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Abstract—The UK government is considering advanced prim-
itives such as identity-based encryption (IBE) for adoption
as they transition their public-safety communications network
from TETRA to an LTE-based service. However, the current
LTE standard relies on elliptic-curve-based IBE, which will
be vulnerable to quantum computing attacks, expected within
the next 20–30 years. Lattices can provide quantum-safe alter-
natives for IBE. These schemes have shown promising results
in terms of practicality. To date, several IBE schemes over
lattices have been proposed, but there has been little in the
way of practical evaluation. This paper provides the first com-
plete optimised practical implementation and benchmarking of
LATTE, a promising Hierarchical IBE scheme proposed by the
United Kingdom (UK) National Cyber Security Centre (NCSC)
in 2017 and endorsed by European Telecommunications Stan-
dards Institute (ETSI). We propose optimisations for the Key-
Gen, Delegate, Extract and Gaussian sampling components of
LATTE, to increas attack costs, reduce decryption key lengths
by 2x–3x, ciphertext sizes by up to 33%, and improve speed. In
addition, we conduct a precision analysis, bounding the Rényi
divergence of the Gaussian sampling procedures from the ideal
distribution in corroboration of our claimed security levels.
Our resulting implementation of the Delegate function takes
0.4 seconds at 80-bit security level on a desktop machine at
4.2GHz, significantly faster than the order of minutes estimated
in the ETSI technical report. Furthermore, our optimised
LATTE Encrypt/Decrypt implementation reaches speeds up to
9.7x faster than the ETSI implementation.

Index Terms—lattice-based cryptography, hierarchical identity-
based encryption, advanced primitives, software design, post-
quantum

1. Introduction

The UK Government anticipates the migration of
its mission-critical communications network from Air-
wave TETRA to LTE-based Emergency Services Network
(ESN) [1] will be complete by 2026 [2]. However, the cur-
rent standard [3] relies on Elliptic Curve (ECC)-based Iden-
tity Based Encryption (IBE) scheme MIKEY-SAKKE for
securing messages. The first such device authorised for ESN
is the Panasonic Toughbook Tablet which runs on Intel i5

and transmits data via EM7511 Band 14 mobile broadband.
An IBE scheme removes the need for a certificate repository
by deriving a user’s public key from their already established
public identity. This provides a low latency setup with
instantaneous communication capabilities, hence is ideal for
this use-case. However, ECC will be rendered insecure under
quantum computing attacks, as acknowledged by current
post-quantum cryptography standardization efforts by the
National Institute of Standards and Technology (NIST) [4].

One of the advantages of lattice-based cryptography
(LBC), a contender for quantum-secure cryptographic so-
lutions, is the ability to build advanced primitives such as
IBE. Furthermore, a hierarchy can be built into an IBE
scheme to provide a more distributed workload and allow
for finer-grained control over private key distribution. Hier-
archical identity-based encryption (HIBE) schemes extend
the concept of using a personal identity as a public key to
a multi-levelled scenario, such as one would find within a
functioning company. HIBE has further applications such as
forward-secure encryption [5] and public key broadcast en-
cryption [6]. Besides ESN, there are other real-world appli-
cation scenarios for HIBE, for example, in Messaging apps
for forward-security of ratchet protocols like Signal (see [7],
[8]). It is also well known that the key generation algorithm
of HIBE can be used as a Hierarchical ID-Based Signature
(HIBS), and HIBS also has potential real-world applications
in forward secure signatures used in blockchain [9]. Other
real-world deployments of IBEs for encrypted file transfer
and email are offered by companies such as Voltage Security
and TrendMicro. Also, HP utilised it in their time data
release service Time Vault. However, IBE is set to grow in
the post-quantum world, where key sizes become larger and
the number of connected devices demanding instantaneous
data transfer grows. However, (H)IBE is still new territory
within the post-quantum field. Additionally, with the growth
of the Internet of Things (IoT), which brings with it complex
interconnected systems of constrained devices, there is a
greater requirement for lightweight, advanced primitives
unlike ever before. The long-term security considerations
indicate that these should be made quantum-secure today.
The aim of this paper is to assess the practicality and
optimise the implementation/integration of a quantum-safe
(H)IBE scheme.

The DLP-IBE scheme [10] was in 2017 combined with



the Bonsai tree HIBE scheme introduced in [11] to create
LATTE by Campbell and Groves [12]. This research was
carried out by the National Cyber Security Centre (NCSC),
with a view to utilising the scheme in UK public safety
communications. They are currently working with the Eu-
ropean Telecommunications Standards Institute (ETSI) in
a move towards standardising the scheme [13]. However,
the proposed specification [13] only provides the Encrypt
and Decrypt performance results, and it is unclear if LATTE
KeyGen, Delegate, and Extract are practical at all. There
remains substantial analysis to be performed to determine
if and how this scheme will work in the real world. This is
the gap our research endeavours to bridge.

This paper provides the first performance benchmarking
of a quantum-safe HIBE scheme, LATTE, written in C.1
We also identify bottlenecks, propose optimisations, and
provide further statistical and security analysis for LATTE
and consider its suitability for such applications. In more
detail, the contributions of this paper are:

Precision Analysis of LATTE: We develop a statistical
model for floating-point arithmetic errors in our efficient
LATTE implementation, verified by experimental analysis.
This allows us to quantify the security impact on LATTE of
the arithmetic precision. In particular, we bound the Rényi
divergence (RD) from ideal, as recommended in [14], of the
Gaussian lattice sampler (with its underlying fast ffSampling
algorithm), and deduce that 53 bits of precision retain our
claimed security levels for LATTE-1 and 2 with up to 242 key
Extract/Delegate queries. For LATTE-3 and 4, our analysis
shows that about 90 bits of precision should be sufficient.
We also apply our statistical model to the FALCON signature
selected by NIST for PQC standardisation [15], and demon-
strate a ≈ 3 bit improved precision estimate for it using a
refined analysis compared to that in [15].

Optimised LATTE (Sub-)Algorithms: We first reduce
the module dimension of the extracted user keys by one
compared to [13] by extending a similar approach used in
the DLP IBE [10]. This leads to faster performance and
reduces user private key sizes by 2x–3x and ciphertext
length by up to 33%. In addition, we also show a faster
ffLDL algorithm for (Mod)NTRU basis in Sec. 5.2. We then
adapt the NTRUSolve function from FALCON [15] in order
to efficiently solve the NTRU equation in our optimised
LATTE KeyGen algorithm. The NTRUSolve is both faster
and more compact [16] than the resultant method [10]
used in [13]. In addition, we adapt the technique from
MODFALCON [17] and the length reduction technique by
using Cramer’s rule [13] in order to efficiently solve the
NTRU equation for higher lattice dimensions in our op-
timised LATTE Delegate algorithm. We further adapt the
FFT sampling procedures from FALCON [15], which is
faster than the Klein-GPV sampler [18] used in [13]. In
addition, the proposed LATTE specification [13] did not
discuss the integer discrete Gaussian sampling techniques
suitable for the needed standard deviations. We integrate
efficient sampling techniques, including FACCT [19] and

1https://gitlab.com/raykzhao/latte

the variant [20] of COSAC [21] in our optimised LATTE
implementation.

New Parameter Sets for LATTE: We provide slightly
revised parameter sets for LATTE, fixing a bug in the
computation of a lattice smoothing parameter in the ETSI
technical report [13], and also modify a Gaussian sampling
standard deviation parameter to accommodate the more
efficient FACCT [19] sampler for the Key Generation al-
gorithm. Security estimates for these revised parameters are
also presented as we discover that our redesign reduces the
decryption failure rate and increases the cost of recovering
the user key.

First Full and Practical Implementation of LATTE:
Applying our optimisation techniques, we give the first
complete practical performance results for a lattice-based
HIBE scheme, including the KeyGen, Delegate, and Extract
algorithms, whereas implementation results were unclear
in [13].The proposed specification [13] estimated that the
Delegate would have run-time in the order of minutes on
a desktop machine. In contrast, we show that our efficient
implementation can perform the Delegate function in 0.4s
(resp. 1.3s) for 80-bit (resp. 160-bit) security level on a
desktop machine. In addition, for the same ring dimension,
our optimised LATTE implementation is up to 11.1x faster
than the DLP IBE implementation result from [13] for the
corresponding algorithms, and our LATTE Extract run-time
overhead is less than 3.9x over the FALCON Sign algorithm
run-time with the same lattice dimension.

The structure of the paper is as follows. Sec. 2 gives the
background to HIBE and the lattice-based concepts used
in HIBE schemes. Sec. 3 describes our improved LATTE
HIBE scheme. Sec. 4 provides the precision and security
analyses. Sec. 5 discusses our implementation techniques
in making the scheme practical for real-world applications.
Performance results for the scheme are given in Sec. 6.

2. Preliminaries

A lattice can be expressed as a collection of integer
linear combinations of a set of basis vectors. Popular un-
derlying hard lattice problems believed to be secure against
quantum computing attacks include the Shortest Vector
Problem (SVP) and Learning With Errors (LWE) alongside
its ring variant (over ideal lattices), Ring-LWE. These are
all concerned with finding short vectors in the lattice, which
can be attempted to be solved by lattice reduction algorithms
such as LLL [22], and BKZ [23], [24]. Another common
lattice problem is the NTRU assumption [25]; that is, given
a polynomial h, one must find non-trivial short f ,g such
that h = g · f−1.

In this paper, vectors or, interchangeably through the
canonical embedding, polynomials will be denoted by bold
small letters like f , matrices M, polynomial ring of integers
mod q as Rq := Zq[x]/⟨xN + 1⟩ (for an integer N ),
and lattices as Λ. The field of integers mod q is denoted
as Zq. Discrete Gaussian distributions with centre t and
standard deviation σ are denoted as Dσ,t, and we omit
the centre if it is zero, i.e. Dσ if t = 0. A distribution
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is B-bounded for some B ∈ R+, if its support is in the
interval [−B,B]. The smoothing parameter of Z is denoted
as ηε(Z) = (1/π)

√
ln(2 + 2/ε)/2. The Euclidean norm of

a vector/polynomial f is denoted ∥f∥. The transpose f∗ of
polynomial f = f0 + f1x + · · · + fN−1x

N−1 is defined
as f∗ = f0 − fN−1x − · · · − f1x

N−1. We denote M∗ as
the transpose of matrix M where M∗i,j = (Mj,i)

∗. The
Hermitian product of vectors a,b is denoted as ⟨a,b⟩.
The concatenation of several vectors f1, f2, . . . , fN will be
written as (f1|f2| · · · |fN ). In HIBE schemes, user identities
at level ℓ are denoted by IDℓ. A hash function from an
arbitrary length input to a vector of integers of length
N is written as H : {0, 1}∗ → ZN

q . An arrow ←$ is
used to show the uniform random sampling of an element
from a set, e.g. f ←$ ZN

q . The operator ⊕ means XOR.
A Gram-Schmidt orthogonalised basis of B is denoted as
B̃ = {b̃1, . . . , b̃N}. The notation A(f) refers to the anti-
circulant matrix associated with polynomial f . The notation
⌊k⌉ indicates the real number k is to be rounded to the
nearest integer. The rounding ⌊f⌉ of a polynomial f is taken
to be coefficient-wise rounding. The Fast Fourier Transform
(FFT) and Number Theoretic Transform (NTT) of polyno-
mial f are the evaluations f(ζi) for i ∈ {0, . . . , N − 1},
where ζ is the 2N -th complex root of unity in the FFT, and
ζ is the 2N -th root of unity mod q in the NTT. Let ⊙ be
the point-wise multiplication.

Definition 2.1 (Rényi Divergence [26]). For two discrete
distributions P and Q such that Supp(P ) ⊆ Supp(Q), the
Rényi divergence (RD) of order a ∈ (1,+∞) is defined as:

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

For a = +∞, we have: R∞(P ||Q) = maxx∈Supp(P )
P (x)
Q(x) .

Lemma 2.1. Let a ∈ [1,+∞]. Let P and Q denote dis-
tributions with Supp(P ) ⊆ Supp(Q). Then the following
properties hold:

Data Processing Inequality: Ra(P
f∥Qf ) ≤ Ra(P∥Q)

for any function f , where P f (resp. Qf ) denotes the distri-
bution of f(y) induced by sampling y ←$ P (resp. y ←$ Q).

Probability Preservation: Let A ⊆ Supp(Q)
be an arbitrary event. If a ∈ (1,+∞), then
Q(A) ≥ P (A)

a
a−1 /Ra(P∥Q). Further, we have

Q(A) ≥ P (A)/R∞(P∥Q).

We use the notation ≲,∼ as in [27], to “absorb” all
higher-order terms of negligible elements, e.g. if δ = o(1),
then δ+δ2 ∼ δ. The following remark bounds R∞(D2;D1).

Remark 1. Let τ ∈ Z be the tailcut bound as above, and
let Q = 2k for some k ∈ Z. If τ ≥

√
2 ln(2Q), then:

R∞(D2;D1) ≤ 1/(1−Q−1) ≲ 1 + 1/Q. (1)

This can be verified by using classical tailcut bounds [28,
Lemma 4.4].

In our analysis, we will apply the following proposition,
adapted from Proposition 4 of [29].

Proposition 2.2. [29] Let P and Q denote two distri-
butions of a N−tuple of random variables (xi)i<N . For
0 ≤ i < N , assume Pi (resp Qi) is the marginal distribu-
tion of xi, and let Pi|<i(·|x < i) denote the conditional
distribution of xi given that (x0, . . . , xi−1) =: x<i. Let
a > 1. Suppose that for all 0 ≤ i < N , there exists
Bi ≥ 1 such that for all i-tuples x<i in the support of Q
restricted to its first i variables, Ra(Qi|x<i, Pi|x<i) ≤ Bi.
Then Ra(Q,P ) ≤

∏
i<N Bi.

Theorem 2.3 (Tail-cut Bound, Adapted from [26], Thm.
2.11). Let D′σ be the B-bounded distribution of Dσ by
cutting its tail. For M independent samples, we have
R∞((D′σ)M ||(Dσ)

M ) ≤ exp(1) if B ≥ σ ·
√

2 ln(2M).

2.1. Hierarchical Identity-based Encryption

Hierarchical identity-based encryption (HIBE) schemes
were introduced by Horwitz and Lynn [30] and can be con-
sidered a generalisation of an IBE scheme to multiple levels.
A HIBE scheme consists of five components: Keygen, Del-
egate, Extract, Encrypt, and Decrypt. Gentry and Silverberg
proposed the first secure HIBE scheme in the random oracle
model (ROM) in 2002 [31], which was an extension of
the Boneh-Franklin IBE scheme [32], a Weil-pairing based
scheme, the security of which relies on the bilinear Diffie-
Hellman problem. This was shown to be secure against
adaptive identity and chosen ciphertext attacks, by use of the
Fujisaki-Okamoto (FO) transformation [33], although the
security degrades exponentially with the number of levels.

Boneh-Boyen built on this in 2004 to create a scheme
that was secure without random oracles [34]. However, as
both the ciphertext and private keys grew linearly with the
number of levels of the hierarchy, in 2005 a scheme [35]
was proposed which fixed the ciphertext size to three group
elements and curtailed private key growth to within level
ℓ group elements. In 2018, an isogeny-based version of
the Decisional Bilinear Diffie-Hellman-based scheme was
proposed [36]. Despite isogenies possessing quantum-safe
properties, this variant only serves to strengthen the existing
classical security, by proving it secure under the assumption
of either the classical version or the isogeny-based version
of the problem and therefore is not necessarily quantum-
safe. To the best of the authors’ knowledge, the only
quantum-safe HIBE schemes so far proposed are based on
lattices. We now introduce the schemes upon which LATTE
is built.

2.2. The Ingredients of LATTE

DLP IBE Scheme: In 2014, Ducas, Lyubashevsky and
Prest proposed the first efficient lattice-based identity-based
encryption (IBE) scheme [10]. They based their construc-
tion on the IBE scheme by Gentry, Peikert and Vaikun-
tanathan [18], using a variant of NTRU lattices. The underly-
ing security problems are the NTRU problem for key gener-
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ation and R-LWE for encryption. The ciphertexts, therefore,
have more practical sizes than previous constructions, for ex-
ample, 30kb (kilobits) for 192-bit classical security. The use
of structured lattices also allowed for implementation opti-
misations such as the Number Theoretic Transform (NTT),
as demonstrated by [37], whose software performance of
the DLP-IBE outperformed that of the elliptic-curve-based
Boneh-Franklin IBE scheme.

Bonsai Trees HIBE: Cash [11] proposed the use of
Bonsai trees to create a hierarchical structure for IBE. They
model the hierarchical network of users as a tree, whereby
arborists, or sub-key-managers, have control over the sub-
trees and have the authority to delegate user private keys.
Delegation requires the knowledge of a trapdoor basis of the
lattice at that level. During the process whereby keys are del-
egated down the tree, the lattice is extended, and therefore its
dimension and hence the key and ciphertext sizes increase.
The public key size is of O(d3kn2) and ciphertext size is
of O(d3kn) at depth d, for security parameter n and hash
output length k. The root authority has control of the whole
tree by knowing the short trapdoor basis for the master root
lattice. The security of this HIBE scheme is based on LWE
over standard lattices.

3. Improved LATTE HIBE Scheme

LATTE was proposed in 2017 [12] and can be considered
as a combination of the DLP-IBE scheme [10] and Bonsai
Tree HIBE scheme [11] to create a lattice-based hierarchical
IBE (HIBE) scheme. It can be shown to be ID-IND-CCA-
secure, the proof for which is given in [13], based on the
NTRU and R-LWE hardness assumptions.

3.1. Proposed Design Optimisations

For the optimised LATTE scheme presented in this Sec-
tion and used in our software design and implementation,
features of the FALCON [15] and the MODFALCON [17]
signature schemes were utilised. This is the first time these
features have been considered in LATTE, and so the rationale
for this is expanded on in Sec. 5. For now, it suffices
to acknowledge that the sub-algorithms NTRUSolve and
ffSampling are taken from FALCON [15]. The currently
presented LATTE in this Section also improves on the effi-
ciency of the original proposal [12] by reducing the module
dimension of the extracted secret keys by 1, by extending a
similar approach used in the DLP IBE [10]. More concretely,
we eliminate public key polynomial b by modifying the
equation satisfied by the decryption key at level ℓ from the
original rank ℓ+ 2 module relation over Rq:

t0 + t1 ·h+ t2 ·A1 + · · ·+ tℓ ·Aℓ−1 + tℓ+1 ·Aℓ = b, (2)

where Ai = H(ID1| . . . |IDi) for 1 ≤ i ≤ ℓ, to the following
rank ℓ+ 1 relation over Rq:

t0 + t1 · h+ t2 ·A1 + · · ·+ tℓ ·Aℓ−1 = A′ℓ, (3)

where A′ℓ = HE(ID1| . . . |IDℓ) := H("E"|ID1| . . . |IDℓ).
Furthermore, we remove the need for the Extract algorithm

to be stateful. This is achieved by deriving randomness
deterministically from the ID (see Sec. 4.4 for discussion).

3.2. Scheme Description

The full pseudocode for LATTE KeyGen, Delegate, Ex-
tract, Encryption, and Decryption are presented in Figure 3–
6 in Appendix A, respectively. Let H : {0, 1}∗ → ZN

q

and µ,Z ∈ {0, 1}256, Table 6 in Appendix A further
summarises the inputs and outputs of the LATTE algorithms.
The KeyGen algorithm, given in Figure 3 in Appendix A,
generates an NTRU-type basis. This is performed by sam-
pling the short basis polynomials f ,g from a Gaussian
distribution. Operations are over the polynomial ring Rq =
Zq[x]/⟨xN + 1⟩, a variant of the NTRU ring. For the pur-
poses of optimisation in the implementation, variables are
stored in NTT representation where appropriate. The Gram-
Schmidt norm of the associated basis is computed to ensure
smallness allowing for short private keys to be delegated to
the next level. If not, the polynomials are re-sampled. The
rest of the basis, polynomials F,G, are computed so that
they satisfy the NTRU equation, fG−gF = q mod xN+1.
This sub-algorithm is referred to as NTRUSolve, and its
implementation will be discussed in Sec. 5. The solution to
this is not unique, but any solution suffices provided it is
short enough. This is taken care of by reduction of the coef-
ficients. The public key consists of polynomial h = g · f−1.
The master public basis B0 and private basis S0 at level 0
are implicit in the polynomial master keys, as follows:

B0 =

[
−A(h) IN
qIN 0N

]
, S0 =

[
g −f
G −F

]
.

The Delegate process, given in Figure 1, creates a pub-
lic/secret key pair for the next level in the tree, allowing it to
become a sub-key management service (sub-KMS). Suppose
the KMS wishes to delegate a key from level ℓ− 1 to level
ℓ. Then it can extend the public basis of the user at level ℓ,
denoted by Bℓ by placing Aℓ = H(ID1| . . . |IDℓ), where H
is a hash function, to the beginning of the first column and
filling the extra row with IN and 0N , as shown below. The
dimension of the new matrix becomes (ℓ+2)N × (ℓ+2)N .
The corresponding private basis, Sℓ, can then be generated.
The ith row (si,0, si,1, . . . , si,ℓ+1) of the private basis is a
short solution to the equation:

si,0 + si,1 · h+ si,2 ·A1 + · · ·+ si,ℓ+1 ·Aℓ = 0 mod q.

This can be found by sampling short vectors (using the
Klein-GPV sampler [18] or its variant from FALCON [15])
from the (ℓ−1)-level lattice using its secret basis, with centre
vector (−si,ℓ+1 ·Aℓ,0, . . . ,0), where si,ℓ+1 is sampled from
a discrete Gaussian distribution Dσℓ

over R. A check is
made to ensure the GS-norm of the sampled lattice vector
is within the bound σℓ ·

√
(ℓ+ 2)N to ensure the delegated

basis will be of sufficient quality.
The remainder of the Delegate algorithm, in which the

bottom row (sℓ+1,0, sℓ+1,1, . . . , sℓ+1,ℓ+1) is generated, is a
higher-dimensional analogue of LATTE KeyGen. The result-
ing matrix has a determinant of size q. The final row is
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then reduced similarly to the KeyGen component to ensure
the basis is of the required quality for further delegation.
Cramer’s rule is utilised here to find the reduction coeffi-
cients. Generalising to level ℓ, the public basis Bℓ and the
private basis Sℓ, respectively become:

Bℓ =


−A(Aℓ) 0N . . . IN

...
...

. . .
...

−A(h) IN . . . 0N

qIN 0N . . . 0N

 ,

and Sℓ = [si,j ], 0 ≤ i, j ≤ ℓ+ 1.
In the LATTE Extract algorithm (Figure 4 in Ap-

pendix A), the user private key is a short solution
(t0, t1, . . . , tℓ) to:

t0 + t1 · h+ t2 ·A1 + · · ·+ tℓ ·Aℓ−1 = Aℓ mod q, (4)

where Ai = H(ID1| . . . |IDi) for 1 ≤ i ≤ ℓ. This is found
using the Klein-GPV style sampler over the short basis
from the previous level. An extended version of traditional
R-LWE encryption/decryption [38] is used for ciphering
messages as given in Figure 5 and 6 in Appendix A,
respectively. A random seed is sampled and used together
with a Key Derivation Function (KDF) to one-time-pad the
message. The seed is encoded2 and then encrypted using
Ring-LWE and sent. The ciphertext consists of the encrypted
message Z and deterministically sampled ephemeral public
keys C1, . . . ,Cℓ,Ch. This is a variant of the FO trans-
form [33] to protect against invalid ciphertexts. The Decrypt
process takes the user’s private key to decrypt the seed
and reconstruct the message. Using definitions of Ch,Ci,
1 ≤ i ≤ ℓ and (4), we have

V = eℓ +m− t1 · eh − t2 · e1 − · · · − tℓ · eℓ−1 + t0 · e.

By construction, the error and private key terms are small
enough so that m is decoded successfully to recover the
seed. From the seed, the message is straightforwardly re-
covered from Z, which is sent as part of the ciphertext.

4. Security Analysis

A recurring concern around LBC is the precision re-
quirements of the implementation, in particular, of the dis-
crete Gaussian sampler. As noted in [39], the precision used
is often excessive, leading to slow and impractical imple-
mentations. Traditional measures of statistical distance have
recently been substituted for RD or Kullback-Leibler (KL)
divergence to reduce memory and computational resources
whilst maintaining security. In this Section, we make use
of the RD argument initially proposed in [14] to answer
the question of how low we can allow the precision of
our implementation to be, without allowing an adversary
to detect any distinction between the actual distribution and
the ideal distribution of a true Gaussian sample over the
lattice, hence maintaining our claimed security levels. In
particular, we analyze the security impact on LATTE of finite

2The Encode/Decode are the same as described in [13].

Input: N, q, σℓ,Sℓ−1, H : {0, 1}∗ → Rq, IDℓ.
Output: Sℓ ∈ R(ℓ+2)×(ℓ+2)

q .
1: function Delegate
2: Aℓ ← H(ID1| . . . |IDℓ) in NTT domain.
3: Tℓ−1 ← ffLDL(FFT(Sℓ−1 · S∗ℓ−1)).
4: For each leaf of Tℓ−1, leaf.value ←

σℓ/
√

leaf.value.
5: seed←$ {0, 1}256.
6: for i ∈ {0, . . . , ℓ} do
7: si,ℓ+1 ← DN

σℓ
.

8: t← (−si,ℓ+1 ·Aℓ,0, . . . ,0) · S−1ℓ−1.
9: z← FFT−1(ffSampling(t, Tℓ−1, seed)).

10: (si,0, . . . , si,ℓ) ← ⌊z̄⌉, where z̄ ← (t −
z)Sℓ−1.

11: if ∥(si,0, . . . , si,ℓ+1)∥>
√

(ℓ+ 2)N ·σℓ then
12: Resample.
13: end if
14: end for
15: Set M = (si,j), for 0 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ+ 1.
16: if M is not invertible then
17: goto Step 4.
18: end if
19: u← adj(M) · (s0,0, s1,0, . . . , sℓ,0)T.
20: (Fℓ,Gℓ) ← NTRUSolveN,q(det(M),u0),

where u0 is the first coordinate of u.
21: if NTRUSolve is aborted then
22: goto Step 4.
23: end if
24: (sℓ+1,0, . . . , sℓ+1,ℓ+1)← (Gℓ,Fℓ,0, . . . ,0).
25: Set C = (ci,j), where ci,j = sj,0 · s∗i,0 + · · ·+

sj,ℓ+1 · s∗i,ℓ+1, 0 ≤ i, j ≤ ℓ.
26: Let k = (ki)0≤i≤ℓ be the solution to C ·k = d.

By Cramer’s rule, ki = det(Ci(d))
det(C) , where Ci(d)

is the matrix C with its ith column replaced by
di = sℓ+1,0 · s∗i,0 + · · ·+ sℓ+1,ℓ+1 · s∗i,ℓ+1.

27: for i ∈ {0, . . . , ℓ} do
28: (sℓ+1,0, . . . , sℓ+1,ℓ+1) =

(sℓ+1,0, . . . , sℓ+1,ℓ+1)− ⌊ki⌉ · (si,0, . . . , si,ℓ+1).
29: end for
30: return Sℓ = (si,j), for 0 ≤ i, j ≤ ℓ+ 1.
31: end function

Figure 1. The LATTE Delegate algorithm (from level ℓ− 1 to ℓ).

precision errors in the floating-point arithmetic and in the
Z-samplers used in our implementation of the Extract and
Delegate algorithm based on the ffSampling lattice Gaussian
algorithm. For this, we follow the following steps:

Step 1 - RD Security Reduction: We give a security
reduction (Sec. 4.1) based RD analysis to relate the security
of finite precision LATTE to the security of its ideal (infinite
precision) implementation, and bounds on the errors in the
centre and standard deviation parameters of Z Gaussian
samples used in lattice Gaussian ffSampling algorithm.
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Step 2 - RD Between Z-Gaussians with Errors in
Parameters: To support the above security reduction, we
give a tight Lemma (in Sec. 4.2) giving a bound on RD
between the output distribution of Z Gaussian samplers
with errors in the centre and standard deviation parameters,
extending the sharp RD results of [14].

Step 3 - Statistical Model for ffSampling Precision
Errors: For use with the above security reduction, we
introduce and empirically verify (in Sec. 4.3) a heuristic
statistical model to compute upper bounds on the finite pre-
cision errors in the lattice Gaussian ffSampling algorithm.
We give empirical evidence for the validity of our model, use
it to compute estimated error bounds for LATTE parameter
sets, and apply these with the above security reductions to
evaluate the security impact of precision errors on LATTE.

4.1. RD Security Reduction

The security reduction to establish the (full chosen iden-
tity) indistinguishability against chosen-ciphertext attack
security (ID-IND-CCA) of the IDEAL (infinite precision)
LATTE HIBE encryption scheme is summarised in Annex
C of the LATTE specification [13] and proceeds in two steps.
Here, we show how to obtain a security reduction that takes
into account and quantifies the security impact of the REAL
(finite precision) implementation of LATTE. To do so, we
introduce an additional middle step (step 2 below) in the
security reduction steps for LATTE, and so we end up with
the following three security reduction steps:

Step 1 - FO Transform: This generic reduction trans-
forms any ID-IND-CCA attack (chosen ID indistinguisha-
bility against chosen ciphertext attacks) against REAL (fi-
nite precision) LATTE to an ID-OW-CPA (chosen ID one-
wayness against chosen plaintext attacks) of REAL (finite
precision) LATTE′, assuming the random oracle model for
the LATTE KDF hash function. Here, LATTE′ denotes the
ID-OW-CPA encryption scheme underlying LATTE: the en-
cryption/decryption algorithms of LATTE can be obtained
by applying the tag-based Fujisaki-Okamoto KEM-DEM
transform of [40] to the LATTE′ scheme. As pointed out in
Annex C of [13], this reduction step follows directly from
an (ID-based variant) of the composition of Theorem 3.1
and Theorem D.1 in [40].

Step 2 - RD - REAL to IDEAL: This presented re-
duction (in Lemma 4.1 below) transforms any ID-OW-CPA
attack against REAL (finite precision) LATTE′ to an ID-
OW-CPA attack against IDEAL (infinite precision) LATTE′,
by using RD analysis techniques [14], [26]. For the latter
RD reduction to apply, we exploit the fact that the one-
wayness notion ID-OW-CPA is a search problem rather than
a decision problem.

Step 3 - ID-OW-CPA to NTRU/RLWE: This reduction
transforms any attack against IDEAL LATTE′ ID-OW-CPA
security into attacks against the NTRU or RLWE problems,
assuming the random oracle model for the ID hash function
H . As pointed out in Annex C of [13], this reduction is a
variant of the Bonsai tree reduction presented in Theorem

5.2 of [41], with a minor modification for our improved
LATTE construction (see Sec. 4.4 for more details).

The following result fills the missing Step 2 above
(where we apply Lemma 4.1 with the ID-OW-CPA attack
game and the event E being the winning of this game
by the adversary), and quantifies the security impact of
finite precision in the discrete integer Gaussian samplers
and the floating point arithmetic used in the FFT lattice
Gaussian sampler used within the LATTE′ Delegate algo-
rithm (Figure 1 in Sec. 3.2) and Extract algorithm (Figure 4
in Appendix A). The latter security impact is expressed as
a function of upper bounds δUσi and ∆U

ti on the relative
(resp. absolute) finite precision errors in the integer discrete
Gaussian standard deviation parameters σ(i) (resp. Gaussian
centre parameters t(i)) used inside the Delegate and Extract
algorithms, and an upper bound ∆U

z on the absolute error
in the final output value of the FFT sampling algorithm.
We also allow for a negligible probability pU (over the
randomness of the key generation and discrete Gaussian
samplers) that the above error upper bounds fail to hold. The
next subsection explains our statistical model and results for
estimating the latter error upper bounds and the probability
pU for the chosen implementation finite precision.

Consider an attack game REAL against LATTE′ with
depth parameter d where the attack algorithm A is run on
input a LATTE′ master public key h (where (S0, h) ←
KeyGen(N, q, σ0)), makes at most QD total number of
queries to the Delegate algorithm (Figure 1 in Sec. 3.2)
and QE queries to the Extract algorithm (Figure 4 in Ap-
pendix A) implemented with:
• A finite precision pD 1-dimensional Discrete Gaussian
Z-sampling algorithm in Lines 4–5 of Figure 7 in Ap-
pendix A outputting samples from a distribution D̄σ,t

within RD of order a at most B from the ideal Discrete
Gaussian distribution Dσ,t i.e. Ra(D̄σ,t,Dσ,t) ≤ B.

• A finite precision pfp floating-point arithmetic for Fig-
ure 1 in Sec. 3.2, Figure 4 in Appendix A, and Lines
11–14 of Figure 7 in Appendix A.

Let IDEAL denote the attack game against the ideal imple-
mentation of LATTE’ where both pD and pfp are infinite
precision. Let (t(i), σ(i)) denote the center and std dev.
parameter (resp.) for the i’th query to the 1-dim. Z Gaussian
sampler (i.e. at Line 2 of Figure 3 in Appendix A, Line 4
or 5 of Figure 7 in Appendix A, or Line 7 of Figure 1 in
Sec. 3.2) in the game IDEAL, and let z̄(j) denote the value
of z̄ in the output of the j’th query to FFT−1(ffSampling)
in the game (i.e. at Line 9 of Figure 1 in Sec. 3.2 or Line
7 of Figure 4 in Appendix A). Suppose that, except for an
event BU , the absolute errors ∆t(i) in centers t(i) relative to
σ(i) (i.e. ∆t(i)/σ

(i)) are upper bounded by ∆′U
t(i)

and relative
errors δσ(i) in standard deviations σ(i) are upper bounded
by δU

σ(i) for all 1 ≤ i ≤MZ, and the infinity-norm absolute
errors ∆z̄(j) in z̄(j) is upper bounded by ∆U

z̄ < 1/2 for all
1 ≤ j ≤Mf . The above errors are computed with respect to
the same game with finite precision floating-point arithmetic.
Here, MZ ≤ K · (QE + (d+ 1) ·QD) + 2 denotes the total
number of queries to the 1-dim. Z Gaussian sampler in the
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TABLE 1. LATTE SECURITY IMPACT OF FINITE PRECISION BASED ON EMPIRICAL ERROR ESTIMATION RESULTS FROM OUR STATISTICAL MODEL.

ℓ = 1 ℓ = 2

Set pfp pD lnCK ∆U
z̄ QC

max QC
U QB

max lnCK ∆U
z̄ QC

max QC
U QB

max

LATTE-1 53 48 2−46 2−23 246 239 274 - - - - -
LATTE-2 53 48 2−42 2−21 242 233 272 - - - - -
LATTE-3 113 96 2−156 2−71 2156 2149 2171 2−95 2−35 295 288 275

LATTE-4 113 96 2−149 2−68 2149 2142 2169 2−85 2−30 285 277 266

game, K denotes the number of Z sampler calls of each call
of Figure 7 in Appendix A, and Mf ≤ QE + (d+ 1) ·QD

denotes the number of calls of Figure 7 in the game.

Lemma 4.1. Let MZ be as above. Let also τ, ϵ > 0, QM :=
exp(τ2/2)/(2MZ) and σ(i) ≥ ηε(Z) for 1 ≤ i ≤ MZ. Let
pU denote the probability of event BU in game IDEAL. Let
E denote any event defined over the view of A, BT := BMZ ,
CT :=

∏
i<MZ

C(i), where C(i) is given by the right hand
side of (6) in Lemma 4.2 with δσ := δU

σ(i) , ∆′t := ∆′U
t(i)

for
1 ≤ i ≤MZ. Then,

Pr[EIDEAL] ≥
1

CT
·
(
Pr[EREAL]

a/(a−1)

BT
− η

)a/(a−1)

− pU ,

where η := CT (pU + 1/QM )(a−1)/a.

4.2. RD between Z-Gaussians with errors

This step builds upon unpublished work by Prest [42].
We will consider the following Gaussians:
• D1 is an ideal Gaussian of standard deviation σ and

center t.
• D2 is a Gaussian of standard deviation σ and center t,

restricted to the interval I = [t− τ · σ, t+ τ · σ].
• D3 is a Gaussian of standard deviation σ̄ and center t̄,

restricted to the interval I .
Now, we present Lemma 4.2 showing for adequate values
of τ, |t̄−t|/σ, | σ̄σ−1|, D1 and D3 are close in the RD sense.
The proof appears in Appendix C.

Lemma 4.2. Consider D1, D2, D3, τ as defined above. Sup-
pose that there exist δσ, ε, δ,Q > 0 such that:

1) max(δσ, ε) ≤ δ = o(1);
2) |t̄− t|/σ ≤ ∆′t (bounded absolute error);
3) | σ̄σ − 1| = δσ (bounded relative error);
4) σ ≥ ηε(Z);
5) Q ≤ exp(σ2τ2/2)(2π

√
στ(1− ε)σ);

6) num(a, b, c) := |a2 + 2a
√
2πb

1−b + (2c + c2)(1 +
2πb
1−b )|/2(1− c2);

7) ub := 2/Q+ num(∆′t, ε, δσ) +
1

1−δσ · (τ∆
′
t + τ2δσ).

Then the RDs of D3 and D2 (resp. D1) is:

Ra(D3;D2) ≲ 1 +
a · ub2

2
. (5)

Ra(D3;D1) ≲ 1 +
1

Q
+

a · ub2

2
. (6)

TABLE 2. EMPIRICAL RESULTS OF ACTUAL ARITHMETIC ERRORS.

ℓ = 1 ℓ = 2

Set pfp lnCK ∆U
z̄ lnCK ∆U

z̄

LATTE-1 53 2−46 2−22 - -
LATTE-2 53 2−40 2−20 - -
LATTE-3 113 2−155 2−70 2−94 2−34

LATTE-4 113 2−148 2−67 2−84 2−29

4.3. Statistical Model for ffSampling Precision

In this Section, we present a statistical model to estimate
bounds for floating point arithmetic errors in LATTE ffSam-
pling algorithm using our chosen implementation floating
point precision for the LATTE parameter sets, and we use
those bounds to analyse the security impact of those errors
on our LATTE implementation by applying Lemma 4.1.

Our statistical model makes the heuristic but natural
assumption that the floating point error introduced in each
arithmetic operation in the ffSampling algorithm can be
modelled as an independent zero-centered continuous Gaus-
sian random variable, and the model estimates the maximum
standard deviations δσ,∆

′
t,∆z̄ of the errors δσ(i) , ∆′

t(i)
,

∆z̄(j) over all Z-sampler query indices 1 ≤ i ≤ MZ and
ffSampler query indices 1 ≤ j ≤ Mf in the IDEAL game
of Lemma 4.1 by propagating the standard deviations of
the independent errors through the ffSampling algorithm
arithmetic steps, assuming uniformly random input matri-
ces Ai ∈ Rq at the input to the Extract and Delegate
algorithms. We explain at the end of this Section how
we apply the standard deviations in the Z sampler queries
to derive the security impact of floating point errors on
LATTE. We remark that the use of the random oracles H
and G to hash the attacker’s choice of identities queried
to Extract or Delegate algorithms to derive the ffSampling
input ring elements Ai uniformly at random in Rq and seed
for Extract uniformly random supports our statistical (rather
than adversarial) model of floating point errors since the
attacker cannot control the randomness of H and G and the
Delegate, Extract and Key Generation algorithms. A similar
heuristic statistical model is commonly used in the context
of evaluating the propagation of LWE errors via a circuit
computed homomorphically with Fully Homomorphic En-
cryption schemes [43].

We now present the details of our statistical model for
estimating the standard deviations of errors, i.e. δσ, ∆′t,
and ∆z̄. For a complex number a = µR + iµI , with
µR, µI ∈ R, let us denote the absolute error of the real
part µR as σR and the absolute error of the imaginary part
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µI as σI , respectively. We assume the real and imaginary
parts of every complex number in our statistical model are
independent Gaussian variables, e.g. for complex number
a = µR + iµI , Re(a) follows the normal Gaussian distribu-
tion N (µR, σ

2
R) and Im(a) follows the normal distribution

N (µI , σ
2
I ), respectively, no matter whether Re(a), Im(a)

are linear combinations of one or more independent normal
variables. Therefore, we use the tuple (µR, σ

2
R, µI , σ

2
I ) to

represent a complex number with errors.

Definition 4.1 (AddB, SubB, and MultB). For
independent a = (µa,R, σ

2
a,R, µa,I , σ

2
a,I) and

b = (µb,R, σ
2
b,R, µb,I , σ

2
b,I), let us define AddB(a, b)

as (µa,R + µb,R, σ
2
a,R + σ2

b,R, µa,I + µb,I , σ
2
a,I + σ2

b,I),
SubB(a, b) as (µa,R − µb,R, σ

2
a,R + σ2

b,R, µa,I −
µb,I , σ

2
a,I + σ2

b,I), and MultB(a, b) as: (µa,Rµb,R −
µa,Iµb,I , µ

2
a,Rσ

2
b,R + µ2

b,Rσ
2
a,R + σ2

a,Rσ
2
b,R + µ2

a,Iσ
2
b,I +

µ2
b,Iσ

2
a,I + σ2

a,Iσ
2
b,I , µa,Rµb,I + µa,Iµb,R, µ

2
a,Rσ

2
b,I +

µ2
b,Iσ

2
a,R+σ2

a,Rσ
2
b,I + µ2

a,Iσ
2
b,R + µ2

b,Rσ
2
a,I + σ2

a,Iσ
2
b,R).

Definition 4.2 (DivB [44]). Let a = (µa,R, σ
2
a,R, µa,I , σ

2
a,I)

and b = (µb,R, σ
2
b,R, 0, 0). Assuming Re(a),

Im(a), and b are independent normal variables
such that

√
σ2
a,R/µ

2
a,R + σ2

b,R/µ
2
b,R < 1 and√

σ2
a,I/µ

2
a,I + σ2

b,R/µ
2
b,R < 1, we define DivB(a, b)

as:
(
µa,R

µb,R
,
µ2
a,R

µ2
b,R

(
σ2
a,R

µ2
a,R

+
σ2
b,R

µ2
b,R

)
,
µa,I

µb,R
,
µ2
a,I

µ2
b,R

(
σ2
a,I

µ2
a,I

+
σ2
b,R

µ2
b,R

))
.

Definition 4.3 (AbsSqrB). For a = (µa,R, σ
2
a,R, µa,I , σ

2
a,I),

assuming Re(a) and Im(a) are independent
normal variables, let us define AbsSqrB(a) as
AddB((Re(a))2, (Im(a))2).

We can use the above absolute arithmetic error bound
approximations to rewrite our optimised ffLDL in Figure 2
in Sec. 5.2 and ffSampling in Figure 7 in Appendix A, in
order to estimate δσ and ∆′t, respectively. For δσ, we first use
the ffLDLB algorithm in Appendix J to estimate the absolute
errors of the leaf values (real numbers) in ffLDL tree T for
a given Gram matrix G, i.e. the standard deviation σleaf,R.
Since σ for the 1-D integer Gaussian sampler is computed by
σℓ/
√
µleaf,R during tree normalisation, assuming the relative

error of the floating-point arithmetic is u, we have the
following arithmetic error bound:

δσ ≤ max
all leaves

 (1 + u) (1+u)σℓ

(1−u)
√

µleaf,R−σleaf,R

σℓ√
µleaf,R

− 1


=

(1 + u)2

1− u

√
max

all leaves

µleaf,R

µleaf,R − σleaf,R
− 1.

Similarly, we can use ffSamplingB algorithm in Ap-
pendix J to output ∆′t for a given vector t and ffLDL
tree T . In addition, we can compute the rounding errors
∆z̄ i.e. Line 10 in Figure 1 in Sec. 3.2 and Line 8 in
Figure 4 in Appendix A, by combining the FFT/FFT−1

errors of the input and the errors σz,R, σz,I of z computed
by ffSamplingB. We also use a similar statistical modelling

approach to estimate the errors of FFT/FFT−1 for a given
vector a.

Let CK :=
∏

i<K C(i), where K,C(i) are defined in
Lemma 4.1. Here we show the empirical results of lnCK

and the error ∆z̄ estimated by our statistical model. For the
target floating-point precisions used by our implementation
of the LATTE scheme (see Sec. 6 for the rationale behind the
chosen precision), we compute the errors for 100 random
(S, t) pairs, where S is the basis and t is the input of
the ffSampling in Figure 7 in Appendix A. The lnCK and
∆U

z̄ among these 100 iterations are shown in Table 1. To
provide empirical evidence for supporting the accuracy of
our statistical model, for the same 100 pairs of (S, t), we
also give the actual arithmetic errors between the values
computed by using a very high precision (1024 bits) and the
values computed by using the target precisions. The actual
arithmetic errors computed by this approach are shown
in Table 2. By comparing the results in Table 1 and 2,
the difference between the actual arithmetic errors and the
estimated errors from our statistical model is at most 2 bits
in this empirical experiment. We will leave modelling the
distributions of (S, t) to make our statistical model fully
deterministic as future works.

Security Impact of Finite Precision Errors: In order
to use the results in Table 1 with Lemma 4.1 to derive the
security impact of floating point errors, we first derive corre-
sponding upper bounds δU

σ(i) := τU ·δσ(i) , ∆′Ut(i) := τU ·∆′t(i) ,
and ∆z̄ := τU · ∆U

z̄ on the absolute value of the er-
rors, where τU is chosen so that each individual Gaussian
error’s absolute value exceeds its bound with probability
≤ 2−λ, which by the standard Gaussian tail bound is
satisfied by setting 2 exp(−τ2/2) ≤ 2−λ. Therefore by
a union bound, all bounds hold except with a negligible
probability pU ≤ (2MZ + Mf )2

−λ, with λ denoting the
target security level. Applying Lemma 4.1 with a := 2λ
we conclude using a/(a − 1) ≈ 1 and pU is negligible,
that Pr[E]IDEAL ≈ 1

BTCT
Pr[E]REAL so that finite preci-

sion causes a bit security loss L ≈ log2(BT ) + log2(CT )
bits. We use the above floating point arithmetic upper
bounds to compute an estimate for the maximum num-
ber of the delegate/extract queries QC

max (resp. QB
max) that

ensures log2(CT ) ≤ 1 (resp. log2(BT ) ≤ 1) so that if
max(QD, QE) ≤ min(QC

max, Q
B
max), then L ≤ 2 bits of

security are lost overall for our finite arithmetic precision
pfp LATTE implementation versus the infinite precision
implementation. To compute BT ≤ BMZ , we use the RD
bound B on the COSAC Z sampler RD from the ideal
Z sampler distribution derived in [21] corresponding to
the COSAC sampler precision pD used in our COSAC
implementation (see Sec. 5.4 for the discussions). The fi-
nite precision security impact results are summarised in
Table 1. Note that in Table 1, QC

max is computed using
the max. error values δσ(i) and ∆′U

t(i)
estimated by our

statistical model over 100 runs with random (S, t) input
pairs, whereas QC

U is a more conservative estimate using
tail bounds δU

σ(i) := τU · δσ(i) and ∆′U
t(i)

:= τU ·∆′t(i) on the
statistical model error estimates. We conjecture the former
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estimates are more accurate, although our existing security
proof in Lemma 4.1 only implies the latter estimates.

The results show that for LATTE-1 and LATTE-2, 242

Extract and/or Delegate queries can be supported with at
most 2 bits of security loss with our 53-bit double-precision
floating-point precision implementation. This should suffice
for most practical applications. For LATTE-3 and LATTE-4,
the main bottleneck in precision is the ∆z̄ bound, but the
results indicate that even reducing the precision by about 25
bits from our chosen 113-bit arithmetic precision to ≈ 90
bits precision would suffice for security.

Similarly, we apply our statistical model on the Python
implementation of FALCON3 and compute the numerical
results of QC

max based on the empirical results of lnCK .
We use the Decimal fixed-point number type in Python
with 1000 decimal digits and perform the experiment by
using the same seeds as in the Known Answer Tests (KATs).
We get QC

max = 260 for FALCON-512 and QC
max = 256

for FALCON-1024, respectively. We also compute QC
max by

using the upper bounds of δσ,∆′t for the whole ffLDL tree
from our statistical model (similar to the approach in the
FALCON specification [15], which uses the empirical error
upper bounds of δσ,∆t for the whole ffLDL tree)4, and
get QC

max = 257 for FALCON-512 and QC
max = 253 for

FALCON-1024, respectively. The results indicate that our
error analysis by using the error upper bounds for each leaf
instead of the whole ffLDL tree has a 3-bit improvement
over the approach in [15]. Although our results are lower
than the claimed number of queries Qs = 264 in the
FALCON specification [15], the empirical error upper bound
δσ +∆t ≤ 2−40 given in the specification does not satisfy
the required upper bound δσ+∆t ≤ 2−46 from the authors’
analysis for 264 queries, and the specification did not discuss
the impact of such larger errors on Qs in detail. In addition,
polynomials are converted between the original domain and
the FFT domain in every polynomial arithmetic operation
when computing the Gram matrix G in the FALCON Python
implementation, instead of only doing the conversions at the
beginning/end of the G computation. These redundant FFTs
will also increase the errors of G and thus increase the errors
in the ffLDL tree.

4.4. ID-OW-CPA security of Improved LATTE

Recall from Sec. 3 that our improved LATTE scheme
achieves improved efficiency and shorter decryption keys
output by the Extract algorithm relative to the original
LATTE scheme. This change to Extract necessitates a dif-
ferent strategy for simulating the Extract oracle at level ℓ in
the ID-OW-CPA security proof (step 3 in the overview of
Sec. 4.1), compared with the strategy outlined in [13] based
on Theorem 5.2 in [41]. In particular, the Extract oracle
simulation at level ℓ must simulate the decryption key t at
that level without knowing the delegation secret key Sℓ−1 at

3https://github.com/tprest/falcon.py
4The computed statistical model results are close to the empirical

errors, see Table 1 and 2.

level ℓ−1. In the original LATTE using (2), this can be done
by programming Aℓ = H(ID1| . . . |IDℓ) to be a matrix with
an embedded NTRU trapdoor and using the basis extension
method used in the Delegate oracle and its simulation at
level ℓ. But with our improved LATTE Extraction using (3),
we cannot use a trapdoor for A′ℓ to simulate multiple such
decryption key vectors t; indeed, if this were possible then
subtracting two such distinct short vectors would reveal a
short vector s in the (secret) level ℓ− 1 delegation module
lattice s : s0 + s1h+ · · ·+ tℓAℓ−1 = 0.

Instead, our Extract simulator generates a single such
short vector t using the GPV signature simulation strat-
egy [18], i.e. programming A′ℓ = HE(ID1| . . . |IDℓ) :=
t0 + t1h + · · · + tℓAℓ−1 for short discrete Gaussian ti’s
sampled by the Extract simulator. To avoid a contradiction
with the different programming strategy for Aℓ, our modi-
fied LATTE uses a different hash function HE modelled as a
random oracle (obtained from the random oracle H by using
the prefix "E") for computing A′ℓ used in Extract so that
H and HE can be programmed independently. Also, since
our programming strategy for A′ℓ = HE(ID1| . . . |IDℓ) only
works for a single decryption key t, we must make Extract
deterministic so that it returns the same secret key t again
if queried again at the same ID1| . . . |IDℓ; this is the purpose
of the hash function G used to derive the randomness seed
for Extract deterministically from ID1| . . . |IDℓ.

5. Implementation Techniques

We now discuss the implementation techniques used
in our optimised LATTE scheme. First, we summarise the
difference of parameters compared to [13] and discuss the
security impact in Sec. 5.1. Then, we present our faster
novel ffLDL variant for (Mod)NTRU basis in Sec. 5.2.
Then, we discuss the techniques adapted from FALCON [15]
and MODFALCON [17] in Sec. 5.3. Finally, we discuss the
integer discrete Gaussian sampling techniques in Sec. 5.4,
including the adaption of FACCT [19] and COSAC [20],
[21] samplers in our LATTE implementation.

5.1. Summary of Differences to ETSI Report

There are three main differences: (1) We find that the
discrete Gaussian statistical parameter ε = 2−22.5/(ℓ+1)N
used by σℓ in [13] was miscalculated. The KL-divergence
between the sampled distribution and the ideal discrete
Gaussian distribution is bounded by approximately 8((ℓ +
1)N)2ε2. Choosing ε = 2−25.5/(ℓ+1)N ensures the diver-
gence is at most 2−48, as specified by the proposed LATTE
specification [13]. If the sampled distribution has a KL-
divergence of 2−48 from the ideal distribution, then using
the sampler at most 247 times will only reduce the security
of the scheme by up to one-bit [45]. However, in [13], the
ε = 2−22.5/(ℓ+1)N would only ensure the KL-divergence
is at most 2−42. (2) To accommodate the use of the FACCT
sampler in KeyGen, as described in Sec. 5, we modify the
value of σ0, as displayed in Table 3. This also has an effect
on the subsequent σℓ, and therefore the difficulty of the
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TABLE 3. LATTE σℓ AND DECRYPTION FAIL. PROB.

Set σℓ Fail. Prob.
ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2

LATTE-1 106.2 5513.3 - 2−191 -
LATTE-2 106.2 7900.2 - 2−380 -
LATTE-3 6777.6 351968.4 22559988.0 2− inf 2−126

LATTE-4 9583.7 713167. 64997288.2 2− inf 2−246

underlying lattice problems and success of each attack. (3)
As our redesign of LATTE discards the polynomial b in the
master public key and reduces the module dimension of the
user private key, as described in Section 3.1, we update the
attack costings accordingly in Appendix I. First, it reduces
the decryption failure rate, as there is one less error term.
The best user key recovery attack reduces to CVP in the
master lattice, so the attack is on the same lattice, but it
demands a marginally shorter vector to be successful.

5.2. Improved ffLDL Algorithm for NTRU Basis

We observe the following theorem, which can be adapted
to accelerate the computation of the ffLDL algorithm from
FALCON [15], for the Fast Fourier LDL∗ decomposition of
the (Mod)NTRU basis Sℓ in LATTE:

Theorem 5.1. Let Sℓ be a (Mod)NTRU basis. In ffLDL tree
of the matrix G = SℓS

∗
ℓ ∈ (C[x]/⟨xN + 1⟩)d×d in FFT

domain, we get:
1) Di,i ∈ Rn for some n = 2k ≤ N in every node of the

tree, 0 ≤ i ≤ d− 1.
2)

∏d−1
i=0 (Di,i)j = q2 in the root of tree, 0 ≤ j ≤ N − 1.

3) (D0,0)j(D1,1)j = D′2jD
′
2j+1 for some n = 2k ≤ N/2

in every non-root node of the tree, where D′ ∈
{Di,i}d−1i=0 is from its parent, 0 ≤ j ≤ n− 1.

4) (Di,i)j ∈ R+ for some n = 2k ≤ N in every node of
the tree, 0 ≤ i ≤ d− 1 and 0 ≤ j ≤ n− 1.

Proof: 1) From the original ffLDL algorithm in
FALCON [15], we have (D0,0)j = (G0,0)j and (D1,1)j =
(G1,1)j − |(L1,0)j |2(G0,0)j , 0 ≤ j ≤ n − 1, for some
input matrix G in the FFT domain in every node of
the tree. In addition, we have (Di,i)j = (Gi,i)j −∑

k<i(|(Li,k)j |2(Dk,k)j) at the root when d > 2. Therefore,
we have Di,i ∈ Rn assuming that Gi,i ∈ Rn for all
i ∈ {0, . . . , d − 1}. To show that latter assumption is true,
we observe that at the root we have the input G = SℓS

∗
ℓ in

the FFT domain, Gi,i ∈ RN for 0 ≤ i ≤ d − 1. Thus,
Di,i ∈ RN for 0 ≤ i ≤ d − 1 at the root. Assuming
Di,i ∈ Rn for 0 ≤ i ≤ d−1 at an non-leaf node, for its i-th
child, we have the ffLDL input G′0,0 = G′1,1 = d0, where
(d0)j =

1
2 [(Di,i)2j +(Di,i)2j+1] ∈ R for 0 ≤ j ≤ n/2− 1.

Thus, D′0,0,D
′
1,1 ∈ Rn/2 in this child and we can deduce

the conclusion by induction.
2) Since by definition of the LDL∗ decomposition [46],

L is a lower triangular matrix with 1 on its diagonal and D is
a diagonal matrix, we have det(D) =

∏d−1
i=0 Di,i = det(G).

Because G = SℓS
∗
ℓ at the root and the determinant of a

Input: Gram matrix G ∈ (C[x]/⟨xn + 1⟩)d×d in the
FFT domain. d ∈ {2, 3}. D′ ∈ (R+)2n.

Output: Tree T .
1: function ffLDL(G,D′)
2: if n = 1 then
3: T.value← G0,0.
4: else
5: L← Id,D← 0d.
6: for j = 0 to n− 1 do
7: (D0,0)j ← (G0,0)j .
8: (L1,0)j ← (G1,0)j

(D0,0)j
.

9: if d = 2 then
10: if n = N then
11: (D1,1)j ← q2

(D0,0)j
.

12: else
13: (D1,1)j ←

D′
2jD

′
2j+1

(D0,0)j
.

14: end if
15: else if d = 3 then
16: (D1,1)j ← (G1,1)j − |(G1,0)j |2

(D0,0)j
.

17: (D2,2)j ← q2

(D0,0)j(D1,1)j
.

18: (L2,0)j ← (G2,0)j
(D0,0)j

.

19: (L2,1)j ←
(G2,1)j−(G2,0)j(L1,0)

∗
j

(D1,1)j
.

20: end if
21: end for
22: T.value← L.
23: for i = 0 to d− 1 do
24: d0,d1 ← splitfft(Di,i).

25: G′ =

(
d0 d1

d∗1 d0

)
.

26: T.childi ← ffLDL(G′,Di,i).
27: end for
28: end if
29: return T .
30: end function

Figure 2. Optimised ffLDL algorithm for (Mod)NTRU basis in LATTE.

(Mod)NTRU basis Sℓ is q, we have
∏d−1

i=0 (Di,i)j = q2 in
the FFT domain at the root for 0 ≤ j ≤ N − 1.

3) For the i-th child of an non-leaf node, we have the

ffLDL input G′ =
(
d0 d1

d∗1 d0

)
for d0,d1 ← splitfft(Di,i),

0 ≤ i ≤ d − 1 (see [15] for the definition of splitfft).
By the definition of the LDL∗ decomposition, for this
child, we have D′0,0D

′
1,1 = det(G′) = d2

0 − d1d
∗
1. Thus,

in the FFT domain, we have: (D′0,0)j(D
′
1,1)j = (d0)

2
j −

|(d1)j |2 = (1/2·[(Di,i)2j+(Di,i)2j+1])
2−|1/2·[(Di,i)2j−

(Di,i)2j+1]ω
−bitrev(n/2+j)|2, for 0 ≤ j ≤ n/2 − 1.

Since (Di,i)2j , (Di,i)2j+1 ∈ R and |ω| = 1, we get
(D′0,0)j(D

′
1,1)j = (Di,i)2j(Di,i)2j+1.

4) The ffLDL algorithm computes the LDL∗ decom-
position in the FFT domain. Let Sℓ = L · S̃ℓ be the GSO
decomposition of Sℓ ∈ Rd×d where rows of S̃ℓ are pairwise
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TABLE 4. SUMMARY OF PERFORMANCE RESULTS (OP/S) AT 4.2GHZ.

Set Sec. N log2 q KeyGen ℓ = 1 ℓ = 2
Ext Enc Dec Del Ext Enc Dec

Orig. LATTE-1 [13] 128 1024 24 - - 2911 2987 - - - -
Our LATTE-1 9.4 1361.8 23061.4 18041.3 - - - -

Orig. LATTE-2 [13] 256 2048 25 - - 1335 1351 - - - -
Our LATTE-2 3.3 636.9 10690.7 8456.4 - - - -

Orig. LATTE-3 [13] 80 1024 36 - - 1892 1774 - - 1455 1474
Our LATTE-3 5.7 36.3 14331.1 12134.7 2.4 20.0 11429.8 9713.4

Orig. LATTE-4 [13] 160 2048 38 - - 709 668 - - 568 541
Our LATTE-4 1.7 17.1 6846.6 5785.6 0.8 9.4 5450.2 4642.1

DLP-0 [13] 80 512 22 14.7 873.2 8731.8 6202.9 - - - -
DLP-3 [13] 192 1024 22 4.9 454.1 2639.8 1621.6 - - - -

[47]
40 512 50 717.9 711.6 3589.7 3152.0 - - - -
80 1024 51 336.9 401.8 1615.4 1442.3 - - - -
195 2048 62 164.9 197.2 662.0 477.9 - - - -

[48] 96 1024 30 225.1 133.6 453.9 377.2 - - - -
126 1280 30 49.2 122.2 403.4 339.0 - - - -

orthogonal. For the input G = SℓS
∗
ℓ at the root, we have

G = LDL∗ where D = S̃ℓS̃
∗
ℓ [46]. Thus, in the FFT

domain, Di,i ∈ (R+)N at the root. Assuming Di,i ∈ (R+)n

for some i ∈ {0, . . . , d − 1} at an non-leaf node, for
the i-th child of this node, we have (D′0,0)j(D

′
1,1)j =

(Di,i)2j(Di,i)2j+1 ∈ R+ for 0 ≤ j ≤ n/2 − 1. Because
(D′0,0)j = (d0)j = 1

2 [(Di,i)2j + (Di,i)2j+1] ∈ R+ due

to the ffLDL input G′ =

(
d0 d1

d∗1 d0

)
where d0,d1 ←

splitfft(Di,i), we get D′0,0,D
′
1,1 ∈ (R+)n/2. Thus, we

deduce the conclusion by induction.
We can utilise Theorem 5.1 when computing D in

the ffLDL algorithm, see Figure 2, for the (Mod)NTRU
basis Sℓ in LATTE with d ∈ {2, 3}: Dd−1,d−1 at the root
can be computed by (Dd−1,d−1)j = q2/

∏d−2
i=0 (Di,i)j for

0 ≤ j ≤ N − 1. For all the non-root nodes, we can
directly compute D0,0,D1,1 by using (D0,0)j = (G0,0)j
and (D1,1)j = D′2jD

′
2j+1/(D0,0)j , 0 ≤ j ≤ n − 1, for

some D′ ∈ R2n, G0,0 = d′0 ∈ Rn from its parent. Since
for all 0 ≤ i ≤ d − 1, we have Di,i ∈ Rn in every
node of the tree, D can be computed solely by using the
real number arithmetic, i.e. without complex number arith-
metic. Because every complex number arithmetic computa-
tion contains multiple underlying floating-point arithmetic
operations, by replacing complex number arithmetic with
real number arithmetic when computing D, we reduce the
total amount of floating-point arithmetic operations. There-
fore, this optimisation technique will accelerate the run-time
speed of the ffLDL algorithm.

5.3. Techniques from FALCON and MODFALCON

Our LATTE utilises techniques from the signature
scheme FALCON [15]. The two schemes are closely related;
they are instantiated over the same type of lattice and share
key generation and sampling procedures. FALCON makes
use of the “tower of rings” structure to find a solution to
the NTRU equation fG−gF = q mod xN +1, for a given
f and g in the NTRUSolve sub-algorithm of KeyGen, and

in the lattice Gaussian sampling (ffSampling) component
of LATTE Delegate and Extract. The tower of rings ap-
proach utilises the fact that computations over polynomials
f ,g ∈ C[x]/⟨xN/2+1⟩ are equivalent to computations over
f(x2),g(x2) ∈ C[x]/⟨xN + 1⟩. When N = 2k, for some
k ∈ Z, this can be applied repeatedly so that computations
are performed over polynomials of degree 1. This is advan-
tageous in terms of both memory usage, and speed [16].

Furthermore, in LATTE Delegate, to complete the del-
egated basis Sℓ for lattice dimension larger than 2N ,
we adapt techniques from MODFALCON [17]. Let Sℓ =(

vT M
Gℓ F′

ℓ

)
be the delegated basis, where Gℓ = sℓ+1,0,

F′ℓ = (sℓ+1,1, . . . , sℓ+1,ℓ+1), v = (s0,0, s1,0, . . . , sℓ,0),
and M = (si,j) for 0 ≤ i ≤ ℓ and 1 ≤ j ≤
ℓ + 1. By Schur complement, if M is invertible, we
have: det(Sℓ) = det(Gℓ − F′ℓM

−1vT) det(M) = (Gℓ −
F′ℓM

−1vT) det(M) = Gℓ det(M) − F′ℓadj(M)vT. Since
one can choose (Gℓ,F

′
ℓ) such that det(Sℓ) = q when

filling the bottom row of Sℓ, we assume F′ℓ have the form
(Fℓ,0, . . . ,0). We have det(Sℓ) = det(M) ·Gℓ − Fℓ · u0

where u0 is the first coordinate of u = adj(M) · vT.
In order to fill the bottom row (sℓ+1,0, . . . , sℓ+1,ℓ+1) of
Sℓ, if M is invertible, we can use the same NTRUSolve
algorithm as in LATTE KeyGen to find Fℓ,Gℓ such that
det(M) ·Gℓ−Fℓ ·u0 = q, and resample when det(M) = 0.

However, since the NTRUSolve algorithm [16] per-
forms the length reduction based on the size of the co-
efficients in the input, the coefficient size of Fℓ,Gℓ will
be approximately the same as det(M),u0. Since M is an
(ℓ + 1) × (ℓ + 1) sub-matrix of Sℓ with coordinate sizes
being in the order of q among each element, the size of
coefficients of det(M), u0, Fℓ, and Gℓ is in the order of
qℓ+1. To make the infinity norm of Sℓ less than q, we employ
length reduction using Cramer’s rule.

5.4. Discrete Gaussian Sampling over Integers

In LATTE KeyGen, f ,g may need to be resampled mul-
tiple times due to the norm check and possible failure to find
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solutions to the NTRU equation. In order to sample 2N co-
ordinates efficiently from Dσ0

, we employ the FACCT sam-
pler [19], which is fast and compact even for larger σ0 used
in LATTE-3 and 4. However, since the FACCT sampler can
only sample with σ = k

√
1/(2 ln 2) where k is a positive

integer, we slightly increase σ0 ≈ 1.17
√

q/(2N) in LATTE

parameters by setting k = ⌈1.17
√

q/(2N)/
√

1/(2 ln 2)⌉.
Let Sℓ = L · S̃ℓ be the GSO decomposition of the

delegated basis Sℓ ∈ R(ℓ+2)×(ℓ+2), where L is a unit
lower triangular and rows s̃i of S̃ℓ are pairwise orthogonal.
We find that the Euclidean norm of the last GSO vector
s̃ℓ+1 is very small compared to s̃0, . . . , s̃ℓ. This is because
rows s0, . . . , sℓ of Sℓ are sampled with a large σℓ but
det(Sℓ ·S∗ℓ ) =

∏ℓ+1
i=0⟨s̃i, s̃i⟩ is constant and always equal to

q2 [17]. The experiment results in Fig.3 of [49] also verified
that ∥s̃ℓ+1∥ decreases significantly by increasing ∥s0∥ for
Sℓ ∈ R3×3. In this case, the ratio between the maximal and
minimal standard deviation σ′ used by the integer discrete
Gaussian sampling subroutine in ffSampling is very large
and the isochronous sampler [50] used by FALCON [15]
will be inefficient for our scheme, since the rejection rate
of [50] is proportional to max(σ′)/min(σ′). In order to
sample with σ′ in a broad range, we employ a variant [20]
of the COSAC sampler [21] instead, which is scalable to
large σ′ without sacrificing efficiency.

The precision analysis in Sec. 4.3 requires the bound
B on RD between a single sample from COSAC and an
ideal Gaussian Z sample. In [21] it is shown that B ≤
1 + 4σ2e2xλ, where ex denotes the absolute error of the
underlying Box-Muller continuous Gaussian sampler used
by the COSAC sampler and σ denotes the upper bound of
the integer Gaussian standard deviation σ.

When ℓ = 1, we have σ ≤ σmin · maxi ∥(S̃0)i∥
mini ∥(S̃0)i∥

, 0 ≤ i ≤
2N−1, for σ of the integer Gaussian in ffSampling [50]. We
have σmin = ηϵ(Z) and maxi ∥(S̃0)i∥ ≤ σ0

√
2N . By sym-

plecticity of S0 [50], we have mini ∥(S̃0)i∥ ≥ q/(σ0

√
2N).

Therefore, we get σ ≤ ηϵ(Z) · (σ0

√
2N)2/q. In order to

analyse the upper bound of σ when ℓ = 2, first we introduce
the following Lemmas with proofs in Appendix D.

Lemma 5.2. Every non-root, non-leaf node in a ffLDL tree
satisfies min2n−1k=0 D′k ≤ (Di,i)j ≤ max2n−1k=0 D′k, for some
D′ ∈ (R+)2n from its parent, 0 ≤ j ≤ n− 1, i ∈ {0, 1}.

From Lemma 5.2, if the ancestor of a non-root, non-leaf
node is the m-th child of the root, 0 ≤ m ≤ d − 1, then
(Di,i)j of this node has the minimal value minN−1k=0 (D′m,m)k
and the maximal value maxN−1k=0 (D′m,m)k, i ∈ {0, 1},
0 ≤ j ≤ n − 1, for D′m,m from the root, respectively.
The leaf value of an ffLDL tree is σ = σℓ/

√
(G0,0)0,

where (G0,0)0 = 1
2 (D

′
0+D′1) for some D′ from its parent.

Following a similar approach in the proof of Lemma 5.2, we
have: min{D′0,D′1} ≤ (G0,0)0 ≤ max{D′0,D′1}. There-
fore, similar to a non-root, non-leaf node, if the ancestor of
a leaf node is the m-th child of the root, then the leaf value
σ has the minimal value σℓ/

√
maxN−1k=0 (D′m,m)k and the

maximal value σℓ/
√

minN−1k=0 (D′m,m)k.

In order to analyse the minimal and maximal values of
D′m,m from the root, we introduce the following Lemma:

Lemma 5.3. For FFT domain Gram matrix G =
Sℓ−1S

∗
ℓ−1 ∈ (C[x]/⟨xN + 1⟩)(ℓ+1)×(ℓ+1), we have

|(Gi,i)j | ≤ σ2
ℓ−1N

2(ℓ+1)2, 0 ≤ i ≤ ℓ−1, 0 ≤ j ≤ N −1.

For the root of an ffLDL tree when ℓ = 2, we have
(D0,0)j = (G0,0)j ≤ 9σ2

1N
2 by Lemma 5.3. For (D1,1)j =

(G1,1)j− |(G1,0)j |2
(D0,0)j

, since (D0,0)j ∈ R+ from Theorem 5.1,
we have (D1,1)j ≤ (G1,1)j ≤ 9σ2

1N
2. By Theorem 5.1,

we have (D2,2)j = q2

(D0,0)j(D1,1)j
≥ q2

81σ4
1N

4 , by taking the
upper bound 9σ2

1N
2 of (D0,0)j , (D1,1)j . Thus, for the leaf

values σ, we have σ ≤ σ2/
√

q2/(81σ4
1N

4) = σ2 ·9σ2
1N

2/q.
We use double precision, i.e. 53-bit floating-point arith-

metic precision in the COSAC sampler for LATTE-1 and 2,
which provides ex ≤ 2−48 [21]. Since the run-time speed
of the underlying Box-Muller continuous Gaussian sampler
is critical for the speed of the COSAC sampler [21], for
the COSAC implementation in LATTE-3 and 4, we use
binary128, i.e. 113-bit floating-point arithmetic precision
and reduce the absolute precision of uniform sampling in
the underlying Box-Muller continuous Gaussian sampler to
96 bits. This will make ex less than approximately 2−96.

To accelerate the LATTE Encrypt and Decrypt speed, we
sample the ephemeral keys e, e1, . . . , eℓ, eh from a binomial
distribution with center 0 and small standard deviation σe =
2.0 instead of Dσe

used by [13]. Sampling from a binomial
distribution is much faster than sampling from Dσe

, and the
impact on security is negligible in the encryption [51].

6. Performance Results

The first published specification of LATTE [13] only
provided the Encrypt and Decrypt performance results, as
displayed in “Orig. LATTE” rows in Table 4, scaled and
converted into op/s at 4.2GHz. Here, we give the first full
performance results for our optimised variant of LATTE,
including KeyGen, Extract, and Delegate.

We adapt Plantard’s multiplication modular reduction
algorithm [52] with word size w = 32 bits for LATTE-1
and 2, and w = 64 bits for LATTE-3 and 4, respectively.
Since Plantard’s algorithm requires multiplication in 2w bits,
we use the 128-bit integer variable type __uint128 from
gcc to implement the modular reduction in LATTE-3 and 4.
We employ the gmp [53] library for multi-precision integer
arithmetic. For precisions of floating-point and complex
number arithmetic, we use 53 bits, i.e. double precision for
LATTE-1 and 2, and 113 bits i.e. binary128 for LATTE-3 and
4. We use the __float128 and __complex128 variable
types from gcc to implement the 113-bit floating-point and
complex number arithmetic for LATTE-3 and 4, respectively.
Although the error analysis in Sec. 4.3 indicates that the
arithmetic precisions for LATTE-3 and 4 can be further
reduced, however, the generic multi-precision floating-point
library such as MPFR [54] is not optimised for less than
1,000-bit precision in terms of the run-time speed [55].
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TABLE 5. SUMMARY OF KEY AND CIPHERTEXT SIZES (BYTES).

Set Sec. Master
Public Key

Master
Private Key

User
Private Key Ciphertext Delegated

Public Key
Delegated
Private Key

ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2
Orig. LATTE-1 [13] 128 6144 12288 9216 - 9248 - - -

Our LATTE-1 3072 12288 3072 - 6176 - - -
Orig. LATTE-2 [13] 256 12800 25600 19200 - 19232 - - -

Our LATTE-2 6400 25600 6400 - 12832 - - -
Orig. LATTE-3 [13] 80 9216 18432 13824 18432 13856 18464 9216 41472

Our LATTE-3 4608 18432 4608 9216 9248 13856 9216 41472
Orig. LATTE-4 [13] 160 19456 38912 29184 38912 29216 38944 19456 87552

Our LATTE-4 9728 38912 9728 19456 19488 29216 19456 87552

[47]
40 169600 6400 166400 - 169600 - - -
80 352512 13056 345984 - 352512 - - -
195 1031680 31744 1015808 - 1031680 - - -

[48] 96 126720 7680 122880 - 126720 - - -
126 772800 48000 153600 - 154560 - - -

We will leave using hand-optimised floating-point arithmetic
routines with lower precision as future works.

We use AES-256 CTR mode with hardware AES-NI in-
structions as the pseudorandom generator, and use SHAKE-
256 [56] as the KDF in LATTE Encrypt and Decrypt. The
performance results have been obtained from a desktop
machine with an Intel i7-7700K CPU at 4.2GHz, with both
hyper-threading and TurboBoost disabled. We use gcc 11.2.0
compiler with compiling options -O3 -march=native
enabled. Results are given as “Our LATTE” rows in Table 4.

As expected, the KeyGen, Extract, and Delegate pro-
cesses are the most time-consuming components of the
scheme, and this increases as security and therefore lattice
dimension increase. The trend down the hierarchical levels is
that the Extract, Encrypt, and Decrypt all become more time-
consuming as the hierarchical level increases. For Extract
in LATTE-3 and 4, this corresponds to about 45% decrease
in op/s from level 1 to level 2. On the other hand, for the
Encrypt and Decrypt, our implementation is 6.0x–9.7x faster
compared to the previous performance results from [13]. The
speedup might be due to: (1) We change the distribution
of the ephemeral keys from discrete Gaussian distribution
to the binomial distribution. (2) We only perform NTT for
the ephemeral keys and m during the Encrypt and Decrypt,
since other inputs are already in the NTT domain. (3) Since
we reduce the dimension of extracted user keys by 1, there
is also 1 less ephemeral key in Encrypt/Decrypt. Since the
run-time speed of Encrypt/Decrypt in our LATTE imple-
mentation is in the order of microseconds, these algorithms
should also be feasible on lightweight devices. In addition,
our optimised LATTE Delegate only takes about 0.4–1.3
seconds on a desktop machine at 4.2GHz, which is practical
and much faster than the estimated run-time (in the order
of minutes) for the Delegate in [13].

The key/ciphertext sizes are summarised in Table 5.
Since we reduce the dimension of extracted user keys by
1 in our improved LATTE scheme, we compare the key and
ciphertext sizes of “our LATTE” scheme with the original
LATTE [13] labelled as “Orig. LATTE”. From Table 5, our
improved LATTE scheme reduces the key/ciphertext sizes
by 25%–67% among all LATTE parameter sets.

Our current implementation is not constant-time since
the gmp multiprecision integer arithmetic library [53] and
the gcc run-time library for the binary128 floating-point
and complex number arithmetic are unlikely to be constant-
time [57]. We will leave the constant-time implementation
of our optimised LATTE scheme as future works.

6.1. Comparison to Other Lattice-based IBEs

Comparison to DLP IBE: Performance results of the
DLP IBE scheme from [13] (converted to op/s at 4.2GHz)
are given in Table 4. Since the decryption in the DLP IBE
did not include ciphertext validation, for a fair compari-
son with LATTE, we use the sum of DLP encryption and
decryption run-time to compute the op/s of decryption in
Table 4. We focus on the comparison between LATTE-1 and
DLP-3, since the sizes of parameters N and q are similar.
The KeyGen speed of our LATTE-1 implementation is 1.9x
faster than DLP-3, and the speed of our LATTE-1 Extract
implementation is about 3x faster than DLP-3 extraction.
This is mainly because we adapt the faster NTRUSolve and
lattice Gaussian sampling procedure from FALCON [15]. In
addition, the Encrypt/Decrypt speed is 8.7x–11.1x faster in
our implementation.

Comparison to IBEs on Standard Models: Perfor-
mance results and key/ciphertext sizes of the IBEs based
on standard models [47], [48] are given in Table 4 and 5,
respectively. Similar to the DLP IBE, the decryption run-
time in [47], [48] did not include ciphertext validation, so we
use the sum of encryption and decryption run-time as the de-
cryption performance results in Table 4. Additionally, since
the reported KeyGen run-time of [48] is the sum of KeyGen
and the pre-processing of the discrete Gaussian sampler, for
a fair comparison, we also use the sum of the KeyGen
and pre-processing run-time as the KeyGen performance
results of [47] in Table 4 and compare with the performance
results of our LATTE variant computing the ffLDL tree
during KeyGen in Table 7 in Appendix E. For the run-time
comparison, the Extract/Encrypt/Decrypt in our LATTE-1
are 4.5x/14.3x/12.5x faster than the 80-bit secure IBE [47],
14.8x/57.2x/53.2x faster than the 126-bit secure IBE on
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module lattice [48], and our LATTE-2 are 4.2x/16.1x/17.7x
faster than the 195-bit secure IBE [47], respectively. On
the other hand, the KeyGen in 80/126/195-bit secure IBEs
are 36.2x/5.3x/50.0x faster than LATTE-1/1/2 KeyGen, re-
spectively, due to the fast gadget trapdoor generation algo-
rithms [47], [48]. Note that the implementation in [47] uses 2
threads for parallelisation. For size comparison, the sizes of
master public key/master private key/user private key/cipher-
text in our LATTE-1 are 114.8x/1.1x/112.6x/57.1x smaller
than the 80-bit secure IBE [47], 251.6x/3.9x/50.0x/25.0x
smaller than the 126-bit secure IBE on module lattice [48],
and the sizes in our LATTE-2 are 161.2x/1.2x/158.7x/80.4x
smaller than the 195-bit secure IBE [47], respectively.
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Appendix A.
LATTE HIBE Scheme

We summarise the inputs/ouputs of the LATTE algo-
rithms in Table 6 and present the full pseudocode of LATTE
KeyGen, Extract, Encrypt, and Decrypt in Figure 3–6. Ad-
ditionally, the ffSampling algorithm from FALCON [15]
is presented in Figure 7. Readers may refer to the FAL-
CON specification [15] for other subroutines (NTRUSolve,
splitfft, mergefft, etc.) used by these algorithms.

Appendix B.
Proof of Lemma 4.1

Proof: Consider the ffSampling Figure 7 in Ap-
pendix A. We employ a sequence of games G0, . . . ,G5,
and track the probability of the events E and BU over those
games using an RD approach. Let Ei and BU,i denote the
events E and BU in game i for i = 0, . . . , 5. The games
REAL and IDEAL are defined in the Lemma statement. The
sequence of games is as follows:
• G0 : Game REAL.
• G1 : G0, but we change the 1-dimensional Z-sampler

from the finite precision sampler distribution D̄ to
infinite precision sampler distribution D.

• G2 : G1, but we abort the game if BU happens,
meaning either there exists i such that the errors ∆′

t(i)
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Input: N, q, σ0.
Output: S0 ∈ R2×2

q ,h ∈ Rq.
1: function KeyGen
2: f ,g← DN

σ0
.

3: ν ← max
(
∥g,−f∥,

∥∥∥( q·f∗
f ·f∗+g·g∗ ,

q·g∗

f ·f∗+g·g∗

)∥∥∥).

4: if ν > σ0 ·
√
2N then

5: goto Step 2.
6: end if
7: F,G← NTRUSolveN,q(f ,g).
8: if NTRUSolve is aborted then
9: goto Step 2.

10: end if
11: if f is not invertible on Rq then
12: goto Step 2.
13: end if
14: h← g · f−1 mod q in NTT domain.
15: return S0 =

(
g −f
G −F

)
,h.

16: end function

Figure 3. The LATTE KeyGen algorithm.

Input: N, q, σℓ,Sℓ−1, H : {0, 1}∗ → ZN
q , G :

{0, 1}∗ → {0, 1}256, IDℓ.
Output: t1, . . . , tℓ ∈ Rq.

1: function Extract
2: A′ℓ ← H("E"|ID1| . . . |IDℓ) in NTT domain.
3: seed← G(ID1| . . . |IDℓ).
4: Tℓ−1 ← ffLDL(FFT(Sℓ−1 · S∗ℓ−1)).
5: For each leaf of Tℓ−1, leaf.value ←

σℓ/
√

leaf.value.
6: t← (A′ℓ,0, . . . ,0) · S

−1
ℓ−1.

7: z← FFT−1(ffSampling(t, Tℓ−1, seed)).
8: (t0, t1, . . . , tℓ) ← ⌊z̄⌉, where z̄ ← (t − z) ·

Sℓ−1.
9: return t1, . . . , tℓ ∈ Rq in NTT domain.

10: end function

Figure 4. LATTE Extract algorithm (from level ℓ− 1 to user at level ℓ).

(relative to σ(i)) in centers t(i) exceed ∆′U
t(i)

or relative
errors δσ(i) in standard deviations σ(i) exceed δU

σ(i) or
there exists j such that the infinity-norm absolute errors
∆z̄(j) in z̄(j) exceed ∆U

z̄ .
• G3 : G2, but we restrict the 1-dimensional Z samplers
D to the corresponding τ -bounded distribution Dτ .

• G4 : G3, but changing arithmetic from finite precision
to infinite precision, and removing the τ -tailcut on
the 1-dimensional Z samplers to return to the ideal
Gaussian distribution D. This game is identical to
GIDEAL, except for the abort condition introduced in
the previous game.

• G5 : G4, but remove the abort introduced in G2. This

Input: N, q, σe,h,KDF, IDℓ, µ ∈ {0, 1}256.
Output: Z ∈ {0, 1}256,C1, . . . ,Cℓ,Ch ∈ Rq.

1: function Encrypt
2: seed←$ {0, 1}256.
3: Z ← µ⊕ KDF(seed).
4: Sample e, e1, . . . , eℓ, eh from a binomial dis-

tribution with center 0 and standard deviation σe

using the seed KDF(seed|Z).
5: for i ∈ {1, . . . , ℓ− 1} do
6: Ci ← Ai · e + ei, where Ai =

H(ID1| . . . |IDi) in NTT domain.
7: end for
8: m← Encode(seed).
9: Cℓ ← A′ℓ · e + eℓ + m, where A′ℓ =

H("E"|ID1| . . . |IDℓ) in NTT domain.
10: Ch ← h · e+ eh.
11: return Z ∈ {0, 1}256,C1, . . . ,Cℓ,Ch ∈ Rq in

NTT domain.
12: end function

Figure 5. The LATTE Encrypt algorithm (at level ℓ).

Input: N, q, σe,h,KDF, IDℓ, Z, (C1, . . . ,Cℓ,Ch), t.
Output: µ′.

1: function Decrypt
2: V← Cℓ −Ch · t1 −C1 · t2 − · · · −Cℓ−1 · tℓ.
3: seed′ ← Decode(V).
4: Sample e′, e′1, . . . , e

′
ℓ, e
′
h from a binomial dis-

tribution with center 0 and standard deviation σe

using the seed KDF(seed′|Z).
5: for i ∈ {1, . . . , ℓ− 1} do
6: C′i ← Ai · e′ + e′i, where Ai =

H(ID1| . . . |IDi) in NTT domain.
7: end for
8: m′ ← Encode(seed′).
9: C′ℓ ← A′ℓ · e′ + e′ℓ + m′, where A′ℓ =

H("E"|ID1| . . . |IDℓ) in NTT domain.
10: C′h ← h · e′ + e′h.
11: Check (C′1, . . . ,C

′
ℓ,C

′
h) agrees with

(C1, . . . ,Cℓ,Ch), else return ⊥.
12: return µ′ = Z ⊕KDF(seed′).
13: end function

Figure 6. The LATTE Decrypt algorithm (at level ℓ).

game is identical to GIDEAL.
G0 → G1: Changing the 1-D Z-sampler. Let

(σ̄(i), t̄(i)) = (σ(i)(1 + δσ(i) , t(i) + ∆t(i)) denote the i’th
query to the 1-D sampler in the execution of these games,
and denote by ζ(i) the output integer returned by the sampler
for the i’th query. We apply Proposition 4, with x0 denoting
the remaining source of randomness in the game (i.e. the
random coins of A and the hash function H), and we let
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Input: t = (t0, t1, . . . , tℓ) in FFT format, tree T ,
seed ∈ {0, 1}256.

Output: z = (z0, z1, . . . , zℓ) in FFT format.
1: function ffSampling(t, T )
2: if n = 1 then
3: σ′ ← T.value.
4: Sample z0 ← Dσ′,t0 using seed.
5: Sample z1 ← Dσ′,t1 using seed.
6: return z = (z0, z1).
7: else
8: m← number of children of T .
9: for j ← m− 1, . . . , 0 do

10: Tj ← j-th child of T .
11: t′j ← tj +

∑m−1
i=j+1(ti− zi) · T.valuei,j .

12: t′j ← splitfft(t′j).
13: z′j ← ffSampling(t′j , Tj).
14: zj ← mergefft(z′j).
15: end for
16: return z = (z0, z1, . . . , zm).
17: end if
18: end function

Figure 7. The ffSampling algorithm [15].

xi := ζ(i) for i = 1, . . . ,MZ. Consider (xi|xj<i), the
conditional distribution of xi, conditioned on all previous xj ,
for j < i, and the RD between this distribution in G0 and
G1. Observe that conditioned on the same value of xj<i,
the values of the following query t̄(i) and std. deviation σ̄(i)

are identical in both G0 and G1 since they both use the
same finite precision arithmetic. We have:

Ra((xi|xj<i)G0
, (xi|xj<i)G1

)=Ra(D̄σ̄(i),t̄(i) ,Dσ̄(i),t̄(i))≤B,

then Proposition 2.2 implies:

Ra

(
(x0, . . . , xK)G0

, (x0, . . . , xK)G1

)
≤ BMZ := BT .

By the data processing and probability preservation proper-
ties of RD, Pr[E1] ≥ Pr[E0]

a/(a−1)/BT .
G1 → G2: Adding a τ tailcut to the Z Gaussian

samplers. By a standard tail bound [28, Lemma 4.4], the
statistical distance between this game and the previous
one is ≤ MZ · 2 exp(−τ2/2) ≤ 1/QM . Hence, we have
Pr[E2] ≥ Pr[E1]− 1/QM .

G2 → G3: Aborting the game if the errors exceed the
bounds. Recall that BU,2 denotes the event BU in G2 that
the errors exceed the bounds in the Lemma statement. If
the event BU,2 does not occur, games G2 and G3 proceed
identically. Hence, we have Pr[E3] ≥ Pr[E2] − Pr[BU,2]
and Pr[BU,2] = Pr[BU,3].

G3 → G4: Changing finite precision arithmetic to
infinite precision and removing the τ -tailcut on the Gaus-
sians. We again apply Proposition 2.2, except that this time
xi := ζ(i) for 1 ≤ i ≤ MZ except if the event BU

occurs at the i’th query to the Z sampler (determined by

x0, . . . , xi−1), in which case xi := ⊥, and all subsequent
xj := ⊥ for j > i. As in the previous game, we consider the
conditional distribution (xi|xj<i), of xi conditioned on all
previous xj for j < i, and the RD between this conditional
distribution in G3 and G4. When the event BU occurs at the
at (or before) the i’th query to the Z sampler, the conditional
distribution (xi|xj<i) is identical in both games (as both
conditional distributions return ⊥ with probability 1) and
have RD 0. Whereas, if the event BU does not occur at (or
before) the i’th query to the Z conditioned on the same fixed
value of xj<i in the support of the j’th 1-D Z-samplers, we
have ∆′

t(i)
≤ ∆′U

t(i)
. Also, the query std deviation values σ(i)

in G4 and σ̄(i) in G3 have a relative error δσ(i) ≤ δU
σ(i) by

definition of event BU . We therefore have:

Ra((xi|xj<i)G3
, (xi|xj<i)G4

) (7)

≤Ra(Dτ
σ(i)·(1±δ

σ(i) ),t(i)+∆′
t(i)
·σ(i) ,Dσ(i),t(i)) ≤ C(i), (8)

where in the last inequality, we used Lemma 4.2. Then
Proposition 2.2 above implies:

Ra((x0, . . . , xMZ)G2
, (x0, . . . , xMZ)G3

)≤
∏

i<MZ

C(i) := CT .

Due to the abort condition, we have that conditioned on the
same fixed value of xi’s that do not cause an abort, the
values z̄(j) in G3 and G4 differ by an absolute error at
most ∆z̄ < 1/2, and therefore, observing that in G4 the
z̄(j) has integer coordinates (due to the infinite precision),
the rounded z̄(j)values in G4 are identical to those in
G3 conditioned on the same xi’s. Since the adversary’s
view in the game depends on xi’s only via the rounded
z̄(j), we conclude by the Rényi probability preservation
property that Pr[E4] ≥ Pr[E3]

a/(a−1)/CT , and Pr[BU,4] ≥
Pr[BU,3]

a/(a−1)/CT .
G4 → G5: In this game, we remove the abort intro-

duced in G2. Since the games G4 and G5 proceed iden-
tically until an abort occurs, we have Pr[BU,5] = Pr[BU,4]
and Pr[E5] ≥ Pr[E4] − Pr[BU,4]. Furthermore, by the
Lemma hypothesis, we have Pr[BU,5] := pU . Putting to-
gether the above bounds, we obtain that the probability of
E5 (i.e. event E in IDEAL) is lower bounded by

Pr[E5]≥Pr[E3]
a/(a−1)/CT − pU

≥(Pr[E0]
a/(a−1)/BT − (Pr[BU,3] + 1/QM ))a/(a−1)

CT
−pU

and using pU =Pr[BU,5]=Pr[BU,4]≥Pr[BU,3]
a/(a−1)/CT ,

we get bound on Pr[E4] := Pr[EIDEAL].

Appendix C.
Proof of Lemma 4.2
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Proof: We have that D3(z)
D2(z)

=
ρt,σ(I)
ρt̄,σ̄(I)

· exp(u(z)),
where, following assumption (3) in the statement of Lemma
and the notations of the proof of [14, Lemma 7], we get (9).

u(z) =
(z − t)2

2σ2
− (z − t̄)2

2σ̄2
(9)

= − (t− t̄)2 + 2(t− t̄)(z − t)− (2δσ + δ2σ)(z − t)2

2(1− δσ)2σ2
.

(10)

We first bound ρt,σ(I)
ρt̄,σ̄(I)

. Let erfc(α) :=
1√
2π

∫∞
α

exp(−y2/2)dy be the complementary error
function; then we get:

ρt,σ(I) = ρt,σ(Z)− 2 · erfc(τ · σ)

= ρt,σ(Z) ·
(
1− 2 · erfc(τ · σ)

ρt,σ(Z)

)
≥ ρt,σ(Z) · (1− 1/Q),

where the last inequality uses ρt,σ(Z) ∼
√
2π(1 −

ε)σ, erfc(τσ) ≤ exp(−(τσ)2/2)√
2πτσ

, and Q ≤ 2π
√
στ(1 −

ε)σ exp(σ2τ2/2) set in condition 5). Deriving a similar
inequality for ρt̄,σ̄(I), we have:

1− 2/Q ≲
ρt,σ(I)

ρt̄,σ̄(I)

/
ρt,σ(Z)
ρt̄,σ̄(Z)

≲ 1 + 2/Q. (11)

Let n := ((∆′t)
2+2∆′t(z− t)/σ− (2δσ + δ2σ)((z− t)/σ)2).

By applying [14, Lemma 7], followed by (10), followed
by [58, Lemma 4.4] and finally using max(δσ, ϵ) ≤ δ, it
follows that:

ln

(
ρt,σ(Z)
ρt̄,σ̄(Z)

)
≤ |Ez←D1 [u]| ≤

∣∣∣∣Ez←D1

[
n

2(1− δσ)2

]∣∣∣∣
(12)

≤ 1

2(1− δσ)2
|Ez←D1

[n]| (13)

≤ num(∆′t, ε, δσ) (14)

Similarly, we bound exp(u(z)) over I by using (10):

max
I
|u| ≲ 1

1− δσ
· (τ∆′t + τ2δσ). (15)

Combining (11), (14), and (15), we bound the relative error:∣∣∣∣ln(D3

D2

)∣∣∣∣ ≤ ln(1 + 2/Q) + num(∆′t, ε, δσ)

+
1

1− δσ
· (τ∆′t + τ2δσ)

≤ 2/Q+ num(∆′t, ε, δσ)

+
1

1− δσ
· (τ∆′t + τ2δσ) = ub. (16)

Combining (16) and [14, Lemma 3], the RD between D3

and D2 is derived as (5). Finally, we combine the first weak
triangle inequality of [59, Lemma 4.1] with remark 1 to
obtain the RD between D3 and D1 as in (6).

Appendix D.
Proofs of Lemma 5.2 and 5.3

Proof: From Theorem 5.1, for a non-root, non-
leaf node, since (D0,0)j = 1

2 (D
′
2j + D′2j+1), 0 ≤ j ≤

n − 1, for some D′ ∈ (R+)2n, (D0,0)j gets the min-
imal value min2n−1k=0 D′k when both D′2j and D′2j+1 are
equal to min2n−1k=0 D′k. Similarly, (D0,0)j gets the maximal
value max2n−1k=0 D′k when both D′2j and D′2j+1 are equal
to max2n−1k=0 D′k. For (D1,1)j = D′2jD

′
2j+1/(D0,0)j =

D′
2jD

′
2j+1

1/2·(D′
2j+D′

2j+1)
, it gets the minimal value min2n−1k=0 D′k

when both D′2j and D′2j+1 are equal to min2n−1k=0 D′k and
(D1,1)j gets the maximal value max2n−1k=0 D′k when both
D′2j and D′2j+1 are equal to max2n−1k=0 D′k for D′ ∈ (R+)2n.

Proof: We have Gi,i =
∑ℓ

k=0 FFT(Sℓ−1)i,k ⊙
FFT(S∗ℓ−1)k,i, and thus |(Gi,i)j | =∑ℓ

k=0 |(FFT(Sℓ−1)i,k)j |2. For N -point FFT result
z of scalar a, we have |zi| ≤ ∥z∥ =

√
N∥a∥

for 0 ≤ i ≤ N − 1 [60]. Thus, we have
|(Gi,i)j | ≤ (ℓ + 1) · N · ∥(Sℓ−1)i,k∥2 ≤ σ2

ℓ−1N
2(ℓ + 1)2,

since ∥(Sℓ−1)i,k∥ ≤ σℓ−1 ·
√

(ℓ+ 1)N .

Appendix E.
Compute ffLDL Tree in KeyGen/Delegate

If the key extraction speed is critical for the application,
similar to FALCON [15], we can move the ffLDL Tree
computation from the LATTE Extract (Line 4 in Figure 4
in Appendix A) to the LATTE KeyGen/Delegate when gen-
erating a master/delegated private key Sℓ, at the expense of
significantly larger master/delegated private key size. The
KeyGen/Delegate/Extract speed of this LATTE variant is
shown in Table 7. The LATTE Extract in this variant is about
1.3x–1.7x faster than the run-time speed in Table 4, while
the KeyGen/Delegate is at most 6% slower.

Here we also analyse the overhead in the master/dele-
gated private key size of this variant due to the ffLDL tree
T . Assuming a floating-point value has p bytes, the size of T
consists of the following 3 parts: (1) For a d×d basis Sℓ, the
root of T stores d(d−1)/2 components of L from the LDL∗

decomposition, with each component in C[x]/⟨xN + 1⟩.
Thus, the root of T has d(d−1)/2·2Np = Npd(d−1) bytes.
(2) The root of T has d sub-trees. The i-th non-leaf level of
a sub-tree has 2i nodes, 0 ≤ i ≤ log2 N − 2. Each node at
i-th level of a sub-tree stores L1,0 ∈ C[x]/⟨xn+1⟩ from the
LDL∗ decomposition, where n = N/2i+1. Therefore, the
total size of i-th level of a sub-tree is 2i ·2(N/2i+1)p = Np
bytes, and the total size of all non-leaf nodes in a sub-
tree is Np(log2 N − 1) bytes. (3) A sub-tree has N/2 leaf
nodes. Each leaf node stores a p-byte floating-point value.
Therefore, the total size of all leaf nodes in a sub-tree is
Np/2 bytes. Thus, the total size of T is Npd(d − 1) +
d(Np(log2 N − 1) + Np/2) = Npd(log2 N + d − 3/2)
bytes. Columns “T Size” in Table 7 summarise the ffLDL
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TABLE 7. PERFORMANCE RESULTS (OP/S) AND FFLDL TREE SIZE
(BYTES) OF LATTE VARIANT AT 4.2GHZ.

ℓ = 1 ℓ = 2
Set KeyGen Ext Del T Size Ext T Size
LATTE-1 9.3 1802.8 - 172032 - -
LATTE-2 3.3 826.3 - 376832 - -
LATTE-3 5.4 54.6 2.3 344064 33.6 565248
LATTE-4 1.6 26.0 0.8 753664 16.0 1228800

1

Key 
Generator

Sub Key 
Manager

Sub Key 
Manager

2

ID

3

4

5

Private key Public key

Sub Key 
Manager

Extractor

Figure 8. A 2-level HIBE scheme.

tree size for the parameters and floating-point precisions in
our LATTE implementation.

Appendix F.
HIBE Scheme Description

This Section presents the components of a HIBE scheme
and how they interact. They are as follows:

1) KeyGen: The master key generator establishes the
master public and private keys.

2) Delegate: Through a delegation function, the master
key generator creates a public/private key pair for the
sub-key manager. This gives it the ability to delegate
further key pairs, and extract user private keys at that
level.

3) Delegate: The sub-key manager delegates a further
public/private key to the next level of the hierarchy.

4) Extract: The extractor uses their public/private key pair
to extract and share user public/private keys, as in the
single-level IBE scheme.

5) Encrypt/Decrypt: Encryption/decryption works as a
regular encryption scheme, such as R-LWE encryption.

Figure 8 depicts a diagram of a 2-level HIBE scheme with
all its algorithms.

A HIBE scheme is said to be IND-CCA-secure if it is
indistinguishable under chosen-ciphertext attacks; that is, an
adversary with the ability to decrypt any other ciphertext

TABLE 8. EXPLANATION OF NOTATIONAL PRACTICE OF HIBE
FUNCTIONS.

Level Function
Level 0 Master KeyGen 2N × 2N

Level 1 Extracting with 2N × 2N → Enc/Dec
Delegating to 3N × 3N

Level 2 Extracting with 3N × 3N → Enc/Dec

does not possess an advantage in decrypting the challenge
ciphertext. ID-IND-CCA further implies the adversary has
access to an extraction oracle that allows them to extract
keys for other identities before committing to the challenge
identity, yet gains no advantage. The challenge consists of
the ciphertext and the identity under which it is encrypted.

Table 8 indicates the notational practices used to identify
each level of the hierarchy.

Appendix G.
Cramer’s Rule

Cramer’s rule [61] is used for solving systems of linear
equations. Considering a system of N equations with N
unknowns x, represented as Ax = b. Cramer’s rule states
that the solution can be written as xi =

det(Ai)
det(A) , where Ai

is the matrix formed by replacing the i-th column of A by
the column vector b.

The formulae for the reduction coefficients in the Key-
Gen and Delegate process come directly from Cramer’s Rule
applied to the system Ax = b, where, in the first level,
A is the 2 × 2 matrix whose (i, j)-entry is the Hermitian
product ⟨si, sj⟩ of the ith and jth rows of the delegation
matrix, and where b is the two-dimensional column vector
whose ith coefficient is ⟨s2, si⟩ . This result generalises to
arbitrary levels; i.e., for any given number of levels ℓ ≥ 1,
the reduction of the vector sℓ+1 is effected by replacing it
with sℓ+1 − ⌊k0⌉s0 − . . . − ⌊kℓ⌉sℓ, where the ki are the
coefficients of the solution x to the system Ax = b, where
A is the (ℓ + 1) × (ℓ + 1) matrix whose (i, j)-entry is the
Hermitian product ⟨si, sj⟩ of the ith and jth rows of the
delegation matrix, and where b is the (ℓ + 1)-dimensional
column vector whose i-th coefficient is ⟨sℓ+1, si⟩.

Appendix H.
Key and Ciphertext Size Calculations

The LATTE keys and ciphertexts are mainly collec-
tions of polynomials in R. The degree of each polyno-
mial is N and the number of bits in each coefficient is
κ = ⌈log2 q⌉. The parameters N and q are dependent on the
security level required. The key/ciphertext bit-size is equal
to N · κ · number of polynomials, plus any additional bit
strings sent, in the case of the ciphertext. Furthermore, we
usually consider the key and ciphertext sizes in bytes, and
so when the total bit size is computed, it will be divided by
8 to give the size in bytes.
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H.1. Master Keys

The master public key consists of a polynomial h ∈ Rq.
Therefore the bit-size is N · κ. The master private key
S0 consists of (f ,g,F,G). However, F and G can be
recomputed on the fly from f and g using NTRUSolve. The
solution is not unique but as long as it is a short solution,
it will suffice. However, this is not efficient and so this
research considers the entire (f ,g,F,G) to be stored as
the private key. Therefore, the master private key is of size
4N · κ.

H.2. Delegated Keys

The delegated public key can be straightforwardly gen-
erated using the master public key and the chain of user IDs
along which the delegation process is happening. Although
this can be efficiently generated on the fly, given the user ID
chain, we will consider it being stored as the polynomials
h,A1,A2, . . . ,Aℓ, which translates as (ℓ+1) polynomials
in R, and so the total bit-size of the delegated public key
is (ℓ+ 1) ·N · κ. The delegated private key generated from
level ℓ− 1 to level ℓ, to be passed onto users at level ℓ+1,
is a (ℓ+ 2)× (ℓ+ 2) matrix of polynomials in Rq. Its size
is therefore (ℓ+ 2) · (ℓ+ 2) ·N · κ.

H.3. User Private Keys

The user’s public key is entirely dependent on the iden-
tity, so we only examine the size of the user’s private key.
In LATTE for a user at level ℓ, this is a tuple of (ℓ + 1)
polynomials in Rq. However, we only need to store ℓ of
these polynomials (disregarding t0) and so the user private
key is of bit size ℓ ·N · κ.

H.4. Ciphertexts

Let’s consider the ciphertext at level ℓ. This consists of
ℓ+ 1 polynomials C1, . . . ,Cℓ,Ch ∈ Rq along with a 256-
bit string Z (which is essentially the encrypted message).
Therefore, at level ℓ, the bit-size of the full ciphertext is
(ℓ+ 1) ·N · κ+ 256.

H.5. Comparison to FALCON

After adopting the NTRUSolve and lattice Gaussian
sampling procedures from FALCON [15], our optimised
LATTE KeyGen becomes similar to the FALCON KeyGen,
and our optimised LATTE Extract becomes similar to the
FALCON Sign, in terms of the operations used by these
algorithms. Therefore, here we compare the run-time speed
of our optimised LATTE KeyGen/Extract against the FAL-
CON KeyGen/Sign, respectively. The performance results
of the FALCON is summarised in Table 9. We focus on
the comparison between LATTE-1 and FALCON-1024 since
the size of parameter N is the same. The KeyGen speed
of our LATTE-1 implementation is about 7.1x slower than

FALCON-1024, and the speed of our LATTE-1 Extract im-
plementation is about 3.9x slower than FALCON-1024 Sign.
This is mainly because (1) The size of q in LATTE is much
larger than FALCON (24 bits for LATTE-1 compared to 14
bits for FALCON-1024), which will significantly increase the
maximal integer size in NTRUSolve, as well as the run-
time overhead in KeyGen, [16]. (2) FALCON computes the
ffLDL Tree during the KeyGen, while the ffLDL Tree is
computed during the Extract in our LATTE scheme. This
difference will add overhead to the run-time speed of our
LATTE Extract implementation. (3) From the FALCON spec-
ification [15], the AVX2 and FMA instructions were used
in the source code during the benchmark. However, these
instructions are not used in the source code of our LATTE
implementation.

Appendix I.
Concrete Parameter Sets Based on Best Known
Attacks

The security of each component of LATTE depends
on an associated lattice problem and so the computational
security of each of these problems must be considered
to derive parameters, with the most vulnerable component
determining the overall security for a given parameter set.
The global parameters for the scheme are dimension N
and modulus q, but we will also need to consider level-
specific parameters, namely the standard deviation used for
sampling at each level, σℓ. The six security constraints to be
considered are: (1) Gaussian sampler security (2) Decryption
failure (3) Master key recovery (breaking the NTRU prob-
lem/finding short vectors in the NTRU lattice) (4) Delegated
key recovery (finding short vectors in the lattice) (5) User
key recovery (solving closest vector problem) (6) Message
recovery (breaking the R-LWE encryption scheme). These
are discussed in detail in [13], so here we only state the
mathematical conditions which must be satisfied and com-
pute the security levels using our updated parameters and
modifications to the scheme. We first summarise the dif-
ferences between our security analysis and [13]. Any other
differences are negligible and due to precision variations in
the attack costing script.

I.1. Gaussian Sampler Security

The statistical security of the Gaussian sampler used for
sampling short vectors from lattice cosets in extraction and
delegation to level ℓ is determined by the standard deviation
of the sampler σℓ and its relation to the Gram-Schmidt
norm of the input basis. As this property of the basis is
determined from the master key generation and any previous
delegations, i.e. ∥B̃∥ ≤

√
(ℓ+ 2)N · σℓ, we can draw the

following condition based on the relationship of the standard
deviations at each level:

σℓ ≥ ηε(Z)
√

(ℓ+ 1)N · σℓ−1, (17)

taking ε as 2−25.5/(ℓ + 1)N in order to make the KL-
divergence of the sampler from the discrete Gaussian is at
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TABLE 9. PERFORMANCE RESULTS (OP/S) FOR THE FALCON [15] (SCALED TO 4.2GHZ).

Set Sec. n log2 q KeyGen Sign Verify
FALCON-512 128 512 14 211.4 10861.7 51008.1
FALCON-1024 256 1024 14 66.5 5319.4 24926.1

TABLE 10. LATTE ESTIMATED COST OF MASTER KEY RECOVERY.

Set β
Classical
Security

Quantum
Security

LATTE-1 974 301 275
LATTE-2 1501 455 414
LATTE-3 973 301 274
LATTE-4 1501 455 414

TABLE 11. LATTE ESTIMATED COST OF DELEGATED KEY RECOVERY.

Set ℓ β
Classical
Security

Quantum
Security

LATTE-1 1 1020 314 287
LATTE-2 1 1051 323 295

LATTE-3 1 1021 315 287
2 388 130 119

LATTE-4 1 1051 323 295
2 907 281 257

TABLE 12. LATTE ESTIMATED COST OF USER KEY RECOVERY.

Set ℓ β
Classical
Security

Quantum
Security

LATTE-1 1 829 258 236
LATTE-2 1 1863 560 510

LATTE-3 1 830 259 236
2 334 114 105

LATTE-4 1 1864 561 510
2 799 250 228

most 2−48. However, we also require the sampled vectors to
be short for the purposes of keeping the underlying lattice
problem hard. Therefore, we can set σℓ to be equal to right
hand side of (17), where σ0 ≈ 1.17

√
q/(2N). The quantity

σ0 is chosen to be this as it minimises the Gram-Schmidt
norm of the master basis (resulting in short user private keys
in the single-level IBE), as deduced in [10].

I.2. Decryption Failure

To protect against attacks which exploit random decryp-
tion failures, we must bound the error term incurred in the R-
LWE encryption scheme. The probability that the error term
is too large is derived in [13], based on the method of [51].
Essentially, the decryption failure rate cannot exceed 2−λ,
where λ is the security level in bits of the scheme. For each
parameter set and level, we can compute the probability of
decryption failure, noting that our design consists of one less
ephemeral private key than in [13], reducing the standard
deviation τ of the Gaussian distribution of the coefficients of
the error term d to τ =

√
σ2
e + (ℓ+ 1)Nσ2

ℓσ
2
e , marginally

reducing the failure rate.

TABLE 13. COST OF PRIMAL MESSAGE RECOVERY ATTACK.

Set m β
Classical
Security

Quantum
Security

LATTE-1 1018 423 140 128
LATTE-2 1962 967 299 273
LATTE-3 998 232 84 78
LATTE-4 2037 561 180 165

TABLE 14. COST OF DUAL MESSAGE RECOVERY ATTACK.

Set m β
Classical
Security

Quantum
Security

LATTE-1 1039 422 140 128
LATTE-2 1974 964 298 272
LATTE-3 1005 232 84 78
LATTE-4 2101 560 180 165

I.3. Master Key Recovery

The security of the master key recovery depends upon
the difficulty of finding the short vector (g, f) in the lattice,
given the public NTRU basis. The attack is successful if the
projection of the short vector onto the vector space spanned
by the final β Gram-Schmidt vectors is shorter than the
length of the (2N − β + 1)th Gram-Schmidt vector. This
corresponds to minimising block size β, for:

σ0

√
β ≤ GH(β)(2β−2N)/(β−1) · det(Λ0)

1/2N .

The minimum solutions to this inequality for different pa-
rameter sets is given in Table 10. The work required to find
the shortest vector using this block size with the BKZ2.0
algorithm is also given.

I.4. Delegated Key Recovery

For delegated key recovery, the attacker must find a short
sequence of vectors in Λℓ−1. This can reduce to solving SVP
in the master lattice Λ0 to find a vector of length σℓ ·

√
2N .

Table 11 gives the minimum block size β required (as per
below (18)) for a successful attack using BKZ2.0 and the
classical and quantum cost of these attacks which depend
on N and q.

σℓ ·
√
2N ≤ GH(β)(2N)/(β−1) · det(Λ0)

1/2N . (18)

I.5. User Key Recovery

User key recovery requires finding a short solution to
t0 + t1 ·h+ t2 ·A1 + · · ·+ tℓ ·Aℓ−1 = Aℓ, which reduces
to solving the CVP in the master lattice Λ0, of the form
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TABLE 15. LATTE PARAMETERS.

Set Security N q

LATTE-1 128 1024 224 − 214 + 1
LATTE-2 256 2048 225 − 212 + 1
LATTE-3 80 1024 236 − 220 + 1
LATTE-4 160 2048 238 − 226 + 1

t0 + t1 · A0 = Aℓ. It is enough to find a short (t0, t1) with
length ≤ σℓ ·

√
2(ℓ+ 1) ·

√
2N . To do this, it is required to

minimise (19) over β. Table 12 gives the minimum block
size β required for a successful attack and the classical and
quantum cost of these attacks.

σℓ ·
√

2(ℓ+ 1) ·
√
2N ≤ GH(β)(2N)/(β−1) · det(Λ0)

1/2N .
(19)

I.6. Message Recovery

There are two attacks to consider for this. Message
recovery depends on solving an extended version of R-
LWE, which reduces to an instance of the primal-CVP or
dual-SVP. In the primal-CVP attack, the ephemeral private
keys are recovered via a close vector problem. In the dual-
SVP attack, an attempt is made to distinguish the ciphertext
elements from uniformly random polynomials inRq. In fact,
it is enough for the attacker to recover one of the ephemeral
private keys, e and so message recovery cost is not affected
by hierarchical level, or by our redesign.

The minimal block size β needed for a successful attack,
and the cost of these attacks are given in Tables 13 and 14,
depending on (N, q). The code to populate Tables 13 and
14 is that used in [51]. By considering the cost of all attacks
covered in this Section, the security levels in Table 15 could
be derived.

I.7. Setting up Parameters

The parameter sets are given in Table 15. These are
the parameters recommended in the original specification
[13]. We have extended the security estimates from [13]
to give them on a per-level basis. The security decreases
as we move down the hierarchy. However, it turns out
that each parameter set’s security is determined by the
message recovery capabilities, which remain constant down
the levels. Therefore our parameter security conclusions
match that of [13], and furthermore are not affected by our
optimisations, as the message recovery attack is independent
of the modified parameter ℓ.

Parameter sets LATTE-1 and 2 are only applicable to a
single level, essentially an IBE rather than HIBE, version of
the scheme. LATTE-3 and 4 can be used for up to two levels.
The reason we cannot use these parameters beyond these
levels is that the decryption failure rate exceeds the target
security level. In fact, the failure rate is so high it renders
the scheme completely insecure and also not suitable for
use.

Input: G,D′.
Output: Tree T .

1: function ffLDLB(G,D′)
2: if n = 1 then
3: (T.value)0 ← (µG0,0,R, σ

2
G0,0,R

, 0, 0).
4: Output µleaf,R = µ(T.value)0,R, σleaf,R =

σ(T.value)0,R.
5: return
6: end if
7: for j ∈ {0, . . . , n− 1} do
8: (D0,0)j ← (µ(G0,0)j ,R, σ

2
(G0,0)j ,R

, 0, 0).
9: (L1,0)j ← DivB((G1,0)j , (D0,0)j).

10: if d = 2 then
11: if n = N then
12: (D1,1)j ← DivB(q2, (D0,0)j).
13: else
14: x← MultB(D′2j ,D

′
2j+1).

15: (D1,1)j ← DivB(x, (D0,0)j).
16: end if
17: else if d = 3 then
18: x← DivB(AbsSqrB((G1,0)j), (D0,0)j).
19: (D1,1)j ← SubB((G1,1)j , x).
20: x← MultB((D0,0)j , (D1,1)j).
21: (D2,2)j ← DivB(q2, x).
22: (L2,0)j ← DivB((G2,0)j , (D0,0)j).
23: x← MultB((G2,0)j , (L1,0)

∗
j ).

24: y ← SubB((G2,1)j , x).
25: (L2,1)j ← DivB(y, (D1,1)j).
26: end if
27: end for
28: T.value← L.
29: for i ∈ {0, . . . , d− 1} do
30: d0,d1 ← splitfftB(Di,i, n).

31: G′ =

(
d0 d1

d∗1 d0

)
.

32: T.childi ← ffLDLB(G′,Di,i).
33: end for
34: return T .
35: end function

Figure 9. The ffLDLB algorithm based on statistical model.

Appendix J.
Algorithms in the Statistical Model

We present the supplementary algorithms (Figure 9–14)
of our statistical model, including ffLDLB, ffSamplingB,
splitfftB, mergefftB, FFTB, and FFTInvB.
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Input: t = (t0, . . . , tℓ) in FFT format, tree T .
Output: z = (z0, . . . , zℓ) in FFT format.

1: function ffSamplingB(t, T )
2: if n = 1 then
3: z0 ← (µ(t0)0,R, 0, 0, 0).
4: z1 ← (µ(t1)0,R, 0, 0, 0).
5: Output ∆′t0 = σ(t0)0,R/(σℓ/

√
µ(T.value)0,R).

6: Output ∆′t1 = σ(t1)0,R/(σℓ/
√
µ(T.value)0,R).

7: return z = (z0, z1).
8: else
9: m← number of children of T .

10: for j ← m− 1, . . . , 0 do
11: Tj ← j-th child of T .
12: t′j ← tj .
13: for i← j + 1, . . . ,m− 1 do
14: for k ← 0, . . . , n− 1 do
15: x← SubB((ti)k, (zi)k).
16: y ← MultB(x, (T.valuei,j)k).
17: (t′j)k ← AddB((t′j)k, y).
18: end for
19: end for
20: f0, f1 ← splitfftB(t′j , n).
21: z′j,0, z

′
j,1 ← ffSamplingB((f0, f1), Tj).

22: zj ← mergefftB(z′j,0, z
′
j,1, n).

23: end for
24: return z.
25: end if
26: end function

Figure 10. The ffSamplingB algorithm based on statistical model.

Input: a, n.
Output: f0, f1.

1: function splitfftB(a, n)
2: (f0)0 ← (µa0,R, σ

2
a0,R

, 0, 0).
3: (f1)0 ← (µa0,I , σ

2
a0,I

, 0, 0).
4: for k ← 0, . . . , n/2− 1 do
5: (f0)k ← MultB(1/2,AddB(a2k,a2k+1)).
6: x← SubB(a2k,a2k+1).
7: y ← MultB(x, ω−bitrev(n/2+k)).
8: (f1)k ← MultB(1/2, y).
9: end for

10: return f0, f1.
11: end function

Figure 11. The splitfftB algorithm based on statistical model.

Input: f0, f1, n.
Output: a.

1: function mergefftB(f0, f1, n)
2: a0 ← (µ(f0)0,R, σ

2
(f0)0,R

, µ(f1)0,R, σ
2
(f1)0,R

).
3: for k ← 0, . . . , n/2− 1 do
4: u← MultB((f1)k, ω

bitrev(n/2+k)).
5: a2k ← AddB((f0)k, u).
6: a2k+1 ← SubB((f0)k, u).
7: end for
8: return a.
9: end function

Figure 12. The mergefftB algorithm based on statistical model.

Input: a.
1: function FFTB(a)
2: m = 1.
3: t = n.
4: while m < n do
5: t← t/2.
6: for i = 0 to m− 1 do
7: j1 = 2it.
8: j2 = j1 + t− 1.
9: for j = j1 to j2 do

10: u← aj .
11: v ← MultB(aj+t, ω

bitrev(m+i)).
12: aj ← AddB(u, v).
13: aj+t ← SubB(u, v).
14: end for
15: end for
16: m← 2m.
17: end while
18: end function

Figure 13. The FFTB algorithm based on statistical model.
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Input: a.
1: function FFTInvB(a)
2: t = 1.
3: h = n.
4: m = n.
5: while m > 1 do
6: j1 = 0.
7: h← h/2.
8: for i = 0 to h− 1 do
9: j2 = j1 + t− 1.

10: for j = j1 to j2 do
11: u← AddB(aj ,aj+t).
12: x← SubB(aj ,aj+t).
13: aj ← u.
14: aj+t ← MultB(x, ω−bitrev(h+i)).
15: end for
16: j1 ← j1 + 2t.
17: end for
18: t← 2t.
19: end while
20: for i = 0 to n− 1 do
21: ai ← MultB(1/n,ai).
22: end for
23: end function

Figure 14. The FFTInvB algorithm based on statistical model.
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