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Abstract—The United Kingdom (UK) government is consider-
ing advanced primitives such as identity-based encryption (IBE)
for adoption as they transition their public-safety communica-
tions network from TETRA to an LTE-based service. However,
the current LTE standard relies on elliptic-curve-based IBE,
which will be vulnerable to quantum computing attacks, expected
within the next 20–30 years. Lattices can provide quantum-
safe alternatives for IBE. These schemes have shown promising
results in terms of practicality. To date, several IBE schemes
over lattices have been proposed, but there has been little in
the way of practical evaluation. This paper provides the first
complete optimised practical implementation and benchmarking
of LATTE, a promising Hierarchical IBE (HIBE) scheme pro-
posed by the UK National Cyber Security Centre (NCSC) in
2017 and endorsed by European Telecommunications Standards
Institute (ETSI). We propose optimisations for the KeyGen,
Delegate, Extract and Gaussian sampling components of LATTE,
to increase attack costs, reduce decryption key lengths by 2x–3x,
ciphertext sizes by up to 33%, and improve speed. In addition, we
conduct a precision analysis, bounding the Rényi divergence of
the distribution of the real Gaussian sampling procedures from
the ideal distribution in corroboration of our claimed security
levels. Our resulting implementation of the Delegate function
takes 0.4 seconds at 80-bit security level on a desktop machine at
4.2GHz, significantly faster than the order of minutes estimated
in the ETSI technical report. Furthermore, our optimised LATTE
Encrypt/Decrypt implementation reaches speeds up to 9.7x faster
than the ETSI implementation.

Index Terms—lattice-based cryptography, hierarchical
identity-based encryption, advanced primitives, software design,
post-quantum

I. INTRODUCTION

THE UK Government anticipates the migration of its
mission-critical communications network from Airwave

TETRA to LTE-based Emergency Services Network (ESN) [1]
will be complete by 2026 [2]. However, the current stan-
dard [3] relies on Elliptic Curve (ECC)-based IBE scheme
MIKEY-SAKKE for securing messages. The first such device
authorised for ESN is the Panasonic Toughbook Tablet which
runs on Intel i5 and transmits data via EM7511 Band 14
mobile broadband. An IBE scheme removes the need for a
certificate repository by deriving a user’s public key from their
already established public identity. This provides a low latency
setup with instantaneous communication capabilities, hence is
ideal for this use-case. However, ECC will be rendered inse-
cure under quantum computing attacks, as acknowledged by
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current post-quantum cryptography standardization efforts by
the National Institute of Standards and Technology (NIST) [4].

One of the advantages of lattice-based cryptography, a
contender for quantum-secure cryptographic solutions, is the
ability to build advanced primitives such as IBE. Furthermore,
a hierarchy can be built into an IBE scheme to provide a more
distributed workload and allow for finer-grained control over
private key distribution. HIBE schemes extend the concept
of using a personal identity as a public key to a multi-
levelled scenario, such as one would find within a functioning
company. HIBE has further applications such as forward-
secure encryption [5] and public key broadcast encryption [6].
Besides ESN, there are other real-world application scenarios
for HIBE, for example, in Messaging apps for forward-
security of ratchet protocols like Signal (see [7], [8]). It is
also well known that the key generation algorithm of HIBE
can be used as a Hierarchical ID-Based Signature (HIBS),
and HIBS also has potential real-world applications in for-
ward secure signatures used in blockchain [9]. Other real-
world deployments of IBEs for encrypted file transfer and
email are offered by companies such as Voltage Security and
TrendMicro. Also, HP utilised it in their time data release
service Time Vault. However, IBE is set to grow in the post-
quantum world, where key sizes become larger and the number
of connected devices demanding instantaneous data transfer
grows. However, (H)IBE is still new territory within the post-
quantum field. Additionally, with the growth of the Internet of
Things, which brings with it complex interconnected systems
of constrained devices, there is a greater requirement for
lightweight, advanced primitives unlike ever before. The long-
term security considerations indicate that these should be made
quantum-secure today. The aim of this paper is to assess the
practicality and optimise the implementation/integration of a
quantum-safe (H)IBE scheme.

The DLP IBE scheme [10] was in 2017 combined with
the Bonsai tree HIBE scheme introduced in [11] to create
LATTE by Campbell and Groves [12]. This research was
carried out by the NCSC, with a view to utilising the scheme
in UK public safety communications. They are currently
working with the ETSI in a move towards standardising the
scheme [13]. However, the proposed specification [13] only
provides the Encrypt and Decrypt performance results, and it is
unclear if LATTE KeyGen, Delegate, and Extract are practical
at all. There remains substantial analysis to be performed to
determine if and how this scheme will work in the real world.
This is the gap our research endeavours to bridge.

This paper provides the first performance benchmarking
of a quantum-safe HIBE scheme, LATTE, written in C.1 We

1https://gitlab.com/raykzhao/latte



implement the following parameter sets defined in the ETSI
report [13]: the single-level LATTE-1 and LATTE-2 with 128
and 256 bits security, and the two-level LATTE-3 and LATTE-
4 with 80 and 160 bits security, respectively. We also identify
bottlenecks, propose optimisations, and provide further statisti-
cal and security analysis for LATTE and consider its suitability
for such applications. In more detail, the contributions of this
paper are:

Precision Analysis of LATTE: We develop a statistical
model for floating-point arithmetic errors in our efficient
LATTE implementation, verified by experimental analysis.
This allows us to quantify the security impact on LATTE with
varying arithmetic precision. In particular, we bound the Rényi
divergence (RD) from ideal, as recommended in [14], of the
Gaussian lattice sampler (with its underlying fast ffSampling
algorithm), and deduce that 53 bits of precision retain our
claimed security levels for LATTE-1 and LATTE-2 with up to
242 key Extract/Delegate queries. For LATTE-3 and LATTE-4,
our analysis shows that about 90 bits of precision should be
sufficient. We also apply our statistical model to the FALCON
signature selected by NIST for PQC standardisation [15], and
demonstrate a ≈ 3 bit improved precision estimate for it using
a refined analysis compared to that in [15].

Optimised LATTE (Sub-)Algorithms: We first reduce the
module dimension of the extracted user keys by one compared
to [13] by extending a similar approach used in the DLP
IBE [10]. This leads to faster performance and reduces user
private key sizes by 2x–3x and ciphertext length by up to
33%. In addition, we also show a faster ffLDL algorithm for
(Mod)NTRU basis in Sec. V-A. We then adopt the NTRUSolve
function from FALCON [15] in order to efficiently solve the
NTRU equation in our optimised LATTE KeyGen algorithm.
The NTRUSolve is both faster and more compact [16] than the
resultant method [10] used in [13]. In addition, we adopt the
technique from MODFALCON [17] and the length reduction
technique by using Cramer’s rule [13] in order to efficiently
solve the NTRU equation for higher lattice dimensions in our
optimised LATTE Delegate algorithm. We further adopt the
FFT sampling procedures from FALCON [15], which is faster
than the Klein-GPV sampler [18] used in [13]. In addition,
the proposed LATTE specification [13] did not discuss the
integer discrete Gaussian sampling techniques suitable for the
needed standard deviations. We integrate efficient sampling
techniques, including FACCT [19] and the variant [20] of
COSAC [21] in our optimised LATTE implementation.

New Parameter Sets for LATTE: We provide slightly
revised parameter sets for LATTE, fixing a bug in the ETSI
technical report [13], and also modify a Gaussian sampling
standard deviation parameter to accommodate the more effi-
cient FACCT [19] sampler for the Key Generation algorithm.
Security estimates for these revised parameters are also pre-
sented as we discover that our redesign reduces the decryption
failure rate and increases the cost of recovering the user key.

First Full and Practical Implementation of LATTE: Ap-
plying our optimisation techniques, we give the first complete
practical performance results for a lattice-based HIBE scheme,
including the KeyGen, Delegate, and Extract algorithms,
whereas implementation results were unclear in [13]. The

proposed specification [13] estimated that the Delegate would
have run-time in the order of minutes on a desktop machine.
In contrast, we show that our efficient implementation can
perform the Delegate function in 0.4s (resp. 1.3s) for 80-
bit (resp. 160-bit) security level on a desktop machine. In
addition, for the same ring dimension, our optimised LATTE
implementation is up to 11.1x faster than the DLP IBE imple-
mentation result from [13] for the corresponding algorithms,
and our LATTE Extract run-time overhead is less than 3.9x
over the FALCON Sign algorithm run-time with the same
lattice dimension.

The structure of the paper is as follows. Sec. II gives the
background to HIBE and the lattice-based concepts used in
HIBE schemes. Sec. III describes our improved LATTE HIBE
scheme. Sec. IV provides the precision and security analyses.
Sec. V discusses our implementation techniques in making
the scheme practical for real-world applications. Performance
results for the scheme are given in Sec. VI.

II. PRELIMINARIES

A lattice can be expressed as a collection of integer linear
combinations of a set of basis vectors. Popular underlying
hard lattice problems believed to be secure against quantum
computing attacks include the Learning With Errors (LWE)
alongside its ring variant (over ideal lattices), RLWE. Another
common lattice problem is the NTRU assumption [22]; that
is, given a polynomial h, one must find non-trivial short f ,g
such that h = g · f−1.

In this paper, vectors or, interchangeably through the canon-
ical embedding, polynomials will be denoted by bold small
letters like f , matrices M, polynomial ring of integers mod
q as Rq := Zq[x]/⟨xN + 1⟩ (for an integer N ), and lattices
as Λ. The field of integers mod q is denoted as Zq . Discrete
Gaussian distributions with centre t and standard deviation σ
are denoted as Dσ,t, and we omit the centre if it is zero, i.e. Dσ

if t = 0. A distribution is B-bounded for some B ∈ R+, if its
support is in the interval [−B,B]. The smoothing parameter
of Z is denoted as ηε(Z) = (1/π)

√
ln(2 + 2/ε)/2. The

Euclidean norm of a vector/polynomial f is denoted ∥f∥. The
transpose f∗ of polynomial f = f0 + f1x+ · · ·+ fN−1x

N−1

is defined as f∗ = f0 − fN−1x − · · · − f1x
N−1. We denote

M∗ as the transpose of matrix M where M∗i,j = (Mj,i)
∗.

The Hermitian product of vectors a,b is denoted as ⟨a,b⟩.
The concatenation of several vectors f1, f2, . . . , fN will be
written as (f1|f2| · · · |fN ). In HIBE schemes, user identities at
level ℓ are denoted by IDℓ. A hash function from an arbitrary
length input to a vector of integers of length N is written as
H : {0, 1}∗ → ZN

q . An arrow ←$ is used to show the uniform
random sampling of an element from a set, e.g. f ←$ ZN

q .
The operator ⊕ means XOR. A Gram-Schmidt orthogonalised
(GSO) basis of B is denoted as B̃ = {b̃1, . . . , b̃N}. For
a full-rank matrix B, there exists a GSO decomposition
B = L · B̃, where L is unit lower triangular and rows b̃i

of B̃ are pairwise orthogonal. For a full-rank Gram matrix
G, there exists an LDL∗ decomposition G = LDL∗, where
L is a lower triangular matrix with 1 on its diagonal and D
is a diagonal matrix. The notation A(f) refers to the anti-
circulant matrix associated with polynomial f . The notation
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⌊k⌉ indicates the real number k is to be rounded to the nearest
integer. The rounding ⌊f⌉ of a polynomial f is taken to be
coefficient-wise rounding. The Fast Fourier Transform (FFT)
and Number Theoretic Transform (NTT) of polynomial f are
the evaluations f(ζi) for i ∈ {0, . . . , N − 1}, where ζ is the
2N -th complex root of unity in the FFT, and ζ is the 2N -
th root of unity mod q in the NTT. Let ⊙ be the point-wise
multiplication.

Definition II.1 (Rényi Divergence [23]). For two discrete
distributions P and Q such that Supp(P ) ⊆ Supp(Q), the
Rényi divergence (RD) of order a ∈ (1,+∞) is defined as:

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

For a = +∞, we have: R∞(P ||Q) = maxx∈Supp(P )
P (x)
Q(x) .

Lemma II.1. Let a ∈ [1,+∞]. Let P and Q denote dis-
tributions with Supp(P ) ⊆ Supp(Q). Then the following
properties hold:

Data Processing Inequality: Ra(P
f∥Qf ) ≤ Ra(P∥Q) for

any function f , where P f (resp. Qf ) denotes the distribution
of f(y) induced by sampling y ←$ P (resp. y ←$ Q).

Probability Preservation: Let A ⊆ Supp(Q)
be an arbitrary event. If a ∈ (1,+∞), then
Q(A) ≥ P (A)

a
a−1 /Ra(P∥Q). Further, we have

Q(A) ≥ P (A)/R∞(P∥Q).

We use the notation ≲,∼ as in [24], to “absorb” all higher-
order terms of negligible elements, e.g. if δ = o(1), then δ +
δ2 ∼ δ. The following remark bounds R∞(D2;D1).

Remark 1. Let τ ∈ Z be the tailcut bound as above, and let
Q = 2k for some k ∈ Z. If τ ≥

√
2 ln(2Q), then:

R∞(D2;D1) ≤ 1/(1−Q−1) ≲ 1 + 1/Q. (1)

This can be verified by using classical tailcut bounds [25,
Lemma 4.4].

Proposition II.2 (Adapted from [26], Prop. 4). Let P and Q
denote two distributions of a N−tuple of random variables
(xi)i<N . For 0 ≤ i < N , assume Pi (resp Qi) is the marginal
distribution of xi, and let Pi|<i(·|x < i) denote the conditional
distribution of xi given that (x0, . . . , xi−1) =: x<i. Let a > 1.
Suppose that for all 0 ≤ i < N , there exists Bi ≥ 1 such
that for all i-tuples x<i in the support of Q restricted to its
first i variables, Ra(Qi|x<i, Pi|x<i) ≤ Bi. Then Ra(Q,P ) ≤∏

i<N Bi.

Theorem II.3 (Tail-cut Bound, Adapted from [23], Theo-
rem 2.11). Let D′σ be the B-bounded distribution of Dσ

by cutting its tail. For M independent samples, we have
R∞((D′σ)M ||(Dσ)

M ) ≤ exp(1) if B ≥ σ ·
√
2 ln(2M).

A. Hierarchical Identity-based Encryption

HIBE schemes were introduced by Horwitz and Lynn [27]
and can be considered a generalisation of an IBE scheme to
multiple levels. A HIBE scheme consists of five components:

Keygen, Delegate, Extract, Encrypt, and Decrypt. Here we
depict how these components interact:

1) KeyGen: The master key generator establishes the master
public and private keys.

2) Delegate: Through a delegation function, the master key
generator creates a public/private key pair for the sub-key
manager. This gives it the ability to delegate further key
pairs, and extract user private keys at that level.

3) Delegate: The sub-key manager delegates a further pub-
lic/private key to the next level of the hierarchy.

4) Extract: The extractor uses their public/private key pair
to extract and share user public/private keys, as in the
single-level IBE scheme.

5) Encrypt/Decrypt: Encryption/decryption works as a reg-
ular encryption scheme, such as RLWE encryption.

A HIBE scheme is said to be ID-IND-CCA-secure if it is
indistinguishable under chosen-ciphertext attacks; that is, an
adversary with access to a decryption oracle that can decrypt
any other (non-challenge) ciphertext has a negligible advantage
in distinguishing the message encrypted in the challenge ci-
phertext from any other message. ID-IND-CCA further implies
the adversary has access to an extraction oracle that allows
them to extract keys for other identities before committing to
the challenge identity, yet gains no advantage. The challenge
consists of the ciphertext and the challenge identity under
which it is encrypted. A weaker security requirement for
HIBE schemes is one-wayness under chosen-plaintext attacks
(ID-OW-CPA). Compared with ID-IND-CCA, the ID-OW-
CPA security notion only requires that the adversary succeeds
with negligible probability to decrypt a uniformly random
message encrypted in the challenge ciphertext (one-wayness),
and furthermore, the adversary does not have access to a
decryption oracle (i.e. it is a CPA), although it still has access
to the extraction oracle.

Various HIBE schemes based on classical assumptions [28]–
[30] have been proposed in the past. In 2018, an isogeny-
based version of the Decisional Bilinear Diffie-Hellman-based
HIBE scheme was proposed [31]. Despite isogenies possessing
quantum-safe properties, this variant only serves to strengthen
the existing classical security, by proving it secure under the
assumption of either the classical version or the isogeny-
based version of the problem and therefore is not necessarily
quantum-safe. To the best of the authors’ knowledge, the only
quantum-safe HIBE schemes so far proposed are based on
lattices. We now introduce the schemes upon which LATTE is
built.

B. The Ingredients of LATTE

LATTE was proposed in 2017 [12] and can be considered as
a combination of the DLP IBE scheme [10] and Bonsai Tree
HIBE scheme [11] to create a lattice-based HIBE scheme.
It can be shown to be chosen ID indistinguishability against
chosen ciphertext attacks (ID-IND-CCA) secure, the proof
for which is given in [13], based on the NTRU and RLWE
hardness assumptions.

DLP IBE Scheme: In 2014, Ducas et al. proposed the
first efficient lattice-based IBE scheme [10]. They based their
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construction on the IBE scheme by Gentry et al. [18], using a
variant of NTRU lattices. The underlying security problems
are the NTRU problem for key generation and RLWE for
encryption. The ciphertexts, therefore, have more practical
sizes than previous constructions, for example, 30 kilobits for
192-bit classical security. The use of structured lattices also
allowed for implementation optimisations such as the NTT,
as demonstrated by [32], whose software performance of the
DLP IBE outperformed that of the ECC-based Boneh-Franklin
IBE scheme [33].

Bonsai Trees HIBE: Cash et al. [11] proposed the use of
Bonsai trees to create a hierarchical structure for IBE. They
model the hierarchical network of users as a tree, whereby
arborists, or sub-key-managers, have control over the sub-trees
and have the authority to delegate user private keys. Delegation
requires the knowledge of a trapdoor basis of the lattice at that
level. During the process whereby keys are delegated down the
tree, the lattice is extended, and therefore its dimension and
hence the key and ciphertext sizes increase. The public key size
is of O(d3kn2) and ciphertext size is of O(d3kn) at depth d,
for security parameter n and hash output length k. The root
authority has control of the whole tree by knowing the short
trapdoor basis for the master root lattice. The security of this
HIBE scheme is based on LWE over standard lattices.

III. IMPROVED LATTE HIBE SCHEME

In this Section, we demonstrate our optimised LATTE HIBE
scheme. First, we provide a summary of our proposed LATTE
design optimisations compared to the ETSI report [13] in
Sec. III-A. Then, we present each of the optimised LATTE
algorithms in detail in Sec. III-B. Finally, we summarise the
difference in security parameters compared to [13] and discuss
the security impact in Sec. III-C.

A. Summary of Proposed Design Optimisations

For the optimised LATTE scheme presented in this Section
and used in our software design and implementation, features
of the FALCON [15] and the MODFALCON [17] signature
schemes were utilised. This is the first time these features
have been considered in LATTE, and so the rationale for
this is expanded on in Sec. III-B. The currently presented
LATTE in this Section also improves on the efficiency of the
original proposal [13] by reducing the module dimension of
the extracted secret keys by 1, by extending a similar approach
used in the DLP IBE [10]. More concretely, we eliminate
the random polynomial B ←$ Rq in the public key of the
original LATTE [13] by modifying the equation satisfied by
the decryption key at level ℓ from the original rank ℓ + 2
module relation over Rq:

t0 + t1 · h+ t2 ·A1 + · · ·+ tℓ ·Aℓ−1 + tℓ+1 ·Aℓ = B, (2)

where Ai = H(ID1| . . . |IDi) for 1 ≤ i ≤ ℓ, to the following
rank ℓ+ 1 relation over Rq:

t0 + t1 · h+ t2 ·A1 + · · ·+ tℓ ·Aℓ−1 = A′ℓ, (3)

where A′ℓ = HE(ID1| . . . |IDℓ) := H("E"|ID1| . . . |IDℓ), and
E is used to distinguish between H used in Extract and

Delegate algorithms from here on. Furthermore, we remove the
need for the Extract algorithm to be stateful. This is achieved
by deriving randomness deterministically from the ID (see
Sec. IV-D for discussion).

B. Scheme Description

The full pseudocode for LATTE KeyGen, Delegate, Extract,
Encrypt, and Decrypt are presented in Alg. 1–Alg. 5.

KeyGen: The KeyGen algorithm (Alg. 1) generates an
NTRU-type basis. This is performed by sampling the short
basis polynomials f ,g from a Gaussian distribution. Opera-
tions are over the polynomial ring Rq = Zq[x]/⟨xN + 1⟩, a
variant of the NTRU ring. For the purposes of optimisation in
the implementation, variables are stored in NTT representation
where appropriate. The Gram-Schmidt norm of the associated
basis is computed to ensure smallness allowing for short
private keys to be delegated to the next level. If not, the
polynomials are re-sampled. The rest of the basis, polynomials
F,G, are computed so that they satisfy the NTRU equation,
fG−gF = q mod xN +1. The solution to this is not unique,
but any solution suffices provided it is short enough. This
is taken care of by reduction of the coefficients. The public
key consists of polynomial h = g · f−1. The master public
basis B0 and private basis S0 at level 0 are implicit in the
polynomial master keys, as follows:

B0 =

[
−A(h) IN
qIN 0N

]
, S0 =

[
g −f
G −F

]
.

Instead of the resultant-based algorithm used by the original
LATTE [13], we adopt the NTRUSolve algorithm from FAL-
CON [15] to find a solution to the NTRU equation fG−gF = q
mod xN +1, for a given f and g. This algorithm makes use of
the “tower of rings” structure, which utilises the fact that com-
putations over polynomials f ,g ∈ C[x]/⟨xN/2+1⟩ are equiv-
alent to computations over f(x2),g(x2) ∈ C[x]/⟨xN + 1⟩.
When N = 2k, for some k ∈ Z, this can be applied repeatedly
so that computations are performed over polynomials of degree
1. This is advantageous in terms of both memory usage, and
speed [16].

Delegate: The Delegate process (Alg. 2) creates a public/se-
cret key pair for the next level in the tree, allowing it to become
a sub-key management service (sub-KMS). Suppose the KMS
wishes to delegate a key from level ℓ−1 to level ℓ. Then it can
extend the public basis of the user at level ℓ, denoted by Bℓ

by placing Aℓ = H(ID1| . . . |IDℓ), where H : {0, 1}∗ → ZN
q

is a hash function, to the beginning of the first column and
filling the extra row with IN and 0N , as shown below. The
dimension of the new matrix becomes (ℓ+ 2)N × (ℓ+ 2)N .
The corresponding private basis, Sℓ, can then be generated.
The ith row (si,0, si,1, . . . , si,ℓ+1) of the private basis is a
short solution to the equation:

si,0 + si,1 · h+ si,2 ·A1 + · · ·+ si,ℓ+1 ·Aℓ = 0 mod q.

This can be found by sampling short vectors from the
(ℓ − 1)-level lattice using its secret basis, with centre vector
(−si,ℓ+1 · Aℓ,0, . . . ,0), where si,ℓ+1 is sampled from a
discrete Gaussian distribution Dσℓ

over R. A check is made
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Algorithm 1 The LATTE KeyGen algorithm.
Input: N, q, σ0.
Output: S0 ∈ R2×2

q ,h ∈ Rq .
1: function KeyGen
2: f ,g← DN

σ0
.

3: ν ← max
(
∥g,−f∥,

∥∥∥( q·f∗
f ·f∗+g·g∗ ,

q·g∗

f ·f∗+g·g∗

)∥∥∥).

4: if ν > σ0 ·
√
2N then

5: goto Step 2.
6: end if
7: F,G← NTRUSolveN,q(f ,g).
8: if NTRUSolve is aborted then
9: goto Step 2.

10: end if
11: if f is not invertible on Rq then
12: goto Step 2.
13: end if
14: h← g · f−1 mod q in NTT domain.
15: return S0 =

(
g −f
G −F

)
,h.

16: end function

to ensure the GS-norm of the sampled lattice vector is within
the bound σℓ ·

√
(ℓ+ 2)N to ensure the delegated basis will

be of sufficient quality.
To sample such short vectors, instead of the Klein-GPV

sampler [18] used by the original LATTE [13], we adopt the
ffSampling algorithm (Alg. 6) from FALCON [15]. This algo-
rithm utilises the ffLDL algorithm [34] to perform the LDL∗

decomposition in the FFT domain for the ring C[x]/⟨xN +1⟩,
where N is a power of 2. Readers may refer to the FALCON
specification [15] for subroutines (splitfft, mergefft, etc.) used
by these algorithms. Compared to the Klein-GPV sampler with
O(N2) time and space requirements, the ffSampling algorithm
has quasilinear time and space complexities in terms of the
ring dimension N [34].

The remainder of the Delegate algorithm, in which the
bottom row (sℓ+1,0, sℓ+1,1, . . . , sℓ+1,ℓ+1) is generated, is a
higher-dimensional analogue of LATTE KeyGen. The determi-
nant of the resulting matrix is q. The final row is then reduced
similarly to the KeyGen component to ensure the basis is of the
required quality for further delegation. Generalising to level
ℓ, the public basis Bℓ and the private basis Sℓ, respectively
become:

Bℓ =


−A(Aℓ) 0N . . . IN

...
...

. . .
...

−A(h) IN . . . 0N

qIN 0N . . . 0N

 ,

and Sℓ = [si,j ], 0 ≤ i, j ≤ ℓ+ 1.
To generate the bottom row of the delegated basis for

lattice dimension larger than 2N , instead of the resultant-
based algorithm used by the original LATTE [13], we adopt
the following techniques from MODFALCON [17]. Let Sℓ =(

vT M
Gℓ F′

ℓ

)
be the delegated basis, where Gℓ = sℓ+1,0,

F′ℓ = (sℓ+1,1, . . . , sℓ+1,ℓ+1), v = (s0,0, s1,0, . . . , sℓ,0),
and M = (si,j) for 0 ≤ i ≤ ℓ and 1 ≤ j ≤
ℓ + 1. By Schur complement, if M is invertible, we

have: det(Sℓ) = det(Gℓ − F′ℓM
−1vT) det(M) = (Gℓ −

F′ℓM
−1vT) det(M) = Gℓ det(M)−F′ℓadj(M)vT. Since one

can choose (Gℓ,F
′
ℓ) such that det(Sℓ) = q when filling the

bottom row of Sℓ, we assume F′ℓ have the form (Fℓ,0, . . . ,0).
We have det(Sℓ) = det(M) ·Gℓ − Fℓ · u0 where u0 is the
first coordinate of u = adj(M) ·vT. In order to fill the bottom
row (sℓ+1,0, . . . , sℓ+1,ℓ+1) of Sℓ, if M is invertible, we can
use the same NTRUSolve algorithm as in LATTE KeyGen to
find Fℓ,Gℓ such that det(M) ·Gℓ−Fℓ ·u0 = q, and resample
when det(M) = 0.

However, since the NTRUSolve algorithm [16] performs the
length reduction based on the size of the coefficients in the
input, the coefficient size of Fℓ,Gℓ will be approximately the
same as det(M),u0. Since M is an (ℓ+1)×(ℓ+1) sub-matrix
of Sℓ with coordinate sizes being in the order of q among each
element, the size of coefficients of det(M), u0, Fℓ, and Gℓ

is in the order of qℓ+1. To make the infinity norm of Sℓ less
than q, we employ length reduction using Cramer’s rule.

Extract: In the LATTE Extract algorithm (Alg. 3), the user
private key is a short solution (t0, t1, . . . , tℓ) to:

t0 + t1 · h+ t2 ·A1 + · · ·+ tℓ ·Aℓ−1 = Aℓ mod q, (4)

where Ai = H(ID1| . . . |IDi) for 1 ≤ i ≤ ℓ. Similar to
Delegate, this is found using the ffSampling over the short
basis from the previous level, instead of the Klein-GPV
sampler used by the original LATTE [13].

Encrypt: Let µ,Z ∈ {0, 1}256. An extended version of
traditional RLWE encryption [35] (Alg. 4) is used for cipher-
ing messages. A random seed is sampled and used together
with a Key Derivation Function (KDF) to one-time-pad the
message µ. The seed is encoded2 and then encrypted using
RLWE and sent. The ciphertext consists of the encrypted mes-
sage Z and deterministically sampled ephemeral public keys
C1, . . . ,Cℓ,Ch. This is a variant of the Fujisaki-Okamoto
(FO) transform [36] to protect against invalid ciphertexts.

Decrypt: The Decrypt process (Alg. 5) takes the user’s
private key to decrypt the seed and reconstruct the message.
Using definitions of Ch,Ci, 1 ≤ i ≤ ℓ and Eq. (4), we have

V = eℓ +m− t1 · eh − t2 · e1 − · · · − tℓ · eℓ−1 + t0 · e.

By construction, the error and private key terms are small
enough so that m is decoded successfully to recover the seed.
From the seed, the message µ′ is straightforwardly recovered
from Z, which is sent as part of the ciphertext.

To accelerate the LATTE Encrypt and Decrypt speed, we
sample the ephemeral keys e, e1, . . . , eℓ, eh from a binomial
distribution with center 0 and small standard deviation σe =
2.0 instead of Dσe

used by the original LATTE [13]. Sampling
from a binomial distribution is much faster than sampling
from Dσe , and the impact on security is negligible in the
encryption [37].

C. Security Parameters

There are three main differences in terms of the security pa-
rameters compared to the ETSI report [13]: (1) We find that the

2The Encode/Decode are the same as described in [13].
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Algorithm 2 The LATTE Delegate algorithm (from level ℓ−1
to ℓ).
Input: N, q, σℓ,Sℓ−1, H : {0, 1}∗ → ZN

q , IDℓ.
Output: Sℓ ∈ R(ℓ+2)×(ℓ+2)

q .
1: function Delegate
2: Aℓ ← H(ID1| . . . |IDℓ) in NTT domain.
3: Tℓ−1 ← ffLDL(FFT(Sℓ−1 · S∗ℓ−1)).
4: For each leaf of Tℓ−1, leaf.value← σℓ/

√
leaf.value.

5: seed←$ {0, 1}256.
6: for i ∈ {0, . . . , ℓ} do
7: si,ℓ+1 ← DN

σℓ
.

8: t← (−si,ℓ+1 ·Aℓ,0, . . . ,0) · S−1ℓ−1.
9: z← FFT−1(ffSampling(t, Tℓ−1, seed)).

10: (si,0, . . . , si,ℓ)←⌊z̄⌉, where z̄← (t− z)Sℓ−1.
11: if ∥(si,0, . . . , si,ℓ+1)∥>

√
(ℓ+ 2)N · σℓ then

12: Resample.
13: end if
14: end for
15: Set M = (si,j), for 0 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ+ 1.
16: if M is not invertible then
17: goto Step 4.
18: end if
19: u← adj(M) · (s0,0, s1,0, . . . , sℓ,0)T.
20: (Fℓ,Gℓ) ← NTRUSolveN,q(det(M),u0), where u0

is the first coordinate of u.
21: if NTRUSolve is aborted then
22: goto Step 4.
23: end if
24: (sℓ+1,0, . . . , sℓ+1,ℓ+1)← (Gℓ,Fℓ,0, . . . ,0).
25: Set C = (ci,j), where ci,j = sj,0 · s∗i,0 + · · ·+ sj,ℓ+1 ·

s∗i,ℓ+1, 0 ≤ i, j ≤ ℓ.
26: Let k = (ki)0≤i≤ℓ be the solution to C · k = d. By

Cramer’s rule, ki =
det(Ci(d))

det(C) , where Ci(d) is the matrix
C with its ith column replaced by di = sℓ+1,0 ·s∗i,0+· · ·+
sℓ+1,ℓ+1 · s∗i,ℓ+1.

27: for i ∈ {0, . . . , ℓ} do
28: (sℓ+1,0, . . . , sℓ+1,ℓ+1) = (sℓ+1,0, . . . , sℓ+1,ℓ+1) −
⌊ki⌉ · (si,0, . . . , si,ℓ+1).

29: end for
30: return Sℓ = (si,j), for 0 ≤ i, j ≤ ℓ+ 1.
31: end function

TABLE I
LATTE σℓ AND DECRYPTION FAIL. PROB.

Set σℓ Fail. Prob.
ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2

LATTE-1 106.2 5513.3 - 2−191 -
LATTE-2 106.2 7900.2 - 2−380 -
LATTE-3 6777.6 351968.4 22559988.0 2− inf 2−126

LATTE-4 9583.7 713167. 64997288.2 2− inf 2−246

discrete Gaussian statistical parameter ε = 2−22.5/(ℓ + 1)N
used by σℓ in [13] was miscalculated. The KL-divergence
between the sampled distribution and the ideal discrete Gaus-
sian distribution is bounded by approximately 8((ℓ+1)N)2ε2.
Choosing ε = 2−25.5/(ℓ + 1)N ensures the divergence is

Algorithm 3 LATTE Extract algorithm (from level ℓ − 1 to
user at level ℓ).
Input: N, q, σℓ,Sℓ−1, H : {0, 1}∗ → ZN

q , G : {0, 1}∗ →
{0, 1}256, IDℓ.

Output: t1, . . . , tℓ ∈ Rq .
1: function Extract
2: A′ℓ ← H("E"|ID1| . . . |IDℓ) in NTT domain.
3: seed← G(ID1| . . . |IDℓ).
4: Tℓ−1 ← ffLDL(FFT(Sℓ−1 · S∗ℓ−1)).
5: For each leaf of Tℓ−1, leaf.value← σℓ/

√
leaf.value.

6: t← (A′ℓ,0, . . . ,0) · S
−1
ℓ−1.

7: z← FFT−1(ffSampling(t, Tℓ−1, seed)).
8: (t0, t1, . . . , tℓ)← ⌊z̄⌉, where z̄← (t− z) · Sℓ−1.
9: return t1, . . . , tℓ ∈ Rq in NTT domain.

10: end function

Algorithm 4 The LATTE Encrypt algorithm (at level ℓ).
Input: N, q, σe,h,KDF, IDℓ, µ ∈ {0, 1}256.
Output: Z ∈ {0, 1}256,C1, . . . ,Cℓ,Ch ∈ Rq .

1: function Encrypt
2: seed←$ {0, 1}256.
3: Z ← µ⊕ KDF(seed).
4: Sample e, e1, . . . , eℓ, eh from a binomial distribution

with center 0 and standard deviation σe using the seed
KDF(seed|Z).

5: for i ∈ {1, . . . , ℓ− 1} do
6: Ci ← Ai · e+ ei, where Ai = H(ID1| . . . |IDi) in

NTT domain.
7: end for
8: m← Encode(seed).
9: Cℓ ← A′ℓ · e + eℓ + m, where A′ℓ =

H("E"|ID1| . . . |IDℓ) in NTT domain.
10: Ch ← h · e+ eh.
11: return Z ∈ {0, 1}256,C1, . . . ,Cℓ,Ch ∈ Rq in NTT

domain.
12: end function

at most 2−48, as specified by the proposed LATTE specifi-
cation [13]. If the sampled distribution has a KL-divergence
of 2−48 from the ideal distribution, then using the sampler at
most 247 times will only reduce the security of the scheme by
up to one-bit [38]. However, in [13], the ε = 2−22.5/(ℓ+1)N
would only ensure the KL-divergence is at most 2−42. (2) To
accommodate the use of the FACCT sampler in KeyGen, as
described in Sec. V, we modify the value of σ0, as displayed
in Table I. This also has an effect on the subsequent σℓ, and
therefore the difficulty of the underlying lattice problems and
success of each attack. (3) As our redesign of LATTE discards
the polynomial B ∈ Rq in the master public key and reduces
the module dimension of the user private key, as described
in Sec. III-A, we update the attack costings accordingly (see
Appendix G). First, it reduces the decryption failure rate, as
there is one less error term. The best user key recovery attack
reduces to the Closest Vector Problem in the master lattice, so
the attack is on the same lattice, but it demands a marginally
shorter vector to be successful. We follow the same target
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Algorithm 5 The LATTE Decrypt algorithm (at level ℓ).
Input: N, q, σe,h,KDF, IDℓ, Z, (C1, . . . ,Cℓ,Ch), t.
Output: µ′.

1: function Decrypt
2: V← Cℓ −Ch · t1 −C1 · t2 − · · · −Cℓ−1 · tℓ.
3: seed′ ← Decode(V).
4: Sample e′, e′1, . . . , e

′
ℓ, e
′
h from a binomial distribution

with center 0 and standard deviation σe using the seed
KDF(seed′|Z).

5: for i ∈ {1, . . . , ℓ− 1} do
6: C′i ← Ai · e′ + e′i, where Ai = H(ID1| . . . |IDi)

in NTT domain.
7: end for
8: m′ ← Encode(seed′).
9: C′ℓ ← A′ℓ · e′ + e′ℓ + m′, where A′ℓ =

H("E"|ID1| . . . |IDℓ) in NTT domain.
10: C′h ← h · e′ + e′h.
11: Check (C′1, . . . ,C

′
ℓ,C

′
h) agrees with

(C1, . . . ,Cℓ,Ch), else return ⊥.
12: return µ′ = Z ⊕KDF(seed′).
13: end function

Algorithm 6 The ffSampling algorithm [15].
Input: t = (t0, t1, . . . , tℓ) in FFT format, tree T , seed ∈
{0, 1}256.

Output: z = (z0, z1, . . . , zℓ) in FFT format.
1: function ffSampling(t, T )
2: if n = 1 then
3: σ′ ← T.value.
4: Sample z0 ← Dσ′,t0 using seed.
5: Sample z1 ← Dσ′,t1 using seed.
6: return z = (z0, z1).
7: else
8: m← number of children of T .
9: for j ← m− 1, . . . , 0 do

10: Tj ← j-th child of T .
11: t′j ← tj +

∑m−1
i=j+1(ti − zi) · T.valuei,j .

12: t′j ← splitfft(t′j).
13: z′j ← ffSampling(t′j , Tj).
14: zj ← mergefft(z′j).
15: end for
16: return z = (z0, z1, . . . , zm).
17: end if
18: end function

security levels as those proposed in the ETSI report and did
not revise them based on the current recommended security
levels.

IV. SECURITY ANALYSIS

A recurring concern around lattice-based cryptography is
the precision requirements of the implementation, in particular,
of the discrete Gaussian sampler. As noted in [39], the
precision used is often excessive, leading to slow and im-
practical implementations. Traditional measures of statistical
distance have recently been substituted for RD or Kullback-
Leibler (KL) divergence to reduce memory and computational

resources whilst maintaining security. In this Section, we
make use of the RD argument initially proposed in [14] to
answer the question of how low we can allow the precision
of our implementation to be, without allowing an adversary to
detect any distinction between the actual distribution and the
ideal distribution of a true Gaussian sample over the lattice,
hence maintaining our claimed security levels. In particular, we
analyze the security impact on LATTE on two points. First, the
finite precision errors in the floating-point arithmetic. Second,
in the Z-samplers used in our implementation of the Extract
and Delegate algorithms. Note that these algorithms are based
on the ffSampling lattice Gaussian algorithm. For this, we
follow the following steps:

Step 1 – RD Security Reduction: We give a security
reduction (Sec. IV-A) based RD analysis to relate the security
of finite precision LATTE to the security of its ideal (infinite
precision) implementation, and bounds on the errors in the
centre and standard deviation parameters of Z Gaussian sam-
ples used in lattice Gaussian ffSampling algorithm.

Step 2 – RD Between Z-Gaussians with Errors in
Parameters: To support the above security reduction, we give
a tight Lemma (in Sec. IV-B) giving a bound on RD between
the output distribution of Z Gaussian samplers with errors in
the centre and standard deviation parameters, extending the
sharp RD results of [14].

Step 3 – Statistical Model for ffSampling Precision Er-
rors: For use with the above security reduction, we introduce
and empirically verify (in Sec. IV-C) a heuristic statistical
model to compute upper bounds on the finite precision er-
rors in the lattice Gaussian ffSampling algorithm. We give
empirical evidence for the validity of our model, use it to
compute estimated error bounds for LATTE parameter sets,
and apply these with the above security reductions to evaluate
the security impact of precision errors on LATTE.

A. RD Security Reduction

The security reduction to establish the ID-IND-CCA of the
IDEAL (infinite precision) LATTE HIBE scheme is summarised
in [13, Annex C] and proceeds in two steps. Here, we show
how to obtain a security reduction that takes into account and
quantifies the security impact of the REAL (finite precision)
implementation of LATTE. To do so, we introduce an addi-
tional middle step (Step 2 below) in the security reduction
steps for LATTE, and so we end up with the following three
security reduction steps:

Step 1 – FO Transform: This generic reduction trans-
forms any ID-IND-CCA attack against REAL (finite precision)
LATTE to an ID-OW-CPA (chosen ID one-wayness against
chosen plaintext attacks) of REAL (finite precision) LATTE′,
assuming the random oracle model for the LATTE KDF hash
function. Here, LATTE′ denotes the ID-OW-CPA encryption
scheme underlying LATTE: the encryption/decryption algo-
rithms of LATTE can be obtained by applying the tag-based
FO KEM-DEM transform of [40] to the LATTE′ scheme. As
pointed out in [13, Annex C], this reduction step follows
directly from an (ID-based variant) of the composition of [40,
Theorem 3.1, Theorem D.1].
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Step 2 – RD – REAL to IDEAL: This presented reduction
(in Lemma IV.1 below, with proof in Appendix A) trans-
forms any ID-OW-CPA attack against REAL (finite precision)
LATTE′ to an ID-OW-CPA attack against IDEAL (infinite
precision) LATTE′, by using RD analysis techniques [14], [23].
For the latter RD reduction to apply, we exploit the fact that the
one-wayness notion ID-OW-CPA is a search problem rather
than a decision problem.

Step 3 – ID-OW-CPA to NTRU/RLWE: This reduction
transforms any attack against IDEAL LATTE′ ID-OW-CPA
security into attacks against the NTRU or RLWE problems,
assuming the random oracle model for the ID hash function H .
As pointed out in [13, Annex C], this reduction is a variant of
the Bonsai tree reduction presented in [41, Theorem 5.2], with
a minor modification for our improved LATTE construction
(see Sec. IV-D for more details).

We remark that the security reduction analysis discussed
above is in the classical Random Oracle Model (ROM) [42].
A security analysis of LATTE in the Quantum Random Oracle
Model (QROM) is out of the scope of this work; QROM
analysis results on Fujisaki-Okamoto transform in the QROM
(e.g. [43], [44]) and GPV-IBE [45] can serve as starting points
for such an analysis. However, as in the case of the NIST
PQC standardised encryption scheme Kyber [46], the existing
QROM security reductions for FO are not tight and therefore
are unlikely to be useful for setting practical parameters.

The following result fills the missing Step 2 above, where
we apply Lemma IV.1 with the ID-OW-CPA attack game and
the event E being the winning of this game by the adversary,
It also quantifies the security impact of finite precision in
the discrete integer Gaussian samplers and the floating-point
arithmetic used in the FFT lattice Gaussian sampler. The FFT
lattice Gaussian sampler itself is integrated inside the LATTE′

Delegate algorithm and Extract algorithm as well. The latter
security impact is expressed as a function of upper bounds δUσi

and ∆U
ti on the relative (resp. absolute) finite precision errors

in the integer discrete Gaussian standard deviation parameters
σ(i) (resp. Gaussian centre parameters t(i)) used inside the
Delegate and Extract algorithms, and an upper bound ∆U

z on
the absolute error in the final output value of the FFT sampling
algorithm. We also allow for a negligible probability pU (over
the randomness of the key generation and discrete Gaussian
samplers) that the above error upper bounds fail to hold. The
next subsection explains our statistical model and results for
estimating the latter error upper bounds and the probability
pU for the chosen implementation finite precision.

Consider an attack game REAL against LATTE′ with
depth parameter d where the attack algorithm A is run on
input a LATTE′ master public key h (where (S0, h) ←
KeyGen(N, q, σ0)), makes at most QD total number of
queries to the Delegate algorithm and QE queries to the
Extract algorithm implemented with:

• A finite precision pD 1-dimensional Discrete Gaussian Z-
sampling algorithm in Lines 4–5 of ffSampling in Alg. 6
outputting samples from a distribution D̄σ,t within RD
of order a at most B from the ideal Discrete Gaussian
distribution Dσ,t i.e. Ra(D̄σ,t,Dσ,t) ≤ B.

• A finite precision pfp floating-point arithmetic for Dele-
gate, Extract, and Lines 11–14 of ffSampling in Alg. 6.

Let IDEAL denote the attack game against the ideal implemen-
tation of LATTE′ where both pD and pfp are infinite precision.
Let (t(i), σ(i)) denote the center and std dev. parameter (resp.)
for the i’th query to the 1-dim. Z Gaussian sampler (i.e. at
Line 2 of KeyGen in Alg. 1, Line 7 of Delegate in Alg. 2,
Line 4 or 5 of ffSampling in Alg. 6) in the game IDEAL,
and let z̄(j) denote the value of z̄ in the output of the j’th
query to FFT−1(ffSampling) in the game (i.e. at Line 9 of
Delegate in Alg. 2 or Line 7 of Extract in Alg. 3). Suppose that,
except for an event BU , the absolute errors ∆t(i) in centers
t(i) relative to σ(i) (i.e. ∆t(i)/σ

(i)) are upper bounded by ∆′U
t(i)

and relative errors δσ(i) in standard deviations σ(i) are upper
bounded by δU

σ(i) for all 1 ≤ i ≤ MZ, and the infinity-norm
absolute errors ∆z̄(j) in z̄(j) is upper bounded by ∆U

z̄ < 1/2
for all 1 ≤ j ≤ Mf . The above errors are computed with
respect to the same game with finite precision floating-point
arithmetic. Here, MZ ≤ K · (QE + (d+ 1) ·QD) + 2 denotes
the total number of queries to the 1-dim. Z Gaussian sampler
in the game, K denotes the number of Z sampler calls of each
call of ffSampling in Alg. 6, and Mf ≤ QE + (d + 1) · QD

denotes the number of calls of ffSampling in the game.

Lemma IV.1. Let MZ be as above. Let also τ, ϵ > 0, QM :=
exp(τ2/2)/(2MZ) and σ(i) ≥ ηε(Z) for 1 ≤ i ≤ MZ. Let
pU denote the probability of event BU in game IDEAL. Let
E denote any event defined over the view of A, BT := BMZ ,
CT :=

∏
i<MZ

C(i), where C(i) is given by the right hand
side of Eq. (6) in Lemma IV.2 with δσ := δU

σ(i) , ∆′t := ∆′U
t(i)

for 1 ≤ i ≤MZ. Then,

Pr[EIDEAL] ≥
1

CT
·
(
Pr[EREAL]

a/(a−1)

BT
− η

)a/(a−1)

− pU ,

where η := CT (pU + 1/QM )(a−1)/a.

B. RD between Z-Gaussians with errors

This step builds upon unpublished work by Prest [47]. We
will consider the following Gaussians:
• D1 is an ideal Gaussian of standard deviation σ and

center t.
• D2 is a Gaussian of standard deviation σ and center t,

restricted to the interval I = [t− τ · σ, t+ τ · σ].
• D3 is a Gaussian of standard deviation σ̄ and center t̄,

restricted to the interval I .
Now, we present Lemma IV.2 showing for adequate values of
τ, |t̄ − t|/σ, | σ̄σ − 1|, D1 and D3 are close in the RD sense.
The proof appears in Appendix B.

Lemma IV.2. Consider D1, D2, D3, τ as defined above. Sup-
pose that there exist δσ, ε, δ,Q > 0 such that:

1) max(δσ, ε) ≤ δ = o(1);
2) |t̄− t|/σ ≤ ∆′t (bounded absolute error);
3) | σ̄σ − 1| = δσ (bounded relative error);
4) σ ≥ ηε(Z);
5) Q ≤ exp(σ2τ2/2)(2π

√
στ(1− ε)σ);
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TABLE II
LATTE SECURITY IMPACT OF FINITE PRECISION BASED ON EMPIRICAL ERROR ESTIMATION RESULTS FROM OUR STATISTICAL MODEL.

ℓ = 1 ℓ = 2

Set pfp pD lnCK ∆U
z̄ QC

max QC
U QB

max lnCK ∆U
z̄ QC

max QC
U QB

max

LATTE-1 53 48 2−46 2−23 246 239 274 - - - - -
LATTE-2 53 48 2−42 2−21 242 233 272 - - - - -
LATTE-3 113 96 2−156 2−71 2156 2149 2171 2−95 2−35 295 288 275

LATTE-4 113 96 2−149 2−68 2149 2142 2169 2−85 2−30 285 277 266

TABLE III
EMPIRICAL RESULTS OF ACTUAL ARITHMETIC ERRORS.

ℓ = 1 ℓ = 2

Set pfp lnCK ∆U
z̄ lnCK ∆U

z̄

LATTE-1 53 2−46 2−22 - -
LATTE-2 53 2−40 2−20 - -
LATTE-3 113 2−155 2−70 2−94 2−34

LATTE-4 113 2−148 2−67 2−84 2−29

6) num(a, b, c) := |a2+2a
√
2πb

1−b +(2c+c2)(1+ 2πb
1−b )|/2(1−

c2);
7) ub := 2/Q+ num(∆′t, ε, δσ) +

1
1−δσ · (τ∆

′
t + τ2δσ).

Then the RDs of D3 and D2 (resp. D1) is:

Ra(D3;D2) ≲ 1 +
a · ub2

2
. (5)

Ra(D3;D1) ≲ 1 +
1

Q
+

a · ub2

2
. (6)

C. Statistical Model for ffSampling Precision

In this Section, we present a statistical model to estimate
bounds for floating-point arithmetic errors in LATTE ffSam-
pling algorithm using our chosen implementation floating-
point precision for the LATTE parameter sets, and we use those
bounds to analyse the security impact of those errors on our
LATTE implementation by applying Lemma IV.1.

Our statistical model makes the heuristic but natural as-
sumption that the floating-point error introduced in each arith-
metic operation in the ffSampling algorithm can be modelled
as an independent zero-centered continuous Gaussian random
variable, and the model estimates the maximum standard
deviations δσ,∆

′
t,∆z̄ of the errors δσ(i) , ∆′t(i) , ∆z̄(j) over all

Z-sampler query indices 1 ≤ i ≤ MZ and ffSampler query
indices 1 ≤ j ≤ Mf in the IDEAL game of Lemma IV.1 by
propagating the standard deviations of the independent errors
through the ffSampling algorithm arithmetic steps, assuming
uniformly random input matrices Ai ∈ Rq at the input to
the Extract and Delegate algorithms. We explain at the end of
this Section how we apply the standard deviations in the Z
sampler queries to derive the security impact of floating-point
errors on LATTE. We remark that the use of the random oracles
H and G to hash the attacker’s choice of identities queried
to Extract or Delegate algorithms to derive the ffSampling
input ring elements Ai uniformly at random in Rq and
seed for Extract uniformly random supports our statistical
(rather than adversarial) model of floating-point errors since
the attacker cannot control the randomness of H and G
and the Delegate, Extract and Key Generation algorithms. A

similar heuristic statistical model is commonly used in the
context of evaluating the propagation of LWE errors via a
circuit computed homomorphically with Fully Homomorphic
Encryption schemes [48].

We now present the details of our statistical model for
estimating the standard deviations of errors, i.e. δσ , ∆′t, and
∆z̄. For a complex number a = µR+iµI , with µR, µI ∈ R, let
us denote the absolute error of the real part µR as σR and the
absolute error of the imaginary part µI as σI , respectively. We
assume the real and imaginary parts of every complex number
in our statistical model are independent Gaussian variables,
e.g. for complex number a = µR + iµI , Re(a) follows the
normal Gaussian distribution N (µR, σ

2
R) and Im(a) follows

the normal distribution N (µI , σ
2
I ), respectively, no matter

whether Re(a), Im(a) are linear combinations of one or more
independent normal variables. Therefore, we use the tuple
(µR, σ

2
R, µI , σ

2
I ) to represent a complex number with errors.

Definition IV.1 (AddB, SubB, and MultB). For
independent a = (µa,R, σ

2
a,R, µa,I , σ

2
a,I) and

b = (µb,R, σ
2
b,R, µb,I , σ

2
b,I), let us define AddB(a, b) as

(µa,R+µb,R, σ
2
a,R+σ2

b,R, µa,I+µb,I , σ
2
a,I+σ2

b,I), SubB(a, b)
as (µa,R − µb,R, σ

2
a,R + σ2

b,R, µa,I − µb,I , σ
2
a,I + σ2

b,I), and
MultB(a, b) as: (µa,Rµb,R−µa,Iµb,I , µ

2
a,Rσ

2
b,R+µ2

b,Rσ
2
a,R+

σ2
a,Rσ

2
b,R + µ2

a,Iσ
2
b,I + µ2

b,Iσ
2
a,I + σ2

a,Iσ
2
b,I , µa,Rµb,I +

µa,Iµb,R, µ
2
a,Rσ

2
b,I + µ2

b,Iσ
2
a,R+σ2

a,Rσ
2
b,I + µ2

a,Iσ
2
b,R +

µ2
b,Rσ

2
a,I + σ2

a,Iσ
2
b,R).

Definition IV.2 (DivB [49]). Let a = (µa,R, σ
2
a,R, µa,I , σ

2
a,I)

and b = (µb,R, σ
2
b,R, 0, 0). Assuming Re(a),

Im(a), and b are independent normal variables
such that

√
σ2
a,R/µ

2
a,R + σ2

b,R/µ
2
b,R < 1 and√

σ2
a,I/µ

2
a,I + σ2

b,R/µ
2
b,R < 1, we define DivB(a, b) as:(

µa,R

µb,R
,
µ2
a,R

µ2
b,R

(
σ2
a,R

µ2
a,R

+
σ2
b,R

µ2
b,R

)
,
µa,I

µb,R
,
µ2
a,I

µ2
b,R

(
σ2
a,I

µ2
a,I

+
σ2
b,R

µ2
b,R

))
.

Definition IV.3 (AbsSqrB). For a = (µa,R, σ
2
a,R, µa,I , σ

2
a,I),

assuming Re(a) and Im(a) are independent normal variables,
let us define AbsSqrB(a) as AddB((Re(a))2, (Im(a))2).

We can use the above absolute arithmetic error bound
approximations to rewrite our optimised ffLDL in Alg. 7 in
Sec. V-A and ffSampling in Alg. 6 in Sec. III-B, in order
to estimate δσ and ∆′t, respectively. For δσ , we first use the
ffLDLB algorithm in Alg. 8 in Appendix H to estimate the
absolute errors of the leaf values (real numbers) in ffLDL
tree T for a given Gram matrix G, i.e. the standard deviation
σleaf,R. Since σ for the 1-D integer Gaussian sampler is
computed by σℓ/

√
µleaf,R during tree normalisation, assuming

the relative error of the floating-point arithmetic is u, we have
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the following arithmetic error bound:

δσ ≤ max
all leaves

 (1 + u) (1+u)σℓ

(1−u)
√

µleaf,R−σleaf,R

σℓ√
µleaf,R

− 1


=

(1 + u)2

1− u

√
max

all leaves

µleaf,R

µleaf,R − σleaf,R
− 1.

Similarly, we can use ffSamplingB algorithm in Alg. 9 in
Appendix H to output ∆′t for a given vector t and ffLDL
tree T . In addition, we can compute the rounding errors ∆z̄

i.e. Line 10 in Delegate in Alg. 2 and Line 8 in Extract in
Alg. 3, by combining the FFT/FFT−1 errors of the input and
the errors σz,R, σz,I of z computed by ffSamplingB. We also
use a similar statistical modelling approach to estimate the
errors of FFT/FFT−1 for a given vector a.

Let CK :=
∏

i<K C(i), where K,C(i) are defined in
Lemma IV.1. Here we show the empirical results of lnCK

and the error ∆z̄ estimated by our statistical model. For the
target floating-point precisions used by our implementation
of the LATTE scheme (see Sec. VI for the rationale behind
the chosen precision), we compute the errors for 100 random
(S, t) pairs, where S is the basis and t is the input of the
ffSampling in Alg. 6. The lnCK and ∆U

z̄ among these 100
iterations are shown in Table II. To provide empirical evidence
for supporting the accuracy of our statistical model, for the
same 100 pairs of (S, t), we also give the actual arithmetic
errors between the values computed by using a very high
precision (1024 bits) and the values computed by using the
target precisions. The actual arithmetic errors computed by this
approach are shown in Table III. By comparing the results in
Table II and III, the difference between the actual arithmetic
errors and the estimated errors from our statistical model is
at most 2 bits in this empirical experiment. We will leave
modelling the distributions of (S, t) to make our statistical
model fully deterministic as future works.

Security Impact of Finite Precision Errors: In order to use
the results in Table II with Lemma IV.1 to derive the security
impact of floating-point errors, we first derive corresponding
upper bounds δU

σ(i) := τU ·δσ(i) , ∆′Ut(i) := τU ·∆′t(i) , and ∆z̄ :=
τU ·∆U

z̄ on the absolute value of the errors, where τU is chosen
so that each individual Gaussian error’s absolute value exceeds
its bound with probability ≤ 2−λ, which by the standard Gaus-
sian tail bound is satisfied by setting 2 exp(−τ2/2) ≤ 2−λ.
Therefore by a union bound, all bounds hold except with a
negligible probability pU ≤ (2MZ+Mf )2

−λ, with λ denoting
the target security level. Applying Lemma IV.1 with a := 2λ
we conclude using a/(a − 1) ≈ 1 and pU is negligible, that
Pr[E]IDEAL ≈ 1

BTCT
Pr[E]REAL so that finite precision causes

a bit security loss L ≈ log2(BT ) + log2(CT ) bits. We use
the above floating-point arithmetic upper bounds to compute
an estimate for the maximum number of the delegate/extract
queries QC

max (resp. QB
max) that ensures log2(CT ) ≤ 1 (resp.

log2(BT ) ≤ 1) so that if max(QD, QE) ≤ min(QC
max, Q

B
max),

then L ≤ 2 bits of security are lost overall for our finite
arithmetic precision pfp LATTE implementation versus the
infinite precision implementation. To compute BT ≤ BMZ ,
we use the RD bound B on the COSAC Z sampler RD from

the ideal Z sampler distribution derived in [21] corresponding
to the COSAC sampler precision pD used in our COSAC
implementation (see Sec. V-B for the discussions). The finite
precision security impact results are summarised in Table II.
Note that in Table II, QC

max is computed using the max. error
values δσ(i) and ∆′U

t(i)
estimated by our statistical model over

100 runs with random (S, t) input pairs, whereas QC
U is a more

conservative estimate using tail bounds δU
σ(i) := τU · δσ(i) and

∆′U
t(i)

:= τU ·∆′t(i) on the statistical model error estimates. We
conjecture the former estimates are more accurate, although
our existing security proof in Lemma IV.1 only implies the
latter estimates.

The results show that for LATTE-1 and LATTE-2, 242

Extract and/or Delegate queries can be supported with at most
2 bits of security loss with our 53-bit double-precision floating-
point precision implementation. This should suffice for most
practical applications. For LATTE-3 and LATTE-4, the main
bottleneck in precision is the ∆z̄ bound, but the results indicate
that even reducing the precision by about 25 bits from our
chosen 113-bit arithmetic precision to ≈ 90 bits precision
would suffice for security.

Similarly, we apply our statistical model on the Python
implementation of FALCON3 and compute the numerical re-
sults of QC

max based on the empirical results of lnCK . We
use the Decimal fixed-point number type in Python with
1000 decimal digits and perform the experiment by using
the same seeds as in the Known Answer Tests (KATs).
We get QC

max = 260 for FALCON-512 and QC
max = 256

for FALCON-1024, respectively. We also compute QC
max by

using the upper bounds of δσ,∆
′
t for the whole ffLDL tree

from our statistical model (similar to the approach in the
FALCON specification [15], which uses the empirical error
upper bounds of δσ,∆t for the whole ffLDL tree)4, and get
QC

max = 257 for FALCON-512 and QC
max = 253 for FALCON-

1024, respectively. The results indicate that our error analysis
by using the error upper bounds for each leaf instead of the
whole ffLDL tree has a 3-bit improvement over the approach
in [15]. Although our results are lower than the claimed
number of queries Qs = 264 in the FALCON specification [15],
the empirical error upper bound δσ + ∆t ≤ 2−40 given in
the specification does not satisfy the required upper bound
δσ + ∆t ≤ 2−46 from the authors’ analysis for 264 queries,
and the specification did not discuss the impact of such larger
errors on Qs in detail. In addition, polynomials are converted
between the original domain and the FFT domain in every
polynomial arithmetic operation when computing the Gram
matrix G in the FALCON Python implementation, instead of
only doing the conversions at the beginning/end of the G
computation. These redundant FFTs will also increase the
errors of G and thus increase the errors in the ffLDL tree.

D. ID-OW-CPA security of Improved LATTE

Recall from Sec. III that our improved LATTE scheme
achieves improved efficiency and shorter decryption keys

3https://github.com/tprest/falcon.py
4The computed statistical model results are close to the empirical errors,

see Table II and III.
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output by the Extract algorithm relative to the original LATTE
scheme. This change to Extract necessitates a different strategy
for simulating the Extract oracle at level ℓ in the ID-OW-
CPA security proof (Step 3 in the overview of Sec. IV-A),
compared with the strategy outlined in [13] based on [41,
Theorem 5.2]. In particular, the Extract oracle simulation
at level ℓ must simulate the decryption key t at that level
without knowing the delegation secret key Sℓ−1 at level ℓ−1.
In the original LATTE using Eq. (2), this can be done by
programming Aℓ = H(ID1| . . . |IDℓ) to be a matrix with
an embedded NTRU trapdoor and using the basis extension
method used in the Delegate oracle and its simulation at level
ℓ. But with our improved LATTE Extraction using Eq. (3),
we cannot use a trapdoor for A′ℓ to simulate multiple such
decryption key vectors t; indeed, if this were possible then
subtracting two such distinct short vectors would reveal a short
vector s in the (secret) level ℓ − 1 delegation module lattice
s : s0 + s1h+ · · ·+ tℓAℓ−1 = 0.

Instead, our Extract simulator generates a single such short
vector t using the GPV signature simulation strategy [18],
i.e. programming A′ℓ = HE(ID1| . . . |IDℓ) := t0 + t1h +
· · ·+ tℓAℓ−1 for short discrete Gaussian ti’s sampled by the
Extract simulator. To avoid a contradiction with the different
programming strategy for Aℓ, our modified LATTE uses a
different hash function HE modelled as a random oracle
(obtained from the random oracle H by using the prefix "E")
for computing A′ℓ used in Extract so that H and HE can
be programmed independently. Also, since our programming
strategy for A′ℓ = HE(ID1| . . . |IDℓ) only works for a single
decryption key t, we must make Extract deterministic so that it
returns the same secret key t again if queried again at the same
ID1| . . . |IDℓ; this is the purpose of the hash function G used to
derive the randomness seed for Extract deterministically from
ID1| . . . |IDℓ.

V. IMPLEMENTATION TECHNIQUES

We now discuss the implementation techniques used in
our optimised LATTE scheme. First, we present our faster
novel ffLDL variant for (Mod)NTRU basis in Sec. V-A. Then,
we discuss the integer discrete Gaussian sampling techniques
in Sec. V-B, including the adoption of FACCT [19] and
COSAC [20], [21] samplers in our LATTE implementation.

A. Improved ffLDL Algorithm for NTRU Basis

We observe the following theorem, which can be adopted
to accelerate the computation of the ffLDL algorithm from
FALCON [15], for the Fast Fourier LDL∗ decomposition of
the (Mod)NTRU basis Sℓ in LATTE:

Theorem V.1. Let Sℓ be a (Mod)NTRU basis. In ffLDL tree of
the matrix G = SℓS

∗
ℓ ∈ (C[x]/⟨xN +1⟩)d×d in FFT domain,

we get:
1) Di,i ∈ Rn for some n = 2k ≤ N in every node of the

tree, 0 ≤ i ≤ d− 1.
2)

∏d−1
i=0 (Di,i)j = q2 in the root of tree, 0 ≤ j ≤ N − 1.

3) (D0,0)j(D1,1)j = D′2jD
′
2j+1 for some n = 2k ≤ N/2

in every non-root node of the tree, where D′ ∈ {Di,i}d−1i=0

is from its parent, 0 ≤ j ≤ n− 1.

4) (Di,i)j ∈ R+ for some n = 2k ≤ N in every node of the
tree, 0 ≤ i ≤ d− 1 and 0 ≤ j ≤ n− 1.

Proof: 1) From the original ffLDL algorithm in FAL-
CON [15], we have (D0,0)j = (G0,0)j and (D1,1)j =
(G1,1)j − |(L1,0)j |2(G0,0)j , 0 ≤ j ≤ n − 1, for some input
matrix G in the FFT domain in every node of the tree. In addi-
tion, we have (Di,i)j = (Gi,i)j−

∑
k<i(|(Li,k)j |2(Dk,k)j) at

the root when d > 2. Therefore, we have Di,i ∈ Rn assuming
that Gi,i ∈ Rn for all i ∈ {0, . . . , d−1}. To show that latter as-
sumption is true, we observe that at the root we have the input
G = SℓS

∗
ℓ in the FFT domain, Gi,i ∈ RN for 0 ≤ i ≤ d− 1.

Thus, Di,i ∈ RN for 0 ≤ i ≤ d − 1 at the root. Assuming
Di,i ∈ Rn for 0 ≤ i ≤ d− 1 at an non-leaf node, for its i-th
child, we have the ffLDL input G′0,0 = G′1,1 = d0, where
(d0)j = 1

2 [(Di,i)2j + (Di,i)2j+1] ∈ R for 0 ≤ j ≤ n/2 − 1.
Thus, D′0,0,D

′
1,1 ∈ Rn/2 in this child and we can deduce the

conclusion by induction.
2) By the definition of the LDL∗ decomposition, we have

det(D) =
∏d−1

i=0 Di,i = det(G). Because G = SℓS
∗
ℓ at the

root and the determinant of a (Mod)NTRU basis Sℓ is q, we
have

∏d−1
i=0 (Di,i)j = q2 in the FFT domain at the root for

0 ≤ j ≤ N − 1.
3) For the i-th child of an non-leaf node, we have the

ffLDL input G′ =

(
d0 d1

d∗1 d0

)
for d0,d1 ← splitfft(Di,i),

0 ≤ i ≤ d− 1. By the definition of the LDL∗ decomposition,
for this child, we have D′0,0D

′
1,1 = det(G′) = d2

0 − d1d
∗
1.

Thus, in the FFT domain, we have: (D′0,0)j(D
′
1,1)j =

(d0)
2
j−|(d1)j |2 = ( 12 [(Di,i)2j+(Di,i)2j+1])

2−| 12 [(Di,i)2j−
(Di,i)2j+1]ω

−bitrev(n/2+j)|2, for 0 ≤ j ≤ n/2 − 1.
Since (Di,i)2j , (Di,i)2j+1 ∈ R and |ω| = 1, we get
(D′0,0)j(D

′
1,1)j = (Di,i)2j(Di,i)2j+1.

4) The ffLDL algorithm computes the LDL∗ decomposition
in the FFT domain. Let Sℓ = L·S̃ℓ be the GSO decomposition
of Sℓ ∈ Rd×d. For the input G = SℓS

∗
ℓ at the root, we have

G = LDL∗ where D = S̃ℓS̃
∗
ℓ [34]. Thus, in the FFT domain,

Di,i ∈ (R+)N at the root. Assuming Di,i ∈ (R+)n for some
i ∈ {0, . . . , d−1} at an non-leaf node, for the i-th child of this
node, we have (D′0,0)j(D

′
1,1)j = (Di,i)2j(Di,i)2j+1 ∈ R+

for 0 ≤ j ≤ n/2−1. Because (D′0,0)j = (d0)j =
1
2 [(Di,i)2j+

(Di,i)2j+1] ∈ R+ due to the ffLDL input G′ =
(
d0 d1

d∗1 d0

)
where d0,d1 ← splitfft(Di,i), we get D′0,0,D

′
1,1 ∈ (R+)n/2.

Thus, we deduce the conclusion by induction.
We can utilise Theorem V.1 when computing D in the

ffLDL algorithm, see Alg. 7, for the (Mod)NTRU basis Sℓ in
LATTE with d ∈ {2, 3}: Dd−1,d−1 at the root can be computed
by (Dd−1,d−1)j = q2/

∏d−2
i=0 (Di,i)j for 0 ≤ j ≤ N − 1. For

all the non-root nodes, we can directly compute D0,0,D1,1 by
using (D0,0)j = (G0,0)j and (D1,1)j = D′2jD

′
2j+1/(D0,0)j ,

0 ≤ j ≤ n−1, for some D′ ∈ R2n, G0,0 = d′0 ∈ Rn from its
parent. Since for all 0 ≤ i ≤ d − 1, we have Di,i ∈ Rn

in every node of the tree, D can be computed solely by
using the real number arithmetic, i.e. without complex number
arithmetic. Because every complex number arithmetic compu-
tation contains multiple underlying floating-point arithmetic
operations, by replacing complex number arithmetic with real
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number arithmetic when computing D, we reduce the total
amount of floating-point arithmetic operations. Therefore, this
optimisation technique will accelerate the run-time speed of
the ffLDL algorithm.

Algorithm 7 Optimised ffLDL algorithm for (Mod)NTRU
basis in LATTE.
Input: Gram matrix G ∈ (C[x]/⟨xn + 1⟩)d×d in the FFT

domain. d ∈ {2, 3}. D′ ∈ (R+)2n.
Output: Tree T .

1: function ffLDL(G,D′)
2: if n = 1 then
3: T.value← G0,0.
4: else
5: L← Id,D← 0d.
6: for j = 0 to n− 1 do
7: (D0,0)j ← (G0,0)j .
8: (L1,0)j ← (G1,0)j

(D0,0)j
.

9: if d = 2 then
10: if n = N then
11: (D1,1)j ← q2

(D0,0)j
.

12: else
13: (D1,1)j ←

D′
2jD

′
2j+1

(D0,0)j
.

14: end if
15: else if d = 3 then
16: (D1,1)j ← (G1,1)j − |(G1,0)j |2

(D0,0)j
.

17: (D2,2)j ← q2

(D0,0)j(D1,1)j
.

18: (L2,0)j ← (G2,0)j
(D0,0)j

.

19: (L2,1)j ←
(G2,1)j−(G2,0)j(L1,0)

∗
j

(D1,1)j
.

20: end if
21: end for
22: T.value← L.
23: for i = 0 to d− 1 do
24: d0,d1 ← splitfft(Di,i).

25: G′ =

(
d0 d1

d∗1 d0

)
.

26: T.childi ← ffLDL(G′,Di,i).
27: end for
28: end if
29: return T .
30: end function

B. Discrete Gaussian Sampling over Integers

In LATTE KeyGen, f ,g may need to be resampled multiple
times due to the norm check and possible failure to find
solutions to the NTRU equation. In order to sample 2N
coordinates efficiently from Dσ0

, we employ the FACCT
sampler [19], which is fast and compact even for larger σ0 used
in LATTE-3 and LATTE-4. However, since the FACCT sampler
can only sample with σ = k

√
1/(2 ln 2) where k is a positive

integer, we slightly increase σ0 ≈ 1.17
√
q/(2N) in LATTE

parameters by setting k = ⌈1.17
√
q/(2N)/

√
1/(2 ln 2)⌉.

Let Sℓ = L · S̃ℓ be the GSO decomposition of the delegated
basis Sℓ ∈ R(ℓ+2)×(ℓ+2), where rows s̃i of S̃ℓ are pairwise
orthogonal. We find that the Euclidean norm of the last GSO

vector s̃ℓ+1 is very small compared to s̃0, . . . , s̃ℓ. This is
because rows s0, . . . , sℓ of Sℓ are sampled with a large σℓ but
det(Sℓ · S∗ℓ ) =

∏ℓ+1
i=0⟨s̃i, s̃i⟩ is constant and always equal to

q2 [17]. The experiment results in [50, Fig. 3] also verified
that ∥s̃ℓ+1∥ decreases significantly by increasing ∥s0∥ for
Sℓ ∈ R3×3. In this case, the ratio between the maximal and
minimal standard deviation σ′ used by the integer discrete
Gaussian sampling subroutine in ffSampling is very large and
the isochronous sampler [51] used by FALCON [15] will be
inefficient for our scheme, since the rejection rate of [51] is
proportional to max(σ′)/min(σ′). In order to sample with σ′

in a broad range, we employ a variant [20] of the COSAC
sampler [21] instead, which is scalable to large σ′ without
sacrificing efficiency.

The precision analysis in Sec. IV-C requires the bound B
on RD between a single sample from COSAC and an ideal
Gaussian Z sample. In [21] it is shown that B ≤ 1+4σ2e2xλ,
where ex denotes the absolute error of the underlying Box-
Muller continuous Gaussian sampler used by the COSAC
sampler and σ denotes the upper bound of the integer Gaussian
standard deviation σ.

When ℓ = 1, we have σ ≤ σmin ·maxi ∥(S̃0)i∥
mini ∥(S̃0)i∥

, 0 ≤ i ≤ 2N−
1, for σ of the integer Gaussian in ffSampling [51]. We have
σmin = ηϵ(Z) and maxi ∥(S̃0)i∥ ≤ σ0

√
2N . By symplecticity

of S0 [51], we have mini ∥(S̃0)i∥ ≥ q/(σ0

√
2N). Therefore,

we get σ ≤ ηϵ(Z) · (σ0

√
2N)2/q. In order to analyse the

upper bound of σ when ℓ = 2, first we introduce the following
Lemmas.

Lemma V.2. Every non-root, non-leaf node in a ffLDL tree
satisfies min2n−1k=0 D′k ≤ (Di,i)j ≤ max2n−1k=0 D′k, for some
D′ ∈ (R+)2n from its parent, 0 ≤ j ≤ n− 1, i ∈ {0, 1}.

Proof: From Theorem V.1, for a non-root, non-leaf node,
since (D0,0)j = 1

2 (D
′
2j +D′2j+1), 0 ≤ j ≤ n − 1, for some

D′ ∈ (R+)2n, (D0,0)j gets the minimal value min2n−1k=0 D′k
when both D′2j and D′2j+1 are equal to min2n−1k=0 D′k.
Similarly, (D0,0)j gets the maximal value max2n−1k=0 D′k
when both D′2j and D′2j+1 are equal to max2n−1k=0 D′k. For

(D1,1)j = D′2jD
′
2j+1/(D0,0)j =

D′
2jD

′
2j+1

1/2·(D′
2j+D′

2j+1)
, it gets

the minimal value min2n−1k=0 D′k when both D′2j and D′2j+1

are equal to min2n−1k=0 D′k and (D1,1)j gets the maximal
value max2n−1k=0 D′k when both D′2j and D′2j+1 are equal to
max2n−1k=0 D′k for D′ ∈ (R+)2n.

From Lemma V.2, if the ancestor of a non-root, non-leaf
node is the m-th child of the root, 0 ≤ m ≤ d − 1, then
(Di,i)j of this node has the minimal value minN−1k=0 (D′m,m)k
and the maximal value maxN−1k=0 (D′m,m)k, i ∈ {0, 1}, 0 ≤
j ≤ n − 1, for D′m,m from the root, respectively. The
leaf value of an ffLDL tree is σ = σℓ/

√
(G0,0)0, where

(G0,0)0 = 1
2 (D

′
0 + D′1) for some D′ from its parent.

Following a similar approach in the proof of Lemma V.2, we
have: min{D′0,D′1} ≤ (G0,0)0 ≤ max{D′0,D′1}. Therefore,
similar to a non-root, non-leaf node, if the ancestor of a leaf
node is the m-th child of the root, then the leaf value σ has
the minimal value σℓ/

√
maxN−1k=0 (D′m,m)k and the maximal

value σℓ/
√

minN−1k=0 (D′m,m)k.
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TABLE IV
SUMMARY OF PERFORMANCE RESULTS (OP/S) AT 4.2GHZ.

Set Sec. N log2 q KeyGen ℓ = 1 ℓ = 2
Ext Enc Dec Del Ext Enc Dec

Orig. LATTE-1 [13] 128 1024 24 - - 2911 2987 - - - -
Our LATTE-1 9.4 1361.8 23061.4 18041.3 - - - -

Orig. LATTE-2 [13] 256 2048 25 - - 1335 1351 - - - -
Our LATTE-2 3.3 636.9 10690.7 8456.4 - - - -

Orig. LATTE-3 [13] 80 1024 36 - - 1892 1774 - - 1455 1474
Our LATTE-3 5.7 36.3 14331.1 12134.7 2.4 20.0 11429.8 9713.4

Orig. LATTE-4 [13] 160 2048 38 - - 709 668 - - 568 541
Our LATTE-4 1.7 17.1 6846.6 5785.6 0.8 9.4 5450.2 4642.1

DLP-0 [13] 80 512 22 14.7 873.2 8731.8 6202.9 - - - -
DLP-3 [13] 192 1024 22 4.9 454.1 2639.8 1621.6 - - - -

[53]
40 512 50 717.9 711.6 3589.7 3152.0 - - - -
80 1024 51 336.9 401.8 1615.4 1442.3 - - - -
195 2048 62 164.9 197.2 662.0 477.9 - - - -

[54] 96 1024 30 225.1 133.6 453.9 377.2 - - - -
126 1280 30 49.2 122.2 403.4 339.0 - - - -

In order to analyse the minimal and maximal values of
D′m,m from the root, we introduce the following Lemma:

Lemma V.3. For FFT domain Gram matrix G = Sℓ−1S
∗
ℓ−1 ∈

(C[x]/⟨xN+1⟩)(ℓ+1)×(ℓ+1), we have |(Gi,i)j | ≤ σ2
ℓ−1N

2(ℓ+
1)2, 0 ≤ i ≤ ℓ− 1, 0 ≤ j ≤ N − 1.

Proof: We have Gi,i =
∑ℓ

k=0 FFT(Sℓ−1)i,k ⊙
FFT(S∗ℓ−1)k,i, and thus |(Gi,i)j | =∑ℓ

k=0 |(FFT(Sℓ−1)i,k)j |2. For N -point FFT result
z of scalar a, we have |zi| ≤ ∥z∥ =

√
N∥a∥

for 0 ≤ i ≤ N − 1 [52]. Thus, we have
|(Gi,i)j | ≤ (ℓ + 1) · N · ∥(Sℓ−1)i,k∥2 ≤ σ2

ℓ−1N
2(ℓ + 1)2,

since ∥(Sℓ−1)i,k∥ ≤ σℓ−1 ·
√
(ℓ+ 1)N .

For the root of an ffLDL tree when ℓ = 2, we have
(D0,0)j = (G0,0)j ≤ 9σ2

1N
2 by Lemma V.3. For (D1,1)j =

(G1,1)j − |(G1,0)j |2
(D0,0)j

, since (D0,0)j ∈ R+ from Theorem V.1,
we have (D1,1)j ≤ (G1,1)j ≤ 9σ2

1N
2. By Theorem V.1, we

have (D2,2)j =
q2

(D0,0)j(D1,1)j
≥ q2

81σ4
1N

4 , by taking the upper
bound 9σ2

1N
2 of (D0,0)j , (D1,1)j . Thus, for the leaf values

σ, we have σ ≤ σ2/
√

q2/(81σ4
1N

4) = σ2 · 9σ2
1N

2/q.
We use double precision, i.e. 53-bit floating-point arithmetic

precision in the COSAC sampler for LATTE-1 and LATTE-2,
which provides ex ≤ 2−48 [21]. Since the run-time speed
of the underlying Box-Muller continuous Gaussian sampler
is critical for the speed of the COSAC sampler [21], for
the COSAC implementation in LATTE-3 and LATTE-4, we
use binary128, i.e. 113-bit floating-point arithmetic precision
and reduce the absolute precision of uniform sampling in the
underlying Box-Muller continuous Gaussian sampler to 96
bits. This will make ex less than approximately 2−96.

VI. PERFORMANCE RESULTS

The first published specification of LATTE [13] only pro-
vided the Encrypt and Decrypt performance results, as dis-
played in “Orig. LATTE” rows in Table IV, scaled and
converted into op/s at 4.2GHz. Here, we give the first full
performance results for our optimised variant of LATTE,
including KeyGen, Extract, and Delegate.

We adopt Plantard’s multiplication modular reduction al-
gorithm [55] with word size w = 32 bits for LATTE-1
and LATTE-2, and w = 64 bits for LATTE-3 and LATTE-
4, respectively. Since Plantard’s algorithm requires multipli-
cation in 2w bits, we use the 128-bit integer variable type
__uint128 from gcc to implement the modular reduc-
tion in LATTE-3 and LATTE-4. We employ the gmp [56]
library for multi-precision integer arithmetic. For precisions
of floating-point and complex number arithmetic, we use 53
bits, i.e. double precision for LATTE-1 and LATTE-2, and 113
bits i.e. binary128 for LATTE-3 and LATTE-4. We use the
__float128 and __complex128 variable types from gcc
to implement the 113-bit floating-point and complex number
arithmetic for LATTE-3 and LATTE-4, respectively. Although
the error analysis in Sec. IV-C indicates that the arithmetic
precisions for LATTE-3 and LATTE-4 can be further reduced,
however, the generic multi-precision floating-point library such
as MPFR [57] is not optimised for less than 1,000-bit precision
in terms of the run-time speed [58]. We will leave using
hand-optimised floating-point arithmetic routines with lower
precision as future works.

We use AES-256 CTR mode with hardware AES-NI in-
structions as the pseudorandom generator, and use SHAKE-
256 [59] as the KDF in LATTE Encrypt and Decrypt. The
performance results have been obtained from a desktop ma-
chine with an Intel i7-7700K CPU at 4.2GHz, with both
hyper-threading and TurboBoost disabled. We use gcc 11.2.0
compiler with compiling options -O3 -march=native en-
abled. Results are given as “Our LATTE” rows in Table IV.

As expected, the KeyGen, Extract, and Delegate processes
are the most time-consuming components of the scheme,
and this increases as security and therefore lattice dimension
increase. The trend down the hierarchical levels is that the Ex-
tract, Encrypt, and Decrypt all become more time-consuming
as the hierarchical level increases. For LATTE-3 and LATTE-
4, this corresponds to about 45% decrease in op/s of Extract
and about 20% decrease in op/s of Encrypt/Decrypt from
level 1 to level 2, respectively. On the other hand, for the
Encrypt and Decrypt, our implementation is 6.0x–9.7x faster
compared to the previous performance results from [13]. The
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TABLE V
SUMMARY OF KEY AND CIPHERTEXT SIZES (BYTES).

Set Sec. Master
Public Key

Master
Private Key

User
Private Key Ciphertext Delegated

Public Key
Delegated
Private Key

ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2
Orig. LATTE-1 [13] 128 6144 12288 9216 - 9248 - - -

Our LATTE-1 3072 12288 3072 - 6176 - - -
Orig. LATTE-2 [13] 256 12800 25600 19200 - 19232 - - -

Our LATTE-2 6400 25600 6400 - 12832 - - -
Orig. LATTE-3 [13] 80 9216 18432 13824 18432 13856 18464 9216 41472

Our LATTE-3 4608 18432 4608 9216 9248 13856 9216 41472
Orig. LATTE-4 [13] 160 19456 38912 29184 38912 29216 38944 19456 87552

Our LATTE-4 9728 38912 9728 19456 19488 29216 19456 87552

[53]
40 169600 6400 166400 - 169600 - - -
80 352512 13056 345984 - 352512 - - -
195 1031680 31744 1015808 - 1031680 - - -

[54] 96 126720 7680 122880 - 126720 - - -
126 772800 48000 153600 - 154560 - - -

speedup might be due to: (1) We change the distribution
of the ephemeral keys from discrete Gaussian distribution to
the binomial distribution. (2) We only perform NTT for the
ephemeral keys and m during the Encrypt and Decrypt, since
other inputs are already in the NTT domain. (3) Since we
reduce the dimension of extracted user keys by 1, there is
also 1 less ephemeral key in Encrypt/Decrypt. Since the run-
time speed of Encrypt/Decrypt in our LATTE implementation
is in the order of microseconds, these algorithms should
also be feasible on lightweight devices. Note that the more
heavyweight KeyGen and Delegate do not need to be run
on lightweight devices in common use cases. In addition, our
optimised LATTE Delegate only takes about 0.4–1.3 seconds
on a desktop machine at 4.2GHz, which is practical and much
faster than the estimated run-time (in the order of minutes) for
the Delegate in [13].

Based on the algorithm descriptions in Sec. III-B, we expect
the slowdown of most of the LATTE algorithms is linearly
proportional to the hierarchical level ℓ. However, some sub-
algorithms such as the ffLDL and ffSampling contain higher
order factors of ℓ in their time complexities [34]. Most of
the arithmetic over Rq has quasilinear time complexity in
terms of the ring dimension N , since they are computed via
the FFT/NTT. On the other hand, for the same parameter
set, we find the speeds of LATTE KeyGen, Delegate, and
Extract are linearly proportional to the precision (integer and
floating point) in our experiment, and thus the higher precision
requirements may become the bottleneck when the number of
levels in the hierarchy increases.

The key/ciphertext sizes are summarised in Table V. Since
we reduce the dimension of extracted user keys by 1 in our
improved LATTE scheme, we compare the key and ciphertext
sizes of “Our LATTE” scheme with the original LATTE [13]
labelled as “Orig. LATTE”. From Table V, our improved
LATTE scheme reduces the key/ciphertext sizes by 25%–67%
among all LATTE parameter sets.

As discussed in the ETSI report [13], the size of the LATTE
ciphertext does not scale well when the number of levels in the
hierarchy increases. For our optimised LATTE, the ciphertext
at level ℓ consists of ℓ+1 polynomials C1, . . . ,Cℓ,Ch ∈ Rq

along with a 256-bit string Z. Therefore, at level ℓ, the bit size

of the full ciphertext is (ℓ+1)·N ·⌈log2 q⌉+256. The modulus
q needs to be larger than the σℓ for the highest hierarchical
level ℓ. Since σℓ ≥ ηε(Z)

√
(ℓ+ 1)N · σℓ−1 [13] and σ0 ≈

1.17
√

q/(2N), we have σℓ ≥ 1.17ηℓϵ(Z)
√

(ℓ+ 1)! ·N ℓ−1q/2
and thus q > 1.3689η2ℓϵ (Z)(ℓ + 1)! · N ℓ−1/2. By Stirling’s
approximation, log2(ℓ+1)! is in the order of (ℓ+1) log2(ℓ+1).
Therefore, the bit size of the ciphertext at level ℓ is in the order
of Õ(ℓ2N) at least, where Õ represents the soft-O notation.

Our current implementation is not constant-time since the
gmp multiprecision integer arithmetic library [56] and the gcc
run-time library for the binary128 floating-point and complex
number arithmetic are unlikely to be constant-time [60]. We
will leave the constant-time implementation of our optimised
LATTE scheme as future works.

Comparison to DLP IBE: Performance results of the DLP
IBE scheme from [13] (converted to op/s at 4.2GHz) are
given in Table IV. Since the decryption in the DLP IBE did
not include ciphertext validation, for a fair comparison with
LATTE, we use the sum of DLP encryption and decryption
run-time to compute the op/s of decryption in Table IV. We
focus on the comparison between LATTE-1 and DLP-3, since
the sizes of parameters N and q are similar. The KeyGen speed
of our LATTE-1 implementation is 1.9x faster than DLP-3, and
the speed of our LATTE-1 Extract implementation is about
3x faster than DLP-3 extraction. This is mainly because we
adopt the faster NTRUSolve and lattice Gaussian sampling
procedure from FALCON [15]. In addition, the Encrypt/De-
crypt speed is 8.7x–11.1x faster in our implementation.

Comparison to IBEs on Standard Models: Performance
results and key/ciphertext sizes of the IBEs based on standard
models [53], [54] are given in Table IV and V, respectively.
Similar to the DLP IBE, the decryption run-time in [53], [54]
did not include ciphertext validation, so we use the sum of
encryption and decryption run-time as the decryption perfor-
mance results in Table IV. Additionally, since the reported
KeyGen run-time of [54] is the sum of KeyGen and the
pre-processing of the discrete Gaussian sampler, for a fair
comparison, we also use the sum of the KeyGen and pre-
processing run-time as the KeyGen performance results of [53]
in Table IV and compare with the performance results of our
LATTE variant computing the ffLDL tree during KeyGen in
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Table VI in Appendix C. For the run-time comparison, the
Extract/Encrypt/Decrypt in our LATTE-1 are 4.5x/14.3x/12.5x
faster than the 80-bit secure IBE [53], 14.8x/57.2x/53.2x
faster than the 126-bit secure IBE on module lattice [54],
and our LATTE-2 are 4.2x/16.1x/17.7x faster than the 195-
bit secure IBE [53], respectively. On the other hand, the
KeyGen in 80/126/195-bit secure IBEs are 36.2x/5.3x/50.0x
faster than LATTE-1/1/2 KeyGen, respectively, due to the fast
gadget trapdoor generation algorithms [53], [54]. Note that
the implementation in [53] uses 2 threads for parallelisation.
For size comparison, the sizes of master public key/mas-
ter private key/user private key/ciphertext in our LATTE-1
are 114.8x/1.1x/112.6x/57.1x smaller than the 80-bit secure
IBE [53], 251.6x/3.9x/50.0x/25.0x smaller than the 126-bit
secure IBE on module lattice [54], and the sizes in our LATTE-
2 are 161.2x/1.2x/158.7x/80.4x smaller than the 195-bit secure
IBE [53], respectively.

Portability to FALCON: We demonstrated a ≈ 3 bit
improved precision estimate for FALCON by applying our
statistical model and using a refined analysis in Sec. IV-C.
For the implementation techniques, our optimised ffLDL al-
gorithm in Sec. V-A is applicable to FALCON, since both the
FALCON and the LATTE use similar (Mod)NTRU lattices. In
addition, the Montgomery reduction [61] used by the current
FALCON implementation [15] can also be replaced by the
faster Plantard’s reduction [55]. We also show the performance
comparison of our optimised LATTE implementation against
FALCON in Appendix F.

APPENDIX A
PROOF OF LEMMA IV.1

Proof: Consider the ffSampling in Alg. 6. We employ a
sequence of games G0, . . . ,G5, and track the probability of
the events E and BU over those games using an RD approach.
Let Ei and BU,i denote the events E and BU in game i for
i = 0, . . . , 5. The games REAL and IDEAL are defined in the
Lemma statement. The sequence of games is as follows:
• G0 : Game REAL.
• G1 : G0, but we change the 1-dimensional Z-sampler

from the finite precision sampler distribution D̄ to infinite
precision sampler distribution D.
• G2 : G1, but we abort the game if BU happens, meaning

either there exists i such that the errors ∆′
t(i)

(relative to
σ(i)) in centers t(i) exceed ∆′U

t(i)
or relative errors δσ(i)

in standard deviations σ(i) exceed δU
σ(i) or there exists j

such that the infinity-norm absolute errors ∆z̄(j) in z̄(j)

exceed ∆U
z̄ .

• G3 : G2, but we restrict the 1-dimensional Z samplers
D to the corresponding τ -bounded distribution Dτ .
• G4 : G3, but changing arithmetic from finite precision

to infinite precision, and removing the τ -tailcut on the
1-dimensional Z samplers to return to the ideal Gaussian
distribution D. This game is identical to GIDEAL, except
for the abort condition introduced in the previous game.
• G5 : G4, but remove the abort introduced in G2. This

game is identical to GIDEAL.
G0 → G1: Changing the 1-D Z-sampler. Let (σ̄(i), t̄(i)) =

(σ(i)(1 + δσ(i) , t(i) + ∆t(i)) denote the i’th query to the 1-D

sampler in the execution of these games, and denote by ζ(i)

the output integer returned by the sampler for the i’th query.
We apply Prop. II.2, with x0 denoting the remaining source of
randomness in the game (i.e. the random coins of A and the
hash function H), and we let xi := ζ(i) for i = 1, . . . ,MZ.
Consider (xi|xj<i), the conditional distribution of xi, condi-
tioned on all previous xj , for j < i, and the RD between this
distribution in G0 and G1. Observe that conditioned on the
same value of xj<i, the values of the following query t̄(i) and
std. deviation σ̄(i) are identical in both G0 and G1 since they
both use the same finite precision arithmetic. We have:

Ra((xi|xj<i)G0
, (xi|xj<i)G1

)=Ra(D̄σ̄(i),t̄(i) ,Dσ̄(i),t̄(i))≤B,

then Prop. II.2 implies:

Ra

(
(x0, . . . , xK)G0 , (x0, . . . , xK)G1

)
≤ BMZ := BT .

By the data processing and probability preservation properties
of RD, Pr[E1] ≥ Pr[E0]

a/(a−1)/BT .
G1 → G2: Adding a τ tailcut to the Z Gaussian sam-

plers. By a standard tail bound [25, Lemma 4.4], the sta-
tistical distance between this game and the previous one is
≤ MZ · 2 exp(−τ2/2) ≤ 1/QM . Hence, we have Pr[E2] ≥
Pr[E1]− 1/QM .
G2 → G3: Aborting the game if the errors exceed the

bounds. Recall that BU,2 denotes the event BU in G2 that the
errors exceed the bounds in the Lemma statement. If the event
BU,2 does not occur, games G2 and G3 proceed identically.
Hence, we have Pr[E3] ≥ Pr[E2]−Pr[BU,2] and Pr[BU,2] =
Pr[BU,3].
G3 → G4: Changing finite precision arithmetic to infinite

precision and removing the τ -tailcut on the Gaussians. We
again apply Prop. II.2, except that this time xi := ζ(i) for 1 ≤
i ≤MZ except if the event BU occurs at the i’th query to the Z
sampler (determined by x0, . . . , xi−1), in which case xi := ⊥,
and all subsequent xj := ⊥ for j > i. As in the previous
game, we consider the conditional distribution (xi|xj<i), of
xi conditioned on all previous xj for j < i, and the RD
between this conditional distribution in G3 and G4. When
the event BU occurs at the at (or before) the i’th query to the
Z sampler, the conditional distribution (xi|xj<i) is identical
in both games (as both conditional distributions return ⊥ with
probability 1) and have RD 0. Whereas, if the event BU does
not occur at (or before) the i’th query to the Z conditioned
on the same fixed value of xj<i in the support of the j’th
1-D Z-samplers, we have ∆′

t(i)
≤ ∆′U

t(i)
. Also, the query std

deviation values σ(i) in G4 and σ̄(i) in G3 have a relative error
δσ(i) ≤ δU

σ(i) by definition of event BU . We therefore have:

Ra((xi|xj<i)G3
, (xi|xj<i)G4

) (7)

≤Ra(Dτ
σ(i)·(1±δ

σ(i) ),t(i)+∆′
t(i)
·σ(i) ,Dσ(i),t(i)) ≤ C(i), (8)

where in the last inequality, we used Lemma IV.2. Then
Prop. II.2 above implies:

Ra((x0, . . . , xMZ)G2
, (x0, . . . , xMZ)G3

)≤
∏

i<MZ

C(i) := CT .

Due to the abort condition, we have that conditioned on the
same fixed value of xi’s that do not cause an abort, the
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values z̄(j) in G3 and G4 differ by an absolute error at most
∆z̄ < 1/2, and therefore, observing that in G4 the z̄(j) has
integer coordinates (due to the infinite precision), the rounded
z̄(j)values in G4 are identical to those in G3 conditioned
on the same xi’s. Since the adversary’s view in the game
depends on xi’s only via the rounded z̄(j), we conclude by
the Rényi probability preservation property that Pr[E4] ≥
Pr[E3]

a/(a−1)/CT , and Pr[BU,4] ≥ Pr[BU,3]
a/(a−1)/CT .

G4 → G5: In this game, we remove the abort introduced
in G2. Since the games G4 and G5 proceed identically until
an abort occurs, we have Pr[BU,5] = Pr[BU,4] and Pr[E5] ≥
Pr[E4] − Pr[BU,4]. Furthermore, by the Lemma hypothesis,
we have Pr[BU,5] := pU . Putting together the above bounds,
we obtain that the probability of E5 (i.e. event E in IDEAL)
is lower bounded by

Pr[E5]≥Pr[E3]
a/(a−1)/CT − pU

≥(Pr[E0]
a/(a−1)/BT − (Pr[BU,3] + 1/QM ))a/(a−1)

CT
−pU

and using pU = Pr[BU,5] = Pr[BU,4]≥ Pr[BU,3]
a/(a−1)/CT ,

we get bound on Pr[E4] := Pr[EIDEAL].

APPENDIX B
PROOF OF LEMMA IV.2

Proof: We have that D3(z)
D2(z)

=
ρt,σ(I)
ρt̄,σ̄(I)

· exp(u(z)), where,
following assumption (3) in the statement of Lemma and the
notations of the proof of [14, Lemma 7], we get Eq. (9).

u(z) =
(z − t)2

2σ2
− (z − t̄)2

2σ̄2
(9)

= − (t− t̄)2 + 2(t− t̄)(z − t)− (2δσ + δ2σ)(z − t)2

2(1− δσ)2σ2
.

(10)

We first bound ρt,σ(I)
ρt̄,σ̄(I)

. Let erfc(α) := 1√
2π

∫∞
α

exp(−y2/2)dy
be the complementary error function; then we get:

ρt,σ(I) = ρt,σ(Z)− 2 · erfc(τ · σ)

= ρt,σ(Z) ·
(
1− 2 · erfc(τ · σ)

ρt,σ(Z)

)
≥ ρt,σ(Z) · (1− 1/Q),

where the last inequality uses ρt,σ(Z) ∼
√
2π(1 −

ε)σ, erfc(τσ) ≤ exp(−(τσ)2/2)√
2πτσ

, and Q ≤ 2π
√
στ(1 −

ε)σ exp(σ2τ2/2) set in condition 5). Deriving a similar in-
equality for ρt̄,σ̄(I), we have:

1− 2/Q ≲
ρt,σ(I)

ρt̄,σ̄(I)

/
ρt,σ(Z)
ρt̄,σ̄(Z)

≲ 1 + 2/Q. (11)

Let n := ((∆′t)
2 + 2∆′t(z − t)/σ − (2δσ + δ2σ)((z − t)/σ)2).

By applying [14, Lemma 7], followed by Eq. (10), followed
by [62, Lemma 4.4] and finally using max(δσ, ϵ) ≤ δ, it
follows that:

ln

(
ρt,σ(Z)
ρt̄,σ̄(Z)

)
≤ |Ez←D1 [u]| ≤

∣∣∣∣Ez←D1

[
n

2(1− δσ)2

]∣∣∣∣
(12)

≤ 1

2(1− δσ)2
|Ez←D1

[n]| (13)

≤ num(∆′t, ε, δσ) (14)

Similarly, we bound exp(u(z)) over I by using Eq. (10):

max
I
|u| ≲ 1

1− δσ
· (τ∆′t + τ2δσ). (15)

Combining Eq. (11), (14), and (15), we bound the relative
error: ∣∣∣∣ln(D3

D2

)∣∣∣∣ ≤ ln(1 + 2/Q) + num(∆′t, ε, δσ)

+
1

1− δσ
· (τ∆′t + τ2δσ)

≤ 2/Q+ num(∆′t, ε, δσ)

+
1

1− δσ
· (τ∆′t + τ2δσ) = ub. (16)

Combining Eq. (16) and [14, Lemma 3], the RD between D3

and D2 is derived as Eq. (5). Finally, we combine the first
weak triangle inequality of [63, Lemma 4.1] with Remark 1
to obtain the RD between D3 and D1 as in Eq. (6).

APPENDIX C
COMPUTE FFLDL TREE IN KEYGEN/DELEGATE

If the key extraction speed is critical for the application,
similar to FALCON [15], we can move the ffLDL Tree compu-
tation from the LATTE Extract (Line 4 in Alg. 3) to the LATTE
KeyGen/Delegate when generating a master/delegated private
key Sℓ, at the expense of significantly larger master/delegated
private key size. The KeyGen/Delegate/Extract speed of this
LATTE variant is shown in Table VI. The LATTE Extract in
this variant is about 1.3x–1.7x faster than the run-time speed
in Table IV, while the KeyGen/Delegate is at most 6% slower.

Here we also analyse the overhead in the master/delegated
private key size of this variant due to the ffLDL tree T .
Assuming a floating-point value has p bytes, the size of T
consists of the following 3 parts: (1) For a d× d basis Sℓ, the
root of T stores d(d−1)/2 components of L from the LDL∗

decomposition, with each component in C[x]/⟨xN +1⟩. Thus,
the root of T has d(d− 1)/2 · 2Np = Npd(d− 1) bytes. (2)
The root of T has d sub-trees. The i-th non-leaf level of a
sub-tree has 2i nodes, 0 ≤ i ≤ log2 N − 2. Each node at i-th
level of a sub-tree stores L1,0 ∈ C[x]/⟨xn+1⟩ from the LDL∗

decomposition, where n = N/2i+1. Therefore, the total size of
i-th level of a sub-tree is 2i ·2(N/2i+1)p = Np bytes, and the
total size of all non-leaf nodes in a sub-tree is Np(log2 N−1)
bytes. (3) A sub-tree has N/2 leaf nodes. Each leaf node
stores a p-byte floating-point value. Therefore, the total size
of all leaf nodes in a sub-tree is Np/2 bytes. Thus, the total
size of T is Npd(d − 1) + d(Np(log2 N − 1) + Np/2) =
Npd(log2 N +d−3/2) bytes. Columns “T Size” in Table VI
summarise the ffLDL tree size for the parameters and floating-
point precisions in our LATTE implementation.

APPENDIX D
CRAMER’S RULE

Cramer’s rule [64] is used for solving systems of linear
equations. Considering a system of N equations with N
unknowns x, represented as Ax = b. Cramer’s rule states
that the solution can be written as xi =

det(Ai)
det(A) , where Ai is

16



TABLE VI
PERFORMANCE RESULTS (OP/S) AND FFLDL TREE SIZE (BYTES) OF

LATTE VARIANT AT 4.2GHZ.

ℓ = 1 ℓ = 2
Set KeyGen Ext Del T Size Ext T Size
LATTE-1 9.3 1802.8 - 172032 - -
LATTE-2 3.3 826.3 - 376832 - -
LATTE-3 5.4 54.6 2.3 344064 33.6 565248
LATTE-4 1.6 26.0 0.8 753664 16.0 1228800

the matrix formed by replacing the i-th column of A by the
column vector b.

The formulae for the reduction coefficients in the KeyGen
and Delegate process come directly from Cramer’s Rule ap-
plied to the system Ax = b, where, in the first level, A is the
2×2 matrix whose (i, j)-entry is the Hermitian product ⟨si, sj⟩
of the ith and jth rows of the delegation matrix, and where b
is the two-dimensional column vector whose ith coefficient is
⟨s2, si⟩ . This result generalises to arbitrary levels; i.e., for any
given number of levels ℓ ≥ 1, the reduction of the vector sℓ+1

is effected by replacing it with sℓ+1 − ⌊k0⌉s0 − . . .− ⌊kℓ⌉sℓ,
where the ki are the coefficients of the solution x to the system
Ax = b, where A is the (ℓ + 1) × (ℓ + 1) matrix whose
(i, j)-entry is the Hermitian product ⟨si, sj⟩ of the ith and
jth rows of the delegation matrix, and where b is the (ℓ+1)-
dimensional column vector whose i-th coefficient is ⟨sℓ+1, si⟩.

APPENDIX E
KEY SIZE CALCULATIONS

The keys of LATTE are mainly collections of polynomials
in R. The degree of each polynomial is N and the number of
bits in each coefficient is κ = ⌈log2 q⌉. The parameters N and
q are dependent on the security level required. The bit size of
key is equal to N · κ · number of polynomials. Furthermore,
we usually consider the key sizes in bytes, and so when the
total bit size is computed, it will be divided by 8 to give the
size in bytes.

Master Keys: The master public key consists of a poly-
nomial h ∈ Rq . Therefore the bit size is N · κ. The master
private key S0 consists of (f ,g,F,G). However, F and G can
be recomputed on the fly from f and g using NTRUSolve. The
solution is not unique but as long as it is a short solution, it
will suffice. However, this is not efficient and so this research
considers the entire (f ,g,F,G) to be stored as the private key.
Therefore, the master private key is of size 4N · κ.

Delegated Keys: The delegated public key can be straight-
forwardly generated using the master public key and the chain
of user IDs along which the delegation process is happening.
Although this can be efficiently generated on the fly, given
the user ID chain, we will consider it being stored as the
polynomials h,A1,A2, . . . ,Aℓ, which translates as (ℓ + 1)
polynomials in R, and so the total bit size of the delegated
public key is (ℓ+1)·N ·κ. The delegated private key generated
from level ℓ − 1 to level ℓ, to be passed onto users at level
ℓ+ 1, is a (ℓ+ 2)× (ℓ+ 2) matrix of polynomials in Rq . Its
size is therefore (ℓ+ 2) · (ℓ+ 2) ·N · κ.

User Private Keys: The user’s public key is entirely
dependent on the identity, so we only examine the size of

the user’s private key. In LATTE for a user at level ℓ, this is a
tuple of (ℓ+1) polynomials in Rq . However, we only need to
store ℓ of these polynomials (disregarding t0) and so the user
private key is of bit size ℓ ·N · κ.

APPENDIX F
COMPARISON TO FALCON

After adopting the NTRUSolve and lattice Gaussian sam-
pling procedures from FALCON [15], our optimised LATTE
KeyGen becomes similar to the FALCON KeyGen, and our op-
timised LATTE Extract becomes similar to the FALCON Sign,
in terms of the operations used by these algorithms. Therefore,
here we compare the run-time speed of our optimised LATTE
KeyGen/Extract against the FALCON KeyGen/Sign, respec-
tively. The performance results of the FALCON is summarised
in Table VII. We focus on the comparison between LATTE-
1 and FALCON-1024 since the size of parameter N is the
same. The KeyGen speed of our LATTE-1 implementation
is about 7.1x slower than FALCON-1024, and the speed of
our LATTE-1 Extract implementation is about 3.9x slower
than FALCON-1024 Sign. This is mainly because (1) The size
of q in LATTE is much larger than FALCON (24 bits for
LATTE-1 compared to 14 bits for FALCON-1024), which will
significantly increase the maximal integer size in NTRUSolve,
as well as the run-time overhead in KeyGen [16]. (2) FALCON
computes the ffLDL Tree during the KeyGen, while the ffLDL
Tree is computed during the Extract in our LATTE scheme.
This difference will add overhead to the run-time speed of
our LATTE Extract implementation. (3) From the FALCON
specification [15], the AVX2 and FMA instructions were used
in the source code during the benchmark. However, these
instructions are not used in the source code of our LATTE
implementation.

APPENDIX G
CONCRETE PARAMETER SETS BASED ON BEST KNOWN

ATTACKS

The security of each component of LATTE depends on an
associated lattice problem and so the computational security
of each of these problems must be considered to derive
parameters, with the most vulnerable component determining
the overall security for a given parameter set. The global
parameters for the scheme are dimension N and modulus q,
but we will also need to consider level-specific parameters,
namely the standard deviation used for sampling at each level,
σℓ. The six security constraints to be considered are: (1)
Gaussian sampler security (2) Decryption failure (3) Master
key recovery (breaking the NTRU problem/finding short vec-
tors in the NTRU lattice) (4) Delegated key recovery (finding
short vectors in the lattice) (5) User key recovery (solving
closest vector problem) (6) Message recovery (breaking the
RLWE encryption scheme). These are discussed in detail
in [13], so here we only state the mathematical conditions
which must be satisfied and compute the security levels using
our updated parameters and modifications to the scheme. We
first summarise the differences between our security analysis
and [13]. Any other differences are negligible and due to
precision variations in the attack costing script.
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TABLE VII
PERFORMANCE RESULTS (OP/S) FOR THE FALCON [15] (SCALED TO 4.2GHZ).

Set Sec. n log2 q KeyGen Sign Verify
FALCON-512 128 512 14 211.4 10861.7 51008.1
FALCON-1024 256 1024 14 66.5 5319.4 24926.1

TABLE VIII
LATTE ESTIMATED COST OF MASTER KEY RECOVERY.

Set β
Classical
Security

Quantum
Security

LATTE-1 974 301 275
LATTE-2 1501 455 414
LATTE-3 973 301 274
LATTE-4 1501 455 414

TABLE IX
LATTE ESTIMATED COST OF DELEGATED KEY RECOVERY.

Set ℓ β
Classical
Security

Quantum
Security

LATTE-1 1 1020 314 287
LATTE-2 1 1051 323 295

LATTE-3 1 1021 315 287
2 388 130 119

LATTE-4 1 1051 323 295
2 907 281 257

TABLE X
LATTE ESTIMATED COST OF USER KEY RECOVERY.

Set ℓ β
Classical
Security

Quantum
Security

LATTE-1 1 829 258 236
LATTE-2 1 1863 560 510

LATTE-3 1 830 259 236
2 334 114 105

LATTE-4 1 1864 561 510
2 799 250 228

A. Gaussian Sampler Security

The statistical security of the Gaussian sampler used for
sampling short vectors from lattice cosets in extraction and
delegation to level ℓ is determined by the standard deviation
of the sampler σℓ and its relation to the Gram-Schmidt norm of
the input basis. As this property of the basis is determined from
the master key generation and any previous delegations, i.e.
∥B̃∥ ≤

√
(ℓ+ 2)N · σℓ, we can draw the following condition

based on the relationship of the standard deviations at each
level:

σℓ ≥ ηε(Z)
√
(ℓ+ 1)N · σℓ−1, (17)

taking ε as 2−25.5/(ℓ + 1)N in order to make the KL-
divergence of the sampler from the discrete Gaussian is at most
2−48. However, we also require the sampled vectors to be short
for the purposes of keeping the underlying lattice problem
hard. Therefore, we can set σℓ to be equal to right hand side
of Eq. (17), where σ0 ≈ 1.17

√
q/(2N). The quantity σ0 is

chosen to be this as it minimises the Gram-Schmidt norm of
the master basis (resulting in short user private keys in the
single-level IBE), as deduced in [10].

TABLE XI
COST OF PRIMAL MESSAGE RECOVERY ATTACK.

Set m β
Classical
Security

Quantum
Security

LATTE-1 1018 423 140 128
LATTE-2 1962 967 299 273
LATTE-3 998 232 84 78
LATTE-4 2037 561 180 165

B. Decryption Failure

To protect against attacks which exploit random decryption
failures, we must bound the error term incurred in the RLWE
encryption scheme. The probability that the error term is
too large is derived in [13], based on the method of [37].
Essentially, the decryption failure rate cannot exceed 2−λ,
where λ is the security level in bits of the scheme. For each
parameter set and level, we can compute the probability of
decryption failure, noting that our design consists of one less
ephemeral private key than in [13], reducing the standard
deviation τ of the Gaussian distribution of the coefficients
of the error term d to τ =

√
σ2
e + (ℓ+ 1)Nσ2

ℓσ
2
e , marginally

reducing the failure rate.

C. Master Key Recovery

The security of the master key recovery depends upon
the difficulty of finding the short vector (g, f) in the lattice,
given the public NTRU basis. The attack is successful if the
projection of the short vector onto the vector space spanned
by the final β Gram-Schmidt vectors is shorter than the length
of the (2N−β+1)th Gram-Schmidt vector. This corresponds
to minimising block size β, for:

σ0

√
β ≤ GH(β)(2β−2N)/(β−1) · det(Λ0)

1/2N .

The minimum solutions to this inequality for different param-
eter sets is given in Table VIII. The work required to find the
shortest vector using this block size with the BKZ2.0 algorithm
is also given.

D. Delegated Key Recovery

For delegated key recovery, the attacker must find a short
sequence of vectors in Λℓ−1. This can reduce to solving SVP
in the master lattice Λ0 to find a vector of length σℓ ·

√
2N .

Table IX gives the minimum block size β required (as per
below Eq. (18)) for a successful attack using BKZ2.0 and the
classical and quantum cost of these attacks which depend on
N and q.

σℓ ·
√
2N ≤ GH(β)(2N)/(β−1) · det(Λ0)

1/2N . (18)
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TABLE XII
COST OF DUAL MESSAGE RECOVERY ATTACK.

Set m β
Classical
Security

Quantum
Security

LATTE-1 1039 422 140 128
LATTE-2 1974 964 298 272
LATTE-3 1005 232 84 78
LATTE-4 2101 560 180 165

E. User Key Recovery

User key recovery requires finding a short solution to t0 +
t1 · h + t2 · A1 + · · · + tℓ · Aℓ−1 = Aℓ, which reduces to
solving the CVP in the master lattice Λ0, of the form t0 +
t1 · A0 = Aℓ. It is enough to find a short (t0, t1) with length
≤ σℓ ·

√
2(ℓ+ 1) ·

√
2N . To do this, it is required to minimise

Eq. (19) over β. Table X gives the minimum block size β
required for a successful attack and the classical and quantum
cost of these attacks.

σℓ ·
√
2(ℓ+ 1) ·

√
2N ≤ GH(β)(2N)/(β−1) · det(Λ0)

1/2N .
(19)

F. Message Recovery

There are two attacks to consider for this. Message recovery
depends on solving an extended version of RLWE, which
reduces to an instance of the primal-CVP or dual-SVP. In the
primal-CVP attack, the ephemeral private keys are recovered
via a close vector problem. In the dual-SVP attack, an attempt
is made to distinguish the ciphertext elements from uniformly
random polynomials inRq . In fact, it is enough for the attacker
to recover one of the ephemeral private keys, e and so message
recovery cost is not affected by hierarchical level, or by our
redesign.

The minimal block size β needed for a successful attack,
and the cost of these attacks are given in Tables XI and XII,
depending on (N, q). The code to populate Tables XI and XII
is that used in [37]. By considering the cost of all attacks
covered in this Section, the security levels in Table XIII could
be derived.

G. Setting up Parameters

The parameter sets are given in Table XIII. These are the
parameters recommended in the original specification [13]. We
have extended the security estimates from [13] to give them
on a per-level basis. The security decreases as we move down
the hierarchy. However, it turns out that each parameter set’s
security is determined by the message recovery capabilities,
which remain constant down the levels. Therefore our param-
eter security conclusions match that of [13], and furthermore
are not affected by our optimisations, as the message recovery
attack is independent of the modified parameter ℓ.

Parameter sets LATTE-1 and 2 are only applicable to a single
level, essentially an IBE rather than HIBE, version of the
scheme. LATTE-3 and 4 can be used for up to two levels. The
reason we cannot use these parameters beyond these levels
is that the decryption failure rate exceeds the target security
level. In fact, the failure rate is so high it renders the scheme
completely insecure and also not suitable for use.

TABLE XIII
LATTE PARAMETERS.

Set Security N q

LATTE-1 128 1024 224 − 214 + 1
LATTE-2 256 2048 225 − 212 + 1
LATTE-3 80 1024 236 − 220 + 1
LATTE-4 160 2048 238 − 226 + 1

APPENDIX H
ALGORITHMS IN THE STATISTICAL MODEL

We present the supplementary algorithms (Alg. 8–13) of our
statistical model, including ffLDLB, ffSamplingB, splitfftB,
mergefftB, FFTB, and FFTInvB.

Algorithm 8 The ffLDLB algorithm based on statistical
model.
Input: G,D′.
Output: Tree T .

1: function ffLDLB(G,D′)
2: if n = 1 then
3: (T.value)0 ← (µG0,0,R, σ

2
G0,0,R

, 0, 0).
4: Output µleaf,R = µ(T.value)0,R, σleaf,R =

σ(T.value)0,R.
5: return
6: end if
7: for j ∈ {0, . . . , n− 1} do
8: (D0,0)j ← (µ(G0,0)j ,R, σ

2
(G0,0)j ,R

, 0, 0).
9: (L1,0)j ← DivB((G1,0)j , (D0,0)j).

10: if d = 2 then
11: if n = N then
12: (D1,1)j ← DivB(q2, (D0,0)j).
13: else
14: x← MultB(D′2j ,D

′
2j+1).

15: (D1,1)j ← DivB(x, (D0,0)j).
16: end if
17: else if d = 3 then
18: x← DivB(AbsSqrB((G1,0)j), (D0,0)j).
19: (D1,1)j ← SubB((G1,1)j , x).
20: x← MultB((D0,0)j , (D1,1)j).
21: (D2,2)j ← DivB(q2, x).
22: (L2,0)j ← DivB((G2,0)j , (D0,0)j).
23: x← MultB((G2,0)j , (L1,0)

∗
j ).

24: y ← SubB((G2,1)j , x).
25: (L2,1)j ← DivB(y, (D1,1)j).
26: end if
27: end for
28: T.value← L.
29: for i ∈ {0, . . . , d− 1} do
30: d0,d1 ← splitfftB(Di,i, n).

31: G′ =

(
d0 d1

d∗1 d0

)
.

32: T.childi ← ffLDLB(G′,Di,i).
33: end for
34: return T .
35: end function
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Algorithm 9 The ffSamplingB algorithm based on statistical
model.
Input: t = (t0, . . . , tℓ) in FFT format, tree T .
Output: z = (z0, . . . , zℓ) in FFT format.

1: function ffSamplingB(t, T )
2: if n = 1 then
3: z0 ← (µ(t0)0,R, 0, 0, 0).
4: z1 ← (µ(t1)0,R, 0, 0, 0).
5: Output ∆′t0 = σ(t0)0,R/(σℓ/

√
µ(T.value)0,R).

6: Output ∆′t1 = σ(t1)0,R/(σℓ/
√
µ(T.value)0,R).

7: return z = (z0, z1).
8: else
9: m← number of children of T .

10: for j ← m− 1, . . . , 0 do
11: Tj ← j-th child of T .
12: t′j ← tj .
13: for i← j + 1, . . . ,m− 1 do
14: for k ← 0, . . . , n− 1 do
15: x← SubB((ti)k, (zi)k).
16: y ← MultB(x, (T.valuei,j)k).
17: (t′j)k ← AddB((t′j)k, y).
18: end for
19: end for
20: f0, f1 ← splitfftB(t′j , n).
21: z′j,0, z

′
j,1 ← ffSamplingB((f0, f1), Tj).

22: zj ← mergefftB(z′j,0, z
′
j,1, n).

23: end for
24: return z.
25: end if
26: end function

Algorithm 10 The splitfftB algorithm based on statistical
model.
Input: a, n.
Output: f0, f1.

1: function splitfftB(a, n)
2: (f0)0 ← (µa0,R, σ

2
a0,R

, 0, 0).
3: (f1)0 ← (µa0,I , σ

2
a0,I

, 0, 0).
4: for k ← 0, . . . , n/2− 1 do
5: (f0)k ← MultB(1/2,AddB(a2k,a2k+1)).
6: x← SubB(a2k,a2k+1).
7: y ← MultB(x, ω−bitrev(n/2+k)).
8: (f1)k ← MultB(1/2, y).
9: end for

10: return f0, f1.
11: end function
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