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Abstract. In addition to providing quantum-safe traditional PKI, lat-
tices support advanced primitives such as identity-based encryption
(IBE). These schemes have shown promising results in terms of prac-
ticality, but still have disadvantages such as the reliance on a single mas-
ter key. Hierarchical identity-based encryption (HIBE) schemes address
this problem, as well as lending themselves to more realistic organisa-
tional structures. To date, several HIBE schemes over lattices have been
proposed but there has been little in the way of practical evaluation.
This paper provides the first complete C implementation and bench-
marking of Latte, a promising HIBE scheme proposed by the United
Kingdom (UK) The National Cyber Security Centre (NCSC) in 2017 and
endorsed by European Telecommunications Standards Institute (ETSI).
We also propose further optimisations for the KeyGen, Delegate, and
sampling components of Latte. As expected, the KeyGen, Extract, and
Delegate components are the most time consuming, with Extract ex-
periencing a 35% decrease in op/s from the first to second hierarchical
level at 80-bit security. Our optimised implementation of the Delegate
function takes 1 second at this security level on a desktop machine at
4.2GHz, significantly faster than the order of minutes estimated in the
ETSI technical report. Furthermore, our optimised Latte Encrypt/De-
crypt implementation reaches speeds up to 4.6x faster than the ETSI
implementation.

Keywords: lattice-based cryptography · hierarchical identity-based en-
cryption · advanced primitives · software design

1 Introduction

One of the advantages of lattice-based cryptography (LBC) is the ability to build
advanced cryptographic primitives such as identity-based encryption (IBE). An
IBE scheme removes the need for a certificate repository by deriving a user’s
public key from their already established public identity. This provides a low
latency setup with instantaneous communication capabilities. Furthermore, a
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hierarchy can be built into an IBE scheme to provide a more distributed workload
and allow for finer grained control over private key distribution. Hierarchical
identity-based encryption (HIBE) schemes extend the concept of using a personal
identity as a public key to a multi-levelled scenario, such as one would find
within a functioning company. HIBE has further applications such as forward-
secure encryption [7] and public key broadcast encryption [13]. However, it is still
unknown territory within the post-quantum field. Additionally, with the growth
of the Internet of Things (IoT), which brings with it complex interconnected
systems of constrained devices, there is a greater requirement for lightweight,
advanced primitives unlike ever before. The long-term security considerations
indicate that these should be made quantum-secure today. The aim of this paper
is to assess the practicality of a quantum-safe HIBE scheme.

The DLP-IBE scheme [14] was in 2017 combined with the Bonsai tree HIBE
scheme introduced in [8] to create Latte by Campbell and Groves [6]. This
research was carried out by the National Cyber Security Centre (NCSC), with
a view to utilising the scheme in UK public-safety communications. They are
currently working with the European Telecommunications Standards Institute
(ETSI) in a move towards standardising the scheme [1]. However, the proposed
specification [1] only provides the Encrypt and Decrypt performance results, and
it is unclear if Latte KeyGen, Delegate, and Extract are practical at all.

This paper provides the first performance benchmarking of a quantum-safe
HIBE scheme, Latte, written in C.4 We also identify bottlenecks, propose op-
timisations for Latte and consider its suitability for such applications. In more
detail, the contributions of this paper are:

● Optimised Latte KeyGen and Delegate algorithms: We adapt the
NTRUSolve function from Falcon [34] in order to efficiently solve the NTRU
equation in our optimised Latte KeyGen algorithm. The NTRUSolve is
both faster and more compact [33] than the resultant method [14] used in [1].
In addition, we adapt the technique from ModFalcon [11] and the length
reduction technique by using Cramer’s rule [1] in order to efficiently solve
the NTRU equation for higher lattice dimensions in our optimised Latte
Delegate algorithm.

● Gaussian sampling algorithms for Latte: We adapt the FFT sampling
procedures from Falcon [34], which is faster than the Klein-GPV sampler
[18] used in [1]. In addition, the proposed Latte specification [1] did not
discuss the integer discrete Gaussian sampling techniques suitable for the
needed standard deviations. We integrate efficient sampling techniques in-
cluding FACCT [37] and COSAC [36] in our optimised Latte implementa-
tion.

● New parameter set for Latte: We provide slightly revised parameter
sets for Latte, fixing a bug in the computation of a lattice smoothing param-
eter in the ETSI technical report [1], and also modify a Gaussian sampling
standard deviation parameter to accommodate the more efficient FACCT

4The implementation source code is available at https://gitlab.com/raykzhao/
latte.

https://gitlab.com/raykzhao/latte
https://gitlab.com/raykzhao/latte
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[37] sampler for the Key Generation algorithm. Security estimates for these
revised parameters is also presented.

● Full implementation of Latte: We give the first complete performance
results of a lattice-based HIBE scheme, including the KeyGen, Delegate, and
Extract algorithms, for which the implementation results were unclear in [1].
The proposed specification [1] estimated that Delegate would have run-time
in the order of minutes on a desktop machine. In this paper we show that
an efficient implementation can perform the Delegate function in only a few
seconds on a desktop machine.

Section 2.2 and 2.3 give the background to HIBE and the lattice-based con-
cepts used in (H)IBE schemes. Section 3 describes the optimised Latte HIBE
scheme. Section 4 provides the security analysis. Section 5 discusses techniques
in making the scheme practical for real world applications. Performance results
for the scheme are given in Section 6.

2 Preliminaries

2.1 Underlying Mathematics and Notations

A lattice is a collection of integer linear combinations of a set of basis vectors.
Lattices are one of the leading contenders for secure post-quantum cryptography,
as indicated by the fact they account for 7 out of the 15 Round 3 candidates, and
more specifically 5 of the 7 finalists in the NIST process [31]. Structure can be
added to lattices, and cryptographic schemes may be built on standard lattices,
ideal lattices, module lattices, or NTRU lattices. These additional structures
bring advantages such as improved compactness and efficiency, but are still under
analysis in terms of increased vulnerability to attacks. Popular underlying hard
lattice problems believed to be secure against quantum computing attacks are the
Shortest Vector Problem (SVP), Closest Vector Problem (CVP), and Learning
With Errors (LWE) alongside its ring variant (over ideal lattices), Ring-LWE.
These are all concerned with finding short vectors in the lattice which can be
attempted to be solved by lattice reduction algorithms such as LLL [25] and BKZ
[9,35]. Another common lattice problem is the NTRU assumption [21], that is,
given a polynomial h, one must find f ,g such that h = g ⋅ f−1.

In this paper, vectors or, interchangeably through the canonical embedding,
polynomials will be denoted by bold small letters like f , matrices M, polynomial
ring mod f and q as Rq, and lattices as Λ. The field of integers mod q is denoted
as Zq. Discrete Gaussian distributions with centre c and standard deviation σ are
denoted as Dσ,c, and we omit the center i.e. Dσ if c = 0. The smoothing parameter
of Z is denoted as ηε(Z). The Euclidean norm of a vector/polynomial f is denoted
∣∣f ∣∣. The transpose f∗ of polynomial f = f0 + f1x + ⋯ + fN−1x

N−1 is defined as
f∗ = f0−fN−1x−⋯−f1xN−1. We denote M∗ as the transpose of matrix M where
M∗

i,j = (Mj,i)∗. The Hermitian product of vectors a,b is denoted as ⟨a,b⟩. The
concatenation of several vectors f1, f2, . . . , fN will be written as (f1∣f2∣⋯∣fN). In
HIBE schemes, user identities at level ` are here denoted ID`. A hash function
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from an arbitrary length input to a vector of integers of length N is written as
H ∶ {0,1}∗ → ZNq . An arrow ←$ is used to show the uniform random sampling
of an element from a set e.g. f ←$ ZNq . The operator ⊕ means XOR. A Gram-
Schmidt orthogonalised basis is denoted as B̃ = {b̃1, . . . , b̃N}. The notation A(f)
refers to the anti-circulant matrix associated with polynomial f . The notation ⌊k⌉
indicates the real number k is to be rounded to the nearest integer. The rounding
⌊f⌉ of a polynomial f is taken to be coefficient-wise rounding. The Fast Fourier
Transform (FFT) and Number Theoretic Transform (NTT) of polynomial f are
the evaluations f(ζi) for i ∈ {0, . . . ,N − 1}, where ζ is the 2N -th complex root
of unity in the FFT, and ζ is the 2N -th root of unity mod q in the NTT.

2.2 Hierarchical Identity-based Encryption

Hierarchical identity-based encryption (HIBE) schemes were introduced by Hor-
witz and Lynn [22] and can be considered a generalisation of an IBE scheme to
multiple levels. An HIBE scheme consists of five components: Keygen, Delegate,
Extract, Encrypt, and Decrypt. Figure 1 in Appendix A shows the relationship
between the components of a 2-level HIBE scheme.

We begin with an introduction to non-quantum-safe HIBE schemes, which
are based on elliptic curves and pairings. Gentry and Silverberg proposed the first
secure HIBE scheme in the random oracle model (ROM) in 2002 [19], which was
an extension of the Boneh-Franklin IBE scheme [5], a Weil-pairing based scheme,
the security of which relies on the bilinear Diffie-Hellman problem. This was
shown to be secure against adaptive identity and chosen ciphertext attacks, by
use of the Fujisaki-Okamoto transformation [17], although the security degrades
exponentially with the number of levels.

Boneh-Boyen built on this in 2004 to create a scheme which was secure with-
out random oracles [3]. However, as both the ciphertext and private keys grew
linearly with the number of levels of the hierarchy, in 2005 a scheme [4] was
proposed which fixed the ciphertext size to three group elements, and curtailed
private key growth to within level ` group elements. In 2018, an isogeny-based
version of the Decisional Bilinear Diffie-Hellman-based scheme was proposed [24].
Despite isogenies possessing quantum-safe properties, this variant only serves to
strengthen the existing classical security, by proving it secure under the assump-
tion of either the classical version or the isogeny-based version of the problem
and therefore is not necessarily quantum-safe. To the best of the author’s knowl-
edge, the only quantum-safe HIBE schemes so far proposed are based on lattices.
We now introduce the schemes upon which Latte is built.

2.3 The Ingredients of Latte

DLP IBE Scheme: In 2014, Ducas, Lyubashevsky and Prest proposed the first
efficient lattice-based identity-based encryption scheme [14]. They based their
construction on the IBE scheme by Gentry, Peikert and Vaikuntanathan [18],
using a variant of NTRU lattices. The underlying security problems are the
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NTRU problem for key generation and R-LWE for the encryption. The cipher-
texts therefore have more practical sizes than previous constructions, for ex-
ample 30kbits for 192-bit classical security. The use of structured lattices also
allowed for implementation optimisations such as the Number Theoretic Trans-
form (NTT), as demonstrated by [28], whose software performance of the DLP-
IBE outperformed that of the elliptic-curve based Boneh-Franklin IBE scheme.

Bonsai Trees HIBE: Cash [8] proposed the use of Bonsai trees to create a hi-
erarchical structure for IBE. They model the hierarchical network of users as a
tree, whereby arborists, or sub-key-managers, have control over the sub-trees,
and have the authority to delegate user private keys. Delegation requires the
knowledge of a trapdoor basis of the lattice at that level. During the process
whereby keys are delegated down the tree, the lattice is extended, and therefore
its dimension and hence the key and ciphertext sizes increase. The public key
size is of O(d3kn2) and ciphertext size is of O(d3kn) at depth d, for security
parameter n and hash output length k. The root authority has control of the
whole tree by knowing the short trapdoor basis for the master root lattice. The
security of this HIBE scheme is based on LWE over standard lattices.

3 Optimised Latte HIBE Scheme

Latte was proposed in 2017 [6] and can be considered as a combination of the
DLP-IBE scheme [14] and Bonsai Tree HIBE scheme [8] to create a hierarchi-
cal lattice-based IBE scheme. It can be shown to be ID-IND-CCA-secure, the
proof for which is given in [1], based on the NTRU and R-LWE hardness as-
sumptions. Table 13 in Appendix A summarises the inputs and outputs of the
Latte algorithms. For the optimised Latte scheme presented in this Section
and used in our software design and implementation, features of the Falcon
[34] and the ModFalcon [11] signature schemes were utilised. This is the first
time these features have been considered in Latte and so the rationale for this
is expanded on in Section 5. For now, it suffices to acknowledge that the sub-
algorithms NTRUSolve, ffSampling and Tree are taken from Falcon and are
displayed in Appendix B.

The KeyGen, given in Algorithm 1, generates an NTRU-type basis. This is
performed by sampling the short basis polynomials f ,g from a Gaussian distri-
bution. Operations are over the polynomial ring Rq = Zq[x]/⟨xN + 1⟩, a variant
of the NTRU ring. For the purposes of implementation optimisation, variables
are stored in NTT representation where appropriate. The Gram-Schmidt norm
of the associated basis is computed to ensure it is small enough to allow for
short private keys to be delegated to the next level. If not, the polynomials are
resampled. The rest of the basis, polynomials F,G, are computed so that they
satisfy the NTRU equation, fG − gF = q mod xN + 1. This sub-algorithm is re-
ferred to as NTRUSolve, and its implementation will be discussed in Section 5.
The solution to this is not unique, but any solution suffices provided it is short
enough. This is taken care of by reduction of the coefficients. The public key
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Algorithm 1: The Latte KeyGen algorithm
Input: N, q, σ0.
Output: S0 ∈R2×2

q ,h,b ∈Rq.
1 f ,g,← DNσ0 .
2 Norm←max(∣∣g,−f ∣∣, ∣∣( q⋅f∗

f ⋅f∗+g⋅g∗
, q⋅g∗

f ⋅f∗+g⋅g∗
)∣∣).

3 if Norm > σ0 ⋅
√
2N then go to Step 1;

4 F,G← NTRUSolveN,q(f ,g).
5 if NTRUSolve is aborted then go to Step 1;
6 h← g ⋅ f−1 mod q in NTT domain.
7 b←$Rq in NTT domain.
8 return S0 = ( g −f

G −F
) ,h,b.

consists of polynomial h = g ⋅ f−1 and polynomial b sampled from a uniformly
random distribution over Rq. The master public basis B0 and private basis S0

at level 0 are implicit in the polynomial master keys, as follows:

B0 = [−A(h) IN
qIN 0N

] , S0 = [g −f
G −F] .

The Delegate process, given in Algorithm 2, creates a public/secret key pair
for the next level in the tree, allowing it to become a sub key management service
(sub-KMS, please refer to Appendix A). Suppose the KMS wishes to delegate a
key from level ` − 1 to level `. Then it can extend the public basis of the user
at level ` by placing A` = H(ID1∣ . . . ∣ID`), where H is a hash function, to the
beginning of the first column and filling the extra row with IN and 0N , as shown
below. The dimension of the new matrix becomes (` + 2)N × (` + 2)N .

The corresponding private basis can then be generated. The ith row
(si,0, si,1, . . . , si,`+1) of the private basis is a short solution to the equation:

si,0 + si,1 ⋅ h + si,2 ⋅A1 +⋯ + si,`+1 ⋅A` = 0 mod q.

This can be found by sampling short vectors (using the Klein-GPV sampler [18]
or its variant from Falcon [34]) from the (` − 1)-level lattice using its secret
basis, with centre vector (−si,`+1 ⋅A`,0, . . . ,0), where si,`+1 is sampled from a
discrete Gaussian distribution Dσ`

over R. A check is made to ensure the GS-
norm of the sampled lattice vector is within the bound σ` ⋅

√
(` + 2)N to ensure

the delegated basis will be of sufficient quality.
The remainder of the Delegate algorithm, in which the bottom row

(s`+1,0, s`+1,1, . . . , s`+1,`+1) is generated, is a higher-dimensional analogue of
Latte KeyGen. The resulting matrix has a determinant of size q. The final
row is then reduced similarly to as in the KeyGen component to ensure the ba-
sis is of the required quality for further delegation. Cramer’s rule is utilised here
to find the reduction coefficients, the details of which are given in Appendix C.
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Algorithm 2: The Latte Delegate algorithm (from level ` − 1 to `)
Input: N, q, σ`,S`−1,H ∶ {0,1}∗ → ZNq , ID`.
Output: S` ∈R(`+2)×(`+2)q .

1 A` ←H(ID1∣ . . . ∣ID`) in NTT domain.
2 T`−1 ← Tree(S`−1, σ`).
3 for i ∈ {0, . . . , `} do
4 si,`+1 ← DNσ` .
5 t← (−si,`+1 ⋅A`,0, . . . ,0) ⋅ S−1`−1.
6 z← FFT−1(ffSampling(t, T`−1)).
7 (si,0, si,1, . . . , si,`)← (t − z) ⋅ S`−1.
8 if ∣∣(si,0, si,1, . . . , si,`, si,`+1)∣∣ >

√
(` + 2)N ⋅ σ` then resample;

9 Set M = (si,j), for 0 ≤ i ≤ ` and 1 ≤ j ≤ ` + 1.
10 if M is not invertible then go to Step 3;
11 u← adj(M) ⋅ (s0,0, s1,0, . . . , s`,0)T.
12 (F`,G`)← NTRUSolveN,q(det(M),u0) where u0 is the first coordinate of u.
13 if NTRUSolve is aborted then go to Step 3;
14 (s`+1,0, . . . , s`+1,`+1)← (G`,F`,0, . . . ,0).
15 Set C = (ci,j), where ci,j = sj,0 ⋅ s∗i,0 +⋯ + sj,`+1 ⋅ s∗i,`+1, 0 ≤ i, j ≤ `.
16 Let k = (ki)0≤i≤` be the solution to C ⋅k = d. By Cramer’s rule, ki = det(Ci(d))

det(C)
,

where Ci(d) is the matrix C with its ith column replaced by
di = s`+1,0 ⋅ s∗i,0 +⋯ + s`+1,`+1 ⋅ s∗i,`+1.

17 for i ∈ {0, . . . , `} do
18 (s`+1,0, . . . , s`+1,`+1) = (s`+1,0, . . . , s`+1,`+1) − ⌊ki⌉ ⋅ (si,0, . . . , si,`+1).
19 return S` = (si,j), for 0 ≤ i, j ≤ ` + 1.

Generalising to level `, the public basis B` and the private basis S`, respec-
tively become:

B` =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−A(A`) 0N ⋯ 0N IN
⋮ ⋮ ⋰ ⋮ ⋮

−A(h) IN ⋯ 0N 0N
qIN 0N ⋯ 0N 0N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, S` =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s0,0 s0,1 ⋯ s0,`+1
s1,0 s1,1 ⋯ s1,`+1
⋮ ⋮ ⋰ ⋮

s`+1,0 s`+1,1 ⋯ s`+1,`+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

In the Latte Extract algorithm (Algorithm 3), the user private key is a short
solution (t0, t1, . . . , t`+1) to:

t0 + t1 ⋅ h + t2 ⋅A1 +⋯ + t`+1 ⋅A` = b mod q, (1)

where Ai = H(ID1∣ . . . ∣IDi) for i = 1, . . . , `. Again, this is found using the Klein-
GPV style sampler over the short basis from the previous level. An extended
version of traditional R-LWE encryption/decryption [27] is used for ciphering
messages as given in Algorithms 4 and 5, respectively. A random seed is sam-
pled and used together with a Key Derivation Function (KDF) to one-time-pad
the message. The seed is encoded5 and then encrypted using Ring-LWE and

5The Encode/Decode are the same as described in [1].
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Algorithm 3: The Latte Extract algorithm (from level ` − 1 to user
at level `)

Input: N, q, σ`,S`−1,H ∶ {0,1}∗ → ZNq , ID`.
Output: t0, . . . , t`+1 ∈Rq.

1 A` ←H(ID1∣ . . . ∣ID`) in NTT domain.
2 t`+1 ← DNσ` .
3 T`−1 ← Tree(S`−1, σ`).
4 t← (b − t`+1 ⋅A`,0, . . . ,0) ⋅ S−1`−1.
5 z← FFT−1(ffSampling(t, T`−1)).
6 (t0, t1, . . . , t`)← (t − z) ⋅ S`−1.
7 return t0, . . . , t`+1 ∈Rq in NTT domain.

Algorithm 4: The Latte Encrypt algorithm (at level `)
Input: N, q, σe,h,b,KDF, ID`, µ ∈ {0,1}256.
Output: Z ∈ {0,1}256,C1, . . . ,C`,Ch,Cb ∈Rq.

1 seed← {0,1}256.
2 Z ← µ⊕KDF(seed).
3 Sample e,e1, . . . ,e`,eh,eb from a binomial distribution with center 0 and

standard deviation σe using the seed KDF(seed∣Z).
4 for i ∈ {1, ..., `} do
5 Ci ←Ai ⋅ e + ei where Ai =H(ID1∣ . . . ∣IDi) in NTT domain.

6 Ch ← h ⋅ e + eh.
7 m← Encode(seed).
8 Cb ← b ⋅ e + eb +m.
9 return Z ∈ {0,1}256,C1, . . . ,C`,Ch,Cb ∈Rq in NTT domain.

Algorithm 5: The Latte Decrypt algorithm (at level `)
Input: N, q, σe,h,b,KDF, ID`, Z, (C1, . . . ,C`,Ch,Cb), (t0, . . . , t`+1).
Output: µ′.

1 V ←Cb −Ch ⋅ t1 −C1 ⋅ t2 −⋯ −C` ⋅ t`+1.
2 seed′ ← Decode(V).
3 Sample e′,e′1, . . . ,e

′

`,e
′

h,e
′

b from a binomial distribution with center 0 and
standard deviation σe using the seed KDF(seed′∣Z).

4 for i ∈ {1, . . . , `} do
5 C′

i ←Ai ⋅ e′ + e′i where Ai =H(ID1∣ . . . ∣IDi) in NTT domain.

6 C′

h ← h ⋅ e′ + e′h.
7 m′ ← Encode(seed′).
8 C′

b ← b ⋅ e′ + e′b +m′.
9 Check (C′

1, . . . ,C
′

`,C
′

h,C
′

b) agrees with (C1, . . . ,C`,Ch,Cb).
10 return µ′ = Z ⊕KDF(seed′).

sent. The ciphertext consists of the encrypted message Z, deterministically sam-
pled ephemeral public keys C1, . . . ,C`,Ch and the encrypted seed, Cb. This is
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a variant of the Fujisaki-Okamoto transform [17] to protect against invalid ci-
phertexts. The Decrypt process takes the user private key to decrypt the seed
and reconstruct the message. This works as follows by operations over Rq:

V = Cb − t1 ⋅Ch − t2 ⋅C1 −⋯ − t`+1 ⋅C`

= (b ⋅ e + eb +m) − t1(h ⋅ e + eh) − t2(A1 ⋅ e + e1) −⋯ − t`+1(A` ⋅ e + e`)
= eb +m − t1 ⋅ eh − t2 ⋅ e1 −⋯ − t`+1 ⋅ e` + t0 ⋅ e,

where the first equality is derived by substituting Cb,Ch,Ci with their defini-
tions, and the second equality holds based on (1). By construction, the error and
private key terms are small enough so that m is decoded successfully to recover
the seed. From the seed, the message is straightforwardly recovered from Z,
which is sent as part of the ciphertext.

4 Theoretical Analysis

4.1 Key and Ciphertext Sizes

The key and ciphertext sizes for Latte are given in Table 14 in Appendix D.
The method taken for calculating these is also given in Appendix D.

4.2 Security Analysis and Parameter Sets

The security of each component of Latte depends on an associated lattice
problem and so the computational security of each of these must be considered to
derive parameters, with the most vulnerable component determining the overall
security for a given parameter set. The global parameters for the scheme are
dimension N and modulus q, but we will also need to consider level-specific
parameters, namely the standard deviation used for sampling at each level, σ`.
The six security constraints to be considered are:

● Gaussian sampler security
● Decryption failure
● Master key recovery (breaking the NTRU problem/finding short vectors in
the NTRU lattice)

● Delegated key recovery (finding short vectors in the lattice)
● User key recovery (solving closest vector problem)
● Message recovery (breaking the R-LWE encryption scheme)

These are discussed in detail in [1]. For the sake of completeness, we give them
in the following as well but will only state the mathematical conditions which
must be satisfied, and recompute the security levels using our own optimisation
code. We first summarise the differences between our security analysis and that
of [1]. Any other differences are negligible and due to precision variations in the
attack costing script.
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Summary of differences compared to [1]: There are two main differences:

● We find that the discrete Gaussian statistical parameter ε = 2−22.5/(` + 1)N
used by σ` in [1] was miscalculated. The Kullback-Liebler divergence be-
tween the sampled distribution and the ideal discrete Gaussian distribution
is bounded by approximately 8((` + 1)N)2ε2. Choosing ε = 2−25.5/(` + 1)N
ensures the divergence is at most 2−48, as specified by the proposed Latte
specification [1]. If the sampled distribution has a KL-divergence of 2−48

from the ideal distribution then using the sampler at most 247 times will
only reduce the security of the scheme by up to one bit [32]. However, in [1],
the ε = 2−22.5/(`+1)N would only ensure the KL-divergence is at most 2−42.

● To accommodate the use of the FACCT sampler in KeyGen, as described in
Section 5, we modify the value of σ0. This also has an effect on the subsequent
σ`, and therefore difficulty of the underlying lattice problems and success of
each attack.

Gaussian Sampler Security: The statistical security of the Gaussian sampler
used for sampling short vectors from lattice cosets in extraction and delegation
to level ` is determined by the standard deviation of the sampler σ` and its
relation to the Gram-Schmidt norm of the input basis. As this property of the
basis is determined from the master key generation and any previous delegations,
i.e. ∣∣B∣∣GS ≤

√
(` + 2)N ⋅ σ`, we can draw the following condition based on the

relationship of the standard deviations at each level:6

σ`+1 ≥ ηε(Z)
√

(` + 2)N ⋅ σ`,

taking ε as 2−25.5/(` + 2)N in order to make the Kullback-Leibler divergence of
the sampler from the discrete Gaussian is at most 2−48. However, we also require
the sampled vectors to be short for the purposes of keeping the underlying lattice
problem hard. Therefore, we can set:

σ`+1 = ηε(Z)
√

(` + 2)N ⋅ σ`,

where σ0 ≈ 1.17
√

q
2N

. σ0 is chosen to be this as it minimises the Gram-Schmidt
norm of the master basis (resulting in short user private keys in the single-level
IBE), as deduced in [14]. Table 1 gives the σ` used for each parameter set, which
can be computed indirectly from (N, q).

Decryption Failure: To protect against attacks which exploit random decryp-
tion failures, we must bound the error term incurred in the R-LWE encryption
scheme. The probably that the error term is too large is derived in [1], based
on the method of [2]. Essentially, the decryption failure rate cannot exceed 2−λ,
where λ is the security level in bits of the scheme. For each parameter set and
level, we can compute the probability of decryption failure. This is given in Table
2.

6We take the smoothing parameter ηε(Z) to be defined as ηε(Z) = 1
π

√
ln(2+2/ε)

2
.
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Table 1: Latte σ`

Set σ`
` = 0 ` = 1 ` = 2

LATTE-0 3388.8 85613.5 2670753.4
LATTE-1 106.2 5513.3 -
LATTE-2 106.2 7900.2 -
LATTE-3 6777.6 351968.4 22559988.0
LATTE-4 9583.7 713170.8 65489528.1

Table 2: Latte Decryption Failure
Probabilities

Set Failure Probability
` = 1 ` = 2

LATTE-0 2− inf 2−19

LATTE-1 2−124 -
LATTE-2 2−249 -
LATTE-3 2− inf 2−90

LATTE-4 2− inf 2−178

Table 3: Latte Estimated Cost of
Master Key Recovery

Set β
Classical
Security

Quantum
Security

LATTE-0 236 85 79
LATTE-1 974 301 275
LATTE-2 1501 455 414
LATTE-3 973 301 274
LATTE-4 1501 455 414

Master Key Recovery: The security of the master key recovery depends upon the
difficulty of finding the short vector (g, f) in the lattice, given the public NTRU
basis. The attack is successful if the projection of the short vector onto the vector
space spanned by the final β Gram-Schmidt vectors is shorter than the length of
the (2N − β + 1)th Gram-Schmidt vector. This corresponds to minimising block
size β, for:

σ0
√
β ≤ GH(β)(2β−2N)/(β−1) ⋅ det(Λ0)1/2N .

The minimum solutions to this inequality for different parameter sets is given
in Table 3. The work required to find the shortest vector using this block size
with the BKZ2.0 algorithm is also given.

Delegated Key Recovery: For delegated key recovery, the attacker must find a
short sequence of vectors in Λ`−1. This can reduce to solving SVP in the master
lattice Λ0 to find a vector of length σ` ⋅

√
2N . Table 4 gives the minimum block

size β required (as per below (2)) for a successful attack using BKZ2.0 and the
classical and quantum cost of these attacks which depend on N and q.

σ` ⋅
√
2N ≤ GH(β)(2N)/(β−1) ⋅ det(Λ0)1/2N . (2)

User Key Recovery: User key recovery requires finding a short solution to:

t0 + t1 ⋅ h + t2 ⋅A1 +⋯ + t`+1 ⋅A` = b,
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Table 4: Latte Estimated Cost of Del-
egated Key Recovery

Set ` β
Classical
Security

Quantum
Security

LATTE-0 1 179 69 64
2 1 17 17

LATTE-1 1 1020 314 287
LATTE-2 1 1051 323 295

LATTE-3 1 1021 315 287
2 388 130 119

LATTE-4 1 1051 323 295
2 907 281 257

Table 5: Latte Estimated Cost of User
Key Recovery

Set ` β
Classical
Security

Quantum
Security

LATTE-0 1 116 50 47
2 1 17 17

LATTE-1 1 784 245 224
LATTE-2 1 1051 323 295

LATTE-3 1 785 246 224
2 326 112 103

LATTE-4 1 1051 323 295
2 783 245 224

Table 6: Cost of Primal Message Re-
covery Attack

Set m β
Classical
Security

Quantum
Security

LATTE-0 86 50 31 30
LATTE-1 1018 423 140 128
LATTE-2 1962 967 299 273
LATTE-3 998 232 84 78
LATTE-4 2037 561 180 165

Table 7: Cost of Dual Message Recov-
ery Attack

Set m β
Classical
Security

Quantum
Security

LATTE-0 88 50 31 30
LATTE-1 1039 422 140 128
LATTE-2 1974 964 298 272
LATTE-3 1005 232 84 78
LATTE-4 2101 560 180 165

which reduces to solving the CVP in the master lattice Λ0, with the vector
having length σ` ⋅

√
2(` + 2) ⋅

√
2N . To do this, it is required to minimise (3) (see

below) over β. Table 5 gives the minimum block size β required for a successful
attack, and the classical and quantum cost of these attacks. This depends only
on N .

σ` ⋅
√
2(` + 2) ⋅

√
2N ≤ GH(β)(2N)/(β−1) ⋅ det(Λ0)1/2N . (3)

Message Recovery: Message recovery requires breaking the underlying R-LWE
encryption scheme. There are two attacking methods to consider for this. Mes-
sage recovery depends on solving an extended version of R-LWE, which reduces
to an instance of the primal-CVP or dual-SVP. In the primal-CVP attack, the
ephemeral private keys are recovered via a close vector problem. In the dual-SVP
attack an attempt is made to distinguish the ciphertext elements from uniformly
random polynomials in Rq.

The minimal block size β needed for a successful attack, and the cost of these
attacks are given in Tables 6 and 7, depending on (N, q). The code to populate
Tables 6 and 7 is that used in [2]. By considering the cost of all attacks covered
in this section, the security levels in Table 8 could be derived.
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Table 8: Latte Parameters

Set Security N q

LATTE-0 16 256 232 − 220 + 1

LATTE-1 128 1024 224 − 214 + 1

LATTE-2 256 2048 225 − 212 + 1

LATTE-3 80 1024 236 − 220 + 1

LATTE-4 160 2048 238 − 226 + 1

Setting up Parameters: The parameter sets are given in Table 8. These are
the parameters recommended in the original specification [1]. We have extended
the security estimates from [1] to give them on a per-level basis. The security
decreases as we move down the hierarchy. However, it turns out that each pa-
rameter set’s security is determined by the message recovery capabilities, which
remain constant down the levels. Therefore our parameter security conclusions
match that of [1].

Parameter sets Latte-0, 1, and 2 are only applicable to a single level, essen-
tially an IBE rather than HIBE, version of the scheme. Latte-3 and 4 can be
used for up to two levels. The reason we cannot use these parameters beyond
these levels is that the decryption failure rate exceeds the target security level.
In fact, the failure rate is so high it renders the scheme completely insecure and
also not suitable for use.

5 Software Design Features and Considerations

5.1 Techniques from Falcon and ModFalcon

The design of Latte presented in this paper utilises techniques from the sig-
nature scheme Falcon [34]. The two schemes are closely related; they are in-
stantiated over the same type of lattice and share key generation and sampling
procedures. Falcon makes use of the “tower of rings” structure to find a so-
lution to the NTRU equation fG − gF = q mod xN + 1, for a given f and g in
the NTRUSolve sub-algorithm of KeyGen, and in the lattice Gaussian sampling
(ffSampling) component of Latte Delegate and Extract. The tower of rings ap-
proach utilises the fact that computations over polynomials f ,g ∈ C[x]/⟨xN/2+1⟩
are equivalent to computations over f(x2),g(x2) ∈ C[x]/⟨xN +1⟩. When N = 2k,
for some k ∈ Z, this can be applied repeatedly so that computations are per-
formed over polynomials of degree 1. This brings advantages in terms of both
memory usage and speed [33].

In addition, in Latte Delegate, to complete the delegated basis S` for lattice
dimension higher than 2N , we adapt the technique from ModFalcon [11]. Let
S` = ( vT M

G` F′`
) be the delegated basis, where G` = s`+1,0, F′

` = (s`+1,1, . . . , s`+1,`+1),
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v = (s0,0, s1,0, . . . , s`,0), and M = (si,j) for 0 ≤ i ≤ ` and 1 ≤ j ≤ ` + 1. By Schur
complement, if M is invertible, we have:

det(S`) = det(M) ⋅ det(G` −F′

` ⋅M−1 ⋅ v) = det(M) ⋅ (G` −F′

` ⋅M−1 ⋅ v)
= det(M) ⋅G` −F′

` ⋅ adj(M) ⋅ v.

Let F′

` = (F`,0, . . . ,0). We have det(S`) = det(M)⋅G`−F`⋅u0 where u0 is the first
coordinate of u = adj(M) ⋅v. In order to fill the bottom row (s`+1,0, . . . , s`+1,`+1)
of S`, if M is invertible, we can use the same NTRUSolve algorithm as in Latte
KeyGen to find F`,G` such that det(M) ⋅ G` − F` ⋅ u0 = q, and we simply
resample when det(M) = 0. However, the coefficient size of the output F`,G`

will be approximately the coefficient size of the input det(M),u0, which is in
the order of q`+1. To make the infinity norm of S` less than q, we need further
length reduction by using Cramer’s rule (see Appendix C).

5.2 Discrete Gaussian Sampling over the Integers

In Latte KeyGen, f ,g may need to be resampled multiple times due to the norm
check and possible failure to find solutions of the NTRU equation. In order to
sample 2N coordinates efficiently from Dσ0 , we employ the FACCT sampler [37],
which is fast and compact even for larger σ0 used in Latte-3 and 4. However,
since the FACCT sampler can only sample with σ = k

√
1/(2 ln 2) where k is a

positive integer, we slightly increase σ0 ≈ 1.17
√
q/(2N) in Latte parameters by

setting k = ⌈1.17
√
q/(2N)/

√
1/(2 ln 2)⌉.

Let S` = L ⋅ S̃` be the GSO decomposition of the delegated basis S` ∈
R(`+2)×(`+2), where L is unit lower triangular and rows s̃i of S̃` are pairwise
orthogonal. We find that the Euclidean norm of the last GSO vector s̃`+1 is very
small compared to s̃0, . . . , s̃`. This is because rows s0, . . . , s` of S` are sampled
with a large σ` but det(S` ⋅S∗` ) =∏

`+1
i=0 ⟨s̃i, s̃i⟩ is constant and always equal to q2

[11]. The experiment results in Fig.3 of [10] also verified that ∣∣s̃`+1∣∣ decreases
significantly by increasing ∣∣s0∣∣ for S` ∈ R3×3. In this case, the ratio between
the maximal and minimal standard deviation σ′ used by the integer discrete
Gaussian sampling subroutine in ffSampling is very large and the isochronous
sampler [23] used by Falcon [34] will be inefficient for our scheme, since the
rejection rate of [23] is proportional to (max(σ′)/min(σ′)). In order to sample
with σ′ in a broad range, we employ the COSAC sampler [36] instead, which is
scalable to large σ′ without sacrificing the efficiency.

To accelerate the Latte Encrypt and Decrypt speed, we sample the
ephemeral keys e,e1, . . . ,e`,eh,eb from a binomial distribution with center 0
and small standard deviation σe = 2.0 instead of Dσe used by [1]. Sampling from
a binomial distribution is much faster than sampling from Dσe and the impact
on security is negligible in the encryption [2].
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Table 9: Proof of Concept Latte Performance Results (op/s) from [1] (Scaled
to 4.2GHz)

` = 1 ` = 2

Set Enc Dec Enc Dec
LATTE-1 2911 2987 - -
LATTE-2 1335 1351 - -
LATTE-3 1892 1774 1455 1474
LATTE-4 709 668 568 541

Table 10: Our Optimised Latte Performance Results (op/s) at 4.2GHz

` = 1 ` = 2

Set KeyGen Ext Enc Dec Del Ext Enc Dec
LATTE-1 4.7 5.2 12868.5 11163.8 - - - -
LATTE-2 1.5 1.9 6157.9 5287.7 - - - -
LATTE-3 3.7 5.2 6231.7 5207.4 1.0 3.4 5162.4 4360.4
LATTE-4 1.0 1.9 3078.8 2573.3 0.3 1.2 2558.3 2158.2

6 Performance Results

The first published specification of Latte is [1]. However, it only provided the
Encrypt and Decrypt performance results, as displayed in Table 9, scaled and
converted into op/s at 4.2GHz. Here, we give the first full performance results
for our optimised variant of Latte, including KeyGen, Extract, and Delegate.

To avoid confusion for the reader, Table 12 in Appendix A indicates the
HIBE functions that can be performed at each hierarchical level. We consider a
user at level ` can extract the user’s private key by using the master key at level
`−1. For example, a single-level IBE (Latte-0 and 1) is the same as considering
only level 1 without the delegation. Delegation is from level ` − 1 to level `. A
user at level `+ 1 can then extract the user’s private key by using this delegated
key, and this user’s key pair can be used to encrypt and decrypt at level ` + 1.
Table 12 also indicates the dimension of the keys at each level.

We employ the gmp [20], mpfr [16], and mpc [15] libraries for multiprecision
integer, floating-point, and complex number arithmetic, respectively. The preci-
sion of floating-point and complex numbers in our implementation is λ = 256 bits.
In addition, we use the AES-256 CTR mode with hardware AES-NI instructions
as the pseudorandom generator, and use SHAKE-256 [30] as the KDF in Latte
Encrypt and Decrypt. The performance results have been obtained from a desk-
top machine with an Intel i7-7700K CPU at 4.2GHz, with both hyper-threading
and TurboBoost disabled. We use the gcc 10.2.0 compiler with compiling options
-O3 -march=native enabled. Results are given in Table 10.
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Table 11: Performance Results (op/s) for the DLP IBE Scheme from [1] (Scaled
to 4.2GHz)

Set Security n log2 q KeyGen Ext Enc Dec
DLP-0 80 512 22 14.7 873.2 8731.8 6202.9
DLP-3 192 1024 22 4.9 454.1 2639.8 1621.6

As expected, the KeyGen, Extract, and Delegate processes are the most
time consuming components of the scheme, and this increases as security and
therefore lattice dimension increase. The trend down the hierarchical levels is
that the Extract, Encrypt, and Decrypt all become more time consuming as
hierarchical level increases. For Extract in Latte-3 and 4, this corresponds to
about 35% decrease in op/s from level 1 to level 2. On the other hand, for
the Encrypt and Decrypt, our implementation is 2.9x–4.6x faster compared to
the previous performance results from [1]. The speedup might be due to: (1) We
change the distribution of the ephemeral keys from discrete Gaussian distribution
to binomial distribution. (2) We only perform NTT for the ephemeral keys and
m during the Encrypt and Decrypt, since other inputs are already in the NTT
domain. In addition, our optimised Latte Delegate only takes about 1–3 seconds
on a desktop machine at 4.2GHz, which is practical and much faster than the
estimated run-time (in the order of minutes) for the Delegate in the un-optimised
variants of Latte [1].

6.1 Comparison to DLP IBE

Performance results of the single-level DLP IBE scheme from [1] (converted to
op/s at 4.2GHz) are given in Table 11. Since the decryption in the DLP IBE
did not include ciphertext validation, for a fair comparison with Latte, we
use the sum of DLP encryption and decryption run-time to compute the op/s of
decryption in Table 11. We focus on the comparison between Latte-1 and DLP-
3, since the sizes of parameters N and q are similar. The KeyGen speed of our
Latte-1 implementation is similar to DLP-3, and the Encrypt/Decrypt speed
is 4.9x–6.9x faster in our implementation. However, the speed of Extract in our
implementation is very slow. For example, our Latte-1 Extract implementation
is about 87x slower than DLP-3 extraction. This is mainly because we use 256-
bit multiprecision in the key sub-algorithms (Tree and ffSampling) and in the
COSAC sampler used by our implementation, while it is sufficient to use less
than 64-bit precision in DLP extraction [28].

6.2 Limitations

Our current implementation is not constant-time, since the arithmetic in Key-
Gen, Delegate, and Extract relies on multiprecision libraries [15,16,20]. In addi-
tion, the multiprecision arithmetic is also the bottleneck in the Latte Extract,
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and we find that the speeds of Latte KeyGen, Delegate, and Extract are linearly
proportional to the precision in our experiment. To overcome both limitations,
a concrete precision requirement analysis is planned as another future work to
optimise the implementation.
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A HIBE Scheme Description

Figure 1 shows the components of an HIBE scheme and how they interact. The
steps are as follows:

1. KeyGen: The master key generator establishes the master public and pri-
vate keys.

2. Delegate: Through a delegation function, the master key generator creates
a public/private key pair for the sub key manager. This gives it the ability
to delegate further key pairs, and extract user private keys at that level.

3. Delegate: The sub key manager delegates a further public/private key to
the next level of the hierarchy.

4. Extract: The extractor uses their public/private key pair to extract and
share user public/private keys, as in the single-level IBE scheme.

5. Encrypt/Decrypt: Encryption/decryption works as a regular encryption
scheme, such as R-LWE encryption.

An HIBE scheme is said to be IND-CCA-secure if it is indistinguishable under
chosen ciphertext attacks; that is, an adversary with the ability to decrypt any
other ciphertext does not possess an advantage in decrypting the challenge ci-
phertext. ID-IND-CCA further implies the adversary has access to an extraction
oracle which allows them to extract keys for other identities before committing
to the challenge identity, yet gain no advantage. The challenge consists of the
ciphertext and the identity under which it is encrypted.

Table 12 indicates the notational practises used to identity each level of the
hierarchy.

Advantages and additional capabilities of HIBE over IBE include:

● HIBE limits damage performed and access gained by compromise of a key
management service (KMS), as an attacker would only gain control over
those users controlled by the sub-KMS, rather than all the users in the
system.

● HIBE creates finer-grained control over key management within an organi-
sation as responsibility of distributing keys can be allocated to groups fur-
ther down the hierarchy. Similarly, for public-safety communications, the
headquarters could retain control of the central KMS, whilst allowing local
provisioning of users by sub-KMSs situated in regional emergency stations.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
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Fig. 1: A 2-level HIBE scheme
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Table 12: Explanation of Notational Practice of HIBE Functions

Level Function
Level 0 Master KeyGen 2N × 2N

Level 1 Extracting with 2N × 2N → Enc/Dec
Delegating to 3N × 3N

Level 2 Extracting with 3N × 3N → Enc/Dec

Table 13: Latte Algorithm Summary
Algorithm Inputs Outputs
KeyGen N, q ∈ Z, σ0 ∈ R S0 ∈R2×2

q ,h,b ∈Rq

Delegate
σ` ∈ R,S`−1 ∈R(`+1)×(`+1)q , ID` S` ∈R(`+2)×(`+2)q

H ∶ {0,1}∗ → ZNq

Extract
σ` ∈ R,S`−1 ∈R(`+1)×(`+1)q , ID` t0, . . . , t`+1 ∈Rq
H ∶ {0,1}∗ → ZNq

Encrypt
σe ∈ R,h,b ∈Rq, Z ∈ {0,1}256,
KDF, ID`, µ ∈ {0,1}256, C1, . . . ,C`,Ch,Cb ∈Rq
H ∶ {0,1}∗ → ZNq

Decrypt
Z ∈ {0,1}256, µ′ ∈ {0,1}256

C1, . . . ,C`,Ch,Cb ∈Rq,
t0, . . . , t`+1 ∈Rq

● HIBE reduces the workload of the master key generator.
● HIBE can be extended into more advanced primitives such as generating
short-lived keys for portable computing devices [22] and turning the NNL
broadcast encryption system [29] into a public-key broadcast system [13].

B Sub-Algorithms from Falcon

This section presents sub-algorithms from Falcon [34]. Readers may refer to
the Falcon specification [34] for subroutines (ffLDL∗, splitfft, mergefft, etc.)
used by these algorithms.

C Cramer’s Rule

Cramer’s rule [12] is used for solving systems of linear equations. Considering a
system of N equations with N unknowns x, represented as Ax = b. Cramer’s
rule states that the solution can be written as xi = det(Ai)

det(A)
, where Ai is the

matrix formed by replacing the i-th column of A by the column vector b.
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Algorithm 6: NTRUSolveN,q ([34])

Input: f ,g ∈ Z[x]/⟨xN + 1⟩.

Output: F,G ∈ Z[x]/⟨xN + 1⟩ such that fG − gF = q mod xN + 1.

1 if N = 1 then
2 Compute u, v ∈ Z such that uf − vg = gcd(f ,g).
3 if gcd(f ,g) ≠ 1 then abort;
4 (F,G)← (vq, uq).
5 return (F,G).
6 else
7 f ′ ← N(f).
8 g′ ← N(g).
9 (F′,G′)← NTRUSolveN/2,q(f ′,g′).

10 F← F′(x2) ⋅ f ′(x2)/f(x).
11 G←G′(x2) ⋅ g′(x2)/g(x).
12 k← ⌊F⋅f∗+G⋅g∗

f ⋅f∗+g⋅g∗
⌉ ∈R.

13 F← F − k ⋅ f and G←G − k ⋅ g.
14 return (F,G).

Algorithm 7: The ffSampling Tree computation algorithm ([34])
Input: S`, σ`.
Output: Tree T`.

1 G` ← S` ⋅ S∗` .
2 T ← ffLDL∗(FFT(G`)).
3 For each leaf of T`, leaf.value← σ`/

√
leaf.value.

4 return T`.

The formulae for the reduction coefficients in the KeyGen and Delegate pro-
cess come directly from Cramer’s Rule applied to the system Ax = b, where, in
the first level, A is the 2 × 2 matrix whose (i, j)-entry is the Hermitian product
⟨si, sj⟩ of the ith and jth rows of the delegation matrix, and where b is the two-
dimensional column vector whose ith coefficient is ⟨s2, si⟩ . This result generalises
to arbitrary levels; i.e., for any given number of levels ` ≥ 1, the reduction of the
vector s`+1 is effected by replacing it with s`+1 − ⌊k0⌉s0 − ⋯ − ⌊k`⌉s`, where the
ki are the coefficients of the solution x to the system Ax = b, where A is the
(`+ 1)× (`+ 1) matrix whose (i, j)-entry is the Hermitian product ⟨si, sj⟩ of the
ith and jth rows of the delegation matrix, and where b is the (`+1)-dimensional
column vector whose i-th coefficient is ⟨s`+1, si⟩.
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Algorithm 8: The ffSampling algorithm ([34])
Input: t = (t0, t1, . . . , t`) in FFT format, tree T .
Output: z = (z0,z1, . . . ,z`) in FFT format.

1 if n = 1 then
2 σ′ ← T.value.
3 z0 ← Dσ′,t0 .
4 z1 ← Dσ′,t1 .
5 return z = (z0, z1).
6 else
7 m← number of children of T .
8 for i←m, . . . ,0 do
9 Tj ← j-th child of T .

10 t′j ← tj +∑mi=j+1(ti − zi) ⋅ T.valuei,j .
11 t′j ← splitfft(t′j).
12 z′j ← ffSampling(t′j , Tj).
13 zj ←mergefft(z′j).
14 return z = (z0,z1, . . . ,zm).

D Key and Ciphertext Size Calculations

The Latte keys and ciphertexts are mainly collections of polynomials in R.
The degree of each polynomial is N and the number of bits in each coefficient
is κ = ⌈log2 q⌉. The parameters N and q are dependent on the security level
required, and values for these are given in Table 14. The key/ciphertext bit-size
is equal toN ⋅κ⋅number of polynomials, plus any additional bit strings sent, in the
case of the ciphertext. Furthermore, we usually consider the key and ciphertext
sizes in bytes, and so when the total bit-size is computed, it will be divided by
8 to give the size in bytes.

D.1 Master Keys

The master public key consists of two polynomials h,b ∈Rq. Therefore the bit-
size is 2N ⋅κ. The master private key S0 consists of (f ,g,F,G). However, F and
G can be recomputed on the fly from f and g using NTRUSolve. The solution
is not unique but as long as it is a short solution, it will suffice. However, this is
not efficient and so this research considers the entire (f ,g,F,G) to be stored as
the private key. Therefore, the master private key is of size 4N ⋅ κ.

D.2 Delegated Keys

The delegated public key can be straightforwardly generated using the mas-
ter public key and the chain of user IDs along which the delegation pro-
cess is happening. Although this can be efficiently generated on the fly,
given the user ID chain, we will consider it being stored as the polynomials
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Table 14: Latte Master Key, Delegated Key and Ciphertext Sizes (Bytes)

Set Master
Public Key

Master
Private Key

User
Private Key Ciphertext

` = 1 ` = 2 ` = 1 ` = 2

LATTE-0 2048 4096 3072 4096 3104 4128
LATTE-1 6144 12288 9216 - 9248 -
LATTE-2 12800 25600 19200 - 19232 -
LATTE-3 9216 18432 13824 18432 13856 18464
LATTE-4 19456 38912 29184 38912 29216 38944

Set Delegated
Public Key

Delegated
Private Key

LATTE-0 3072 9216
LATTE-3 13824 41472
LATTE-4 29184 87552

h,H(ID1),H(ID2), ...,H(ID`+1), which translates as (` + 2) polynomials in R,
and so the total bit-size of the delegated public key is (` + 2) ⋅N ⋅ κ. The dele-
gated private key generated from level `−1 to level `, to be passed onto users at
level ` + 1, is a (` + 2) × (` + 2) matrix of polynomials in Rq. Its size is therefore
(` + 2) ⋅ (` + 2) ⋅N ⋅ κ.

D.3 User Private Keys

The user public key is entirely dependent on the identity, and so we only examine
the size of the user private key. In Latte for a user at level `, this is a tuple of
(`+2) polynomials in Rq and so is of bit size (`+2) ⋅N ⋅κ (which is coincidentally
equivalent to the delegated public key size).

D.4 Ciphertexts

Let’s consider the ciphertext at level `. This consists of ` + 2 polynomials
C1, . . . ,C`,Ch,Cb ∈ Rq along with a 256-bit string Z (which is essentially the
encrypted message). Therefore, at level `, the bit-size of the full ciphertext is
(` + 2) ⋅N ⋅ κ + 256.

E Comparison to a Non-quantum-safe HIBE

Pairings-based HIBE scheme performance results from [26] (converted to op/s
at 4.2GHz) are given in Table 15. Parameter s is the bit size of the field, which
is comparable to the bit-length of RSA modulus by providing the same security.
Although not directly comparable, these results give a good indication of the
feasibility of Latte at levels 1 or 2.
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Table 15: Performance Results (op/s) for the Gentry-Silverberg HIBE Scheme
(2-level) Using Java v1.6 [26] (Scaled to 4.2GHz)

s Security length of m Enc Dec
1024 80 160 11.5 6.7
3072 128 256 0.8 0.5
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