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ABSTRACT
This work introduces a new interactive oracle proof system based

on the MPC-in-the-Head paradigm. To improve concrete efficiency

and offer flexibility between computation time and communica-

tion size, a generic proof construction based on multi-round MPC

protocols is proposed, instantiated with a specific protocol and

implemented and compared to similar proof systems.

Performance gains over previous work derive from a multi-party

multiplication check optimized for the multi-round and MPC-in-

the-Head settings. Of most interest among implementation opti-

mizations is the use of identical randomness across repeated MPC

protocol executions in order to accelerate computation without

excessive cost to the soundness error.

The new system creates proofs of SHA-256 pre-images of 43KB

in 53ms with 16 MPC parties, or 23KB in 188ms for 128 parties. As a

signature scheme, the non-interactive variant produces signatures,

based on the AES-128 circuit, of 19KB in about 3.5ms; this is 35%

faster and 33 % larger than the Picnic3 scheme (13kB in 5.3ms for

16 parties) which is based on the 90% smaller LowMC circuit.
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1 INTRODUCTION
A zero-knowledge (ZK) proof is a cryptographic tool that allows

a prover to convince a verifier that a statement is true without

leaking any information to the verifier other than the validity of

the assertion. Since their introduction by Goldwasser, Micali and

Rackoff [26] in the 1980s, ZK proofs have become a fundamental

tool for both cryptography theory and, more recently, practical

systems thanks to real-world applications such as distributed ledger

technology and cryptocurrencies.

There have been many developments in the construction of

highly efficient zero-knowledge systems in recent years, each of

which offers different trade-offs between several efficiency mea-

sures such as the number of interactions between prover and verifier

(in particular distinguishing interactive and non-interactive sys-

tems), communication complexity, proof length, and prover and

verifier computation complexity.

A common and useful way to simplify protocol construction

in such a large design space is to proceed in a modular way: first

construct an information-theoretic protocol (also called a proba-
bilistically checkable proof or PCP) which makes use of idealised

assumptions, and then compile it to a ‘real’ world protocol, or more

formally an argument system [17], using cryptographic tools. This

approach is used for example to construct succint non-interactive ar-
guments [6–8, 14, 31, 32, 36]. Here, the term succinct usually refers

to systems with sub-linear proof size, but can additionally refer to

efficient verification. The extension of PCPs to interactive PCPs

(IPCPs) [29] allows more interaction between prover and verifier

after the proof generation; the recent further extension to interac-

tive oracle proofs (IOPs) [9, 39], which are effectively “multi-round

PCPs”, achieves even better efficiency than standard PCPs. Other

related variants include linear PCPs [12] and their generalization

to fully linear PCPs and IOPs [15]. In particular, linear PCPs have

been used to build sub-linear arguments with preprocessing, with

very efficient instantiations [24]. The main drawbacks of this ap-

proach usually include prover complexity, heavy use of public-key

machinery and requirement for trusted setup.

More generally, due to the modular approach, it is possible to

combine different information-theoretic proof systems with dif-

ferent cryptographic tools to obtain systems with very different

characteristics, especially in term of efficiency.

In 2007, Ishai, Kushilevitz, Ostrovsky and Sahai [28] introduced

a very powerful paradigm to build (honest-verifier) ZKPCPs us-

ing secure multi-party computation (MPC), known as MPC-in-the-

Head (MPCitH). Recent efficient solutions for circuit satisfiability

based on this approach include ZKBoo [25], KKW [30], BN [5]

and Ligero [2, 11]. A common feature of these schemes is that the

prover’s complexity is linear in the circuit size and their overall con-

crete efficiency which makes these schemes very competitive, even

for relatively large statements. In particular, among MPCitH-based

systems, KKW offers the best concrete computational performance,

while Ligero notably achieves sub-linear communication complex-

ity and hence shortest proof lengths for large enough circuits.

Interestingly, the MPCitH approach has been successfully used

to construct very efficient digital signature schemes with post-

quantum security, such as Picnic [19, 30, 42].

1.1 Our Contributions and Techniques
Motivated by the simplicity and flexibility of the MPCitH par-

adigm, in addition to the good concrete performance of systems

based on it, we construct Limbo, a new zero-knowledge MPCitH-

based argument for circuit satisfiability which works for both

Boolean and arithmetic circuits.
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Our construction offers linear communication and prover com-

plexity, however our focus is on concrete performance rather than

asymptotic complexity, and Limbo achieves extremely good effi-

ciency, both in terms of prover complexity and proof length. As

common to all MPCitH-based systems, it also achieves transparency

(no need for trusted setup) and post-quantum security.

Concretely, our scheme offers computational performance com-

parable with KKW, but with significantly shorter proofs, achieving

the best overall performance among MPCitH-based schemes for

medium size circuits (i.e. with less than 500000 multiplication gates).

For larger circuits, Ligero has shorter proofs but is computationally

more expensive than our protocol.

We also use the non-interactive variant of our construction

(NILimbo) to design a post-quantum signature scheme, in line with

previous works such as Picnic [19], BBQ [21], LegRoast [10] and

Banquet [3].

We furthermore provide an implementation of our protocols and

compare its performance with other MPCitH-based systems. We

now detail our contributions and techniques.

MPCitH zk-IOP. We extend the general MPCitH zk-IOP construc-

tions defined in Ligero and Ligero++ [2, 11], which in turn can

be seen as an optimized version of the black-box transformation

introduced in IKOS [28], to work with MPC protocols with arbitrary

number of rounds. This allows for more freedom in the choice of

the MPC components and hence for zero-knowledge systems with

different efficiency features.

After this, we instantiate this general system with a very simple

MPC protocol with low communication complexity in order to

minimize both the proof length and prover complexity.

A common way to design concretely efficient MPCitH protocols

is to instantiate the MPC component with efficient MPC building

blocks, as done in KKW [30] and BN [5]. While this approach can

be seen as the most natural, it may not hold that efficient MPC

protocols lead to the most efficient MPCitH counterpart. Instead,

we use a protocol that is specifically designed to fit in the MPCitH

framework, i.e. with a single party knowing all inputs and with

minimal communication complexity. At a high level, we define

a protocol with only one computing party, where the role of the

remaining parties is only to check that the circuit evaluation was

done correctly. Note that the underlying MPC component used in

the Ligero family [2, 11] respects this same model, but with very dif-

ferent security guarantees and “checking method”. While the goal

of [2, 11] was to achieve succinctness (still with competitive run-

ning times), we aim to have a better concrete balance between proof

size and prover complexity. When we compile our zero-knowledge

proof system to interactive and non-interactive zero-knowledge

arguments, we obtain better overall performance than previous

related work for small and medium size circuits.

Post-quantum Signature Schemes. We use our zero-knowledge

argument protocol to describe a Picnic-like post-quantum signature

scheme. Picnic is one of the alternate candidates in Round Three

of the NIST Post-quantum Standardization process and, as proved

in a recent work by Cremers et al. [20], is the one (together with

CRYSTALS-Dilithium [33]) offering the strongest security guaran-

tees among the six finalists. Picnic uses an MPCitH zero-knowledge

protocol to prove knowledge of a secret key k such that 𝐹k (𝑥) = 𝑦,

where 𝐹k is a one-way function. In practice, Picnic uses LowMC [1]

as the underlying OWF, hence basing its security on non-standard

assumptions. Replacing LowMC with a more standard cipher, such

as AES, increases the proof size significantly. The BBQ protocol [21]

shows how to reduce this overhead when AES is used instead of

LowMC, using the same underlying MPC protocol as in Picnic [30],

but basing the computation on F
2
8 rather than F2, i.e. focusing on

S-boxes rather than individual AND gates. BBQ signatures are how-

ever still at least two times larger than Picnic ones. The more recent

proposal of Banquet further reduces this gap using an underlying

MPC protocol similar to the one used in this work [3].

Assuming an additive secret-sharing scheme, our protocol first

has an input and evaluation phase where a single sender party per-

forms the actual computation of the circuit, “injecting” the values

needed to evaluate non-linear gates to the remaining server parties,

after distributing the shares of the inputs. Given those values, all

the server parties can then perform a local evaluation of the circuit

on their own shares to compute their shares of the circuit output.

After this phase, the server parties check that the injected values

are correct, i.e. that the circuit has been correctly evaluated. This

phase also requires injected values from the sender party and does

not require any communication between the server parties, but

only access to a random coin functionality. The check protocol that

we use is an adaptation from [15, 16, 27] and concretely allows

to test whether multiplication gates were correctly evaluated by

checking the correctness of the corresponding multiplicative triples.

Roughly speaking, the main difference between our MPC protocol

and the one used in Banquet is in the way the correctness of the

multiplication gates is tested.

Overall, we achieve better running times compared to Ban-

quet [3] and also slightly better signature size. More importantly,

our generalized approach offers a framework for MPCitH signature

schemes that could hopefully lead to new improvements to Picnic-

like signatures with different instantiations of the main building

blocks.

Optimizations. It is common practice to reduce the soundness

error of a zero-knowledge proof by repeating, either in parallel

or sequentially, the protocol a certain number of times. However,

this approach significantly increases the complexity of the system

both computationally and in communication. Instead, we improve

the soundness of our general interactive construction by running

the underlying MPC evaluation protocol multiple times in parallel

and then checking these evaluations using the same public coin

functionality shared across all of them. We then apply this general

technique to our protocol. This approach allows for implementa-

tion optimizations and better concrete performance. In particular,

this improves prover time by roughly 7–10% compared to naïvely

repeating the protocol.

We can use this technique to also improve the performance in

the multi-instance case. In Appendix A, we sketch different options

to deal with this case efficiently.

Going beyond the gate-by-gate approach. We explore elements

which enable our protocol to move beyond the gate-by-gate para-

digm. Already in the application to AES-based signatures, similarly

2



Limbo: Efficient Zero-knowledge MPCitH-based Arguments

Prover (ms) Verifier (ms)
Our SHA 256 𝑛 Reps. 1 thread 4 threads 1 thread 4 threads Communication (bytes)

16 11 53 25 47 21.1 42229

32 9 77 39 71 35 34604

64 7 113 50 104 44 26971

128 6 188 92 178 82 23157

Table 1: Performance of our system for proving knowledge of a SHA-256 pre-image with soundness 2−40 for various number of parties 𝑛. Reps
stands for the number of required repetitions.

to BBQ and Banquet, our protocol considers S-box operations as the

unit of computation (1 inverse over F
2
8 ; rather than 32 AND gates

over F2). Taking this approach allows for greater improvements

than only improving binary circuits at the AND-gate level.

In Section 7 we further continue in this direction by adapting our

protocol to the verification of inner products and matrix multiplica-

tions. Considering these larger operations again allows for specific

optimizations to be made which provide significant improvements

over their gate-by-gate implementation. Using this approach we

can prove multiplication of two 256 × 256 matrices in 20sec (resp.

11 sec) with one thread (resp. 4 threads); this requires only 340KB

of total communication: a 38x improvement compared to the naïve

approach which would require 256
3
AND gates.

Concrete Efficiency.We present a detailed concrete analysis of

both the communication and the computational cost of our proto-

cols, and measure the concrete efficiency of our construction and

compare it with other MPCitH-based systems.

Both our interactive and non-interactive variants work for arith-

metic and Boolean circuits, however, since the checking phase of

our protocol requires a large field, our construction is inherently

more efficient when used for arithmetic circuits over such large

finite fields. Nevertheless, to better compare our protocols with

systems such as KKW, and use it for post-quantum signatures, we

run most of our tests over very small fields, namely F2 and F28 .
Our system depends on many parameters and is very flexible; we

can trade communication for computation in a significant way by

changing the number of parties in the MPC protocol, the extension

field or other settings in the checking phase.

Concretely, to verify one instance of SHA-256 preimage, with

40 bits of security, our system requires 53ms for the prover and

43KB of communication when the number of parties is 𝑛 = 16, and

188ms and 23 KB, respectively, when 𝑛 = 128 (see Table 1). This

represents a 3x improvement in computation time (with comparable

communication) over the Ligero system (44KB of communication

and 140ms of running time for the same circuit). Using 4 threads

we further reduce prover computation time to 25ms.

We also compare the performance of our protocol with KKW

and its recent highly optimized implementation, Reverie [34]. Al-

though our current implementation is incomparable with Reverie,

we show that our performance is already comparable with it. We

plan to apply some of the techniques used in Reverie to improve

our performance in future works. Overall, we improve KKW in

both proof size and run times.

Our implementation also shows that our signature scheme has

signing/verification run times comparable with those of Picnic and

signature size only 30% larger (for a 10x bigger circuit), assuming

the same number of parties. We can reduce the signature size by

running the protocol with larger number of parties at the cost of

slower signing and verification. More details about our concrete

measures can be found in Section 7.

Other related works. A recent line of work [4, 22, 40, 41], based

on subfield vector oblivious linear evaluation (sVOLE), provides ZK

proofs with very small memory footprint and extremely good effi-

ciency. Our system, like other MPCitH protocols, allows streaming

and can potentially achieve small memory overhead. Although we

cannot accomplish the same performance of sVOLE-based proto-

cols, our approach does not require an interactive preprocessing.

Moreover, LPZK [22] and Mac’n’Cheese [4] are currently designed

only for large fields, whereas our protocol naturally works for both

arithmetic and Boolean circuits.

2 PRELIMINARIES
We denote by ^ (resp. _) the computational (resp. statistical)

security parameter. We say that a function ` : N→ N is negligible
if, for every positive polynomial 𝑝 (·) and all sufficiently large inte-

ger 𝑘 , it holds that ` (𝑘) < 1

𝑝 (𝑘) . We also use the abbreviation PPT

to denote probabilistic poly-nomial-time algorithms. We use bold

letters to denote vectors, e.g. a, and use brackets to denote entries,

e.g. (a)𝑖 ; the operator ∗ denotes the inner product of two vectors.
We denote by [𝑑] the set of integers {1, . . . , 𝑑}, and by [𝑒, 𝑑] the set
of integers {𝑒, . . . , 𝑑} with 1 < 𝑒 < 𝑑 .

MPCnotation.The notation ⟨·⟩ stands for additively secret-shared
values with full threshold, and ⟨·⟩𝑖 for the share held by party 𝑃𝑖 .

Languages and relations.We denote byℛ a relation consisting

of pairs (𝑥,𝑤), where 𝑥 is the instance and 𝑤 is the witness. We

denote by ℒ(ℛ) the language corresponding toℛ.

2.1 Zero-knowledge Arguments of Knowledge
An argument of knowledge for an NP relation ℛ is a protocol

between a prover 𝒫 and a verifier 𝒱 . We let view(⟨𝒫 (𝑥,𝑤),𝒱 (𝑥)⟩)
denote the transcript generated by 𝒫 and 𝒱 when interacting on in-

puts (𝑥,𝑤) and 𝑥 , respectively. Also, we say that ⟨𝒫 (𝑥,𝑤),𝒱 (𝑥)⟩ =
𝑏 ∈ {0, 1} depending on whether 𝒱 accepts, 𝑏 = 1, or rejects 𝑏 = 0.

Definition 2.1. The pair (𝒫,𝒱) is called an argument of knowledge
for the relationℛ if the following properties are satisfied.

Completeness: ∀(𝑥,𝑤) ∈ ℛ, ⟨𝒫 (𝑥,𝑤),𝒱 (𝑥)⟩ = 1.

Soundness: For any PPT prover 𝒫∗, there exists a PPT extractor ℰ
such that, for any 𝑥 , the probability

Pr[⟨𝒫 (𝑥,𝑤),𝒱 (𝑥)⟩ = 1 ∧ (𝑥,𝑤) ∉ ℛ |𝑤 ← ℰ𝒫∗ (𝑥)]
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is negligible, where the extractor ℰ𝒫∗
has access to the entire exe-

cution, including the randomness of 𝒫∗.

Definition 2.2. An argument of knowledge (𝒫,𝒱) is public coin
if the verifier samples its messages uniformly at random and inde-

pendently of the messages sent by 𝒫 . This is equivalent to say that

𝒱 ’s messages correspond to 𝒱 ’s randomness.

Definition 2.3. A public coin argument of knowledge is (honest
verifier) zero-knowledge for a relationℛ if there exists a simulator 𝒮
such that, for any (𝑥,𝑤) ∈ ℛ, the view of an honest verifier in the

interaction ⟨𝒫,𝒱⟩ and the output of 𝒮 are indistinguishable, i.e.

view(⟨𝒫 (𝑥,𝑤),𝒱 (𝑥)⟩) ≈ 𝒮𝒱 (𝑥),
where 𝒮𝒱

denotes access to the public coin randomness used by

the verifier.

2.2 Interactive Oracle Proofs
Interactive oracle proofs (IOPs) simultaneously extend probabilis-

tic checkable proofs (PCPs) and interactive proofs (IPs) by allowing

more rounds of interaction and using point-wise queries from the

verifier to the oracles, instead of linear queries. IOPs also differ

from IPCPs which can be viewed as special IOPs where the verifier

has oracle access to the first prover messages, but must read in full

subsequent prover’s messages.

Definition 2.4. A 𝜌-round public-coin IOP for the relation ℛ
consists of a 𝜌-round interactive protocol between 𝒫 and 𝒱 , with
𝜌 ≥ 2, such that in each round 𝑖 ≥ 2, after an initial 𝜋1 created

by 𝒫 , the verifier 𝒱 sends a uniformly random message 𝑣𝑖−1 to

𝒫 and the prover replies with 𝜋𝑖 . The verifier has oracle access

to 𝜋 = {𝜋1, . . . , 𝜋𝜌 } and 𝒫 ’s last message in response to 𝑣𝜌 and,

based on the responses from the oracles, either accepts or rejects.

It satisfies the following two properties:

Completeness: As in Definition 2.1.

Soundness: For all 𝑥 ∉ ℒ, and for all (computationally unbounded)

𝒫∗
Pr[⟨𝒫 (𝑥,𝑤),𝒱𝜋 (𝑥)⟩ = 1] is negligible.

This definition can be extended with the knowledge and honest

verifier zero-knowledge properties [9]. Beyond soundness we can

consider other complexity measures, in particular the query com-
plexity, i.e. the number of queries asked by 𝒱 to any of the oracles

during the 𝜌 rounds, and the proof complexity, i.e. the number of

bits communicated during the interactions.

2.3 MPC-in-the-Head
In [28], Ishai, Kushilevitz, Ostrovsky and Sahai introduced the

MPC-in-the-Head (MPCitH) paradigm that uses any MPC protocol

with honest majority to construct a zero-knowledge proof for an

arbitrary NP relationℛ. The high level idea of this powerful tech-

nique is as follows. A zero-knowledge protocol can be viewed as

an instance of secure function evaluation, and hence as two-party

computation between a prover 𝒫 and a verifier 𝒱 , with common

input the statement 𝑥 , and 𝒫 ’s private input𝑤 , which is a witness

to the assertion that 𝑥 belongs to a given NP language ℒ. The func-
tion they want to compute is then 𝑓𝑥 (𝑤) = ℛ(𝑥,𝑤), which checks

if𝑤 is a valid witness or not. The verifier 𝒱 will accept the proof if

𝑓𝑥 (𝑤) = ℛ(𝑥,𝑤) = 1.

In the MPCitH paradigm the zk-PCP prover 𝒫 emulates an 𝑛-

party MPC protocol Π in “its head”: 𝒫 generates a sharing ⟨𝑤⟩
of the witness and distributes the corresponding shares as private

inputs to the parties, and then simulates the evaluation of 𝑓𝑥 (⟨𝑤⟩) =
ℛ(𝑥, ⟨𝑤⟩) by choosing uniformly random coins 𝑟𝑖 for each party

𝑃𝑖 , 𝑖 ∈ [𝑛]. Once the inputs and random coins are fixed, for each

round 𝑗 of communication of the protocol Π and for each party 𝑃𝑖 ,

the messages sent by 𝑃𝑖 at round 𝑗 are deterministically specified

as a function of the internal state of 𝑃𝑖 , i.e. 𝑃𝑖 ’s private inputs and

randomness, and the messages that 𝑃𝑖 received in previous rounds.

The set with the state and all messages received by party 𝑃𝑖 during

the execution of the protocol constitutes the view of 𝑃𝑖 , denoted as

view𝑖 .

After the evaluation, the prover sets 𝜋 = (view1, . . . , view𝑛) and
sends it to an oracle𝒪. At this point, the verifier queries 𝜋 on some

points and finally verifies that the computation was done correctly

by checking that the opened views are all consistent with each

other and that the protocol outputs a positive result.

3 MPC-IN-THE-HEAD BASED IOP—GENERAL
CONSTRUCTION

In this section we describe a general interactive proof system

based on the MPC-in-the-Head paradigm which can be instanti-

ated with different MPC protocols that respect a specific network

topology. While IKOS [28] presents a general transformation of

information-theoretic MPC protocols to a ZK proof in a “black-

box” way, we follow Ligero’s blueprint and precisely define the

MPC model we use to build our system. We extend the general

proof system defined in [2] by allowing arbitrary number of rounds.

Then, we instantiate the MPC component with a different and yet

very simple protocol which will allow the verifier to open a bigger

number of views (or, equivalently, to query the oracles at a larger

number of points).

3.1 MPC Model
Here we describe the MPC model that can be used to implement

our general interactive proof system. This model can in turn be

instantiated with MPC protocols with different security properties,

leading to systems with different soundness, communication and

computational complexity.

First we recall the following basic definition.

Definition 3.1 (Correctness, privacy and robustness [28]). Let Π𝑓

be an MPC protocol for a functionality 𝑓 .

- We say that the protocol Π𝑓 realizes 𝑓 with perfect (resp.

statistical) correctness if for all inputs 𝑥 , the probability
that the output of some party is different from 𝑓 (𝑥) is 0
(resp. negligible in _), where the probability is over the

random inputs of each party.

- Let 1 ≤ 𝑡 < 𝑛, the protocol Π𝑓 has 𝑡-privacy if it is correct

and for all 𝐼 ⊆ [𝑛] such that |𝐼 | ≤ 𝑡 , there exists a PPT algo-

rithm 𝒮 such that the joints views (view𝐼 (𝑥)) of parties in 𝐼
has the same distributions of 𝒮 (𝐼 , 𝑥𝐼 , 𝑓𝐼 (𝑥)). We will talk of

perfect, statistical or computational 𝑡-privacy accordingly.

- Let 0 ≤ 𝑟 < 𝑛, the protocol Π𝑓 has perfect (resp. statistical)

𝑟-robustness if it is correct and for all 𝐼 ⊆ [𝑛] such that

4
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|𝐼 | ≤ 𝑟 , even assuming that all the parties in 𝐼 have been

adaptively corrupted, if there does not exists any random

input such that 𝑓 (𝑥) = 1, the probability that Π𝑓 outputs 1

and the views of honest parties are consistent is zero (resp.

negligible in _).

We now describe our MPC model.

Definition 3.2 (Client-server 𝜌-phase protocol). Let Π𝑓 be an MPC

protocol for a functionality 𝑓 . We say that Π𝑓 is in the client-server
model if its parties can be divided into a distinguished “input (or

sender) client” 𝑃𝑆 , 𝑛 “computation servers” 𝑃1, . . . , 𝑃𝑛 , and (option-

ally) a distinguished “output (or receiver) client” 𝑃𝑅 . Additionally,

𝑃𝑆 receives the entire input 𝑥 and only sends at most one message

to each of the computation servers at the beginning of each phase,
1

and 𝑃𝑅 only receives a single message from each of the servers at

the end of the protocol. The servers can only communicate with

each other via a broadcast.

We then say that Π𝑓 is a client-server 𝜌-phase protocol if the
computation of the 𝑛 servers can be divided into 𝜌 consecutive

phases each separated by the sampling of a public random string

via a call to RandomCoin from all the servers.

The following three stages summarise the execution of a client-

server 𝜌-phase protocol.

(1) In the first phase, the servers receive the input message

m1 from 𝑃𝑆 and start their local computation of the circuit.

More precisely, m1 is a vector of messages, where each

server gets one entry of the vector.

(2) For each phase 𝑗 ∈ [2, 𝜌 − 1]:
(a) The servers call RandomCoin and obtain a public ran-

dom string 𝑅 𝑗−1, along with at most a single message

m𝑗 from 𝑃𝑆 . Again, each party 𝑃𝑖 only receives (⟨m𝑗 ⟩)𝑖 ,
for 𝑖 ∈ [𝑛].

(b) The servers use the random string (andm𝑗 ) to continue

their local computation.

(3) In phase 𝜌 , the servers obtain a public random string 𝑅𝜌
and each sends a single message to the receiver client 𝑃𝑅 .

In our model we consider a threshold (𝑃𝑐 , 𝑡𝑠 )-adversary which

corrupts at most one client 𝑃𝑐 , up to 𝑡𝑠 servers, or both. In particular,

we extend Definition 3.1 as follows.

Definition 3.3. We say that a protocolΠ𝑓 realizes 𝑓 with (𝑃𝑐 , 𝑡𝑠,𝑝 )-
privacy (resp. (𝑃𝑐 , 𝑡𝑠,𝑟 )-robustness) if the properties in Definition 3.1
hold with respect to a semi-honest (resp. adaptive malicious) adver-

sary 𝒜 that corrupts all the parties in 𝐼 = {𝑃𝑐 } × 𝐼𝑠 ⊂ {𝑃𝑆 , 𝑃𝑅} ×
{𝑃𝑖 }𝑖∈[𝑛] , such that |{𝑃𝑐 }| ≤ 1 and |𝐼𝑠 | ≤ 𝑡𝑠,𝑝 (resp. 𝑡𝑠,𝑟 ).

Note that this definition allows (∅, 𝑡𝑠 )-adversaries that only cor-

rupt server parties.

3.2 Interactive Proof System - General
Description

Given an MPC protocol Π𝑓 as described in Definition 3.2, we

show a 𝜌-round interactive protocol, Π𝜌−ZKIOP (Figure 1), verifying
the properties in Definition 2.4.

1
Ligero allows only one message from 𝑃𝑆 to the servers in the entire computation, i.e.

it cannot send another message even after the public coin sampling that takes place

between the two phases.

Protocol Π𝜌−ZKIOP
Let Π𝑓 a 𝜌-phase MPC protocol in the client/server model. Common

Input: A statement 𝑥 and a circuit description 𝐶𝑓 that realizes the

relation ℛ.

Private Input: 𝒫 holds the witness 𝑤 such that ℛ(𝑥, 𝑤) = 1

First Oracle 𝜋1. 𝒫 runs the MPC protocol Π𝑓 in its head: it samples

a random 𝑟𝑆 , {𝑟𝑖 }𝑖∈[𝑛] ∈ {0, 1}∗ ∪ ∅ and invoke the sender client 𝑃𝑆

on input (𝑥, 𝑤; 𝑟𝑆 ) . and the servers on random input 𝑟𝑖 . The prover

computes the views (view1

1
, . . . , view1

𝑛) of the servers in phase 1.

It sets the oracle 𝜋1 = (view1

1
, . . . , view1

𝑛)
Interactive protocol.

- For 𝑗 ∈ [2, 𝜌 ]:
- 𝒱 picks a random challenge 𝑅 𝑗−1 and sends to 𝒫
- 𝒫 continues to run the protocol in its head.

It invokes the sender client and the servers on input

𝑅 𝑗−1 obtained in the previous step and produces views

(view𝑗

1
, . . . , view𝑗

𝑛) . It sets the oracle 𝜋 𝑗 (𝑅 𝑗−1) = (view𝑗

1
,

. . . , view𝑗
𝑛) .

- 𝒱 picks a random challenge 𝑅𝜌 and sends to 𝒫 .

- 𝒫 computes and sends view𝑅 of the receiver client

- 𝒱 rejects if 𝑃𝑅 outputs𝐶𝑓 = 0; if not, 𝒱 asks to open a subset

of server views. More precisely 𝒱 picks random subsets𝑉𝑗 ⊂
[𝑛], 𝑗 ∈ [𝜌 ], such that | ∪𝑗 𝑉 | ≤ 𝑡𝑠,𝑝 .

- 𝒫 open the views in ∪𝑗𝑉𝑗

- Final verification: 𝒱 aborts if the views in𝑉𝑗 are inconsistent

with each other and/or with view𝑅 , otherwise it accepts.

Figure 1: General description of the 𝜌-round IOP

Let ℒ(ℛ) be an NP-language with relationℛ, and let 𝑓𝑥 (𝑤) =
ℛ(𝑥,𝑤). Our 𝜌-round systems starts with the prover 𝒫 emulating

a 𝜌-round MPC protocol Π𝑓 (meeting Definition 3.2 ) that real-

izes the functionality 𝑓 . As done in Ligero, we further restrict the

MPC model and assume that the servers 𝑃𝑖 never communicate

with each other. The first round of Π𝜌−ZKIOP provides to an or-

acle 𝒪 the string 𝜋1 = (view1

1
, . . . , view1

𝑛) , corresponding to the

views of the 𝑛 servers at the end of the first round. After this, we

have the interactive steps, which exactly correspond to the rounds

[2, 𝜌] of the underlying MPC protocol, with the randomness ob-

tained by the RandomCoin functionality being replaced by the veri-

fier’s challenges 𝑅1, . . . , 𝑅𝜌 . We can pictorially represent the oracles

𝜋1, . . . , 𝜋𝜌 as a 𝜌 ×𝑛 matrix𝑄 , where the rows are𝑄 𝑗 = 𝜋 𝑗 , 𝑗 ∈ [𝜌],
and the columns,𝑄𝑖 , 𝑖 ∈ [𝑛], correspond to the “global” view of the

parties, i.e. 𝑄𝑖 = {view1

𝑖
, . . . , view𝜌

𝑖
}, for 𝑖 ∈ [𝑛].

Note that if we instantiate Π𝜌−ZKIOP with 𝜌 = 1, we obtain the

system described in [2], which only allows one single message from

𝑃𝑆 to the servers 𝑃𝑖 , 𝑖 ∈ [𝑛].

Restricting the model. We now specialize the MPC model Π𝑓

used in Π𝜌−ZKIOP with a protocol achieving (𝑃𝑅, 𝑛 − 1)-privacy
in the semi-honest model and (𝑃𝑆 , 0)-robustness in the malicious

model. In particular, this latter properties means that the MPC

protocol does not allow any collusion between a malicious client

sender and servers.

Moreover, we restrict𝒱 ’s queries (and hence also our IOP system)

to the columns of the matrix 𝑄 , assuming that the verifier only

opens up to 𝑛 − 1 of these “global” views.
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If we now consider the security of our construction, it is very

important to distinguish between the randomness used to ensure

privacy and that used for robustness. The former is generated by 𝒫
when it samples the randomness for the MPC parties. The latter is

given by 𝒱 and the crucial point is that each string generated in the

middle of the protocol must be unpredictable for 𝒫 during previous

phases. Intuitively, the prover 𝒫 can cheat either by “corrupting

𝑃𝑆 ” and computing the m𝑗 messages wrongly, or by “corrupting”

one or more of the servers 𝑃𝑖 , 𝑖 ∈ [𝑛], and computing their message

to 𝑃𝑅 wrongly.

More formally, we obtain the following result.

Theorem 3.4. Let 𝑥 be a public statement and 𝑤 an additional
input, let 𝑓 be the functionality for 𝑃𝑆 , 𝑃1, . . . , 𝑃𝑛 and 𝑃𝑅 that outputs
ℛ(𝑥,𝑤) to 𝑃𝑅 . Let Π𝑓 be a 𝜌-phase MPC protocol in the client/server
model that correctly realizes 𝑓 with (𝑃𝑅, (𝑛 − 1))-privacy in the semi-
honest model and (𝑃𝑆 , 0)-robustness (in the malicious model) with
robustness error 𝛿 . The protocol Π𝜌−ZKIOP described in Fig. 1 is a
ZKIOP for NP relation ℛ, with soundness error

𝜖 =
1

𝑛
+ 𝛿

(
1 − 1

𝑛

)
.

Proof: (Completeness) As Π𝑓 correctly realizes 𝑓 which outputs

ℛ(𝑥,𝑤) to 𝑃𝑅 , every honestly computed proof for valid pair (𝑥,𝑤)
will cause 𝒱 to output accept.

(Honest verifier zero-knowledge) An honest verifier 𝒱 will always

choose the random challenges 𝑅𝜌 according to the correct distribu-

tion thus emulating the calls to the functionality RandomCoin per-

fectly. Zero-knowledge of the proof then follows from the (𝑃𝑅, 𝑛−1)-
privacy of Π𝑓 .

(Soundness) Let 𝒫∗ be a malicious prover attempting to convince

𝒱 of a false statement 𝑥∗. Considering that the output of 𝒫∗ is
exactly the views of the server parties {𝑃𝑖 } and of the receiver client
𝑃𝑅 , we study the cheating strategies of 𝒫∗ in terms of corruption

strategies against the MPC protocol. As 𝑃𝑅 never communicates

with the other parties, it cannot be corrupted against robustness.

Furthermore, as we assume that 𝑛 − 1 server views are seen by

the verifier, in addition to the view of 𝑃𝑅 , the malicious prover can

corrupt at most 1 server, i.e. cheat on the messages it sends to 𝑃𝑅 ,

while retaining a non-zero chance of convincing 𝒱 . Therefore the
possible strategies for 𝑃𝑆 are to corrupt 𝑃𝑆 , at most one server 𝑃𝑖 ,

or both.

If𝒫∗ does not corrupt 𝑃𝑆 , then the correctness of Π𝑓 implies that

the outputs of an honest execution will cause 𝑃𝑅 , and therefore𝒱 , to
reject. In this case, if 𝒫∗ corrupts one of the servers, then it breaks

the (∅, 0)-robustness of Π𝑓 (implied by its (𝑃𝑆 , 0)-robustness), and
can cause 𝑃𝑅 to accept with certainty. The success probability of

this strategy is then exactly 1/𝑛.
If 𝒫∗ does corrupt 𝑃𝑆 , then the (𝑃𝑆 , 0)-robustness of Π𝑓 implies

that 𝑃𝑅 will accept with probability 𝛿 over the random outputs

of RandomCoin; if this happens, then no inconsistency between

the servers and the receiver is visible, and 𝒱 accepts the proof.

With probability 1− 𝛿 , 𝑃𝑅 rejects an honest execution and 𝒫∗ must

corrupt one of the servers to break the (𝑃𝑆 , 0)-robustness of Π𝑓

which causes 𝒱 to accept with probability 1/𝑛 as in the previous

strategy. The final success probability here is therefore

𝛿 + (1 − 𝛿) · 1
𝑛
, (1)

which is the best of the two and therefore the maximum cheating

probability for 𝒫∗. Rearranging (1) yields 𝜖 . □
A very common solution to achieve the desired soundness in

zero-knowledge systems, is to run the base protocol a certain num-

ber of times 𝜏 . Obviously, this approach increases the complexity of

the system both computationally and in communication by a mul-

tiplicative factor 𝜏 . In the next section we describe a better strategy

that allows to reach better soundness with less overhead.

3.3 Improving Soundness—More MPC
Evaluations

We improve the soundness of the IOP construction of Figure 1

by having multiple sets of server parties execute the underlying

MPC protocol in parallel. This improvement comes from the ability

to open multiple sets of 𝑛 − 1 views to the verifier, each picked

independently at random thus reducing the limiting 1/𝑛 term of

Theorem 3.4.

By having the public randomness of RandomCoin shared across

the executions, we limit the corruption strategies that are available

against robustness. While independent challenges would possibly

reduce the robustness error further, using identical ones also al-

lows for implementation optimizations and we therefore establish

a theoretical basis for this practice.

Definition 3.5 (𝜏-parallel execution). Let Π𝑓 be a client-server

𝜌-phase MPC protocol for a functionality 𝑓 with 𝑛 server parties.

For an integer 𝜏 , Π𝜏
𝑓
is the 𝜏-fold parallel execution of Π𝑓 as a

client-server 𝜌-phase protocol where there is only one sender 𝑃𝑆 ,

one receiver 𝑃𝑅 , but 𝜏 independent sets of 𝑛 server parties.

The client parties 𝑃𝑆 and 𝑃𝑅 independently run an execution of

Π𝑓 with each set of servers who also do not communicate across

sets, excepted for the calls to RandomCoin which are shared across

the 𝜏 executions; i.e. the 𝜏 · 𝑛 servers receive the same output

from RandomCoin. If the 𝜏 executions output the same result, then

𝑃𝑅 outputs the same; if any one of the executions dissents, 𝑃𝑅 aborts

the protocol.

We first argue that privacy and robustness properties of the

underlying protocol are maintained by the one run in parallel.

Proposition 3.6. If Π𝑓 is (𝑃𝑅, 𝑛 − 1)-private in the semi-honest
model, then Π𝜏

𝑓
is (𝑃𝑅, 𝜏 (𝑛 − 1))-private in the semi-honest model

with the restriction that at most 𝑛 − 1 servers are corrupted for each
of the 𝜏 executions.

Proof: The (𝑃𝑅, 𝑛 − 1)-privacy of Π𝑓 implies the existence of a

simulator 𝒮 which, on input (𝐼 , 𝑥𝐼 , 𝑓𝐼 (𝑥)), produces simulated views

which are indistinguishable from the joint views (view𝐼 (𝑥)) of an
honest execution.

When receiving 𝐼𝜏 from the (𝑃𝑅, 𝜏 (𝑛 − 1))-adversary against pri-

vacy, the simulator 𝒮𝜏
invokes 𝜏 parallel copies of 𝒮 , using identical

randomness for calls to RandomCoin but independent randomness

otherwise. For the simulated view of 𝑃𝑅 , 𝒮𝜏
outputs the concatena-

tion of the views of 𝑃𝑅 produced by the parallel executions of 𝒮 . As
the output of RandomCoin is public, this identical randomness does

not leak private information and 𝒮𝜏
simulates the 𝜏 independent

executions with the same privacy error as 𝒮 . □
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Proposition 3.7. If Π𝑓 is (𝑃𝑆 , 0)-robust in the malicious model
with error 𝛿 , then Π𝜏

𝑓
is (𝑃𝑆 , 0)-robust in the malicious model with

error at most 𝛿 .

Proof: As there does not exist any random input such that 𝑓 (𝑥) = 1

(Definition 3.1), and as the calls to RandomCoin are shared between
the 𝜏 executions, the best strategy for a corrupt sender 𝑃∗

𝑆
is to

deviate from the protocol in the same way across all executions.

If not, the probability that a call to RandomCoin can satisfy two

or more constraints created by a cheating sender can only be less

than or equal to that of satisfying a single one. Therefore Π𝜏
𝑓
is also

(𝑃𝑆 , 0)-robust with error at most 𝛿 . □
We then argue that the IOP construction equivalent to that of

Figure 1 using Π𝜏
𝑓
instead of Π𝑓 is also a ZKIOP with improved

soundness error.

Theorem 3.8. Let 𝑥 be a public statement, and 𝑤 an additional
input, let 𝑓 be the functionality for 𝑃𝑆 , 𝑃1, . . . , 𝑃𝑛, 𝑃𝑅 that outputs
ℛ(𝑥,𝑤) to 𝑃𝑅 . Let Π𝑓 be a 𝜌-phase MPC protocol in the client-server
model that correctly realizes 𝑓 with (𝑃𝑅, (𝑛 − 1))-privacy in the semi-
honest model and (𝑃𝑆 , 0)-robustness in the malicious model with
robustness error 𝛿 .

With Π𝜏
𝑓
constructed from Π𝑓 as in Definition 3.5, the protocol

Π𝜌−ZKIOP as described in Figure 1 using Π𝜏
𝑓
is a ZKIOP forℛ with

soundness error

𝜖 =
1

𝑛𝜏
+ 𝛿

(
1 − 1

𝑛𝜏

)
.

Proof: (Completeness) This follows from the completeness of Π𝑓

and the construction of Π𝜏
𝑓
.

(Honest verifier zero-knowledge) This follows from the (𝑃𝑅, 𝜏 (𝑛 −
1))-privacy of Π𝜏

𝑓
given by Proposition 3.6.

(Soundness) The same strategy for a malicious prover 𝒫∗ applies
as for the first protocol: by first corrupting only 𝑃𝑆 , it has a prob-

ability of at most 𝛿 of causing Π𝜏
𝑓
to output accept; if this fails,

it can then corrupt at most one server for each of the 𝜏 indepen-

dent executions to make 𝑃𝑅 accept, this is not detected by 𝒱 with

probability 1/𝑛𝜏 . □

4 MULTIPLICATIONS CHECK
In this section we describe an efficient MPC protocol in the client-

server model for checking multiplication triples. This protocol is

an adaptation of previous protocols described in [15, 16, 27], and

constitutes one of the main building block of our MPC component.

More concretely, the goal is for the server parties to verify the

correctness of 𝑚 multiplication tuples {𝑥ℓ , 𝑦ℓ , 𝑧ℓ }ℓ∈[𝑚] given by

the sender client; i.e. that 𝑥ℓ · 𝑦ℓ = 𝑧ℓ , for each ℓ ∈ [𝑚]. We de-

scribe two different MPC checking protocols; the first, ΠMultCheck,

presents how to check multiplications using inner-products, the

second, ΠCompressedMC extends this idea by repeating several com-

pression rounds to reduce the communication between the servers

and the recipient. While we do not prove the MPC security of these

protocols, we present several properties which we will use in the

next section.

Protocol ΠMultCheck

We consider an extension field G ⊇ F. We assume access to a random

coin functionality, RandomCoin.

Phase 1 𝑃𝑆 sends the shares ⟨𝑥ℓ ⟩𝑖 , ⟨𝑦ℓ ⟩𝑖 , ⟨𝑧ℓ ⟩𝑖 for ℓ ∈ [𝑚], and the

shares ⟨a⟩𝑖 , ⟨b⟩𝑖 , ⟨𝑐 ⟩𝑖 of a random inner-product tuple to each

server 𝑃𝑖 .

Sampling The parties call RandomCoin to obtain 𝑅 ∈ G and 𝑠 ∈ G.
Phase 2 The servers parties proceed as follows:

(1) Lift { ⟨𝑥ℓ ⟩, ⟨𝑦ℓ ⟩, ⟨𝑧ℓ ⟩ }ℓ∈[𝑚] to G.
(2) Set

⟨x⟩ = ( ⟨𝑥1 ⟩, 𝑅 · ⟨𝑥2 ⟩, . . . , 𝑅𝑚−1 · ⟨𝑥𝑚 ⟩) ,
⟨y⟩ = ( ⟨𝑦1 ⟩, ⟨𝑦2 ⟩, . . . , ⟨𝑦𝑚 ⟩)
⟨𝑧 ⟩ = ∑

ℓ∈[𝑚] 𝑅
ℓ−1 · ⟨𝑧ℓ ⟩

(3) Compute ⟨𝝈 ⟩ = 𝑠 · ⟨x⟩ − ⟨a⟩ and ⟨𝝆 ⟩ = ⟨y⟩ − ⟨b⟩.
(4) Open ⟨𝝈 ⟩ and ⟨𝝆 ⟩ using a broadcast channel.
(5) Compute ⟨𝑣⟩ = 𝑠 · ⟨𝑧 ⟩ − ⟨𝑐 ⟩ − ⟨b⟩ ∗ 𝝈 − ⟨a⟩ ∗ 𝝆 − 𝝆 ∗ 𝝈 .
(6) Send ⟨𝑣⟩ to 𝑃𝑅 .

The receiver party 𝑃𝑅 accepts if 𝑣 = 0 and rejects if not.

Figure 2: Protocol ΠMultCheck

4.1 First Multiplication Check Protocol
The first protocol, presented in Figure 2, checks the correctness

of𝑚 secret-shared multuplication tuples by testing the correctness

of a single secret-shared inner product tuple of size𝑚.

It proceeds in two steps: first, given {⟨x𝑖 ⟩, ⟨y𝑖 ⟩, ⟨z𝑖 ⟩}𝑖∈[𝑚] , the
parties call a random coin functionality, RandomCoin, to obtain

a random value 𝑅 in an extension field G of F. Using 𝑅, the par-

ties construct the inner-product tuple ⟨x⟩ ∈ G𝑚 , ⟨y⟩ ∈ G𝑚 , and

⟨𝑐⟩ ∈ G, such that x ∗ y = 𝑧. In the second step, parties test the

correctness of this tuple using an auxiliary random inner-product

tuple (⟨a⟩, ⟨b⟩, ⟨𝑐⟩) and a random field element 𝑠 ∈ G.
The idea here is that both steps will maintain the “incorrectness”,

if any, of the input tuples with high probability.

We note that the parties make use of a broadcast channel in the

second phase, which does not respect our restriction to servers

which communicate only with 𝑃𝑅 in Phase 𝜌 of the protocol. This

broadcast channel will not be required by the next protocol.

Lemma 4.1. If at least one multiplication triple is incorrect, the re-
sulting inner-product tuple obtained in Step 2. of protocol ΠMultCheck
is correct with probability 𝑚−1

|G | .

Proof: We show that if at least one triple is incorrect then ⟨x⟩, ⟨y⟩, ⟨𝑧⟩
is an incorrect inner-product tuple except with probability

𝑚−1
|G | . We

construct three polynomials 𝐹 (𝑡) = 𝑥1 ·𝑦1 + 𝑡 · 𝑥2 ·𝑦2 + · · · + 𝑡𝑚−1 ·
𝑥𝑚 ·𝑦𝑚 ,𝐺 (𝑡) = 𝑧1 + 𝑡 · 𝑧2 + · · · + 𝑡𝑚−1 · 𝑧𝑚 and 𝐻 (𝑡) = 𝐹 (𝑡) −𝐺 (𝑡).
If there was at least one incorrect tuple, then 𝐹 (·) ≠ 𝐺 (·) and, since
𝐻 (𝑡) is a non-zero polynomial of degree𝑚 − 1, there are at most

𝑚 − 1 values 𝑅 such that 𝐻 (𝑅) = 0. Therefore, since 𝑅 is sampled

uniformly at random inG, the probability that incorrect triples lead

to a correct inner-product tuple is
𝑚−1
|G | . □

Lemma 4.2. If at least one of the two inner-product tuples (x, y, 𝑧)
and (a, b, 𝑐) is incorrect, the probability that the check passes is 2/|G|.

Proof: First we show that if the two inner product tuples ⟨x⟩, ⟨y⟩, ⟨𝑧⟩
and ⟨a⟩, ⟨b⟩, ⟨𝑐⟩ are correct, then the sacrifice will pass:

𝑣 = 𝑠 · 𝑧 − 𝑐 − b ∗ 𝝈 − a ∗ 𝝆 − 𝝆 ∗ 𝝈
7
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= 𝑠 · 𝑧 − 𝑐 −
∑︁

𝑖∈[𝑚]
𝑏𝑖 · (𝑅𝑖𝑥𝑖 − 𝑎𝑖 ) −

∑︁
𝑖∈[𝑚]

𝑎𝑖 · (𝑦𝑖 − 𝑏𝑖 )

−
∑︁

𝑖∈[𝑚]
(𝑅𝑖𝑥𝑖 − 𝑎𝑖 ) · (𝑦𝑖 − 𝑏𝑖 )

= 𝑠 · 𝑧 − 𝑐 − 𝑠 ·
∑︁

𝑖∈[𝑚]
𝑅𝑖−1𝑥𝑖 · 𝑦𝑖 +

∑︁
𝑖∈[𝑚]

𝑎𝑖 · 𝑏𝑖 = 0

We compute now the probability that incorrect tuples pass the

sacrifice. Let Δ𝑧 = 𝑧 − x ∗ y and Δ𝑐 = 𝑐 − a ∗ b we have :

𝑣 = 𝑠 · 𝑧 − 𝑐 − b ∗ 𝝈 − a ∗ 𝝆 − 𝝆 ∗ 𝝈
= 𝑠 · (x ∗ y + Δ𝑧) − (a ∗ b + Δ𝑐 ) − b ∗ 𝝈 − a ∗ 𝝆 − 𝝆 ∗ 𝝈
= 𝑠 · Δ𝑧 − Δ𝑐

The check will pass if the condition 𝑠 · Δ𝑧 − Δ𝑐 = 0 holds. If Δ𝑧 =

0, then the condition is verified if Δ𝑐 = 0 which contradicts the

assumption; if Δ𝑧 ≠ 0 and Δ𝑐 = 0, the condition is verified if and

only is 𝑠 = 0 which happens with probability 1/|G|; finally, if both
Δ𝑧 ≠ 0 and Δ𝑐 ≠ 0 the condition holds iff 𝑠 = Δ𝑐/Δ𝑧 that happens
with probability 1/|G|. Combining the cases we conclude proof. □

Combining the two previous lemma we obtain.

Proposition 4.3. We have that if at least one of the 𝑚 triples
{(⟨𝑥𝑖 ⟩, ⟨𝑦𝑖 ⟩, ⟨𝑧𝑖 ⟩)}𝑖∈[𝑚] is incorrect, the probability that the protocol
ΠMultCheck outputs accept is 𝑚−1

|G | + (1 −
𝑚−1
|G | ) ·

2

|G | .

4.2 Second Multiplication Check Protocol
Here we describe a more efficient protocol which allows to com-

press the size of the inner-product to be tested in order to reduce

the communication complexity at the expense of (potentially) more

interactions.

The protocol ΠCompressedMC, described in Figure 3, uses two

core subroutines, ΠCompress and ΠCompressRand given in Figure 4,

which compress a set of 𝑘 inner-product tuples down to only one

(of the same dimension) in such a way that, with high probability,

the output tuple is incorrect if one of the inputs is.

The difference between the two subroutines is that the second

introduces randomness in such a way that the compressed tuple can

be opened without leaking information about the input tuples. This

also enables the protocol to dispense with the broadcast channel

used in ΠMultCheck.

The protocol assumes access to a RandomCoin functionality and

to two untrusted subroutines ΠInnerProd and ΠRand, which we don’t

instantiate. On input of two vectors ⟨a⟩ and ⟨b⟩,ΠInnerProd outputs a

possibly incorrect ⟨𝑐⟩, with a ∗ b = 𝑐 . When queried by the servers,

ΠRand outputs a possibly biased random value. At a high level,

ΠCompressedMC proceeds as follows. The first step is similar to the

first step in ΠMultCheck, where parties produce the inner-product

tuple (⟨x⟩, ⟨y⟩, ⟨𝑧⟩) of dimension𝑚. To reduce the dimension of

this tuple, parties divide the vectors ⟨x⟩ and ⟨y⟩ into 𝑘 smaller

vectors of dimension ℓ and perform ΠCompress. In this way parties

obtain a single inner-product tuple, but this time of dimension

ℓ =𝑚/𝑘 , for any divisor 𝑘 of𝑚. This step can then be repeated with

identical or different values of 𝑘 until a final inner-product tuple

(potentially of dimension 1) needs to be checked. (For identical

Compressed multiplication check, ΠCompressedMC

We consider an extension field G ⊇ F. We assume access to a random

coin functionality, RandomCoin.

Phase 1 𝑃𝑆 sends the shares ⟨𝑥ℓ ⟩𝑖 , ⟨𝑦ℓ ⟩𝑖 , ⟨𝑧ℓ ⟩𝑖 in F to each server 𝑃𝑖

for ℓ ∈ [𝑚].
Sampling The parties call RandomCoin to obtain 𝑅 ∈ G.
Phase 2 The server parties proceed as follows:

(1) Lift { ⟨𝑥ℓ ⟩, ⟨𝑦ℓ ⟩, ⟨𝑧ℓ ⟩ }ℓ∈[𝑚] to G.
(2) Set

⟨x0 ⟩ = ( ⟨𝑥1 ⟩, 𝑅 · ⟨𝑥2 ⟩, . . . , 𝑅𝑚−1 · ⟨𝑥𝑚 ⟩) ,
⟨y0 ⟩ = ( ⟨𝑦1 ⟩, ⟨𝑦2 ⟩, . . . , ⟨𝑦𝑚 ⟩)
⟨𝑧0 ⟩ = ∑

ℓ∈[𝑚] 𝑅
ℓ−1 · ⟨𝑧ℓ ⟩

For each compression round 𝑗 ∈ [ ⌊log𝑘 (𝑚) ⌋ ]:
Phase 2 + ( 𝑗 − 1) The server parties proceed as follows:

(1) Parse ⟨x𝑗−1 ⟩ and ⟨y𝑗−1 ⟩ as

⟨x𝑗−1 ⟩ = ( ⟨a𝑗
1
⟩, . . . , ⟨a𝑗

𝑘
⟩),

⟨y𝑗−1 ⟩ = ( ⟨b𝑗
1
⟩, . . . , ⟨b𝑗

𝑘
⟩), a𝑗𝑢 , b

𝑗
𝑢 ∈ G𝑚/𝑘

𝑗
.

(2) Call ΠInnerProd ( ⟨a𝑗𝑢 ⟩, ⟨b
𝑗
𝑢 ⟩) to obtain ⟨𝑐

𝑗
𝑢 ⟩, for𝑢 ∈ [𝑘−1].

(3) Set ⟨𝑐 𝑗
𝑘
⟩ = ⟨𝑧 𝑗−1 ⟩ −∑

𝑢∈[𝑘−1] ⟨𝑐
𝑗
𝑢𝑠 ⟩.

(4) If 𝑗 ≠ ⌊log𝑘 𝑚⌋, begin ΠCompress on ( ⟨a𝑗
𝑖
⟩, ⟨b𝑗

𝑖
⟩,

⟨𝑐 𝑗
𝑖
⟩)𝑖∈[𝑘 ] ; if 𝑗 = ⌊log𝑘 𝑚⌋, begin ΠCompressRand instead.

Sampling Within ΠCompress or ΠCompressRand.

Phase 2 + 𝑗 Complete ΠCompress or ΠCompressRand to obtain

( ⟨x𝑗 ⟩, ⟨y𝑗 ⟩, ⟨𝑧 𝑗 ⟩) of dimension𝑚/𝑘 𝑗
.

After the last compression round:

Phase 2 + ⌊log𝑘 (𝑚) ⌋ cont. Servers open the last tuple to 𝑃𝑅 which

outputs either accept if it is correct, or abort if not.

Figure 3: Compressed multiplication check

Sub-protocols ΠCompress and ΠCompressRand

ΠCompressRand is identical to ΠCompress except where highlighted below.

Input: 𝑘 inner-product tuples ( ⟨x𝑖 ⟩, ⟨y𝑖 ⟩, ⟨𝑧𝑖 ⟩)𝑖∈[𝑘 ] , of dimension ℓ .

(1) Define two dimension-ℓ vectors of degree-(𝑘 − 1) polynomials

⟨f ( ·) ⟩, ⟨g( ·) ⟩ such that:

f (𝑢) =
©«
𝑓1 (𝑢)
.
.
.

𝑓ℓ (𝑢)

ª®®®¬ = x𝑢 , g(𝑢) =
©«
𝑔1 (𝑢)

.

.

.

𝑔ℓ (𝑢)

ª®®®¬ = y𝑢 , ∀𝑢 ∈ [𝑘 ] .

In ΠCompressRand, for 𝑗 ∈ [ℓ ], the 𝑓𝑗 and 𝑔𝑗 polynomials are of

degree 𝑘 and are defined by the additional points ⟨𝑓𝑗 (𝑘 + 1) ⟩ =
⟨𝑣𝑗 ⟩ and ⟨𝑔𝑗 (𝑘 + 1) ⟩ = ⟨𝑤𝑗 ⟩ where the shares of 𝑣𝑗 and 𝑤𝑗

are given by ΠRand.

(2) Define the polynomial ℎ ( ·) of degree 2(𝑘 − 1) such that:

⟨ℎ (𝑢) ⟩ = ⟨𝑧𝑢 ⟩, ∀𝑢 ∈ [𝑘 ],
⟨ℎ (𝑢) ⟩ = ΠInnerProd ( ⟨f (𝑢) ⟩, ⟨g(𝑢) ⟩), ∀𝑖 ∈ [𝑘 + 1, 2𝑘 − 1] .

In ΠCompressRand, ℎ is of degree 2𝑘 and is defined by the two

additional points ⟨ℎ (2𝑘) ⟩ and ⟨ℎ (2𝑘 + 1) ⟩ defined as the other

points ⟨ℎ (𝑖) ⟩ for 𝑖 ∈ [𝑘 + 1, 2𝑘 − 1].
Sampling Call RandomCoin to obtain 𝑠 ∈ G \ [𝑘 ],

(3) Compute ⟨f (𝑠) ⟩, ⟨g(𝑠) ⟩, ⟨ℎ (𝑠) ⟩.
Output: One tuple ( ⟨f (𝑠) ⟩, ⟨g(𝑠) ⟩, ⟨ℎ (𝑠) ⟩) of dimension ℓ .

Figure 4: Compressing inner products

values of 𝑘 , these steps need to be repeated log𝑘𝑚 times to check a

single multiplication triple at the end).
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Limbo: Efficient Zero-knowledge MPCitH-based Arguments

Lemma 4.4. If one of the 𝑘 input inner-product tuples is incor-
rect, or if any of the the ℎ(𝑢) values is incorrectly computed by
ΠInnerProd, then the inner-product tuple output by ΠCompress, resp.
ΠCompressRand, is also incorrect, except with probability

2(𝑘 − 1)
|G| − 𝑘 , resp.

2𝑘

|G| − 𝑘 .

Proof: Suppose that one of the 𝑘 inner-product tuples (⟨x𝑖 ⟩, ⟨y𝑖 ⟩,
⟨𝑧𝑖 ⟩)𝑖∈[𝑘 ] is incorrect, i.e. there exists 𝑖 ∈ [𝑘] such that 𝑧𝑖 ≠ x𝑖 ∗ y𝑖 .
For this 𝑖 , it then holds that ℎ(𝑖) ≠ f (𝑖) ∗ g(𝑖) and hence that

ℎ(·) ≠ f (·) ∗ g(·). (This holds even if one or more of the 𝑘 − 1, resp.
𝑘 + 1, computed evaluation points of ℎ(·) is maliciously altered in

an effort to correct for the incorrect tuple.) By the Schwartz–Zippel

lemma, the probability that the output tuple is correct, i.e. that

ℎ(𝑠) = f (𝑠) ∗ g(𝑠) for a randomly sampled 𝑠 ∈ G \ [𝑘], is bounded
above by

degℎ ( ·)
|G\[𝑘 ] | =

2(𝑘−1)
|G |−𝑘 , resp.

2𝑘
|G |−𝑘 . □

Proposition 4.5. If at least one of the𝑚 multiplication triples
{(⟨𝑥𝑖 ⟩, ⟨𝑦𝑖 ⟩, ⟨𝑧𝑖 ⟩)}𝑖∈[𝑚] is incorrect, the probability that protocol
ΠCompressedMC outputs accept is

𝑚 − 1
|G| +

(
1 − 𝑚 − 1

|G|

)
·
(

2𝑘

|G| − 𝑘 · (1 − 𝐵)
⌊log𝑘 (𝑚) ⌋−1

)
+

(
1 − 𝑚 − 1

|G|

)
· ©«𝐵 ·

⌊log𝑘 (𝑚) ⌋−2∑︁
𝑖=0

(1 − 𝐵)𝑖ª®¬
where 𝑘 is the compression parameter and 𝐵 =

2(𝑘−1)
|G |−𝑘

Proof: We express the probability that the inner-product tuples

are randomly “corrected” by the public coins at some point in the

protocol (after which the protocol always outputs accept). Denote
by A the event that “ΠCompressedMC outputs accept when at least

one of the𝑚 triples is incorrect.”

First, denote by A1 the event that the tuple (⟨x0⟩, ⟨y0⟩, ⟨𝑧0⟩)
produced at step 2 of ΠCompressedMC is correct after randomizing

by 𝑅; Lemma 4.1 implies that Pr[A1] = 𝑚−1
|G | . We then have that

Pr[A] = Pr[A1] + Pr[¬A1] · Pr[A | ¬A1]

=
𝑚 − 1
|G| +

(
1 − 𝑚 − 1

|G|

)
· Pr[A | ¬A1] .

Next, denote by A𝑗

2
the event that the tuple output by ΠCompress

or ΠCompressRand in the 𝑗-th compression round is correct after

the random sampling of 𝑠; we note that A0

2
is the same event as

A1. Lemma 4.4 implies that, for 𝑗 = 1, . . . , ⌊log𝑘 (𝑚)⌋ − 1, Pr[A
𝑗

2
] =

2(𝑘−1)
|G |−𝑘 , and that, for 𝑗 = ⌊log𝑘 (𝑚)⌋, Pr[A

𝑗

2
] = 2𝑘

|G |−𝑘 . For 𝑗 =

0, . . . , ⌊log𝑘 (𝑚)⌋ − 2, we then have that

Pr[A | ¬A𝑗

2
] = Pr[A𝑗+1

2
] + Pr[¬A𝑗+1

2
] · Pr[A | ¬A𝑗+1

2
]

=
2(𝑘 − 1)
|G| − 𝑘 +

(
1 − 2(𝑘 − 1)
|G| − 𝑘

)
· Pr[A | ¬A𝑗+1

2
],

and for 𝑗 = ⌊log𝑘 (𝑚)⌋ − 1:

Pr[A | ¬A𝑗

2
] = 2𝑘

|G| − 𝑘 +
(
1 − 2𝑘

|G| − 𝑘

)
· Pr[A | ¬A𝑗+1

2
] .

Finally, if the last compression round using ΠCompressRand does

not correct the tuple, then 𝑃𝑅 will cause ΠCompressedMC to output

reject. This implies that Pr[A | ¬A ⌊log𝑘 (𝑚) ⌋
2

] = 0.

Putting everything together, the protocol outputs accept with
probability at most

Pr[A] =𝑚 − 1|G | +
(
1 − 𝑚 − 1

|G |

)
·(

2𝑘

|G | − 2 ·
(
1 − 2(𝑘 − 1)
|G | − 𝑘

) ⌊log𝑘 (𝑚)⌋−1
+ 2(𝑘 − 1)
|G | − 𝑘

⌊log𝑘 (𝑚)⌋−2∑︁
𝑖=0

·
(
1 − 2(𝑘 − 1)
|G | − 𝑘

)𝑖 )
□

5 OUR ZERO-KNOWLEDGE ARGUMENT FOR
ARITHMETIC AND BOOLEAN CIRCUITS

We describe now our ZK system for circuit satisfiability based

on the MPCitH paradigm. We combine a concrete MPC protocol

which verifies all the properties defined in Definition 3.2 and the

general 𝜌-phase ZK interactive oracle protocol Π𝜌−ZKIOP defined

in Section 3.2. Given an NP relation ℛ, we consider a circuit 𝐶

over a finite field F such that 𝐶 (𝑤) = 1 if and only if (𝑥,𝑤) ∈ ℛ.

Without loss of generality we assume that 𝐶 only contains linear

and multiplication gates.

Our MPC instantiation. Concretely, our MPC protocol Π𝑓 can be

divided in two phases. First, we have an input and evaluation phase

where the sender client 𝑃𝑆 generates and distributes to the servers

𝑃𝑖 , 𝑖 ∈ [𝑛], an additive sharing of the input and sharings of the

output of each multiplication gate in the circuit. Given those, the

servers locally evaluate the circuit. In the second phase, parties

run the protocol ΠCompressedMC described in the previous section

where 𝑃𝑆 further plays the role of ΠInnerProd and ΠRand.

Looking ahead, the protocol Π𝑓 , and therefore the MPCitH pro-

tocol based on it, will depend on several parameters: the size of the

circuit𝐶 ,𝑚, i.e. the number of multiplication gates, the number 𝑛 of

servers parties in Π𝑓 , the size of the fields F andG, with |G| > 𝑚−1,
and the compression parameter 𝑘 used in ΠCompressedMC.

Proposition 5.1. The Π𝑓 protocol derived from ΠCompressedMC
is correct, (𝑃𝑅, 𝑛 − 1)-private, (𝑃𝑆 , 0)-robust with robustness error

𝛿𝑘 =
𝑚 − 1
|G| +

(
1 − 𝑚 − 1

|G|

)
·(

2𝑘

|G| − 2 ·
(
1 − 2(𝑘 − 1)
|G| − 𝑘

) ⌊log𝑘 (𝑚) ⌋−1
+ 2(𝑘 − 1)
|G| − 𝑘

⌊log𝑘 (𝑚) ⌋−2∑︁
𝑖=0

·
(
1 − 2(𝑘 − 1)
|G| − 𝑘

)𝑖 )
,

and a client-server 𝜌-phase protocol, with 𝜌 = ⌊log𝑘 (𝑚)⌋.

Proof sketch: (Privacy) When given the set 𝐼 of opened servers,

𝒮 first simulates the calls to RandomCoin to obtain the public ran-

domness used by the protocol and then generates random shares

for all the sharings that 𝑃𝑆 provides to the servers. Finally, it edits

the communication of the last hidden party with 𝑃𝑅 so that the

circuit appears to output 1 and the final checking tuple appears

9
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ΠInt_ZKP—Part 1
Inputs: Public circuit𝐶 over F with𝑚 MULT gates. Extension field G. Public input 𝑥 . Private input 𝑤 for 𝒫 .

Outputs: Public proof oracles (𝜋1, . . . , 𝜋𝜌 ) from 𝒫 . Private output 𝑏 ∈ {0, 1} from 𝒱 .
First Oracle 𝜋1
Prover Execute phase 1 of ΠCompressedMC.

- Client party 𝑃𝑆 executes the following for each evaluation 𝑡 ∈ [𝜏 ]:
(1) Generate a sharing of the witness ⟨𝑤𝑡 ⟩

$← F𝑛 and add ⟨𝑤𝑡 ⟩𝑖 to (m𝑡,1)𝑖 .
(2) For each multiplication gate ℓ ∈ [𝑚]:

(a) Compute the multiplication result: 𝑧𝑡,ℓ ← 𝑥𝑡,ℓ · 𝑦𝑡,ℓ .
(b) Generate a sharing of the result ⟨𝑧𝑡,ℓ ⟩

$← F𝑛 and add ⟨𝑧𝑡,ℓ ⟩𝑖 to (m𝑡,1)𝑖 .
(3) Send (m𝑡,1)𝑖 to 𝑃𝑖 .

- The server parties execute the following, also for each evaluation 𝑡 ∈ [𝜏 ]:
(1) Append (m𝑡,1)𝑖 to view𝑖

𝑡,1
.

(2) Compute the input shares ⟨𝑥𝑡,ℓ ⟩𝑖 and ⟨𝑦𝑡,ℓ ⟩𝑖 for each multiplication gate ℓ ∈ [𝑚] using the shares from (m𝑡,1)𝑖 .
Set (𝜋1)𝑡,𝑖 = view1

𝑡,𝑖
.

Interactive Protocol—First Round.

Verifier Sample a random challenge 𝑅
$← G and send it to 𝒫 as the output of RandomCoin.

Prover Continue the 𝜏 executions of ΠCompressedMC by running 𝑃𝑆 and the servers {𝑃𝑖 } on input 𝑅 as follows:

(1) Each server 𝑃𝑖 lifts ⟨𝑥𝑡,ℓ ⟩𝑖 , ⟨𝑦𝑡,ℓ ⟩𝑖 , ⟨𝑧𝑡,ℓ ⟩𝑖 from F to G.
(2) Each server computes their share of ⟨x0𝑡 ⟩, ⟨y0𝑡 ⟩ and ⟨𝑧0𝑡 ⟩ such that:

⟨(x0𝑡 )ℓ ⟩ = 𝑅ℓ−1 ⟨𝑥𝑡,ℓ ⟩, ⟨(y0𝑡 )ℓ ⟩ = ⟨𝑦𝑡,ℓ ⟩, and ⟨𝑧0𝑡 ⟩ =
∑

ℓ∈[𝑚] 𝑅
ℓ−1 ⟨𝑧𝑡,ℓ ⟩.

Interactive Protocol—Compression Rounds. For each compression round 𝑗 ∈ [ ⌊log𝑘 (𝑚) ⌋ ]:
Prover Before creating the next oracle, emulate the following computation.

- For the client 𝑃𝑆 , for each 𝑡 ∈ [𝜏 ]:
(1) Parse x𝑗−1𝑡 → (a𝑗

𝑡,1
, . . . , a𝑗

𝑡,𝑘
) and y𝑗−1𝑡 → (b𝑗

𝑡,1
, . . . , b𝑗

𝑡,𝑘
) .

(2) For each 𝑢 ∈ [𝑘 − 1]: Compute inner-products: 𝑐
𝑗
𝑡,𝑢 ← a𝑗𝑡,𝑢 ∗ b

𝑗
𝑡,𝑢 , generate sharing ⟨𝑐

𝑗
𝑡,𝑢 ⟩

$← G𝑛 and add ⟨𝑐 𝑗𝑡,𝑢 ⟩𝑖 to (m𝑡,𝑗+1)𝑖 .
(3) Compute last inner-product: 𝑐

𝑗
𝑡,𝑢 ← 𝑧

𝑗−1
𝑡 −∑

𝑢∈[𝑘−1] 𝑐
𝑗
𝑡,𝑢 .

(4) Construct f 𝑗𝑡 , g
𝑗
𝑡 ∈ (G[𝑋 ])𝑚/𝑘 as in ΠCompress if 𝑗 ≠ ⌊log𝑘 (𝑚) ⌋, or as in ΠCompressRand otherwise.

(5) For each 𝑢 ∈ [𝑘 + 1, 2𝑘 − 1] if 𝑗 ≠ ⌊log𝑘 (𝑚) ⌋, or 𝑢 ∈ [𝑘 + 1, 2𝑘 + 1] otherwise: Compute inner-product ℎ
𝑗
𝑡 (𝑢) = f 𝑗𝑡 (𝑢) ∗ g

𝑗
𝑡 (𝑢) ,

generate sharing ⟨ℎ 𝑗
𝑡 (𝑢) ⟩

$← G𝑛 and add ⟨ℎ 𝑗
𝑡 (𝑢) ⟩𝑖 to (m𝑡,𝑗+1)𝑖 .

(6) Send (m𝑡,𝑗+1)𝑖 to 𝑃𝑖 .
- For each server party 𝑃𝑖 , for each evaluation 𝑡 ∈ [𝜏 ]:

(1) Append (m𝑡,𝑗+1)𝑖 to view𝑗+1
𝑡,𝑖

. and compute ⟨f 𝑗𝑡 ⟩𝑖 , ⟨g
𝑗
𝑡 ⟩𝑖 , ⟨ℎ

𝑗
𝑡 ⟩𝑖 using the shares from (m𝑡,𝑗+1)𝑖 .

Set (𝜋 𝑗+1)𝑡,𝑖 = view𝑗+1
𝑡,𝑖

.

Verifier Sample a random challenge 𝑠 𝑗
$← G \ [𝑘 ] and send it to 𝒫 as the output of RandomCoin.

Prover Continue the 𝜏 executions of ΠCompressedMC by running 𝑃𝑆 and the servers {𝑃𝑖 } on input 𝑠 𝑗 as follows:

(1) Each server computes their own share of ⟨f 𝑗𝑡 (𝑠 𝑗 ) ⟩, ⟨g
𝑗
𝑡 (𝑠 𝑗 ) ⟩ and ⟨ℎ

𝑗
𝑡 (𝑠 𝑗 ) ⟩ and labels them as ⟨x𝑗𝑡 ⟩, ⟨y

𝑗
𝑡 ⟩ and ⟨𝑧

𝑗
𝑡 ⟩.

(2) The sender 𝑃𝑆 computes x𝑗𝑡 , y
𝑗
𝑡 and 𝑧

𝑗
𝑡 in the same way.

Figure 5: Interactive (Zero-knowledge) proof (of knowledge) protocol—Part 1

to be correct. As the sharings of the wire values are sampled inde-

pendently, and as ΠCompressRand introduces uniform randomness

into the last tuple, the above sampling strategy is indistinguishable

from an honest execution of Π𝑓 .

(Robustness) The only actions a corrupt sender 𝑃∗
𝑆
can take are to

send incorrect tuples as the multiplication results of the circuit or

incorrect results as the output of ΠInnerProd during the compression

rounds. Should any of these happen, Proposition 4.5 gives us that

the protocol accepts with probability at most 𝛿𝑘 as in the statement.

□

Putting Everything Together. We describe our MPCitH ZK-IOP for

arithmetic and Boolean circuit in Figures 5 and 6. The protocol

ΠInt_ZKP is derived directly from the parallel execution variant

of Π𝜌−ZKIOP, instantiating Π𝜏
𝑓
with the MPC protocol described

above. Combining results from previous sections, we obtain the

following theorem.

Theorem 5.2. Let 𝑛,𝑚, 𝑘 be integers and F ⊆ G finite fields. Let𝐶
be a circuit over F of multiplicative size𝑚 and |G| > 𝑚. The protocol
ΠInt_ZKP satisfies completeness, soundness and (honest-verifier) zero-
knowledge as in Definition 2.4 with soundness error

𝜖 = 1/𝑛𝜏 + (1 − 1/𝑛𝜏 ) · 𝛿𝑘

and round complexity ⌊log𝑘 (𝑚)⌋ + 2.

From ZK-Interactive MPCitH Proof to ZK Arguments. We can com-

pile the interactive ZK proof described in Figures 5 and 6 to an

10
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ΠInt_ZKP—Part 2
Interactive Protocol—Final Rounds.
Prover After computation of the final compressed tuple, for each 𝑡 ∈ [𝜏 ] the server parties {𝑃𝑖 } each send their shares ⟨f 𝑗𝑡 (𝑠 𝑗 ) ⟩𝑖 , ⟨g

𝑗
𝑡 (𝑠 𝑗 ) ⟩𝑖 , ⟨ℎ

𝑗
𝑡 (𝑠 𝑗 ) ⟩𝑖 ,

with 𝑗 = ⌊log𝑘 (𝑚) ⌋, to 𝑃𝑅 , together with their shares ⟨𝑜 ⟩𝑖 of the values of the output wires of𝐶 ; all of these form view𝑡,𝑅 , which 𝒫 sends to

𝒱 in full.

Verifier Upon receiving view𝑡,𝑅 , for each 𝑡 ∈ [𝜏 ], check that the tuple is correct, i.e. that ℎ
𝑗
𝑡 (𝑠 𝑗 ) = f 𝑗𝑡 (𝑠 𝑗 ) ∗ g

𝑗
𝑡 (𝑠 𝑗 ) , with 𝑗 = ⌊log𝑘 (𝑚) ⌋, and check

that the output of the circuit is valid, i.e. that

∑
𝑖 ⟨𝑜 ⟩𝑖 = 1. If one of these fails, reject.

Oracle query The verifier picks a subset𝑄𝑡 ⊂ [𝑛] of size 𝑛 − 1 uniformly at random for each 𝑡 ∈ [𝜏 ] and queries {𝑄𝑡 }.
Verifier Upon receiving {view𝑡,𝑞 }𝑞∈𝑄𝑡 for each 𝑡 ∈ [𝜏 ] (where view𝑡,𝑖 = view1

𝑡,𝑖
∥ . . . ∥view𝜌

𝑡,𝑖
), recompute the operations of each opened server 𝑃𝑞

to check for inconsistencies with view𝑡,𝑅 . If an inconsistency is found, reject. If not, accept.

Figure 6: Interactive (Zero-knowledge) proof (of knowledge) protocol—Part 2

interactive argument, with standard techniques using collision-

resistant hash functions. In particular, as described [30], we can

achieve better efficiency using collision-resistant hash functions

based on Merkle trees [35].

Setting the Parameters. Notice the parameters of our zero-knowledge

argument protocol greatly depends on the size of the base field F
and extension field G, other than the compression factor 𝑘 . In gen-

eral, for small values of 𝑘 we have smaller proof size, but larger

running times. In Table 2 we show the number of repetitions and

estimated proof when the base field F = F2 with 𝑘 = 8. Notice that

since we choose a big extension filed, G = F
2
64 , the number of rep-

etitions is the same for different circuit size, but it varies depending

on the number of parties.

Circuit size (𝑛 = 16, 𝜏 = 11) (𝑛 = 64, 𝜏 = 7) (𝑛 = 128, 𝜏 = 6)

10
3

4.9 3.5 2.5

10
4

18.5 11.7 10

10
5

143 91 78

10
6

1382 879.5 753.8

Table 2: Number 𝜏 of parallel repetitions and proof size (in kB)
needed to achieve interactive proof soundness of 2−40 with com-
pression 𝑘 = 8 and extension field G = F

2
64 , depending on number 𝑛

of parties and circuit size.

6 NON-INTERACTIVE ZERO-KNOWLEDGE
ARGUMENTS

Using the Fiat-Shamir paradigm [23, 38], we can transform our

public coin interactive protocol to a corresponding non-interactive

zero-knowledge protocol. Roughly, the prover will compute the

first-round message as in the interactive variant and then continue

the protocol by setting the verifier’s next message to be the output

of a hash function 𝐻 modelled as a random oracle on input the

transcript of previous messages.

While the zero-knowledge property directly follows from the

corresponding property of the interactive variant, soundness re-

quires more careful analysis. In [9], the authors prove that for IOP

systems the soundness of the transformed non-interactive protocol

can be derived form the soundness of the IOP verifier against “state

restoration attacks”.

This section presents a better estimation of the soundness of our

non-interactive protocol.

6.1 Soundness with independent challenges.
This first analysis applies to the non-optimised variant of the

protocol where each of the 𝜏 parallel executions receives a random

challenge from RandomCoin, independently of the other execu-

tions. When producing a non-interactive proof, before proceeding

to the next round, the prover can re-randomize the commitments

they make to the random oracle in order to sample different public

coins for the checks. Here the best cheating strategy is to attack

different executions at each round of interaction so that, by the end

of the protocol, all executions will cause the verifier to accept.

Assuming that the final ZK protocol has 𝑟 rounds of interaction

between prover 𝒫 and verifier 𝒱 , we let 𝑋𝑖 , for 𝑖 ∈ [𝑟 ], be the

random variable of the maximum number (out of the remaining

incorrect executions) of “good” challenges received by the prover

during all its queries to the 𝑖-th random oracle. (By “good” chal-

lenge we mean one which corrects and “hides” any cheating in that

execution.)

As demonstrated in previouswork on this kind of non-interactive

protocol [3, 10], the number of “good” challenges received for each

call to the random oracle follows a binomial distribution with pa-

rameters (𝜏𝑖 , 𝑝𝑖 ), where 𝜏𝑖 denotes the number of parallel executions

for which this challenge is “good” and 𝑝𝑖 denotes the probability

that a random challenge is “good” for one execution.

The prover’s goal is to receive a “good” challenge in one of

the interaction rounds for each of the 𝜏 parallel executions. This

means that the soundness error is the probability that this strategy

succeeds, namely

Pr

[
𝑟∑︁
𝑖=1

𝑋𝑖 = 𝜏

]
.

Specifically to our protocol ΠInt_ZKP, we identify the following

interactions between the prover and the verifier in the interactive

variant:

(1) 𝒫 commits to the injections of the𝑚 values; 𝒱 responds

with challenge 𝑅 ∈ G.
(2) For each 𝑗 ∈ [⌊log𝑘𝑚⌋]: the prover commits to the 𝑐

𝑗
𝑖

injections (i.e. to the values 𝑃𝑆 sends to the server parties

𝑃𝑖 ), for 𝑖 ∈ [𝑘 − 1], and the ⟨ℎ(𝑖)⟩ injections (in ΠCompress),

for 𝑖 ∈ [𝑘 + 1, 2𝑘 − 1]; 𝒱 responds with challenge 𝑠 𝑗 ∈ G.
(3) At step 𝑗 = ⌊log𝑘𝑚⌋, the prover also commits to the addi-

tional points required by ΠCompressRand.

In the non-interactive setting, we therefore have the following

probabilities of obtaining a “good” challenge correctly for each of

the interaction rounds:

11
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First round. Probability that 𝑅 makes the tuple correct:

𝑝𝑅 =
𝑚 − 1
|G| .

Intermediary rounds. For 𝑗 ∈ [⌊log𝑘𝑚⌋ − 1] (last round is spe-

cial as it has polynomials of different degrees), probability

that the Schwartz–Zippel test fails to catch a non-zero poly-

nomial, i.e. ΠCompress outputs a correct tuple:

𝑝int =
2(𝑘 − 1)
|G| − 𝑘

Final round. Probability that the last Schwartz–Zippel test fails,

i.e. that ΠCompressRand corrects an incorrect tuple:

𝑝fin =
2𝑘

|G| − 𝑘 .

The soundness of the non-interactive protocol, with the inde-

pendent challenges variant, is therefore given by

𝜖
indep
ni = Pr

𝑊 +
⌊log𝑘 𝑚⌋−1∑︁

𝑗=1

𝑋 𝑗 + 𝑌 + 𝑍 = 𝜏

 ,
where

𝑊 = max

𝑞1
{𝑊𝑞1 } 𝑊𝑞1 ∼ 𝔅 (𝜏, 𝑝𝑅 )

𝑋 𝑗 = max

𝑞 𝑗,2

{𝑋𝑞 𝑗,2
} 𝑋 𝑗,𝑞2 ∼ 𝔅

(
𝜏 −𝑊 −

𝑗−1∑︁
𝑖=1

𝑋𝑖 , 𝑝int

)
𝑌 = max

𝑞3
{𝑌𝑞3 } 𝑌𝑞3 ∼ 𝔅

©«𝜏 −𝑊 −
⌊log𝑘 𝑚⌋−1∑︁

𝑖=1

𝑋𝑖 , 𝑝fin
ª®¬

𝑍 = max

𝑞4
{𝑍𝑞4 } 𝑍𝑞4 ∼ 𝔅

©«𝜏 −𝑊 −
⌊log𝑘 𝑚⌋−1∑︁

𝑖=1

𝑋𝑖 −𝑌,
1

𝑁

ª®¬
with 𝑞𝑖 denoting the queries to the 𝑖-th random oracle and 𝔅

denoting the binomial mass function.

6.2 Soundness with identical challenges.
When considering the optimised protocol presented in Section 5,

where the challenges output by RandomCoin are shared across

the 𝜏 executions, the probability distribution of “good” challenges

changes.

Considering the first round, a malicious prover can commit to

𝜏 cheating strategies each represented by the values of {m𝑡 }𝑡 ∈[𝜏 ] ;
these are namely the sharings of the witness𝑤𝑡 and of each multi-

plication output 𝑧𝑡,ℓ , for ℓ ∈ [𝑚]. Using the notation of the proof

of Lemma 4.1, each of these strategies defines a polynomial 𝐻 (𝑡 )

whose zeroes define a “good” first-round challenge. Indeed, recall

from Lemma 4.1 that a challenge 𝑅 ∈ G corrects a set of incorrect

multiplication triples if and only if 𝐻 (𝑡 ) (𝑅) = 0 when 𝐻 (𝑡 ) is not
the zero polynomial (due to the error in at least one of the triples).

Denote by ℋ(𝑡 ) the set {𝑟 ∈ G : 𝐻 (𝑡 ) (𝑟 ) = 0} of “good” challenges.
As the first round challenge 𝑅 is shared across executions, if the

malicious prover wishes to correct 𝜏1 out of 𝜏 executions, then the

probability of this happening is highest when at least 𝜏1 of the zero

sets ℋ(𝑡 ) are identical. This is easy to achieve as the prover only

has to commit to identical values in 𝜏1 executions for this to happen.

In this case, the probability that 𝑅 is a “good” challenge for these 𝜏1
executions is exactly

𝑚 − 1
|G| ,

independently of 𝜏1. This implies that, here, the distribution𝑊 of

𝜖
indep
ni can take any value between 1 and 𝜏 with this probability,

depending on the prover’s strategy, and is 0 otherwise.

Following the same reasoning, we have that the probability of

sampling a “good” challenge for 𝜏 ′ executions in the intermediary

rounds or the final rounds can be as high as

2(𝑘 − 1)
|G| − 𝑘 or

2𝑘

|G| − 𝑘 ,

respectively, when the prover cheats identically across these 𝜏 ′

executions. Indeed, even in the final round when the ℎ polynomial

is randomised, since the prover also controls ΠRand,the sets of zeros

can still be made identical. Similarly, this implies that the 𝑋 𝑗 and 𝑌

distributions can here also take any value between 1 and 𝜏 with the

above fixed probabilities.

Only the 𝑍 distribution of 𝜖
indep
ni remains the same due to the

independent sampling of the 𝜏 challenges for the opening of the

views of 𝑛 − 1 parties in each execution. Putting this all together

implies that the soundness of the non-interactive protocol, with

identical RandomCoin challenges for all 𝜏 parallel executions is

given by

𝜖 identni = max

(𝜏1,...,𝜏𝑟−1)
Pr

[
𝑊 +

∑︁
𝑋 𝑗 + 𝑌 + 𝑍 = 𝜏

��� 𝑟−1∑︁
𝑖=1

𝜏𝑖 ≤ 𝜏

]
,

where

𝑊 = max

𝑞1
{𝑊𝑞1 }, 𝑊𝑞1 ∼

{
𝜏1 𝑝𝑅

0 1 − 𝑝𝑅
;

𝑋 𝑗 = max

𝑞 𝑗,2

{𝑋𝑞 𝑗,2
}, 𝑋 𝑗,𝑞2 ∼

{
𝜏 𝑗+1 𝑝int

0 1 − 𝑝int
;

𝑌 = max

𝑞3
{𝑌𝑞3 }, 𝑌𝑞3 ∼

{
𝜏𝑟−1 𝑝fin

0 1 − 𝑝fin
;

𝑍 = max

𝑞4
{𝑍𝑞4 }, 𝑍𝑞4 ∼ 𝔅

©«𝜏 −𝑊 −
⌊log𝑘 𝑚⌋−1∑︁

𝑗=1

𝑋 𝑗 −𝑌,
1

𝑁

ª®¬ .
7 PARAMETERS AND PERFORMANCE

We describe our implementation and then present the perfor-

mance of our system and compare them with other related works.

Finally, we compare our signature scheme with Picnic and Banquet.

7.1 Parameters
We first describe how we choose parameters for our tests. The

soundness of our scheme depends on many parameters, namely

the number of parties 𝑛, the compression factor 𝑘 , the extension

field ℓ and the number of repetition 𝜏 . We already observed that

we can trade off computation and communication using different

values for 𝑛, so that increasing the number of parties will increase

prover and verifier running times but it will decrease the proof size.

The compression factor determines the round complexity of the

protocol according to Theorem 5.2 and its soundness. In general,

12



Limbo: Efficient Zero-knowledge MPCitH-based Arguments

|𝐶 | = 2
10 |𝐶 | = 2

14 |𝐶 | = 2
16 |𝐶 | = 2

20

𝑛 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱
(KB) (ms) (ms) (KB) (ms) (ms) (KB) (ms) (ms) (KB) (s) (s)

16 8 11 6 2.4 2.3 16 11 32 39 32 16 11 102 163 159 32 11 1464 3.08s 2.91s

16 16 11 8 2.6 2.4 32 11 37 43 36 32 11 108 172 167 64 11 1476 3.01s 2.82s

32 8 9 5 3.8 3.6 16 9 26 60 58 16 9 334 83 258 32 9 1198 4.91s 4.71s

32 16 9 7 4.0 3.8 32 9 30 67 64 32 9 333 88 269 64 9 1208 4.76s 4.55s

64 8 7 4 6.7 6.5 16 7 20 92 89 16 7 297 65 394 32 7 932 7.48s 7.20s

64 16 7 5 6.9 6.6 32 7 24 102 99 32 7 294 69 413 64 7 940 7.24s 6.93s

128 8 6 3 11.0 10.6 16 6 17 155 150 16 6 55 707 677 32 6 799 13.4s 12.9s

128 16 6 4 9.7 9.3 32 6 20 162 156 32 6 58 732 701 64 6 805 12.9s 12.2s

Table 3: Performance of our interactive system for different choice of parameters to achieve 40-bit of security. 𝑛 is the number of parties in the
MPC protocol, the extension field is G = F

2
64 , 𝑘 is the compression parameter and 𝜏 the number of repetitions.

|𝐶 | = 2
10 |𝐶 | = 2

12 |𝐶 | = 2
14 |𝐶 | = 2

16 |𝐶 | = 2
18 |𝐶 | = 2

20

𝑛 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱 𝑘 𝜏 size 𝑡𝒫 𝑡𝒱
(KB) (ms) (ms) (KB) (ms) (ms) (KB) (ms) (ms) (KB) (ms) (ms) (KB) (s) (s) (KB) (s) (s)

16 8 40 24 9 8 8 42 45 35 32 16 40 117 130 130 16 42 389 616 603 16 43 1423 2.5s 2.4s 32 43 5726 11s 11s

16 16 38 29 8 8 16 40 54 31 30 32 38 128 131 130 32 40 392 604 597 32 41 1379 2.4s 2.4s 64 41 5504 10s 9s

32 8 34 20 15 14 8 36 39 65 64 16 34 100 218 218 16 36 334 1015 1015 16 37 1220 4.2s 4.1s 32 37 4927 19s 18s

32 16 32 24 13 13 16 34 46 57 57 32 32 108 210 209 32 34 333 1004 998 32 35 1172 4.1s 4.0s 64 35 4698 17s 17s

64 8 30 18 32 32 8 32 35 112 110 16 30 88 382 381 16 32 297 1798 1796 16 33 1084 7.4s 7.2s 32 33 4394 34s 33s

64 16 28 21 24 24 16 30 40 100 98 32 28 94 360 359 32 30 294 1734 1744 32 31 1034 7.3s 7.2s 64 31 4162 31s 29s

128 8 27 16 48 48 8 29 32 202 201 16 27 79 654 670 16 29 269 3176 3220 16 30 983 14s 14s 32 30 3995 62s 62s

128 16 25 19 42 43 16 27 36 173 171 32 25 84 608 621 32 27 265 3063 3133 32 28 931 13.7s 13.8s 64 28 3759 56s 56s

Table 4: Performance of NILimbo for different choice of parameters to achieve 128-bit of security. 𝑛 is the number of parties in the MPC protocol,
the extension field is G = F

2
64 , 𝑘 is the compression parameter and 𝜏 the number of repetitions.

large values of 𝑘 will allow better running times and larger proof

size. The extension field greatly impact on the proof size, but not

that much on the computation. We noticed that computation on

𝐹
2
64 were slightly faster, and we prevalently chose this extension

field to run the checking step of our protocol.

Finally, in our experiments we only used fixed values of 𝑘 , but

the implementation can be optimized allowing different values of 𝑘 ,

for example by considering divisors of𝑚, where𝑚 is the number

of multiplication gates. Since we chose 𝑘 independently of𝑚, we

need to create random public triple values in order to perform the

compression step.

7.2 Implementation
We implemented our protocol in C++ using the same dedicated

field arithmetic implementation as Banquet [3], which we extended

by adding support for computing in 𝐺𝐹 (264). We also reduced as

much as possible the number of polynomial interpolations that are

computed. In particular, when the prover needs to compute the

polynomials 𝑓 , 𝑔, ℎ during the first part of the compression rounds,

we first reconstruct the plain value from the shares and then do the

interpolations.

In addition to the above, when we want to evaluate a binary

circuit, we pack the parties’ shares by chunks of 64 in a machine

word. Therefore, instead of repeating the evaluation of the circuit

for each party independently, a single gate can be computed for 64

parties at once using bitwise operations.

7.3 Performance
All the benchmarks were done on a desktop computer with an

Intel i9-9900 (3.1GHz) CPU and 128GB of RAM. All experiments

were run locally. For each experiment, we run it either on a single

thread or on 4 threads, and we give the average over 100 runs in

milliseconds. Although it may slightly vary depending on the pa-

rameters used for generating the proof, we try to give some insight

on the computational complexity of each of the steps described in

Figures 5 and 6. Thanks to the packing technique we use in the bi-

nary case, the evaluation of the circuit in MPC, which corresponds

to creating the first oracle, is fast and requires less than 10% of the

running time. Then, the most computationally heavy task is to lift

the shares of each party and to transform them to share of an inner

product, this step requires 60% of the total running time. Eventually,

about 40% of the prover time is spent doing the compression rounds.

We run all the experiments in the interactive setting using the

same challenge across all the 𝜏 repetitions, but we used independent

challenges for the non-interactive case. This is because in the non-

interactive case we need very large extension fields to achieve the

desired soundness, as shown in Section 6.2. We plan to further

investigate on this direction in future works.

In our experiments we set the computational security parameter

^ = 128 and the statistical security parameter _ = 40.

SHA-256. Verifying a SHA-256 pre-image in zero knowledge with

2
−40

soundness error, the size of the proof is about 42KB, with a

prover running time of 53ms and a verifier running time of 47ms

(Table 1) on a single threads. For Table 1 we used the Bristol Fashion
13



Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy

circuit available here
2
. The circuit is made of 22573 AND gates and

135073 gates in total. As a comparison, for the same soundness

error Ligero’s proof size is about 44KB, with a verifier and prover

running time of respectively 140ms and 62ms.We also increased the

number of threads to increase prover’s and verifier’s performance.

Performance of NILimbo for verifying SHA-256 is given in Table 5.

𝑡𝒫 (ms) 𝑡𝒱 (ms) Size

(𝑛, 𝑘, 𝜏) 1 thread 4 threads 1 thread 4 threads (KB)

(8,16,48) 143 83 142 64 180

(16,32,36) 195 100 194 79 150

(32,16,33) 296 144 290 114 121

(64,16,29) 505 229 498 181 110

Table 5: NI SHA-256: Performance of our system for proving knowl-
edge of a SHA-256 pre-image in the non-interactive setting for vari-
ous number of parties 𝑛

Binary circuits. We tested Limbo (Table 3) andNILimbo (Table 4)
on random binary circuits of different size. In Table 6, we report the

performance of our system on 4 threads with 𝑛 = 16 and 𝑛 = 8 and

different circuit size. Our protocol can evaluate 2
20

AND gates in

about 8.7 (resp. 4.7 sec) in the non-interactive setting with a proof

size of 6.5MB with 8 parties with one thread (resp. 4 threads), and

3 sec (resp. 0.987 sec) in the interactive setting with 6 rounds of

communication and total communication of 1.2MB with one thread

(resp. 4 threads).

𝑛 = 8 𝑛 = 16

|𝐶 | size 𝑡𝒫 (s) 𝑡𝒱 (s) size 𝑡𝒫 (s) 𝑡𝒱 (s)

2
14

140(KB) 0.052 0.039 117 (KB) 0.069 0.052

2
18

1.6 (MB) 1.06 0.7 1.4 (MB) 1.47 1.04

2
20

6.5 (MB) 4.7 2.9 5.5 (MB) 6.4 4.32

2
21

13 (MB) 9.49 5.8 10 (MB) 13.9 9.5

Table 6: Performance of NILimbo for 𝑛 = 16 and 𝑛 = 8 to achieve
128-bit of security with 4 threads.

Matrix multiplication. We also tested Limbo for verifying matrix

multiplications. Instead of using the naive 𝑂 (𝑛3) multiplication

algorithm, we use an inner product based protocol. In particular,

given two𝑀 ×𝑀 matrices, during the MPC evaluations the sender

parties 𝑃𝑆 directly injects the 𝑀2
values corresponding to the re-

sulting matrix, while in the checking phase parties verify that these

𝑀2
inner products are correctly computed. Note that this approach

only requires a minor modification to the our basic protocol and

soundness analysis, however it does not consider the special struc-

ture of these inner products (e.g., some of them are correlated), so

it can be further optimized. In Table 7, we show the performance of

Limbo for different values of𝑀 . We note that, even with this simple

variant of the protocol, there is a big advantage of going beyond

the gate-by-gate approach both in term of computation and com-

munication. For example, if 𝑀 = 128 the protocol based on inner

products is about 30% faster and uses about 38x less communication

than the one based on multiplication gates.

2
https://homes.esat.kuleuven.be/~nsmart/MPC/sha256.txt

𝑡𝒫 (s) 𝑡𝒱 (s) Comm

M 1 thread 4 threads 1 thread 4 threads (KB)

64 0.26 0.17 0.23 0.14 34

96 0.79 0.53 0.73 0.48 61

128 2.3 1.41 2.1 1.29 97

256 20 11 19 10.7 340

324 34 21 32 19 545

400 62 38 57 32 834

Table 7: Performance for proving matrix multiplication with sound-
ness 2−40 with 𝑛 = 8

7.4 Comparison with related works
We compare the performance of our scheme with the most ef-

ficient MPCitH schemes for circuit satisfiability, namely Ligero,

which has the best communication complexity, and KKW, which

offers the best run times. Ligero [2] reports figures for soundness

error 2
−40

, so we compare it with our interactive zero-knowledge

argument. Table 3 gives the performance of our interactive sys-

tem for different choice of parameters to achieve 40-bit of security.

Comparing these figures with Ligero, our system gives both better

run times and proof size for circuit up to roughly 2
18

multiplication

gates. For a circuit of size 2
20

AND gates, Ligero requires more

than 10 sec, whereas for the same circuit, Limbo only needs 3 sec;

Ligero++, which supports R1CS, reported prover’s running times

about 2x slower than Ligero. For larger circuits the communica-

tion complexity of Ligero and Ligero++ is smaller than that of our

protocol.

We also comparewith KKW [30], which has better computational

performance than Ligero. For the range of parameters given in [30],

we observe (Table 3 and Figure 7) that our protocol offers shorter

proofs (precisely up to 3x shorter) and faster proof generation (up

to 3x) assuming the same number of parties. KKW implementation

has been recently heavily optimized so to handle the verification

of 100 SHA-256 verification (i.e. 2227200 multiplication gates) in

4.76s. Our current implementation is incomparable with Reverie as

it can be potentially optimised in many ways, however NILimbo
can already prove 2

21
AND gates in 9.49 sec (Table 6) with 4 threads.

This is only 2.2 times slower than Reverie, which has a proof size of

22MB compared to 14MB of NILimbo. We plan to further optimise

our implementation in future works.

We also stress that our system is, in theory, more efficient when

used for arithmetic circuits, and that we could further improve

our run times by choosing different values for the compression

parameter 𝑘 , for example larger for larger circuits. We also plan to

perform more tests in these directions.

7.5 Limbo Signature
We use our zero-knowledge protocol to build a Picnic-like post-

quantum signature scheme based on AES using the same method-

ology as BBQ [21] and Banquet [3]. More precisely, the scheme

works as follows. Given a private key k and public values (𝑥,𝑦),
such that AESk (𝑥) = 𝑦, a signature on a message ` is generated by

binding together ` with a non-interactive zero-knowledge proof of

knowledge of k.
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Figure 7: Prover time and proof lengths for NILimbo and KKW for different circuit sizes and 𝑛 = 16

Scheme 𝑛 Rep. Prover (ms) Verifier (ms) Communication (bytes)
Picnic3 16 (72, 12) 1.73 1.33 4070

16 (48, 16) 1.16 0.92 4750

Our 16 10 1.09 0.99 3967

32 8 1.69 1.57 3195

64 7 2.89 2.71 2811

128 6 4.93 4.65 2425

Table 8: Benchmarks of interactive identification schemes at L1 security. We used a compression factor 𝑘 = 4 and extension field F
2
8ℓ , with ℓ = 4.

Banquet AES-128 Limbo-Sign AES-128
𝑁 (ℓ, 𝜏) 𝑡𝒮 𝑡𝒱 size (𝑘, ℓ, 𝜏) 𝑡𝒮 𝑡𝒱 size

(ms) (ms) bytes (ms) (ms) bytes

16 (4, 41) 6.34 4.84 19776 (4, 8, 36) 3.3 3.2 18624

31 (4,35) 9.11 7.53 17456 (6,8,31) 5.7 5.5 17334

57 (4,31) 14.18 12.29 15968 (8,5,31) 10.3 10.1 14575

(6, 27) 12.47 10.77 16188 (6,8,28) 8.5 8.5 15728

107 (4,28) 24.19 21.73 14880 (6,6, 28) 15.3 14.8 13712

(6, 24) 21.06 18.93 14784 (6,8,25) 13.1 12.8 14110

255 (4, 25) 50.95 46.80 13696 (6,8,22) 31.9 31.8 12480

Table 9: Comparison between the communication cost of Banquet
and the new protocol for AES-128. Picnic for the same security level
reports 𝑡𝒮 = 5.33𝑚𝑠, 𝑡𝒱 = 4.03𝑚𝑠 and size 12466 bytes.

We compare our resulting signature scheme with Picnic and

Banquet, which is, as far as we know, the fastest MPCitH-based

signature using AES, for security levels L1,L3,L5 as specified by

NIST [37]. In Tables 9, 10 and 11 we show this comparison for

different sets of parameters.
3
Across all three security levels, we see

that Limbo not only provides a significant speed-up over Banquet in
both Prover andVerifier running time but also produces consistently

shorter signatures. These are also much closer to (and sometimes

3
The running time figures for Banquet cited here were privately communicated to us

by the authors.

Banquet AES-192 Limbo-Sign AES-192
𝑁 (ℓ, 𝜏) 𝑡𝒮 𝑡𝒱 size (𝑘, ℓ, 𝜏) 𝑡𝒮 𝑡𝒱 size

(ms) (ms) bytes (ms) (ms) bytes

16 ( 4, 62) 17.23 13.16 51216 (8,6,61) 13.21 10.38 47926

31 (4,53) 25.86 21.72 45072 (8,6,51) 18.61 15.19 40259

(6,47) 23.89 19.87 45624 (8,8,48) 16.57 12.9 42375

64 (4, 46) 43.07 38.10 40240 (8,6,45) 36.8 31.12 35684

(6, 40) 39.07 34.16 39808 (8,8,38) 27.78 22.93 33740

116 (6, 36) 62.07 55.56 36704 (8,8,37) 51.53 43.23 32969

255 (6 , 32) 119.07 108.50 33408 (6,8,33) 106.6 88.21 27728

Table 10: Comparison between the communication cost of Banquet
and the new protocol for AES-192. Picnic for the same security level
reports 𝑡𝒮 = 11.01𝑚𝑠, 𝑡𝒱 = 8.49𝑚𝑠 and size 27405 bytes.

better than) the performance of Picnic both in running times (for

𝑛 = 16) and in signature size (for 𝑛 = 255).

In Table 8 we compare Limbo used as an interactive identifica-

tion scheme with the equivalent variant of Picnic. Note that for

Picnic, which is based on KKW, when we show the number of rep-

etitions we consider the total number of repetitions and the online

executions, because the underline MPC protocol is in the prepro-

cessing model. We see that for an equal number of MPC parties

(𝑛 = 16), Limbo requires fewer parallel repetitions and provides

faster proofs with less communication (3.97KB vs. 4.07KB). As be-

fore, using more parties, this communication can be further reduced
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Banquet AES-256 Limbo-Sign AES-256
𝑁 (ℓ, 𝜏) 𝑡𝒮 𝑡𝒱 size (𝑘, ℓ, 𝜏) 𝑡𝒮 𝑡𝒱 size

(ms) (ms) bytes (ms) (ms) bytes

16 (4, 84) 27.63 21.54 83488 (8, 6, 84) 19.64 15.35 76392

(6, 75) 25.62 19.82 84610 (8,8,78) 17.97 14.13 78600

31 (4, 72) 41.35 35.16 73888 (8,6,72) 33.9 27.67 65808

(6, 63) 37.67 31.77 73114 (8,8,66) 29 23.4 66816

62 (6, 54) 60.71 53.47 64420 (8,8,56) 48.96 40.61 56960

119 (6, 48) 100.41 90.58 58816 (8,8,52) 90.37 75.82 53120

256 (6, 43) 190.73 174.54 54082 (6,8,46) 171.35 154.64 44696

Table 11: Comparison between the communication cost of Banquet
and the new protocol for AES-256.Picnic for the same security level
reports 𝑡𝒮 = 18.82𝑚𝑠, 𝑡𝒱 = 13.56𝑚𝑠 and size 48437 bytes.

(down to 2.43KB) at the expense of slightly longer computation

time (still under 5ms for both Prover and Verifier).
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A AMORTIZED EVALUATIONS FOR THE
MULTI-INSTANCE CASE

While our MPC and ZK protocols work over fields of any size,

the multiplications check requires large fields to obtain a reasonable

soundness error. So, when the evaluation field F is small, for exam-

ple when F = F2, this step seems to be wasteful. For this reason,

it would be convenient to batch several checks into a single one.

Ideally, when we prove the satisfiability of a certain circuit, it would

be helpful to perform the check of all the 𝜏 repetitions needed to

obtain the desired soundness, in one go. Unfortunately, since in the

ZK protocol the verifier opens different sets of parties across the

𝜏 MPC evaluations, packing these checks together seems difficult,

if not impossible. However, we can apply the same idea to batch

together the checking phases in the case of multiple evaluations of

the same circuit.

More precisely, if we want to prove satisfiability of a certain

circuit multiple times, say ℎ, we can amortized these instances

using the reverse multiplication-friendly embedding (RMFE) [13,

18], which provides a way to embed the ring Fℎ𝑞 , for some ℎ > 1,

into a field F𝑞𝑠 , for some 𝑠 > ℎ, so that coordinate-wise products

“map” to multiplications in the extension field. More formally, we

recall the following definition.

Definition A.1. Given a prime power 𝑞 and ℎ, 𝑠 ∈ N, let us con-
sider two F𝑞-linear maps 𝜙 : Fℎ𝑞 → F𝑞𝑠 , and𝜓 : F𝑞𝑠 → Fℎ𝑞 . A pair

(𝜙,𝜓 )𝑞 is called an (ℎ, 𝑠)-reverse multiplication-friendly embedding
(RMFE) if ∀x, y ∈ Fℎ𝑞 it holds:

x ⊙ y = 𝜓 (𝜙 (x) · 𝜙 (y)),

where ⊙ is the component-wise product.

Note that 𝜙 is an injective map. In the following, we only focus

on the case 𝑞 = 2 and leave other cases to future works. In [18], the

authors give both asymptotic and concrete results on the existence

of RMFE. In particular:

Lemma A.2. For all 𝑢 ≤ 33, there exists a (3𝑢, 10𝑢 − 5)2-RMFE.
For any 𝑢 ≤ 16, there exists a (2𝑢, 8𝑢)2-RMFE.

Different Options to Improve Efficiency. We explore different options

in order to deal with the multi-instance case with better efficiency.

For each of these alternatives we briefly discuss advantages and

disadvantages.

Check with identical challenges. The first approach simply con-

sists of 𝜏 · ℎ MPC evaluations of the circuit over F2, followed by a

checking phase. We can apply the optimization described in the pre-

vious section and use the some challenge across all the evaluations.

This option will require, at least in the non-interactive case, bigger

𝜏 , but this can be mitigated in part by using larger extension fields

for the check. We expect in this case an improvement in prover run

times comparable to that observed for the single instance case.

Evaluations in extension fields. Alternatively, we can use a

RMFE and “pack” ℎ MPC evaluations over F2 into a single evalua-

tion over F2𝑠 , and hence perform the entire proof and verification

in this extension field. The advantage of this approach is to per-

form the computation only one, but over a larger field. In term of
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communication this approach will be roughly 2/3 times more costly.

Check in extension fields. Our third option works as follows. In

Phase 1, the prover runs ℎ MPC evaluations over F2 in its head,

exactly as described in the previous sections. Before the next phases,

𝒫 , using a (ℎ, 𝑠)2 (𝜙,𝜓 )-RMFE, consistently maps all the ℎ · 𝑚
multiplication triples in F2 that need to be checked to𝑚 triples in

F2𝑠 , and proceeds to the next phases. In more details, given ⟨x𝑖 ⟩,
⟨y𝑖 ⟩, ⟨z𝑖 ⟩ ∈ Fℎ

2
, we can apply 𝜙 to these 𝑚 vectors and obtains

𝜙 (x𝑖 ) = 𝑥𝑖 , 𝜙 (y𝑖 ) = 𝑦𝑖 , 𝜙 (z𝑖 ) = 𝑧𝑖 . Note that if x ⊙ y = z ⊙ 1, then

𝜓 (𝜙 (x𝑖 ) · 𝜙 (y𝑖 ) − 𝜙 (z𝑖 ) · 𝜙 (1)) = 0. (2)

Setting 𝑧𝑖 · 𝜙 (1) = b𝑖 , the prover needs to prove that the relation

above holds. The analysis of the soundness of this option differs

from that done in the previous sections, so we leave it for future

works. However, we note that, if the maps 𝜙,𝜓 are efficiently im-

plemented, this approach can lead potentially to better prover run

times.
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