
Quantum-safe HIBE: does it cost a Latte?

Raymond K. Zhao
Faculty of Information Technology,

Monash University
Clayton, Australia

raymond.zhao@monash.edu

Sarah McCarthy∗
Institute for Quantum Computing,

University of Waterloo
Waterloo, Canada

sarah.mccarthy@uwaterloo.ca

Ron Steinfeld
Faculty of Information Technology,

Monash University
Clayton, Australia

ron.steinfeld@monash.edu

Amin Sakzad
Faculty of Information Technology,

Monash University
Clayton, Australia

amin.sakzad@monash.edu

Máire O’Neill
Centre for Secure Information

Technologies, Queen’s University
Belfast

Belfast, United Kingdom
m.oneill@ecit.qub.ac.uk

ABSTRACT

The UK government is considering advanced primitives such as
identity-based encryption (IBE) for adoption as they transition
their public-safety communications network from TETRA to an
LTE-based service. However, the current LTE standard relies on
elliptic curve based IBE, which will be vulnerable to quantum com-
puting attacks, expected within the next 20–30 years. Lattices can
provide quantum-safe alternatives for IBE. These schemes have
shown promising results in terms of practicality. To date, several
IBE schemes over lattices have been proposed but there has been
little in the way of practical evaluation.

This paper provides the first complete C implementation and
benchmarking of Latte, a promising Hierarchical IBE scheme
proposed by the United Kingdom (UK) National Cyber Security
Centre (NCSC) in 2017 and endorsed by European Telecommuni-
cations Standards Institute (ETSI). We propose optimisations for
the KeyGen, Delegate, Extract and Gaussian sampling components
of Latte thereby increasing attack costs, reducing decryption key
lengths by 2x–3x, ciphertext sizes by up to 33% and improving
speed. In addition, we conduct a precision analysis, bounding the
Rényi divergence of the Gaussian sampling procedures from the
ideal distribution, in corroboration of our claimed security levels.
Our resulting implementation of the Delegate function takes 0.4
seconds at 80-bit security level on a desktop machine at 4.2GHz,
significantly faster than the order of minutes estimated in the ETSI
technical report. Furthermore, our optimised Latte Encrypt/De-
crypt implementation reaches speeds up to 5.8x faster than the
ETSI implementation.

KEYWORDS

lattice-based cryptography, hierarchical identity-based encryption,
advanced primitives, software design, post-quantum

1 INTRODUCTION

The UKGovernment anticipates the migration of its mission-critical
communications network fromAirwave TETRA to LTE-based Emer-
gency Services Network (ESN) [46] will be complete by 2026 [18].

∗Also with Centre for Secure Information Technologies, Queen’s University
Belfast.

However, the current standard [2] relies on Elliptic Curve (ECC)-
based Identity Based Encryption (IBE) scheme MIKEY-SAKKE for
securing messages. An IBE scheme removes the need for a certifi-
cate repository by deriving a user’s public key from their already
established public identity. This provides a low latency setup with
instantaneous communication capabilities, hence is ideal for this
use-case. However, ECC will be rendered insecure under quantum
computing attacks, as acknowledged by current post-quantum cryp-
tography standardization efforts by National Institute of Standards
and Technology (NIST) [44].

One of the advantages of lattice-based cryptography (LBC), a con-
tender for quantum-secure cryptographic solutions, is the ability
to build advanced primitives such as IBE. Furthermore, a hierar-
chy can be built into an IBE scheme to provide a more distributed
workload and allow for finer grained control over private key dis-
tribution. Hierarchical identity-based encryption (HIBE) schemes
extend the concept of using a personal identity as a public key to a
multi-levelled scenario, such as one would find within a functioning
company. HIBE has further applications such as forward-secure
encryption [11] and public key broadcast encryption [21]. However,
it is still new territory within the post-quantum field. Additionally,
with the growth of the Internet of Things (IoT), which brings with
it complex interconnected systems of constrained devices, there is
a greater requirement for lightweight, advanced primitives unlike
ever before. The long-term security considerations indicate that
these should be made quantum-secure today. The aim of this paper
is to assess the practicality and optimise the implimentation/inte-
gration of a quantum-safe HIBE scheme.

The DLP-IBE scheme [22] was in 2017 combined with the Bonsai
tree HIBE scheme introduced in [12] to create Latte by Campbell
and Groves [10]. This research was carried out by the National
Cyber Security Centre (NCSC), with a view to utilising the scheme
in UK public-safety communications. They are currently working
with the European Telecommunications Standards Institute (ETSI)
in a move towards standardising the scheme [1]. However, the
proposed specification [1] only provides the Encrypt and Decrypt
performance results, and it is unclear if Latte KeyGen, Delegate,
and Extract are practical at all. There remains substantial analysis
to be performed to determine if and how this scheme will work in
the real world. This is the gap our research endeavours to bridge.

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

This paper provides the first performance benchmarking of a
quantum-safe HIBE scheme, Latte, written in C.1 We also identify
bottlenecks, propose optimisations, and provide further statistical
and security analysis for Latte and consider its suitability for such
applications. In more detail, the contributions of this paper are:

• Precision Analysis of Latte: We develop a statistical
model for floating-point arithmetic errors in our efficient
Latte implementation, verified by experimental analysis.
This allows us to quantify the security impact on Latte
of the arithmetic precision. In particular, we bound the
Rényi divergence from ideal, as recommended in [49], of
the Gaussian lattice sampler (with its underlying fast ff-
Sampling algorithm), and deduce that 53 bits of precision
retains our claimed security levels for Latte-1 and 2 with
up to 244 key Extract/Delegate queries. For Latte-3 and 4,
our analysis shows that about 90 bits precision should be
sufficient.

• Optimised Latte (Sub-)Algorithms:We first reduce the
module dimension of the extracted user keys by 1 compared
to [1], by extending a similar approach used in the DLP
IBE [22]. This leads to faster performance and reduces user
private key sizes by 2x–3x and ciphertext length by up to
33%. In addition, we also show a faster ffLDL algorithm
for (Mod)NTRU basis in Sec. 5.1. We then adapt the NTRU-
Solve function from Falcon [51] in order to efficiently solve
the NTRU equation in our optimised Latte KeyGen algo-
rithm. The NTRUSolve is both faster andmore compact [48]
than the resultant method [22] used in [1]. In addition, we
adapt the technique from ModFalcon [17] and the length
reduction technique by using Cramer’s rule [1] in order
to efficiently solve the NTRU equation for higher lattice
dimensions in our optimised Latte Delegate algorithm.
We further adapt the FFT sampling procedures from Fal-
con [51], which is faster than the Klein-GPV sampler [26]
used in [1]. In addition, the proposed Latte specification
[1] did not discuss the integer discrete Gaussian sampling
techniques suitable for the needed standard deviations. We
integrate efficient sampling techniques including FACCT
[56] and the variant [54] of COSAC [55] in our optimised
Latte implementation.

• New Parameter Sets for Latte:We provide slightly re-
vised parameter sets for Latte, fixing a bug in the computa-
tion of a lattice smoothing parameter in the ETSI technical
report [1], and also modify a Gaussian sampling standard
deviation parameter to accommodate the more efficient
FACCT [56] sampler for the Key Generation algorithm. Se-
curity estimates for these revised parameters is also pre-
sented, as we discover that our redesign reduces decryption
failure rate and increases the cost of recovering the user
key.

• First Full Implementation of Latte:We give the first
complete performance results of a lattice-basedHIBE scheme,
including the KeyGen, Delegate, and Extract algorithms, for
which the implementation results were unclear in [1]. The
proposed specification [1] estimated that Delegate would

1The source code is available at https://gitlab.com/raykzhao/latte.

have run-time in the order of minutes on a desktopmachine.
In contrast, we show that our efficient implementation can
perform the Delegate function in 0.4s (resp. 1.3s) for 80-bit
(resp. 160-bit) security level on a desktop machine. In ad-
dition, for the same ring dimension, our optimised Latte
implementation is up to 8.1x faster than the DLP IBE imple-
mentation result from [1] for the corresponding algorithms,
and our Latte Extract run-time overhead is less than 3.7x
over the Falcon Sign algorithm run-time with the same
lattice dimension.

The structure of the paper is as follows. Sec. 2 gives the back-
ground toHIBE and the lattice-based concepts used inHIBE schemes.
Sec. 3 describes our improved Latte HIBE scheme. Sec. 4 provides
the precision and security analyses. Sec. 5 discusses our implemen-
tation techniques in making the scheme practical for real world
applications. Performance results for the scheme are given in Sec. 6.

2 PRELIMINARIES

A lattice can be expressed as a collection of integer linear combi-
nations of a set of basis vectors. Popular underlying hard lattice
problems believed to be secure against quantum computing attacks
include the Shortest Vector Problem (SVP) and Learning With Er-
rors (LWE) alongside its ring variant (over ideal lattices), Ring-LWE.
These are all concerned with finding short vectors in the lattice
which can be attempted to be solved by lattice reduction algorithms
such as LLL [36] and BKZ [14, 53]. Another common lattice problem
is the NTRU assumption [29]; that is, given a polynomial h, one
must find f, g such that h = g · f−1.

In this paper, vectors or, interchangeably through the canoni-
cal embedding, polynomials will be denoted by bold small letters
like f , matrices M, polynomial ring mod 𝑞 as R𝑞 , and lattices as
Λ. The field of integers mod 𝑞 is denoted as Z𝑞 . Discrete Gaussian
distributions with centre 𝑡 and standard deviation 𝜎 are denoted
as D𝜎,𝑡 , and we omit the center if it is zero i.e. D𝜎 if 𝑡 = 0. A
distribution is 𝐵-bounded for some 𝐵 ∈ R+, if its support is in
the interval [−𝐵, 𝐵]. The smoothing parameter of Z is denoted
as [Y (Z) = (1/𝜋)

√︁
ln(2 + 2/Y)/2. The Euclidean norm of a vec-

tor/polynomial f is denoted ∥f ∥. The transpose f∗ of polynomial f =
𝑓0+ 𝑓1𝑥 +· · ·+ 𝑓𝑁−1𝑥

𝑁−1 is defined as f∗ = 𝑓0− 𝑓𝑁−1𝑥−· · ·− 𝑓1𝑥𝑁−1.
We denoteM∗ as the transpose of matrixM whereM∗

𝑖, 𝑗
= (M𝑗,𝑖)∗.

The Hermitian product of vectors a, b is denoted as ⟨a, b⟩. The
concatenation of several vectors f1, f2, . . . , f𝑁 will be written as
(f1 |f2 | · · · |f𝑁). In HIBE schemes, user identities at level ℓ are de-
noted by IDℓ . A hash function from an arbitrary length input to a
vector of integers of length 𝑁 is written as 𝐻 : {0, 1}∗ → Z𝑁𝑞 . An
arrow←$ is used to show the uniform random sampling of an ele-
ment from a set e.g. f ←$ Z𝑁𝑞 . The operator ⊕ means XOR. A Gram-
Schmidt orthogonalised basis of B is denoted as B̃ = {b̃1, . . . , b̃𝑁 }.
The notation A(f) refers to the anti-circulant matrix associated
with polynomial f . The notation ⌊𝑘⌉ indicates the real number 𝑘 is
to be rounded to the nearest integer. The rounding ⌊f⌉ of a poly-
nomial f is taken to be coefficient-wise rounding. The Fast Fourier
Transform (FFT) and Number Theoretic Transform (NTT) of poly-
nomial f are the evaluations f (Z 𝑖) for 𝑖 ∈ {0, . . . , 𝑁 − 1}, where Z is
the 2𝑁 -th complex root of unity in the FFT, and Z is the 2𝑁 -th root
of unity mod 𝑞 in the NTT. Let ⊙ be the point-wise multiplication.

https://gitlab.com/raykzhao/latte

Quantum-safe HIBE: does it cost a Latte?

Definition 2.1 (Rényi Divergence [5]). For two discrete distri-
butions 𝑃 and𝑄 such that Supp(𝑃) ⊆ Supp(𝑄), the Rényi divergence
(RD) of order 𝑎 ∈ (1, +∞) is defined as:

𝑅𝑎 (𝑃 | |𝑄) = ©«
∑︁

𝑥 ∈Supp(𝑃)

𝑃 (𝑥)𝑎
𝑄 (𝑥)𝑎−1

ª®¬
1

𝑎−1

.

In addition, for 𝑎 = +∞, we have: 𝑅∞ (𝑃 | |𝑄) = max𝑥 ∈Supp(𝑃)
𝑃 (𝑥)
𝑄 (𝑥) .

Lemma 2.1. Let 𝑎 ∈ [1, +∞]. Let 𝑃 and 𝑄 denote distributions

with Supp(𝑃) ⊆ Supp(𝑄). Then the following properties hold:

• Data Processing Inequality: 𝑅𝑎 (𝑃 𝑓 ∥𝑄 𝑓) ≤ 𝑅𝑎 (𝑃 ∥𝑄) for
any function 𝑓 , where 𝑃 𝑓 (resp. 𝑄 𝑓) denotes the distribution

of 𝑓 (𝑦) induced by sampling 𝑦 ←$ 𝑃 (resp. 𝑦 ←$ 𝑄).

• Probability Preservation: Let 𝐴 ⊆ Supp(𝑄) be an arbi-

trary event. If 𝑎 ∈ (1, +∞), then𝑄 (𝐴) ≥ 𝑃 (𝐴)
𝑎

𝑎−1 /𝑅𝑎 (𝑃 ∥𝑄).
Further, we have 𝑄 (𝐴) ≥ 𝑃 (𝐴)/𝑅∞ (𝑃 ∥𝑄).

We use the notation ≲,∼ as in [42], in order to “absorb” all higher-
order terms of negligible elements: for example, if 𝛿 = 𝑜 (1), then
𝛿 + 𝛿2 ∼ 𝛿 . The following remark bounds 𝑅∞ (𝐷2;𝐷1).

Remark 1. Let 𝜏 ∈ Z be the tailcut bound as above, and let𝑄 = 2𝑘

for some 𝑘 ∈ Z. If 𝜏 ≥
√︁

2 ln(2𝑄), then:
𝑅∞ (𝐷2;𝐷1) ≤ 1/(1 −𝑄−1) ≲ 1 + 1/𝑄. (1)

This can be verified by using classical tailcut bounds [38, Lemma 4.4].

In our analysis, we will apply the following proposition, adapted
from Proposition 4 of [31].

Proposition 2.2. [31] Let 𝑃 and 𝑄 denote two distributions of a

𝑁−tuple of random variables (𝑥𝑖)𝑖<𝑁 . For 0 ≤ 𝑖 < 𝑁 , assume 𝑃𝑖 (resp

𝑄𝑖) is the marginal distribution of 𝑥𝑖 , and let 𝑃𝑖 |<𝑖 (·|𝑥 < 𝑖) denote
the conditional distribution of 𝑥𝑖 given that (𝑥0, . . . , 𝑥𝑖−1) =: 𝑥<𝑖 . Let
𝑎 > 1. Suppose that for all 0 ≤ 𝑖 < 𝑁 , there exists 𝐵𝑖 ≥ 1 such that

for all 𝑖-tuples 𝑥<𝑖 in the support of𝑄 restricted to its first 𝑖 variables,

𝑅𝑎 (𝑄𝑖 |𝑥<𝑖 , 𝑃𝑖 |𝑥<𝑖) ≤ 𝐵𝑖 . Then 𝑅𝑎 (𝑄, 𝑃) ≤
∏
𝑖<𝑁 𝐵𝑖 .

Theorem 2.3 (Tail-cut Bound, Adapted from [5], Thm. 2.11).
Let D ′𝜎 be the 𝐵-bounded distribution of D𝜎 by cutting its tail. For

𝑀 independent samples, we have 𝑅∞ ((D ′𝜎)𝑀 | | (D𝜎)𝑀) ≤ exp(1) if
𝐵 ≥ 𝜎 ·

√︁
2 ln(2𝑀).

2.1 Hierarchical Identity-based Encryption

Hierarchical identity-based encryption (HIBE) schemes were in-
troduced by Horwitz and Lynn [30] and can be considered a gen-
eralisation of an IBE scheme to multiple levels. An HIBE scheme
consists of five components: Keygen, Delegate, Extract, Encrypt,
and Decrypt. Appendix A explains the role of each component and
discusses advantages of HIBE schemes over 2-level IBE. Gentry and
Silverberg proposed the first secure HIBE scheme in the random
oracle model (ROM) in 2002 [27], which was an extension of the
Boneh-Franklin IBE scheme [8], a Weil-pairing based scheme, the
security of which relies on the bilinear Diffie-Hellman problem.
This was shown to be secure against adaptive identity and chosen
ciphertext attacks, by use of the Fujisaki-Okamoto (FO) transfor-
mation [25], although the security degrades exponentially with the
number of levels.

Boneh-Boyen built on this in 2004 to create a scheme which was
secure without random oracles [6]. However, as both the ciphertext
and private keys grew linearly with the number of levels of the hier-
archy, in 2005 a scheme [7] was proposed which fixed the ciphertext
size to three group elements, and curtailed private key growth to
within level ℓ group elements. In 2018, an isogeny-based version of
the Decisional Bilinear Diffie-Hellman-based scheme was proposed
[33]. Despite isogenies possessing quantum-safe properties, this
variant only serves to strengthen the existing classical security,
by proving it secure under the assumption of either the classical
version or the isogeny-based version of the problem and there-
fore is not necessarily quantum-safe. To the best of the authors’
knowledge, the only quantum-safe HIBE schemes so far proposed
are based on lattices. We now introduce the schemes upon which
Latte is built.

2.2 The Ingredients of Latte

DLP IBE Scheme. In 2014, Ducas, Lyubashevsky and Prest pro-
posed the first efficient lattice-based identity-based encryption (IBE)
scheme [22]. They based their construction on the IBE scheme by
Gentry, Peikert and Vaikuntanathan [26], using a variant of NTRU
lattices. The underlying security problems are the NTRU problem
for key generation and R-LWE for the encryption. The ciphertexts
therefore have more practical sizes than previous constructions,
for example 30kb (kilobits) for 192-bit classical security. The use of
structured lattices also allowed for implementation optimisations
such as the Number Theoretic Transform (NTT), as demonstrated
by [40], whose software performance of the DLP-IBE outperformed
that of the elliptic-curve based Boneh-Franklin IBE scheme.

Bonsai Trees HIBE. Cash [12] proposed the use of Bonsai trees to
create a hierarchical structure for IBE. They model the hierarchical
network of users as a tree, whereby arborists, or sub-key-managers,
have control over the sub-trees, and have the authority to delegate
user private keys. Delegation requires the knowledge of a trapdoor
basis of the lattice at that level. During the process whereby keys
are delegated down the tree, the lattice is extended, and therefore
its dimension and hence the key and ciphertext sizes increase. The
public key size is of O(𝑑3𝑘𝑛2) and ciphertext size is of O(𝑑3𝑘𝑛) at
depth 𝑑 , for security parameter 𝑛 and hash output length 𝑘 . The
root authority has control of the whole tree by knowing the short
trapdoor basis for the master root lattice. The security of this HIBE
scheme is based on LWE over standard lattices.

3 IMPROVED LATTE HIBE SCHEME

Latte was proposed in 2017 [10] and can be considered as a combi-
nation of the DLP-IBE scheme [22] and Bonsai Tree HIBE scheme
[12] to create a lattice-based hierarchical IBE (HIBE) scheme. It can
be shown to be ID-IND-CCA-secure, the proof for which is given
in [1], based on the NTRU and R-LWE hardness assumptions.

3.1 Proposed Design Optimisations

For the optimised Latte scheme presented in this section and used
in our software design and implementation, features of the Falcon
[51] and theModFalcon [17] signature schemes were utilised. This
is the first time these features have been considered in Latte and
so the rationale for this is expanded on in Sec. 5. For now, it suffices

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Table 1: Latte Algorithm Summary.

Alg. Inputs Outputs

KeyGen 𝑁,𝑞 ∈ Z, 𝜎0 ∈ R h ∈ R𝑞 , B0, S0 ∈ R2×2
𝑞

Delegate

Sℓ−1 ∈ R (ℓ+1)×(ℓ+1)𝑞 ,
𝜎ℓ ∈ R, IDℓ ,

Sℓ ∈ R (ℓ+2)×(ℓ+2)𝑞

𝐻 : {0, 1}∗ → Z𝑁𝑞

Extract

Sℓ−1 ∈ R (ℓ+1)×(ℓ+1)𝑞 ,
𝜎ℓ ∈ R, IDℓ ,

t0, . . . , tℓ ∈ R𝑞

𝐻 : {0, 1}∗ → Z𝑁𝑞

Encrypt

𝜎𝑒 ∈ R, h ∈ R𝑞 , 𝑍 ∈ {0, 1}256,
KDF, IDℓ , ` ∈ {0, 1}256, C1, . . . ,Cℓ ,Cℎ ∈ R𝑞
𝐻 : {0, 1}∗ → Z𝑁𝑞

Decrypt

𝑍 ∈ {0, 1}256, ` ′ ∈ {0, 1}256

C1, . . . ,Cℓ ,Cℎ ∈ R𝑞 ,
t0, . . . , tℓ ∈ R𝑞

to acknowledge that the sub-algorithms NTRUSolve, ffSampling
and Tree are taken from Falcon and are displayed in Appendix B.1.
The currently presented Latte in this Section also improves on
the efficiency of the original proposal [10] by reducing the module
dimension of the extracted secret keys by 1, by extending a similar
approach used in the DLP IBE [22]. More concretely, we eliminate
public key polynomial b by modifying the equation satisfied by
the decryption key at level ℓ from the original rank ℓ + 2 module
relation over 𝑅𝑞 :

t0 + t1 · h + t2 · A1 + · · · + tℓ · Aℓ−1 + tℓ+1 · Aℓ = b, (2)

where A𝑖 = 𝐻 (ID1 | . . . |ID𝑖) for 1 ≤ 𝑖 ≤ ℓ , to the following rank
ℓ + 1 relation over 𝑅𝑞 :

t0 + t1 · h + t2 · A1 + · · · + tℓ · Aℓ−1 = A′ℓ , (3)

where A′
ℓ
= 𝐻𝐸 (ID1 | . . . |IDℓ) := 𝐻 ("E"|ID1 | . . . |IDℓ). Further-

more, we remove the need for Extract algorithm to be stateful.
This is achieved by deriving randomness deterministically from the
ID (see Sec. 4.4 for security discussion).

3.2 Scheme Description

The full pseudocode for Latte KeyGen, Delegate, Extract, Encryp-
tion, and Decryption are presented in Alg. 2–6 in Appendix B,
respectively. Table 1 further summarises the inputs and outputs of
the Latte algorithms. The KeyGen algorithm, given in Alg. 2 in
Appendix B, generates an NTRU-type basis. This is performed by
sampling the short basis polynomials f, g from a Gaussian distribu-
tion. Operations are over the polynomial ring R𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑁 +1⟩,
a variant of the NTRU ring. For the purposes of optimisation in the
implementation, variables are stored in NTT representation where
appropriate. The Gram-Schmidt norm of the associated basis is
computed to ensure smallness allowing for short private keys to be
delegated to the next level. If not, the polynomials are re-sampled.
The rest of the basis, polynomials F,G, are computed so that they
satisfy the NTRU equation, fG − gF = 𝑞 mod 𝑥𝑁 + 1. This sub-
algorithm is referred to as NTRUSolve, and its implementation will
be discussed in Sec. 5. The solution to this is not unique, but any
solution suffices provided it is short enough. This is taken care of by

reduction of the coefficients. The public key consists of polynomial
h = g · f−1. The master public basis B0 and private basis S0 at level
0 are implicit in the polynomial master keys, as follows:

B0 =

[
−A(h) I𝑁
𝑞I𝑁 0𝑁

]
, S0 =

[
g −f
G −F

]
.

The Delegate process, given in Alg. 3 in Appendix B, creates a
public/secret key pair for the next level in the tree, allowing it to
become a sub key management service (sub-KMS). Suppose the
KMS wishes to delegate a key from level ℓ − 1 to level ℓ . Then it
can extend the public basis of the user at level ℓ , denoted by Bℓ by
placing Aℓ = 𝐻 (ID1 | . . . |IDℓ), where 𝐻 is a hash function, to the
beginning of the first column and filling the extra row with I𝑁 and
0𝑁 , as shown below. The dimension of the new matrix becomes
(ℓ + 2)𝑁 × (ℓ + 2)𝑁 . The corresponding private basis, Sℓ , can then
be generated. The 𝑖𝑡ℎ row (s𝑖,0, s𝑖,1, . . . , s𝑖,ℓ+1) of the private basis
is a short solution to the equation:

s𝑖,0 + s𝑖,1 · h + s𝑖,2 · A1 + · · · + s𝑖,ℓ+1 · Aℓ = 0 mod 𝑞.

This can be found by sampling short vectors (using the Klein-
GPV sampler [26] or its variant from Falcon [51]) from the (ℓ − 1)-
level lattice using its secret basis, with centre vector (−s𝑖,ℓ+1 ·
Aℓ , 0, . . . , 0), where s𝑖,ℓ+1 is sampled from a discrete Gaussian dis-
tribution D𝜎ℓ over R. A check is made to ensure the GS-norm of
the sampled lattice vector is within the bound 𝜎ℓ ·

√︁
(ℓ + 2)𝑁 to

ensure the delegated basis will be of sufficient quality.
The remainder of the Delegate algorithm, in which the bot-

tom row (sℓ+1,0, sℓ+1,1, . . . , sℓ+1,ℓ+1) is generated, is a higher-
dimensional analogue of Latte KeyGen. The resulting matrix has
a determinant of size 𝑞. The final row is then reduced similarly to
as in the KeyGen component to ensure the basis is of the required
quality for further delegation. Cramer’s rule is utilised here to find
the reduction coefficients, the details of which are given in Appen-
dix H. Generalising to level ℓ , the public basis Bℓ and the private
basis Sℓ , respectively become:

Bℓ =

−A(Aℓ) 0𝑁 . . . I𝑁

.

.

.
.
.
.

. . .
.
.
.

−A(h) I𝑁 . . . 0𝑁
𝑞I𝑁 0𝑁 . . . 0𝑁

, Sℓ =

s0,0 . . . s0,ℓ+1
s1,0 . . . s1,ℓ+1
.
.
.

. . .
.
.
.

sℓ+1,0 . . . sℓ+1,ℓ+1

.

In the Latte Extract algorithm (Alg. 4 in Appendix B), the user
private key is a short solution (t0, t1, . . . , tℓ) to:

t0 + t1 · h + t2 · A1 + · · · + tℓ · Aℓ−1 = Aℓ mod 𝑞, (4)

where A𝑖 = 𝐻 (ID1 | . . . |ID𝑖) for 𝑖 = 1, . . . , ℓ . Again, this is found
using the Klein-GPV style sampler over the short basis from the
previous level. An extended version of traditional R-LWE encryp-
tion/decryption [39] is used for ciphering messages as given in
Alg. 5 and 6 in Appendix B, respectively. A random 𝑠𝑒𝑒𝑑 is sampled
and used together with a Key Derivation Function (KDF) to one-
time-pad the message. The 𝑠𝑒𝑒𝑑 is encoded2 and then encrypted
using Ring-LWE and sent. The ciphertext consists of the encrypted
message 𝑍 and deterministically sampled ephemeral public keys
C1, . . . ,Cℓ ,Cℎ . This is a variant of the FO transform [25] to protect
against invalid ciphertexts. The Decrypt process takes the user

2The Encode/Decode are the same as described in [1].

Quantum-safe HIBE: does it cost a Latte?

private key to decrypt the 𝑠𝑒𝑒𝑑 and reconstruct the message. This
works as follows by operations over R𝑞 :

V = Cℓ − t1 · Cℎ − t2 · C1 − · · · − tℓ · Cℓ−1

= (Aℓ · e + eℓ +m) − t1 (h · e + eℎ) − · · · − tℓ (Aℓ−1 · e + eℓ−1)
= eℓ +m − t1 · eℎ − t2 · e1 − · · · − tℓ · eℓ−1 + t0 · e,

where the first equality is derived by substituting Cℎ,C𝑖 with their
definitions, and the second equality holds based on Eq. (4). By
construction, the error and private key terms are small enough so
that m is decoded successfully to recover the 𝑠𝑒𝑒𝑑 . From the 𝑠𝑒𝑒𝑑 ,
the message is straightforwardly recovered from 𝑍 , which is sent
as part of the ciphertext.

4 SECURITY ANALYSIS

A recurring concern around LBC is the precision requirements of
the implementation, in particular of the discrete Gaussian sampler.
As noted in [52], the precision used is often excessive, leading to
slow and impractical implementations. Traditional measures of sta-
tistical distance have recently been substituted for Rényi divergence
or Kullback-Leibler divergence to reduce memory and computa-
tional resources, whilst maintaining security. In this section, we
make use of the Rényi divergence argument initially proposed in
[49] to answer the question of how low we can allow the precision
of our implementation to be , without allowing an adversary to
detect any distinction between the actual distribution and the ideal
distribution of a true Gaussian sample over the lattice, hence main-
taining our claimed security levels. In particular, we analyze the
security impact on Latte of finite precision errors in the floating-
point arithmetic and in the Z-samplers used in our implementation
of Extract and Delegate algorithm based on the the ffSampling
lattice Gaussian algorithm. For this, we follow the following steps:

(1) Rényi divergence security reduction: We give a secu-
rity reduction (Sec. 4.1) based Rényi divergence analysis to
relate security of finite precision Latte to the security of
its ideal (infinite precision) implementation, and bounds on
the errors in the center and standard deviation parameters
of Z Gaussian samples used in lattice Gaussian ffsampling
algorithm.

(2) Rényi divergence between Z-Gaussians with errors

in parameters: To support above security reduction, we
give a tight Lemma (in Sec. 4.2) giving a bound on Rényi
divergence between the output distribution of Z Gaussian
samplers with errors in the center and standard deviation
parameters, extending the sharp Rényi divergence results
of [49].

(3) Statistical Model for ffSampling Precision Errors: For
use with the above security reduction, we introduce and
empirically verify (in Sec. 4.3) a heuristic statistical model to
compute upper bounds on the finite precision errors in the
lattice Gaussian ffSampling algorithm. We give empirical
evidence for the validity of our model, and use it to compute
estimated error bounds for the Latte parameter sets, and
apply the results with the above security reductions to
evaluate the security impact of precision errors on Latte.

Then, in Sec. 4.5, we evaluate the security against best known
lattice attacks of our Improved Latte for the four recommended
Latte parameter sets.

4.1 Rényi Divergence Security Reduction

The security reduction to establish the (full chosen identity) indis-
tinguishability against chosen-ciphertext attack security (ID-IND-
CCA) of the IDEAL (infinite precision) Latte HIBE encryption
scheme is summarised in Annex C of the Latte specification [1]
and proceeds in two steps. Here, we show how to obtain a security
reduction that takes into account and quantifies the security impact
of the REAL (finite precision) implementation of Latte. To do so,
we introduce an additional middle step (step 2 below) in the security
reduction steps for Latte, and so we end up with the following
three security reduction steps:

Step 1 - FO Transform: This generic reduction transforms any
ID-IND-CCA attack (chosen ID indistinguishability against cho-
sen ciphertext attacks) against REAL (finite precision) Latte to
an ID-OW-CPA (chosen ID one-wayness against chosen plaintext
attacks) of REAL (finite precision) Latte′, assuming the random or-
acle model for the Latte KDF hash function. Here, Latte′ denotes
the ID-OW-CPA encryption scheme underlying Latte: the encryp-
tion/decryption algorithms of Latte can be obtained by applying
the tag-based Fujisaki-Okamoto KEM-DEM transform of [3] to the
Latte′ scheme. As pointed out in Annex C of [1], this reduction
step follows directly from an (ID-based variant) of the composition
of Theorem 3.1 and Theorem D.1 in [3].

Step 2 - Rényi Divergence - REAL to IDEAL: This presented
reduction (in Lemma 4.1 below) transforms any ID-OW-CPA attack
against REAL (finite precision) Latte′ to an ID-OW-CPA attack
against IDEAL (infinite precision) Latte′, by using Rényi Diver-
gence (RD) analysis techniques [5, 49]. For the latter RD reduction to
apply, we exploit the fact that the one-wayness notion ID-OW-CPA
is a search problem, rather than a decision problem.

Step 3 - ID-OW-CPA to NTRU/RLWE: This reduction trans-
forms any attack against IDEAL Latte′ ID-OW-CPA security into
attacks against the NTRU or RLWE problems, assuming the random
oracle model for the ID hash function 𝐻 . As pointed out in Annex
C of [1], this reduction is a variant of the Bonsai tree reduction
presented in Theorem 5.2 of [13], with a minor modification for
our improved Latte construction (see Sec. 4.4 for more details).

The following result fills the missing Step 2 above (where we
apply Lemma 4.1 with the ID-OW-CPA attack game and the event
𝐸 being the winning of this game by the adversary), and quanti-
fies the security impact of finite precision in the discrete integer
Gaussian samplers and the floating point arithmetic used in the
FFT lattice Gaussian sampler used within the Latte′ Delegate al-
gorithm (Alg. 3 in Appendix B) and Extract algorithm (Alg. 4 in
Appendix B). The latter security impact is expressed as a function
of upper bounds 𝛿𝑈

𝜎𝑖
and Δ𝑈

𝑡𝑖
on the relative (resp. absolute) finite

precision errors in the integer discrete Gaussian standard deviation
parameters 𝜎 (𝑖) (resp. Gaussian center parameters 𝑡 (𝑖)) used inside
the Delegate and Extract algorithms, and an upper bound Δ𝑈𝑧 on
the absolute error in the final output value of the FFT sampling
algorithm. We also allow for a negligible probability 𝑝𝑈 (over the
randomness of the key generation and discrete Gaussian samplers)

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

that the above error upper bounds fail to hold. The next subsec-
tion explains our statistical model and results for estimating the
latter error upper bounds and the probability 𝑝𝑈 for the chosen
implementation finite precision.

Consider an attack game REAL against Latte′with depth param-
eter 𝑑where the attack algorithm A is run input a Latte′ master
public key ℎ (where (𝑆0, ℎ) ← KeyGen(𝑁,𝑞, 𝜎0)), makes at most
𝑄𝐷 total number of queries to the Delegate algorithm (Alg. 3 in
Appendix B) and 𝑄𝐸 queries to the Extract algorithm (Alg. 4 in
Appendix B) implemented with:

• A finite precision 𝑝D 1-dimensional Discrete Gaussian Z-
sampling algorithm in lines 3–4 of Alg. 10 in Appendix B.1
outputting samples from a distribution D̄𝜎,𝑡 within Rényi
divergence of order 𝑎 at most 𝐵 from the ideal Discrete
Gaussian distribution D𝜎,𝑡 i.e. 𝑅𝑎 (D̄𝜎,𝑡 ,D𝜎,𝑡) ≤ 𝐵.

• A finite precision 𝑝 𝑓 𝑝 floating-point arithmetic for Alg. 3,
Alg. 4 in Appendix B, and lines 10–13 of Alg. 10 in Appen-
dix B.1.

Let IDEAL denote the attack game against the ideal implementa-
tion of Latte’ where both 𝑝D and 𝑝 𝑓 𝑝 are infinite precision. Let
(𝑡 (𝑖) , 𝜎 (𝑖)) denote the center and std dev. parameter (resp.) for the
𝑖’th query to the 1-dim. Z Gaussian sampler (i.e. at line 1 of Alg. 2
in Appendix B, line 3 or 4 of Alg. 10 in Appendix B.1, or line 4 of
Alg. 3 in Appendix B) in the game IDEAL, and let z̄(𝑗) denote the
value of z̄ in the output of the 𝑗 ’th query to FFT−1 (ffSampling) in
the game (i.e. at line 6 of Alg. 3 or line 5 of Alg. 4 in Appendix B).
Suppose that, except for an event B𝑈 , the absolute errors Δ𝑡 (𝑖) in
centers 𝑡 (𝑖) relative to 𝜎 (𝑖) (i.e. Δ𝑡 (𝑖) /𝜎 (𝑖)) are upper bounded by
Δ′𝑈
𝑡 (𝑖)

and relative errors 𝛿𝜎 (𝑖) in standard deviations 𝜎 (𝑖) are up-
per bounded by 𝛿𝑈

𝜎 (𝑖)
for all 1 ≤ 𝑖 ≤ 𝑀Z, and the infinity-norm

absolute errors Δz̄(𝑗) in z̄(𝑗) is upper bounded by Δ𝑈z̄ < 1/2 for all
1 ≤ 𝑗 ≤ 𝑀𝑓 . The above errors are computed with respect to the
same game with finite precision floating-point arithmetic. Here,
𝑀Z ≤ 𝐾 · (𝑄𝐸 + (𝑑 +1) ·𝑄𝐷) +2 denotes the total number of queries
to the 1-dim. Z Gaussian sampler in the game, 𝐾 denotes the num-
ber of Z sampler calls of each call of Alg. 10 in Appendix B.1, and
𝑀𝑓 ≤ 𝑄𝐸 + (𝑑 + 1) · 𝑄𝐷 denotes the number of calls of Alg. 10
in the game. Let 𝑄, 𝜖 > 0 with 𝜏 ≥

√︁
2 ln(2𝑄) and assume that

𝜎 (𝑖) ≥ [Y (Z) for 1 ≤ 𝑖 ≤ 𝑚Z.

Lemma 4.1. Let 𝑝𝑈 denote the probability of event 𝐵𝑈 in game

IDEAL. Let 𝐸 denote any event defined over the view ofA, 𝐵𝑇 := 𝐵𝑀Z ,
𝐶𝑇 :=

∏
𝑖<𝑀Z 𝐶

(𝑖)
, where 𝐶 (𝑖) is given by the right hand side of (6)

in Lemma 4.2 with 𝛿𝜎 := 𝛿𝑈
𝜎 (𝑖)

, Δ′𝑡 := Δ′𝑈
𝑡 (𝑖)

for 1 ≤ 𝑖 ≤ 𝑀Z. Then,

Pr[𝐸𝐼𝐷𝐸𝐴𝐿] ≥
1
𝐶𝑇
·
(
Pr[𝐸𝑅𝐸𝐴𝐿]𝑎/(𝑎−1)/𝐵𝑇 − [

)𝑎/(𝑎−1)
− 𝑝𝑈 ,

where [:= 𝐶𝑇 (𝑝𝑈 + 1/𝑄) (𝑎−1)/𝑎
.

4.2 Rényi divergence between Z-Gaussians with

errors in parameters

This step builds upon unpublished work by Prest [50]. We will
consider the following Gaussians:

• 𝐷1 is an ideal Gaussian of standard deviation 𝜎 and center
𝑡 .

Table 2: Empirical Results of the Error Estimation from Our

Statistical Model.

ℓ = 1 ℓ = 2
Set Prcn. 𝛿𝜎 Δ′𝑡 Δz̄ 𝛿𝜎 Δ′𝑡 Δz̄
LATTE-1 53 2−51 2−35 2−23 - - -
LATTE-2 53 2−51 2−34 2−21 - - -
LATTE-3 113 2−111 2−89 2−71 2−102 2−59 2−35

LATTE-4 113 2−111 2−87 2−68 2−102 2−55 2−30

Table 3: Empirical Results of the Actual Arithmetic Errors.

ℓ = 1 ℓ = 2
Set Prcn. 𝛿𝜎 Δ′𝑡 Δz̄ 𝛿𝜎 Δ′𝑡 Δz̄
LATTE-1 53 2−50 2−34 2−22 - - -
LATTE-2 53 2−50 2−32 2−20 - - -
LATTE-3 113 2−110 2−88 2−70 2−108 2−58 2−34

LATTE-4 113 2−110 2−85 2−67 2−105 2−53 2−29

• 𝐷2 is a Gaussian of standard deviation 𝜎 and center 𝑡 , re-
stricted to the interval 𝐼 = [𝑡 − 𝜏 · 𝜎, 𝑡 + 𝜏 · 𝜎].

• 𝐷3 is a Gaussian of standard deviation 𝜎 and center 𝑡 , re-
stricted to the interval 𝐼 .

Now, we present Lemma 4.2 showing for adequate values of 𝜏, |𝑡 −
𝑡 |/𝜎, | �̄�𝜎 − 1|, 𝐷1 and 𝐷3 are close in the Rényi divergence sense.
The proof appears in Appendix C.

Lemma 4.2. Consider 𝐷1, 𝐷2, 𝐷3, 𝜏,𝑄 as defined above. Suppose

that there exist 𝛿𝜎 , 𝜖, 𝛿 > 0 such that:

(1) max(𝛿𝜎 , 𝜖) ≤ 𝛿 = 𝑜 (1);
(2) |𝑡 − 𝑡 |/𝜎 ≤ Δ′𝑡 (bounded absolute error);
(3) | �̄�𝜎 − 1| = 𝛿𝜎 (bounded relative error);

(4) 𝜎 ≥ [Y (Z);
(5) 𝜏 ≥

√︁
2 ln(2𝑄) (motivated by remark 1).

(6) num(𝑎, 𝑏, 𝑐) := |𝑎2 +2𝑎
√

2𝜋𝑏
1−𝑏 + (2𝑐 +𝑐

2) (1+ 2𝜋𝑏
1−𝑏) |/2(1−𝑐

2);
(7) ub := 2/𝑄 + num(Δ′𝑡 , Y, 𝛿𝜎) + 1

1−𝛿𝜎 · (𝜏Δ
′
𝑡 + 𝜏2𝛿𝜎).

Then the Rényi divergences of 𝐷3 and 𝐷2 (resp. 𝐷1) is:

𝑅𝑎 (𝐷3;𝐷2) ≲ 1 + 𝑎 · ub
2

2
. (5)

𝑅𝑎 (𝐷3;𝐷1) ≲ 1 + 1
𝑄
+ 𝑎 · ub

2

2
. (6)

4.3 Statistical Model for ffSampling Precision

Errors

In this Section, we present a statistical model to estimate bounds
for the floating point arithmetic errors in the Latte ffSampling
algorithm using our chosen implementation floating point precision
for the Latte parameter sets, and we use those bounds to analyse
the security impact of those errors on our Latte implementation
by applying Lemma 4.1.

Our statistical model makes the heuristic but natural assump-
tion the floating point error introduced in each arithmetic opera-
tion in the ffSampling algorithm can be modelled as independent

Quantum-safe HIBE: does it cost a Latte?

zero-center continuous Gaussian random variable, and the model
estimates the maximum standard deviations 𝛿𝜎 ,Δ′𝑡 ,Δz̄ of the errors
𝛿𝜎 (𝑖) , Δ

′
𝑡 (𝑖)

, Δz̄(𝑗) over all Z-sampler query indices 1 ≤ 𝑖 ≤ 𝑀Z

and ffSampler query indices 1 ≤ 𝑗 ≤ 𝑀𝑓 in the IDEAL game of
Lemma 4.1 by propagating the standard deviations of the inde-
pendent errors through the ffSampling algorithm arithmetic steps,
assuming uniformly random input matrices A𝑖 ∈ 𝑅𝑞 at the input
to the Extract and Delegate algorithms. We explain at the end of
this section how we apply the standard deviations in the Z sampler
queries to derive the security impact of floating point errors on
Latte. We remark that the use of the random oracles 𝐻 and 𝐺 to
hash the attacker’s choice of identities queried to Extract or Del-
egate algorithms to derive the ffSampling input ring elements A𝑖
uniformly at random in 𝑅𝑞 and seed for Extract uniformly random
supports our statistical (rather than adversarial) model of float-
ing point errors, since the attacker cannot control the randomness
of 𝐻 and 𝐺 and the Delegate, Extract and Key Generation algo-
rithms. A similar heuristic statistical model is commonly used in
the context of evaluating the propagation of LWE errors via a circuit
computed homomorphically with Fully Homomorphic Encryption
schemes [16].

We now present the details our statistical model for estimating
the standard deviations of errors, i.e. 𝛿𝜎 , Δ′𝑡 , and Δz̄. For a complex
number 𝑎 = `𝑅+𝑖`𝐼 , with `𝑅, `𝐼 ∈ R, let denote the absolute error of
the real part `𝑅 as 𝜎𝑅 and the absolute error of the imaginary part `𝐼
as 𝜎𝐼 , respectively. We assume the real and imaginary parts of every
complex number in our statistical model are independent Gaussian
variables e.g. for complex number 𝑎 = `𝑅 + 𝑖`𝐼 , Re(𝑎) follows
the normal Gaussian distribution N(`𝑅, 𝜎2

𝑅
) and Im(𝑎) follows

the normal distribution N(`𝐼 , 𝜎2
𝐼
), respectively, no matter whether

Re(𝑎), Im(𝑎) are linear combinations of one or more independent
normal variables. Therefore, we use the tuple (`𝑅, 𝜎2

𝑅
, `𝐼 , 𝜎

2
𝐼
) to

represent a complex number with errors.

Definition 4.1 (AddBound, SubBound, andMultBound). For
independent 𝑎 = (`𝑎,𝑅, 𝜎2

𝑎,𝑅
, `𝑎,𝐼 , 𝜎

2
𝑎,𝐼
) and 𝑏 = (`𝑏,𝑅, 𝜎2

𝑏,𝑅
, `𝑏,𝐼 , 𝜎

2
𝑏,𝐼
),

let define addition AddBound(𝑎, 𝑏), subtraction SubBound(𝑎, 𝑏) as

AddBound(𝑎, 𝑏) := (`𝑎,𝑅 + `𝑏,𝑅, 𝜎2
𝑎,𝑅 + 𝜎

2
𝑏,𝑅
, `𝑎,𝐼 + `𝑏,𝐼 , 𝜎2

𝑎,𝐼 + 𝜎
2
𝑏,𝐼
),

SubBound(𝑎, 𝑏) := (`𝑎,𝑅 − `𝑏,𝑅, 𝜎2
𝑎,𝑅 + 𝜎

2
𝑏,𝑅
, `𝑎,𝐼 − `𝑏,𝐼 , 𝜎2

𝑎,𝐼 + 𝜎
2
𝑏,𝐼
),

and multiplication MultBound(𝑎, 𝑏) as:

(`𝑎,𝑅`𝑏,𝑅 − `𝑎,𝐼 `𝑏,𝐼 , `2
𝑎,𝑅𝜎

2
𝑏,𝑅
+ `2

𝑏,𝑅
𝜎2
𝑎,𝑅 + 𝜎

2
𝑎,𝑅𝜎

2
𝑏,𝑅
+ `2

𝑎,𝐼𝜎
2
𝑏,𝐼
+

`2
𝑏,𝐼
𝜎2
𝑎,𝐼 + 𝜎

2
𝑎,𝐼𝜎

2
𝑏,𝐼
, `𝑎,𝑅`𝑏,𝐼 + `𝑎,𝐼 `𝑏,𝑅, `2

𝑎,𝑅𝜎
2
𝑏,𝐼
+ `2

𝑏,𝐼
𝜎2
𝑎,𝑅+

𝜎2
𝑎,𝑅𝜎

2
𝑏,𝐼
+ `2

𝑎,𝐼𝜎
2
𝑏,𝑅
+ `2

𝑏,𝑅
𝜎2
𝑎,𝐼 + 𝜎

2
𝑎,𝐼𝜎

2
𝑏,𝑅
).

Definition 4.2 (DivBound, adapted from [20]). For 𝑎 =

(`𝑎,𝑅, 𝜎2
𝑎,𝑅
, `𝑎,𝐼 , 𝜎

2
𝑎,𝐼
) and real number 𝑏 = (`𝑏,𝑅, 𝜎2

𝑏,𝑅
, 0, 0), assum-

ing Re(𝑎), Im(𝑎), and 𝑏 are independent normal variables such

that

√︂
𝜎2
𝑎,𝑅

`2
𝑎,𝑅

+
𝜎2
𝑏,𝑅

`2
𝑏,𝑅

< 1,
√︂
𝜎2
𝑎,𝐼

`2
𝑎,𝐼

+
𝜎2
𝑏,𝑅

`2
𝑏,𝑅

< 1, let define the division

DivBound(𝑎, 𝑏) between 𝑎 and 𝑏 as:(
`𝑎,𝑅

`𝑏,𝑅
,
`2
𝑎,𝑅

`2
𝑏,𝑅

(
𝜎2
𝑎,𝑅

`2
𝑎,𝑅

+
𝜎2
𝑏,𝑅

`2
𝑏,𝑅

)
,
`𝑎,𝐼

`𝑏,𝑅
,
`2
𝑎,𝐼

`2
𝑏,𝑅

(
𝜎2
𝑎,𝐼

`2
𝑎,𝐼

+
𝜎2
𝑏,𝑅

`2
𝑏,𝑅

))
.

Table 4: Latte Security Impact of Finite Precision.

ℓ = 1 ℓ = 2
Set p𝑓 𝑝 pD 𝑄𝐶max 𝑄𝐵max 𝑄𝐶max 𝑄𝐵max
LATTE-1 53 48 246 276 - -
LATTE-2 53 48 244 275 - -
LATTE-3 113 96 273 2173 272 277

LATTE-4 113 96 2149 2171 285 268

Table 5: Latte 𝜎ℓ and Decryption Fail. Prob.

Set

𝜎ℓ Fail. Prob.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2
LATTE-1 106.2 5513.3 - 2−191 -
LATTE-2 106.2 7900.2 - 2−380 -
LATTE-3 6777.6 351968.4 22559988.0 2− inf 2−126

LATTE-4 9583.7 713167. 64997288.2 2− inf 2−246

Definition 4.3 (AbsSqrBound). For 𝑎 = (`𝑎,𝑅, 𝜎2
𝑎,𝑅
, `𝑎,𝐼 , 𝜎

2
𝑎,𝐼
),

assuming Re(𝑎) and Im(𝑎) are independent normal variables, let

define the squared absolute value AbsSqrBound(𝑎) of 𝑎 i.e. |𝑎 |2 as

AddBound((Re(𝑎))2, (Im(𝑎))2), that is:
(`2
𝑎,𝑅 + 𝜎

2
𝑎,𝑅 + `

2
𝑎,𝐼 + 𝜎

2
𝑎,𝐼 , 2𝜎

4
𝑎,𝑅 + 4`2

𝑎,𝑅𝜎
2
𝑎,𝑅 + 2𝜎4

𝑎,𝐼 + 4`2
𝑎,𝐼𝜎

2
𝑎,𝐼 , 0, 0) .

We can use the above absolute arithmetic error bound approx-
imations to rewrite our optimised ffLDL in Alg. 1 in Sec. 5.1 and
ffSampling in Alg. 10 in Appendix B.1, in order to estimate 𝛿𝜎 and
Δ′𝑡 , respectively. For 𝛿𝜎 , we first use the ffLDLBounds in Alg. 11 in
Appendix E to estimate the absolute errors of the leaf values (real
numbers) in ffLDL tree𝑇 for a given GrammatrixG i.e. the standard
deviation 𝜎leaf,𝑅 . The splitfftBounds used by Alg. 11 is shown in
Alg. 13 in Appendix E. Since the 𝜎 for the 1-D integer Gaussian
sampler is computed by 𝜎ℓ/

√
`leaf,𝑅 in the Tree computation Alg. 9

in Appendix B.1, assuming the relative error of the floating-point
arithmetic is 𝑢, we have the following arithmetic error bound:

𝛿𝜎 ≤ max
all leaves

(1 + 𝑢) (1+𝑢)𝜎ℓ

(1−𝑢)√`leaf,𝑅−𝜎leaf,𝑅
𝜎ℓ√
`leaf,𝑅

− 1

=
(1 + 𝑢)2

1 − 𝑢

√︄
max

all leaves

`leaf,𝑅
`leaf,𝑅 − 𝜎leaf,𝑅

− 1.

Similarly, we can use the ffSamplingBounds in Alg. 12 in Ap-
pendix E to output Δ′𝑡 for a given vector t and ffLDL tree 𝑇 . The
splitfftBounds and mergefftBounds in Alg. 12 are shown in Alg. 13
and Alg. 14 in Appendix E, respectively. In addition, we can com-
pute the rounding errors Δz̄ i.e. Line 8 in Alg. 3 and Line 6 in Alg. 4
in Appendix B, by combining the FFT/FFT−1 errors of the input
and the errors 𝜎z,𝑅 , 𝜎z,𝐼 of z computed by ffSamplingBounds in
Alg. 12 in Appendix E. We can also use similar statistical modelling
approach to estimate the errors of FFT/FFT−1 for a given vector a,
as shown in Alg. 15 and Alg. 16 in Appendix E, respectively.

Here we show the empirical results of the errors 𝛿𝜎 , Δ′𝑡 , and
Δz̄ estimated by our statistical model. For the target floating-point
precisions used by our implementation of the Latte scheme (see

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Sec. 6 for the rationale behind the chosen precision), we compute
the errors for 100 random (S, t) pairs, where S is the basis and t is
the input of the ffSampling in Alg. 10 in Appendix B.1. The maximal
𝛿𝜎 , Δ′𝑡 , and Δz̄ among these 100 iterations are shown in Table 2.
To provide empirical evidence for supporting the accuracy of our
statistical model, for the same 100 pairs of (S, t), we also give the
actual arithmetic errors between the values computed by using a
very high precision (1024 bits) and the values computed by using
the target precisions. The actual arithmetic errors computed by this
approach are shown in Table 3. By comparing the results in Table 2
and Table 3, the actual arithmetic errors is larger than the estimated
errors from our statistical model by at most 2 bits in this empirical
experiment. We will leave modelling the distributions of (S, t) to
make our statistical model fully deterministic as future works.

Security Impact of Finite Precision errors. In order to use
the results in Table 2 with Lemma 4.1 to derive the security impact
of floating point errors, we first derive corresponding upper bounds
𝛿𝑈𝜎 := 𝜏𝑈 · 𝛿𝜎 , Δ′𝑈𝑡 := 𝜏𝑈 · Δ′𝑡 , and Δz̄ := 𝜏𝑈 · Δ𝑈z̄ on the absolute
value of the errors, where 𝜏𝑈 is chosen so that each individual
Gaussian error’s absolute value exceeds its bound with probability
≤ 2−_ , which by the standard Gaussian tail bound is satisfied by set-
ting 2 exp(−𝜏2/2) ≤ 2−_ . Therefore by a union bound, all bounds
hold except with a negligible probability 𝑝𝑈 ≤ (2𝑀Z + 𝑀𝑓)2−_ ,
with _ denoting the target security level. Applying Lemma 4.1
with 𝑎 := 2_ we conclude using 𝑎/(𝑎 − 1) ≈ 1 and 𝑝𝑈 is negligi-
ble, that Pr[𝐸]𝐼𝐷𝐸𝐴𝐿 ≈ 1

𝐵𝑇𝐶𝑇
Pr[𝐸]𝑅𝐸𝐴𝐿 so that finite precision

causes a bit security loss 𝐿 ≈ log2 (𝐵𝑇) + log2 (𝐶𝑇) bits. We use
the above floating point arithmetic upper bounds to compute an
estimate for the maximum number of delegate/extract queries𝑄𝐶max
(resp.𝑄𝐵max) that ensures log2 (𝐶𝑇) ≤ 1 (resp. log2 (𝐵𝑇) ≤ 1) so that
if max(𝑄𝐷 , 𝑄𝐸) ≤ min(𝑄𝐶max, 𝑄

𝐵
max), then 𝐿 ≤ 2 bits of security are

lost overall for our finite arithmetic precision 𝑝 𝑓 𝑝 Latte implemen-
tation versus the infinite precision implementation. To compute
𝐵𝑇 ≤ 𝐵𝑀Z , we use the RD bound 𝐵 on the COSAC Z sampler Rényi
divergence from the ideal Z sampler distribution derived in [55]
corresponding to the COSAC sampler precision 𝑝D used in our
COSAC implementation (see Sec. 5.3 for the discussions). The fi-
nite precision security impact results are summarised in Table 4.
The results show that for Latte-1 and Latte-2, 244 Extract and/or
Delegate queries can be supported with at most 2 bits of security
loss with our 53-bit double precision floating-point precision imple-
mentation. This should suffice for most practical applications. For
Latte-3 and Latte-4, the main bottleneck in precision is the Δ𝑧
bound, but the results indicate that even reducing the precision by
about 25 bits from our chosen 113 bit arithemtic precision to ≈ 90
bits precision would suffice for security.

4.4 Provable Security for ID-OW-CPA of

Improved Latte

Recall from Sec. 3 that our improved Latte scheme achieves im-
proved efficiency and shorter decryption keys output by the Extract
algorithm relative to the original Latte scheme. This change to
Extract necessitates a different strategy for simulating the Extract
oracle at level ℓ in the ID-OW-CPA security proof (step 3 in the
overview of Sec. 4.1), compared with the strategy outlined in [1]

based on Theorem 5.2 in [13]. In particular, the Extract oracle sim-
ulation at level ℓ must simulate the decryption key t at that level
without knowing the delegation secret key Sℓ−1 at level ℓ − 1. In
the original Latte using Eq. (2), this can be done by programming
𝐴ℓ = 𝐻 (ID1 | . . . |IDℓ) to be a matrix with an embedded NTRU trap-
door and using the basis extension method used in the Delegate
oracle and its simulation at level ℓ . But with our improved Latte
Extraction using Eq. (3), we cannot use a trapdoor forA′

ℓ
to simulate

multiple such decryption key vectors t; indeed, if this were possible
then subtracting two such distinct short vectors would reveal a
short vector s in the (secret) level ℓ − 1 delegation module lattice
s : s0 + s1h + · · · + tℓAℓ−1 = 0.

Instead, our Extract simulator generates a single such short vector
t using the GPV signature simulation strategy [26], i.e. program-
ming A′

ℓ
= 𝐻𝐸 (ID1 | . . . |IDℓ) := t0 + t1h + · · · + tℓAℓ−1 for short

discrete Gaussian t𝑖 ’s sampled by the Extract simulator. To avoid a
contradiction with the different programming strategy for Aℓ , our
modified Latte uses a different hash function𝐻𝐸 modelled as a ran-
dom oracle (obtained from the random oracle 𝐻 by using the prefix
"E") for computing A′

ℓ
used in Extract, so that 𝐻 and 𝐻𝐸 can be

programmed independently. Also, since our programming strategy
for A′

ℓ
= 𝐻𝐸 (ID1 | . . . |IDℓ) only works for a single decryption key

t, we must make Extract deterministic so that it returns the same
secret key t again if queried again at the same ID1 | . . . |IDℓ ; this is
the purpose of the hash function 𝐺 used to derive the randomness
seed for Extract deterministically from ID1 | . . . |IDℓ .

4.5 Concrete Parameter Sets Based on Best

Known Attacks

The security of each component of Latte depends on an associated
lattice problem and so the computational security of each of these
problems must be considered to derive parameters, with the most
vulnerable component determining the overall security for a given
parameter set. The global parameters for the scheme are dimension
𝑁 and modulus 𝑞, but we will also need to consider level-specific
parameters, namely the standard deviation used for sampling at
each level, 𝜎ℓ . The six security constraints to be considered are: (1)
Gaussian sampler security (2) Decryption failure (3) Master key
recovery (breaking the NTRU problem/finding short vectors in the
NTRU lattice) (4) Delegated key recovery (finding short vectors in
the lattice) (5) User key recovery (solving closest vector problem) (6)
Message recovery (breaking the R-LWE encryption scheme). These
are discussed in detail in [1], so here we only state the mathematical
conditions which must be satisfied, and compute the security levels
using our updated parameters and modifications to the scheme.
We first summarise the differences between our security analysis
and [1]. Any other differences are negligible and due to precision
variations in the attack costing script.

Summary of Differences Compared to [1]. There are three main
differences:

• We find that the discrete Gaussian statistical parameter
Y = 2−22.5/(ℓ + 1)𝑁 used by 𝜎ℓ in [1] was miscalculated.
The Kullback-Liebler divergence between the sampled dis-
tribution and the ideal discrete Gaussian distribution is
bounded by approximately 8((ℓ + 1)𝑁)2Y2. Choosing Y =

Quantum-safe HIBE: does it cost a Latte?

Table 6: Latte Estimated Cost of Master Key Recovery.

Set 𝛽
Classical

Security

Quantum

Security

LATTE-1 974 301 275
LATTE-2 1501 455 414
LATTE-3 973 301 274
LATTE-4 1501 455 414

2−25.5/(ℓ + 1)𝑁 ensures the divergence is at most 2−48, as
specified by the proposed Latte specification [1]. If the
sampled distribution has a KL-divergence of 2−48 from the
ideal distribution then using the sampler at most 247 times
will only reduce the security of the scheme by up to one bit
[47]. However, in [1], the Y = 2−22.5/(ℓ + 1)𝑁 would only
ensure the KL-divergence is at most 2−42.

• To accommodate the use of the FACCT sampler in Key-
Gen, as described in Sec. 5, we modify the value of 𝜎0, as
displayed in Table 5. This also has an effect on the subse-
quent 𝜎ℓ , and therefore difficulty of the underlying lattice
problems and success of each attack.

• As our redesign of Latte discards the polynomial b in the
master public key and reduces the module dimension of
the user private key, as described in Section 3.1, we update
the attack costings accordingly. First, it reduces decryption
failure rate, as there is one less error term. The best user key
recovery attack reduces to CVP in the master lattice, so the
attack is on the same lattice, but it demands a marginally
shorter vector to be successful.

Gaussian Sampler Security. The statistical security of the Gauss-
ian sampler used for sampling short vectors from lattice cosets in
extraction and delegation to level ℓ is determined by the standard
deviation of the sampler 𝜎ℓ and its relation to the Gram-Schmidt
norm of the input basis. As this property of the basis is determined
from the master key generation and any previous delegations, i.e.
∥B̃∥ ≤

√︁
(ℓ + 2)𝑁 · 𝜎ℓ , we can draw the following condition based

on the relationship of the standard deviations at each level:

𝜎ℓ ≥ [Y (Z)
√︁
(ℓ + 1)𝑁 · 𝜎ℓ−1, (7)

taking Y as 2−25.5/(ℓ + 1)𝑁 in order to make the Kullback-Leibler
divergence of the sampler from the discrete Gaussian is at most
2−48. However, we also require the sampled vectors to be short
for the purposes of keeping the underlying lattice problem hard.
Therefore, we can set 𝜎ℓ to be equal to right hand side of Eq. (7),
where 𝜎0 ≈ 1.17

√︁
𝑞/(2𝑁). The quantity 𝜎0 is chosen to be this as it

minimises the Gram-Schmidt norm of the master basis (resulting
in short user private keys in the single-level IBE), as deduced in
[22]. Table 5 gives the 𝜎ℓ used for each parameter set, which can
be computed indirectly from (𝑁,𝑞).

Decryption Failure. To protect against attacks which exploit ran-
dom decryption failures, we must bound the error term incurred
in the R-LWE encryption scheme. The probability that the error
term is too large is derived in [1], based on the method of [4]. Es-
sentially, the decryption failure rate cannot exceed 2−_ , where _ is

Table 7: Latte Estimated Cost of Delegated Key Recovery.

Set ℓ 𝛽
Classical

Security

Quantum

Security

LATTE-1 1 1020 314 287
LATTE-2 1 1051 323 295

LATTE-3

1 1021 315 287
2 388 130 119

LATTE-4

1 1051 323 295
2 907 281 257

Table 8: Latte Estimated Cost of User Key Recovery.

Set ℓ 𝛽
Classical

Security

Quantum

Security

LATTE-1 1 829 258 236
LATTE-2 1 1863 560 510

LATTE-3

1 830 259 236
2 334 114 105

LATTE-4

1 1864 561 510
2 799 250 228

the security level in bits of the scheme. For each parameter set and
level, we can compute the probability of decryption failure, noting
that our design consists of one less ephemeral private key than in
[1], reducing the standard deviation 𝜏 of the Gaussian distribution
of the coefficients of the error term 𝑑 to 𝜏 =

√︃
𝜎2
𝑒 + (ℓ + 1)𝑁𝜎2

ℓ
𝜎2
𝑒 ,

marginally reducing the failure rate. This is given in Table 5.

Master Key Recovery. The security of the master key recovery
depends upon the difficulty of finding the short vector (g, f) in
the lattice, given the public NTRU basis. The attack is successful if
the projection of the short vector onto the vector space spanned
by the final 𝛽 Gram-Schmidt vectors is shorter than the length
of the (2𝑁 − 𝛽 + 1)𝑡ℎ Gram-Schmidt vector. This corresponds to
minimising block size 𝛽 , for:

𝜎0
√︁
𝛽 ≤ 𝐺𝐻 (𝛽) (2𝛽−2𝑁)/(𝛽−1) · det(Λ0)1/2𝑁 .

The minimum solutions to this inequality for different parameter
sets is given in Table 6. The work required to find the shortest
vector using this block size with the BKZ2.0 algorithm is also given.

Delegated Key Recovery. For delegated key recovery, the attacker
must find a short sequence of vectors in Λℓ−1. This can reduce
to solving SVP in the master lattice Λ0 to find a vector of length
𝜎ℓ ·
√

2𝑁 . Table 7 gives the minimum block size 𝛽 required (as per
below Eq. (8)) for a successful attack using BKZ2.0 and the classical
and quantum cost of these attacks which depend on 𝑁 and 𝑞.

𝜎ℓ ·
√

2𝑁 ≤ 𝐺𝐻 (𝛽) (2𝑁)/(𝛽−1) · det(Λ0)1/2𝑁 . (8)

User Key Recovery. User key recovery requires finding a short
solution to t0 + t1 ·h+ t2 ·A1 + · · · + tℓ ·Aℓ−1 = Aℓ , which reduces to
solving the CVP in the master lattice Λ0, of the form 𝑡0+𝑡1 ·𝐴0 = 𝐴ℓ .
It is enough to find a short (𝑡0, 𝑡1) with length ≤ 𝜎ℓ ·

√︁
2(ℓ + 1) ·

√
2𝑁 .

To do this, it is required to minimise Eq. (9) over 𝛽 . Table 8 gives

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Table 9: Cost of Primal Message Recovery Attack.

Set 𝑚 𝛽
Classical

Security

Quantum

Security

LATTE-1 1018 423 140 128
LATTE-2 1962 967 299 273
LATTE-3 998 232 84 78
LATTE-4 2037 561 180 165

Table 10: Cost of Dual Message Recovery Attack.

Set 𝑚 𝛽
Classical

Security

Quantum

Security

LATTE-1 1039 422 140 128
LATTE-2 1974 964 298 272
LATTE-3 1005 232 84 78
LATTE-4 2101 560 180 165

Table 11: Latte Parameters.

Set Security 𝑁 𝑞

LATTE-1 128 1024 224 − 214 + 1
LATTE-2 256 2048 225 − 212 + 1
LATTE-3 80 1024 236 − 220 + 1
LATTE-4 160 2048 238 − 226 + 1

the minimum block size 𝛽 required for a successful attack, and the
classical and quantum cost of these attacks.

𝜎ℓ ·
√︁

2(ℓ + 1) ·
√

2𝑁 ≤ 𝐺𝐻 (𝛽) (2𝑁)/(𝛽−1) · det(Λ0)1/2𝑁 . (9)

Message Recovery. There are two attacks to consider for this.
Message recovery depends on solving an extended version of R-
LWE, which reduces to an instance of the primal-CVP or dual-SVP.
In the primal-CVP attack, the ephemeral private keys are recovered
via a close vector problem. In the dual-SVP attack, an attempt is
made to distinguish the ciphertext elements from uniformly random
polynomials in R𝑞 . In fact, it is enough for the attacker to recover
one of the ephemeral private keys, e and so message recovery cost
is not affected by hierarchical level, or by our redesign.

The minimal block size 𝛽 needed for a successful attack, and
the cost of these attacks are given in Tables 9 and 10, depending
on (𝑁,𝑞). The code to populate Tables 9 and 10 is that used in [4].
By considering the cost of all attacks covered in this section, the
security levels in Table 11 could be derived.

Setting up Parameters. The parameter sets are given in Table 11.
These are the parameters recommended in the original specification
[1]. We have extended the security estimates from [1] to give them
on a per-level basis. The security decreases as we move down the
hierarchy. However, it turns out that each parameter set’s security
is determined by the message recovery capabilities, which remain
constant down the levels. Therefore our parameter security con-
clusions match that of [1], and furthermore are not affected by our
optimisations, as the message recovery attack is independent of the
modified parameter ℓ .

Parameter sets Latte-1 and 2 are only applicable to a single level,
essentially an IBE rather than HIBE, version of the scheme. Latte-3
and 4 can be used for up to two levels. The reason we cannot use
these parameters beyond these levels is that the decryption failure
rate exceeds the target security level. In fact, the failure rate is so
high it renders the scheme completely insecure and also not suitable
for use. The key and ciphertext sizes for Latte are given in Table 13.
The method for calculating these is also given in Appendix I.

5 IMPLEMENTATION TECHNIQUES AND

OPTIMIZATIONS

In this Section, we discuss the implementation techniques used in
our optimised Latte scheme. First, we present our faster novel
ffLDL variant for (Mod)NTRU basis in subsection 5.1. Then, we
discuss the techniques adapted from Falcon [51] and ModFalcon
[17] in subsection 5.2. After that, we discuss the integer discrete
Gaussian sampling techniques in subsection 5.3, including the adap-
tion of FACCT [56] and COSAC [54, 55] samplers in our Latte
implementation.

Algorithm 1: Optimised ffLDL algorithm for (Mod)NTRU
basis in Latte.
Input: Gram matrix G ∈ (C[𝑥]/⟨𝑥𝑛 + 1⟩)𝑑×𝑑 in the FFT

domain. 𝑑 ∈ {2, 3}. D′ ∈ (R+)2𝑛 .
Output: Tree 𝑇 .

1 if 𝑛 = 1 then

2 𝑇 .value← G0,0.
3 else

4 L← I𝑑 ,D← 0𝑑 .
5 for 𝑗 = 0 to 𝑛 − 1 do

6 (D0,0) 𝑗 ← (G0,0) 𝑗 , (L1,0) 𝑗 ←
(G1,0) 𝑗
(D0,0) 𝑗 .

7 if 𝑑 = 2 then

8 if 𝑛 = 𝑁 then (D1,1) 𝑗 ← 𝑞2

(D0,0) 𝑗 else

(D1,1) 𝑗 ←
D′2𝑗D

′
2𝑗+1

(D0,0) 𝑗 ;

9 else if 𝑑 = 3 then

10 (D1,1) 𝑗 ← (G1,1) 𝑗 −
| (G1,0) 𝑗 |2
(D0,0) 𝑗 .

11 (D2,2) 𝑗 ← 𝑞2

(D0,0) 𝑗 (D1,1) 𝑗 , (L2,0) 𝑗 ←
(G2,0) 𝑗
(D0,0) 𝑗 .

12 (L2,1) 𝑗 ←
(G2,1) 𝑗−(G2,0) 𝑗 (L1,0)∗𝑗

(D1,1) 𝑗 .

13 𝑇 .value← L.
14 for 𝑖 = 0 to 𝑑 − 1 do

15 d0, d1 ← splitfft(D𝑖,𝑖).

16 G′ =
(
d0 d1
d∗1 d0

)
.

17 𝑇 .child𝑖 ← ffLDL(G′,D𝑖,𝑖).

18 return 𝑇 .

5.1 Improved ffLDL Algorithm for NTRU Basis

The original ffLDL algorithm from Falcon [51] for the Fast Fourier
LDL∗ decomposition is shown in Alg. 8 in Appendix B.1. However,

Quantum-safe HIBE: does it cost a Latte?

Table 12: Comparison between Our Optimised Latte Performance Results (op/s) at 4.2GHz with Original Latte in [1].

ℓ = 1 ℓ = 2
Set KeyGen Ext Enc Dec Del Ext Enc Dec

Orig. LATTE-1 [1] - - 2911 2987 - - - -
Our LATTE-1 9.4 1442.1 16525.2 13140.3 - - - -

Orig. LATTE-2 [1] - - 1335 1351 - - - -
Our LATTE-2 3.3 613.1 7692.6 6183.3 - - - -

Orig. LATTE-3 [1] - - 1892 1774 - - 1455 1474
Our LATTE-3 5.7 36.3 8000.9 6548.2 2.4 20.0 6351.9 5258.9

Orig. LATTE-4 [1] - - 709 668 - - 568 541
Our LATTE-4 1.7 17.0 3909.6 3201.6 0.8 9.4 3108.0 2584.6

for the (Mod)NTRU basis Sℓ in Latte, we observe the following
theorem, which can be adapted to accelerate the computation of
the ffLDL algorithm (see Appendix F for the proof):

Theorem 5.1. Let Sℓ be a (Mod)NTRU basis. In ffLDL tree of the

matrix G = SℓS∗ℓ ∈ (C[𝑥]/⟨𝑥
𝑁 + 1⟩)𝑑×𝑑 in FFT domain, we get:

(1) ∀𝑖 ∈ {0, . . . , 𝑑 − 1} : D𝑖,𝑖 ∈ R𝑛 for some 𝑛 = 2𝑘 ≤ 𝑁 in every

node of the tree.

(2) ∀𝑗 ∈ {0, . . . , 𝑁 − 1} :
∏𝑑−1
𝑖=0 (D𝑖,𝑖) 𝑗 = 𝑞2

in the root of the

tree.

(3) ∀𝑗 ∈ {0, . . . , 𝑛 − 1} : (D0,0) 𝑗 (D1,1) 𝑗 = D′2𝑗D
′
2𝑗+1 for some

𝑛 = 2𝑘 ≤ 𝑁 /2 in every non-root node of the tree, where

D′ ∈ {D𝑖,𝑖 }𝑑−1
𝑖=0 is from its parent.

(4) ∀𝑖 ∈ {0, . . . , 𝑑 −1}, 𝑗 ∈ {0, . . . , 𝑛−1} : (D𝑖,𝑖) 𝑗 ∈ R+ for some

𝑛 = 2𝑘 ≤ 𝑁 in every node of the tree.

We can utilise Theorem 5.1 when computing D in the ffLDL
algorithm, see Alg. 1, for the (Mod)NTRU basis Sℓ in Latte with
𝑑 ∈ {2, 3}: D𝑑−1,𝑑−1 at the root can be computed by (D𝑑−1,𝑑−1) 𝑗 =
𝑞2/∏𝑑−2

𝑖=0 (D𝑖,𝑖) 𝑗 for 0 ≤ 𝑗 ≤ 𝑁 − 1. For all the non-root nodes,
we can directly compute D0,0,D1,1 by using (D0,0) 𝑗 = (G0,0) 𝑗 and
(D1,1) 𝑗 = D′2𝑗D

′
2𝑗+1/(D0,0) 𝑗 , 0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ R2𝑛 ,

G0,0 = d′0 ∈ R
𝑛 from its parent. Since for all 0 ≤ 𝑖 ≤ 𝑑 − 1, we

have D𝑖,𝑖 ∈ R𝑛 in every node of the tree, D can be computed solely
by using the real number arithmetic i.e. without complex number
arithmetic. Because every complex number arithmetic computation
contains multiple underlying floating-point arithmetic operations,
by replacing complex number arithmetic with real number arith-
metic when computing D, we reduce the total amount of floating-
point arithmetic operations. Therefore, this optimisation technique
will accelerate the run-time speed of ffLDL algorithm.
5.2 Techniques from Falcon and ModFalcon

The design of Latte presented in this paper utilises techniques from
the signature scheme Falcon [51]. The two schemes are closely
related; they are instantiated over the same type of lattice and
share key generation and sampling procedures. Falcon makes use
of the “tower of rings” structure to find a solution to the NTRU
equation fG − gF = 𝑞 mod 𝑥𝑁 + 1, for a given f and g in the
NTRUSolve sub-algorithm of KeyGen, and in the lattice Gaussian
sampling (ffSampling) component of Latte Delegate and Extract.
The tower of rings approach utilises the fact that computations over
polynomials f, g ∈ C[𝑥]/⟨𝑥𝑁 /2 + 1⟩ are equivalent to computations

over f (𝑥2), g(𝑥2) ∈ C[𝑥]/⟨𝑥𝑁 + 1⟩. When 𝑁 = 2𝑘 , for some 𝑘 ∈ Z,
this can be applied repeatedly so that computations are performed
over polynomials of degree 1. This brings advantages in terms of
both memory usage and speed [48].

Furthermore, in Latte Delegate, to complete the delegated basis
Sℓ for lattice dimension higher than 2𝑁 , we adapt the technique
from ModFalcon [17]. Let Sℓ =

(
vT M
Gℓ F′ℓ

)
be the delegated basis,

whereGℓ = sℓ+1,0, F′ℓ = (sℓ+1,1, . . . , sℓ+1,ℓ+1), v = (s0,0, s1,0, . . . , sℓ,0),
andM = (s𝑖, 𝑗) for 0 ≤ 𝑖 ≤ ℓ and 1 ≤ 𝑗 ≤ ℓ+1. By Schur complement,
ifM is invertible, we have:

det(Sℓ)=det(M) · det(Gℓ − F′ℓM
−1vT)

=det(M) (Gℓ − F′ℓM
−1vT) = det(M)Gℓ − F′ℓadj(M)vT .

Since one can choose any (Sℓ)𝑙+1 = (Gℓ , F′ℓ) such that det(Sℓ) = 𝑞
when filling the bottom row (Sℓ)𝑙+1 of Sℓ , let F′ℓ have the form
(Fℓ , 0, . . . , 0). We have det(Sℓ) = det(M) · Gℓ − Fℓ · u0 where u0 is
the first coordinate of u = adj(M) ·vT. In order to fill the bottom row
(sℓ+1,0, . . . , sℓ+1,ℓ+1) of Sℓ , if M is invertible, we can use the same
NTRUSolve algorithm as in Latte KeyGen to find Fℓ ,Gℓ such that
det(M) ·Gℓ −Fℓ ·u0 = 𝑞, and we simply resample when det(M) = 0.

However, since the NTRUSolve algorithm [48] performs the
length reduction based on the size of the coefficients in the input,
the coefficient size of the output Fℓ ,Gℓ will be approximately the
coefficient size of the input det(M), u0. SinceM is an (ℓ +1) × (ℓ +1)
sub-matrix of Sℓ with coordinate sizes being in the order of 𝑞 among
each element, the size of coefficients of det(M), u0, Fℓ , and Gℓ is in
the order of 𝑞ℓ+1. To make the infinity norm of Sℓ less than 𝑞, one
employs length reduction using Cramer’s rule (see Appendix H).
5.3 Discrete Gaussian Sampling over Integers

In Latte KeyGen, f, g may need to be resampled multiple times
due to the norm check and possible failure to find solutions of
the NTRU equation. In order to sample 2𝑁 coordinates efficiently
from D𝜎0 , we employ the FACCT sampler [56], which is fast and
compact even for larger 𝜎0 used in Latte-3 and 4. However, since
the FACCT sampler can only sample with 𝜎 = 𝑘

√︁
1/(2 ln 2) where

𝑘 is a positive integer, we slightly increase 𝜎0 ≈ 1.17
√︁
𝑞/(2𝑁) in

Latte parameters by setting 𝑘 = ⌈1.17
√︁
𝑞/(2𝑁)/

√︁
1/(2 ln 2)⌉.

Let Sℓ = L · S̃ℓ be the GSO decomposition of the delegated basis
Sℓ ∈ R (ℓ+2)×(ℓ+2) , where L is a unit lower triangular and rows s̃𝑖 of
S̃ℓ are pairwise orthogonal. We find that the Euclidean norm of the
last GSO vector s̃ℓ+1 is very small compared to s̃0, . . . , s̃ℓ . This is

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Table 13: Latte and Original LatteMaster Key, Delegated Key and Ciphertext Sizes (Bytes).

Set

Master

Public Key

Master

Private Key

User

Private Key

Ciphertext Delegated

Public Key

Delegated

Private Key

ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2
Orig. LATTE-1 [1] 6144 12288 9216 - 9248 - - -

Our LATTE-1 3072 12288 3072 - 6176 - - -
Orig. LATTE-2 [1] 12800 25600 19200 - 19232 - - -

Our LATTE-2 6400 25600 6400 - 12832 - - -
Orig. LATTE-3 [1] 9216 18432 13824 18432 13856 18464 9216 41472

Our LATTE-3 4608 18432 4608 9216 9248 13856 9216 41472
Orig. LATTE-4 [1] 19456 38912 29184 38912 29216 38944 19456 87552

Our LATTE-4 9728 38912 9728 19456 19488 29216 19456 87552

because rows s0, . . . , sℓ of Sℓ are sampled with a large 𝜎ℓ but det(Sℓ ·
S∗
ℓ
) = ∏ℓ+1

𝑖=0 ⟨s̃𝑖 , s̃𝑖 ⟩ is constant and always equal to 𝑞2 [17]. The
experiment results in Fig.3 of [15] also verified that ∥s̃ℓ+1∥ decreases
significantly by increasing ∥s0∥ for Sℓ ∈ R3×3. In this case, the ratio
between the maximal and minimal standard deviation 𝜎 ′ used by
the integer discrete Gaussian sampling subroutine in ffSampling is
very large and the isochronous sampler [32] used by Falcon [51]
will be inefficient for our scheme, since the rejection rate of [32] is
proportional to max(𝜎 ′)/min(𝜎 ′). In order to sample with 𝜎 ′ in a
broad range, we employ a variant [54] of the COSAC sampler [55]
instead, which is scalable to large 𝜎 ′ without sacrificing efficiency.

The precision analysis in Sec. 4.3 requires the bound 𝐵 on Rényi
divergence between a single sample from COSAC and an ideal
Gaussian Z sample. In [55] it is shown that 𝐵 ≤ 1 + 4𝜎2𝑒2

𝑥_, where
𝑒𝑥 denotes the absolute error of the underlying Box-Muller contin-
uous Gaussian sampler used by the COSAC sampler and 𝜎 denotes
the upper bound of the integer Gaussian standard deviation 𝜎 . For
ℓ = 1, we can derive 𝜎 ≤ [𝜖 (Z) · (𝜎0

√
2𝑁)2/𝑞 from [32] by sym-

plecticity of the basis. For ℓ = 2, we can derive 𝜎 ≤ 𝜎2 · 9𝜎2
1𝑁

2/𝑞
from the analysis in Appendix G. We use double precision i.e. 53-
bit floating-point arithmetic precision in the COSAC sampler for
Latte-1 and 2, which provides 𝑒𝑥 ≤ 2−48 [55]. Since the run-time
speed of the underlying Box-Muller continuous Gaussian sampler
is critical for the speed of the COSAC sampler [55], for the COSAC
implementation in Latte-3 and 4, we use binary128 i.e. 113-bit
floating-point arithmetic precision and reduce the absolute preci-
sion of uniform sampling in the underlying Box-Muller continuous
Gaussian sampler to 96 bits. This will make 𝑒𝑥 less than approxi-
mately 2−96.

To accelerate the Latte Encrypt and Decrypt speed, we sample
the ephemeral keys e, e1, . . . , eℓ , eℎ from a binomial distribution
with center 0 and small standard deviation 𝜎𝑒 = 2.0 instead of D𝜎𝑒
used by [1]. Sampling from a binomial distribution is much faster
than sampling from D𝜎𝑒 and the impact on security is negligible
in the encryption [4].

6 PERFORMANCE RESULTS

The first published specification of Latte [1] only provided the
Encrypt and Decrypt performance results, as displayed in “Orig.
LATTE” rows in Table 12, scaled and converted into op/s at 4.2GHz.
Here, we give the first full performance results for our optimised
variant of Latte, including KeyGen, Extract, and Delegate.

We employ the gmp [28] library for multiprecision integer arith-
metic. For precisions of floating-point and complex number arith-
metic, we use 53 bits i.e. double precision for Latte-1 and 2, and
we use 113 bits i.e. binary128 for Latte-3 and 4, respectively. We
use the __float128 and __complex128 variable types from gcc to
implement the 113-bit floating-point and complex number arith-
metic for Latte-3 and 4, respectively. Although the error analysis
in Sec. 4.3 indicates that the arithmetic precisions for Latte-3
and 4 can be further reduced, however, the generic multiprecision
floating-point library such as MPFR [24] is not optimised for less
than 1000-bit precision in terms of the run-time speed [35]. We will
leave using hand-optimised floating-point arithmetic routines with
lower precision as future works.

We use AES-256 CTR mode with hardware AES-NI instructions
as the pseudorandom generator, and use SHAKE-256 [43] as the
KDF in Latte Encrypt and Decrypt. The performance results have
been obtained from a desktop machine with an Intel i7-7700K CPU
at 4.2GHz, with both hyper-threading and TurboBoost disabled. We
use gcc 11.2.0 compiler with compiling options -O3 -march=native
enabled. Results are given as “Our LATTE” rows in Table 12.

As expected, the KeyGen, Extract, and Delegate processes are the
most time consuming components of the scheme, and this increases
as security and therefore lattice dimension increase. The trend down
the hierarchical levels is that the Extract, Encrypt, and Decrypt all
become more time consuming as hierarchical level increases. For
Extract in Latte-3 and 4, this corresponds to about 45% decrease
in op/s from level 1 to level 2. On the other hand, for the Encrypt
and Decrypt, our implementation is 3.6x–5.8x faster compared to
the previous performance results from [1]. The speedup might be
due to: (1) We change the distribution of the ephemeral keys from
discrete Gaussian distribution to binomial distribution. (2) We only
perform NTT for the ephemeral keys and m during the Encrypt
and Decrypt, since other inputs are already in the NTT domain. (3)
Since we reduce the dimension of extracted user keys by 1, there
is also 1 less ephemeral key in Encrypt/Decrypt. In addition, our
optimised Latte Delegate only takes about 0.4–1.3 seconds on a
desktop machine at 4.2GHz, which is practical and much faster than
the estimated run-time (in the order of minutes) for the Delegate in
[1]. For comparisons with other (H)IBE and the Falcon signature
scheme, please refer to Appendix J.

Quantum-safe HIBE: does it cost a Latte?

In addition, since we reduce the dimension of extracted user keys
by 1 in our improved Latte scheme, here we compare the key and
ciphertext sizes of our improved Latte scheme with the original
Latte in [1]. The key/ciphertext sizes are summarised in Table 13,
with detailed analysis given in Appendix I. The key/ciphertext sizes
of the original Latte [1] are shown in rows with “Orig. LATTE”,
and the key/ciphertext sizes of our improved Latte scheme are
shown in rows with “Our LATTE”, respectively. From Table 13,
our improved Latte scheme reduces the key/ciphertext sizes by
25%–67% among all Latte parameter sets.

Our current implementation is not constant-time, since the gmp
multiprecision integer arithmetic library [28] and the gcc run-
time library for the binary128 floating-point and complex number
arithmetic are unlikely to be constant-time [45]. We will leave the
constant-time implementation of our optimised Latte scheme as
future works.

REFERENCES

[1] 2019. Quantum-Safe Identity-based Encryption. Technical Report. The European
Telecommunications Standards Institute, Sophia-Antipolis, France.

[2] 2020. LTE;Security of the mission critical service (3GPP TS 33.180 version 14.8.0

Release 14).
[3] Masayuki Abe, Rosario Gennaro, and Kaoru Kurosawa. 2005. Tag-KEM/DEM: A

New Framework for Hybrid Encryption. IACR Cryptol. ePrint Arch. (2005), 27.
[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-

quantum Key Exchange - A New Hope. In USENIX Security Symposium. USENIX
Association, 327–343.

[5] S. Bai, T. Lepoint, A. Roux-Langlois, A. Sakzad, D. Stehlé, and R. Steinfeld. 2018.
Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi Diver-
gence Rather than the Statistical Distance. J. Cryptology 31, 2 (2018), 610–640.

[6] Dan Boneh and Xavier Boyen. 2004. Efficient Selective-ID Secure Identity-Based
EncryptionWithout Random Oracles. In EUROCRYPT (Lecture Notes in Computer

Science, Vol. 3027). Springer, 223–238.
[7] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical Identity Based

Encryption with Constant Size Ciphertext. In EUROCRYPT (Lecture Notes in

Computer Science, Vol. 3494). Springer, 440–456.
[8] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the

Weil Pairing. In CRYPTO (Lecture Notes in Computer Science, Vol. 2139). Springer,
213–229.

[9] Nicolas Brisebarre, Mioara Joldes, Jean-Michel Muller, Ana-Maria Nanes, and
Joris Picot. 2020. Error Analysis of Some Operations Involved in the Cooley-
Tukey Fast Fourier Transform. ACM Trans. Math. Softw. 46, 2 (2020), 11:1–11:27.

[10] Peter Campbell and Michael Groves. 2017. Practical post-quantum hierarchical
identity-based encryption. available at https://www.qub.ac.uk/csit/FileStore/
Filetoupload,785752,en.pdf.

[11] Ran Canetti, Shai Halevi, and Jonathan Katz. 2003. A Forward-Secure Public-Key
Encryption Scheme. In EUROCRYPT (Lecture Notes in Computer Science, Vol. 2656).
Springer, 255–271.

[12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. 2010. Bonsai Trees,
or How to Delegate a Lattice Basis. In EUROCRYPT (Lecture Notes in Computer

Science, Vol. 6110). Springer, 523–552.
[13] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. 2012. Bonsai trees,

or how to delegate a lattice basis. Journal of cryptology 25, 4 (2012), 601–639.
[14] Yuanmi Chen and Phong Q. Nguyen. 2011. BKZ 2.0: Better Lattice Security

Estimates. In ASIACRYPT (Lecture Notes in Computer Science, Vol. 7073). Springer,
1–20.

[15] Jung Hee Cheon, Duhyeong Kim, Taechan Kim, and Yongha Son. 2019. A New
Trapdoor over Module-NTRU Lattice and its Application to ID-based Encryption.
IACR Cryptol. ePrint Arch. 2019 (2019), 1468.

[16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
August 2016. TFHE: Fast Fully Homomorphic Encryption Library.
https://tfhe.github.io/tfhe/.

[17] Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre Wallet,
and Keita Xagawa. 2020. ModFalcon: Compact Signatures Based On Module-
NTRU Lattices. In AsiaCCS. ACM, 853–866.

[18] Urgent Comm. 2022. ESN sees ‘good progress’ but challenges remain in the UK,
director says. https://urgentcomm.com/2022/03/19/esn-sees-good-progress-but-
challenges-remain-in-the-uk-director-says/.

[19] Cramer and Gabriel. 1750. Introduction a l’analyse des lignes courbes algebriques

par Gabriel Cramer. chez les freres Cramer & Cl. Philibert.

[20] Eloísa Díaz-Francés and Francisco J Rubio. 2013. On the existence of a normal
approximation to the distribution of the ratio of two independent normal random
variables. Statistical Papers 54, 2 (2013), 309–323.

[21] Yevgeniy Dodis and Nelly Fazio. 2002. Public Key Broadcast Encryption for
Stateless Receivers. In Digital Rights Management Workshop (Lecture Notes in

Computer Science, Vol. 2696). Springer, 61–80.
[22] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. 2014. Efficient Identity-

Based Encryption over NTRU Lattices. In ASIACRYPT (2) (Lecture Notes in Com-

puter Science, Vol. 8874). Springer, 22–41.
[23] Léo Ducas and Thomas Prest. 2016. Fast Fourier Orthogonalization. In ISSAC.

ACM, 191–198.
[24] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul

Zimmermann. 2007. MPFR: A multiple-precision binary floating-point library
with correct rounding. ACM Trans. Math. Softw. 33, 2 (2007), 13.

[25] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure Integration of Asymmetric
and Symmetric Encryption Schemes. In CRYPTO (Lecture Notes in Computer

Science, Vol. 1666). Springer, 537–554.
[26] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. 2008. Trapdoors for

hard lattices and new cryptographic constructions. In STOC. ACM, 197–206.
[27] Craig Gentry and Alice Silverberg. 2002. Hierarchical ID-Based Cryptography.

In ASIACRYPT (Lecture Notes in Computer Science, Vol. 2501). Springer, 548–566.
[28] Torbjrn Granlund and Gmp Development Team. 2015. GNU MP 6.0 Multiple

Precision Arithmetic Library. Samurai Media Limited, London, GBR.
[29] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. 1998. NTRU: A Ring-Based

Public Key Cryptosystem. In ANTS (Lecture Notes in Computer Science, Vol. 1423).
Springer, 267–288.

[30] Jeremy Horwitz and Ben Lynn. 2002. Toward Hierarchical Identity-Based En-
cryption. In EUROCRYPT (Lecture Notes in Computer Science, Vol. 2332). Springer,
466–481.

[31] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. 2020.
Isochronous Gaussian Sampling: From Inception to Implementation.. In PQCrypto.
53–71.

[32] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. 2020.
Isochronous Gaussian Sampling: From Inception to Implementation. In PQCrypto

(Lecture Notes in Computer Science, Vol. 12100). Springer, 53–71.
[33] Takeshi Koshiba and Katsuyuki Takashima. 2018. New Assumptions on Isoge-

nous Pairing Groups with Applications to Attribute-Based Encryption. In ICISC

(Lecture Notes in Computer Science, Vol. 11396). Springer, 3–19.
[34] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. 2014. GGHLite: More

Efficient Multilinear Maps from Ideal Lattices. In Advances in Cryptology - EURO-

CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings

(Lecture Notes in Computer Science, Vol. 8441), Phong Q. Nguyen and Elisabeth
Oswald (Eds.). Springer, 239–256. https://doi.org/10.1007/978-3-642-55220-5_14

[35] Christoph Quirin Lauter. 2015. Easing development of precision-sensitive appli-
cations with a beyond-quad-precision library. In ACSSC. IEEE, 742–746.

[36] Arjen Lenstra, Hendrik Lenstra, and László Lovász. 1982. Factoring Polynomials
With Rational Coefficients. Math. Ann. 261 (1982), 515–534.

[37] Granit Luzhnica. 2011. Pairing based cryptography and implementation in Java.
Master Thesis.

[38] Vadim Lyubashevsky. 2012. Lattice Signatures without Trapdoors. In Advances

in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,

2012. Proceedings (Lecture Notes in Computer Science, Vol. 7237), David Pointcheval
and Thomas Johansson (Eds.). Springer, 738–755. https://doi.org/10.1007/978-3-
642-29011-4_43

[39] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices
and Learning with Errors over Rings. In EUROCRYPT (Lecture Notes in Computer

Science, Vol. 6110). Springer, 1–23.
[40] Sarah McCarthy, Neil Smyth, and Elizabeth O’Sullivan. 2017. A Practical Imple-

mentation of Identity-Based Encryption Over NTRU Lattices. In IMACC (Lecture

Notes in Computer Science, Vol. 10655). Springer, 227–246.
[41] Daniele Micciancio and Oded Regev. 2004. Worst-Case to Average-Case Re-

ductions Based on Gaussian Measures. In 45th Symposium on Foundations of

Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings. IEEE
Computer Society, 372–381. https://doi.org/10.1109/FOCS.2004.72

[42] Daniele Micciancio and Michael Walter. 2017. Gaussian Sampling over the In-
tegers: Efficient, Generic, Constant-Time. In Advances in Cryptology - CRYPTO

2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,

USA, August 20-24, 2017, Proceedings, Part II (Lecture Notes in Computer Sci-

ence, Vol. 10402), Jonathan Katz and Hovav Shacham (Eds.). Springer, 455–485.
https://doi.org/10.1007/978-3-319-63715-0_16

[43] NIST. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. https://doi.org/10.6028/NIST.FIPS.202.

[44] NIST. 2016. Post-Quantum Crypto Project. https://csrc.nist.gov/Projects/post-
quantum-cryptography/Post-Quantum-Cryptography-Standardization.

[45] Tobias Oder, Julian Speith, Kira Höltgen, and Tim Güneysu. 2019. Towards
Practical Microcontroller Implementation of the Signature Scheme Falcon. In

https://www.qub.ac.uk/csit/FileStore/Filetoupload,785752,en.pdf
https://www.qub.ac.uk/csit/FileStore/Filetoupload,785752,en.pdf
https://urgentcomm.com/2022/03/19/esn-sees-good-progress-but-challenges-remain-in-the-uk-director-says/
https://urgentcomm.com/2022/03/19/esn-sees-good-progress-but-challenges-remain-in-the-uk-director-says/
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

PQCrypto (Lecture Notes in Computer Science, Vol. 11505). Springer, 65–80.
[46] UK Home Office. 2022. Emergency Services Network: overview.

https://www.gov.uk/government/publications/the-emergency-services-
mobile-communications-programme/emergency-services-network.

[47] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. 2014. Enhanced Lattice-
Based Signatures on Reconfigurable Hardware. In CHES (Lecture Notes in Com-

puter Science, Vol. 8731). Springer, 353–370.
[48] Thomas Pornin and Thomas Prest. 2019. More Efficient Algorithms for the NTRU

Key Generation Using the Field Norm. In Public Key Cryptography (2) (Lecture

Notes in Computer Science, Vol. 11443). Springer, 504–533.
[49] Thomas Prest. 2017. Sharper bounds in lattice-based cryptography using the

Rényi divergence. In International Conference on the Theory and Application of

Cryptology and Information Security. Springer, 347–374.
[50] Thomas Prest. 2021. Renyi Divergence Analysis. Unpublished. Private commu-

nication.
[51] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. 2020. Falcon: Fast-Fourier Lattice-based Compact Signatures

over NTRU. Technical Report. National Institute of Standards and Technology.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-
submissions.

[52] Markku-Juhani O Saarinen. 2015. Gaussian sampling precision in lattice cryp-
tography. IACR ePrint 953 (2015), 2015.

[53] Claus-Peter Schnorr and M. Euchner. 1994. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Program. 66 (1994),
181–199.

[54] Shuo Sun, Yongbin Zhou, Yunfeng Ji, Rui Zhang, and Yang Tao. 2021. Generic,
Efficient and Isochronous Gaussian Sampling over the Integers. IACR Cryptol.

ePrint Arch. 2021 (2021), 199.
[55] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. 2020. COSAC: COmpact

and Scalable Arbitrary-Centered Discrete Gaussian Sampling over Integers. In
PQCrypto (Lecture Notes in Computer Science, Vol. 12100). Springer, 284–303.

[56] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. 2020. FACCT: FAst, Com-
pact, and Constant-Time Discrete Gaussian Sampler over Integers. IEEE Trans.

Computers 69, 1 (2020), 126–137.

A HIBE SCHEME DESCRIPTION

This section presents the components of an HIBE scheme and how
they interact. They are as follows:

(1) KeyGen: The master key generator establishes the master
public and private keys.

(2) Delegate: Through a delegation function, the master key
generator creates a public/private key pair for the sub key
manager. This gives it the ability to delegate further key
pairs, and extract user private keys at that level.

(3) Delegate: The sub key manager delegates a further pub-
lic/private key to the next level of the hierarchy.

(4) Extract: The extractor uses their public/private key pair to
extract and share user public/private keys, as in the single-
level IBE scheme.

(5) Encrypt/Decrypt: Encryption/decryption works as a reg-
ular encryption scheme, such as R-LWE encryption.

Fig. 1 depicts a diagram of a 2-level HIBE scheme with all its algo-
rithms.

An HIBE scheme is said to be IND-CCA-secure if it is indistin-
guishable under chosen ciphertext attacks; that is, an adversary
with the ability to decrypt any other ciphertext does not possess an
advantage in decrypting the challenge ciphertext. ID-IND-CCA fur-
ther implies the adversary has access to an extraction oracle which
allows them to extract keys for other identities before committing
to the challenge identity, yet gains no advantage. The challenge
consists of the ciphertext and the identity under which it is en-
crypted.

Table 14 indicates the notational practises used to identity each
level of the hierarchy.

1

Key
Generator

Sub Key
Manager

Sub Key
Manager

2

ID

3

4

5

Private key Public key

Sub Key
Manager

Extractor

Figure 1: A 2-level HIBE scheme.

Table 14: Explanation of Notational Practice of HIBE Func-

tions.

Level Function

Level 0 Master KeyGen 2𝑁 × 2𝑁

Level 1 Extracting with 2𝑁 × 2𝑁 → Enc/Dec
Delegating to 3𝑁 × 3𝑁

Level 2 Extracting with 3𝑁 × 3𝑁 → Enc/Dec

B LATTE HIBE SCHEME

We present the full pseudocode of Latte in Alg. 2–6.

Algorithm 2: The Latte KeyGen algorithm.
Input: 𝑁,𝑞, 𝜎0.
Output: S0 ∈ R2×2

𝑞 , h ∈ R𝑞 .
1 f, g← D𝑁𝜎0 .

2 𝑁𝑜𝑟𝑚 ← max
(
| |g,−f | |,

������(𝑞 ·f∗
f ·f∗+g·g∗ ,

𝑞 ·g∗
f ·f∗+g·g∗

)������) .
3 if Norm > 𝜎0 ·

√
2𝑁 then go to Step 1;

4 F,G← NTRUSolve𝑁,𝑞 (f, g).
5 if NTRUSolve is aborted then go to Step 1;
6 if f is not invertible on R𝑞 then go to Step 1;
7 h← g · f−1 mod 𝑞 in NTT domain.

8 return S0 =

(
g −f
G −F

)
, h.

https://www.gov.uk/government/publications/the-emergency-services-mobile-communications-programme/emergency-services-network
https://www.gov.uk/government/publications/the-emergency-services-mobile-communications-programme/emergency-services-network
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Quantum-safe HIBE: does it cost a Latte?

Algorithm 3: The Latte Delegate algorithm (from level
ℓ − 1 to ℓ).
Input: 𝑁,𝑞, 𝜎ℓ , Sℓ−1, 𝐻 : {0, 1}∗ → R𝑞, IDℓ .
Output: Sℓ ∈ R (ℓ+2)×(ℓ+2)𝑞 .

1 Aℓ ← 𝐻 (ID1 | . . . |IDℓ) in NTT domain.
2 𝑇ℓ−1 ← Tree(Sℓ−1, 𝜎ℓ).
3 𝑠𝑒𝑒𝑑 ←$ {0, 1}256.
4 for 𝑖 ∈ {0, . . . , ℓ} do
5 s𝑖,ℓ+1 ← D𝑁𝜎ℓ .
6 t← (−s𝑖,ℓ+1 · Aℓ , 0, . . . , 0) · S−1

ℓ−1.
7 z← FFT−1 (ffSampling(t,𝑇ℓ−1, 𝑠𝑒𝑒𝑑)).
8 (s𝑖,0, s𝑖,1, . . . , s𝑖,ℓ) ← ⌊z̄⌉, where z̄← (t − z) · Sℓ−1.
9 if | | (s𝑖,0, s𝑖,1, . . . , s𝑖,ℓ , s𝑖,ℓ+1) | | >

√︁
(ℓ + 2)𝑁 · 𝜎ℓ then

resample;
10 Set M = (s𝑖, 𝑗), for 0 ≤ 𝑖 ≤ ℓ and 1 ≤ 𝑗 ≤ ℓ + 1.
11 if M is not invertible then go to Step 3;
12 u← adj(M) · (s0,0, s1,0, . . . , sℓ,0)T.
13 (Fℓ ,Gℓ) ← NTRUSolve𝑁,𝑞 (det(M), u0) where u0 is the first

coordinate of u.
14 if NTRUSolve is aborted then go to Step 3;
15 (sℓ+1,0, . . . , sℓ+1,ℓ+1) ← (Gℓ , Fℓ , 0, . . . , 0).
16 Set C = (c𝑖, 𝑗), where c𝑖, 𝑗 = s𝑗,0 · s∗𝑖,0 + · · · + s𝑗,ℓ+1 · s

∗
𝑖,ℓ+1,

0 ≤ 𝑖, 𝑗 ≤ ℓ .
17 Let k = (k𝑖)0≤𝑖≤ℓ be the solution to C · k = d. By Cramer’s

rule, k𝑖 = det(C𝑖 (d))
det(C) , where C𝑖 (d) is the matrix C with its

𝑖𝑡ℎ column replaced by
d𝑖 = sℓ+1,0 · s∗𝑖,0 + · · · + sℓ+1,ℓ+1 · s

∗
𝑖,ℓ+1.

18 for 𝑖 ∈ {0, . . . , ℓ} do
19 (sℓ+1,0, . . . , sℓ+1,ℓ+1) =

(sℓ+1,0, . . . , sℓ+1,ℓ+1) − ⌊k𝑖 ⌉ · (s𝑖,0, . . . , s𝑖,ℓ+1).
20 return Sℓ = (s𝑖, 𝑗), for 0 ≤ 𝑖, 𝑗 ≤ ℓ + 1.

Algorithm 4: The Latte Extract algorithm (from level ℓ−1
to user at level ℓ).
Input: 𝑁,𝑞, 𝜎ℓ , Sℓ−1, 𝐻 : {0, 1}∗ → Z𝑁𝑞 ,𝐺 : {0, 1}∗ →

{0, 1}256, IDℓ .
Output: t0, . . . , tℓ ∈ R𝑞 .

1 A′
ℓ
← 𝐻 ("E"|ID1 | . . . |IDℓ) in NTT domain.

2 𝑠𝑒𝑒𝑑 ← 𝐺 (ID1 | . . . |IDℓ).
3 𝑇ℓ−1 ← Tree(Sℓ−1, 𝜎ℓ).
4 t← (A′

ℓ
, 0, . . . , 0) · S−1

ℓ−1.
5 z← FFT−1 (ffSampling(t,𝑇ℓ−1, 𝑠𝑒𝑒𝑑)).
6 (t0, t1, . . . , tℓ) ← ⌊z̄⌉, where z̄← (t − z) · Sℓ−1
7 return t1, . . . , tℓ ∈ R𝑞 in NTT domain.

B.1 Sub-Algorithms from Falcon

This subsection presents sub-algorithms (Alg. 7–10) from Falcon
[51]. Readers may refer to the Falcon specification [51] for sub-
routines (ffLDL, splitfft, mergefft, etc.) used by these algorithms.

Algorithm 5: The Latte Encrypt algorithm (at level ℓ).

Input: 𝑁,𝑞, 𝜎𝑒 , h,KDF, IDℓ , ` ∈ {0, 1}256.
Output: 𝑍 ∈ {0, 1}256,C1, . . . ,Cℓ ,Cℎ ∈ R𝑞 .

1 𝑠𝑒𝑒𝑑 ←$ {0, 1}256.
2 𝑍 ← ` ⊕ KDF(𝑠𝑒𝑒𝑑).
3 Sample e, e1, . . . , eℓ , eℎ from a binomial distribution with

center 0 and standard deviation 𝜎𝑒 using the seed
KDF(𝑠𝑒𝑒𝑑 |𝑍).

4 for 𝑖 ∈ {1, . . . , ℓ − 1} do
5 C𝑖 ← A𝑖 · e + e𝑖 where A𝑖 = 𝐻 (ID1 | . . . |ID𝑖) in NTT

domain.
6 m← Encode(𝑠𝑒𝑒𝑑).
7 Cℓ ← A′

ℓ
· e + eℓ +m where A′

ℓ
= 𝐻 ("E"|ID1 | . . . |IDℓ) in

NTT domain.
8 Cℎ ← h · e + eℎ .
9 return 𝑍 ∈ {0, 1}256,C1, . . . ,Cℓ ,Cℎ ∈ R𝑞 in NTT domain.

Algorithm 6: The Latte Decrypt algorithm (at level ℓ).
Input: 𝑁,𝑞, 𝜎𝑒 , h,KDF, IDℓ , 𝑍, (C1, . . . ,Cℓ ,Cℎ),
(t0, . . . , tℓ).
Output: ` ′.

1 V← Cℓ − Cℎ · t1 − C1 · t2 − · · · − Cℓ−1 · tℓ .
2 𝑠𝑒𝑒𝑑 ′ ← Decode(V).
3 Sample e′, e′1, . . . , e

′
ℓ
, e′
ℎ
from a binomial distribution with

center 0 and standard deviation 𝜎𝑒 using the seed
KDF(𝑠𝑒𝑒𝑑 ′ |𝑍).

4 for 𝑖 ∈ {1, . . . , ℓ − 1} do
5 C′

𝑖
← A𝑖 · e′ + e′𝑖 where A𝑖 = 𝐻 (ID1 | . . . |ID𝑖) in NTT

domain.
6 m′ ← Encode(𝑠𝑒𝑒𝑑 ′).
7 C′

ℓ
← A′

ℓ
· e′ + e′

ℓ
+m′ where A′

ℓ
= 𝐻 ("E"|ID1 | . . . |IDℓ) in

NTT domain.
8 C′

ℎ
← h · e′ + e′

ℎ
.

9 Check (C′1, . . . ,C
′
ℓ
,C′
ℎ
) agrees with (C1, . . . ,Cℓ ,Cℎ), else

return ⊥.
10 return ` ′ = 𝑍 ⊕ KDF(𝑠𝑒𝑒𝑑 ′).

C PROOF OF LEMMA 4.2

Proof. We have that 𝐷3 (𝑧)
𝐷2 (𝑧) =

𝜌𝑡,𝜎 (𝐼)
𝜌𝑡,�̄� (𝐼) · exp(𝑢 (𝑧)), where, follow-

ing assumption (3) in the statement of Lemma and the notations of
the proof of [49, Lemma 7], we note Eq. (10).

𝑢 (𝑧) = (𝑧 − 𝑡)
2

2𝜎2 − (𝑧 − 𝑡)
2

2𝜎2 (10)

= −
(𝑡 − 𝑡)2 + 2(𝑡 − 𝑡) (𝑧 − 𝑡) − (2𝛿𝜎 + 𝛿2

𝜎) (𝑧 − 𝑡)2

2(1 − 𝛿𝜎)2𝜎2 . (11)

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Algorithm 7: NTRUSolve𝑁,𝑞 ([51]).

Input: f, g ∈ Z[𝑥]
/
⟨𝑥𝑁 + 1⟩.

Output: F,G ∈ Z[𝑥]
/
⟨𝑥𝑁 + 1⟩ such that fG − gF = 𝑞

mod 𝑥𝑁 + 1.
1 if 𝑁 = 1 then

2 Compute 𝑢, 𝑣 ∈ Z such that 𝑢f − 𝑣g = gcd(f, g).
3 if gcd(f, g) ≠ 1 then abort;
4 (F,G) ← (𝑣𝑞,𝑢𝑞).
5 return (F,G).
6 else

7 f ′ ← 𝑁 (f).
8 g′ ← 𝑁 (g).
9 (F′,G′) ← NTRUSolve𝑁 /2,𝑞 (f ′, g′).

10 F← F′(𝑥2) · f ′(𝑥2)/f (𝑥).
11 G← G′(𝑥2) · g′(𝑥2)/g(𝑥).
12 k←

⌊
F·f∗+G·g∗
f ·f∗+g·g∗

⌉
∈ R.

13 F← F − k · f and G← G − k · g.
14 return (F,G).

Algorithm 8: The original ffLDL algorithm from [23, 51].

Input: Gram matrix G ∈ (C[𝑥]/⟨𝑥𝑛 + 1⟩)𝑑×𝑑 in the FFT
domain.

Output: Tree 𝑇 .
1 if 𝑛 = 1 then

2 𝑇 .value← G0,0.
3 else

4 L← I𝑑 ,D← 0𝑑 .
5 for 𝑖 = 0 to 𝑑 − 1 do

6 for 𝑗 = 0 to 𝑖 − 1 do

7 L𝑖, 𝑗 ← 1
D𝑗,𝑗

(
G𝑖, 𝑗 −

∑
𝑘< 𝑗 L𝑖,𝑘 ⊙ L∗

𝑗,𝑘
⊙ D𝑘,𝑘

)
.

8 D𝑖,𝑖 ← G𝑖,𝑖 −
∑
𝑗<𝑖 L𝑖, 𝑗 ⊙ L∗

𝑖, 𝑗
⊙ D𝑗, 𝑗 .

9 𝑇 .value← L.
10 for 𝑖 = 0 to 𝑑 − 1 do

11 d0, d1 ← splitfft(D𝑖,𝑖).

12 G′ =
(
d0 d1
d∗1 d0

)
.

13 𝑇 .child𝑖 ← ffLDL(G′).

14 return 𝑇 .

We first bound 𝜌𝑡,𝜎 (𝐼)
𝜌𝑡,�̄� (𝐼) . Let erfc(𝛼) := 1√

2𝜋

∫ ∞
𝛼

exp(−𝑦2/2)𝑑𝑦 be the
complementary error function; then we get:

𝜌𝑡,𝜎 (𝐼) = 𝜌𝑡,𝜎 (Z) − 2 · erfc(𝜏 · 𝜎)

= 𝜌𝑡,𝜎 (Z) ·
(
1 − 2 · erfc(𝜏 · 𝜎)

𝜌𝑡,𝜎 (Z)

)
≥ 𝜌𝑡,𝜎 (Z) · (1 − 1/𝑄),

where the last inequality uses 𝜌𝑡,𝜎 (Z) ∼
√

2𝜋 (1−Y)𝜎 , erfc(𝜏𝜎) ≤
exp(−(𝜏𝜎)2/2)√

2𝜋𝜏𝜎
, and𝑄 ≤ exp(𝜏2/2)/2 ≤ exp(𝜎2𝜏2/2)/(2𝜏). Deriving

Algorithm 9: The ffSampling Tree computation algorithm
([51]).
Input: Sℓ , 𝜎ℓ .
Output: Tree 𝑇ℓ .

1 Gℓ ← Sℓ · S∗ℓ .
2 𝑇 ← ffLDL(FFT(Gℓ)).
3 For each leaf of 𝑇ℓ , leaf.value← 𝜎ℓ/

√
leaf.value.

4 return 𝑇ℓ .

Algorithm 10: The ffSampling algorithm ([51]).
Input: t = (t0, t1, . . . , tℓ) in FFT format, tree 𝑇 ,

𝑠𝑒𝑒𝑑 ∈ {0, 1}256.
Output: z = (z0, z1, . . . , zℓ) in FFT format.

1 if 𝑛 = 1 then

2 𝜎 ′ ← 𝑇 .value.
3 Sample 𝑧0 ← D𝜎′,𝑡0 using 𝑠𝑒𝑒𝑑 .
4 Sample 𝑧1 ← D𝜎′,𝑡1 using 𝑠𝑒𝑒𝑑 .
5 return z = (𝑧0, 𝑧1).
6 else

7 𝑚 ← number of children of 𝑇 .
8 for 𝑗 ←𝑚, . . . , 0 do

9 𝑇𝑗 ← 𝑗-th child of 𝑇 .
10 t′

𝑗
← t𝑗 +

∑𝑚
𝑖=𝑗+1 (t𝑖 − z𝑖) ·𝑇 .value𝑖, 𝑗 .

11 t′
𝑗
← splitfft(t′

𝑗
).

12 z′
𝑗
← ffSampling(t′

𝑗
,𝑇𝑗).

13 z𝑗 ← mergefft(z′
𝑗
).

14 return z = (z0, z1, . . . , z𝑚).

a similar inequality for 𝜌𝑡,�̄� (𝐼), we have:

1 − 2/𝑄 ≲
𝜌𝑡,𝜎 (𝐼)
𝜌𝑡,�̄� (𝐼)

/
𝜌𝑡,𝜎 (Z)
𝜌𝑡,�̄� (Z)

≲ 1 + 2/𝑄. (12)

Let n := ((Δ′𝑡)2+2Δ′𝑡 (𝑧−𝑡)/𝜎−(2𝛿𝜎 +𝛿2
𝜎) ((𝑧−𝑡)/𝜎)2). By applying

[49, Lemma 7], followed by Eq. (11), followed by [41, Lemma 4.4]
and finally using max(𝛿𝜎 , 𝜖) ≤ 𝛿 , it follows that:

ln
(
𝜌𝑡,𝜎 (Z)
𝜌𝑡,�̄� (Z)

)
≤

��E𝑧←𝐷1 [𝑢]
�� ≤ ����E𝑧←𝐷1

[
n

2(1 − 𝛿𝜎)2

] ���� (13)

≤ 1
2(1 − 𝛿𝜎)2

��E𝑧←𝐷1 [n]
�� (14)

≤ num(Δ′𝑡 , Y, 𝛿𝜎) (15)

Similarly, we bound exp(𝑢 (𝑧)) over 𝐼 by using Eq. (11):

max
𝐼
|𝑢 | ≲ 1

1 − 𝛿𝜎
· (𝜏Δ′𝑡 + 𝜏2𝛿𝜎). (16)

Combining Eq. (12), Eq. (15), and Eq. (16), we bound the relative
error:����ln (

𝐷3
𝐷2

)���� ≤ ln(1 + 2/𝑄) + num(Δ′𝑡 , Y, 𝛿𝜎) +
1

1 − 𝛿𝜎
· (𝜏Δ′𝑡 + 𝜏2𝛿𝜎)

≤ 2/𝑄 + num(Δ′𝑡 , Y, 𝛿𝜎) +
1

1 − 𝛿𝜎
· (𝜏Δ′𝑡 + 𝜏2𝛿𝜎) = ub.

(17)

Quantum-safe HIBE: does it cost a Latte?

Combining Eq. (17) and [49, Lemma 3], the Rényi divergence be-
tween 𝐷3 and 𝐷2 is derived as Eq. (5). Finally, we combine the first
weak triangle inequality of [34, Lemma 4.1] with remark 1 to obtain
the Rényi divergence between 𝐷3 and 𝐷1 as in Eq. (6).

□

D PROOF OF LEMMA 4.1

Proof. Consider the ffSampling Alg. 10 in Appendix B.1. We
employ a sequence of games G0, . . . ,G5, and track the probability
of the events 𝐸 and 𝐵𝑈 over those games using a Rényi divergence
approach. Let 𝐸𝑖 and 𝐵𝑈 ,𝑖 denote the events 𝐸 and 𝐵𝑈 in game 𝑖 for
𝑖 = 0, . . . , 5. The games REAL and IDEAL are defined in the Lemma
statement. The sequence of games is as follows:

• G0 : Game REAL.
• G1 : G0, but we change the 1-dimensional Z-sampler from

the finite precision sampler distribution D̄ to infinite preci-
sion sampler distribution D.

• G2 : G1, but we abort the game if 𝐵𝑈 happens, meaning
either there exists 𝑖 such that the errors Δ′

𝑡 (𝑖)
(relative to

𝜎 (𝑖)) in centers 𝑡 (𝑖) exceed Δ′𝑈
𝑡 (𝑖)

or relative errors 𝛿𝜎 (𝑖) in
standard deviations 𝜎 (𝑖) exceed 𝛿𝑈

𝜎 (𝑖)
or there exists 𝑗 such

that the infinity-norm absolute errors Δz̄(𝑗) in z̄(𝑗) exceed
Δ𝑈z̄ .

• G3 : G2, but we restrict the 1-dimensional Z samplers D
to the corresponding 𝜏-bounded distribution D𝜏 .

• G4 : G3, but changing arithmetic from finite precision
to infinite precision, and removing the 𝜏-tailcut on the 1-
dimensional Z samplers to return to the ideal Gaussian dis-
tribution D. This game is identical to𝐺𝑎𝑚𝑒𝐼𝐷𝐸𝐴𝐿 , except
for the abort condition introduced in the previous game.

• G5 : G4, but remove the abort introduced in G2. This game
is identical to 𝐺𝑎𝑚𝑒𝐼𝐷𝐸𝐴𝐿 .

G0 → G1. Changing the 1-D Z-sampler. Let (𝜎 (𝑖) , 𝑡 (𝑖)) =

(𝜎 (𝑖) (1 + 𝛿𝜎 (𝑖) , 𝑡 (𝑖) + Δ𝑡 (𝑖)) denote the 𝑖’th query to to the 1-D
sampler in the execution of these games, and denote by Z (𝑖) the
output integer returned by the sampler for the 𝑖’th query. We apply
Proposition 4, with 𝑥0 denoting the remaining source of random-
ness in the game (i.e. the random coins of A and the hash function
𝐻), and we let 𝑥𝑖 := Z (𝑖) for 𝑖 = 1, . . . , 𝑀Z. Consider (𝑥𝑖 |𝑥 𝑗<𝑖), the
conditional distribution of 𝑥𝑖 , conditioned on all previous 𝑥 𝑗 , for
𝑗 < 𝑖 , and the Rényi divergence between this distribution in G0
and G1. Observe that conditioned on the same value of 𝑥 𝑗<𝑖 , the
values of the following query 𝑡 (𝑖) and std. deviation 𝜎 (𝑖) are identi-
cal in both G0 and G1 since they both use the same finite precision
arithmetic. We therefore have:

𝑅𝑎

(
(𝑥𝑖 |𝑥 𝑗<𝑖)𝐺0 , (𝑥𝑖 |𝑥 𝑗<𝑖)𝐺1

)
= 𝑅𝑎

(
D̄�̄� (𝑖) ,𝑡 (𝑖) ,D�̄� (𝑖) ,𝑡 (𝑖)

)
≤ 𝐵,

then Proposition 2.2 implies:

𝑅𝑎

(
(𝑥0, . . . , 𝑥𝐾)𝐺0 , (𝑥0, . . . , 𝑥𝐾)𝐺1

)
≤ 𝐵𝑀Z := 𝐵𝑇 .

By the data processing and probability preservation properties of
Rényi divergence, Pr[𝐸1] ≥ Pr[𝐸0]𝑎/(𝑎−1)/𝐵𝑇 .

G1 → G2. Adding a 𝜏 tailcut to the Z Gaussian samplers. By a
standard tail bound [38, Lemma 4.4], the statistical distance between
this game and the previous one is ≤ 𝑀Z · 2 exp(−𝜏2/2) ≤ 1/𝑄 .
Hence, we have Pr[𝐸2] ≥ Pr[𝐸1] − 1/𝑄 .

G2 → G3. Aborting the game if the errors exceed the bounds.
Recall that 𝐵𝑈 ,2 denotes the event 𝐵𝑈 in G2 that the errors exceed
the bounds in the Lemma statement. If the event𝐵𝑈 ,2 does not occur,
games G2 and G3 proceed identically. Hence, we have Pr[𝐸3] ≥
Pr[𝐸2] − Pr[𝐵𝑈 ,2] and Pr[𝐵𝑈 ,2] = Pr[𝐵𝑈 ,3].

G3 → G4. Changing finite precision arithmetic to infinite preci-
sion and removing the 𝜏-tailcut on the Gaussians. We again apply
Proposition 2.2, except that this time 𝑥𝑖 := Z (𝑖) for 𝑖 = 1, . . . , 𝑀Z
except if the event 𝐵𝑈 occurs at the 𝑖’th query to the Z sampler
(determined by 𝑥0, . . . , 𝑥𝑖−1), in which case 𝑥𝑖 := ⊥, and all subse-
quent 𝑥 𝑗 := ⊥ for 𝑗 > 𝑖 . As in the previous game, we consider the
conditional distribution (𝑥𝑖 |𝑥 𝑗<𝑖), of 𝑥𝑖 conditioned on all previous
𝑥 𝑗 for 𝑗 < 𝑖 , and the Rényi divergence between this conditional
distribution in G3 and G4. When the event 𝐵𝑈 occurs at the at (or
before) the 𝑖’th query to the Z sampler, the conditional distribution
(𝑥𝑖 |𝑥 𝑗<𝑖) is identical in both games (as both conditional distribu-
tions return ⊥ with probability 1) and have Rényi divergence 0.
Whereas, if the event 𝐵𝑈 does not occur at (or before) the 𝑖’th query
to the Z conditioned on the same fixed value of 𝑥 𝑗<𝑖 in the support
of the 𝑗 ’th 1-D Z-samplers, we have Δ′

𝑡 (𝑖)
≤ Δ′𝑈

𝑡 (𝑖)
. Also, the query

std deviation values 𝜎 (𝑖) in 𝐺4 and 𝜎 (𝑖) in 𝐺3 have a relative error
𝛿𝜎 (𝑖) ≤ 𝛿𝑈𝜎 (𝑖) by definition of event 𝐵𝑈 . We therefore have:

𝑅𝑎

(
(𝑥𝑖 |𝑥 𝑗<𝑖)𝐺3 , (𝑥𝑖 |𝑥 𝑗<𝑖)𝐺4

)
(18)

≤ 𝑅𝑎
(
D𝜏
𝜎 (𝑖) · (1±𝛿

𝜎 (𝑖)),𝑡 (𝑖)+Δ
′
𝑡 (𝑖)
·𝜎 (𝑖) ,D𝜎 (𝑖) ,𝑡 (𝑖)

)
≤ 𝐶 (𝑖) , (19)

where in the last inequality we used Lemma 4.2. Then Proposi-
tion 2.2 above implies:

𝑅𝑎

(
(𝑥0, . . . , 𝑥𝑀Z)𝐺2 , (𝑥0, . . . , 𝑥𝑀Z)𝐺3

)
≤

∏
𝑖<𝑀Z

𝐶 (𝑖) := 𝐶𝑇 .

Due to the abort condition, we have that conditioned on the same
fixed value of 𝑥𝑖 ’s that do not cause an abort, the values z̄(𝑗) in G3
and G4 differ by an absolute error at most Δz̄ < 1/2, and therefore,
observing that in G4 the z̄(𝑗) has integer coordinates (due to the
infinite precision), the rounded z̄(𝑗)values in G4 are identical to
those in G3 conditioned on the same 𝑥𝑖 ’s. Since the adversary’s
view in the game depends on 𝑥𝑖 ’s only via the rounded z̄(𝑗) , we
conclude by the Rényi probability preservation property that

Pr[𝐸4] ≥ Pr[𝐸3]𝑎/(𝑎−1)/𝐶𝑇 ,

and

Pr[𝐵𝑈 ,4] ≥ Pr[𝐵𝑈 ,3]𝑎/(𝑎−1)/𝐶𝑇 .

G4 → G5. In this game, we remove the abort introduced in G2.
Since the gamesG4 andG5 proceed identically until an abort occurs,
we have Pr[𝐵𝑈 ,5] = Pr[𝐵𝑈 ,4] and Pr[𝐸5] ≥ Pr[𝐸4] − Pr[𝐵𝑈 ,4].
Furthermore, by the Lemma hypothesis, we have Pr[𝐵𝑈 ,5] := 𝑝𝑈 .

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Putting together the above bounds, we obtain that the probability
of 𝐸5 (i.e. event 𝐸 in IDEAL) is lower bounded by

Pr[𝐸5] ≥Pr[𝐸3]𝑎/(𝑎−1)/𝐶𝑇 − 𝑝𝑈
≥ (Pr[𝐸0]𝑎/(𝑎−1)/𝐵𝑇 − (Pr[𝐵𝑈 ,3] + 1/𝑄))𝑎/(𝑎−1)/𝐶𝑇 − 𝑝𝑈

and using 𝑝𝑈 = Pr[𝐵𝑈 ,5] = Pr[𝐵𝑈 ,4] ≥ Pr[𝐵𝑈 ,3]𝑎/(𝑎−1)/𝐶𝑇 , we
get the claimed bound on Pr[𝐸4] := Pr[𝐸𝐼𝐷𝐸𝐴𝐿]. □

E SUB-ALGORITHMS IN THE STATISTICAL

MODEL

We present the sub-algorithms (Alg. 11–16) of our statistical model
in Sec. 4.3, including ffLDLBounds, ffSamplingBounds, splitfftBounds,
mergefftBounds, FFTBounds, and FFTInvBounds.

Algorithm 11: The ffLDLBounds algorithm based on sta-
tistical model.
Input: G,D′.
Output: Tree 𝑇 .

1 if 𝑛 = 1 then

2 (𝑇 .value)0 ← (`G0,0,𝑅, 𝜎
2
G0,0,𝑅

, 0, 0).
3 Output `leaf,𝑅 = ` (𝑇 .value)0,𝑅 , 𝜎leaf,𝑅 = 𝜎 (𝑇 .value)0,𝑅 .
4 return

5 for 𝑗 ∈ {0, . . . , 𝑛 − 1} do
6 (D0,0) 𝑗 ← (` (G0,0) 𝑗 ,𝑅, 𝜎

2
(G0,0) 𝑗 ,𝑅, 0, 0).

7 (L1,0) 𝑗 ← DivBound((G1,0) 𝑗 , (D0,0) 𝑗).
8 if 𝑑 = 2 then

9 if 𝑛 = 𝑁 then

10 (D1,1) 𝑗 ← DivBound(𝑞2, (D0,0) 𝑗).
11 else

12 𝑥 ← MultBound(D′2𝑗 ,D
′
2𝑗+1).

13 (D1,1) 𝑗 ← DivBound(𝑥, (D0,0) 𝑗).

14 else if 𝑑 = 3 then

15 𝑥 ← DivBound(AbsSqrBound((G1,0) 𝑗), (D0,0) 𝑗).
16 (D1,1) 𝑗 ← SubBound((G1,1) 𝑗 , 𝑥).
17 𝑥 ← MultBound((D0,0) 𝑗 , (D1,1) 𝑗).
18 (D2,2) 𝑗 ← DivBound(𝑞2, 𝑥).
19 (L2,0) 𝑗 ← DivBound((G2,0) 𝑗 , (D0,0) 𝑗).
20 𝑥 ← MultBound((G2,0) 𝑗 , (L1,0)∗𝑗).
21 𝑦 ← SubBound((G2,1) 𝑗 , 𝑥).
22 (L2,1) 𝑗 ← DivBound(𝑦, (D1,1) 𝑗).

23 𝑇 .value← L.
24 for 𝑖 ∈ {0, . . . , 𝑑 − 1} do
25 d0, d1 ← splitfftBounds(D𝑖,𝑖 , 𝑛).

26 G′ =
(
d0 d1
d∗1 d0

)
.

27 𝑇 .child𝑖 ← ffLDL(G′,D𝑖,𝑖).
28 return 𝑇 .

Algorithm 12: The ffSamplingBounds algorithm based on
statistical model.
Input: t = (t0, . . . , tℓ) in FFT format, tree 𝑇 .
Output: z = (z0, . . . , zℓ) in FFT format.

1 if 𝑛 = 1 then

2 𝑧0 ← (` (t0)0,𝑅, 0, 0, 0).
3 𝑧1 ← (` (t1)0,𝑅, 0, 0, 0).
4 Output Δ′𝑡0 = 𝜎 (t0)0,𝑅/(𝜎ℓ/

√
` (𝑇 .value)0,𝑅).

5 Output Δ′𝑡1 = 𝜎 (t1)0,𝑅/(𝜎ℓ/
√
` (𝑇 .value)0,𝑅).

6 return z = (𝑧0, 𝑧1).
7 else

8 𝑚 ← number of children of 𝑇 .
9 for 𝑗 ←𝑚 − 1, . . . , 0 do

10 𝑇𝑗 ← 𝑗-th child of 𝑇 .
11 t′

𝑗
← t𝑗 .

12 for 𝑖 ← 𝑗 + 1, . . . ,𝑚 − 1 do

13 for 𝑘 ← 0, . . . , 𝑛 − 1 do

14 𝑥 ← SubBound((t𝑖)𝑘 , (z𝑖)𝑘).
15 𝑦 ← MultBound(𝑥, (𝑇 .value𝑖, 𝑗)𝑘).
16 (t′

𝑗
)𝑘 ← AddBound((t′

𝑗
)𝑘 , 𝑦).

17 f0, f1 ← splitfftBounds(t′
𝑗
, 𝑛).

18 z′
𝑗,0, z

′
𝑗,1 ← ffSamplingBounds((f0, f1),𝑇𝑗).

19 z𝑗 ← mergefftBounds(z′
𝑗,0, z

′
𝑗,1, 𝑛).

20 return z.

Algorithm 13: The splitfftBounds algorithm based on sta-
tistical model.
Input: a, 𝑛.
Output: f0, f1.

1 (f0)0 ← (`a0,𝑅, 𝜎
2
a0,𝑅

, 0, 0).
2 (f1)0 ← (`a0,𝐼 , 𝜎

2
a0,𝐼
, 0, 0).

3 for 𝑘 ← 0, . . . , 𝑛/2 − 1 do

4 (f0)𝑘 ← MultBound(1/2,AddBound(a2𝑘 , a2𝑘+1)).
5 𝑥 ← SubBound(a2𝑘 , a2𝑘+1).
6 𝑦 ← MultBound(𝑥, 𝜔−bitrev(𝑛/2+𝑘)).
7 (f1)𝑘 ← MultBound(1/2, 𝑦).
8 return f0, f1.

F PROOF OF THEOREM 5.1

Proof. (1) From Alg. 8 in Appendix B.1, we have (D0,0) 𝑗 =
(G0,0) 𝑗 and (D1,1) 𝑗 = (G1,1) 𝑗 − |(L1,0) 𝑗 |2 (G0,0) 𝑗 , 0 ≤ 𝑗 ≤
𝑛 − 1, for some input matrix G in the FFT domain in every
node of the tree. In addition, we have (D𝑖,𝑖) 𝑗 = (G𝑖,𝑖) 𝑗 −∑
𝑘<𝑖 (| (L𝑖,𝑘) 𝑗 |2 (D𝑘,𝑘) 𝑗) at the root when 𝑑 > 2. Therefore,

we have D𝑖,𝑖 ∈ R𝑛 assuming that G𝑖,𝑖 ∈ R𝑛 for all 𝑖 ∈
{0, . . . , 𝑑 − 1}. To show that latter assumption is true, we
observe that at the root we have the input G = SℓS∗ℓ in the
FFT domain, G𝑖,𝑖 ∈ R𝑁 for 0 ≤ 𝑖 ≤ 𝑑 − 1. Thus, D𝑖,𝑖 ∈ R𝑁
for 0 ≤ 𝑖 ≤ 𝑑 − 1 at the root. Assuming D𝑖,𝑖 ∈ R𝑛 for 0 ≤
𝑖 ≤ 𝑑 − 1 at an non-leaf node, for its 𝑖-th child, we have the

Quantum-safe HIBE: does it cost a Latte?

Algorithm 14: The mergefftBounds algorithm based on
statistical model.
Input: f0, f1, 𝑛.
Output: a.

1 a0 ← (` (f0)0,𝑅, 𝜎2
(f0)0,𝑅, ` (f1)0,𝑅, 𝜎

2
(f1)0,𝑅).

2 for 𝑘 ← 0, . . . , 𝑛/2 − 1 do

3 𝑢 ← MultBound((f1)𝑘 , 𝜔bitrev(𝑛/2+𝑘)).
4 a2𝑘 ← AddBound((f0)𝑘 , 𝑢).
5 a2𝑘+1 ← SubBound((f0)𝑘 , 𝑢).
6 return a.

Algorithm 15: The FFTBounds algorithm based on statis-
tical model.
Input: a.

1 𝑚 = 1.
2 𝑡 = 𝑛.
3 while𝑚 < 𝑛 do

4 𝑡 ← 𝑡/2.
5 for 𝑖 = 0 to𝑚 − 1 do

6 𝑗1 = 2𝑖𝑡 .
7 𝑗2 = 𝑗1 + 𝑡 − 1.
8 for 𝑗 = 𝑗1 to 𝑗2 do

9 𝑢 ← a𝑗 .
10 𝑣 ← MultBound(a𝑗+𝑡 , 𝜔bitrev(𝑚+𝑖)).
11 a𝑗 ← AddBound(𝑢, 𝑣).
12 a𝑗+𝑡 ← SubBound(𝑢, 𝑣).

13 𝑚 ← 2𝑚.

ffLDL input G′0,0 = G′1,1 = d0, where (d0) 𝑗 = 1
2 [(D𝑖,𝑖)2𝑗 +

(D𝑖,𝑖)2𝑗+1] ∈ R for 𝑗 ∈ {0, . . . , 𝑛/2 − 1}. Thus, D′0,0,D
′
1,1 ∈

R𝑛/2 in this child and we can deduce the conclusion by
induction.

(2) Since by definition of the LDL∗ decomposition [23], L is
a lower triangular matrix with 1 on its diagonal and D is
a diagonal matrix, we have det(D) = ∏𝑑−1

𝑖=0 D𝑖,𝑖 = det(G).
Because G = SℓS∗ℓ at the root and the determinant of a
(Mod)NTRU basis Sℓ is 𝑞, we have

∏𝑑−1
𝑖=0 (D𝑖,𝑖) 𝑗 = 𝑞2 in the

FFT domain at the root for 0 ≤ 𝑗 ≤ 𝑁 − 1.
(3) For the 𝑖-th child of an non-leaf node, we have the ffLDL

inputG′ =
(
d0 d1
d∗1 d0

)
for d0, d1 ← splitfft(D𝑖,𝑖), 0 ≤ 𝑖 ≤ 𝑑−

1 (see [51] for the definition of splitfft). By the definition of
the LDL∗ decomposition, for this child, we have D′0,0D

′
1,1 =

det(G′) = d2
0 − d1d∗1. Thus, in the FFT domain, we have:

(D′0,0) 𝑗 (D
′
1,1) 𝑗 = (d0)2𝑗 − |(d1) 𝑗 |2 =

(
1
2
[(D𝑖,𝑖)2𝑗 + (D𝑖,𝑖)2𝑗+1]

)2

−
����12 [(D𝑖,𝑖)2𝑗 − (D𝑖,𝑖)2𝑗+1]𝜔−bitrev(𝑛/2+𝑗)

����2 ,
for 0 ≤ 𝑗 ≤ 𝑛/2 − 1. Since (D𝑖,𝑖)2𝑗 , (D𝑖,𝑖)2𝑗+1 ∈ R and
|𝜔 | = 1, we get (D′0,0) 𝑗 (D

′
1,1) 𝑗 = (D𝑖,𝑖)2𝑗 (D𝑖,𝑖)2𝑗+1.

Algorithm 16: The FFTInvBounds algorithm based on sta-
tistical model.
Input: a.

1 𝑡 = 1.
2 ℎ = 𝑛.
3 𝑚 = 𝑛.
4 while𝑚 > 1 do

5 𝑗1 = 0.
6 ℎ ← ℎ/2.
7 for 𝑖 = 0 to ℎ − 1 do

8 𝑗2 = 𝑗1 + 𝑡 − 1.
9 for 𝑗 = 𝑗1 to 𝑗2 do

10 𝑢 ← AddBound(a𝑗 , a𝑗+𝑡).
11 𝑥 ← SubBound(a𝑗 , a𝑗+𝑡).
12 a𝑗 ← 𝑢.
13 a𝑗+𝑡 ← MultBound(𝑥,𝜔−bitrev(ℎ+𝑖)).
14 𝑗1 ← 𝑗1 + 2𝑡 .
15 𝑡 ← 2𝑡 .
16 for 𝑖 = 0 to 𝑛 − 1 do

17 a𝑖 ← MultBound(1/𝑛, a𝑖).

(4) The ffLDL algorithm computes the LDL∗ decomposition in
the FFT domain. Let Sℓ = L · S̃ℓ be the GSO decomposition
of Sℓ ∈ R𝑑×𝑑 where rows of S̃ℓ are pairwise orthogonal. For
the input G = SℓS∗ℓ at the root, we have G = LDL∗ where
D = S̃ℓ S̃∗ℓ [23]. Thus, in the FFT domain, D𝑖,𝑖 ∈ (R+)𝑁 at
the root. Assuming D𝑖,𝑖 ∈ (R+)𝑛 for some 𝑖 ∈ {0, . . . , 𝑑 − 1}
at an non-leaf node, for the 𝑖-th child of this node, we have
(D′0,0) 𝑗 (D

′
1,1) 𝑗 = (D𝑖,𝑖)2𝑗 (D𝑖,𝑖)2𝑗+1 ∈ R

+ for 0 ≤ 𝑗 ≤ 𝑛/2 −
1. Because (D′0,0) 𝑗 = (d0) 𝑗 = 1

2 [(D𝑖,𝑖)2𝑗 + (D𝑖,𝑖)2𝑗+1] ∈ R
+

due to the ffLDL input G′ =
(
d0 d1
d∗1 d0

)
where d0, d1 ←

splitfft(D𝑖,𝑖), we get D′0,0,D
′
1,1 ∈ (R

+)𝑛/2. Thus, we deduce
the conclusion by induction.

□

G UPPER BOUNDS FOR THE STANDARD

DEVIATION OF INTEGER GAUSSIAN IN

FFSAMPLING

When ℓ = 1, we have 𝜎 ≤ 𝜎min · max𝑖 ∥ (S̃0)𝑖 ∥
min𝑖 ∥ (S̃0)𝑖 ∥

, 0 ≤ 𝑖 ≤ 2𝑁 − 1,
for 𝜎 of the integer Gaussian in ffSampling [32]. From Sec. 4.5, we
have 𝜎min = [𝜖 (Z) and max𝑖 ∥(S̃0)𝑖 ∥ ≤ 𝜎0

√
2𝑁 . By symplecticity

of S0 [32], we have min𝑖 ∥(S̃0)𝑖 ∥ ≥ 𝑞/(𝜎0
√

2𝑁). Therefore, we get
𝜎 ≤ [𝜖 (Z) · (𝜎0

√
2𝑁)2/𝑞. In order to analyse the upper bound of 𝜎

when ℓ = 2, first we introduce the following Lemma:

Lemma G.1. For every non-root, non-leaf node in an ffLDL tree,

we have:

2𝑛−1
min
𝑘=0

D′
𝑘
≤ (D𝑖,𝑖) 𝑗 ≤

2𝑛−1max
𝑘=0

D′
𝑘
,

𝑖 ∈ {0, 1}, 0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ (R+)2𝑛 from its parent.

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Proof. From Theorem 5.1, for a non-root, non-leaf node, since
(D0,0) 𝑗 = 1

2 (D
′
2𝑗 + D

′
2𝑗+1), 0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ (R+)2𝑛 ,

(D0,0) 𝑗 gets the minimal value min2𝑛−1
𝑘=0 D′

𝑘
when both D′2𝑗 and

D′2𝑗+1 are equal to min2𝑛−1
𝑘=0 D′

𝑘
. Similarly, (D0,0) 𝑗 gets the max-

imal value max2𝑛−1
𝑘=0 D′

𝑘
when both D′2𝑗 and D′2𝑗+1 are equal to

max2𝑛−1
𝑘=0 D′

𝑘
. For (D1,1) 𝑗 = D′2𝑗D

′
2𝑗+1/(D0,0) 𝑗 =

D′2𝑗D
′
2𝑗+1

1/2· (D′2𝑗+D′2𝑗+1)
,

it gets the minimal value min2𝑛−1
𝑘=0 D′

𝑘
when both D′2𝑗 and D′2𝑗+1

are equal to min2𝑛−1
𝑘=0 D′

𝑘
and (D1,1) 𝑗 gets the maximal value

max2𝑛−1
𝑘=0 D′

𝑘
when both D′2𝑗 and D′2𝑗+1 are equal to max2𝑛−1

𝑘=0 D′
𝑘

for D′ ∈ (R+)2𝑛 .
□

From Lemma G.1, if the ancestor of a non-root, non-leaf node is
the𝑚-th child of the root, 0 ≤ 𝑚 ≤ 𝑑 − 1, then (D𝑖,𝑖) 𝑗 of this node
has the minimal value min𝑁−1

𝑘=0 (D
′
𝑚,𝑚)𝑘 and the maximal value

max𝑁−1
𝑘=0 (D

′
𝑚,𝑚)𝑘 , 𝑖 ∈ {0, 1}, 0 ≤ 𝑗 ≤ 𝑛 − 1, for D′𝑚,𝑚 from the root,

respectively. The leaf value of an ffLDL tree is 𝜎 = 𝜎ℓ/
√︁
(G0,0)0,

where (G0,0)0 = 1
2 (D

′
0 +D

′
1) for some D′ from its parent. Following

a similar approach in the proof of Lemma G.1, we have:

min{D′0,D
′
1} ≤ (G0,0)0 ≤ max{D′0,D

′
1}.

Therefore, similar to a non-root, non-leaf node, if the ancestor of
a leaf node is the𝑚-th child of the root, then the leaf value 𝜎 has
the minimal value 𝜎ℓ

/√︃
max𝑁−1

𝑘=0 (D
′
𝑚,𝑚)𝑘 and the maximal value

𝜎ℓ

/√︃
min𝑁−1

𝑘=0 (D
′
𝑚,𝑚)𝑘 .

In order to analyse the minimal and maximal values of D′𝑚,𝑚
from the root, we introduce the following Lemma:

Lemma G.2. For the Gram matrix G = Sℓ−1S∗ℓ−1 ∈ (C[𝑥]/⟨𝑥
𝑁 +

1⟩) (ℓ+1)×(ℓ+1) in the FFT domain, we have | (G𝑖,𝑖) 𝑗 | ≤ 𝜎2
ℓ−1𝑁

2 (ℓ+1)2
for 0 ≤ 𝑖 ≤ ℓ − 1, 0 ≤ 𝑗 ≤ 𝑁 − 1.

Proof. We have G𝑖,𝑖 =
∑ℓ
𝑘=0 FFT(Sℓ−1)𝑖,𝑘 ⊙ FFT(S∗

ℓ−1)𝑘,𝑖 , and
thus | (G𝑖,𝑖) 𝑗 | =

∑ℓ
𝑘=0 | (FFT(Sℓ−1)𝑖,𝑘) 𝑗 |2. For 𝑁 -point FFT result z

of scalar a, we have |z𝑖 | ≤ ∥z∥ =
√
𝑁 ∥a∥ for 0 ≤ 𝑖 ≤ 𝑁 − 1 [9].

Thus, we have | (G𝑖,𝑖) 𝑗 | ≤ (ℓ +1) ·𝑁 · ∥ (Sℓ−1)𝑖,𝑘 ∥2 ≤ 𝜎2
ℓ−1𝑁

2 (ℓ +1)2,
since ∥(Sℓ−1)𝑖,𝑘 ∥ ≤ 𝜎ℓ−1 ·

√︁
(ℓ + 1)𝑁 . □

For the root of an ffLDL tree when ℓ = 2, we have (D0,0) 𝑗 =

(G0,0) 𝑗 ≤ 9𝜎2
1𝑁

2 by Lemma G.2. For (D1,1) 𝑗 = (G1,1) 𝑗 −
| (G1,0) 𝑗 |2
(D0,0) 𝑗 ,

since (D0,0) 𝑗 ∈ R+ from Theorem 5.1, we have (D1,1) 𝑗 ≤ (G1,1) 𝑗 ≤
9𝜎2

1𝑁
2. By Theorem 5.1, we have (D2,2) 𝑗 = 𝑞2

(D0,0) 𝑗 (D1,1) 𝑗 ≥
𝑞2

81𝜎4
1𝑁

4 ,

by taking the upper bound 9𝜎2
1𝑁

2 of (D0,0) 𝑗 , (D1,1) 𝑗 . Thus, for the
leaf values 𝜎 , we have 𝜎 ≤ 𝜎2

/√︃
𝑞2/(81𝜎4

1𝑁
4) = 𝜎2 · 9𝜎2

1𝑁
2/𝑞.

H CRAMER’S RULE

Cramer’s rule [19] is used for solving systems of linear equations.
Considering a system of 𝑁 equations with 𝑁 unknowns x, repre-
sented as Ax = b. Cramer’s rule states that the solution can be
written as x𝑖 = det(A𝑖)

det(A) , where A𝑖 is the matrix formed by replacing
the 𝑖-th column of A by the column vector b.

The formulae for the reduction coefficients in the KeyGen and
Delegate process come directly from Cramer’s Rule applied to the
system Ax = b, where, in the first level, A is the 2× 2 matrix whose
(𝑖, 𝑗)-entry is theHermitian product ⟨s𝑖 , s𝑗 ⟩ of the 𝑖𝑡ℎ and 𝑗𝑡ℎ rows of
the delegation matrix, and where b is the two-dimensional column
vector whose 𝑖𝑡ℎ coefficient is ⟨s2, s𝑖 ⟩ . This result generalises to
arbitrary levels; i.e., for any given number of levels ℓ ≥ 1, the
reduction of the vector sℓ+1 is effected by replacing it with sℓ+1 −
⌊k0⌉s0− . . .−⌊kℓ ⌉sℓ , where the k𝑖 are the coefficients of the solution
x to the systemAx = b, where A is the (ℓ +1) × (ℓ +1) matrix whose
(𝑖, 𝑗)-entry is the Hermitian product ⟨s𝑖 , s𝑗 ⟩ of the 𝑖𝑡ℎ and 𝑗𝑡ℎ rows
of the delegation matrix, and where b is the (ℓ + 1)-dimensional
column vector whose 𝑖-th coefficient is ⟨sℓ+1, s𝑖 ⟩.

I KEY AND CIPHERTEXT SIZE

CALCULATIONS

The Latte keys and ciphertexts are mainly collections of polyno-
mials in R. The degree of each polynomial is 𝑁 and the number of
bits in each coefficient is ^ = ⌈log2 𝑞⌉. The parameters 𝑁 and 𝑞 are
dependent on the security level required, and values for these are
given in Table 13 in Sec. 6. The key/ciphertext bit-size is equal to
𝑁 · ^ · number of polynomials, plus any additional bit strings sent,
in the case of the ciphertext. Furthermore, we usually consider the
key and ciphertext sizes in bytes, and so when the total bit-size is
computed, it will be divided by 8 to give the size in bytes.

Master Keys. The master public key consists of a polynomial
h ∈ R𝑞 . Therefore the bit-size is 𝑁 · ^. The master private key S0
consists of (f, g, F,G). However, F and G can be recomputed on the
fly from f and g using NTRUSolve. The solution is not unique but
as long as it is a short solution, it will suffice. However, this is not
efficient and so this research considers the entire (f, g, F,G) to be
stored as the private key. Therefore, the master private key is of
size 4𝑁 · ^.

Delegated Keys. The delegated public key can be straightfor-
wardly generated using the master public key and the chain of user
IDs along which the delegation process is happening. Although this
can be efficiently generated on the fly, given the user ID chain, we
will consider it being stored as the polynomials h,A1,A2, . . . ,Aℓ ,
which translates as (ℓ +1) polynomials in R, and so the total bit-size
of the delegated public key is (ℓ + 1) · 𝑁 · ^ . The delegated private
key generated from level ℓ − 1 to level ℓ , to be passed onto users
at level ℓ + 1, is a (ℓ + 2) × (ℓ + 2) matrix of polynomials in R𝑞 . Its
size is therefore (ℓ + 2) · (ℓ + 2) · 𝑁 · ^.

User Private Keys. The user public key is entirely dependent on
the identity, and so we only examine the size of the user private key.
In Latte for a user at level ℓ , this is a tuple of (ℓ + 1) polynomials
in R𝑞 . However, we only need to store ℓ of these polynomials
(disregarding 𝑡0) and so the user private key is of bit size ℓ · 𝑁 · ^.

Ciphertexts. Let’s consider the ciphertext at level ℓ . This consists
of ℓ + 1 polynomials C1, . . . ,Cℓ ,Cℎ ∈ R𝑞 along with a 256-bit string
𝑍 (which is essentially the encrypted message). Therefore, at level
ℓ , the bit-size of the full ciphertext is (ℓ + 1) · 𝑁 · ^ + 256.

Quantum-safe HIBE: does it cost a Latte?

Table 15: Performance Results (op/s) for the DLP IBE Scheme from [1] (Scaled to 4.2GHz).

Set Security 𝑛 log2 𝑞 KeyGen Ext Enc Dec

DLP-0 80 512 22 14.7 873.2 8731.8 6202.9
DLP-3 192 1024 22 4.9 454.1 2639.8 1621.6

Table 16: Performance Results (op/s) for the Falcon [51] (Scaled to 4.2GHz).

Set Sec. 𝑛 log2 𝑞 KeyGen Sign Verify

FALCON-512 128 512 14 211.4 10861.7 51008.1
FALCON-1024 256 1024 14 66.5 5319.4 24926.1

J COMPARISON TO OTHER SCHEMES

Comparison to DLP IBE. Performance results of the single-level
DLP IBE scheme from [1] (converted to op/s at 4.2GHz) are given
in Table 15. Since the decryption in the DLP IBE did not include
ciphertext validation, for a fair comparison with Latte, we use the
sum of DLP encryption and decryption run-time to compute the
op/s of decryption in Table 15.We focus on the comparison between
Latte-1 and DLP-3, since the sizes of parameters 𝑁 and 𝑞 are simi-
lar. The KeyGen speed of our Latte-1 implementation is 1.9x faster
than DLP-3, and the speed of our Latte-1 Extract implementation
is about 3.2x faster than DLP-3 extraction. This is mainly because
we adapt the faster NTRUSolve and lattice Gaussian sampling pro-
cedure from Falcon [51]. In addition, the Encrypt/Decrypt speed
is 6.3x–8.1x faster in our implementation.

Comparison to Falcon. After adapting the NTRUSolve and lat-
tice Gaussian sampling procedures from Falcon [51], our optimised
Latte KeyGen becomes similar to the Falcon KeyGen, and our op-
timised Latte Extract becomes similar to the Falcon Sign, in terms
of the operations used by these algorithms. Therefore, here we com-
pare the run-time speed of our optimised Latte KeyGen/Extract
against the Falcon KeyGen/Sign, respectively. The performance
results of the Falcon is summarised in Table 16. We focus on the
comparison between Latte-1 and Falcon-1024, since the size of
parameter 𝑁 is the same. The KeyGen speed of our Latte-1 imple-
mentation is about 7.1x slower than Falcon-1024, and the speed
of our Latte-1 Extract implementation is about 3.7x slower than
Falcon-1024 Sign. This is mainly because: (1) The size of 𝑞 in Latte
is much larger than Falcon (24 bits for Latte-1 compard to 14 bits
for Falcon-1024), which will significantly increase the maximal
integer size in NTRUSolve as well as the run-time overhead in Key-
Gen [48]. (2) Falcon computes the ffLDL Tree during the KeyGen,
while the ffLDL Tree is computed during the Extract in our Latte
scheme. This difference will add overhead to the run-time speed of
our Latte Extract implementation. (3) From the Falcon specifica-
tion [51], the AVX2 and FMA instructions were used in the source
code during the benchmark. However, these instructions are not
used in the source code of our Latte implementation.

Comparison to Non-quantum Safe HIBE. Pairings-based HIBE
scheme performance results from [37] (converted to op/s at 4.2GHz)
are given in Table 17. Parameter 𝑠 is the bit size of the field, which
is comparable to the bit-length of RSA modulus by providing the

Table 17: Performance Results (op/s) for the Gentry-

Silverberg HIBE Scheme (2-level) Using Java v1.6 [37] (Scaled

to 4.2GHz).

𝑠 Security length of m Enc Dec

1024 80 160 11.5 6.7
3072 128 256 0.8 0.5

same security. Although not directly comparable, these results give
a good indication of the feasibility of Latte at levels 1 or 2.

K LATTE VARIANT COMPUTING FFLDL TREE

IN KEYGEN/DELEGATE

If the key extraction speed is critical for the application, similar
to Falcon [51], we can move the ffLDL Tree computation from
the Latte Extract (Line 3 in Alg. 4 in Appendix B) to the Latte
KeyGen/Delegate when generating a master/delegated private key
Sℓ , at the expense of significantly larger master/delegated private
key size. The KeyGen/Delegate/Extract speed of this Latte variant
is shown in Table 18. The Latte Extract in this variant is about
1.3x–1.7x faster than the run-time speed in Table 12, while the
KeyGen/Delegate is at most 6% slower.

Here we also analyse the overhead in the master/delegated pri-
vate key size of this variant due to the ffLDL Tree 𝑇 . Assuming
a floating-point value has 𝑝 bytes, the size of 𝑇 consists of the
following 3 parts:

• For a 𝑑 × 𝑑 basis Sℓ , the root of 𝑇 stores 𝑑 (𝑑 − 1)/2 compo-
nents of L from the LDL∗ decomposition, with each compo-
nent in C[𝑥]/⟨𝑥𝑁 + 1⟩. Thus, the root of𝑇 has 𝑑 (𝑑 − 1)/2 ·
2𝑁𝑝 = 𝑁𝑝𝑑 (𝑑 − 1) bytes.

• The root of 𝑇 has 𝑑 sub-trees. The 𝑖-th non-leaf level of a
sub-tree has 2𝑖 nodes, 0 ≤ 𝑖 ≤ log2 𝑁 − 2. Each node at
𝑖-th level of a sub-tree stores L1,0 ∈ C[𝑥]/⟨𝑥𝑛 + 1⟩ from
the LDL∗ decomposition, where 𝑛 = 𝑁 /2𝑖+1. Therefore, the
total size of 𝑖-th level of a sub-tree is 2𝑖 · 2(𝑁 /2𝑖+1)𝑝 = 𝑁𝑝

bytes, and the total size of all non-leaf nodes in a sub-tree
is 𝑁𝑝 (log2 𝑁 − 1) bytes.

• A sub-tree has 𝑁 /2 leaf nodes. Each leaf node stores a 𝑝-
byte floating-point value. Therefore, the total size of all leaf
nodes in a sub-tree is 𝑁𝑝/2 bytes.

Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill

Table 18: Performance Results (op/s) and ffLDL Tree Size (Bytes) of Latte Variant at 4.2GHz.

ℓ = 1 ℓ = 2
Set KeyGen Ext Del Tree Size Ext Tree Size

LATTE-1 9.4 1865.1 - 172032 - -
LATTE-2 3.3 783.6 - 376832 - -
LATTE-3 5.4 54.7 2.3 344064 33.7 565248
LATTE-4 1.6 25.9 0.8 753664 15.9 1228800

Thus, the total size of𝑇 is 𝑁𝑝𝑑 (𝑑−1) +𝑑 (𝑁𝑝 (log2 𝑁 −1) +𝑁𝑝/2) =
𝑁𝑝𝑑 (log2 𝑁 + 𝑑 − 3/2) bytes. Columns “Tree Size” in Table 18

summarise the ffLDL tree size for the parameters and floating-point
precisions in our Latte implementation.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hierarchical Identity-based Encryption
	2.2 The Ingredients of Latte

	3 Improved Latte HIBE Scheme
	3.1 Proposed Design Optimisations
	3.2 Scheme Description

	4 Security Analysis
	4.1 Rényi Divergence Security Reduction
	4.2 Rényi divergence between Z-Gaussians with errors in parameters
	4.3 Statistical Model for ffSampling Precision Errors
	4.4 Provable Security for ID-OW-CPA of Improved Latte
	4.5 Concrete Parameter Sets Based on Best Known Attacks

	5 Implementation Techniques and Optimizations
	5.1 Improved ffLDL Algorithm for NTRU Basis
	5.2 Techniques from Falcon and ModFalcon
	5.3 Discrete Gaussian Sampling over Integers

	6 Performance Results
	References
	A HIBE Scheme Description
	B Latte HIBE Scheme
	B.1 Sub-Algorithms from Falcon

	C Proof of Lemma 4.2
	D Proof of Lemma 4.1
	E Sub-Algorithms in the Statistical Model
	F Proof of Theorem 5.1
	G Upper Bounds for the Standard Deviation of Integer Gaussian in ffSampling
	H Cramer's Rule
	I Key and Ciphertext Size Calculations
	J Comparison to Other Schemes
	K Latte Variant Computing ffLDL Tree in KeyGen/Delegate

