(R)
2 be the probabilities that the variables b1 and b2 of the real algorithm are

true respectively, P
(I)
1 and P

(I)
2 be the probabilities that the variables b1 and

b2 of the ideal algorithm are true respectively. Because u1 is an integer and the

sampling process of b1 (step 2 - step 3) only involves the integer operations, P
(R)
1

and P
(I)
1 should be the same exactly. Thus, the relative error between P (R) and
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P (I) is the same as that between P
(R)
2 and P

(I)
2

|P (R) − P (I)|
P (I)

=
|P (R)

1 P
(R)
2 − P (I)

1 P
(I)
2 |

P
(I)
1 P

(I)
2

=
|P (R)

2 − P (I)
2 |

P
(I)
2

. (1)

The difference between P
(R)
2 and P

(I)
2 can be divided into two parts ∆1 and

∆2. ∆1 stems from the approximation of u2 while ∆2 is incurred by the approx-
imate sampling of r3. As u2 retains λ decimal places, the difference between the

approximate number u
(R)
2 and the accurate number u

(I)
2 is not great than 2−λ.

So we have

|∆1|
P

(I)
2

=

∣∣∣∣∣exp(−u(R)
2 )− exp(−u(I)2 )

exp(−u(I)2 )

∣∣∣∣∣ =
∣∣∣exp(−(u

(R)
2 − u(I)2 ))− 1

∣∣∣
≈
∣∣∣u(R)

2 − u(I)2

∣∣∣ ≤ 2−λ. (2)

To estimate the upper bound of ∆2, we will analyze the process of the while
loop (step 6 - step 9) of Algorithm 2. Because both r2 and r3 retain λ decimal
places and r3 is sampled uniformly from [0,1), the probability that the condition

of the while loop can be determined by comparing the approximate numbers r
(R)
2

and r
(R)
3 is exactly 1− 2−λ. For the i-th while loop (i ≥ 1), we denote Ai as the

event r
(R)
2 = r

(R)
3 , Bi as the event r

(R)
2 > r

(R)
3 and Ci as the event r

(R)
2 < r

(R)
3 .

Event Bi−1 must have happened in the i-th loop (i ≥ 2).

If event Ai doesn’t happen for any i ≥ 1, the precision of r
(R)
3 will not

influence the process of the while loop. Our goal is to calculate the probability

sum of all Ai which is the upper bound of ∆2. Because r
(R)
2 is always no more

than u
(R)
2 ≤ u(I)2 + 2λ and Pr{Ai} = Pr{Bi−1} · 2−λ, we have

Pr{Ai} ≤

2−λ (i = 1)(
u
(I)
2 + 2−λ

)i−1
· 2−λ (i ≥ 2)

As u
(I)
2 ∈ [0, ln(2)) and 2−λ is much smaller than ln(2), we can give a upper

bound of (∆2/P
(I)
2 ):

∆2

P
(I)
2

≤

∞∑
i=1

Pr{Ai}

exp
(
−u(I)2

) ≤ 2−λ+1 ·
∞∑
i=0

(
u
(I)
2 + 2−λ

)i
≤ 2−λ+3. (3)

Combining the constraints (1) (2) (3), we can bound the relative error be-
tween P (R) and P (I),∣∣P (R) − P (I)

∣∣
P (I)

=

∣∣∣P (R)
2 − P (I)

2

∣∣∣
P

(I)
2

=
|∆1 +∆2|
P

(I)
2

≤ 2−λ + 2−λ+3,

which concludes the proof. ut
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In our implementation of Algorithm 2, the double type is used in the floating-
point operations and 64-bit integers are used to approximate the floating num-
bers r2, r3 , so λ is at least 52. Then the relative error of Algorithm 2 is not more
than

2−52 + 2−49 ≤ 2−48.

In the next theorem, we estimate the expected sampling number of r3 which
is closely related to the efficiency of Algorithm 2.

Theorem 2. For any u2 ∈ [0, ln 2), in one running process of Algorithm 2, the
expected sampling number S of r3 is less than 2.

Proof. The probability that n = n0 in step 10 of Algorithm 2 is un0
2 /n0! −

un0+1
2 /(n0 + 1)!. If n = n0 in step 10, the sampling number of r3 is n0 + 1. The

expected sampling number S of r3 can be written as

S =

∞∑
n0=0

(
un0
2

n0!
− un0+1

2

(n0 + 1)!
) · (n0 + 1) = exp(u2) < 2,

the last inequality is deduced from u2 < ln 2. ut

Laziness Technique. If we use 64-bit integers to represent the random numbers
r1 and r3, there are less than three 64-bit integers sampled on average during
each run of Algorithm 2. Those sampled integers r1, r3 are only involved in
the comparison operations, so we can employ the laziness technique to speed up
Algorithm 2. The laziness technique has been introduced in some previous works
[13,20]. Its key observation is that when at least one of the two compared 64 bits
integers is sampled uniformly, the comparison can be determined by the first i
significant bits, except with probability 2−i (exactly when the first i bits of the
two integers match). Therefore it is unnecessary to sample all bits of the integer
in one time. In our implementation, the 64-bit integer is sampled 8 bits by 8
bits until the comparison is determined or all 64 bits is sampled. It is easy to
estimate that each sampled integer needs less than 9 random bits on average in
this way. So the expected number of random bits is less than 27 in one running
process of Algorithm 2 with this optimization.

3.2 Isochronous Exponential Bernoulli Sampling Algorithm

Timing attack is a common attack for cryptographic schemes. As the floating-
point divisions rarely offer constant-time execution guarantees [42], we can pre-
compute ln 2 and (1/ ln 2) such that Algorithm 2 only involves the floating-point
subtractions and multiplications. However, it still seems to be difficult to make
Algorithm 2 resistant against timing attacks without sacrificing efficiency signif-
icantly. Algorithm 2 can be divided into two parts. The first and second parts
sample the Bernoulli variables b1 and b2 with probabilities 2−u1 and exp(−u2)
to be true respectively. The first part is easy to be implemented against timing
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attacks without sacrificing efficiency significantly, while it’s difficult for the sec-
ond part. Because the value of b2 is closely related to the sampling number of
r3 which determines the algorithm running time.

To overcome the obstacle and retain the efficiency, we restrict the application
of Algorithm 2 to the rejection sampling algorithm. In the rejection sampling
algorithm, different values of b will lead to the different executions of the branch
statement. The execution process will reveal the value of b directly. The output
b of Algorithm 2 is not a sensitive variable at all. There is no need to make the
value of b2 independent of the algorithm running time. We only focus on how
to make the input x independent of the running time, then we will obtain an
isochronous exponential Bernoulli sampling algorithm in the rejection sampling
scenario. Fortunately, it’s easy to reach this goal.

Theorem 3. Suppose that the floating-point additions, subtractions and multi-
plications are isochronous. Algorithm 3 is perfectly isochronous with respect to
its input x. What’s more, for u2 ∈ [0, ln 2), in one running process of Algorithm
3, the expected sampling number S of r3 is 2, which is independent of u2.

Proof. In Algorithm 3, the input x is divided into u1 and u2. If we prove that
u1 and u2 are independent of the running time of Algorithm 3, Algorithm 3
is perfectly isochronous. u1 and u2 are used to sample the variables b1 and b2
respectively. The sample of b1 consists of one uniform sampling of r1 and one
comparison between r1 and zero, which is independent of u1 clearly. The sample
of b2 consists of the uniform samplings of r3, the comparisons of r2 and r3, one
comparison of u2 and r3. The sampling number of r3 is the same as the number
of comparisons between r2 and r3. The left problem is whether the sampling
number of r3 is independent of u2. The expected sampling number S of r3 of
Algorithm 3 is

S =

∞∑
n0=0

(
(ln 2)n0

n0!
− (ln 2)n0+1

(n0 + 1)!
) · (n0 + 1) = 2,

which is independent of u2. ut

3.3 Applications and Performances

Our exponential Bernoulli sampling algorithm can be applied to Gaussian sam-
plers based on rejection samplings. In this section, we choose FALCON, a lattice-
based signature scheme of the third-round candidates in the NIST PQ project,
as an example of the application of our algorithm.

FALCON contains a discrete Gaussian sampling algorithm based on rejection
sampling, so it needs to sample from a Bernoulli variable with a probability
p = exp(−x) (x ≥ 0) being true. To achieve the security goal of FALCON, the
relative error between the ideal probability and the real probability can’t be
greater than 2−43 [20,37]. The relative error of our algorithm is not greater than
2−48, which satisfies the requirement of FALCON.
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Algorithm 3: Isochronous Exponential Bernoulli Sampling Algorithm

Input: x ≥ 0
Output: b← Bexp(−x)
1: u1 ← bx/ ln 2c, u2 ← x− u1 · ln 2
2: r1 ← {0, 1, ..., 2u1 − 1}
3: b1 ← (r1 = 0)
4: n← 0
5: r2 ← ln 2, r3 ← [0, 1)
6: b2 ← (u2 < r3)
7: while r2 > r3 do
8: n← n+ 1
9: r2 ← r3, r3 ← [0, 1)

10: end while
11: b2 ← b2 | (n is even)
12: b← b1 & b2
13: return b

In order to sample the exponential Bernoulli variable, FALCON reduces the
parameter x modulo ln 2 such that x = u1 ln 2 + u2, then computes exp(−x) =
2−u1 exp(−u2). FALCON uses a polynomial approximation of the exponential
function exp(x) on [− ln 2, 0] to compute exp(−u2). In the latest constant-time
implementations of FALCON, it uses the polynomial approximation Pfacct(x)
provided in FACCT [42] to sample the exponential Bernoulli variable. FALCON
offers three different implementations. The first one is a generic implementation
utilizing double types, while the other two implementations are designed for
specific platforms.

We aim to design a generic and efficient exponential Bernoulli sampling al-
gorithm, so we haven’t considered the specific instruction set optimization. We
apply Algorithm 3 to the first implementation of FALCON and compile the new
implementation with the default compiler flags in the Makefile. The benchmark
results are showed in Table 1 and Table 2. The new discrete Gaussian sampling
implementation is about 1.24x faster than the original. While the LDL tree has
been built upon the secret key, the new signature generation implementation is
about 1.15x-1.18x faster than the original. In this paper, all our experiments are
performed on a single Intel Core i7-4790 CPU core at 3.6 GHz.

The implementation of FALCON doesn’t offer the interface to invoke the
algorithm for sampling the exponential Bernoulli variable. So we separate this
module and compare it with Algorithm 3. We choose the ChaCha20 in OpenSSL
and the AES256 counter mode with hardware AES instructions (AES-NI) as the
pseudorandom number generators (PRNG) and use g++ 7.5.0 to compile our
implementations with the compiler options -O3 and -maes enabled3. In each
test, we generate 104 samples (with a uniform random parameter x in [0, 1)) for
104 times and measure the consumed time. Finally, we calculate the benchmark

3 -maes is only used to compile AES-NI. It can be removed while the implementation
doesn’t involve AES-NI.
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Table 1: Number of Gaussian samples of FALCON per second at 3.6 GHz

Number of Samples (×106/sec)

Original Implementation 6.98

Our Implementation 8.69

Table 2: Signature generation time of FALCON at 3.6 GHz

Degree 256 512 1024

Original Implementation 96.65 µs 193.96 µs 384.59 µs

Our Implementation 82.59 µs 163.86 µs 332.05 µs

results in Table 3 based on the measured times. If the ChaCha20 in OpenSSL is
used as the PRNG, Algorithm 3 is 1.24x faster than the algorithm in FALCON.
If AES-NI is used as the PRNG, Algorithm 3 is 1.48x faster than the algorithm
in FALCON. The reason is that Algorithm 3 avoids a large number of floating-
point multiplications and needs more random numbers. So the efficiency of the
PRNG has a greater impact on Algorithm 3 than the algorithm in FALCON.

Table 3: Number of exponential Bernoulli samples per second at 3.6 GHz

PRNG ChaCha20 (×107/sec) AES-NI (×107/sec)

Implementation in FALCON 6.01 6.08

Algorithm 3 7.45 9.01

4 Sampling Integers Based on a Discrete Gaussian
Distribution with a Small Standard Deviation

In this section, we first introduce our new Gaussian sampler based on rejection
sampling, and analyze its correctness and security requirements. Then we use our
tool Algorithm 3 to implement our Gaussian sampler and make it isochronous
with respect to its inputs and output. Finally, we compare our implementations
with the existing algorithms, and apply it to the lattice cryptography library
PALISADE.

4.1 New Discrete Gaussian Sampling Algorithm

We present our sampling algorithm in Algorithm 4. The algorithm needs a basic
sampler to sample from the discrete Gaussian distribution DN,σ0

with the small
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standard deviation σ0. The parameter C(σ) could make Algorithm 4 isochronous
with respect to σ. Our algorithm can be viewed as the general case of the discrete
Gaussian sampling algorithm in the BLISS signature scheme (BLISS sampler)
[10]. It can sample from the discrete Gaussian distribution with σ ≥ σ0 and ar-
bitrary center c, while the BLISS sampler can only sample from the distribution
with σ being an integral multiple of σ0 and c = 0. In fact, Algorithm 4 is essen-
tially the same as the BLISS sampler if σ is an integral multiple of σ0 and c = 0.
The rejection sampling strategy of Algorithm 4 is implied in Karney’s sampler
[24]. Karney’s sampler doesn’t consider how to resist timing attacks. However,
we can make Algorithm 4 isochronous with respect to its inputs and output.

Algorithm 4: New Discrete Gaussian Sampling Algorithm

Input: Standard deviation σ ≥ σ0, center c, parameters k = σ/σ0, C(σ)
Output: z ← DZ,σ,c
1: f ← true
2: while f = true do
3: x← DN,σ0
4: y ← {0, ..., dke − 1}
5: s← {1,−1}
6: z0 ← dkx+ y + sce
7: d← z0 − (kx+ sc)
8: prej ← C(σ) · exp(−d(d+ 2kx)/(2σ2))
9: b← Bprej

10: if d < k then
11: if x 6= 0 or d 6= 0 or s 6= 1 then
12: if b = 1 then
13: f ← false
14: end if
15: end if
16: end if
17: end while
18: z ← sz0
19: return z

To prove the correctness of Algorithm 4, there are two issues to be addressed:
(1). After step 10 and step 11 in Algorithm 4, each integer z∗ can be calculated
by exactly one tuple (x∗, y∗, s∗); (2). We need to show the probability of sampling
z∗ is exactly proportional to ρZ,σ,c(z

∗).

Theorem 4. The output z sampled by Algorithm 4 is distributed as DZ,σ,c.

Proof. We first prove that each integer z∗ is calculated by exactly one tuple
(x∗, y∗, s∗). We can write c as c = c1 + c2 in which c1 ∈ [0, 1) and c2 ∈ Z. Then
we have

d = dkx+ sc1e+ y − (kx+ sc1), z = s · (dkx+ sc1e+ y) + c2.
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If c1 6= 0, z ≤ c2 for s = −1, and z > c2 for s = 1. However, if c1 = 0, z = c2
can be calculated by two tuples (0, 0, -1) and (0, 0, 1). The step 11 makes
z greater than c2 for s = 1 no matter whether c1 is equal to 0, which solves
the problem. Next, we analyze that each integer z∗ > c2 can be calculated by
exactly one tuple (x∗, y∗, s∗) for s = 1. For any x ≥ 0, dke − 1 ≤ dk(x + 1) +
sc1e − dkx + sc1e ≤ dke. As y ∈ {0, ..., dke − 1}, each integer z∗ > c2 can be
calculated by at least one tuple (x∗, y∗, s∗). However, if some xbad satisfies that
dk(xbad + 1) + sc1e − dkxbad + sc1e = dke − 1, then z = dk(xbad + 1) + sc1e+ c2
could be calculated by two tuples (xbad, dke−1, 1) and (xbad+1, 0, 1). Due to the
fact that dk(x+ 1) + sc1e > dkx+ sc1e+ dke−1 is equivalent to k(x+ 1) + sc1 >
dkx+sc1e+dke−1, the tuple (xbad, dke−1, 1) is rejected after the step 10. Then,
each integer z∗ > c2 is calculated by exactly one tuple. For s = −1, it’s similar
to prove that each integer z∗ <= c2 is also calculated by exactly one tuple.

Now, we calculate the probability that each integer z∗ is sampled. Assume
that z∗ is calculated by the tuple (x∗, y∗, s∗), i.e. z∗ = s∗ · dkx∗ + y∗ + s∗ce. Let
z∗0 = dkx∗ + y∗ + s∗ce and d∗ = z∗0 − (kx∗ + s∗c), then we have:

Pr[z = z∗] ∝ exp(− x
∗2

2σ2
0

) · C(σ) exp(−d
∗(d∗ + 2kx∗)

2σ2
)

= C(σ) exp(− (z∗0 − s∗c)2

2σ2
)

= C(σ) exp(− (z∗ − c)2

2σ2
) ∝ DZ,σ,c(z

∗),

which concludes the proof. ut

Algorithm 4 is based on rejection sampling and a distribution with a fixed
standard deviation, which is similar to FALCON’s sampler [20]. In practice, no
one could achieve perfect distributions. We can only achieve the approximate

distribution D
(R)
N,σ0

and sample the approximate Bernoulli variable B(R)
prej . As an-

alyzed in [20], if the number Qz a cryptographic scheme invokes Algorithm 4 is

limited, its security loss is tolerable under certain conditions on D
(R)
N,σ0

and B(R)
prej .

Theorem 5. Let λ(I) (resp. λ(R)) be the security parameter of an implemen-

tation using the ideal distributions D
(I)
N,σ0

and B(I)prej (resp. the real distributions

D
(R)
N,σ0

and B(R)
prej ). Let the numbers of sampling from DN,σ0

and Bprej be Qbs and
Qexp. If the following conditions are respected, at most two bits of security are
lost. In other words, λ(I) − λ(R) ≤ 2.

∀ prej ≥ 0,

∣∣∣∣∣B
(R)
prej − B

(I)
prej

B(I)prej

∣∣∣∣∣ ≤
√

λ(R)

Qexp(2λ(R) + 1)2
,

R2λ(R)+1(D
(R)
N,σ0

, D
(I)
N,σ0

) ≤ 1 +
1

4Qbs
.
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In the proof of Theorem 5, we can first bound the Rényi divergence between

B(R)
prej and B(I)prej by Lemma 7 and the first condition of Theorem 5. Then, combin-

ing Lemma 5 and the upper bound of R2λ(R)+1

(
D

(R)
N,σ0

, D
(I)
N,σ0

)
, we can estimate

the security loss. We provide the detailed proof in Appendix A.
As suggested by the NIST PQ project, an attacker can make no more than 264

signature or decryption queries. The lattice dimension of a cryptographic scheme
is usually less than 212. Therefore, it’s reasonable to assume that Qz ≤ 276 in
most applications of Algorithm 4. According to the acceptance probability of
Algorithm 4 in Lemma 9, if σ0 > 1/

√
2 ln 2, the expected number of trials of

Algorithm 4 is no more than 3. Then we have Qbs = Qexp ≤ 3 · 276 ≤ 278. If
a cryptographic scheme invoking algorithm 4 has 256-bit security, the concrete
numerical values of the conditions in Theorem 5 are√

λ(R)

Qexp(2λ(R) + 1)2
≈ 2−44, 1 +

1

4Qbs
≈ 1 + 2−80.

4.2 Isochronous Implementations

In this subsection, we first analyze the conditions to make Algorithm 4 isochronous
with respect to the standard deviation σ, the center c, and its output z, then
introduce how to implement Algorithm 4 and select the appropriate parameters
to satisfy those conditions.

To get an isochronous implementation of Algorithm 4, the first requirement
is that the floating-point operations should be isochronous. We need to precom-
pute 1/σ to avoid the floating-point divisions which rarely offer constant-time
execution guarantees. There are other five necessary conditions:

1. The basic sampler sampling from DN,σ0
doesn’t leak any information of x.

2. The sampling time of b is independent of −d(d+ 2kx)/(2σ2).
3. The acceptance probability of Algorithm 4 doesn’t rely on c.
4. The sampling time of y is independent of k.
5. The acceptance probability of Algorithm 4 doesn’t rely on σ.

The implementation isochronous concerning z needs to satisfy the first two con-
ditions. The implementation isochronous concerning z and c needs to satisfy the
first three conditions. The implementation isochronous concerning z, c, and σ
needs to satisfy all five conditions.

For the first condition, we adopt two basic samplers to instantiate Algorithm
4 respectively. The first one is the cumulative distribution table (CDT) sampler.
We precompute the approximate cumulative distribution table of DN,1 with 80-
bit precision shown in Table 4. To produce a sample, we generate a random value
r in [0, 1) with the same precision and return the index of the last entry in the
table that is greater than r. To make the running time isochronous with respect
to the output, the CDT sampler has to read the entire table and compare r with
each entry. For any a ≤ 512, our experiment shows that the Rényi Divergence

Ra(D
(R)
N,1 , D

(I)
N,1) between the real distribution D

(R)
N,1 and the ideal distribution
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D
(I)
N,1 is bounded by 1 + 2−80, which satisfies the second condition in Theorem 5.

The advantage of the CDT sampler is that it has a very attractive performance.

Table 4: The approximate CDT of DN,1 with 80-bit precision

z CDT(z) (×2−80) z CDT(z) (×2−80)

0 519416855270223991024635 5 10517004221616016

1 101208528248637278136991 6 15796660852944

2 7893637264903720998210 7 8733832501

3 233884566914685871813 8 1776829

4 2580077773372372849 9 132

Another one is the binary sampler, which is introduced in the BLISS sampler
[10]. It sample from the distribution DN,1/

√
2 ln 2. In Algorithm 5, we show how

to make the binary sampler isochronous concerning its output. We cut the tail
of the distribution and only sample the non-negative integers no more than 8.
Moreover, the while loop in Algorithm 5 never terminates in advance even if the
sample has been determined. As each probability of DN,1/

√
2 ln 2 can be accurately

represented in binary form, the output distribution D
(R)

N,1/
√
2 ln 2

does’t have a

relative error. By some simple calculations and Lemma 6, for any a ∈ (1,+∞),

we have Ra(D
(R)

N,1/
√
2 ln 2

, D
(I)

N,1/
√
2 ln 2

) ≤ 1 + 2−80 satisfying the second condition

in Theorem 5. The advantage of the binary sampler is that it doesn’t need any
precomputation.

For the second condition, we can utilize Algorithm 3 described in subsection
3.2 to sample the exponential Bernoulli variable Bprej . The relative error of
Algorithm 3 is no more than 2−48 meeting the first condition in Theorem 5.

For the fourth condition, we designed Algorithm 6 to sample y. The accep-
tance probability of Algorithm 6 is 0.5, so its running time is independent of
k.

Both third and fifth conditions are related to the acceptance probability of
Algorithm 4. We utilize the technique in FALCON’s sampler to satisfy these
two conditions. In the following lemma, we prove that σ ≥ η+ε (Z) is a sufficient
condition of the independence between c and the acceptance probability of Al-
gorithm 4, and if the parameter C(σ) in Algorithm 4 has an appropriate value,
the acceptance probability of Algorithm 4 could not rely on σ.

Lemma 9. Let ε ∈ (0, 1), c ∈ R, k = σ
σ0

and t be a positive integer. If the

standard deviation σ meets the condition that σ ≥ η+ε (Z), we can set C(σ) = 1

and pσ = ρσ(Z)
2dkeρσ0 (N)

. The acceptance probability Ptrue(σ, c) of the while loop in

Algorithm 4 satisfies
Ptrue(σ, c) ∈ pσ · [1− ε, 1].
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Algorithm 5: The Binary Sampler

Output: z ← DZ+,1/
√
2 ln 2

1: success← 0
2: while success = 0 do
3: z ← 0, bad← 0
4: b← {0, 1}
5: success← (b = 0)
6: z ← z + (1− success)
7: for i← 1 to 8 do
8: draw random bits b1...b2i−1

9: if b1...b2i−2 6= 0...0 then
10: bad← 1
11: end if
12: if b2i−1 = 0 and bad = 0 then
13: success← 1
14: end if
15: z ← z + (1− success)
16: end for
17: end while
18: return z

Algorithm 6: Isochronous Uniform Sampling Algorithm

Input: Parameters dke ∈ (2l−1, 2l], Pk = 2l−1/dke
Output: y ← {0, ..., dke − 1}
1: f ← true
2: while f = true do
3: y ← {0, ..., 2l − 1}
4: r ← [0, 1)
5: if y < dke and r < Pk then
6: f ← false
7: end if
8: end while
9: return y

If the standard deviations σ0, σ meet the condition that σ ≥ max{η+ε (Z), tσ0},
we can set C(σ) = tdke

(t+1)k ≤ 1 and p = tσ0

√
2π

2(t+1)ρσ0 (N)
. The acceptance probability

Ptrue(σ, c) of the while loop in Algorithm 4 satisfies

Ptrue(σ, c) ∈ p · [1− ε, 1 + 2ε].

Proof. We use T to represent the set of all tuples (x∗, y∗, s∗) that satisfies the
conditions in step 10 and step 11 in Algorithm 4. According to the proof of
Theorem 4, each integer z∗ can be calculated by exactly one tuple (x∗, y∗, s∗) in
set T . Thus, the acceptance probability Ptrue(σ, c) of the while loop in Algorithm
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4 is:

Ptrue(σ, c) =
∑

(x∗,y∗,s∗)∈T

ρσ0(x∗)

ρσ0
(N)︸ ︷︷ ︸

x∗←DN,σ0

· 1

dke︸︷︷︸
y∗←{0,...,dke−1}

· 1

2︸︷︷︸
s∗←{1,−1}

·C(σ) · ρσ,c(z
∗)

ρσ0
(x∗)︸ ︷︷ ︸

Pr{Bprej=1}

=
∑
z∗∈Z

C(σ) · ρσ,c(z∗)
2dke · ρσ0(N)

=
C(σ) · ρσ,c(Z)

2dke · ρσ0(N)

For any ε ∈ (0, 1), if σ ≥ η+ε (Z) ≥ ηε(Z) and C(σ) = 1, it holds from Lemma
2 that

Ptrue(σ, c) ∈
ρσ(Z)

2dke · ρσ0
(N)
· [1− ε, 1] ,

which concludes the first part of Lemma 9.
To make Ptrue(σ, c) independent of σ, we need to bound ρσ(Z). For any

ε ∈ (0, 1), if σ ≥ η+ε (Z) ≥ ηε(Z), the following relationship holds from Lemma 2
and Lemma 3:

Ptrue(σ, c) ∈
C(σ) · σ

√
2π

2dke · ρσ0
(N)
· [1− ε, 1 + 2ε].

Now, we can use C(σ) to eliminate σ and dke. As k = σ
σ0

, t is a positive

integer and σ ≥ tσ0, we can set C(σ) = tdke
(t+1)k ≤ 1. Then, we have:

Ptrue(σ, c) ∈
tσ0
√

2π

2(t+ 1)ρσ0(N)
· [1− ε, 1 + 2ε],

which concludes the second part of Lemma 9. ut

In the remaining part of this subsection, we will analyze the influence of the
acceptance probability Ptrue(σ, c) on the running time of Algorithm 4 and the
adversary advantage. We only consider the scenarios where both σ and c are
secret. If σ is public, we can ignore the last two conditions. This means we don’t
need Algorithm 6 and parameter C(σ) to hide σ. In this case, we can utilize a
similar method to analyze the success probability of the adversary by the first
part of Lemma 9. We omit the details here.

In the following Theorem 6, we show that Algorithm 4 is perfect isochronous
with respect to z and statistically isochronous for the Rényi divergence with
respect to σ, c.

Theorem 6. Let ε ∈ (0, 1), c ∈ R, k = σ
σ0

and t be an positive integer. Let σ0,

σ be the standard deviations such that σ0 ∈ [ 1√
2 ln(2)

, 1], σ ≥ max{η+ε (Z), tσ0}.

Let C(σ) = tdke
(t+1)k ≤ 1, p = tσ0

√
2π

2(t+1)ρσ0 (N)
be constants in (0, 1). Suppose that the

floating-point additions, subtractions, multiplications, and rounding operations
are isochronous. Besides, the implementation of Algorithm 4 satisfies the first,
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second, and fourth conditions. Its running time follows a distribution T (σ, c)
such that:

Ra(T (σ, c), T ) . 1 + 4aε2 max

(
1− p
p2

,
1

1− p

)
≤ 1 + 24aε2

for some distribution T independent of σ, c, and z.

In the following Theorem 7, we leverage Theorem 6 to prove that the running
time of our implementations of Algorithm 4 does not help an adversary to break
the cryptographic scheme. As is analyzed in [20], we consider that the adversary
has access to some function g(DZ,σ,c) as well as the running time of Algorithm
4. This is intended to capture the fact that in most applications, the output
of Algorithm 4 is not given directly to the adversary, but processed by some
function g before.

Theorem 7. Consider an adversary A making Qs queries to g(DZ,σ,c) for some
randomized function g, and solving a search problem with success probability 2−λ

for some λ ≥ 1. With the notations of Theorem 6, suppose that ε ≤ 1√
24λQs

.

Learning the running time of each call to Algorithm 4 does not increase the
success probability of A by more than a constant factor.

To prove Theorem 6, we need to analyze the running time T0 of one iteration
of the while loop in Algorithm 4 and the number I(σ, c) of iterations. Let I be
the number of iterations in the ideal case. I(σ, c) (resp. I) is determined by the
probability Ptrue(σ, c) (resp. p). As the floating-point operations are isochronous
and the first, second, and fourth conditions are satisfied, T0 follows a distribution
independent of σ, c, and z. By Lemma 5, we have Ra(T (σ, c), T ) = Ra(I(σ, c), I).
We can deduce the upper bound of Ra(I(σ, c), I) from the relation Ptrue(σ, c) ∈
p · [1− ε, 1 + 2ε] and prove the first part of the inequality. The second part can
be derived from p ∈ [0.34, 0.36]. The proof of Theorem 7 requires the flexible
applications of the three properties in Lemma 5. We put the detailed deductions
in Appendix B and Appendix C.

4.3 Applications and Performances

We offer four different implementations of Algorithm 4. The first two implemen-
tations are isochronous concerning the center c and its output z. Their basic
samplers are the CDT sampler and the binary sampler respectively. The last
two implementations are isochronous concerning the standard deviation σ, cen-
ter c, and output z. They are the same as the first two implementations except
utilizing Algorithm 6 and parameter C(σ) to hide σ. The binary sampler doesn’t
need any precomputation, while the CDT sampler need to store the cumulative
distribution table in Table 4. Each 80-bit integer is represented by two 64-bit in-
tegers in our implementations, so the table consumes 20 · 8 = 160 bytes. All four
implementations need at most several hundred bytes of memory consumption
containing other precomputed values such as k and 1/(2σ2).
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Table 5: Number of samples per second at 3.6 GHz for our new Gaussian
sampler Algorithm 4 isochronous concerning c and z

σ Binary Sampler (×106/sec) CDT Sampler (×106/sec)

2 9.91 13.62

8 10.96 13.72

32 11.20 13.55

215 11.54 13.99

220 11.34 14.14

Table 6: Number of samples per second at 3.6 GHz for our new Gaussian
sampler Algorithm 4 isochronous concerning σ, c, and z

σ Binary Sampler (×106/sec) CDT Sampler (×106/sec)

2 6.97 7.11

8 6.70 7.11

32 6.77 7.14

215 6.76 7.18

220 6.74 7.33

We choose the AES256 counter mode with the AES-NI instruction set as the
PRNG and use g++ 7.5.0 to compile the four implementations of Algorithm 4
with the compiler options -O3 and -maes enabled. In each test, we produce 104

random centers c in [0,1) for each σ, then generate 103 samples with the same σ
and c and measure the consumed time. We calculate the benchmark results in
Table 5 and Table 6 based on the measured times.

In Table 5 and Table 6, the implementations based on the CDT sampler are
a little faster than that based on the binary sampler. The principal reason is
that the expected number of trials of the binary sampler is about 1.3 times that
of the CDT sampler. In Table 6, we set the parameter C(σ) equal to (2dke)/(3k)
which means σ ≥ 2σ0. This causes a significant decline in the performances of
the last two implementations. If σ is far greater than σ0, we can adjust C(σ)
to get better performances. For example, if σ ≥ 32σ0, we can set C(σ) equal to
(32dke)/(33k). The implementations based on the binary sampler and the CDT
sampler generate 9.68× 106 and 10.23× 106 samples per second for σ = 32.

We summarize the performances of previous works in Table 7. We scale all
the numbers to be based on 3.6 GHz. The TwinCDT sampler [27] is isochronous
concerning c and z, so we compare it with the implementations of Table 5. The
TwinCDT sampler offers three different tradeoffs between the running time and
the precomputation storage. For σ ∈ [2, 32], the TwinCDT sampler is at least
two times faster than our implementations. However, the TwinCDT sampler
requires at least 1.4 KB of memory consumption to store the cumulative dis-
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Table 7: Summary of previous works at 3.6 GHz

σ Number of Samples (×106/sec) Precomputation Storage (KB)

2 [27] 43.73/53.53/65.51 1.4/4.6/46

8 [27] 32.31/45.69/54.44 3/10/100

32 [27] 29.47/34.08/36.51 9.5/32/318

215 [31] ≈10.59 (online), 1.53 (online+offline) 25.4

4− 220 [9] ≈13.97 < 1

1.29− 1.85 [20] 8.31 < 1

tribution tables. With the increase of σ, it needs more memory and has worse
performance. The performances of our implementations don’t change significant-
ly as σ increases, and their memory consumptions are independent of σ.

The convolution sampler [31] is isochronous concerning σ, c, and z, so we
compare it with the implementations of Table 6. If we measure the whole run-
ning time, our implementations are at least four times faster than the convolution
sampler. If we only measure the time during the online phase, our implementa-
tions will generate the basic samples during the offline phase. In this case, the
implementations based on the binary sampler and the CDT sampler generate
8.73× 106 and 9.16× 106 samples per second for σ = 215, which are slower than
the convolution sampler. However, while performing the benchmark test, [31]
assumes σ ≥ 13 > 4

√
2ηε(Z) for reasonable ε, although

√
2ηε(Z) is the minimum

to be usable for the convolution sampler4. Under the same assumption, we can
set C(σ) equal to (13dke)/(14k). Then our implementations generate 12.43×106

and 13.11× 106 samples per second for σ = 215 during the online phase, which
are faster than the convolution sampler.

The sampling algorithm in [9] is based on the binary sampler and the re-
jection sampling strategy of Karney’s sampler. Although it’s faster than our
implementations based on the binary sampler, its side-channel resistance per-
spective is unclear. FALCON’s sampler [20] is isochronous concerning σ, c, and
z. It’s faster than our implementations of Table 6. However, its storage and
running time increase rapidly as σ grows like the TwinCDT sampler.

We apply Algorithm 4 to the lattice cryptography library PALISADE [7]
and use its latest version as of this writing5 to evaluate the performances. We
replace Karney’s sampler in PALISADE with two implementations based on
the CDT sampler in Table 5 and Table 6 to sample from the discrete Gaussian
distributions over the integers. Karney’s sampler doesn’t consider the timing
attacks. PALISADE uses the BLAKE2 hash function6 as the PRNG. In PAL-

4 The smoothing parameter in [31] is
√

2π times that in this paper
5 https://gitlab.com/palisade/palisade-development/-/tree/release-v1.10.6
6 https://www.blake2.net
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Table 8: Running time of the G-lattice sampling algorithm in PALISADE at
3.6 GHz

Running Time (ms)

Original Implementation 3.74

Our Implementation 2.09

ISADE, Karney’s sampler generates 2.49 × 106 samples per second, while our
implementations generate 5.92× 106 and 3.21× 106 samples.

PALISADE contains the implementations [19] of IBE [29] and CP-ABE [41].
Both rely on the latest MP trapdoor sampler [15]. We mainly focus on the
G-lattice sampling algorithm in the MP trapdoor sampler. It determines the
running time during the online phase. All standard deviations are public in the
G-lattice sampling algorithm, so we make it invoke the implementation based
on the CDT sampler in Table 5. The parameters include the modulus q, the
dimension n of lattice, the base b for the gadget lattice G, and the standard
deviation σ. Let (q, n, b, σ) = (12289, 256, 2, 100). The benchmark results are
shown in Table 8. Our implementation is 1.79x faster than the original.

5 Sampling Integers Based on a Normal Distribution

In this section, we first introduce the rejection sampling strategy of the new
COSAC sampler, then analyze its correctness and security requirements. Finally,
we implement it to confirm the theoretical analysis and compare it with our new
Gaussian sampler Algorithm 4.

5.1 New COSAC Sampler

The core problem of the COSAC sampler [42] is how to sample from the distribu-
tions DZ\{0},σ,cF with cF ∈ [−1/2, 1/2]. It uses the normal distribution N (0, σ)
and the rejection sampling to solve this problem. The rejection sampling strate-
gy of the original COSAC sampler is independent of cF and requires about two
trials on average to output a sample. The rejection sampling strategy of our new
COSAC sampler changes along with the change of cF . The expected number of
trials of our sampler is about half of that of the original.

The original COSAC sampler utilizes two normal distributions N1(0, σ) and
N2(0, σ) to sample from the distributions DZ\{0},σ,cF with cF ∈ [−1/2, 1/2].
N1(0, σ) and N2(0, σ) are used to sample the positive and negative integers
respectively. In each trial, the sampler chooses N1(0, σ) or N2(0, σ) with equal
probability. Assume N1(0, σ) is chosen and x∗ is sampled from N1(0, σ). If there
exists a positive integer z∗ such that x∗ ∈ (z∗−3/2, z∗−1/2], the positive integer
z∗ is accepted with the probability ρσ,cF (z∗)/ρσ(x∗). Assume N2(0, σ) is chosen
and x∗ is sampled from N2(0, σ). If there exists a negative integer z∗ such that
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x∗ ∈ [z∗+1/2, z∗+3/2), the negative integer z∗ is accepted with the probability
ρσ,cF (z∗)/ρσ(x∗). No matter which normal distribution is chosen, the trial fails
with a probability of about 0.5.

The new COSAC sampler only needs one normal distribution N (0, σ) to
sample from the distributions DZ\{0},σ,cF with cF ∈ [−1/2, 1/2]. In each trial,
the sampler sample x∗ from N (0, σ). If x∗+ cF >= 0 and x∗ ∈ [z∗−1− cF , z∗−
cF ), the positive integer z∗ is accepted with the probability ρσ,cF (z∗)/ρσ(x∗); If
x∗ + cF < 0 and x∗ ∈ [z∗ − cF , z∗ + 1− cF ), the negative integer z∗ is accepted
with the probability ρσ,cF (z∗)/ρσ(x∗).

Our sampler is represented in Algorithm 8. It invokes Algorithm 7 to sample
from the distributions DZ\{0},σ,cF with cF ∈ [−1/2, 1/2].

Algorithm 7: Rounding Sampler

Input: Standard deviation σ, center cF ∈ [−1/2, 1/2]
Output: z ← DZ\{0},σ,cF
1: f ← true
2: while f = true do
3: x0 ← N (0, 1)
4: x← σx0
5: z0 ← x+ cF
6: b0 ← (z0 ≥ 0)
7: z ← bz0c+ b0
8: prej ← exp((x2 − (z − cF )2)/(2σ2))
9: b← Bprej

10: if b = 1 then
11: f ← false
12: end if
13: end while
14: return z

Theorem 8. The outputs of Algorithm 7 and Algorithm 8 are distributed as
DZ\{0},σ,cF and DZ,σ,c respectively. Let ε ∈ (0, 1), and σ > ηε(Z), the acceptance
probability Ptrue(σ, c) of Algorithm 7 satisfies

Ptrue(σ, c) ≥ 1− ε− 1

σ
√

2π
.

As we have analyzed the real interval of each nonzero integer, we can prove
the correctness of Algorithm 8 and Algorithm 7 by some simple integral calcula-
tions. For Ptrue(σ, c), we need to precisely calculate the acceptance probability of
one trial of Algorithm 7 and estimate the lower bound by Lemma 2. We provide
the detailed proof in Appendix D. If σ is far greater than ηε(Z), the acceptance
probability Ptrue(σ, c) of Algorithm 7 is very close to 1. In theory, Algorithm 8
is almost two times faster than the original COSAC sampler.
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Algorithm 8: New COSAC Sampler

Input: Standard deviation σ, center c ∈ R, normalization factor S = ρσ,c(Z)
Output: z ← DZ,σ,c
1: cI ← bce
2: cF ← c− cI
3: p0 ← exp(−c2F /(2σ2))/S
4: b← Bp0
5: if b = 1 then
6: z ← 0
7: else
8: z ← DZ\{0},σ,cF
9: end if

10: return z + cI

Due to the impossibility of achieving perfect distributions in practice, we
can use the following theorem to estimate the security loss of the cryptographic
schemes invoking Algorithm 8. The proof of Theorem 9 is similar to that of The-
orem 5. For Theorem 9, we need to estimate the relative error of the probability
of sampling each nonzero integer by the absolute error ∆N of N (0, 1). Because
the length of each real interval increases at most 2σ∆N , we can estimate the
relative error by some integral calculations. We provide the detailed proof in
Appendix E.

Theorem 9. Let λ(I) (resp. λ(R)) be the security parameter of an implemen-

tation using the ideal distributions N (I)(0, 1) and B(I)p (resp. the real distribu-

tions N (R)(0, 1) and B(R)
p ). Let the numbers of sampling from N (0, 1) and Bp

be Qbs and Qexp, the absolute error of the sample values between N (I)(0, 1) and
N (R)(0, 1) be ∆N . If the following conditions are respected, at most two bits of
security are lost. In other words, λ(I) − λ(R) ≤ 2.

∀ p ≥ 0,

∣∣∣∣∣B(I)p − B(R)
p

B(I)p

∣∣∣∣∣ ≤
√

λ(R)

Qexp(2λ(R) + 1)2
,

∆N ≤
1

2σ
√

(4λ(R) + 2)Qbs
.

5.2 Performance of New COSAC Sampler

We implement Algorithm 8 by modifying the implementation of the original
COSAC sampler. The implementation utilizes AVX2 intrinsic instructions to
improve the performance and employ the Box-Muller continuous Gaussian sam-
pler [22] to sample from N (0, 1). The AES256 counter mode with the ASE-NI
instructions is used as the PRNG. For convenience, we use g++ 7.5.0 to compile
the implementations with the same compiler options -O3 -march=native enable
as [42]. In each test, we produce 104 random centers c in [0, 1) for each σ, then
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generate 103 samples with the same σ and c and measure the consumed time
and the number of trials. The benchmark results are shown in Table 9.

Table 9: Comparison between the original COSAC sampler and the new
COSAC sampler at 3.6 GHz

σ
Number of Samples (×106/sec) Average Number of Trials

Original New Original New

2 6.81 11.07 2.49 1.24

8 8.23 12.20 2.10 1.05

32 8.73 13.09 2.03 1.01

215 8.89 13.19 2.00 1.00

220 8.94 13.23 2.00 1.00

In Table 9, the average numbers of trials are basically consistent with the
theoretical results. However, the new COSAC sampler is 1.46x-1.63x faster than
the original. The main reason is the additional operations to hide c and z. As
claimed in [42], our implementation of Algorithm 8 may also reveal σ. Although
the implementation involves AVX2 intrinsic instructions, we compare it with
the implementations of Algorithm 4 in Table 5. The new COSAC sampler is
faster than the implementation based on the binary sampler but slower than the
implementation based on the CDT sampler. It is noteworthy that the absolute
error of the Box-Muller continuous Gaussian sampler is no more than 2−48. For
σ ∈ [2, 220] and λ(R) = 256, the provable security is accessible only for Qbs ≤ 244

based on the second condition in Theorem 9.

6 Conclusions

In this work, we mainly propose three algorithms about how to design a gener-
ic, secure and efficient Gaussian sampling algorithm over the integers. They
are Algorithm 3, Algorithm 4, and Algorithm 8. Algorithm 3 is to sample the
exponential Bernoulli variables. Compared with the polynomial approximation
method, our algorithm reduces the floating-point operations significantly. We
apply it to FALCON to reduce the signature generation time. One interesting
phenomenon is that the polynomial approximation method can benefit from the
Haswell microarchitecture developed by Intel as the fourth-generation core. If the
compiler options include -march=haswell, the running time of the polynomial
approximation method will decrease by about 45% on a single Intel Core i7-4790
CPU at 3.6 GHz. It’s an important issue how to improve the performance of our
algorithm on the specific architecture.

Algorithm 4 can sample from the Gaussian distributions over the integers
while hiding the standard deviation, center, and output. It can be used as the
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fundamental operation modular in the lattice cryptography library. We apply
it to PALISADE and get a more secure and efficient implementation of the
MP trapdoor sampler. We can utilize the constant-time implementation of the
Knuth-Yao sampler [23] as the basic sampler and improve the performances of
our implementations further. Besides, Theorem 7 is only available for search
problems. For decision problems, we may prove the security by the techniques
in [32].

Algorithm 8 also samples from the Gaussian distributions over the integers.
It’s not as competitive as Algorithm 4 so far. However, it has the lowest expected
number of trials among the algorithms based on rejection sampling. It’s neces-
sary to find a more efficient algorithm sampling from the normal distribution to
improve the performance.
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11. Léo Ducas, Steven D. Galbraith, Thomas Prest, and Yang Yu. Integral matrix
gram root and lattice Gaussian sampling without floats. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT, pages 608–637. Springer, 2020.
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A Proof of Theorem 5

Proof. We first define three different cases:

1. (Ideal Case) The implementation uses two ideal distributions D
(I)
N,σ0

and

B(I)prej .

2. (Intermediate Case) The implementation uses a real distribution D
(R)
N,σ0

and

an ideal distribution B(I)prej .

3. (Real Case) The implementation uses two real distributions D
(R)
N,σ0

and B(R)
prej .

We recall that λ(I) (resp. λ(R)) is the security parameter of the Ideal (resp.
Real) Case. We aim at computing ∆λ = λ(I) − λ(R).

We set the order a equal to 2λ(R)+1. Let εI (resp. εIN , εR) be the probability
that the adversary breaks the scheme in the use of the Ideal (resp. Intermediate,
Real) Case. By data processing inequality and probability preservation of the
Rényi divergence in Lemma 5:

εI ≥ ε
a
a−1

IN /Ra

(
D

(R)
N,σ0

, D
(I)
N,σ0

)Qbs
,

εIN ≥ ε
a
a−1

R /Ra

(
B(R)
prej ,B

(I)
prej

)Qexp
,

By definition, εR = 2−λ
(R)

, so we can deduce the relationship between εI and εR

using ε
a
a−1

R = εR/
√

2:

εIN ≥ εR/
(√

2 ·Ra
(
B(R)
prej ,B

(I)
prej

)Qexp)
,

εI ≥ εR/
(√

2
a
a−1+1

·Ra
(
B(R)
prej ,B

(I)
prej

) aQexp
a−1 ·Ra

(
D

(R)
N,σ0

, D
(I)
N,σ0

)Qbs )
.

So we have:

∆λ ≤ log

(√
2

a
a−1+1

·Ra
(
B(R)
prej ,B

(I)
prej

) aQexp
a−1 ·Ra

(
D

(R)
N,σ0

, D
(I)
N,σ0

)Qbs )
. (4)

Based on the first condition in Theorem 5 and a = 2λ(R) + 1, an application
of Lemma 7 yields to

Ra

(
B(R)
prej ,B

(I)
prej

)
≤ 1 +

a− 1

4aQexp
. (5)

By combining (4) (5) and the second condition in Theorem 5, we get

∆λ ≤ log

√2
a
a−1+1

(
1 +

a− 1

4aQexp

) aQexp
a−1

(
1 +

1

4Qbs

)Qbs
≤ log

(√
2

a
a−1+1

· exp(1/4)2
)
≤ log

(√
2

a
a−1+1

· 2
)
≤ 2,

where the second inequality is deduced from
(
1 + x

n

)n ≤ exp(x) for x, n > 0. ut
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B Proof of Theorem 6

The number of iterations of the while loop in Algorithm 4 follows a geometric
distribution of its acceptance probability. When proving Theorem 6, we will need
the following lemma [20] to bound the Rényi divergence between two geometric
distributions.

Lemma 10 ([20]). Let P and Q be geometric distributions of parameters p, q ∈
(0, 1). Suppose there exists δ = o(1/(a+ 1)) such that:

exp(−δ) ≤ p/q ≤ exp(δ),

exp(−δ) ≤ (1− p)/(1− q) ≤ exp(δ).

Then the Rényi divergence between P and Q is bounded as follows:

Ra(P,Q) . 1 +
a(1− p)δ2

p2

(
∼ 1 +

a(1− q)δ2

q2

)
.

Now we can prove Theorem 6.

Proof. Let T0 denote the running time of one iteration of the while loop in
Algorithm 4. If the floating-point operations are isochronous, the basic sampler
is isochronous with respect to its output and the algorithms sampling b and
y is isochronous with respect to their inputs and outputs, then T0 follows a
distribution which is independent of σ, c, z.

Let I(σ, c) (resp. I) denote the number of iterations of the while loop when
each iteration accepts with probability Ptrue(σ, c) (resp. p). I(σ, c) (resp. I) is a
geometric distribution of parameter Ptrue(σ, c) (resp. p). By Lemma 9, we have
Ptrue(σ, c) ∈ p · [1 − ε, 1 + 2ε]. Through a few simple computations, we can get
the following inequalities:

1− 2ε ≤ Ptrue(σ, c)

p
≤ 1 + 2ε,

1− p

1− p
· 2ε ≤ 1− Ptrue(σ, c)

1− p
≤ 1 +

p

1− p
· 2ε.

Let δ = 2ε ·max(1, p
1−p ). If ε is small enough, it follows from Lemma 10 that:

Ra(I(σ, c), I) . 1 +
a(1− p)δ2

p2
. 1 + 4aε2 ·max

(
1− p
p2

,
1

1− p

)
The total running time T (resp. T (σ, c)) of Algorithm 4 is a function of T0

and I (resp. I(σ, c)) for some function f . This allows to apply the data-processing
inequality:

Ra(T (σ, c), T ) = Ra(f(T0, I(σ, c)), f(T0, I))

≤ Ra(I(σ, c), I)

. 1 + 4aε2 ·max

(
1− p
p2

,
1

1− p

)
.
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Since σ0 ∈ [ 1√
2 ln 2

, 1] and p = tσ0

√
2π

2(t+1)ρσ0 (N)
∈ [0.34, 0.36], we can get the final

conclusion:

Ra(T (σ, c), T ) . 1 + 4aε2 max

(
1− p
p2

,
1

1− p

)
≤ 1 + 24aε2.

ut

C Proof of Theorem 7

Proof. Let D denote the output distribution of g(DZ,σ,c). In the real (resp. ideal)
case, we can consider without loss of generality that the adversary can query
the joint distribution (D,T (σ, c)) (resp. (D,T )), where T (σ, c) (resp. T ) is the
running time of Algorithm 4 in the real (resp. ideal) case. In the proof of Theorem
6, we have shown that both T and T (σ, c) are independent of the output z. Thus,
both T and T (σ, c) are independent of the distribution D. Let a = λ, and P0,
P1 denote the success probabilities of A in the ideal and real cases, respectively.
Since P0 = 2−λ and ε ≤ 1√

24λQs
, it holds from Lemma 5 and Theorem 6 that:

P1 ≤
(
P0 ·Ra((D,T (σ, c))Qs , (D,T )Qs)

) a−1
a

≤
(
P0 ·Ra((D,T (σ, c)), (D,T ))Qs

) a−1
a

≤
(
P0 ·Ra(T (σ, c), T )Qs

) a−1
a

.
(
P0 ·

(
1 + 24aε2

)Qs) a−1
a

.

(
P0 ·

(
1 +

1

Qs

)Qs)λ−1
λ

. 2−(λ−1) · e,

which concludes the proof. ut

D Proof of Theorem 8

Proof. To prove that the output of Algorithm 7 is distributed as DZ\{0},σ,cF ,
we need to calculate the probability that each non-zero integer z∗ is sampled. If
z∗ > 0, z∗ is calculated from x∗ in the interval [z∗ − 1 − cF , z∗ − cF ), then we
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can obtain the probability of z∗

Pr[z = z∗|z∗ > 0] =

∫ z∗−cF

z∗−1−cF

ρσ(x∗)

σ
√

2π︸ ︷︷ ︸
x∗←N (0,σ)

· ρσ,cF (z∗)

ρσ(x∗)︸ ︷︷ ︸
Pr{Bprej=1}

dx

=

∫ z∗−cF

z∗−1−cF

ρσ,cF (z∗)

σ
√

2π
dx

=
ρσ,cF (z∗)

σ
√

2π
∝ DZ\{0},σ,cF (z∗).

If z∗ < 0, z∗ is calculated from x∗ in the interval [z∗ − cF , z∗ + 1 − cF ), then
it’s easy to check that Pr[z = z∗|z∗ ∈ Z, z∗ < 0] ∝ DZ\{0},σ,cF (z∗). So, for any
non-zero integer z∗, we can conclude that Pr[z = z∗] ∝ DZ\{0},σ,cF (z∗).

In Algorithm 8, Pr[z = 0] = exp(−c2F /(2σ2))/S = DZ,σ,cF (0). Therefore,
variable z is distributed as DZ,σ,cF . Since c = cI + cF , z + cI is distributed as
DZ,σ,c.

Now, let’s estimate the acceptance probability Ptrue(σ, c) of Algorithm 7:

Ptrue(σ, c) = Pr[z = z∗|z∗ > 0] + Pr[z = z∗|z∗ < 0]

=

∞∑
i=1

(
ρσ,cF (i)

σ
√

2π
+
ρσ,cF (−i)
σ
√

2π

)
=
ρσ,cF (Z\{0})

σ
√

2π

=
ρσ,cF (Z)− ρσ,cF (0)

σ
√

2π

≥ 1− ε− 1

σ
√

2π
,

where the last inequality is deduced from Lemma 2 and ρσ,cF (0) ≤ 1. ut

E Proof of Theorem 9

Proof. The proof of Theorem 9 is very similar to that of Theorem 5. The only
difference is that we need to evaluate the impact of the error of the normal
distribution N (0, 1) on security. We first define three different cases:

1. (Ideal Case) The implementation uses two ideal distributions N (I)(0, 1) and

B(I)p .
2. (Intermediate Case) The implementation uses a real distribution N (R)(0, 1)

and an ideal distribution B(I)p .
3. (Real Case) The implementation uses two real distributions N (R)(0, 1) and

B(I)p .
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Our goal is to compute ∆λ = λ(I)−λ(R). Let the order a of the Rényi diver-
gence be 2λ(R) + 1. Let εI (resp. εIN , εR) be the probability that the adversary
breaks the scheme in the use of the Ideal (resp. Intermediate, Real) Case. Let

D
(I)
Z\{0},σ,cF (resp. D

(IN)
Z\{0},σ,cf ) be the output distribution of Algorithm 7 in the

use of the the Ideal (resp. Intermediate) Case. By data processing inequality and
probability preservation of the Rényi divergence in Lemma 5:

εI ≥ ε
a
a−1

IN /Ra

(
D

(IN)
Z\{0},σ,cF , D

(I)
Z\{0},σ,cf

)Qbs
,

εIN ≥ ε
a
a−1

R /Ra

(
B(R)
p ,B(I)p

)Qexp
,

By the definitions, we have εR = 2−λ
(R)

, εI = 2−λ
(I)

and ε
a
a−1

R = εR/
√

2, then

∆λ ≤ log

(√
2

a
a−1+1

·Ra
(
B(R)
p ,B(I)p

) aQexp
a−1 ·Ra

(
D

(IN)
Z\{0},σ,cF , D

(I)
Z\{0},σ,cF

)Qbs )
.

Based on the second condition of Theorem 9, we can bound the relative error

between D
(IN)
Z\{0},σ,cF and D

(I)
Z\{0},σ,cF . For any positive integer z∗,∣∣∣∣∣∣D

(IN)
Z\{0},σ,cF (z∗)−D(I)

Z\{0},σ,cF (z∗)

D
(I)
Z\{0},σ,cF (z∗)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ z∗−cF+σ∆N
z∗−1−cF−σ∆N

ρσ,cF (z∗)

σ
√
2π

dx− ρσ,cF (x∗)

σ
√
2π

ρσ,cF (x∗)

σ
√
2π

∣∣∣∣∣∣
=2σ∆N ≤

1√
(4λ(R) + 2)Qbs

.

The same result holds for any negative integer. Therefore, the relative error

between D
(IN)
Z\{0},σ,cF and D

(I)
Z\{0},σ,cF is no more than 1√

(4λ(R)+2)Qbs
.

By combining Lemma 7 and the bounds of the relative errors, we can get:

Ra

(
D

(IN)
Z\{0},σ,cF , D

(I)
Z\{0},σ,cf

)
≤ 1 +

1

4Qbs
,

Ra

(
B(R)
p ,B(I)p

)
≤ 1 +

a− 1

4aQexp
.

Thus, we have

∆λ ≤ log

√2
a
a−1+1

(
1 +

a− 1

4aQexp

) aQexp
a−1

(
1 +

1

4Qbs

)Qbs
≤ log

(√
2

a
a−1+1

· exp(1/4)2
)
≤ 2,

concluding the proof. ut
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