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Abstract

Sharding is an emerging technique to overcome scalability issues on blockchain based
public ledgers. Without sharding, every node in the network has to listen to and process all
ledger protocol messages. The basic idea of sharding is to parallelize the ledger protocol:
the nodes are divided into smaller subsets that each take care of a fraction of the original
load by executing lighter instances of the ledger protocol, also called shards. The smaller the
shards, the higher the efficiency, as by increasing parallelism there is less overhead in the
shard consensus.

In this vein, we propose a novel approach that leverages the sharding safety-liveness
dichotomy. We separate the liveness and safety in shard consensus, allowing us to dynamically
tune shard parameters to achieve essentially optimal efficiency for the current corruption
ratio of the system. We start by sampling a relatively small shard (possibly with a small
honesty ratio), and we carefully trade-off safety for liveness in the consensus mechanism to
tolerate small honesty without losing safety. However, for a shard to be live, a higher honesty
ratio is required in the worst case. To detect liveness failures, we use a so-called control
chain that is always live and safe. Shards that are detected to be not live are resampled with
increased shard size and liveness tolerance until they are live, ensuring that all shards are
always safe and run with optimal efficiency. As a concrete example, considering a population
of 10K parties, 30% corruption and 60-bit security, our design permits shards of size 200
parties in contrast to 6K parties in previous designs.

Moreover, in this highly concurrent execution setting, it is paramount to guarantee that
both the sharded ledger protocol and its sub protocols (e.g., the shards) are secure under
composition. To prove the security of our approach, we present ideal functionalities capturing
a sharded ledger as well as ideal functionalities capturing the control chain and individual
shard consensus, which needs adjustable liveness. We further formalize our protocols and
prove that they securely realize the sharded ledger functionality in the UC framework.
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1 Introduction
Since the introduction of Bitcoin [25], there has been an explosion of interest in blockchains,
both in research and practice. One of the biggest practical obstacles for the large-scale adoption
of public blockchain systems that have been identified is the low throughput of transactions
in systems such as Bitcoin. As a solution to overcome this limited scalability, a method called
sharding has been proposed.

The basic idea of sharding is to parallelize the execution by dividing the network into smaller
components, called shards. The smaller the shards are, the higher the efficiency is due to
increasing parallelism and less overhead in the shard consensus. However, the security of the
shards requires its size to be big, or analogously, small shards have lower security. For example,
assuming at most 30% corruption1 overall and a total population of 10K parties, the minimal
shard size that guarantees at most 33% corruption with probability 1 − 2−60 in a randomly
selected shard is over 6K, which hardly leads to a major improvement in efficiency. As we show
later, the bounds are almost perfectly linear in the security parameter, so for 30-bit security
the size would have to be about 3K. Thus, to get to a shard size in the hundreds, unsatisfying
security would have to be adopted.

Existing sharding protocols suffer from this issue, because to get security in a partially
synchronous network, at most 33% corruption can be tolerated. We overcome this apparent
barrier by observing that security of a blockchain consists of two main properties: (1) Liveness
says that the blockchain will eventually output new messages to all peers, and (2) safety says
that the peers agree on the sequence of messages being output. The liveness threshold L is the
level of corruption under which liveness is guaranteed. The safety threshold S is the level of
corruption under which safety is guaranteed. Existing sharding solutions consider equal bounds
L = S, which requires L, S < 1/3. In this work, we leverage what we call the safety-liveness
dichotomy by considering different bounds for L and S.

Shard safety-liveness dichotomy. For partially synchronous protocols, the safety-liveness
dichotomy says that 2L + S < 100%; whenever S = L it must be that L, S < 33%. For
synchronous protocols the safety-liveness dichotomy says that L+ S < 100%; whenever S = L
it must be that L, S < 50%. The shard dichotomies follow using standard arguments. We
provide formal proofs in Section 7. Note that the synchronous dichotomy L+ S < 100% seems
to contradict the Dolev-Strong protocol from [14] which achieves synchronous broadcast for, e.g.,
L = S = 99%. However, Dolev-Strong only achieves internal agreement among the n servers.
External parties cannot verify the value agreed on. The crucial thing we use about a shard to
prove the dichotomies is that external parties can post on it and read from it. If a reader can
make a decision while a subset of (relative) size L is crashed, it means that a subset of size 1−L
can convince the reader. If S = 1− L this means it can be convinced after only talking to a set
of potentially corrupt servers, which roughly gives the synchronous dichotomy. For the partially
synchronous dichotomy we use the fact that if the unknown network delay is large enough, a
reader cannot distinguish a corrupt subset of (relative) size L from a slow and honest one. And
if a subset of size L is crashed, it must be definition be able to make a decision. Therefore a
reader which makes a decision (say, on which message it saw on the shard first) could sometimes
do this without having heard from a fraction L of the honest parties. This means that it only
heard from a fraction L+ S of the parties and out of these a fraction L or fraction S might be

1In blockchains, the corruption bounds are typically weighted by some resource, e.g., computing power for
proof-of-work systems, or stake in proof-of-stake systems. To simplify the presentation, we ignore this weighting
in the introduction. We stress, however, that our results are not limited to this simplified setting and can indeed
be used in a weighted setting. See Section 5.3 for a further discussion.
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corrupted. Therefore reasoning similar to that behind the synchronous dichotomy on this “live”
set of servers will give the lower bound.

Our contributions. We present a novel sharding approach that leverages the safety-liveness
dichotomy to get the smallest possible shards, and therefore optimal efficiency, without sacrificing
security. Our sharding design has security against t < 1/3 in the partially synchronous setting.
The same technique can be used to get security against t < 1/2 corruption ratio in the synchronous
network setting, but we focus on the partially synchronous case, which appear more desirable
for a distributed sharding protocol.

We use a “two-layer” approach with a control-chain (CC) which is used to manage several
shards. The shards will, in the optimistic model, run with a low liveness threshold and a high
safety threshold, for instance S = 89% and L = 5%. Being safe against 89% corrupt parties
allows to sample a much smaller committee; however, being live only against 5% corruption
makes it more likely for a shard to deadlock.

To mitigate this issue, the CC constantly monitors shards for liveness. This is done by letting
the shards post “heart beats” on the CC. The CC can take down a deadlocked shard and spin
up a new shard with a new random committee and a higher liveness threshold (and a lower
safety threshold), leading to bigger shards. This can be iterated until a shard size is found which
gives both safety and liveness. Crucially, at no point safety is compromised.

Our design has for each shard a “gearbox” of consensus protocols: shards at the top are
slower but have robust liveness, shards at the bottom are fast but have a lower liveness. The CC
changes gear upwards in the gearbox when deadlocks are detected, and can over time change
gear downwards when there is no signs of an attack. At the top of the gearbox the gear cannot
change upwards, so a deadlocked shard is restarted with the top consensus algorithm. The only
requirement to get eventual liveness is that, when the top consensus algorithm is instantiated
with a random committee, it happens with constant probability that the corruption threshold is
low enough to get liveness. Our design allows to run with dramatically smaller shards when not
under a large attack. For example, with the same 10K total parties and 30% overall corruption,
a shard with only 200 parties already guarantees less than 60% corruption in the shard with
probability 1− 2−60. The above allows for a wide range of designs. One could even switch from
the partially synchronous to the synchronous model within the gearbox and thus tolerate higher
corruption thresholds. Next, we describe two different ways to instantiate our framework.

Partially synchronous instantiation. One can run with a partially synchronous CC and
partially synchronous shards. At the bottom gear one could have L = 5% and S = 89%. For a
population of 10K peers and assuming corruption level at most 30% this would give a committee
size of 51. At the top gear one could use a consensus protocol with L = 30% and S = 39%.
This would give a committee size of 1713 to not get more than 39% corruption (with 60-bit
security). Note that we sample from a ground population with corruption at most 30% and need
a committee with corruption at most 30% for liveness. It can be seen that we get less than 30%
corruption with a constant probability, what gives eventual liveness.

This shows another advantages of our framework: It is possible to set the liveness threshold
of the committees to be the same as of the ground population (30% in this example). This is
impossible when requiring that liveness only fails with negligible probability. For our design, it
is enough to have liveness with constant positive probability because shards that are not live
simply get restarted.

Mixed partially synchronous and synchronous instantiation. Another instantiation is
to run with a synchronous CC tolerating 49% corruption. At the bottom of the gearbox one
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could again start with a partially synchronous shard with L = 5% and S = 89%. One can run
partially synchronous up until L = 25% and S = 49%. After that one could then switch to a
synchronous shard with S = L = 49% corruption. This allows an overall design tolerating 49%
corruption, but running partially synchronous with small shards until 25% corruption. This
is interesting because partially synchronous protocols can achieve higher throughput in good
network conditions by avoiding to wait for the end of the round, as synchronous protocol do.

In the rest of the paper we focus on the partially synchronous setting, and therefore we
are “stuck” with the 2L + S < 100% dichotomy. Thus we need less than 33% corruption in
the ground population to get safety and liveness of the CC. In most of our examples when we
compute concrete committee sizes we will assume 30% corruption. Computing similar numbers
for the case of a synchronous CC is straightforward.

UC formalization. To prove the security of our approach, we formalize an ideal functionality
capturing a sharded ledger as well as functionalities capturing the consensus guarantees we
require from the control chain and from the shards, which need to have adjustable liveness in
our approach. We build on these functionalities to construct our sharded ledger protocol, which
we prove to UC-realize the sharded ledger functionality. To the best of our knowledge, ours is
the first sharded ledger protocol to achieve security under arbitrary composition, which is an
extremely important property in settings where a number of protocols are executed in parallel
(e.g., blockchains). Moreover, we introduce and model the concept of timed ledgers, which go
beyond guaranteeing that messages recorded on the ledger remain ordered in a certain way, also
allowing parties to obtain explicit timestamps for messages.

1.1 Related Work

In the last few years, many shard-based blockchain protocols have been proposed by the scientific
community and by the industry in the form of whitepapers. Most of the proposals by the
industry, despite many containing nice ideas and innovations, follow an heuristic approach, where
no formal security guarantees are proposed or formally proven. Thus, in this section we only
discuss a few of the most well-known (peer-reviewed) sharding protocol proposals, and we point
out a common issue with all the proposals that hinders their practical usage.

Sharding protocols. To the best of our knowledge, Elastico [24] is the first sharding protocol
proposed for public blockchains. The protocol is synchronous and runs in “epochs”; in every
epoch each party solves a PoW puzzle based on randomness obtained from the previous epoch.
The PoW’s least-significant bits are used to form the committees that will run each shard and
process the transactions. Even though the authors of [24] advocate for a small committee size
per shard (around 100 parties), the probability of a shard being unsafe gets very high, close to
97%, after only six epochs, as shown in [21]. This renders the protocol completely insecure when
used with small committees.

Building upon Elastico’s ideas, and improving it in many ways, OmniLedger [21] is a
sharding protocol that generates identities and assigns participants to shard committees using a
synchronous PoW independent identity-blockchain. However, like Elastico, OmniLedger can
only tolerate up to t < n/4 corruptions on the total number of parties in the system. During
each epoch, new randomness is generated for a leader election lottery. The protocol can achieve
low latency for the confirmation of transactions whenever t < n/8.

RapidChain [29] is a synchronous sharding protocol that tolerates up to n/3 corrupt parties
out of the total number of participants. The protocol is bootstrapped by a committee election
protocol that initially selects a reference committee of size m = O(logn). At the end of every
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epoch, the reference committee is responsible for generating fresh randomness that will be used
to select the committees for all the shards at the end of the first epoch, and to reconfigure the
committees of existing shards in subsequent epochs.

Using an approach closely related to sharding, Monoxide [28] proposes a scale-out blockchain
that contains many independent chains (called zones) running in parallel that divides the work-
load of the entire system; communication, computation and storage is shared among the different
zones, making the burden of maintaining the entire system shared among the nodes running
each zone. When a “cross-zone” transaction happens, an eventual atomicity technique is used in
order to keep consistency among the different zones.

The work of Avarikioti et al. [1] proposes a framework with security properties tailored for
sharded ledger protocols, building upon the Bitcoin backbone model of Garay et al. [15]. More
specifically, the authors propose the novel notions of consistency and scalability for sharded
ledgers that intuitively says that, cross-shard transactions must preserve safety and sharded
systems must gain some speed-up in comparison to a non-sharded system, respectively. Moreover,
the authors analyze many existing sharded ledger protocols in their model and prove if the
protocol satisfy the proposed definition or not. Unfortunately, the model proposed in [1] is not
composable, making it difficult to argue security of the sharded ledger protocol when combining
it with a larger system. We refer the interested reader to the work of Wang et al. [27] that gives
a nice overview of the state-of-the-art in sharding protocols.

Common issue. A common factor in all the previously described sharding protocols is that,
for a robust security parameter, the size of the shard’s committee needs to be large in order to
guarantee the safety properties for each shard. In Section 5.4 we present some concrete numbers
for the smallest size of committees needed to be sampled from a population of 10K parties with
30% corruption considering 60-bits of security; for honest majority (49% corruption) a committee
of at least 462 parties is necessary, while for honest supermajority (33% corruption) a committee
of around 6.3K parties is needed.

2 Preliminaries
We denote by P a party in the party set P . We denote by Honest ⊆ P the set of honest parties
during the protocol execution.

2.1 Security Model

Since our protocols make essential use of time, we need a notion of UC security for (partial)
synchronous protocols. We thus need to assume that parties have access to a reliable network
functionality with bounded delay ∆net, similar to the functionality F∆net

N-MC in [3]. We further need
a notion of time and access to clocks [18], and we assume an idealized signature functionality [6, 2].
To keep the presentation simple, we do not model all these functionalities and refer to the cited
papers for UC-related details.

Time. The functionality FClock essentially amounts to assuming perfectly synchronised discrete
clocks. We use time slot to denote the time period between two ticks of the clock FClock. We
use slot length to denote the length of time slots and we assume it to be fixed. In a slight
abuse of notation, we also sometimes call a time slot a tick. By tick r we mean the time slot
starting after the clock ticked r times. We assume time starts with a clock tick, so the first tick
is tick 1. The execution proceeds in a way such that if honest party Pi is in tick ri and honest
party Pj is in tick rj , then |ri − rj | ≤ 1. We assume that each party has enough computational
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power to complete arbitrary polynomial time computations in each time slot. Note that the
previous simplification may not be a good model of reality, but by assuming a known upper
bound on the clock drift in “real life”, and designing our protocols such that a bounded number
of computation is required in each round, setting the slot length long enough, and assuming
an upper bound on the message delivery, then the model can clearly be realised. We stress
that our goal is to communicate our sharding mechanism, which we believe is best done in a
simple model. Implementing the protocol securely in practice is a highly non-trivial but largely
orthogonal task.

Network. The network F∆net
N-MC allows parties to multi-cast messages. The adversary determines

when messages are output at honest parties, but the delay can be at most ∆net ticks. The bound
∆net is not known to honest parties making this a partially synchronous communication model.

Static vs adaptive adversaries. We consider the set of corrupted parties to be static. The
reason is that our protocols rely on committees of parties, and therefore an adaptive adversary
could easily identify the parties in the committee and corrupt them. Note that this is an
inherent problem with protocols based on committees, and in particular all previous works
that rely on committees face the same issue. However, it is possible to extend our protocols to
allow for an adaptive adversary that can change corruptions after a delay. In that case, the
protocols described in this paper would have to be adapted to resample the committees before
the adversary is allowed to change the corrupted parties, see Section 6.2 for more details.

2.2 Hash Functions

We denote by H : {0, 1}∗ → {0, 1}κ a collision-resistant hash function. For a vector ~m, we
recursively define ~H as

~H(m1) := H(m1),
~H(m1, . . . ,m`+1) := H

(
~H(m1, . . . ,m`) ||m`+1

)
.

3 Sharded Ledger Ideal Functionalities
In this section we describe all the ideal functionalities necessary for our sharded ledger model.

3.1 Timed Ledger (Control Chain)

We now formalize a simple ledger functionality which will act as the so-called control chain (CC)
orchestrating the shards. We model the ledger as a persistent, timestamped, bounded-delay,
totally-ordered broadcast channel. The ledger is a high-level abstraction that gets rid of many
details that are irrelevant for our purposes. It is thus much simpler than, e.g., the ledger
functionality in [3].

The timestamp property ensure the messages get timestamps on which the parties will agree
on. We call these timestamps the ledger arrival time. These are important in defining precisely
whether a message made it before a timeout. This is in particular important for a party that
views messages on the ledger long after they were added. Note that a party has no other form
to associate the order of the messages on the ledger with a physical time if the messages do not
carry the timestamp information.

Moreover, the ledger arrival time may differ from the time the message was input (by an
honest party) or the time the message is delivered locally to an honest party. However, the
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bounded delay property ensures that those differences in time are bounded by ∆ (similar to the
delivery time in F∆net

N-MC). In other words, input messages are timestamped and delivered within
some bounded time.

Functionality Bounded Delay, Timed Ledger F∆
BD-TL

Initialization
All Pi ∈ P set TOi := ().

Interface for party Pi ∈ P

Input: (Send,m)
Output (Send, Pi,m) to the adversary.a

Input: (Get)
Output (Get, Pi) to the adversary.
Return TOi.

Interface for adversary
Input: (Add, Pi,m, t)
Append (m, t) to TOi. // Unless it violates the below restrictions

At any time, F∆
BD-TL automatically enforces these restrictions: b

Persistence: If Pi and Pj are honest, then TOi and TOj are order consistent, i.e., either
TOi is a prefix of TOj or TOj is a prefix of TOi.

Liveness and bounded timestamps: For all messages m that are input at some time t
(via (Send,m)) by an honest party for the first time, there is a t′ ≤ t+ ∆ such that
by time t′ + ∆, we have (m, t′) ∈ TOi for all honest Pi.c

aWhenever we write that we output something for the adversary we mean that we leave the message in
the ideal functionality and next time the adversary queries the ideal functionality it can pick up the message.
This is to not turn over the activation to the adversary.

bThe enforcement is by dropping Add commands violating any restriction and by executing extra Add
commands when required to meet any restriction.

cWe don’t give any guarantees for subsequent inputs of the same message if it is input multiple times.
Also note that messages could get timestamps before input by an honest party if dishonest parties input it
before.

Implementation. Our ledger functionality can be implemented by a BFT consensus blockchain
such as Algorand [9] or Tendermint [22, 4], or by a Nakamoto-style blockchain such as Bitcoin [25].
In case a Nakamoto-style blockchain is used, combining it with a finality layer, e.g., Casper the
Friendly Finality Gadget [5] or Afgjort [13], is advisable to improve the finality time as discussed
below. See Section 4.1 for more details on how to implement F∆

BD-TL.

Discussion. For the reader used to the formalization of a blockchain via a chain of blocks and
properties like common prefix, chain quality and chain growth as in [16] the formalization via
FBD-TL might look overly simplified. That is meant as a feature. No matter which blockchain
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is used to realize FBD-TL most applications typically only depend on the messages in finalized
blocks for safety and therefore relies mostly on the time it takes until finalization for liveness.
We therefore conjecture that FBD-TL allows to analyse the vast majority of secure applications
of blockchain. Second, FBD-TL captures the common API and guarantees of Nakamoto style
blockchains, like Bitcoin and Ouroboros, BFT style blockchains like Algorand [9] and hybrid
blockchains like Concordium [13]. Therefore a proof of an application using FBD-TL allows it
to be deployed on a wide range of blockchains. If one has an application which uses messages
before they are final or need whitebox access to the blocks of the chain, then a formalization
like [16] is more suited.

3.2 Shards

In essence, a shard is just a ledger. However, we need to be explicit about the fact that its
properties may be violated if it is instantiated with a committee that is too small or with
a corruption ratio that is too high. The functionality is parameterized by a set C of size n
corresponding to a committee of parties that will be in charge of maintaining the shard, the sets
S and L that represent adversary structures for safety and liveness respectively, and a delay ∆.
The adversary structures S and L simply mean that the shard functionality must maintain its
safety when the set of corrupted parties is in S and it must maintain its liveness when the set
of corrupted parties is in L; depending on whether the functionality is safe and/or live, some
properties are guaranteed. The committee running the shard will be given the parties as a vector
C = (P1, . . . , Pn) to allow to match the committee members to the adversary structure, but we
often abuse notation and refer to C as a set.

The parties Pi ∈ C can interact with the shard functionality by sending transactions to the
shard through the Send command, and retrieve the ledger through the Get command. The
parties can also “close” the shard by issuing the Close command; looking ahead, this is useful
when the sharded ledger protocol (Section 6.1) requests parties to shut down a shard in order
to start a new shard with different parameters and parties. Moreover, the parties can request
“finality proofs” to the functionality through the GetFinProof command. This proof can then
be verified by any party (including external parties not in C). Our functionality offers two ways
to verify such proofs: Using VerifyFinProof, one can verify a proof relative to a message
vector ~m, i.e., it can verify that the messages in ~m are finalized in the ledger. Alternatively,
external parties can use VerifyFinLength to verify a proof relative to an integer `, i.e., to
simply verify that at least ` messages have been finalized so far; this allows to check liveness by
ensuring a growing ` without needing to know the actual messages.

We impose some restrictions on the adversary in the form of properties of the shard function-
ality.2 The persistence property is the standard property that one expects from a ledger, i.e.,
intuitively all honest parties will maintain ledgers that are prefixes of each other. We formalize
this by considering a global FTO and guaranteeing that the ledgers of all honest parties are
prefixes of FTO. The liveness property is also standard and says that any message sent by an
honest party will make it into the ledger of all honest parties after at most ∆ time.3

The novel properties that we require for our shard functionality are called censorship resilience
2The properties just mean that the adversary is allowed to give inputs to the ideal functionality as it desires,

but the ideal functionality ignores inputs that would violate a safety property. And, if the adversary at some point
would have to give a particular command, like delivering a given message, to not break a liveness property, then the
ideal functionality will enforce execution of this command to maintain the liveness property. The properties could,
as is more usual, be expanded to more verbose pseudo-code for the ideal functionality doing these enforcements
explicitly, but we prefer the more compact property-based specifications.

3Note that the delay ∆ is a parameter of the functionality, but it may not be known to the honest parties.
This is in particular the case when considering the partially synchronous model.

9



and proof soundness, and we require them to hold only when the ledger is safe, i.e., when the
set of corrupted parties is in S. Censorship resilience prevents an adversary to exclude specific
messages from the ledger. We formalize this as the guarantee that when a party is sending a
message for inclusion, it will be included at most two ledger updates later.4 In other words, either
the message gets included, or the ledger stops completely. This is useful because a complete halt
can be detected from the outside. The proof soundness property intuitively says that finality
proofs cannot be forged. That is, (VerifyFinProof, ~m, π) only returns 1 if ~m is a prefix of
FTO, and (VerifyFinLength, `, π) only returns 1, if

∣∣FTO
∣∣ ≥ `. We formally define the shard

functionality next and in Section 4.2 we show a protocol that UC-realizes this functionality.

Functionality FC,S,L,∆Shard

Initialization
Set FTO = () and TOi := () for all Pi ∈ C.

Interface for party Pi ∈ C

Input: (Send,m)
Send (Send, Pi,m) to the adversary.

Input: Get
Send (Get, Pi) to the adversary.
return TOi

Input: Close
Send (Close, Pi) to the adversary.

Input: GetFinProof
Send (GetFinProof, Pi) to the adversary,

who immediately sends back a proof π such that no record (TOi, π, 0) has been stored.
Store the record (TOi, π, 1)
return (TOi, π)

Interface for adversary
Input: (Add,m, i)
Append m to TOi.

Input: (AddFinal,m)
Append m to FTO.

Public interface // Any (even “outside”) party can use this interface.
Input: (VerifyFinProof, ~m, π)
if record (~m, π, b) for some b ∈ {0, 1} exists then

return b
else

Send (VerifyFinProof, ~m, π) to adversary, who immediately replies with b ∈ {0, 1}.
Store the record (~m, π, b).
return b

4When the ledger is realized using blocks, this means the block after the next block must include this message.
One could more generally also allow for larger delays than two blocks, but we here avoid the extra parameter.
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end if

Input: (VerifyFinLength, `, π) // Only verify length ` of message vector
if record (~m, π, b) for some ~m with

∣∣~m∣∣ = ` and for some b ∈ {0, 1} exists then
return b

else
Send (VerifyFinLength, `, π) to the adversary.
Adversary immediately replies with b ∈ {0, 1} and ~m with

∣∣~m∣∣ = `.
Store the record (~m, π, b).
return b

end if

At any time, the functionality automatically enforces the following:
Let A ⊂ C be the corrupted parties in C. We call the ledger live if A ∈ L. If A ∈ S call the
ledger safe. Call the ledger weakly closed if some honest party input Close.

Persistence: (If the ledger is safe) For all Pi ∈ C \A, TOi is a prefix of FTO.

Liveness: (If the ledger is live and not weakly closed) After a message m was input (via
(Send,m)) by an honest party for the first time,a we have m ∈ TOi for all Pi ∈ C \A
at most ∆ time later.

Censorship Resilience: (If the ledger is safe) After a message m was input (via
(Send,m)) by an honest party at time t and TOi for a honest Pi was updated
twice after time t+ ∆, we have m ∈ TOi.

Proof Soundness: (If the ledger is safe) If (VerifyFinProof, ~m, π) returns 1, then ~m
is a prefix of FTO. If (VerifyFinLength, `, π) returns 1, then

∣∣FTO
∣∣ ≥ `.

aWe don’t give any guarantees for subsequent inputs of the same message if it is input multiple times.

3.3 Sharded Ledger

For simplicity, we describe a sharded ledger with a fixed set of shards; this will be implemented
by starting and re-starting shards with varying liveness guarantees. The purpose of the sharded
ledger is to hide these implementation details. Again for simplicity, we assume all shards running
from the beginning of time and until the end of the execution. The sharded ledger can easily be
modified to have commands for starting shards late and closing them early. However, this is
easy to implement given the techniques for restarting deadlocked shards so we omit it here. In
F∆

BD-STL, there are a number of shards uniquely identified by a value sid. Each party Pi can
choose to add a shard identified by sid to its view, meaning it can read messages in this shard
and see the total order of messages across all shards in its view.

Messages in shards will be ordered according to a total order given by the total order on the
shard. These total orders are in particular strict parties orders. Messages across shards will be
ordered according to a global strict partial order. This strict parties ordered is implemented by
giving each message a Lamport clock. We describe it briefly here, and return in more detail
when we discuss inter-shard communication in Section 6.3.

A shard Shardi can contain a message (Shardi, Shardj ,m) meaning m was sent to Shardj . A
shard Shardj can contain a message (Shardi, Shardj ,m) meaning m was received from Shardi.
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All messages will have Lamport clocks which are causally consistent. They increase within
shards and (Shardi, Shardj ,m) has a larger clock on the receiving shard than on the sending
shard. We return to this in more detail later. This means that the local strict partial order of a
Shard might have some out-going edges (Shardi, Shardj ,m) where the endpoint is only visible on
another shard.

For two such consistent strict partial orders STO1 = {(m1
1, t

1
1), . . . , (m1

n, t
1
n)} and STO2 =

{(m2
1, t

2
1), . . . , (m2

n′ , t
2
n′)} we let STO1 ./ STO2 be the zip of the two lists sorted in some canonical

order based on the Lamport clocks with the following pruning. If one list contains a received
message (Shardi,Shardj ,m) and Shardi is one of the shards being merged and (Shardi, Shardj ,m)
was not sent yet on Shardi, then the shortest suffix of Shardj is removed which removes the
receive event (Shardi, Shardj ,m). Then the lists are merged according to their joint strict partial
order. Next, we formally define the F∆

BD-STL functionality.

Functionality Bounded Delay, Sharded Timed Ledger F∆
BD-STL

Initialization
for Pi ∈ P and all sid do

STOsid
i := () // Shard Total Order of Shard sid for Pi

Sentsid := ∅ // Messages sent to Shard sid
SHDSi := ∅ // Set of shards viewed by Pi

end for

Interface for party Pi ∈ P

Input: (Send, sid,m) // Assume each (sid,m) is sent at most once per honest party.
Output (Pi, sid,m) to the adversary. // Rushing.
Add (Pi,m, tNow) to Sentsid.

Input: (Get).
Output (Get, Pi) to the adversary.
Return ./sid∈SHDSi

STOsid
i . // The strict partial order across shards in Pi’s view.

Input: (AddShard, sid).
SHDSi := SHDSi ∪ {sid}
Wait until any element removed by pruning with the new shard in ./ appears in ./sid∈SHDSi

STOsid
i again.

Input: (RemoveShard, sid).
SHDSi := SHDSi \ {sid}

Interface for adversary
Input: (Add, sid,m, t)
Append (m, t) to STOsid

i . // Unless it violates the below restrictions

At any time, F∆
BD-STL automatically enforces these restrictions: a

Persistence: If Pi and Pj are honest, then STOsid
i and STOsid

j are order consistent, i.e.,
either STOsid

i is a prefix of STOsid
j or STOsid

j is a prefix of STOsid
i .
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Liveness and bounded timestamps: For all messages (sid,m, t) ∈ Sentsid, there is a
t′ ≤ t+ ∆ such that by time t+ ∆, we have (m, t′) ∈ STOsid

i for all honest Pi.
aThe enforcement is by dropping Add commands violating any restriction, by executing extra Add

commands when required to meet any restriction.

The reason for the formulation of AddShard and Get is to ensure the ledger time of any
two ledgers consecutively gotten from FBD-STL are not decreasing. This could have already
outputted elements disappear again for a while and then popping up again.

3.4 Data Repository

We use an abstract notion of a public data repository called FRepo. Any party can store D under
h(D) and anyone can retrieve a stored D using h(D). In real life some access control is needed
to avoid denial of service attacks by flooding the storage. This is inconsequential to the main
ideas that we want to present, so we do not clutter FRepo with this. It has two adversarially
defined delays, ∆Store is the time it takes to store D from when the first honest party tries and
∆Get is the time it takes to get D given that it is stored.

Functionality Repository FRepo

Initialization
Initialize set of stored D to be empty.

Interface for party Pi ∈ P

Input: (Send, D)
Show D to the adversary Before time ∆Store, store D. Let the adversary specify the
time.

Input: (Get, h(D)).
If D is stored such that h = H(D) then output D. Let the adversary determine output
time within delay ∆Get.
If D is not stored then let the adversary determine whether a matching D should be
outputted and when. There is no limit on the delivery time, but the adversary has to
input D such that h = H(D).

Interface for adversary
Can determine delivery times.

Here is a very inefficient example just for illustration. It uses n parties P1, . . . , Pn for storing
the files D. Assume that t < n/2 parties may be actively corrupted. To store D send it to all
servers. The servers store all D and forward to the other server the first time it sees a new D.
The parties only store one copy of each D. The storage is considered done when the last honest
party got D. Here ∆Store is the network delay ∆Net. The get D send h and have all servers
holding a matching D send D. When receiving the first D matching h, output this D. Here
∆Get is 2∆Net. Both the resilience and the communication can be optimised considerably.
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4 Realizing the Timed Ledger and the Shard Consensus
In this section we give protocols to realize the timed ledger functionality F∆

BD-TL and the shard
functionality FShard.

4.1 Timed Ledger

Following the analysis and the discussion in for instance [16] and in [11] it seems straight-forward
that F∆

BD-TL can be implemented using the Bitcoin protocol or the Ouroboros Praos blockchain
under reasonable assumptions on known bounded network delay and traffic load, and assuming
honest computational power respectively honest majority of stake.

Simply let the ledger arrival time be the time of the block the transaction appears in and
output a message when it is in a block which is final. For Bitcoin finality is defined by the
prefix property [11]. A message will appear in a blocks in reasonable time by chain quality plus
chain growth and assuming that no more transactions are sent than can be put into blocks
by the honest parties. In our setting, this should be the case as we will use F∆

BD-TL as the
Control Chain, where by design we can enforce that only control information from the sharding
orchestration is posted, or that control information is given priority over normal payload. This
allows to ensure by design the no more transactions are sent than can be posted.

If we want to achieve a truly partially synchronous F∆
BD-TL, i.e., where ∆ is unknown to

honest parties, one can use a BFT protocol like Algorand [9] which finalizes each block. This
comes at the price that we need at least two thirds honesty overall. Alternatively, a hybrid
blockchain like Concordium [13] with a Nakamoto style blockchain plus a BFT finality layer can
be used. Here, a message is considered delivered if it is in a block marked as final.

In the following, we go into a bit more detail on how the Bitcoin protocol achieves F∆
BD-TL.

According to the analysis in [16] Bitcoin satisfies the following properties:

Common-Prefix: There exists a k ∈ N (depending on the security parameter and the network
delay) for any points in time ti ≤ tj and any pair of honest parties Pi, Pj with chains Ci
resp. Cj they had a time ti resp. tj it holds that Ci with the last k blocks removed is a
prefix of Cj .

Chain-Growth: For any honest party the adapted chain grows over time.

Chain-Quality: There exists a ` ∈ N and 0 < µ ≤ 1 such that for any chain C of an honest
party any ` consecutive blocks contain a µ fraction of honestly created blocks.

Given a bounded network delay, we can fix as part of the protocol a constant k′ ∈ N such that
for any honest party the k′-pruned chain (i.e., the chain with the last k′ ∈ N blocks removed) is
in the common-prefix. A message is considered final for party P if it is in this k′-pruned chain.
We can also assume that parties add a timestamp to blocks they create where valid blocks have
increasing time-stamps. The ledger arrival time of a message is then defined as the timestamp
of the block that contains the message.

We can now argue that this achieves the ledger F∆
BD-TL for some fixed ∆. First, we observe

that persistence follows directly from the common-prefix property. For liveness and bounded
delay we need to bound the time between message input and ledger arrival and between ledger
arrival and message delivery. In the Bitcoin protocol input messages are flooded on the network.
The bounded network delay ensures that exists an ∆net such that an input arrives at all honest
parties within ∆net ticks. Once the message has been flooded it will be added latest to the
next honest block (assuming not too many inputs or unlimited block size). Chain-growth
and chain-quality ensure that an honest block is created within ∆add ticks. Assuming that
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parties do not accept blocks from the future (i.e., with a timestamp in the future), the time
difference between input and ledger arrival is bounded by ∆net + ∆add. Bounded network delay,
Chain-growth, and chain-quality ensure that within another ∆growth ticks the message block is
in the k′-pruned chain of every party. The difference between ledger arrival and message delivery
is thus bounded by ∆growth. For ∆ = max(∆net + ∆add,∆growth) the claim follows.

Note that we are not making a formal security claim here. The models in [16, 11] are different
from ours in the exact details and considerably work would have to be done to re-prove them
secure in our model. However, the results in [16, 11] justify that F∆

BD-TL is a reasonable simple
model of the finalized part of a blockchain for the sake of proving secure abstract protocol designs
which use only the finalised part of a blockchain. Towards a secure real-life implementation of
our sharding scheme it is an important step to ensure that F∆

BD-TL is securely implemented as a
basis. This involves as much distributed systems engineering as it does cryptography.

Prevent delays for control messages. In order to achieve F∆
BD-TL with constant ∆ it is

important that at any time there is a bounded number of valid input messages that can be
added to blocks. In our use-case, where F∆

BD-TL acts as a control chain for a bounded number of
shard, this can be ensured. Moreover, these control messages should be given priority on the
peer-to-peer layer, such that they propagate in some bounded time ∆net. Finally, parties should
priorties control messages when adding messages to blocks (in case the blocks are also used for
different messages).

4.2 Shard Consensus

In this section we present a simple consensus algorithm that can be used to establish a total
order of the transactions in a shard. Then, we show that it implements the shard functionality
FC,S,L,∆Shard described in Section 3.2.

Let C with
∣∣C∣∣ = n be the ordered committee of parties running the shard, and let P ∗ ∈ C be

a special5 party that we call the “sequencer”. Note that the sequencer P ∗ additionally plays the
role of a regular party in the protocol.

The protocol idea is simple. The sequencer periodically proposes a new block containing
new messages, which is then signed by the other parties. A block is considered final if enough
parties have signed it. For liveness detection a party can send old messages to the sequencer.
The party will then refuse to sign the next block if it does not contain those messages.

Saftey and liveness guarantees. The protocol is safe, and thus persistence and proof
soundness hold, whenever at most tS parties are corrupted, and it is live whenever at most tL
parties are corrupted and P ∗ is honest. Hence, our protocol implements the ledger FC,S,L,∆Shard with

S = {A ⊆ C |
∣∣A∣∣ ≤ tS},

L = {A ⊆ C |
∣∣A∣∣ ≤ tL ∧ P ∗ /∈ A}.

The liveness threshold tL can be chosen arbitrarily from {0, . . . , bn−1
2 c}. The safety threshold is

then tS := n− 2tL − 1. For example, with n = 100, one can set tL = 33 to obtain tS = 33, which
are the classical bounds for asynchronous Byzantine agreement. One can also set tL = 0 to
obtain tS = n− 1, i.e., if full honesty is required for liveness, all but one party can be corrupted
without breaking safety.

5Without loss of generality we choose P ∗ to be the first party in C.
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Blocks. In the protocol messages are added blockwise. A block B = (c, ~mB, h, `, ~σ) consist
of the block counter c, the tuple of new messages ~mB, hash h and length ` of the ledger after
adding the messages in B, and a set of signatures on the previous block. To sign a block
B = (c, ~mB, h, `, ~σ) a party Pi actually signs the block header (c,H(~mB), h, `,H(~σ)).

Let ~m be the current ledger state where B′ denotes the latest block (if it exists). A block
B = (c, ~mB, h, `, ~σ) is a valid extension if

• ` =
∣∣~m||~mB

∣∣ and h = ~H(~m||~mB),

• c = 1 or ~σ is a set of valid signatures on the previous block from at least n− tL different
parties in C.

The protocol works as follows:

Protocol Πn,tLseq

Initialization
At the beginning, all parties Pi initialize TOi to be the empty list.
Each party Pi setsMi,1 = ∅, ctrledger,i = 1, and ctrsign,i = 1.
The sequencer additionally sets ctrseq = 1.

Protocol for Sequencer P ∗

• For ctrseq = 1: For ctrseq = 1:
1: Collect all messages as sequence ~mB ordered by arrival time.
2: Compute h = ~H(~mB) and set ` =

∣∣~mB

∣∣.
3: Sign B = (ctrseq, ~mB, h, `,⊥) (via the signature functionality)
4: Multicast signed B to parties in C and set ctrseq = ctrseq + 1.

• Once P ∗ has received n− tL valid signatures ~σ on the previous block B′ = (ctrseq −
1, ~m′B′ , h′, `′, ~σ′):
1: Collect all messages that have been sent with the n− tL signatures or have been

otherwise received by P ∗, but which have not been included in the ledger (i.e.,
are not in ~m′ where ~H(~m′) = h′). Denote by ~mB the sequence of those messages
ordered by arrival time.

2: Compute h = ~H(h′||~mB) and set ` = `′ +
∣∣~mB

∣∣.
3: Sign B = (ctrseq, ~mB, h, `, ~σ) (via the signature functionality).
4: Multicast signed B to parties in C and set ctrseq = ctrseq + 1.

Protocol for Pi ∈ C

• Once Pi has received signed B = (c, ~mB, h, `, ~σ) from P ∗:
1: If the signature is invalid or B is invalid or ctrsign,i 6= c abort.
2: If a signature by Pi is in ~σ, butMi,ctrsign,i is not in ~mB abort.
3: SetMi,ctrsign,i+1 to the set of messages Pi has received but have not been included

in blocks (i.e., message not in ~m with ~H(~m) = h).
4: Create signature σi on B (via the signature functionality).
5: Multicast signed (σi,Mi,ctrsign,i+1) to parties in C and set ctrsign,i = ctrsign,i + 1.

• Once Pi received n− tL valid signatures ~σ on block B = (c, ~mB, h, `, ~σ):
1: If ctrledger,i < c store B in a buffer, repeat process once ctrledger,i = c.
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2: If ctrledger,i > c abort.
3: Add all messages ~mB to TOi, i.e., set TOi = TOi||~mB.
4: Locally store B with the signatures and set ctrledger,i = ctrledger,i + 1.

Interface for Pi ∈ C

• On input (Send,m), party Pi ∈ C multicasts the message m to all parties in C.

• On input Get, party Pi returns TOi.

• On input Close, party Pi stops participating in the protocol.

• On input GetFinProof, party Pi does the following:
1: If TOi is empty, set π = ⊥ and return (TOi, π).
2: Otherwise let B = (c, ~mB, h, `, ~σ) be the block of the last messages added to TOi.
3: Set π = ((c,H(~mB), h, `,H(~σ)), σ̂) where σ̂ is the set of collected signatures on B.
4: Return (TOi, π).

Public interface

• On input (VerifyFinProof, ~m, π), do the following:
1: If π = ⊥, return 1 if and only if ~m is empty.
2: Otherwise, let π = ((c,H(~mB), h, `,H(~σ)), σ̂).
3: Check that σ̂ contains at least n− tL valid signatures on (c,H(~mB), h, `,H(~σ)).
4: Check that ~H(~m) = h and length(~m) = `.
5: If all checks pass, return 1, otherwise return 0.

• On input (VerifyFinLength, ˆ̀, π), do the following:
1: If π = ⊥, return 1 if and only if ˆ̀= 0.
2: Otherwise, let π = ((c,H(~mB), h, `,H(~σ)), σ̂).
3: Check that σ̂ contains at least n− tL valid signatures on (c,H(~mB), h, `,H(~σ)).
4: Check that ˆ̀= `.
5: If all checks pass, return 1, otherwise return 0.

Security analysis. We now argue that the protocol Πn,tLseq described above UC-realizes the
functionality FShard described in Section 3.2.

Theorem 1. The protocol Πn,tLseq UC-realizes the functionality FC,S,L,∆Shard for ∆ ≥ 5 ·∆net in the
hybrid model with access to hybrids for a reliable network with maximal delay ∆net, a signature
functionality, and a clock.

Proof. The simulator runs a simulation of the protocol Πn,tLseq for the honest parties. That is,
when FShard outputs (Send, Pi,m) for an honest Pi to the simulator, the simulator simulates
Pi distributing m to parties in C. If P ∗ is honest, the simulator further simulates the block
generation and sending of blocks from P ∗ as described in Πn,tLseq . Furthermore, signing of blocks
by honest parties is simulated as described in the protocol. Whenever an honest party Pi in
simulated protocol Πn,tLseq adds a message m to TOi, the simulator invokes the ideal functionality
with (Add,m, Pi). As soon as at least n − tL −

∣∣A∣∣ honest parties signed a block in the
simulation, where A is the set of corrupted parties, the simulator invokes (AddFinal,m) for
all messages m in that block. When FShard outputs (GetFinProof, Pi) for honest Pi to the
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simulator, the simulator returns π as computed by Pi in protocol Πn,tLseq . When FShard outputs
(VerifyFinProof, ~m, π) to the simulator, the simulator verifies the proof as described in Πn,tLseq .
When FShard outputs (VerifyFinLength, `, π) to the simulator, the simulator verifies the
proof as described in Πn,tLseq .

As long as the simulator does not violate the constraints of persistence, liveness, censorship
resilience, or proof soundness described in FShard, the ideal world with the simulator and the
real world with the protocol execution are identical. Hence, it suffices to prove that the protocol
always respects these constraints.

Persistence: Let Pi be an honest party and assume TOi is at some point not a prefix of FTO.
Recall that messages are added to TOi only after Pi has collected at least n− tL signatures;
at least n− tL−

∣∣A∣∣ of these signatures must be from honest parties. Since after n− tL−
∣∣A∣∣

honest signatures a message is also added to FTO in the simulation, then TOi cannot
contain messages that are not already in FTO. Therefore, TOi not being a prefix of FTO
implies that there is a position l0 in which TOi and FTO contain different messages. If
these messages come from blocks with the same counter, two different blocks with that
counter have been signed. Otherwise, there is a smaller counter for which blocks containing
a different number of messages have been signed. Let c0 be the smallest counter for which
two different blocks have been added to TOi and FTO. One of these blocks was signed
by at least n− tL parties (since it is in TOi), and the other one by at least n− tL −

∣∣A∣∣
honest parties (since it is in FTO). If the ledger is safe, we have

∣∣A∣∣ ≤ tS = n− 2tL − 1.
Hence, there are at least

n− tL −
∣∣A∣∣ ≥ n− tL − (n− 2tL − 1) = tL + 1

honest parties who signed the block in FTO. Since (n− tL) + (tL + 1) > n, at least one of
these honest parties also signed the block in TOi. This is a contradiction because honest
parties never sign two blocks with the same counter.

Censorship Resilience: After an honest party input (Send,m) at time t, the message m
arrives at all honest parties in C within ∆net. If an honest party Pi adds a block to TOi

after t+ 2∆net, the honest parties must have signed the block after time t+ ∆net. If m
was not added until now, all honest parties will request that the sequencer adds m to the
next block. So TOi must contain m after honest Pi adds the second block. The property
follows for ∆ ≥ 2∆net.

Liveness: Assume P ∗ is honest and at least n− tL parties are honest. After an honest party
input (Send,m), the protocol sends m to P ∗, who receives it at most ∆net time later. As
it takes at most 2∆net to send out a block and receive signatures, P ∗ produces a new
block containing m at most 2∆net later and sends it to all honest parties. These honest
parties receive that message at most ∆net time later, sign it, and send their signatures to
all other honest parties. This again takes at most ∆net time. Since at least n− tL parties
are honest, all honest parties receive at least that many signatures on that block and thus
add it to their TOi. This in total takes at most 5∆net time.

Proof soundness: First, consider the case (VerifyFinProof, ~m, π). Toward contradiction,
assume that (VerifyFinProof, ~m, π) returns 1, but ~m is not a prefix of FTO. In that
case, π contains a block header B and at least n− tL valid signatures on B. This means
that at least n− tL −

∣∣A∣∣ honest parties have signed B. Furthermore, B contains a hash h
such that h = ~H(~m). By construction of the protocol, all these honest parties must have
previously signed blocks with smaller counters containing messages with consistent hashes.
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Since messages are added to FTO once n− tL−
∣∣A∣∣ honest signatures exist, ~m can only not

be a prefix of FTO if different messages yield the same hashes. A standard reduction to the
collision-resistant property of the hash function H finally shows that any PPT adversary
that violates the soundness of the finality proof can efficiently find collisions on H.
Next, consider (VerifyFinLength, `, π). Towards a contradiction, we assume that
(VerifyFinLength, `, π) returns 1, but

∣∣FTO
∣∣ < `. In that case, π contains a block

header B and at least n− tL valid signatures on B. This means that at least n− tL −
∣∣A∣∣

honest parties have signed B. Furthermore, B contains a hash h defining a messages vector
~m and length `. By construction of the protocol, all these honest parties have checked
that

∣∣~m∣∣ = `. By the above argument ~m must also be a prefix of FTO, which contradicts∣∣FTO
∣∣ < `.

5 Committee Selection
In this section, we describe a committee-selection functionality, which is a core part of our
sharding solution. We then discuss how to realize that functionality given a randomness beacon
in permissionless blockchains. We further provide an analysis of the committee sizes needed for
that approach.

5.1 Ideal Committee-Selection Functionality

We first describe the functionality FP,UComSel, which is parameterized by the set P of parties
executing the committee selection, and a set U of parties from which the committee gets selected.
The functionality allows parties to request uniformly distributed sequences over U of a given
length. As discussed in Section 5.3, the issue of mapping parties who control different fractions of
a restricted resource (e.g., relative stake or computational power) into such a set U for selecting
committees in a permissionless blockchain scenario has been extensively addressed in both
Proof-of-Stake [20, 7, 12, 10, 17, 9] and Proof-of-Work [26] settings.

Functionality FP,UComSel

Interface for party Pi ∈ P

Input: (SelectCom, cid, s) // Select committee with ID cid of size s
Output (SelectCom, Pi, cid, s) to the adversary.

Upon receiving (SelectCom, cid, s) (with the same cid and s) from all honest parties
in P, sample a sequence C uniformly among all sequences of length s from U , and send
(cid, C) to all parties in P.

Public interface // Any (even “outside”) party can use this interface.
Input: (VerifyCommittee, cid, C)

If (cid, C) has been sent to all parties in P, return 1, otherwise, return 0.
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5.2 Randomness Beacon

Our committee selection procedure can be realized from a randomness beacon. We model a
randomness beacon as an ideal functionality FCT as described in [8], where it is also shown
how this functionality can be efficiently UC-realized both based on the DDH assumption (with
UC Zero Knowledge as setup) or on the CDH assumption (with a Global Random Oracle as
setup). Moreover the protocols realizing FCT proposed in [8] require a public bulletin board that
guarantees that posted messages become immutable and accessible to all honest parties. We
observe that such a bulletin board can be realized by FBD-TL.

We describe the functionality FP,DCT parameterized by a set of parties P running the coin
toss, and a distribution D. It is defined as follows.

Functionality FP,DCT

Interface for party Pi ∈ P

Input: (Toss, sid)
Upon receiving (Toss, sid) from all honest parties in P, uniformly sample x $← D and
send (Tossed, sid, x) to all parties in P.

Public interface // Any (even “outside”) party can use this interface.
Input: (Verify, sid, x)
If (Tossed, sid, x) has been sent to all parties in P, return 1, otherwise, return 0.

5.3 Realizing Committee Selection Using Randomness Beacon

A straightforward way to realize FP,UComSel works as follows. Given a committee size s, use
randomness from FP,DCT with D set to the uniform distribution, to sample a uniformly random
sequence C from U with

∣∣C∣∣ = s. It is easy to see that this realizes FP,UComSel: The liveness directly
follows from liveness of the randomness beacon since parties compute the committees locally
from that randomness. Since the beacons also provide the same randomness to all parties, the
parties agree on the selected committees.

The simple protocol above departs from a set U of parties such that each party is selected as
a committee member with equal probability. However, in permissionless blockchain protocols,
corruption thresholds are expressed in terms of the amount of a restricted resource controlled by
a party (e.g., the amount of relative stake in Proof-of-Stake based blockchains or the amount
of computational power in Proof-of-Work based blockchains). Hence, it is necessary to map
the parties executing the underlying blockchain protocol into (virtual) parties in such a set U
according to the resources they control. In the setting of Proof-of-Stake based blockchains, such
mapping can be achieved by the techniques commonly known as “follow-the-satoshi” [20, 7],
“weighing by stake” [12] and “cryptographic sortition” [10, 17, 9]. In the setting of Proof-of-Work
based blockchains, it has been shown that committee selection can be realized even without a
randomness beacon [26]. Since this issue has been addressed multiple times in previous works,
we focus instead on the novel aspects of our sharded ledger protocol, referring interested readers
to the aforementioned results on committee selection on blockchains.
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5.4 Determining the Committee Size

Our sharding protocol needs to find the smallest committee size smin that guarantees that
the ratio of corrupted parties in the selected committee is below some given threshold with
overwhelming probability. Consider a scenario with a total population of n parties P such that
at most t parties are corrupt, and a committee C with size s sampled uniformly at random
from P. We denote by FAILt,nt′,s the event where the committee C contains more than t′ corrupt
parties. The probability of the event FAILt,nt′,s happening can be expressed as the cumulative
hypergeometric probability mass function:

Pr
[
FAILt,nt′,s

]
=

i=s∑
i=t′+1

(t
i

)(n−t
s−i
)(n

s

) . (1)

Given a maximal corruption ratio t′

s of the sampled committee C of size s one can find the
smallest size smin for which Pr

[
FAILt,nt′,s

]
≤ 2−κ, for some security parameter κ. In figure 1 we

show a graph relating the minimum committee size for a varying corruption ratio within the
sampled committee. The blue line represents exact committee sizes sampled uniformly from
a population of 10K parties with 30% corruption, computed using the code in Appendix A
that uses the failing probability described in equation 1. The red line represents committee
sizes derived from an infinite population size with 30% corruption by using the analytic bound
described in Section 5.5. Both are for a security level of 60-bits. For convenience, Table 1 shows
a few of the concrete values used for plotting the graphs in Figure 1.
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Figure 1: Relation between minimum committee sizes for varying corruption ratio within the
sampled committee for a security parameter κ = 60. Exact values computed using the code
in Appendix A for a population of 10K parties with 30% corruption. Analytic bounds (c.f.
Section 5.5) derived from an infinite population size with 30% corruption.

5.5 Tight Analytic Bounds

We analyse the probability that when sampling a random committee of size n from a population
with corruption fraction p we get a committee with corruption ≤ q for some q > p. We will
calculate the probability of the bad event that there are > q corruptions, and give a formula
for picking n such that this bad event has small probability. We consider sampling without
replacement. However, it is easy to see that we will get an upper bound by assuming sampling
with replacement. We will do this. We can therefore ignore the size of the population. The
analytic bound will be an upper bound. We propose using it for finding the approximately
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Maximal corruption ratio in committee

99% 94% 89% 84% 79% 74% 69% 64% 59% 54% 49% 44% 39% 34% 33%

Exact
values

35 42 51 61 75 92 116 155 207 299 462 805 1713 5009 6376

Analytic
bound

37 45 55 67 82 102 130 170 232 335 528 955 2264 11178 19761

Table 1: Table showing the comparison of minimum committee sizes for different corruption
ratios within the sampled committee between exact committee sizes and bounds derived with
the analytical bound of Section 5.5. Results for a total population size n = 10000 (for the exact
values) with 30% corrupted parties and security parameter k = 60.

best committee size and then fine tune the selection with a more computationally heavy exact
calculate around the approximate value.

We sample n elements with replacement. Let Px be the probability that exactly x members
are corrupt. Then,

Px =
(
n

x

)
px(1− p)n−x .

We are interested in upper bounding ∑n
x=qn+1 Px. We have that

Px+1
Px

=
( n
x+1
)
px+1(1− p)n−x−1(n
x

)
px(1− p)n−x = (n− x)p

(x+ 1)(1− p) .

When x > qn then
(n− x)
(x+ 1) <

1− q
q + 1/n <

1− q
q

.

It follows that
Px+1 < Px

(1− q)p
q(1− p) .

If we do a geometric sum with start term a = Pqn and ratio (1−q)p
q(1−p) , we get

n∑
x=qn+1

Px <
Pqn

1− (1−q)p
q(1−p)

= Pqn
q(1− p)

q(1− p)− (1− q)p = Pqn
q(1− p)
q − p

.

Note that q(1−p)
q−p goes to ∞ as q goes to p, as expected. Assume now that we leave a constant

gap α between the corruption we assume and the one we attempt to sample, i.e., α > 0 and
q = p+ α. Then

q(1− p)
q − p

<
q(1− p)
p+ α− p

= q(1− p)α−1 ,

which gives us
n∑

x=qn+1
Px < Pqn

q(1− p)
α

.

We will now focus on Pqn. We have that

Pqn =
(
n

qn

)
pqn(1− p)n(1−q) .
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Furthermore, (
n

qn

)
= n!

(qn)!(n− qn)! .

By Stirling’s approximation we have
√

2πnnne−n < n! < e
√
nnne−n .

This yields(
n

qn

)
<

e
√
nnn

√
2πqn(qn)qn

√
2π(n− qn)(n− qn)n−qn

= e
√
n

√
2πqn

√
2π(n− qn)

nn

(qn)qn(n− qn)n−qn .

We have
e
√
n

√
2πqn

√
2π(n− qn)

= e

2π
√
n
√
q(1− q)

,

and
nn

(qn)qn(n− qn)n−qn = nn

qqnnqnnn−qn(1− q)n−qn = 1
qqn(1− q)n−qn =

(
qq(1− q)1−q

)−n
.

Putting these together, we conclude that(
n

qn

)
<

e

2π
√
n
√
q(1− q)

(
qq(1− q)1−q

)−n
.

Putting all the above together, we obtain
n∑

x=qn+1
Px <

q(1− p)
α

e

2π
√
n
√
q(1− q)

(
qq(1− q)1−q

)−n
pqn(1− p)n(1−q) .

Collecting terms a bit we can simplify to
n∑

x=qn+1
Px <

√
n
−1
β

((
p

q

)q (1− p
1− q

)1−q
)n

.

For
β = e

2πα

√
q(1− p)√

1− q .

For reasonable values of p and q it is typically the case that n ≥ β2. For all such p and q it holds
that

n∑
x=qn+1

Px <

((
p

q

)q (1− p
1− q

)1−q
)n

.

Therefore, we get
n∑

x=qn+1
Px < 2−κ

when additionally

n ≥ κ/ log2

((
q

p

)q (1− q
1− p

)1−q
)
.

This shows that for large enough κ, the committee size n has a straight forward linear dependence
on κ with a constant which follows from p and q. If if κ is so small that one gets n < β2, then
one can either just β2 as an upper bound, or solve the following inequality for n:

n ≥
κ+ log2

(√
n
−1
β
)

log2

((
q
p

)q ( 1−q
1−p

)1−q
) .
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5.6 Alternative Ways to Realize Committee Selection

In the setting of Proof-of-Work based blockchains, committee selection based on the Proof-of-
Work mechanism itself (without randomness beacons) has been constructed in [26]. In previous
works on Proof-of-Stake based blockchain consensus protocols [20, 7, 12, 10, 17, 9], a number
of methods have been proposed for selecting committees in a publicly verifiable way using
randomness beacons. These methods can be classified in two main categories according to the
underlying randomness beacon: (1) uniformly random committee selection using randomness
beacons based on coin tossing with guaranteed output delivery [20, 7]; and (2) biased committee
selection using randomness beacons based on verifiable random functions [12, 10, 17, 9]. The
protocol we have described in Section 5.3 falls into the first category. While the methods in
category 2 allow an adversary to bias committee selection in a way that is not possible in category
1, they have higher concrete efficiency. To keep the presentation simple, our formalization and
the derived bounds assume uniform committee selection. However, our results can be extended
to also work with biased committees.

6 Constructing a Sharded Ledger
To realize F∆′

BD-STL, we use a timed ledger F∆
BD-TL as a control chain. In order to keep the shards

live and monitor their liveness, the parties in P will follow instructions based on messages posted
on F∆

BD-TL. We use FComSel for selecting the new committees when we start or re-start a shard.
Moreover, we use a repository functionality FRepo to store previous shards’ states and allow for
parties to obtain them.

Recall that for a fixed committee C, our shard functionality is denoted by FC,S,L,∆Shard . This
ideal functionality describes the shard for a given committee C. However, we need that the shard
protocol works generically for any subset C of the parties of a given size, and with enough honest
parties. To be concise, we use the notation Fn,S,L,∆Shard to describe a sharding functionality which
has not yet been instantiated with a committee, and which expects a committee of size n.6 In
order to instantiate shards, we use a “gearbox” of functionalities Fn1,S1,L1,∆1

Shard , . . . ,Fn`,S`,L`,∆`
Shard

to handle shard consensus. In principle each shard could use its own gearbox, but for the sake
of presentation nothing is lost in using the same gearbox for all shards. There is a statistical
security parameter κ, and a liveness guarantee γ > 0, e.g., γ = 1

2 . The gearbox should have the
following properties.

Always safe: For a uniformly random C ⊂ P of size ni it holds for all i that FCi,Si,Li,∆i
Shard is safe

except with probability 2−κ.

Eventually live: For a uniformly random C ⊂ P of size n` it holds that FC`,S`,L`,∆`
Shard is live with

probability at least γ.

We get safety and liveness at the same time by first running FC1,S1,L1,∆1
Shard for a random

committee. If it loses liveness we switch gears to FC2,S2,L2,∆2
Shard and so on. We start with FC1,S1,L1

Shard
with very poor liveness but very small committees and high speed. On the other hand FC`,S`,L`,∆`

Shard
has strong liveness guarantees. The other FCi,Si,Li,∆i

Shard act as intermediary points on the liveness
versus efficiency scale, so some of them might be the same consensus mechanism repeated several
times. It makes sense to try to sample committees several times (or to increase the size of

6In UC we can do this formally as follows. There is an ideal functionality Fn,S,L,∆
Shard with n associated to it. We

consider C as part of the session identifier of this ideal functionality. That means that in UC when the parties
Pi ∈ C call Fn,S,L,∆

Shard , they identify the set C as part of the sid. If the set does not have size n the ideal functionality
does nothing. If the set has size n, then the instance of Fn,S,L,∆

Shard thus created is what we call FC,S,L,∆
Shard .
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Actual total corruption ratio

5% 10% 15% 20% 25% 30%

Sufficient safety threshold 89% 79% 69% 59% 49% 39%

Committee size 51 75 116 207 462 1713

Table 2: Table showing for which safety thresholds shards will have a good probability to be
live with different overall corruption ratios, using S + 2L < 100% and setting L to the overall
corruption ratio. The second line shows the required shard sizes to guarantee safety with values
taken from Table 1.

committees) to try to hit one with high honesty and hence liveness. However, we only proceed
to the next level if the previous one loses liveness.

Optimistic committee sizes. As described above, the gearbox increases committee sizes
until the shard is live. We will now discuss how large committees need to be to get liveness. For
concreteness, we again consider a total population of 10K nodes with at most 30% corruption,
as in Section 5. Even though we consider a worst-case corruption of up to 30% in the total
population, in an optimistic scenario the system can have a lot less corruption. Note that the
corruption ratio in the sampled shard is close to the overall corruption ratio with high probability.
Thus, when the liveness threshold of the current gear is equal to the actual total corruption
threshold, there is a good probability that the shard is live. Since the gearbox ensures that
shards are always safe, one can think of shifting up as increasing the liveness threshold L and
adjusting the safety threshold S such that S + 2L < 100%. As soon as the liveness threshold
matches the unknown actual corruption ratio, the shard is live with good probability and the
gearbox stops switching up. This means the protocol automatically finds the optimal shard size
without knowing the actual corruption ratio. Note that even in the worst case with 30% overall
corruption, we only need L = 30% and S = 39%. Hence, we can sample a committee with a
guaranteed corruption of at most 39%, instead of the 33% required by solutions not leveraging
the safety-liveness dichotomy.

Table 2 shows different committee sizes needed to get liveness for varying corruption ratios.
For example, in the worst case with 30% overall corruption, we need a safety threshold of 39%,
corresponding to 1713 committee members. With 20% corruption, we only need committees of
size 207.

6.1 The Sharded Ledger Protocol ΠBD-STL

In our protocol, parties in P continuously perform a number of maintenance actions in order to
detect the potential loss of liveness in shards and ensure that a new committee is chosen to take
over the operation of a shard that has lost liveness. These actions can be divided as follows: (1)
Shard Management, which are actions performed by all parties in P ; (2) Shard Operation, which
are actions performed by the parties in the committee responsible for operating a given shard.
Moreover, when receiving inputs, the parties execute instructions that realize the interfaces in
F∆′

BD-STL. The protocol works as follows:

25



Protocol ΠBD-STL

Parties in P interact with each other and with functionalities F∆
BD-TL, FRepo, FComSel

and the gearbox of functionalities Fn1,S1,L1,∆1
Shard , . . . ,Fn`,S`,L`,∆`

Shard . All parties in P post
management instructions to F∆

BD-TL in order to ensure shards are live, selecting a new
shard committee with the help of FComSel if a loss of liveness is detected. Each shard sid
is associated to a functionality Fnh,Sh,Lh,∆h

Shard in the gearbox executed by a committee Ch.
Shards have parameters h, indicating which committee Ch and functionality Fnh,Sh,Lh,∆h

Shard
is responsible for that shard, start time t, indicating when the shard execution with
Fnh,Sh,Lh,∆h

Shard and Ch started in terms of F∆
BD-TL’s ledger time, and finalization time out

tTimeout, representing the maximum delay before a shard is considered to have lost liveness.
When describing a shard with a given parameter h, we denote the associated functionality
FCh,Sh,Lh,∆h

Shard as a short hand for executing Fnh,Sh,Lh
Shard with committee Ch.

Shard Management.

Init: Initially start all shards with parameters h = 1, t = 1, tTimeout = ∆init for all sid,
where ∆init ∈ Z,∆init > 0. Initially set SHDSi := ∅ for all Pi ∈ P.

Start: In order to start a shard identified by sid with parameters h, t, tTimeout, all parties
Pi ∈ P proceed as follows;
1: Send (SelectCom, cid, nh) to FComSel with a new cid, getting (cid, Ch).
2: Send (Send, (Start, sid, cid, Ch, t, tTimeout)) to F∆

BD-TL, i.e., a command to start
shard sid with FCh,Sh,Lh,∆h

Shard at ledger time t w.r.t. F∆
BD-TL with finalization

timeout tTimeout.
3: Set a finalization timeout counter to csid

T imeout = t+ tTimeout.

Stop: Parties Pi ∈ P send(Send, (Stop, sid)) to F∆
BD-TL, instructing parties to stop

executing shard sid associated to FCh,Sh,Lh,∆h
Shard .

FinalizeCheck: Parties Pi ∈ P keep counters Lsid
last initially set to 0 for each shard identified

by sid. Parties Pi ∈ P continuously send (Get) to F∆
BD-TL, receiving TOi. For every

shard identified by sid, all Pi ∈ P performs the following steps to check that a shard
has liveness:
1: For every message ((Finalize, sid, H, π, L), t) ∈ TOi check that that t < csid

T imeout

and L > Lsid
last, send (VerifyFinLength, L, π) to FCh,Sh,Lh,∆h

Shard , obtaining b, and
check b = 1.

2: Let ((Finalize, sid, H, π, Lmax), t) ∈ TOi be the message with the largest L
for which the checks of Step 1 succeeded. Set csid

T imeout = t + tTimeout and set
Llast = Lmax.

3: If the checks did not succeed for any message ((Finalize, sid, H, π, L), t) ∈ TOi

(i.e., the shard has timed out), stop the shard and start it again with incremented
parameters h+ +, t′, tTimeout + +, where t′ is a future ledger time w.r.t. F∆

BD-TL.
If the top of the gearbox Fn1,S1,L1,∆h

Shard , . . . ,Fn`,S`,L`,∆`
Shard for the shard has been

reached, it is restarted with the same parameters h = ` but with incremented
tTimeout + + and a freshly selected committee for Fn`,S`,L`,∆`

Shard .

Shard Operation. For every shard identified by sid, parties Pi ∈ P continuously send
(Get) to F∆

BD-TL, receiving TOi. Parties Pi ∈ P keep executing Shard Operation instructions
as follows according to the messages in TOi and the ledger time:

26



Start Shard: When parties Pi ∈ Ch see ((Start, sid, cid, Ch, t, tTimeout), t′) ∈ TOi, Pi
checks that the message is valid by verifying the FComSel returns Ch when queried
with (SelectCom, cid, nh). If it is valid, they set csid

T imeout = t + tTimeout and start
executing FCh,Sh,Lh,∆h

Shard at ledger time t.

Finalize: At ledger time csid
T imeout−∆′ (where we choose a higher ∆′ every time the shard is

restarted in order to ensure that finalization messages are received before the timeout),
parties Pi ∈ Ch for shard sid proceed as follows:
1: Send Get to FCh,Sh,Lh,∆h

Shard corresponding to shard sid, obtaining STOsid
i .

2: Send GetFinProof to FCh,Sh,Lh,∆h
Shard , obtaining the corresponding finalization

proof π.
3: Set D = STOi|π and send (Store, D) to FRepo. Notice that if a prefix of STOi

has already been stored in FRepo, only the new messages in STOi w.r.t. this prefix
need to be sent to FRepo.

4: Set L = |STOi| and send (Send, (Finalize, sid, H(STOi), π, L)) to F∆
BD-TL.

Stop Shard: When parties Pi ∈ Ch see a message ((Stop, sid), t) ∈ TOi, they send Close
to FCh,Sh,Lh,∆h

Shard and stop executing further shard operation instructions.

Interfaces from F∆′
BD-STL for Parties Pi ∈ P. Parties Pi ∈ P execute the following in-

structions upon receiving inputs:

On input (Send, sid,m): Pi proceeds as follows:
1: Send (Get) to F∆

BD-TL, receiving TOi.
2: Find the latest valid message ((Start, sid, cid, Ch, t, tTimeout), t) ∈ TOi and de-

termines the instance FCh,Sh,Lh,∆h
Shard responsible for shard sid.

3: If Pi ∈ Ch, when receiving m (as input or from another party), Pi sends (Send,m)
to FCh,Sh,Lh,∆h

Shard and ignore the next steps. Otherwise, proceed to the next step.
4: Send m to all parties in Ch and continuously sends (Get) to F∆

BD-TL, receiving
TOi and checking that there is a message ((Finalize, sid, H, π, L), t) ∈ TOi

such that FCh,Sh,Lh,∆h
Shard associated to shard sid returns 1 when queried with

(VerifyFinProof, ~m, π), where ~m is obtained by sending (Get, H) to FRepo.
If a message ((Stop, sid), t) appears before these checks succeed, Pi goes to Step
1 and waits for a new message ((Start, sid, cid, Ch+1, t, tTimeout), t) ∈ TOi.

On input (Get): Pi sends (Get) to F∆
BD-TL, receiving TOi. For each sid ∈ SHDSi, Pi sets

STOsid
i = ∅ and determines the final STOsid

i by executing the following instructions
starting from the largest value of Lj for each ((Finalize, sid, Hj , πj , Lj), tj) ∈ TOi:
1: Send (VerifyFinLength, Lj , πJ) to FCh,Sh,Lh,∆h

Shard (where this instance is de-
termined by the last valid message ((Start, sid, cid, Ch, t, tTimeout), t′) ∈ TOi),
obtaining b. If b = 0, ignore the next steps and proceed to the next message
((Finalize, sid, Hj+1, πj+1, Lj+1), tj+1) ∈ TOi with Lj+1 < Lj .

2: Send (Get, Hj) to FRepo, receiving Dj , and send (VerifyFinProof, Dj , π) to
FCh,Sh,Lh,∆h

Shard , obtaining b. If b = 0, ignore the next step and proceed to the next
message ((Finalize, sid, Hj+1, πj+1, Lj+1), tj+1) ∈ TOi with Lj+1 < Lj .

3: Let D′ be the new messages in Dj that are not contained in Dj−1. Append (D′, tj)
to STOsid

i .
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Notice that if a previous version of STOsid
i has already been computed, Pi only needs

to perform these steps for new messages ((Finalize, sid, Hj , πj , Lj), tj) ∈ TOi such
that tj > t̂, where t̂ is the highest ledger time registered in the previous version of
STOsid

i . Finally, Pi outputs ./sid∈SHDSi
STOsid

i .

On input (AddShard, sid): Party Pi sets SHDSi := SHDSi ∪ {sid}.

On input (RemoveShard, sid): Party Pi sets SHDSi := SHDSi \ {sid}.

Theorem 2. Protocol ΠBD-STL described above UC-realizes functionality F∆′
BD-STL in the (F∆

BD-TL,

FRepo,FComSel,Fn1,S1,L1,∆1
Shard , . . . ,Fn`,S`,L`,∆`

Shard )-hybrid model in the partially synchronous model
(i.e., where ∆1, . . . ,∆`,∆′ are unknown but finite) with security against active static adversaries.

Proof. In order to prove this theorem, we construct a simulator S such that no PPT environment
Z can distinguish an ideal execution with S and F∆′

BD-STL from a real execution of ΠBD-STL with
any adversary A. S executes ΠBD-STL with an internal copy of the adversary A, forwarding all in-
puts from Z toA. S simulates functionalities F∆

BD-TL,FRepo,FComSel,Fn1,S1,L1,∆1
Shard , . . . ,Fn`,S`,L`,∆`

Shard
towards A by following the exact instructions of these functionalities unless explicitly stated
otherwise.
S executes the Shard Management and Shard Operations steps of ΠBD-STL with A exactly

as an honest party would. In particular, S follows the exact instructions of FRepo and FComSel
when simulating these functionalities. In the case of F∆

BD-TL and the functionalities Fnh,Sh,Lh,∆h
Shard

corresponding to each shard, S simulates adversarial commands (Add, ·) according to A’s
behavior. This ensures that shards are (re-)started and finalized w.r.t. to F∆

BD-TL in the same
way as in a real execution of ΠBD-STL.

Upon receiving a message (Pi, sid,m) from F∆′
BD-STL indicating that an honest party has

sent a message m to shard sid, S simulates the corresponding honest party sending m to shard
sid by following the steps of an honest party in ΠBD-STL. When m appears in the simulated
FRepo along a valid finalization message in the simulated F∆

BD-TL (i.e., with a valid finalization
proof w.r.t. to the simulated Fnh,Sh,Lh,∆h

Shard corresponding to shard sid), S sends (Add, sid,m, t)
to F∆′

BD-STL, where t is the time when the finalization proof corresponding to m appeared in the
simulated F∆

BD-TL.
As the execution with A progresses, S checks whether new messages are finalized in the

simulated F∆′
BD-STL. If these messages were not sent by S on behalf of a simulated honest party,

S adds them to F∆′
BD-STL. When m appears in the simulated FRepo along a valid finalization

message in the simulated F∆
BD-TL (i.e., with a valid finalization proof w.r.t. to the simulated

Fnh,Sh,Lh,∆h
Shard corresponding to shard sid) such that m was not input by S (in which case S

took care of this message by following the previous steps), S sends (Add, sid,m, t) to F∆′
BD-STL,

where t is the time when the finalization proof corresponding to m appeared in the simulated
F∆

BD-TL.
Notice that the execution with S is exactly the same as in the real execution. Following these

steps, S ensures that messages finalized for each shard in the simulated execution of ΠBD-STL
match the same messages in F∆′

BD-STL. However, messages are only added to F∆′
BD-STL after they

are finalized in the simulated execution of ΠBD-STL. Hence, the delay ∆′ must be such that
finalizing a message m sent to a shard sid of F∆′

BD-STL in the simulated execution of ΠBD-STL
takes at most ∆′ clock ticks. We remark that ∆′ is guaranteed to be finite since it is equal to
the delay ∆ from the simulated F∆

BD-TL plus the worst case delay to find a live instance in the
gearbox Fn1,S1,L1,∆1

Shard , . . . ,Fn`,S`,L`,∆`
Shard ), which is guaranteed to be finite as per the analysis in
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the beginning of this section. Hence, no PPT environment Z can distinguish an ideal execution
with S and F∆′

BD-STL from a real execution of ΠBD-STL with any adversary A.

6.2 Extensions

While Protocol ΠBD-STL realizes a sharded ledger FBD-STL, it can have its efficiency and security
improved by extending the way it switches gears over functionalities Fn1,S1,L1

Shard , . . . ,Fn`,S`,L`
Shard for

each shard. Here we describe some of these extensions informally.

6.2.1 Damping

So far we only showed how to move up the gearbox of consensus algorithms. That is enough to
prove eventual liveness. In practice one also wants to have a way to regain efficiency if the loss
of liveness was due to some temporary event such as a burst error in the network. This can be
achieved using some heuristic. The timestamps on the control chain can be used to determine
the uptime of the shards, and if the uptime exceeds some heuristic threshold, one tries to move
down the gearbox again. This will tend to find the optimal position in the gearbox producing
only some acceptable downtime. Since safety is never violated, any heuristic can be used that
works well in practice.

6.2.2 Cycling Committees

Our analysis so far has assumed static corruptions. To tolerate slowly adaptive corruptions,
one can resample committees repeatedly. This can be combined with the damping described
above, i.e., one can close and reopen shards after some timeouts and possibly change gears when
resampling. This is secure as long as the time it takes to corrupt a party is longer than the
resampling timeout.

6.3 Inter-Shard Transactions and Communication

While our protocol allows for parties to read and write from any shard, doing so would nullify
the benefits of a sharded ledger. We finally describe how to add causal communication and
payments across shards while only requiring parties to watch one shard. The same mechanism
can be used for smart contracts on one shard to send signals to smart contracts on other shards.
For this to be meaningful, we would need a notion of transactions and accounts (or UTXO [25]),
which we have not included in the above formalism for clarity. Doing a full formal treatment is
out of the scope of this paper, where we want to focus on how to work around the safety-liveness
dichotomy. However, we sketch the chosen solution for completeness, as there are some special
considerations for a sharding scheme with shards which might “crash”.

We need a notion of some shard “deciding” to send a message to another shard. This might
just be a message from a smart contract to another. It might also be a transfer of stake from
one shard to another. Finally, it might be the transfer of a UTXO from one shard to another: it
gets burned on one shard and appears on another one. We solve all these cases using a uniform
notion of inter-shard signals, where the receiving shard can be sure the signal came from the
sending shard. For this purpose we introduce on each shard an efficiently computable function Πi

which interprets the sequence of messages on the shard. It could for instance keep track of how
much stake is on each account, and interpret the messages on the shard as commands moving
the stake or UTXO around. For our purposes, however, we only need that it can sometimes
inject into the sequence of messages, a special message of the form (Shardi,Shardj ,m) meaning
that m has to be sent from Shardi to Shardj . If we can move such messages, the function Πj can
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then interpret m as adding money to some receiving account if needed. Here we focus only on
moving the signals. In a bit more detail, for each sequence σ of messages on a shard, Πi creates
a super-sequence Πi(σ), i.e., σ is a sub-sequence of Πi(σ). The extra messages are interpreted as
the injected ones. We assume that messages are only injected “at the end”. Formally, if σ is a
prefix of σ′, then Π(σ) is a prefix of Π(σ′). We are only interested in injected messages of the
form (Shardi,Shardj ,m). The main properties we want to guarantee are:

Delivery: If the message (Shardi,Shardj ,m) appears on Shardi, then eventually (Shardi,Shardj ,m)
appears on Shardj .

Validity: If the message (Shardi, Shardj ,m) appears on Shardj , then eventually (Shardi, Shardj ,m)
appears on Shardi.

Causality: Following [23], we say that M happens before M ′ if M appears before M ′ on the
same shard, or M = (Shardi,Shardj ,m) appears on Shardi and M ′ = (Shardi, Shardj ,m)
appears on Shardj . Take the transitive closure of this relation. Then this must be a strict
partial order; in particular, there are no loops.

These three requirements together ensure that the global sharded ledger with the injected
messages forms a causal system.

There are three main approaches for inter-shard communication in the literature (for an
overview of different solutions, see [30, 1, 27]): (1) In control-chain (CC) driven approaches,
the CC is used to pass the messages, and the order on the CC is used for causality. (2) In
client-driven approaches it is the client that moves the signal. Client-driven approaches put an
unwanted responsibility on the clients; e.g., a shop using a blockchain for payments would have
to take responsibility in running it, what is undesirable in practice. Moreover, it is also hard to
give any proven guarantees in such a setting. (3) Finally, in shard-driven approaches the signal
is moved by the nodes running the shard.

In a setting where shards can be taken down and brought up dynamically, a shard driven
approach is met with many of the same challenges as getting exactly-once delivery in a system
where both the sender and the receiver can crash. We therefore opted for a CC driven mechanism.
To not overload the CC, we only post hashes on the CC and store the actual signals in a repository
where the receiving committee can retrieve them. We sketch a protocol next.

Inter-shard communication protocol. When a shard Shardi computes the finality proof
which is posted to the CC as a heart beat, instead of reporting the sequence σ it reports Πi(σ).
The committee of the receiving shard Shardj will retrieve Πi(σ) from the repository, authenticate
it against the heart beat on the CC, and then run through Π(σi) to find all (Shardi,Shardj ,m)
transactions in the finalized sequence. The inter-shard transactions will be treated as normal
transactions and will be added to the shard (if not already included). When all transactions of
the heart beat have been added to Shardj , then Shardj will report this as meta data in its own
next heart beat. More formally, the shards use Πj to inject the message in Πj(σj) such that it
automatically becomes part of the next heart beat.

In a bit more detail, each shard Shardj keeps a vector Clockj , where Clockj(Shardi) is the
newest heart beat of Shardi on CC which has been fully processed by Shardj . The value
Clockj(Shardj) is the set of new messages to send. When Clockj(Shardi) changes, it is then
injected into Πj(σj). When a shard runs (possibly after a “reboot”) it can find its own newest
Clockj and then it inspects the CC; for each Shardi which has a heart beat on CC newer than
Clockj(Shardi) it retrieves the corresponding inter-shard signals from the repository and starts
adding the missing ones to its own shard. When done it updates Clockj(Shardi).
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Each shard Shardi will maintain a Lamport clock [23] ci and use it to timestamp each
message with an increasing timestamp. When an inter-shard message (Shardi,Shardj ,m) is sent,
its Lamport timestamp c on the sending shard is included. When (Shardi, Shardj ,m) is included
on Shardj it gets timestamp max(cj , c) and cj is updated to max(cj , c) + 1. This implements a
causal, global strict partial order on all messages.

We note that there are obvious possible optimizations. The authenticated data structure used
for the heart beat should allow to efficiently retrieve the vector clocks and the set of messages
intended for a particular shard. It is also possible to add an optimistic mode which allows
shared-based intershard communication of final parts of a shard that was not yet committed to
the CC. However, these optimisations are out of scope for this paper.

Inter-shard signals can be used to move stake and UTXO. We take UTXO as an example.
The sending signal burns the UTXO on the sending shard and only adds the UTXO to the signal
for the receiving shard if the UTXO was unspent at burn time. The receiving signal recreates
the UTXO on the receiving chain. This ensure a UTXO only appears as unburned on one shard
at a time.

7 Shard Safety-Liveness Dichotomies
In this section, we present the shard safety-liveness dichotomies (SSLD). They follow from
basic quorum based proof techniques from Byzantine agreement theory, but we present them
explicitly here for the shard setting for completeness. We want to prove the if S is the fraction
of corruptions that can be tolerated without breaking safety and L is the fraction of corruptions
that can be tolerated without breaking liveness, then L+ S < 100% in the synchronous case
and 2L+ S < 100% in the partially synchronous case. Note that the Dolev-Strong broadcast
protocol [14] achieves synchronous broadcast for L = s = 99%, so it seemingly violates or bound
L+ S < 100%. However, Dolev-Strong only achieves internal agreement among the n servers.
External parties cannot verify the value agreed on. The crucial thing about a shard is that
external parties can post on it and read from it. A shard is not run by all parties. It is therefore
not enough for committee members to be able to agree among themselves on the ledger. They
must be able to convince a third party about the value of the ledger.

To exploit this in the lower bound we need to model readers and writer. We will go for
a minimal model with a single writer W and several readers R. Besides this there will be n
committee members C = {C1, . . . ,Cn}. We assume they are fixed for the lower bound.

7.1 Synchronous, Unauthenticated SSLD

As a warm-up we first look at a very minimal model where the writer can chose to send a bit on
the shard and the reader can read it, if it was posted.

A writer node posts to the shard by sending the same bit to all Ci. The writer and reader
do not speak to each other, they only speak to C. We can assume that first W sends a single
bit to each Ci and then leaves. Letting W take interactive part in the protocol would de facto
make it another server and we would get other bounds. We assume that the reader node reads
by getting a message from each Ci and then R maybe outputs a bit. Letting R take interactive
part in the protocol would de facto make it another server and we would get other bounds. The
committee members will talk between themselves.

We are interested in when we can get liveness and safety. Liveness means R outputs something.
Safety means that if W is honest and sends the same bit to all servers then this is the bit that
R will output if it outputs something. It is clear this is not enough to have a blockchain, but
having low expectations makes the lower bound stronger.
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We assume a monotone liveness structure L, a set of subsets of C. By monotone we mean
that if L ∈ L and L′ ⊂ L then L′ ∈ L. We also assume a monotone safety structure S. Let C
be the set of corrupted parties. We only want liveness if we have safety, so we assume L ⊂ S.
With this we can make the following minimal requirements.

Liveness If W sends the same bit b to all Ci and C ∈ L then eventually R outputs a bit.

Safety If W sends the same b to all Ci and R outputs some c and C ∈ S, then c = b.

For a synchronous protocol we can prove that it cannot be the case that there exist S ∈ S
and L ∈ L such that S ∪ L = C.7 To see this consider two disjoint sets S ∈ S and L ∈ L such
that S ∪ L = C. If they are not disjoint we can make them smaller with monotonicity until they
are disjoint and still in C and L.

Consider two experiments.

Experiment 1: Let W send 0 to all servers. Corrupt L and let all parties in L run with input 1.
Since we corrupted from L the reader R will give an output. Call it b1. Since L ⊂ S the output
will be b1 = 0.

Experiment 2: Let W send 1 to all servers. Corrupt S and let all parties in S run with input
instead 0. Since we corrupted from S the reader R will only output 1. From the point of view
of the reader the experiment 2 is identical to experiment 1. So we know that R does give an
output. So it outputs b2 = 1.

We conclude that 0 = b1 = b2 = 1, a contradiction.

7.2 Synchronous, Authenticated SSLD

The above proof did not take care of the fact that W might sign its bit to prevent corrupt servers
from changing its input. We now cover this case too. To get a lower bound in this case we will
need to also require agreement on the order of messages. To prove the bound we will then let a
corrupt W sends signed 0’s to some servers and signed 1’s to other servers and show that the
receivers cannot agree on which bit appeared on the shard first.

We assume the committee knows the public key of W for a signature scheme and that W has
the secret key.

As before W only writes to the shard and R only reads. The writer W posts to the shard by
sending the same signed bit to all Ci. Then the committee members will talk between themselves
defining a sequence of signed bits having been posted. For our proof it is enough to consider
ledgers of length at most 1. So the ledger is empty or has a single message. In other words,
we prove that it is even impossible to agree on just the first element of the ledger. We assume
that R at some point reads from each committee member and possibly computes a single output
message m. The readers do not communicate. If they did, they would de facto become servers
and the bounds would change. We allow that R does not give an output. Think of it as the
ledger currently being empty.

We again have monotone liveness structure L and monotone safety structure S and require
that L ⊂ S. Let C be the set of corrupted parties. We require the following.

Liveness If W sends the same signed m to all Ci and C ∈ L, then Ri can eventually read
mi = m.

7Notice that if we let S be all sets of servers of size s and let L be all sets of servers size `, then S ∪ L 6= C for
disjoint sets translates into s + ` < n. Dividing by n we get the simplified dichotomy s/n + `/n < 100% of the
introduction.
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Validity If W does not send a signed m to any server Ci and C ∈ S and Ri outputs mi, then
mi 6= m.

Agreement If R1 outputs m1 and R2 outputs m2 and C ∈ S, then m1 = m2.

Note that the way we phrase liveness it implies safety. Normally you would formulate liveness as
a pure liveness property, but we assume L ⊂ S and the above makes the proof simpler. Validity
just means that the ledger cannot post anything that the writer did not sign. This is an essential
requirement for the ledger to be meaningful. Agreement says that two different honest readers
agree on what is the first message on the ledger if they both consider the ledger non-empty. This
is again essential.

For a synchronous protocols we assume the parties have access to round-based communication,
where if a party does not send a message in a round, then instead NoMsg is delivered.

For a synchronous protocol we can prove that it cannot be the case that there exist S ∈ S
and L ∈ L such that S ∪ L = C. To see this consider two disjoint sets S ∈ S and L ∈ L such
that S ∪ L = C.

Let W sign 0 and 1. When we say that b is given as input we mean that the signature is
given along. Let the output of a reader Ri be the first bit bi it sees appearing on the ledger.

Experiment 1: Let W send 0 to all servers. Run with R0. Corrupt L and drop all messages
between L and S. I.e., L sends NoMsg and will act as if S did the same. Since we corrupted
from L ⊂ S the reader R0 will get output b1 = 0 by liveness and validity.

Experiment 2: Let W send 0 to all servers and also send 1 to L. Run with R2. Corrupt L and
drop all messages between L and S. Since we corrupted from L the reader R2 will get some
output b2 by liveness.

Assume for the sake of contradiction that b2 = 1 with constant positive probability p. Then
we can break safety as follows. Let W send 0 to all servers and also send 1 to L. Corrupt L and
make in run two copies of L. One running with input 0 and one with input 1, call them L0 and
L1. Drop all messages between L0 to S. Drop all messages between L1 to S. Clearly L can run
both copies as they do not interact with S, the view of S is the same with both of them. Show
L0 to R0 and show L1 to R1. Now we break agreement with probability p. So we can assume
b2 = 0.

Experiment 3: Let W send 1 to all servers. Run with R3. Corrupt L and drop all messages
between L and S. Since we corrupted from L the reader R3 will get output b3 = 1 by liveness
and validity.

Experiment 4: Let W send 1 to all servers and also send 0 to L. Run with R4. Corrupt L and
drop all messages between L and S. Since we corrupted from L the reader R1 will get some
output b4 by liveness. We can conclude that b4 = 1 as above.

Experiment 5: Let W send 0 and 1 to all servers. Run with R5. Corrupt S and drop all
messages between L and S. Let S ignore the 0 input. This experiment is identical to experiment
4 so the output of R5 is b5 = b4 = 1.

Experiment 6: Let W send 0 and 1 to all servers. Run with R6. Corrupt S and drop all
messages between L and S. Let S ignore the 1 input. This experiment is identical to experiment
2 so the output of R6 is b6 = b2 = 0.

We are now again ready to break agreement. The difference between experiment 5 and 6 is
whether S drops 0 or 1. Since it does not talk to L it can run both experiments in the head and
show experiment 5 to R5 and show experiment 6 to R6.
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7.3 Partially Synchronous, Authenticated SSLD

We finally look at the partially synchronous SSLD. For a partially synchronous protocol all
messages are delivered within some unknown delay ∆net. We use the same liveness and safety
properties as for the synchronous, authenticated SSLD. Assume we have a partially synchronous
shard with L-liveness and S-safety. We can prove that it cannot be the case that there exist
disjoint sets S ∈ S and L0, L1 ∈ L such that L0 ∪ L1 ∪ S = C.8 Assume for the sake of
contradiction that we have such sets.

Consider the following experiment. Give L0 input 0. Give L1 input 1. Delay all messages
between L0 and L1 for time ∆net =∞. This is not allowed in the partially synchronous model,
but we will lower ∆net to a large enough finite value below.

Let a corrupt S run as follows. Towards L0 it runs an honest copy of S with input 0. Call it
S0. Towards L1 it runs an honest copy of S with input 1. Call it S1. We consider two readers
R0 and R1. When R0 reads delay message from L1 for time ∆net = ∞ and let S reply as S0
would. When R1 reads delay message from L0 for time ∆net =∞ and let S reply as S1 would.

Consider the view of R0. It is interacting with honest S0 and L0 and with L1 being infinitely
later. This corresponds to a corruption of L1 ∈ L where we let L1 send no messages, so eventually
R0 will output 0. Say this happens within time E0. Now set ∆net = E0 + 1, run L1 honestly but
instead delay all messages from L1 for time ∆net as allowed in a partially synchronous run. In
this run L0, S0,R0 all have the same view of L1 as when L1 is corrupted and sends no messages,
so R0 still outputs m0 = 0.

Consider then the view of R1. It is interacting with honest S1 and L1 and with L0 being
infinitely later. This corresponds to a corruption of L0 ∈ L so R1 will output 1. Say this happens
within time E1. Now set ∆net = max(E0, E1) + 1, run L1 honestly but delay all messages from
L1 for time ∆net. In this run L1, S1,R1 all have the same view of L0, so R1 still outputs m1 = 1.

Since we now consider a valid partially synchronous run with ∆net = max(E0, E1) + 1 and
corruption S ∈ S it follows that if R0 eventually outputs m0 and R1 eventually outputs m1, then
m0 = m1. We conclude that 0 = m0 = m1 = 1, a contradiction.
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Appendix

A Python Code for Computing Minimal Committee Sizes

1 import math
2 import scipy. special
3 import numpy
4 from fractions import Fraction
5

6 # Compute probability of having too many corrupted parties in
committee with

7 # n = total population
8 # t = number of corruptions in total population
9 # s = committee size

10 # h = minimum number of honest parties required in committee
11 # pMax = maximal value for which pFail returns correct value.

Output is 1 if pFail > pMax.
12 def pFail(n, t, s, h, pMax) :
13 p = 0
14 denom = scipy. special .comb(n, s, exact=True) # compute n

choose s as exact integer
15 for i in range(s - h + 1, s+1) :
16 p += Fraction (scipy. special .comb(t, i, exact=True) *

scipy. special .comb(n-t, s-i, exact=True), denom)
17 if p > pMax :
18 return 1
19 return p
20

21 # Find minimum committee size with corruption ration cr such
that pFail <= 2^{-k}

22 def minCSize (n, t, cr , k) :
23 pMax = Fraction (1, 2**k)
24 for s in range (1, n+1) :
25 h = math.ceil ((1 - cr) * s) # we want at least h honest

parties to not violate corruption threshold
26 if pFail(n, t, s, h, pMax) <= pMax :
27 return s
28

29 # Compute analytical upper bound
30 def analyticBound (n, t, cr , k) :
31 p = Fraction (t, n)
32 q = cr
33 alpha = q - p
34 beta = (math.e * math.sqrt(q) * (1-p)) / (2 * math.pi * alpha

* math.sqrt (1-q))
35 bound = math.ceil(k/math.log ((q/p)**q * ((1-q)/(1-p))**(1 -q),

2))
36 betaBound = math.ceil(beta*beta)
37 return max(bound , betaBound )

38



38

39 # Compute values for 10000 total parties , 30% corruption , and 60
bit security

40 n = 10000
41 t = 3000
42 k = 60
43

44 # corruption threshold percentages we are interested in
45 crps = range (99, 32, -1)
46

47 print ("cr\t min\t bound")
48 for crp in crps:
49 cr = Fraction (crp , 100) # convert percentage to fraction
50 print ( float (cr), "\t", minCSize (n, t, cr , k), "\t",

analyticBound (n, t, cr , k))
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