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Abstract

We introduce a new definition for key updates, called backward-leak uni-directional key updates,
in updatable encryption (UE). This notion is a variant of uni-directional key updates for UE. We
show that existing secure UE schemes in the bi-directional key updates setting are not secure in the
backward-leak uni-directional key updates setting. Thus, security in the backward-leak uni-directional
key updates setting is strictly stronger than security in the bi-directional key updates setting. This
result is in sharp contrast to the equivalence theorem by Jiang (Asiacrypt 2020), which says security
in the bi-directional key updates setting is equivalent to security in the existing uni-directional key
updates setting. We call the existing uni-directional key updates “forward-leak uni-directional” key
updates to distinguish two types of uni-directional key updates in this paper.

We also present two UE schemes with the following features.
• The first scheme is post-quantum secure in the backward-leak uni-directional key updates setting
under the learning with errors assumption.

• The second scheme is secure in the no-directional key updates setting and based on indistin-
guishability obfuscation and one-way functions. This result solves the open problem left by
Jiang (Asiacrypt 2020).
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1 Introduction

1.1 Background

Updatable Encryption. Updatable encryption (UE) is a variant of secret key encryption (SKE) where
we can periodically update a secret key and a ciphertext. More specifically, a secret key ke is generated
at each period, called epoch. Here, e denotes an index of an epoch. We can generate a conversion key
∆e+1 that converts a ciphertext under ke (key at epoch e) to one under ke+1 (key at epoch e + 1). Such a
conversion key is called update token and generated from two successive secret keys ke, ke+1. Roughly
speaking, UE security guarantees that confidentiality holds even after some old (and even new) keys and
tokens are corrupted as long as trivial winning conditions are not triggered. Adversaries trivially win if a
target secret key is corrupted or a target ciphertext can be converted into a ciphertext under a corrupted
secret key. In this study, we focus on ciphertext-independent updates UE, where we can generate an
update token only from two secret keys [LT18, KLR19, BDGJ20, Jia20].1

A serious threat to encryption is key leakage. In that case, no security is guaranteed by standard
encryption. Key updating is a standard solution to guarantee security even after key leakage. However, the
issue is how to update a ciphertext generated by an old key. A naive solution is decrypting all ciphertexts
by the old key and re-encrypt them by a new key. However, it incurs significant efficiency loss. Moreover,
if we save encrypted data in outsourced storage such as cloud servers, we need to download all ciphertexts
from the server, decrypt and re-encrypt them, and upload them again to keep the new key secret. Update
tokens of UE solve this problem since if we provide the server with an update token, it can directly convert
old ciphertexts into new ones without the new key.

Confidentiality is the primary concern in UE. Confidentiality of UE has been improved to capture real-
istic attack models [EPRS17, LT18, KLR19, BDGJ20, CLT20] since after UE was introduced [BLMR13].
In particular, Lehman and Tackmann formalized trivially leaked information from corrupted keys and
tokens as the direction of key updates [LT18]. Although previous works proposed UE schemes with
improved confidentiality, most do not focus on preventing information leakage from corrupted keys and
tokens. We will explain the detail of the information leakage below. In this work, we focus on the direction
of key updates and try to minimize leaked information from update tokens to improve UE confidentiality.

Direction of key updates. Directions of key updates describe information leakage that UE schemes
cannot avoid. If an adversary has ∆e+1 and ke, it might be able to obtain ke+1. Most existing UE
schemes cannot prevent this attack. In particular, in all existing (ciphertext-independent) UE schemes,
we cannot avoid leaking a secret key from both directions [LT18, KLR19, BDGJ20, Jia20]. That is, we
can extract ke+1 (resp. ke) from ∆e+1 and ke (resp. ke+1). This setting is defined as bi-directional key
updates [EPRS17, LT18]. Lehman and Tackmann also defined uni-directional key updates, where we
can extract ke+1 from ke and ∆e+1 (forward direction inference). In other words, this setting means
adversaries might not be able to infer ke from ke+1 and ∆e+1. Uni-directional key updates are more
preferable than bi-directional ones since a token leaks less information. More information leakage triggers
more trivial winning conditions in confidentiality games for UE.

At first glance, secure UE with uni-directional key updates is stronger than one with bi-directional
key updates. However, Jiang proved that secure UE with bi-directional key updates is equivalent to one
with uni-directional key updates [Jia20] (we call Jiang’s equivalence theorem in this paper). Jiang also
presented the first post-quantum UE scheme with bi-directional key updates [Jia20].

A natural question is: Why do we consider only one-way uni-directional key updates? That is, we can
consider a variant of uni-directional key updates where we can extract ke from ke+1 and ∆e+1 (backward
direction inference). To distinguish two versions of uni-directional key updates, we call the existing

1The other variant is ciphertext-dependent updates UE, where we need not only two secret keys but also a part of ciphertext
(called header) to generate a token [BLMR13, EPRS17, BEKS20]. Ciphertext-independent updates UE is more efficient.
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definition forward-leak uni-directional key updates and our new one backward-leak uni-directional key
updates. The backward-leak uni-directional key updates setting has never been studied in the UE literature,
but it seems to be a valid setting. It is natural to think the latest key is the most important since the reason
why we update keys is that the current and older keys might be leaked. In the forward-leak setting, we
must protect older keys to protect newer keys even if older ciphertexts are deleted. This is undesirable.
However, in the backward-leak setting, we need to protect only the latest key if older ciphertexts are
properly deleted. Therefore, the backward-leak key updates are more suitable for UE than the forward-leak
key updates. Thus, the first main question of this study is as follows.

Q1. Is UE with backward-leak uni-directional key updates strictly stronger than UE with bi-directional
key updates?

We affirmatively answer the first question in this work. Then, the next natural question is as follows.

Q2. Can we achieve a (post-quantum) UE scheme with backward-leak uni-directional key updates?

We also affirmatively answer the second question.
Another natural question is whether we can prevent adversaries from inferring secret keys from both

directions or not. That is, even if adversaries have ke+1 (resp. ke) and ∆e+1, they cannot infer ke (resp.
ke+1). Such key updates are called no-directional key updates [Jia20]. Jiang left this question as an open
problem. Thus, the last question in this work is as follows.

Q3. Can we achieve a UE scheme with no-directional key updates?

We solve this open question in this work.

1.2 Our Contribution

The first contribution of our work is a definitional work. We define a new definition of key updates, which
we call backward-leak uni-directional key updates. In addition, we prove that UE with backward-leak
uni-directional key updates is strictly stronger than bi-directional key updates (and forward-leak uni-
directional key updates). More specifically, we show that there are UE schemes with bi-directional key
updates that are not secure in the backward-leak uni-directional key updates setting. This is in sharp
contrast to Jiang’s equivalence theorem [Jia20] explained above.

The second contribution is that we present two new constructions of UE. The features of our UE
schemes are as follows.

• The first scheme is a UE scheme with backward-leak uni-directional key updates and secure under
the learning with errors (LWE) assumption, which is known as a post-quantum assumption. This
scheme satisfies confidentiality against CPA and ciphertext updates are randomized.

• The second scheme is a UE scheme with no-directional key updates and based on one-way functions
(OWFs) and indistinguishability obfuscation (IO). This scheme satisfies confidentiality against CPA
and ciphertext updates are randomized.

These are the first UE schemes with stronger key updates. Note that all our schemes are uni-directional
ciphertext updates (i.e., cannot downgrade ciphertext into older epoch ones). The first scheme is
implementable since it is directly constructed from lattices. Although the second scheme is a theoretical
construction,2 it solves the open question left by Jiang [Jia20].

Both schemes satisfy r-IND-UE-CPA security, which was defined by Boyd, Davies, Gjøsteen, and
Jiang [BDGJ20]. However, we consider the backward-leak uni-directional or no-directional settings.
See Section 3 for the definitions.

2Note that Jain, Lin,and Sahai achieve IO from well-founded assumptions, the SXDH, LWE, a variant of LPN, and PRG in
NC0 [JLS21]. See their paper for the detail of the assumptions.
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1.3 Related Work

Weoften use “forward-leak uni-/backward-leak uni-/bi-/no-directional UE” to refer toUEwith forward-leak
uni-/backward-leak uni-/bi-/no-directional key updates in this paper.

Ciphertext-independent updates UE. Lehman and Tackmann introduce post-compromise security
for UE and refine previous security notions. Those are close to the definitions in this paper. They also
present an efficient bi-directional UE scheme based on the DDH assumption [LT18]. Klooß, Lehmann,
and Rupp present a CCA-secure bi-directional UE scheme based on the DDH assumption in the ROM
and RCCA-secure bidirectional UE schemes based on the SXDH assumption [KLR19]. Boyd et al.
integrate and refine previous security notions and present CCA-secure bi-directional UE schemes with
deterministic ciphertext updates based on the DDH assumption in the ideal cipher model [BDGJ20].
Jiang studies relationships among various models for UE and presents a bi-directional UE scheme based
on the LWE assumption [Jia20]. All these schemes are bi-directional ciphertext updates (a token enables
us to update and downgrade a ciphertext).

Ciphertext-dependent updates UE. Boneh, Lewi, Montgomery, and Raghunathan introduce the notion
of UE in the ciphertext-dependent updates setting and present a bi-directional UE scheme based on key
homomorphic PRFs [BLMR13]. Everspaugh, Paterson, Ristenpart, and Scott define stronger security
notions for UE and present bi-directional UE schemes that satisfy those notions [EPRS17]. Chen, Li, and
Tang introduce a stronger CCA security notion by considering malicious re-encryption attacks and present
bi-directional UE schemes that satisfy the stronger CCA security [CLT20]. Boneh, Eskandarian, Kim,
and Shih improve security notions by Everspaugh et al. [EPRS17] and present efficient bi-directional UE
schemes [BEKS20].

UE in constructive cryptography. Levy-dit-Vehel and Roméas study security notions for UE in the
constructive cryptography framework and explore the right security notion for UE [LR21]. Fabrega,
Maurer, and Mularczyk also study security notions for UE in the constructive cryptography framework,
generalize previous definitions, and discover new security-efficiency trade-offs. [FMM21].

Concurrent and independent work. Slamanig and Striecks [SS21] concurrently and independently
proposed two UE schemes.3 The first one is a pairing-based forward-leak uni-directional scheme. The
second one is a pairing-based no-directional scheme. They define a stronger model for UE, where we
can set an expiry epoch e⊥ to a ciphertext. If we update a ciphertext with expiry epoch e⊥ by using a
token ∆e+1 such that e + 1 > e⊥, the update ciphertext can no longer be decrypted. Due to this stronger
model, Jiang’s equivalence theorem [Jia20] does not necessarily hold. Those schemes are uni-directional
ciphertext updates. The sharp differences between their work and ours are as follows. Let T be the
maximum number of epochs.

• Their uni-directional scheme is secure with forward-leak key updates in the expiry model, but not
post-quantum secure, and the ciphertext and key size are O(log2 T). Our uni-directional scheme
is post-quantum secure with backward-leak key updates, and the ciphertext and key size do not
depend on T.

• Their no-directional scheme is secure in the expiry model under the SXDH assumption, and the
ciphertext and key size are O(T log T) and O(T), respectively. Our no-directional scheme is

3Their paper [SS21] appeared on Cryptology ePrint archive right after the initial version of this paper
(https://eprint.iacr.org/2021/221/20210311:210911) appeared on Cryptology ePrint archive. The difference between this
paper and the initial version is mainly the presentation.
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secure if IO exists, but the ciphertext and key size do not depend on T. Our no-directional scheme
is not practical since it relies on IO.

1.4 Technical Overview

In this section, we present a high-level overview of our technique.

Direction of key updates. As we introduce in Section 1.1, we can consider two types of uni-directional
tokens, forward-leak and backward-leak uni-directional tokens. If we can infer in both directions, we call
bi-directional token. In the definitions of confidentiality for UE, trivial winning conditions of adversaries
depend on those token variations.

We show the following adversary against existing bi-directional UE schemes: (1) s/he triggers the
trivial winning condition of the forward-leak uni-directional key updates setting. (2) s/he does not trigger
the trivial winning condition of the backward-leak uni-directional key updates. (3) s/he trivially breaks
confidentiality of the schemes in the backward-leak uni-directional key updates. Therefore, existing
bi-directional UE schemes are not secure in the backward-leak uni-directional key updates setting. The
best way to understand the separation result is looking at an example described in Section 4.3.

In this section, we explain the source of the difference between the two settings. First, we recall
that UE needs the power of public key encryption (PKE) such as the DDH assumption. We can find
this fact in all existing ciphertext-independent UE schemes [LT18, KLR19, BDGJ20, Jia20]. Alamati,
Montgomery, and Patranabis [AMP19] prove that ciphertext-independent UE implies PKE. By this fact,
we can assume that an epoch key ke consists of a secret part ske and a public key part pke. As an example,
in RISE scheme [LT18], ske = xe ∈ Zp, pke = gxe ∈ G, and ∆e+1 = xe+1/xe where g is a generator
of a prime-order group G. It is easy to see the token is a bi-directional token.

The direction of key updates depends on how to generate a token. A simple but crucial observation
is that we must use ske to generate ∆e+1. Otherwise, ∆e+1 does not have the power of decrypting and
converting a ciphertext at epoch e. On the other hand, we do not necessarily need ske+1 to generate ∆e+1
since we can generate a ciphertext at epoch e + 1 by using pke+1.

The relation between the direction types and how to generate a token is as follows. A forward-leak uni-
directional token means ∆e+1 explicitly contains information about ske+1. By combining the observation
above, ∆e+1 should contain information about ske and ske+1 in the forward-leak uni-directional key
updates setting. In addition, we can update an older epoch ciphertext into a newer epoch ciphertext and
attack the new one if the newer epoch key is revealed. In other words, we can attack older epoch ciphertext
even if older epoch keys are not revealed (backward-leak inference is not possible in this setting). The key
inference direction could be the same as the ciphertext update direction. By this observation, it is natural
that Jiang’s equivalence theorem holds.

On the other hand, a backward-leak uni-directional token means ∆e+1 explicitly contains information
about ske. It is possible to generate ∆e+1 from ske and pke+1 based on the observations so far. Thus,
a backward-leak uni-directional token could hide information about ske+1 and prevent the forward
inference. In addition, this property prevents downgrading a ciphertext into an older epoch ciphertext.
Thus, even if an older epoch key is revealed, we cannot necessarily attack the newer epoch ciphertexts
since downgrading ciphertext and forward-leak inference are impossible. The key inference direction is
opposite to the ciphertext update direction. This property is in sharp contrast to the forward-leak setting.
Therefore, triggers of trivial winning conditions are different in these two settings. An intuition behind
our separation result is based on those observations. See Section 4.3 for the detail. Those observations
are the starting points of our UE scheme in the backward-leak uni-directional key updates setting. See the
next paragraph for an overview.

4



Our backward-leak uni-directional key updates scheme. Roughly speaking, a token ∆e+1 is a
homomorphic encryption of ske under a public key pke+1 in our backward-leak uni-directional UE
scheme. To update a ciphertext cte ← Enc(pke, µ) at epoch e, we homomorphically decrypt cte by using
∆e+1 = Enc(pke+1, ske) and obtain Enc(pke+1, µ). It is easy to see that if we have ∆e+1 and ske+1, we
can obtain ske by decryption. However, it is difficult to infer ske+1 from ∆e+1 and ske since ske+1 is not
used to generate ∆e+1. By the security of PKE, it is difficult to obtain ske+1 from pke+1. To achieve
confidentiality for UE, we need to re-randomize tokens and updated ciphertext. This is also possible by
using the homomorphic property. Although we use the homomorphic property of lattice-based encryption
in our construction, we do not need fully homomorphic encryption (FHE). We use the key-switching
technique [BV14, BV11] and the noise smudging technique [AJL+12] to directly achieve secure UE from
the LWE assumption. This idea is inspired by uni-directional proxy re-encryption schemes based on
lattices [Gen09, ABPW13, CCL+14, NX15].

To prove confidentiality, we need to erase information about ske∗ where e∗ is the target epoch
(otherwise, we cannot use confidentiality under pke∗). However, secret keys are linked to update tokens.
Thus, we need to gradually erase secret keys in update tokens from new ones to old ones. That is, we
change Enc(pke+1, ske) into Enc(pke+1, 0|ske|). Once this change is done, we can change Enc(pke, ske−1)
into Enc(pke, 0|ske−1|), and so forth. Note that there exists an epoch er where ∆er+1 is not corrupted such
that e∗ ≤ er as long as adversaries do not trigger the trivial winning conditions. We can start the erasing
process from er since sker is not used anywhere. This proof outline is reminiscent of the proof technique
for multi-hop universal proxy re-encryption [DN21].

Our no-directional key updates scheme. A no-directional token leaks information about neither
ke nor ke+1. To protect ke and ke+1, we obfuscate an update circuit. We consider a secret key
encryption (SKE) scheme SKE.(Gen, Enc, Dec) and the following circuit R. Two different secret keys
ske, ske+1 ← SKE.Gen(1λ) are hard-coded in R. R takes a ciphertext cte ← SKE.Enc(ske, µ) as an input,
computes µ = SKE.Dec(ske, cte), and outputs cte+1 ← SKE.Enc(ske+1, µ). A token is an obfuscated
circuit of R[ske, ske+1] (notation [ske, ske+1] denotes that (ske, ske+1) are hard-coded). This scheme
works as a UE scheme. Intuitively, a token does not leak information about hard-coded secret keys due to
obfuscation security. However, we do not know how to prove confidentiality of the scheme above.

To prove security, we instantiate the SKE scheme and obfuscation above with puncturable pseudo-
random functions (PRFs) and IO [SW21], respectively. That is, a secret key is a PRF key K, and a
ciphertext is (t, y⊕ µ) := (PRG(r), PRF(K, PRG(r))⊕ µ) where PRG is a pseudorandom generator
(PRG) and r ← {0, 1}τ. We slightly modified the update circuit above so that it takes not only a
ciphertext at epoch e but also randomness re+1 for a ciphertext at the next epoch. That is, we use a circuit
Cre[Ke, Ke+1]((t, c), re+1) that decrypts (t, c) by Ke and encrypts the result by Ke+1 and re+1. By using
this particular scheme and the punctured programming technique with IO security [SW21], we can prove
confidentiality of our no-directional UE scheme.

The issue is how to simulate update tokens in security proofs. Note that a UE secret key at epoch e is
linked only to UE tokens ∆e and ∆e+1 in the construction above. In our no-directional scheme, to change
target ciphertexts into random ones, we use pseudorandomness of a PRF key Ke∗ , which is a UE key ke∗ at
epoch e∗. In the security game of pseudorandomness at punctured points, the adversary is given y∗ and a
punctured key Ke∗{t∗} where t∗ is chosen by the adversary and tries to distinguish y∗ is PRF(Ke∗ , t∗) or
random. The punctured key enables us to evaluate the PRF at all inputs except the punctured point t∗. By
using Ke∗{t∗}, we can simulate tokens ∆e and ∆e+1 for all inputs except (r, y) such that t∗ = PRG(r).
The issue is that we cannot evaluate the PRF at t∗. However, we can overcome this issue by the standard
exception handling technique since t∗ can be randomly chosen by the reduction due to PRG security and
y∗ = PRF(Ke∗ , t∗) is given as a target in the pseudorandomness game. We can construct functionally
equivalent circuits by using Ke∗{t∗}, t∗, y∗, and exceptional handling. The exceptional handling cannot
be detected by IO security. Thus, we can simulate update tokens and use pseudorandomness to prove
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confidentiality.

Organization. In Section 2, we provide preliminaries and basic definitions. In Section 3, we review
the syntax and security definitions of UE. Section 4 defines a new definition of uni-directional key
updates (backward-leak uni-directional key updates) and shows that it is strictly stronger than those of
bi-directional and forward-leak uni-directional key updates. In Section 5, we present our UE scheme with
backward-leak uni-directional key updates based on the LWE problem and prove its security. In Section 6,
we present our UE scheme with no-directional key updates based on OWFs and IO and prove its security.

2 Preliminaries

We define some notations and introduce cryptographic notions in this section.

Notations. In this paper, x ← X denotes selecting an element from a finite set X uniformly at random,
and y ← A(x) denotes assigning to y the output of a probabilistic or deterministic algorithm A on an
input x. When we explicitly show that A uses randomness r, we write y ← A(x; r). For a finite set S,
U(S) denotes the uniform distribution over S. For strings x and y, x‖y denotes the concatenation of x
and y. Let [`] and [`, r] denote the set of integers {1, · · · , `} and {`, . . . , r}, respectively, λ denote a
security parameter, and y := z denote that y is set, defined, or substituted by z.

We say that a distribution over R is B-bounded if a sample from the distribution is in [−B, B] with
overwhelming probability. For x ∈ R, let bxe := dx− 1/2e. For x = (x1, . . . , x`) ∈ R`, let bxe :=
(bx1e , . . . , bx`e) ∈ Z`. For any integer q ≥ 2, wewriteZq for the ring {d−q/2e, . . . ,−1, 0, 1, . . . , bq/2c}
with addition and multiplication modulo q.

For two matrices X ∈ Rm×n1 and Y ∈ Rm×n2 , [X | Y ] ∈ Rm×(n1+n2) denotes the concatenation of
the columns of X and Y . For two matrices X ∈ Rm1×n and Y ∈ Rm2×n, [X; Y ] ∈ R(m1+m2)×n denotes
the concatenation of the rows of X and Y . For a vector x ∈ Rm, ‖x‖p denotes the `p norm of x. We omit
subscript if p = 2 for simplicity. PPT stands for probabilistic polynomial time.

Basic concepts.

• A function f : N → R is a negligible function if for any constant c, there exists λ0 ∈ N such
that for any λ > λ0, f (λ) < λ−c. We write f (λ) ≤ negl(λ) to denote f (λ) being a negligible
function.

• If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈N,

we say that X (0) and X (1) are computationally indistinguishable if for any PPT distinguisher D,
there exists a negligible function negl(λ), such that

∆ := |Pr[D(X(0)
λ ) = 1]− Pr[D(X(1)

λ ) = 1]| ≤ negl(λ).

We write X (0) c≈ X (1) to denote that the advantage ∆ is negligible.
• The statistical distance betweenX (0) andX (1) over a countable set S is defined as∆s(X (0),X (1)) :=

1
2 ∑α∈S |Pr[X(0)

λ = α]− Pr[X(1)
λ = α]|. We say that X (0) and X (1) are statistically/perfectly

indistinguishable (denoted by X (0) s≈ X (1)/X (0) p
≈ X (1)) if ∆s(X (0),X (1)) ≤ negl(λ) and

∆s(X (0),X (1)) = 0, respectively.
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2.1 Lattice Preliminaries

Distributions. We review the basic definitions of the distributions in lattice-based cryptography. Let
N(0, σ2) denote the Gaussian distribution whose mean is 0 and variance is σ2. The Gaussian distribution
is defined by density function (1/σ

√
2π) · exp(−x2/2σ2) over R. We also define the followings.

• Discretized Gaussian Ψ̄α: For α ∈ (0, 1) and a positive integer q, we sample x from N(0, α2/2π)
and output bqxe mod q.

• Discrete Gaussian: For a positive real s, the n-dimensional Gaussian function is defined as
ρs(x) = exp(−π‖x‖2/s2).

• Discrete Gaussian distribution DA,s: For a positive real s and a countable set A, DA,s(x) :=
ρs(x)

∑y∈A ρs(y)
.

Gentry, Peikert, and Vaikuntanathan [GPV08] gave an efficient sampler, SampleD, for DZ,s.
We use the following statistical properties in this paper.

Lemma 2.1 ([Ban93, Lemma 1.5], [LP11, Lemma 2.1]). Let c ≥ 1, C = c · exp((1− c2)/2). For
any real s > 0 and any integer n ≥ 1, we have that

Pr
e←DZn ,s

[
‖e‖2 ≥ cs

√
n/(2π)

]
≤ Cn.

In particular, letting c =
√

2π and C < 1/4, we have that Pre←DZn ,s

[
‖e‖2 ≥ s

√
n
]
< 2−2n.

Lemma 2.2 ([AJL+12, Lemma 1 (smudging lemma)]). Let B1 = B1(λ), and B2 = B2(λ) be positive
integers and let e1 ∈ [−B1, B1] be a fixed integer. Let e2 ← [−B2, B2] be chosen uniformly at random. If
B1/B2 = negl(λ), the distribution of e2 is statistically indistinguishable from that of e2 + e1.

Lemma2.3 (Adapted version of the leftover hash lemma). Let q be an odd prime. Let D be a distribution
overZm

q ofmin-entropy at least (n+ `) lg q+ g(n). Then, we have that∆((A, eA), (A, u>)) ≤ 2−g(n)/2,
where A← Z

m×(n+`)
q , e← D, and u← Zn+`

q

This lemma holds if we use E← Dk and U ← Z
k×(n+`)
q instead of e and u where k = poly(n).

Learning with Errors. Regev introduced the LWE problem [Reg09]. Let A(s, χ) be a distribution
over Zn

q ×Zq defined as follows. For a vector s ∈ Zn
q and a distribution χ over Zq, we sample a← Zn

q
and x ← χ, and output (a, 〈a, s〉+ x).

Definition 2.4 (The LWE problem and assumption). For an integer q = q(n), and distributions χ over
Zq and ψ over Zn

q , the learning with errors problem, LWE(n, q, χ) for the distribution ψ, is distinguishing
oracle A(s, χ) from oracle A(s, U(Zq)), where s← ψ. We say the LWE(n, q, χ) assumption holds for
ψ if for any PPT adversary A, its advantage

Advlwe
A,(n,q,χ,ψ)(n) =

∣∣∣Pr[AA(s,χ)(1n) = 1 | s← ψ]− Pr[AA(s,U(Zq))(1n) = 1 | s← ψ]
∣∣∣

is negligible in n where s← ψ.

We note that A(s, U(Zq)) = U(Zn
q ×Zq) for any s ∈ Zn

q . We also note that even if we use matrices
A← Zm×n

q and S ∈ Zn×`
q instead of vectors a and s, respectively, the assumption holds (if the original

assumption holds) by a simple hybrid argument. In that case, we omit parameter m, ` from the notation
for simplicity. Applebaum, Cash, Peikert, and Sahai [ACPS09] showed that we can use χn instead of
U(Zn

q ) for the distribution of s.
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Theorem 2.5 (Adapted version of [ACPS09, Lemma 2]). Let q = pe be a prime power. If the
LWE(n, q, χ) assumption holds for U(Zn

q ), then the LWE(n, q, χ) assumption holds for χn.

Solving the LWE problem with χ = Ψ̄α or DZ,s on average is as hard as the worst case of the
approximation version of the shortest independent vector problem, SIVPγ, and the decision version of the
shortest vector problem, GapSVPγ, under a classical/quantum reduction, where γ is an approximation
factor [Reg09, Pei09, BLP+13].

2.2 General Cryptographic Primitives

Basic cryptographic tools.

Definition 2.6 (Pseudorandom Generator). A pseudorandom generator (PRG) PRG : {0, 1}τ →
{0, 1}τ+`(λ) with stretch `(λ) (` is some polynomial function) is a polynomial-time computable function
that satisfies

Advprg
PRG,A := |Pr[A(t) = 1 | t← PRG(r), r ← Uτ]− Pr[A(t) = 1 | t← Uτ+`(λ)]| ≤ negl(λ),

where Um denotes the uniform distribution over {0, 1}m.

Definition 2.7 (Pseudorandom functions). For sets D andR, let {FK(·) : D → R | K ∈ {0, 1}λ} be
a family of polynomially computable functions. We say that F is pseudorandom if for any PPT adversary
A, it holds that

Advprf
F,A(λ) := |Pr[AF(K,·)(1λ) = 1 | K← {0, 1}λ]− Pr[AR(·)(1λ) = 1 | R← FU ]| ≤ negl(λ),

where FU is the set of all functions from D toR.

Theorem 2.8 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ)
and m(λ), there exists a pseudorandom function that maps n(λ) bits to m(λ) bits (i.e., D := {0, 1}n(λ)

andR := {0, 1}m(λ)).

Definition 2.9 (Puncturable pseudorandom function). For setsD andR, a puncturable pseudorandom
function PPRF consists of a tuple of algorithms (F, Punc) that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size subset {xi}i∈[k] of D, and for all
x ∈ D \ {xi}i∈[k], we have Pr[F(K, x) = F(K∗, x) : K← {0, 1}λ, K∗ ← Punc(K, {xi}i∈[k])] =
1.

Pseudorandomness at punctured points: For all polynomial size subset {xi}i∈[k] of D, and any PPT
adversary A, it holds that

Advpprf
F,A := Pr[A(K∗, {F(K, xi)}i∈[k]) = 1]− Pr[A(K∗,U k) = 1] ≤ negl(λ) ,

where K← {0, 1}λ, K∗ ← Punc(K, {xi}i∈[k]), and U denotes the uniform distribution overR.

Theorem 2.10 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all efficiently
computable functions n(λ) and m(λ), there exists a puncturable pseudorandom function that maps n(λ)
bits to m(λ) bits (i.e., D := {0, 1}n(λ) andR := {0, 1}m(λ)).
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Advanced cryptographic tools.

Definition 2.11 (Indistinguishability Obfuscator [BGI+12]). A PPT algorithm iO is an IO for a circuit
class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: For any security parameter λ ∈N, circuit C ∈ Cλ, and input x, we have that

Pr[C′(x) = C(x) | C′ ← iO(C)] = 1 .

Indistinguishability: For any PPT Samp and PPT distinguisher D, the following holds:
If Pr[∀x, C0(x) = C1(x) | (C0, C1, aux)← Samp(1λ)] > 1− negl(λ), then we have

Advio
iO,D(λ) :=

∣∣∣Pr
[
D(iO(C0), aux) = 1 | (C0, C1, aux)← Samp(1λ)

]
−Pr

[
D(iO(C1), aux) = 1 | (C0, C1, aux)← Samp(1λ)

]∣∣∣ ≤ negl(λ).

3 Updatable Encryption

In this section, we briefly review the syntax and definitions of UE.

Syntax.

Definition 3.1. An updatable encryption scheme UE for message spaceM consists of a tuple of PPT
algorithms (UE.Setup, UE.KeyGen, UE.Enc, UE.Dec, UE.TokGen, UE.Upd).

UE.Setup(1λ)→ pp: The setup algorithm takes as input the security parameter and outputs a public
parameter pp. (This algorithm is an option for UE.)

UE.KeyGen(pp)→ ke: The key generation algorithm takes as input the public parameter and outputs
an epoch key ke.

UE.Enc(k, µ)→ ct: The encryption algorithm takes as input an epoch key and a plaintext µ and outputs
a ciphertext ct.

UE.Dec(k, ct)→ µ′: The decryption algorithm takes as input an epoch key and a ciphertext and outputs
a plaintext µ′ or ⊥.

UE.TokGen(ke, ke+1)→ ∆e+1: The token generation algorithm takes as input two keys of successive
epochs e and e + 1 and outputs a token ∆e+1.

UE.Upd(∆e+1, cte)→ cte+1: The update algorithm takes as input a token ∆e+1 and a ciphertext cte
and outputs a ciphertext cte+1.

Let T be the maximum number of the epoch.

Security experiments. We review security definitions for UE in this section.

Definition 3.2 (Correctness). For any µ ∈ M, for 0 ≤ e1 ≤ e2 ≤ T, it holds that

Pr[UE.Dec(ke2 , cte2) 6= µ] ≤ negl(λ),

where pp ← UE.Setup(1λ), ke1 , . . . , ke2 ← UE.KeyGen(pp), cte1 ← UE.Enc(ke1 , µ), and ∆i+1 ←
UE.TokGen(ki, ki+1), cti+1 ← UE.Upd(∆i+1, cti) for i ∈ [e1, e2 − 1].
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Definition 3.3 (Confidentiality for Updatable Encryption [BDGJ20, Jia20]). For x ∈ {d, r}, atk ∈
{cpa, cca}, the game Expx-ind-ue-atk

Σ,A (λ, b) is formalized as follows.

• Invoke Setup and set phase := 0.

• Let O := O.{Enc, Next, Upd, Corr, Chall, UpdC̃} if atk = cpa. If atk = cca, O.Dec is also
added in O.

• Run coin′ ← AO(1λ).

• If ((K∗ ∩ C∗ 6= ∅) ∨ (x = d∧ (e∗ ∈ T ∗ ∨O.Upd(ct) is invoked))) then twf := 1

• If twf = 1 then coin′ ← {0, 1}

• return coin′

We say a UE scheme is x-IND-UE-atk secure if it holds

Advx-ind-ue-atk
Σ,A (λ) := |Pr[Expx-ind-ue-atk

Σ,A (λ, 0) = 1]− Pr[Expx-ind-ue-atk
Σ,A (λ, 1) = 1]| ≤ negl(λ).

The definitions of oracles are described in Figure 1.

Leakage sets. We introduce leakage sets. Adversaries can obtain secret keys, update tokens, challenge-
equal ciphertexts from oracles. We record epochs in the following sets to maintain which epoch
key/token/challenge-equal-ciphertext was given to adversaries.

• K: Set of epochs where A corrupted the epoch key via O.Corr.

• T : Set of epochs where A corrupted the update token via O.Corr.

• C: Set of epochs where A obtained a challenge-equal ciphertext via O.Chall or O.UpdC̃.

We also record ciphertexts given via oracles to maintain which (updated) ciphertexts adversaries
obtained.

• L: Set of non-challenge ciphertexts (cnt, ct, e; µ) returned via O.Enc or O.Upd, where cnt is a
query index incremented by each invocation of O.Enc, ct is the given ciphertext, e is the epoch
where the query happens, and µ is the queried plaintext or the plaintext in the queried ciphertext.

• L̃: Set of challenge-equal ciphertexts (ct∗e , e) returned via O.Chall or O.UpdC̃, where ct∗e is the
given challenge-equal ciphertext and e is the epoch where the query happens.

In the deterministic update setting, where algorithm Upd is deterministic, an updated ciphertext is uniquely
determined by a token and a ciphertext. Thus, we consider extended ciphertext sets L∗ and L̃∗ inferred
from L and L̃, respectively, by using T . Regarding L∗, we only need information about the ciphertext
and epoch. That is, L∗ consists of sets of a ciphertext and an epoch index.

In the randomized update setting, where algorithm Upd is probabilistic, an update ciphertext is not
uniquely determined. Thus, we consider sets of plaintexts of which adversaries have ciphertexts.

• Q∗: Set of plaintexts (µ, e) such that the adversary obtained or could generate a ciphertext of µ at
epoch e.

• Q̃∗: Set of challenge plaintexts {(µ, e), (µ1, e)}, where (µ, ct) is the query to O.Chall and µ1 is
the plaintext in ct. The adversary obtained or could generate a challenge-equal ciphertext of µ or
µ1 at epoch e.
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Setup(1λ):

• k0 ← UE.KeyGen(1λ)

• ∆0 := ⊥; e, cnt, twf := 0
• L, L̃, C,K, T := ∅

O.Enc(µ):

• cnt := cnt + 1
• ct← UE.Enc(ke, µ)

• L := L ∪ {(cnt, ct, e; µ)}
• return ct

O.Dec(ct):

• µ′/⊥ ← UE.Dec(ke, ct)
• if

(
(x = d∧ (ct, e) ∈ L̃∗)

∨(x = r ∧ (µ′, e) ∈ Q̃∗)
)

then twf := 1
• return µ′ or ⊥

O.Next():

• e := e + 1
• ke ← UE.KeyGen(1λ)

• ∆e ← UE.TokGen(ke−1, ke)

• if phase = 1
then ct∗e ← UE.Upd(∆e, ct∗e−1)

O.Upd(cte−1):

• if (cnt, cte−1, e− 1; µ) /∈ L
then return ⊥

• cte ← UE.Upd(∆e, cte−1)

• L := L ∪ {(cnt, cte, e; µ)}
• return cte

O.Corr(mode, ê):

• if ê > e then return ⊥
• if mode = key
then K := K ∪ {ê}
return kê

• if mode = token
then T := T ∪ {ê}
return ∆ê

O.Chall(µ, ct):

• if phase = 1 then return ⊥
• phase := 1; e∗ := e
• if (·, ct, e∗ − 1; µ1) /∈ L
then return ⊥

• if b = 0
then ct∗e∗ ← UE.Enc(ke∗ , µ)
else ct∗e∗ ← UE.Upd(∆e∗ , ct)

• C := C ∪ {e∗}
• L̃ := L̃ ∪ {(ct∗e∗ , e∗)}
• return ct∗e∗

O.UpdC̃():

• if phase 6= 1 then return ⊥
• C := C ∪ {e}
• L̃ := L̃ ∪ {(ct∗e , e)}
• return ct∗e∗

O.Try(ct∗):

• µ′/⊥ ← UE.Dec(ke, ct∗)
• if (e ∈ K∗ ∨ (atk = ctxt∧ (ct∗, e) ∈ L∗)
∨(atk = ptxt∧ (µ′, e) ∈ Q∗))
then twf := 1

• if µ′ 6= ⊥ then win := 1

Figure 1: The behavior of oracles in security experiments for updatable encryption. Leakages sets
L, L̃,L∗, L̃∗, C,K,K∗, T , T ∗,Q,Q∗, Q̃∗ are defined in Section 3.

Inferred leakage sets. Lehman and Tackmann [LT18] presented the bookkeeping technique to analyze
the epoch leakage sets. We maintain leaked information by the technique in security games.

Key leakage. Adversaries can infer some information from leakage sets K and T . Here, “infer” means
that adversaries can trivially extract some secret information from given keys and tokens. For example, in
the ElGamal-based UE scheme by Lehman and Tackmann (called RISE) [LT18], a secret key at epoch e
is ke ∈ Zp where p is a prime and a token is ∆e+1 = ke+1/ke ∈ Zp. Thus, we can easily extract ke
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from ∆e+1 and ke+1 (and vice versa).
Inferred information depends on the direction of key updates. In previous works on UE, there

are three types of directions of key updates, called bi/uni/no-directional key updates. Formally, for
kk ∈ {no, uni, bi}, we consider the following kk-directional key update setting.
Definition 3.4 (Direction of Key Update).We define inferred leakage key sets. The sets depend on the
setting of key updates.

• No-directional key updates: K∗no := K.

• Uni-directional key updates:

K∗uni := {e ∈ [0, `] | CorrK(e) = true}

where CorrK(e) = true⇔ (e ∈ K) ∨ (CorrK(e− 1) ∧ e ∈ T )

• Bi-directional key updates:

K∗bi := {e ∈ [0, `] | CorrK(e) = true}

where CorrK(e) = true⇔ (e ∈ K) ∨ (CorrK(e− 1) ∧ e ∈ T ) ∨ (CorrK(e + 1) ∧ e + 1 ∈ T )

Token leakage. If two successive keys are leaked, a token generated from those keys is also inferred.

Definition 3.5 (Inferred Token Sets). For kk ∈ {no, uni, bi},

T ∗kk := {e ∈ [0, `] | (e ∈ T ) ∨ (e ∈ K∗kk ∧ e− 1 ∈ K∗kk)}

Challenge-equal ciphertext leakage. We can update ciphertexts by using tokens. That is, we can
obtain updated ciphertexts generated from a challenge ciphertext via leaked tokens. To check whether a
challenge ciphertext can be converted into a ciphertext under a corrupted key, we maintain challenge-equal
ciphertext epochs defined below.

Definition 3.6 (Direction of Ciphertext Update).We define two types of challenge-equal ciphertext
epoch sets. For kk ∈ {no, uni, bi},

• Uni-directional ciphertext updates:

C∗kk,uni := {e ∈ [0, `] | ChallEq(e) = true}

where ChallEq(e) = true⇔ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗kk)

• Bi-directional ciphertext updates:

C∗kk,bi := {e ∈ [0, `] | ChallEq(e) = true}

whereChallEq(e) = true⇔ (e ∈ C)∨ (ChallEq(e− 1)∧ e ∈ T ∗kk)∨ (ChallEq(e+ 1)∧ e+ 1 ∈
T ∗kk)

By considering directions of key/ciphertext updates, we can consider variants of security notions for
UE [Jia20].

Definition 3.7 ((kk, cc)-variant of confidentiality [Jia20]). Let UE be a UE scheme. Then the
(kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈ {uni, bi} andnotion ∈ {r-ind-ue-cpa, d-ind-ue-cpa,
r-ind-ue-cca, d-ind-ue-cca}, of an adversary A against UE is defined as

Adv(kk,cc)-notion
UE,A (1λ) := |Pr[Exp(kk,cc)-notion

UE,A (λ, 0) = 1]− Pr[Exp(kk,cc)-notion
UE,A (λ, 1) = 1]|,

where Exp(kk,cc)-notion
UE,A (λ, b) is the same as the experiment Exptnotion

UE,A (λ, b) in Definition 3.3 except for
all leakage sets are both in the kk-directional key updates and cc-directional ciphertext updates.
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Trivial winning condition. Adversaries trivially win the security game if we can convert a challenge
ciphertext into a ciphertext under a corrupted key. Thus, we need to define trivial winning conditions.

For all confidentiality games in Definition 3.3, the trivial winning condition K∗ ∩ C∗ 6= ∅ is checked
since if the condition holds, adversaries can win the game by decrypting a challenge-equal ciphertext by
using a corrupted key.

For all confidentiality games for deterministic update UE, the trivial winning condition ẽ ∈ T ∗ ∨
“O.Upd(ct) is queried” is checked since if the condition does not hold, adversaries can win the game by
checking the challenge ciphertext is equal to an updated ciphertext generated from the token and a queried
ciphertext to O.Chall.

We need to consider other trivial winning conditions in the CCA setting (both for randomized and
deterministic updates) and integrity setting. However, we do not consider these settings in this work. We
do not explain those conditions. See the paper by Jiang [Jia20] for the detail.

Firewall and insulated region.

Definition 3.8 (Firewall [LT18, KLR19, BDGJ20, Jia20]). An insulated region with firewalls fwl and
fwr is a consecutive sequence of epochs [fwl, fwr] for which:

• No key in the sequence of epochs [fwl, fwr] is corrupted. That is, it holds [fwl, fwr] ∩K = ∅.

• The tokens ∆fwl and ∆fwr+1 are not corrupted if they exist. That is, it holds fwl, fwr + 1 /∈ T .

• All tokens (∆fwl+1, . . . , ∆fwr) are corrupted. That is, [fwl + 1, fwr] ⊆ T .

Definition 3.9 (Insulated Region [LT18, KLR19, BDGJ20, Jia20]). The union of all insulated regions
is defined as IR :=

⋃
[fwl,fwr]∈FW [fwl, fwr], where FW is the set of insulated region with firewalls.

4 Backward-Leak Uni-Directional Key Update and Relations

4.1 Definition

We introduce a new notion for the direction of key updates in this section. The notion is categorized
in uni-directional key updates, but the direction is the opposite of the uni-directional key updates
in Definition 3.4.

Definition 4.1 (Uni-Directional Key Update (revisited)).We define two types of uni-directional key
updates. One is the same as that in Definition 3.4. To distinguish two types of uni-directional key updates,
we rename the original one in Definition 3.4 to forward-leak uni-directional key updates. The definitions
of two notions are as follows.

• forward-leak uni-directional key updates: K∗f-uni := K∗uni.

• backward-leak uni-directional key updates:

K∗b-uni := {e ∈ [0, `] | CorrK(e) = true}

where CorrK(e) = true⇔ (e ∈ K) ∨ (CorrK(e + 1) ∧ e + 1 ∈ T )

By using the definition above, we can consider Definitions 3.5 and 3.6 for kk ∈ {no, f-uni, b-uni, bi}.
We illustrate leaked information in the setting of forward/backward-leak uni-directional key updates
settings in Figure 2.
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set e− 1 e e + 1

K∗f-uni × X inferred
T ∗f-uni X X

set e− 1 e e + 1

K∗b-uni inferred X ×
T ∗b-uni X X

Figure 2: Inferred keys in the forward-leak/backward-leak uni-directional key updates settings. SymbolX means
the key/token was given viaO.Corr. Symbol×means we cannot trivially obtain the information. The text “inferred”
means we can trivially extract the information from given values.

4.2 Observations on Definitions

On the meaningfulness of backward-leak uni-directional key updates. First of all, all ciphertext-
independent UE schemes rely on public key encryption power in some sense [LT18, BDGJ20, Jia20].4
This fact is endorsed by the result by Alamati, Montgomery, and Patranabis [AMP19], which shows any
ciphertext-independent UE scheme that is forward and post-compromise secure implies PKE. Thus, we
can assume that an epoch key consists of a secret key part ske and a public key part pke.

To achieve the ciphertext update mechanism of UE, a token ∆e+1 must include information about
ske since an update algorithm essentially decrypts a ciphertext at epoch e and generates a ciphertext for
epoch e + 1. The question is: “Do we really need ske+1 for updating a ciphertext from e to e + 1?”.
The answer is no. The point is that we need only the public key part of an epoch key to generate a
ciphertext in most existing ciphertext-independent UE schemes. Thus, we might be able to construct
an update token by using only ske and pke+1. More specifically, we might be able to transform a
ciphertext for epoch e by using encryption of ske under pke+1 and homomorphic properties. This
is what we do in Section 5. This insight comes from a few constructions of uni-directional proxy
re-encryption [Gen09, ABPW13, CCL+14, NX15].

Based on the observations above, we can say the backward-leak uni-directional key updates setting is
natural. If a token ∆e+1 is generated by using (ske, pke+1), it is likely we can infer ske from ∆e+1 and
ske+1 (our backward-leak uni-directional scheme is an example). However, it might be difficult to extract
information about ske+1 from ske and ∆e+1 since only pke+1 is embedded in ∆e+1. In fact, it is difficult
in our backward-leak uni-directional scheme.

In the forward-leak uni-directional key updates setting, we assume that it is easy to infer ske+1
from ∆e+1 and ske. In some sense, this says ske+1 is directly embedded in ∆e+1. We might be able to
execute bi-directional key/ciphertext updates if a token enables us to update a ciphertext (in the forward
direction). Here, “directly embedded” means that a secret key is not encrypted. In fact, in all existing
UE schemes bi-directional (and forward-leak uni-directional) key updates, ske+1 is directly embedded
in ∆e+1 [LT18, KLR19, BDGJ20, Jia20]. In addition, generating a token ∆e+1 from ske+1 and pke is
unnatural since it is unlikely such ∆e+1 can update a ciphertext under pke.

Note that the argument above does not consider obfuscation [BGI+12]. If we can somehow obfuscate
secret keys in a token, it could be difficult to infer secret keys in the token even if we use those secret keys
to generate the token. This is what we do in Section 6 to achieve a no-directional key updates scheme.

As we argue in Section 1.1, backward-leak uni-directional key updates are more suitable than
forward-leak ones in practice. In fact, we prove that confidentiality in the backward-leak uni-directional
key updates setting is strictly stronger than that in the forward-leak uni-directional key updates setting.

4Everspaugh et al. [EPRS17] presented a ciphertext-independent UE scheme from authenticated encryption (AE). However,
they assume an AE scheme is secure against related key attacks. So far, it seems that we need the power of public key encryption
(such as DDH) to achieve related key secure AE [HLL16]. In addition, Everspaugh et al. retracted the ciphertext-independent
construction in their full version paper (https://eprint.iacr.org/2017/527/20180903:192110).
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On meaningful combination with bi/uni-directional ciphertext updates. For ciphertext updates, it
is natural to consider only the uni-directional ciphertext updates in Definition 3.6 since updating ciphertext
should go forward direction due to the nature of UE. Of course, we can define another uni-directional
ciphertext updates (called “backward uni-directional” or “downgrade-only” ciphertext updates), but it is
not meaningful.

Jiang considered a setting where key updates are uni-directional (this is forward-leak uni-directional
by our definition) and ciphertext updates are bi-directional. This is meaningful only in the forward-leak
uni-directional key updates since forward-leak uni-directional and bi-directional key updates are equivalent
by Jiang’s result. However, it is unnatural to consider bi-directional ciphertext updates with backward-leak
uni-directional key updates. This is because we show that backward-leak uni-directional key updates
are strictly stronger than bi-directional key updates. In addition, it is difficult to use ∆e+1 to convert a
ciphertext under ke+1 into one under ke in the backward-leak uni-directional key updates setting. This
observation affects a theorem proved by Jiang [Jia20, Theorem 3.2 in the ePrint ver.] (Theorem 4.9 in this
paper), which we explain later.

Relaxed firewall. As we observed above, it is natural to consider uni-directional ciphertext updates in
the backward uni-directional key updates setting. In this setting, adversaries cannot convert a ciphertext
at the challenge epoch into a ciphertext at an older epoch by using tokens. Thus, even if a token ∆fwl at a
left firewall fwl is given to adversaries when a challenge epoch is in between fwl and fwr, adversaries
cannot obtain a challenge-equal ciphertext at an epoch whose secret key is corrupted. We define this
modified firewall notion as relaxed firewall below.

Definition 4.2 (Relaxed Firewall). A relaxed insulated region with relaxed firewalls fwl and fwr is a
consecutive sequence of epochs [fwl, fwr] for which:

• No key in the sequence of epochs [fwl, fwr] is corrupted. That is, it holds [fwl, fwr] ∩K = ∅.

• The token ∆fwr+1 is not corrupted if they exist. That is, it holds fwr + 1 /∈ T .

• All tokens (∆fwl, . . . , ∆fwr) can be corrupted. That is, [fwl, fwr] ⊆ T .

The difference from Definition 3.8 is that ∆fwl can be corrupted.

Definition 4.3 (Relaxed Insulated Region). The union of all relaxed insulated regions is defined as
rIR :=

⋃
[fwl,fwr]∈rFW [fwl, fwr], where rFW is the set of relaxed insulated region with relaxed firewalls.

As we will see in the proof of Theorem 4.8, there exists an epoch such that it is set as the
challenge ciphertext epoch (does not trigger the trivial winning condition), but not in a firewall area
under Definition 3.8 (the original definition of firewall). In the example in Figure 3, which will appear
later, epoch {5} is such an area. Therefore, we introduce the modified notion.5

More observation. We present a minor observation in Appendix A.

Summary of observations. We summarize possible combinations for token generation and directions
of key and ciphertext updates in Table 1. Note that we do not consider using obfuscation in this table. In
each field, possible types are written. In the key update column, “forward-leak? or bi?” means that it can
be forward-leak, but in this case, it might not be able to update a ciphertext in the forward direction. If
it can update, it essentially includes ske and should be bi-directional. In the ciphertext update column,
“backward-leak? or bi?” means that it can be backward, but it does not fit the nature of UE, and if it can

5In the previous version of this paper, we introduced extrusion area of firewall. However, we found that the relaxed firewall
notion is a more appropriate notion. Thus, we introduce the relaxed firewall.
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be forward, it essentially has the power of bi-directional updates. That is, the second-row case could
collapse to the first-row case in Table 1 if the second case works as UE (ciphertext updates are in the
forward direction). Lastly, “?” means that we do not know whether this type can update a ciphertext or
not (or it is unlikely that the type can update a ciphertext).

All previous ciphertext-independent updates UE schemes fall into the first row category. Our scheme
in Section 5 falls into the third row category. There might be a hope that we can achieve a no-directional
UE scheme by using obfuscation-like techniques (but without obfuscation) in the third row case. It is an
interesting open question.

Table 1: Possible combinations for token generation from pk or sk and its relationship to possible directions of key
updates and ciphertext updates.

use pk or sk key update type ct update type

TokGen(ske, ske+1) bi bi
TokGen(pke, ske+1) forward-leak? or bi? backward? or bi?
TokGen(ske, pke+1) backward-leak forward
TokGen(pke, pke+1) no ?

4.3 Relationships

We show that bi-directional key updates does not imply backward-leak uni-directional key updates in this
section. More precisely, we prove the following

Theorem 4.4. There exist secure r-IND-UE-CPA UE schemes in the bi-directional key updates setting
that are not r-IND-UE-CPA in the backward-leak uni-directional key updates setting.

On the equivalence between bi-directional and uni-directional key updates. First, we review a
simple fact. It is easy to see that the following theorem holds by the definition of confidentiality
(Definition 3.3).

Theorem 4.5. If a UE scheme is r-IND-UE-CPA in the backward-leak uni-directional, forward-leak
uni-directional, or no-directional key updates setting, it is also r-IND-UE-CPA secure in the bi-directional
key updates setting.

Next, we review Jiang’s equivalence theorem.

Theorem 4.6 ([Jia20, Theorem 2]). Let UE be an UE scheme and notion ∈ {d-ind-ue-cpa, r-ind-ue-cpa,
d-ind-ue-cca, r-ind-ue-cca, int-ctxt, int-ptxt}. For any kk, kk′ ∈ {f-uni, bi}, cc, cc′ ∈ {uni, bi}, and any
(kk, cc)-notion adversary A against UE, there exists a (kk′, cc′)-notions adversary B against UE such
that

Adv(kk,cc)-notion
UE,A (1λ) = Adv(kk′,cc′)-notion

UE,B (1λ).

The key lemma for proving Jiang’s theorem (Theorem 4.6) for the confidentiality case is the following.

Lemma 4.7 ([Jia20, Lemma 6]). For any K, T , C, we have K∗f-uni ∩ C∗f-uni,uni 6= ∅⇔ K∗bi ∩ C∗bi,bi 6= ∅.

See Definitions 3.6 and 4.1 for the sets in the lemma. Note that this lemma holds for forward-leak
uni-directional key updates. We show a counterexample to this lemma (for confidentiality) in the case of
the backward-leak uni-directional key updates setting.
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0 {1} 2 3 4 5 {6 7} 8

K X × × × X × × × X
T × × × X X X × X ×
K∗bi X × " " X " × × X
T ∗bi × × × X X X × X ×
K∗f-uni X × × × X " × × X
T ∗f-uni × × × X X X × X ×
K∗b-uni X × " " X × × × X
T ∗b-uni × × × X X X × X ×

Figure 3: Example of leakage sets in the setting of bi/forward/backward-leak uni-directional key updates where
K := {0, 4, 8}, T := {3, 4, 5, 7}, IR = {1, 6, 7}. Here,× andX indicates an epoch key or token is not corrupted
and corrupted, respectively. The boldface check mark"indicates an epoch key or token is inferred from other
corrupted keys/tokens.

Counterexample in backward-leak uni-directional key updates setting. Looking at an example is
the best thing to understand relationships. We consider an example of epoch key leakage sets in Figure 3.

In the example in Figure 3, the firewall area is IR = {1, 6, 7}. The difference between the bi-
directional setting and forward-leak uni-directional setting is the epochs 2 and 3. The difference between
the bi-directional setting and backward-leak uni-directional setting is the epoch 5. (Both differences are
underlined in Figure 3.) We investigate each difference in the forward/backward-leak uni-directional
settings.

The case of bi/forward-leak uni-directional key updates: First, we consider the bi/forward-leak uni-directional
key updates settings. If we set C = {3}, it holds C∗bi,bi = {2, 3, 4, 5} and C∗f-uni,uni = {3, 4, 5}.
Thus, K∗bi ∩ C∗bi,bi = {2, 3, 4, 5} 6= ∅ and K∗f-uni ∩ C∗f-uni,uni = {4, 5} 6= ∅. If we set C = {5}, it
holds that K∗bi ∩ C∗bi,bi = {2, 3, 4, 5} 6= ∅ and K∗f-uni ∩ C∗f-uni,uni = {5} 6= ∅. This is consistent
with Lemma 4.7 (Jiang’s Lemma 6 [Jia20]). Note that if we set C = {2}, we obtain a similar result
to C = {3}.

The case of bi/backward-leak uni-directional key updates: Next, we consider the bi/backward-leak uni-
directional key updates settings. If we set C = {3}, it holds C∗bi,bi = {2, 3, 4, 5} and C∗b-uni,uni =
{3, 4, 5} since ∆5 is given even though k5 is not given in the backward-leak uni-directional setting.
Thus, it holds K∗bi ∩ C∗bi,bi = {2, 3, 4, 5} 6= ∅ and K∗b-uni ∩ C∗b-uni,uni = {3, 4} 6= ∅. However, if
we set C = {5}, the difference between forward/backward directional key updates is clear. Now,
K∗bi ∩ C∗bi,bi = {2, 3, 4, 5} 6= ∅, but K∗b-uni ∩ C∗b-uni,uni = ∅ since we cannot infer k5 (the key at
epoch 5) due to the definition of backward-leak uni-directional key updates (we cannot go to forward
direction even if we are given k4 and ∆5.). This means that even if we set C = {5}, the trivial
winning condition is not triggered in the backward-leak uni-directional setting. However, the trivial
winning condition in the bi-directional setting is triggered. Therefore, this is a counterexample
to Lemma 4.7 (Jiang’s Lemma 6 [Jia20]) whenwe use the definition of backward-leak uni-directional
key updates.

By using the example above, we immediately obtain the following theorem.

Theorem4.8. The ciphertext-independentUE schemes LehmanandTackmann [LT18], Boyd et al. [BDGJ20],
and Jiang [Jia20] do not satisfy confidentiality in the backward-leak uni-directional setting.

Proof. We use the leakage sets example K and T in Figure 3 and set C = {5}. This does not trigger the
trivial winning condition in the backward-leak uni-directional setting. However, an adversary can infer k5
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by using k4 and ∆5 in the bi-directional key updates schemes described in the theorem statement. Thus,
the adversary trivially wins the confidentiality game in the backward-leak uni-directional setting since a
challenge ciphertext is encrypted under k5.

By Theorem 4.8 and the results by Lehman and Tackmann [LT18], Boyd et al. [BDGJ20], and
Jiang [Jia20], we immediately obtain Theorem 4.4 since they show that their schemes satisfy confidentiality
in the bi-directional key updates setting. Therefore, surprisingly (or unsurprisingly), UE with backward-
leak uni-directional (and no-directional) key updates is strictly stronger than UE with bi-directional key
updates by Theorems 4.4 and 4.5.

On equivalence between no/uni/bi-directional key updates in bi-directional ciphertext update set-
ting. We give an observation on the equivalence theorem about no-directional key updates. Jiang also
proves the following theorem.

Theorem 4.9 ([Jia20, Theorem 3.2 in the ePrint ver.]). Let UE be an UE scheme and notion ∈
{d-ind-ue-cpa, r-ind-ue-cpa, d-ind-ue-cca, r-ind-ue-cca}. For any (no, bi)-notion adversary A against
UE, there exists a (f-uni, bi)-notions adversary B against UE such that

Adv(no,bi)-notion
UE,A (1λ) = Adv(f-uni,bi)-notion

UE,B (1λ).

This theorem seems to contradict our conclusion above, which says UE with no-directional key updates
is strictly stronger than UE with forward-leak uni-directional key updates. Recall that no-directional key
updates is stronger than backward-leak uni-directional key updates. We also note that bi-directional key
updates and forward-leak uni-directional key updates are equivalent.

The source of the puzzle above comes from the theorem holds for bi-directional ciphertext updates.
The key lemma for proving Jiang’s theorem above (Theorem 4.9) is the following.

Lemma 4.10 ([Jia20, Lemma 3.15 in the ePrint ver.]). For any K, T , C, we have K∗f-uni ∩ C∗f-uni,bi 6=
∅⇒ K∗no ∩ C∗no,bi 6= ∅.

The proof of the lemma above heavily relies on the bi-directional ciphertext update setting. As we
argued in Section 4.2, it is unnatural to consider bi-directional ciphertext updates with backward-leak
uni-directional (and no-directional) key updates. Thus, if we exclude such an unnatural or artificial setting,
the equivalence theorem above (Theorem 4.9), which is counterintuitive, does not hold in the case of the
backward-leak uni-directional key updates setting.

5 Construction with Backward-Leak Uni-Directional Key Update

In this section, we present a backward-leak uni-directional key update scheme from the LWE assumption.

5.1 Scheme Description and Design Idea

We present a UE scheme with backward-leak uni-directional key updates based on the Regev PKE
scheme [Reg09], and denoted by RtR. A proxy re-encryption scheme by Nishimaki and Xagawa [NX15]
inspired this construction idea.

The ciphertext update technique is based on the key-switching technique [BV14, BV11, BGV14].
In particular, we use that for multi-bit plaintexts [BGH13]. In the following, we denote a plaintext by
µ ∈ {0, 1}` and error distributions by χ and χns.
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A variant of Regev PKE scheme. We review a variant of Regev PKE scheme [Reg09] in the multi-user
settings.

• Setup(1λ): Choose A← Zm×n
q and output pp := (A, 1λ, 1n, 1m, 1`, q, χ, χns).

• Reg.Gen(pp): Choose S← Zn×`
q and X ← χm×`, compute B := AS + X ∈ Zm×`

q , and outputs
pk = B and sk = S.

• Reg.Enc(pk, µ): Choose r ← {−1,+1}m and e′ ← χ`
ns and output (u, c) := (rA, rB + e′ +

bq/2c µ).

• Reg.Dec(sk, (u, c)) Compute d := c− uS and output µ := b(2/q)de mod 2.

Key-switching technique. We review the key-switching technique in the multi-bit version for our update
algorithm. Let η := dlg qe. We give the definitions of the binary-decomposition algorithm BD(·) and
the powers-of-2 algorithm P2(·).

• BD(x ∈ Zn
q ): It decomposes x = ∑

η
k=1 2k−1uk, whereuk ∈ {0, 1}n, and outputs (u1, u2, . . . , uη) ∈

{0, 1}nη .

• P2(s ∈ Zn×1
q ): It outputs [1, 2, . . . , 2η−1]> ⊗ s = [s; 2s; . . . ; 2η−1s] ∈ Z

nη×1
q , where ⊗ denotes

the standard tensor product. We extend the domain of P2 by setting P2([s1 . . . s`] ∈ Zn×`
q ) =

[P2(s1) . . . P2(s`)] ∈ Z
nη×`
q .

By the definition, it holds that BD(x) · P2(S) = x · S ∈ Z`
q for any x ∈ Zn

q and S ∈ Zn×`
q .

Let Se, Se+1 ∈ Zn×`
q be two secret keys at epoch e, e + 1, respectively. The key-switching technique

enables us to homomorphically decrypt a ciphertext at epoch e and obtain a ciphertext at epoch e + 1 by
using encryption of Se under the key at epoch e + 1. More formally, the key-switching matrix Me+1 is
[A′ | A′Se+1 + Y ] + [O | −P2(Se)], where A′ ← Z

nη×n
q , Y ← χnη×`. To update a ciphertext (u, c)

under Se to one under Se+1, we compute (u′, c′) = (0, c) + BD(u)Me+1. By simple calculation, we
have that

(u′, c′) = (0, c) + BD(u)
(
[A′ | A′Se+1 + Y ] + [O | −P2(Se)]

)
= (BD(u)A′, c− uSe + BD(u)A′Se+1 + BD(u) · Y).

To decrypt ciphertext by secret key Se+1, we compute

c′ − u′Se+1 = c− uSe + BD(u)A′Se+1 + BD(u) · Y − BD(u)A′Se+1

= c− uSe + BD(u) · Y .

Thus, the decryption is correct if the magnitude of additional noises BD(u) · Y is small.

backward-leak uni-directional update. In fact, we do not need the secret key Se+1 at epoch e + 1 for
update. We set Be+1 = ASe+1 + Ye+1, which we call the public key part of the key at epoch e + 1. We
choose Re+1 ← {−1,+1}nη×m and compute an update token

Me+1 = Re+1[A | Be+1] + [O | −P2(Se)]

= [A′ | A′Se+1 + Y ′] + [O | −P2(Se)],

where A′ = Re+1A and Y ′ = Re+1Y j. By using Me+1, we can update ciphertext (u, c) at epoch e.
Thus, even if given the key Se at epoch e and the token Me+1, we cannot infer Se+1 since only the public
key part Be+1 (this is pseudorandom by the LWE assumption) of the key at epoch e + 1 is embedded
in Me+1. Note that Se and Se+1 are independently chosen. However, if given the key Se+1 at epoch
e + 1 and the token Me+1, we can easily infer Se since Se is encrypted under Se+1. Thus, this update
mechanism is a backward-leak uni-directional key update and uni-directional ciphertext update.
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How to achieve randomized update. The update algorithm above is deterministic. To re-randomize an
updated ciphertext, we set the update token as Me+1 and Be+1, which is the public key part at epoch e+ 1.
First, we convert ciphertext (u, c) at epoch e into (u′, c′) using Me+1 as above and masking (u′, c′) with
a new ciphertext (ũ, ṽ) := r̃[A | Be+1] of the plaintext 0. This is not enough for confidentiality since it
includes information about Be+1 and is not random. To overcome this issue, we randomize [A | Be+1]
into Ne+1 = R′e+1 · [A | Be+1], where R′e+1 ← {−1,+1}m×m and add it to ∆e+1. Since the matrix
Ne+1 consists of m ciphertexts of the message 0, this is pseudorandom. The update token consists of
key-switching matrix Me+1 and randomized matrix Ne+1.

Backward-leak uni-directional key update scheme. A UE scheme, RtR, is defined as follows:

Setup(1λ):

1. Choose A← Zm×n
q .

2. Output pp := (A, 1λ, 1n, 1m, 1`, q, χ, χns).

Gen(pp):

1. Generate (Be, Se)← Reg.Gen(1λ).
2. Output ke := (ske, pke) := (Se, Be).

Enc(ke, µ ∈ {0, 1}`):

1. Parse ke = (Se, Be).
2. Generate (u, c)← Reg.Enc(Be, µ).
3. Output ct := (u, c) ∈ Zn

q ×Z`
q.

Dec(ke, ct):

1. Parse ke = (Se, Be) ct = (u, c).
2. Compute and output µ← Reg.Dec(Se, ct).

TokGen(ke, ke+1):

1. Parse ke = (Se, Be) and ke+1 = (Se+1, Be+1).
2. Compute Me+1 := Re+1 · [A | Be+1] + [O | −P2(Se)], where Re+1 ← {−1,+1}nη×m.
3. Compute Ne+1 := R′e+1 · [A | Be+1], where R′e+1 ← {−1,+1}m×m.
4. Output ∆e+1 := (Me+1, Ne+1).

Upd(∆e+1, cte):

1. Parse ∆e+1 = (Me+1, Ne+1) and cte = (ue, ce).
2. Compute (u′, c′) := BD(ue)Me+1;
3. Compute (ũ, ṽ) := r̃ · Ne+1, where r̃ ← {−1,+1}m;
4. Output cte+1 := (ū, c̄) := (u′ + ũ, ce + c′ + ṽ).

For notational convenience, we call pke = Be and ske = Se public key and secret key of epoch e,
respectively. Note that we can run Enc without ske = Se (we need only pke = Be). We also note that we
can run TokGen(ke, ke+1) without ske+1 (we need only pke+1 and ske).

The scheme is correct and r-IND-UE-CPA secure. We prove the following theorems in Sections 5.2
and 5.3. Let T be the maximum number of the epoch.
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Theorem 5.1. Let χ and χns be B-bounded and B′-bounded distributions, respectively, such that
B/B′ = negl(λ) and m = 2n lg q + ω(

√
lg λ). Suppose that (1 + nη + m)mB + B′ ≤ q/4T. Then

RtR is correct.

Theorem 5.2. Suppose that m ≥ (n + `) lg q + ω(lg λ). Under the LWE(n, q, χ) assumption, RtR is r-
IND-UE-CPA secure in the backward-leak uni-directional setting. That is, Adv(b-uni,uni)-r-ind-ue-cpa

RtR,A (1λ) ≤
negl(λ).

5.2 Correctness

We give rough estimations on B-bounded and B′-bounded distributions χ and χns, respectively, for
simplicity. However, if we set χ = Ψ̄α or DZ,s, we can obtain tighter bounds.

Proof of Theorem 5.1. The theorem follows from Propositions 5.3 and 5.4 below.

Proposition 5.3. The scheme is correct for the encryption algorithm if mB + B′ < q/4.

Proposition 5.4. The scheme is correct for the update algorithm if (1 + nη + m)mB + B′ < q/4T.

Those correctness easily follows from the proof by Regev [Reg09]. For completeness, we include the
proofs.

Proof of Proposition 5.3. Let (S, B) = (S, AS + X), where S← Zn×`
q and X ← χm×` be a key ke of

epoch e. To decrypt a ciphertext (u, c) = (rA, rB + bq/2c µ) of the message µ ∈ {0, 1}` with S under
ke, we compute

d = c− uS = bq/2c µ + e′ + rB− rAS
= bq/2c µ + e′ + rX.

If ‖e′‖∞ + ‖rX‖∞ < q/4, we can obtain µ = b2d/qe mod 2. Since r ∈ {−1,+1}m and X consists
of samples from a B-bounded distribution, ‖rX‖∞ is at most mB. In addition, e′ are from a B′-
bounded distribution, ‖e′‖∞ is at most B′. From the parameter setting of Proposition 5.3, we have
‖e′ + rX‖∞ ≤ ‖e′‖∞ + ‖rX‖∞ ≤ mB + B′ < q/4T. This completes the proof.

Proof of Proposition 5.4. Let Be = ASe + Xe and Be+1 = ASe+1 + Xe+1 be public keys of epoch e
and e + 1, respectively, where Se, Se+1 ← Zn×`

q and Xe, Xe+1 ← χm×`. The update token from e to
e + 1 is generated as

Me+1 = Re+1[A | Be+1] + [O | −P2(Se)] and Ne+1 = R′e+1 · [A | Be+1],

where Re+1 ← {−1,+1}nη×m and R′e+1 ← {−1,+1}m×m. We consider a ciphertext (u, c) =
r[A | Be] + e′e + (0, bq/2c µ) of the message µ ∈ {0, 1}`, and an updated ciphertext (ū, c̄) =
(u′ + ũ, c + c′ + c̃) = (0, c) + BD(u) ·Me+1 + r̃ · Ne+1, where r̃ ← {−1,+1}m.

The decryption algorithm Dec(Se+1, (ū, c̄)) computes

d = c̄− ūSe+1

= c + BD(u)Me+1[−Se+1; I`] + r̃Ne+1[−Se+1; I`]
= c + BD(u) (Re+1(Be+1 − ASe+1)− P2(Se)) + r̃R′e+1(Be+1 − ASe+1)

= c− uSe + (BD(u)Re+1 + r̃R′e+1)Xe+1

= bq/2c µ + e′e + rXe + (BD(u)Re+1 + r̃R′e+1)Xe+1︸ ︷︷ ︸
=:δ

,
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where we used the equation Be+1 = ASe+1 + Xe+1. As in the proof of Proposition 5.3, if ‖δ‖∞ < q/4,
we can correctly decrypt the update ciphertext into µ by Se+1. We have that following bounds by routine
calculation:∥∥e′e

∥∥
∞ ≤ B′, ‖rXe‖∞ ≤ mB, ‖BD(u)Re+1Xe+1‖∞ ≤ nη ·mB, and ‖r̃R′e+1Xe+1‖∞ ≤ m2B.

From the triangle inequality and the parameter setting, we have that

‖δ‖∞ ≤
∥∥e′e
∥∥
+
‖rXe‖∞ + ‖BD(u)Re+1Xe+1‖∞ + ‖r̃R′e+1Xe+1‖∞

≤ B′ + mB + nηmB + m2B = (1 + nη + m)mB + B′

< q/4T ≤ q/4.

Thus, when we update a ciphertext once, a noise is added and its magnitude is at most q/4T. This means
that we can update a ciphertext T times. We complete the proof.

5.3 Confidentiality

We show RtR is r-IND-UE-CPA in the backward-leak uni-directional setting. First, we see that RtR
satisfies uni-directional ciphertext updates.

Lemma 5.5. If (Setup, Reg.Gen, Reg.Enc, Reg.Dec) is IND-CPA secure PKE, adversaries cannot convert
a ciphertext under a public key pke+1 into one under a public key pke even if they are given ∆e+1.

Proof. We construct an algorithm B that breaks IND-CPA security under pke+1 by using an adversary D
that converts a ciphertext under pke+1 into one under pke by using (pke, ske), pke+1, and ∆e+1.

First, B is given pke+1. B generates (pke, ske) and ∆e+1 ← TokGen(ske, pke+1), selects any
(m0, m1), sends (m0, m1) to its challenger, and receives a target ciphertext ct∗ ← Reg.Enc(pke+1, mb)
where b ← {0, 1}. Next, B sends ((pke, ske), ∆e+1, ct∗) to D. D outputs a ciphertext ct′ under pke.
Then, B computes m′ ← Reg.Dec(ske, ct′) by using ske and if m′ = mb′ , it outputs b′.

It is easy to see that ifD can convert ct∗ into a ciphertext under pke, B outputs b′ = b. This completes
the proof.

Second, we look at the detail of the update procedure again. By simple calculation, we obtain

(ū, c̄) = (u′ + ũ, ce + c′ + c̃)
= (0, ce) + BD(ue) ·Me+1 + r̃ · Ne+1

= ((BD(ue)Re+1 + r̃R′e+1)A,
(BD(ue)Re+1 + r̃R′e+1)ASe+1 + (BD(ue)Re+1 + r̃R′e+1)Xe+1 + e′e + rXe + bq/2c µ)

= (r† A, r†Be+1 + e′e + rXe + bq/2c µ) where r† := BD(ue)Re+1 + r̃R′e+1
s≈ (r† A, r†Be+1 + e′e + bq/2c µ). (1)

The last equation (statistical indistinguishability) holds by Lemma 2.2. This equation shows that we can
simulate an update ciphertext by using the original ciphertext, its plaintext and randomness, the new
epoch public key, and randomness for generating the token ∆e+1 (not the token itself).

To show the security, we define auxiliary algorithms for simulation.

Hyb.Upd(cte, Be+1, µ; e′e, (Re+1, R′e+1)):

• Parse cte = (ue, ce)

• Choose r̃ ← {−1,+1}m.
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• Set r† := BD(ue)Re+1 + r̃R′e+1.
• Set cte+1 := (ū, c̄) := (r† A, r†Be+1 + e′e + bq/2c µ).
• Output (cte+1; e′e).

Sim.Gen(pp):

• Choose B+
e ← Zm×`

q .

• Output pke := B+
e .

Sim.TokGen(pp):

• Choose M+
e+1 ← Z

nη×(n+`)
q and N+

e+1 ← Z
m×(n+`)
q .

• Output ∆+
e+1 := (M+

e+1, N+
e+1).

Sim.Upd(pp):

• Choose (ū, c̄)← Zn
q ×Z`

q.
• Output cte+1 := (ū, c̄).

Sim.Enc(pp):

• Choose (ū, c̄)← Zn
q ×Z`

q.
• Output cte := (ū, c̄).

Lemma 5.6. Upd(∆e+1, cte)
s≈ Hyb.Upd(cte, Be+1, µ; e′e, (Re+1, R′e+1))

By Equation (1), Lemma 5.6 immediately holds. That is, we can simulate O.Upd(cte) by using
Hyb.Upd(cte, Be+1, µ; e′e, (Re+1, R′e+1)).

We follow the firewall technique [LT18, KLR19, BDGJ20, Jia20] to prove security, but we use the
relaxed firewall notion in Definition 4.2.

Proof of Theorem 5.2. Let T be the upper bound of the number of epoch. We consider a sequence of
hybrid games. First, we define the following hybrid game:

Hybi(b): This is the same as Exp(b-uni,uni)-r-ind-ue-cpa
RtR,A (λ, b) except the following difference: When the

adversary sends a query (µ, ct) to O.Chall or an empty query to O.UpdC̃ at epoch j,

• for j < i, return an honestly generated challenge-equal ciphertext. That is, if b = 0,
UE.Enc(kẽ, µ) else UE.Upd(∆ẽ, ct).

• for j ≥ i, return a random ciphertext.

It is easy to see that HybT+1(b) is the same as the original r-INE-UE-CPA game in the backward-
leak uni-directional setting Exp(b-uni,uni)-r-ind-ue-cpa

RtR,A (λ, b). Let U(λ) be a random variable distributed
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uniformly in [0, T], by the standard hybrid argument, we have

Advr-ind-ue-cpa
RtR,A (λ)

= |Pr[HybT+1(1) = 1]− Pr[HybT+1(0) = 1]|

=

∣∣∣∣∣ T

∑
i=0
{(Pr[Hybi+1(1) = 1]− Pr[Hybi(1) = 1])− (Pr[Hybi+1(0) = 1]− Pr[Hybi(0) = 1])}

∣∣∣∣∣(2)
=

∣∣∣∣∣ T

∑
i=0

(Pr[HybU(λ)+1(1) = 1 | U(λ) = i]− Pr[Hybi(1) = 1 | U(λ) = i])

−
T

∑
i=0

(Pr[Hybi+1(0) = 1 | U(λ) = i]− Pr[Hybi(0) = 1 | U(λ) = i])

∣∣∣∣∣
= (T + 1)

∣∣∣∣∣ T

∑
i=0

(Pr[HybU(λ)+1(1) = 1∧U(λ) = i]− Pr[HybU(λ)(1) = 1∧U(λ) = i])

−
T

∑
i=0

(Pr[HybU(λ)+1(0) = 1∧U(λ) = i]− Pr[HybU(λ)(0) = 1∧U(λ) = i])

∣∣∣∣∣ (3)

≤ (T + 1)|Pr[HybU(λ)+1(1) = 1]− Pr[HybU(λ)(1) = 1]|
+ (T + 1)|Pr[HybU(λ)+1(0) = 1]− Pr[HybU(λ)(0) = 1]|,

where we use Pr[U(λ) = i] = 1/(T + 1) for Equation (3). Note that Hyb0(0) = Hyb0(1) trivially
holds since all challenge-equal ciphertexts are random ciphertexts. We use this fact in Equation (2). Thus,
our goal is to prove |Pr[HybU(λ)+1(b) = 1]− Pr[HybU(λ)(b) = 1]| ≤ negl(λ) for b ∈ {0, 1}.

Hereafter, we write Hybi(b) instead of HybU(λ)(b) for simplicity. Next, we define the following
hybrid game:

Hyb′i(b): This is the same as Hybi(b) except that the game chooses fwl, fwr← [0, T]. If the adversary
corrupts kj such that j ∈ [fwl, fwr] or ∆fwr+1, the game aborts.

The guess is correct with probability 1/(T + 1)2. We have

|Pr[Hybi(b) = 1]− Pr[Hybi−1(b)]| ≤ (T + 1)2|Pr[Hyb′i(b) = 1]− Pr[Hyb′i−1(b) = 1]|.

If |Pr[Hyb′U(λ)+1(b) = 1] − Pr[Hyb′U(λ)(b) = 1]| ≤ negl(λ), we complete the proof of Theo-
rem 5.2.

Lemma 5.7. If the LWE assumption holds, it holds that |Pr[Hyb′i+1(b) = 1]− Pr[Hyb′i(b) = 1]| ≤
negl(λ).

Proof. Note that the difference between these two games appears when the challenge query is sent at
epoch i, so we can assume ẽ = i. We start from Hyb′i+1(b) and gradually change it to Hyb′i(b). We define
another sequence of games.

Hybr
i (b): This is the same as Hyb′i(b) except that we use the hybrid update algorithm Hyb.Upd to simulate
O.Upd. More precisely, O.Upd(cte−1) act as follows:

• If (·, cte−1, e− 1; e′e−1; µ) /∈ L, then return ⊥
• Otherwise, (cte, e′e)← Hyb.Upd(cte−1, Be, µ; e′e−1, (Re, R′e)).
• L := L ∪ {(·, cte, e; e′e, µ)}.
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Note that Re and R′e are randomness used in TokGen, so anyone can choose them. Simulators
internally choose and record them.

Proposition 5.8. |Pr[Hyb′i(b) = 1]− Pr[Hybr
i (b) = 1]| ≤ negl(λ).

It is easy to see Proposition 5.8 holds by Lemma 5.6. The next goal is proving |Pr[Hybr
i+1(b) =

1]− Pr[Hybr
i (b) = 1]| ≤ negl(λ). We define the following games.

Gj(i, b): This is the same as Hybr
i (b) except the following difference.

• For i ≤ k < j, pkk and ∆k are honestly generated as in the real.
• For fwr ≥ k ≥ j, pkk and ∆k are uniformly random.

That is, we gradually erase information about UE secret keys from newer epochs to older epochs. We note
that j ∈ [i, fwr + 1] and i is fixed. By the definition, we have

Gfwr+1(i + 1, b) = Hybr
i+1(b) and Gfwr+1(i, b) = Hybr

i (b). (4)

We prove that

|Pr[Gj+1(i + 1, b) = 1]− Pr[Gj(i + 1, b) = 1]| ≤ negl(λ) for j ∈ [i, fwr] (5)
|Pr[Gi(i + 1, b) = 1]− Pr[Gi(i, b) = 1]| ≤ negl(λ) (6)
|Pr[Gj+1(i, b) = 1]− Pr[Gj(i, b) = 1]| ≤ negl(λ) for j ∈ [i, fwr]. (7)

From these equations, we immediately obtain

|Pr[Gfwr+1(i + 1, b) = 1]− Pr[Gfwr+1(i, b)]| ≤ negl(λ).

By combining this with Proposition 5.8 and Equation (4), we obtain what we want to prove (Lemma 5.7).
Thus, all we must do is proving Equations (5) to (7).

First, we prove Equation (5). We define a few hybrid games as follows.

• Game-0(b): This is the same as Gj+1(i + 1, b). At this point, public keys and tokens of epochs in
[i, j] are real values while those at epochs in [j + 1, fwr] are already random values.

• Game-1(b): This is the same as Game-0(b) except that we modify the public key part of epoch j.
We use B+

j ← Zm×`
q instead of Bj such that (Sj, Bj) ← Reg.Gen(1λ). Note that we do not use

the secret key Sj of epoch j anywhere in this game since ∆j+1 is already a random value.

• Game-2(b): This is the same as Game-1(b) except that we modify the token generation algorithm
for token ∆j. We use ∆j := (M+

j , N+
j ) ← Z

nη×(n+`)
q ×Z

m×(n+`)
q instead of (M j, N j) ←

TokGen(kj−1, kj).

Obviously, Game-2(b) is the same as Gj(i + 1, b). It is easy to see if we prove the following, we complete
the proof of Equation (5).

Proposition 5.9. If the LWE assumption holds, it holds that |Pr[Game-1(b) = 1]− Pr[Gj+1(i + 1, b) =
1]| ≤ negl(λ).

Proposition 5.10. It holds that |Pr[Game-2(b) = 1]− Pr[Game-1(b) = 1]| ≤ negl(λ).

We will prove these propositions above later.
Next, we prove Equation (6). The only difference between Gi(i + 1, b) and Gi(i, b) is the challenge-

equal ciphertext at epoch i. That is, Gi(i, b) is the same as Gi(i + 1, b) except that we modify the
challenge-equal ciphertext for b at epoch i. We use (ū, c̄)← Zn

q ×Z`
q instead of (ū, c̄)← Upd(∆+

i , ct)
(the case b = 1) or (ū, c̄)← Enc(ki, µ0) (the case b = 0). We prove the following proposition later.
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Proposition 5.11. It holds that |Pr[Gi(i + 1, b) = 1]− Pr[Gi(i, b) = 1]| ≤ negl(λ).

Lastly, we prove Equation (7). Once the challenge-equal ciphertext at epoch i becomes random, we
need to go back to games where public keys and tokens are real. In Gj(i, b) for j ∈ [i, fwr], publics keys
and tokens (from epochs j to fwr) are also random. We need to change them from random to real since we
need to arrive at Hybr

i , where public keys and tokens are real (but ciphertext at epoch i is random). Thus,
we need to prove Equation (7). These backward transitions are possible by using the proof of Equation (5)
in a reverse manner. We summarize how public keys, update tokens, and challenge-equal ciphertexts at
epoch i are generated in Figure 4.

Value Gi+1(i + 1, b) Game-1 Game-2 = Gi(i + 1, b) Gi(i, b)

pki Reg.Gen(1λ) Sim.Gen(pp) Sim.Gen(pp) Sim.Gen(pp)
∆i TokGen(ski−1, pki) TokGen(ski−1, pki) Sim.TokGen(pp) Sim.TokGen(pp)
ct∗i,1 Upd(∆i, cti−1) Upd(∆i, cti−1) Upd(∆+

i , cti−1) Sim.Upd(pp)
ct∗i,0 Enc(pki, µ0) Enc(pki, µ0) Enc(pki, µ0) Sim.Enc(pp)

Figure 4: The differences of public keys, update tokens, challenge-equal ciphertexts at epoch i in hybrid games.
We focus the case where i = ẽ.

Thus, we complete the proof of Lemma 5.7 if we prove Propositions 5.9 to 5.11. We write those
proofs below.

Proofs of core propositions. We give the proofs of Propositions 5.9 to 5.11.

Proof of Proposition 5.9. We construct a reduction B that solves the LWE problem by using the distin-
guisher A for the two games.

Recall that the key kj of epoch j consists of (skj, pkj). B is given an LWE instance (A, B) and set
Bj := B. That is, B is used as the public key pkj of epoch j. Note that B can simulate all values in epoch
k ∈ [0, T] \ [fwl, fwr] since all values in epoch k (outside the firewall) are independent of the secret key
of epoch j. (Note that such values may be related to the public key of epoch j via tokens.) That is, B
can choose the secret key Sk. We also note that B can simulate O.Upd by using Hyb.Upd. In [fwl, fwr],
values are related to the secret key S behind B. However, in Gj+1(i + 1, b) (and Game-1(b)), all values in
[j + 1, fwr] are uniformly random values. Note that the original update token ∆j+1 needs skj and pkj+1.
However, ∆j+1 was already changed to ∆+

j+1, which is uniformly random value, and we do not need skj.
Thus, the issue is how to simulate values in epoch j′ such that j′ ∈ [fwl, j] (including the case where

fwl = j). As we see in the definition of TokGen, we do not need skj to generate ∆j and B can simulate ∆j.
Therefore, B can also simulate ct∗j,b for both b = 0, 1. For j′′ ∈ [fwl, j− 1], public keys and tokens are
not related to skj. Thus, B chooses Sj′′ and can simulate all values (pkj′′ , ∆j′′ , ct∗j′′,b) by using the normal
algorithms.

If B = AS + X where S← Zn×`
q and X ← χm×`, the distribution is the same as Gi+1(i + 1, b). If

B is uniformly random, the distribution is the same as Game-1(b). Therefore, B distinguish the instance
if A distinguishes the two games. This completes the proof.

Proof of Proposition 5.10. The difference between these two games is as follows:

Game-1(b): ∆j = (M j, N j):

M j := Rj · [A | Bj] + [O | −P2(Sj−1)], N j := R′j · [A | Bj],

where Rj ← {−1,+1}nη×m, R′j ← {−1,+1}m×m.
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Game-2(b): ∆+
j = (M+

j , N+
j ):

(M+
j , N+

j )← Z
nη×(n+`)
q ×Z

m×(n+`)
q .

In Game-1(b) and Game-2(b), the public key Bj ← Zm×`
q is uniformly random. Thus, we can apply the

leftover hash lemma (Lemma 2.3) and these differences are statistically indistinguishable. This completes
the proof.

Proof of Proposition 5.11. The difference between these two games is as follows: For b = 1,

Gi(i + 1, 1): ct∗i,1 = (ū, c̄):

(u′ + ũ, ci−1 + c′ + ṽ) = (0, ci−1) + BD(ui)M+
i + r̃N+

i .

where r̃ ← {−1,+1}m.

Gi(i, 1): ct∗i,1 = (ū, c̄):
(ū, c̄)← Zn

q ×Z`
q.

In Gi(i + 1, b) and Gi(i, b), N+
i is uniformly random. Thus, we can apply the leftover hash lemma

(Lemma 2.3) and these differences are statistically indistinguishable. For b = 0,

Gi(i + 1, 0): ct∗i,0 = (u, c):
(rAi, rB+

i + e′ + bq/2c µ0),

where A← Zm×
q , r ← {−1,+1}m, e′ ← χ`

ns, and B+
i ← Zm×`

q .

Gi(i, 0): ct∗i,0 = (u, c):
(u, c)← Zn

q ×Z`
q.

In Gi(i + 1, b) and Gi(i, b), the public key B+
i ← Zm×`

q is uniformly random. Thus, we can apply the
leftover hash lemma (Lemma 2.3) and these differences are statistically indistinguishable. This completes
the proof.

6 Construction with No-Directional Key Update

6.1 Scheme Description

We present a no-directional key update scheme UEio from puncturable PRFs and IO. Let PRF :
{0, 1}λ × {0, 1}n → {0, 1}` and PRG : {0, 1}τ → {0, 1}n. We will set τ := λ, n := 2λ.

Setup(1λ) :

• Does nothing.

KeyGen(1λ) :

• Generate K← PRF.Gen(1λ) and output ke := K.

TokGen(ke, ke+1)

• Generate and output ∆e+1 ← iO(Cre[ke, ke+1]) where circuit Cre is described in Figure 5.

Enc(ke, µ ∈ {0, 1}`) :
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• Choose r ← {0, 1}τ and compute t := PRG(r).
• Compute y := PRF(K, t) and output ct := (t, y⊕ µ).

Dec(ke, ct) :

• Parse ke = K ct = (t, c).
• Compute µ′ := c⊕ PRF(K, t) and output µ′.

Upd(∆e+1, cte)

• Parse ∆e+1 = iO(Cre[ke, ke+1]) and choose re+1 ← {0, 1}τ.
• Compute and output (t, c) := iO(Cre[ke, ke+1])(cte, re+1).

Update Function Cre[ke, ke+1](cte, re+1)

Hardwired: ke, ke+1.
Input: A ciphertext cte and randomness re+1 ∈ {0, 1}τ .
Padding: This circuit is padded to size padT := padT(λ), which is determined in analysis.

1. Parse cte = (te, ce)

2. Compute µ′ := ce ⊕ PRF(ke, te).

3. Compute t′ := PRG(re+1) and y′ := PRF(ke+1, t′)

4. Return cte+1 := (t′, y′ ⊕ µ′).

Figure 5: The description of Cre

Theorem 6.1. UEio is an r-IND-UE-CPA secure UE scheme in the no-directional key updates setting.

6.2 Correctness

It is easy to see the UEio satisfies the correctness. The decryption algorithm computes y⊕ PRF(K, t)
from a ciphertext ct = (t, y) = (t, PRF(K, t)). Thus, µ′ = PRF(K, t)⊕ µ⊕ PRF(K, t) = µ.

The output ofUpd(∆e+1, cte) is completely the same as Enc(ke+1, µ) by the definition ofCre[ke, ke+1].
Thus, the correctness for updates also holds.

6.3 Confidentiality

Theorem 6.2. If iO, PRG, and PRF satisfy Definitions 2.6, 2.9 and 2.11, respectively, then UEio is
r-IND-UE-CPA secure in the no-dirctional key updates setting. That is, Adv(no,uni)-r-ind-ue-cpa

UEio,A ≤ negl(λ).

Proof of Theorem 6.2. Let T be the upper bound of the number of the epoch. We consider a similar
sequence of hybrid games to those in Section 5.3 at the early stage of this proof. In fact, we use the same
hybrid games.

Hybi(b): This is the same as Exp(no,uni)-r-ind-ue-cpa
UEio,A (λ, b) except the following difference: When the

adversary sends a query (µ, ct) to O.Chall or an empty query to O.UpdC̃ at epoch j,

• for j < i, return an honestly generated challenge-equal ciphertext. That is, if b = 0,
UE.Enc(kẽ, µ) else UE.Upd(∆ẽ, ct).

• for j ≥ i, return a random ciphertext.
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Hyb′i(b): This is the same as Hybi(b) except that the game chooses fwl, fwr← [0, T]. If the adversary
corrupts kj such that j ∈ [fwl, fwr] or ∆fwr+1, the game aborts.

Our goal is to prove |Pr[Hyb′U(λ)+1(b) = 1]− Pr[Hyb′U(λ)(b) = 1]| ≤ negl(λ) as in the proof Theo-
rem 5.2 in Section 5.3.

Hereafter, we write Hyb′i(b) instead of Hyb′U(λ)(b) for simplicity.

Lemma 6.3. If there exist IO, PRG, and punctured PRFs, it holds that |Pr[Hyb′i+1(b) = 1] −
Pr[Hyb′i(b) = 1]| ≤ negl(λ).

Hereafter, the proof deviates from the proof of Theorem 5.2. We note that we can simulateO.Upd(cte)
by using recorded plaintexts and key Ke+1 since the update algorithm outputs Enc(Ke+1, µ) as we see
in Section 6.2.

Proof. We define a sequence of games.

Game-0: This game chooses a random coin coin← {0, 1}. If coin = 0, it simulates Hyb′i(b). Else if
coin = 1, it simulates Hyb′i+1(b). That is, the game sends a real challenge-equal ciphertext for the
challenge query at epoch i if coin = 0 and a uniformly random ciphertext at epoch i if coin = 1.
We define an event Ex as the adversary correctly guess coin in Game-x.

Game-1: This is the same as Game-0 except that we modify the challenge-equal ciphertext at epoch i for
coin = 0. It chooses t∗i ← {0, 1}n instead of using t∗i := PRG(r∗i ).

Game-2: This is the same as Game-1 except that we modify the token generation algorithm for token
∆i. It uses a punctured key Ki{t∗i } ← Punc(Ki, t∗i ) and FPi[Ki−1, Ki{t∗i }] instead of Cre[ki−1, ki].
The description of FPi is given in Figure 6.

Game-3: This is the same as Game-2 except that we modify the token generation algorithm for token
∆i+1. It uses the punctured key Ki{t∗i } ← Punc(Ki, t∗i ) and BPi[Ki{t∗i }, Ki+1, t∗i , y∗i ] instead of
Cre[ki, ki+1]. The description of BPi is given in Figure 7.

Game-4: This is the same as Game-3 except that we modify the challenge-equal ciphertext at epoch i for
coin = 0. It chooses y∗i ← {0, 1}m and answers (t∗i , y∗i ) for the challenge query at epoch i.

Forward Punctured Hybrid Update Function FPj[Kj−1, Kj{t∗j }](ctj−1, rj)

Hardwired: Kj−1, Kj{t∗j }.
Input: A ciphertext ctj−1 and randomness rj ∈ {0, 1}τ .
Padding: This circuit is padded to size padT := padT(λ), which is determined in analysis.

1. Parse ctj−1 = (tj−1, cj−1)

2. Compute µ′ := cj−1 ⊕ PRF(Kj−1, tj−1).

3. Compute tj := PRG(rj) and yj := PRF(Kj{t∗j }, tj)

4. Return ctj := (tj, yj ⊕ µ′).

Figure 6: The description of FPj

By the definition of Game-0, we have

Pr[E0] = |Pr[Hyb′i+1(b) = 1]− Pr[Hyb′i(b) = 1]|.
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Backward Punctured Hybrid Update Function BPj[Kj{t∗j }, Kj+1, t∗j , y∗j ](ctj, rj+1)

Hardwired: Kj{t∗j }, Kj+1, t∗j , y∗j ∈ {0, 1}m.
Input: A ciphertext ctj and randomness rj+1 ∈ {0, 1}τ .
Padding: This circuit is padded to size padT := padT(λ), which is determined in analysis.

1. Parse ctj = (tj, cj)

2. If tj = t∗j , compute µ′ := cj ⊕ y∗j .

3. Else compute µ′ := cj ⊕ PRF(Kj{t∗j }, tj).

4. Compute tj+1 := PRG(rj+1) and yj+1 := PRF(Kj+1, tj+1)

5. Return ctj+1 := (tj, yj+1 ⊕ µ′).

Figure 7: The description of BPj

In addition, since the challenge-equal ciphertext at epoch i for coin = 0 is random in Game-4, it trivially
holds that

Pr[E4] ≤ negl(λ).

Thus, if we prove the propositions below, we complete the proof of Lemma 6.3.

Proposition 6.4. It holds that |Pr[E1]− Pr[E0]| ≤ Advprg
B1,PRG(λ).

Proposition 6.5. It holds that |Pr[E2]− Pr[E1]| ≤ Advio
B2,iO(λ).

Proposition 6.6. It holds that |Pr[E3]− Pr[E2]| ≤ Advio
B3,iO(λ).

Proposition 6.7. It holds that |Pr[E4]− Pr[E3]| ≤ Advpprf
B4,PRF(λ).

We summarize those transitions in Figure 8. We give the proofs of Propositions 6.4 to 6.7 below.

Game Token ∆i Token ∆i+1 SK ki ct∗ = (t∗i , c∗i ) security

Game-0 iO(Cre) iO(Cre) Ki (real, real) -
Game-1 iO(Cre) iO(Cre) Ki ($, real) PRG
Game-2 iO(FPi) iO(Cre) Ki{t∗i } ($, real) IO
Game-3 iO(FPi) iO(BPi) Ki{t∗i } ($, real) IO
Game-4 iO(FPi) iO(BPi) Ki{t∗i } ($, $) PPRF

Figure 8: The differences of values for epoch i tokens in Game-0 to Game-4. We omit the hardwired values in
Cre, FPi, BPi for simplicity. In the column of ct∗, real means this value is honestly generated as in the real game
and $ means this value is uniformly random.

Padding Parameter. The proof of security relies on the indistinguishability of the obfuscated circuits
of Cre, FPj, and BPj defined in Figures 5 to 7. We need to set padT := max(|Cre|, |FPj|, |BPj|).

Proofs of core propositions. First of all, we note that we can simulate all tokens and updated ciphertext
at epochs except epochs i and i + 1 since we can generate Kj for j ∈ [0, T] \ {i} in the reductions. In
addition, we can simulate updated ciphertext from epoch i to i + 1 if we know the underlying plaintext
since the distribution of updated ciphertext is completely the same as the normal encryption. We observed
this fact in Section 6.2.
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Proof of Proposition 6.4. It is easy to obtain this proposition since the only difference between these
games is the challenge-equal ciphertext at epoch i consists of random t∗i or real t∗i = PRG(r∗i ). Note
that r∗i is not used in any other part. This value is internal randomness to generate the challenge-equal
ciphertext. Thus, the proposition follows by the security of the PRG.

Proof of Proposition 6.5. The difference between these games is the token ∆i is generated by using Cre
or FPi. If these two circuits are functionally equivalent, we obtain the statement by using IO security.

The two program differ if t∗i = PRG(ri) for input (cti−1, ri) since in FPi we use a punctured
key Ki{t∗i }. (Other parts are completely the same.) However, since t∗i ← {0, 1}τ in these games,
t∗i = PRG(ri) happens only with 1/2λ when we set τ := λ and n := 2λ. Thus, these two circuits are
functionally equivalent with probability 1− 1/2λ. By using IO security, we complete the proof.

Proof of Proposition 6.6. The difference between these games is the token ∆i+1 is generated by using
Cre or BPi. If these two circuits are functionally equivalent, we obtain the statement by using IO security.

Note that in these two games, the hardwired value y∗i is equal to PRF(Ki, t∗i ) since we never used the
punctured pseudorandomness of PPRF so far.

The two program differ if ti = t∗i for input (cti = (ti, ci), ri+1) since in BPi we use a punctured key
Ki{t∗i }. (Other parts are completely the same.) However, if ti = t∗i in BPi, it computes µ′ := ci ⊕ y∗i . As
we noted above, y∗i = PRF(Ki, t∗i ) in these games. This means µ′ = ci ⊕PRF(Ki, t∗i ) even when ti = t∗i .
Thus, these two circuits are functionally equivalent. By using IO security, we complete the proof.

Proof of Proposition 6.7. We construct an adversary B4 for PPRF by using a distinguisher A for these
two games. B4 chooses t∗i ← {0, 1}τ and sends it to the challenger of PPRF and receives K{t∗i } and y.
B4 sets (implicitly) ki := K and y∗i := y and simulates the game for A.

The issue is how to simulate tokens related to ki since B4 does not have “non-punctured” PRF key
ki = Ki = K. However, by the game transitions so far, we never use Ki to generate tokens ∆i and ∆i+1
(other tokens do not need Ki). B4 uses K{t∗i } instead of Ki. Thus, B4 can simulate all tokens and updated
ciphertext by using ki = K{t∗i } and y∗i = y given from the challenger.

If y = PRF(K, t∗i ), the distribution of y∗i = y is the same as in Game-3. If y ← {0, 1}m, the
distribution of y∗i = y is the same as in Game-4. Therefore, if A distinguishes these two games, B4 can
break the security of PPRF. This completes the proof.
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A More Discussion on Key Updates

Why does the direction matter? The question is: “What is the source of the difference between
forward and backward-leak uni-directional key updates?” The point is that ciphertext updates can always
go forward but cannot necessarily go backward. Look at the example in Figure 3 again. If we set C = {3}
in the forward-leak uni-directional setting, we can go forward by using corrupted tokens ∆4, ∆5. Thus,
even if epoch 3 is not corrupted, we can convert a ciphertext under k3 into one under k5, which is corrupted.
However, in the backward-leak uni-directional setting, if we set C = {5}, we cannot go backward even if
we use ∆4, ∆5. Note that we focus on the uni-directional ciphertext updates setting here. It is natural to
consider only uni-directional ciphertext updates in the backward-leak uni-directional key updates since
we do not need ske+1 to generate ∆e+1 as we observed so far. This asymmetry incurs the difference.

Based on this observation, if we consider “backward uni-directional ciphertext updates” (or “downgrade
only updates”), a similar equivalence result to Jiang’s one holds even in the backward-leak uni-directional
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key updates setting. However, note that the backward uni-directional ciphertext updates setting is quite
unnatural and artificial, as we discussed in Section 4.2.

B Other Security Definitions for UE

Definition B.1 (Integrity for Updatable Encryption [BDGJ20, Jia20]). For atk ∈ {ctxt, ptxt}, the
game Expint-atk

Σ,A (λ, b) is formalized as follows.

• Invoke Setup and set win := 0.

• Let O := O.{Enc, Next, Upd, Corr, Try}.

• Run AO(1λ).

• If twf = 1 then win := 0

• return win

We say a UE scheme is INT-atk secure if it holds

Advint-atk
Σ,A (λ) := |Pr[Expint-atk

Σ,A (λ, 0) = 1]− Pr[Expint-atk
Σ,A (λ, 1) = 1]| ≤ negl(λ).

The definitions of oracles are described in Figure 1.

Definition B.2 ((kk, cc)-variant of integrity [Jia20]). Let UE be a UE scheme. Then the (kk, cc)-notion
advantage, for kk ∈ {no, uni, bi}, cc ∈ {uni, bi} and notion ∈ {int-ctxt, int-ptxt}, of an adversary A
against UE is defined as

Adv(kk,cc)-notion
UE,A (1λ) := |Pr[Exp(kk,cc)-notion

UE,A (λ, 0) = 1]− Pr[Exp(kk,cc)-notion
UE,A (λ, 1) = 1]|,

where Exp(kk,cc)-notion
UE,A (λ, b) is the same as the experiment Exptnotion

UE,A (λ, b) in Definition B.1 except for
all leakage sets are both in the kk-directional key updates and cc-directional ciphertext updates.
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