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Abstract—Blockchain technologies have received a great
amount of attention, and its immutability is paramount to facil-
itate certain applications requiring persistent records. However,
in many other use-cases, tremendous real-world incidents have
exposed the harm of strict immutability. For example, illicit
data stored in immutable blockchain poses numerous challenge
for law enforcement agencies such as Interpol, and millions of
dollars are lost due to the vulnerabilities of immutable smart
contract. Moreover, “Right to be Forgotten” (a.k.a. data erasure)
has been imposed in new European Union’s General Data
Protection Regulation, thus causing immutable blockchains no
longer compatible with personal data. Therefore, it is imperative
(even legally required) to design efficient redactable blockchain
protocols in a controlled way.

In this paper, we present a generic approach of designing
redactable blockchain protocol in the permissionless setting with
instant redaction, applied to both proof-of-stake blockchain and
proof-of-stake blockchain with just different instantiations to
randomly select “committees” according to stake or compu-
tational power. Our protocol can achieve the security against
1/2 (mildly adaptive) adversary bound, which is optimal in
the blockchain protocol. It also offers public verifiability for
redactable chains, where any edited block in the chain is publicly
verifiable. Compared to previous solutions in permissionless
setting, our redaction operation can be completed instantly, even
only within one block in synchronous network, which is desirable
for redacting harmful or sensitive data. Moreover, our protocol is
compatible with most current blockchains requiring only minimal
changes. Furthermore, we define the first ideal functionality
of redactable blockchain following the language of universal
composition, and prove that our protocol can achieve the security
property of redactable common prefix, chain quality, and chain
growth. Finally, we develop a proof-of-concept implementation,
and conduct extensive experiments to evaluate the overhead
incurred by redactions. The experimental results show that the
overhead remains minimal for both online nodes and re-spawning
nodes, which demonstrates the high efficiency of our design.

I. INTRODUCTION

Blockchain has been gaining increasing popularity and ac-
ceptance by a wider community, which enables Internet peers
to jointly maintain a digital ledger. One commonly mentioned
feature of blockchain is immutability (or untamperability)
in mass media. Immutability of blockchain is paramount

to certain applications to ensure keeping persistent records.
However, in many other applications, such strict immutability
may not be desirable or even hinder a wider adoption for
blockchain technology.

First, since everyone in the Internet is able to write to
permissionless blockchain, some malicious users may abuse
the ability to post arbitrary transaction messages [39]. It could
be the case that the data stored on the ledger might be sensitive,
harmful or illegal. For instance, Bitcoin blockchain contains
leaked private keys [41], materials that infringe on intellectual
rights [27], and even child sexual abuse images [33]. It is
clear that allowing those contents to be publicly available for
everyone to access is unacceptable. They may affect the life
of people forever, and block broader blockchain applications
[17] in areas involving data such as government records [9],
[22] and social media [3], [10].

On the other hand, as a full node, maintaining the whole
ledger will also bear with the burden of maintaining those
potentially illicit contents, thus the risk of being prosecuted
for possessing and distributing illicit information increases.
Concerning about above liability, honest nodes may opt-out as
a full node, which in turn hurts the security of permissionless
blockchain itself.

Indeed, with the adoption of the new European Union’s
General Data Protection Regulation (GDPR) [7] in May 2018,
it is no longer compatible with current blockchains such as
Bitcoin and Ethereum [6] to record personal data. In particular,
GDPR imposes the “Right to be Forgotten” as a key Data
Subject Right [28], i.e., the data subject shall have the right
to obtain from the controller the erasure of personal data
concerning him or her without undue delay. How to facilitate
wider adoption of blockchain while complying with new
regulations on personal data becomes a natural challenge.

Second, in certain systems, some flexibility is necessary
to hedge with user mistakes or accidents to protect the sys-
tem integrity. For example, in database, a rollback is the
operation which returns the database to some previous state
[29]. One other example is misdirected payment. According
to statistics, around a quarter of people have accidentally paid
the wrong person [1]. The Payments Council (part of UK



finance) introduced a voluntary code of conduct for banks and
building societies to follow when it comes to these misdirected
payments. If a user who made the mistake notifies his bank fast
enough, and provides clear evidence, “his bank will contact the
receiving bank on his behalf to request the money isn’t spent,
so long as the recipient doesn’t dispute the claim” [1]. In the
centralized banking system, there may still exist options to
reverse incorrect transactions, while if similar mistakes happen
in decentralized cryptocurrencies, thing would become much
more complicated even if it is ever feasible.

We would like to stress that though blockchain offers
a more reliable trust model as no single entity can fully
control the system, however, it by no means insists on a
strict immutability as an inherent property that is derived from
consensus.

In fact, when the notorious DAO vulnerability was ex-
ploited, that 3,641,694 Ethers (worth of about 79 million of
US dollars) were stolen due to the flaws of Ethereum and DAO
contract [30], the financial loss have to be resolved by patching
the vulnerability and “rollback” via a hard fork (majority of
the miners are suggested by the Ethereum developers to adopt
a newer client and create a fork of the chain from a state
before the vulnerable contract got deployed). Hard forks also
happened before, e.g., for Bitcoin when upgrading its protocol
[4]. Of course, hard forks are not encouraging events as they
may split the community and are very costly to implement.

Following above discussions, there exists a strong need to
redact content of blockchain in exceptional circumstances, as
long as the redaction proposal is clearly examined and satisfies
full transparency and accountability (not determined by any
single entity, and sufficient confidence can be gained that at
least some honest users have approved the proposal).

A. Related Work

There exist several works that start exploring feasible
methods for redacting blockchain. A straightforward approach
is to initiate a hard fork, which essentially requires all com-
munity members to vote by action (whether to follow the new
fork). Doing this sometimes brings the risk of dividing the
community, e.g., Bitcoin has a dozen forks, each of which
now forms its own community. Moreover, such a procedure
is extremely costly and slow, which normally takes multiple
months to finalize [8], and if the redaction needs to touch
an ancient block, growing a longer fork may take even much
longer.

Ateniese et al. [12] proposed the notion of redactable
blockchain in the permissioned setting. They use a chameleon
hash function [16] to compute hash pointer, when redacting
a block, a collision for the chameleon hash function can be
computed by a trusted party (e.g., the certificate authority)
with access to the chameleon trapdoor key. By this way,
the block data can be modified while maintaining the chain
consistency [11][23]. Recently, in order to support fine-grained
and controlled redaction of blockchain, Derler et al. [19]
introduced the novel concept of policy-based chameleon hash,
where anyone who possesses enough privileges to satisfy the
policy can then find arbitrary collisions for a given hash.

Their solutions focus on the permissioned setting, while
in permissionless blockchains, there is no single trusted entity

and users can join and leave the system at any time, thus
their solutions will suffer from scalability issues when sharing
the trapdoor key among miners and computing a collision for
the chameleon hash function by a multi-party computation
protocol.

Puddu et al. [38] also presented a redactable blockchain,
called µ chain. In µ chain, the sender of a transaction can
encrypt some different versions of the transaction, denoted by
“mutations”, the decryption keys are secretly shared among
miners, and the unencrypted version of a transaction is re-
garded as the active transaction. When receiving a request
for redacting a transaction, miners first check it according to
redaction policy established by the sender of the transaction,
then compute the appropriate decryption key by executing a
multi-party computation protocol, and finally decrypt the ap-
propriate version of the transaction as a new active transaction.
Unfortunately, the malicious users who establish redaction
policy can escape redaction, or even break the stability of
transactions by the influence among transactions. Moreover,
µ chain also faces scalability problem when reconstructing
decryption keys by the multi-party computation protocol.

Recently, Deuber et al. [20] proposed the first redactable
blockchain protocol in the permissionless setting, which does
not rely on heavy cryptographic protocols or additional trust
assumption. Once a redaction is proposed by a user, the
protocol starts a consensus-based voting period, and only
after obtaining enough votes for approving the redaction, the
edition is performed on the blockchain. Each user can verify
whether a redaction proposal is approved by checking the
number of votes on the chain. Similarly, Thyagarajan et al.
[42] proposed a generic protocol called Reparo on top of any
blockchain to perform redactions, where the block structure
remains unchanged by introducing external data structures to
store block contents.

Their solutions are elegant, however, the new joined user
has to check all the blocks within the voting period to verify
a redaction on the blockchain. More importantly, the voting
period is very long, for example, 1024 consecutive blocks are
required in their Bitcoin instantiation, which takes about 7
days to confirm and publish a redaction block. Nevertheless,
in practice, it is inefficient to redact sensitive data after such
a long time, and it is also difficult to ask newly joined users
in the system maintain these redactions.

B. Our Contributions

In the permissionless setting, it seems unreasonable to have
a trusted party to hold certain trapdoor to modify the chain
(like in the permissioned setting [12]). It follows that we have
to choose a committee to jointly make the decision. Indeed,
existing works [20], [42] pick one committee member per
block. For this reason, the redaction will be at least linear
to T · t, where T is the committee size, t is the block time of
the underlying blockchain. However, in order to ensure honest
majority, the committee size has to be substantially large.

In this work, we aim to achieve redactable blockchains
in the permissionless setting such that the redaction could be
instant, which means that the redaction time is at most c · t for
a small constant c. Ideally c = 1, and thus the redaction could
be as fast as the underlying chain!
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More specifically, our technical contributions are threefold.

Generic construction of blockchain with instant redaction.
With the formal model at hand, we set forth to give a generic
approach to design blockchain with instant redaction. Observe
that existing work emulates the Bitcoin design, viewing block
generation as a random walk that eventually converges to the
longest chain, thus directly binding the committee selection to
the consensus (treating each block as a random draw of a peer)
requires a long convergence time (large number of blocks).
But in certain blockchain design (such as Algorand [25]), one
may use each block to randomly draw a large number of
committee members, then let the committee members to run
BFT to determine next block.

Inspired by this simple observation, we proceed in two
steps.

First, we deviate from the previous path and directly use the
underlying component relying on stake or computing power
to select committees randomly among all parties, ensuring
a sufficient fraction of committee members are honest. In
particular, the functionality of the committee election is refined
by the general functions Cmt and VerifyCmt.

Then in the second phase, each committee member would
vote by signing on the hash of the candidate edited block and
diffuse the vote (i.e., the signature as well as the proof of
committee members) to the network. We use w slots to collect
enough votes avoiding the impact of network delays, and
furthermore we set the maximum time of collecting votes to be
w slots, which is independent of block generation time. When
enough approved votes are collected, votes and corresponding
succinct proofs from the committee members are added to a
block.

On a high level, any party can propose a candidate edited
block B∗j for Bj in the chain chain, and only committee
members (in a new slot sl of chain with sl mod w = 0) can
vote for B∗j ; if votes are approved by the editing policy (e.g.,
voting bound) in one of subsequent w slots including sl, the
leader of the approved slot adds these votes and corresponding
proofs to its block data collected and proposes a new block;
and finally Bj is replaced by B∗j .

Note that our redaction method can achieve instant redac-
tion, if the underlying blockchain progresses fast, then redac-
tion will also be fast. Moreover, our redactable protocol can
achieve the security against 1/2 mildly adaptive adversary (i.e.,
the adversary can corrupt parties adaptively but is subject to
a mild corruption delay such that the committee members
cannot be corrupted in the corresponding voting period), which
is optimal in the blockchain protocol. This also means our
approach will not reduce the adversary bound requirements
of all blockchain protocols. Our protocol also offers account-
ability for redaction, where any edited block in the chain is
publicly verifiable. Moreover, multiple redactions per block
can be performed throughout the execution of the protocol.

Simulation based security analysis of redactable
blockchain. To characterize the security properties of
redactable blockchains more precisely and analyze them
rigorously, we define for the first time the ideal functionality
of a redactable blockchain in the simulation based paradigm.
Our proof first considers an idealized functionality Ftree

that keeps track of all valid chains at any moment of time,
and then shows that any attack that succeeds in real-world
protocol can be turned into an attack in the idealized
Ftree model. In the idealized functionality Ftree, we use
Ftree.committee query to obtain the committee members, and
Ftree.redact query to let committees redact the blockchain
under certain conditions. In fact, separating these two queries
in our idealized functionality ensures generality and instant
redaction of redactable protocol. Moreover, Ftree models
the ability of voting period changing with the network delay
using w.

As a sanity check, we show that the ideal functionality
indeed implies the redactable common prefix property defined
in [20], and the usual chain quality and chain growth proper-
ties [24]. Essentially, the redactable common prefix property
requires the original common prefix except at the edited blocks
that satisfy the redaction policy RP . However, different from
the redaction policy in [20] considering the consecutive l
blocks as the redaction period (which is not suitable for instant
redaction), our RP requires votes are embedded in one block.

Instantiations and performance evaluation. Then we demon-
strate that our construction is generic by presenting three con-
crete instantiations of the general functions Cmt and VerifyCmt
on proof of stake, and proof of work (in principle, we may
also instantiate via proof of space). In PoS instantiation, we
similarly leverage verifiable random function (VRF) to sample
sufficient number of committee members according to stake
distribution, and we design the committee size to ensure that
at least a majority of the stakes are from honest players.

While in PoW instantiations, more cares are needed. We
propose two different approaches to resolve the instant redac-
tion challenge in PoW blockchain: 1) we rely on the “chain
quality” of the underlying PoW blockchain to elect committees
and each committee consists of leaders of latest T blocks
(instead of waiting for many new blocks as in [20]); and 2)
committee members are elected by computing PoW puzzles
with a properly chosen easy puzzle (i.e., bigger difficulty
parameter D), so that during regular mining procedure will
produce many easier puzzle solutions as a byproduct.

In addition, we give detailed analysis of each instantiation,
and all of them satisfy the condition that committee members
are chosen randomly and honest fraction of committees are
guaranteed.

We also develop a proof-of-concept (PoC) implementation
of our redaction approach, and conduct extensive experiments
to evaluate the overhead after applying our redaction mecha-
nism. The results demonstrate the high efficiency of our design.
In particular, compared to the underlying blockchain (which
simulates Cardano SL), the overhead incurred by redactions
remains minimal for both online nodes and re-spawning nodes.
For the online nodes, they only have to face a cheap and
constant overhead (i.e., an extra latency of 0.8 second) to
validate a newcoming block including a proof on redaction
and then perform corresponding editing. For the re-spawning
nodes, they can efficiently validate a redactable chain despite of
many edited blocks. For example, when less than 6.25% blocks
are edited, the time of validating a redactable chain is nearly
same to that of validating an immutable chain. Remarkably,
even if in the extremely pessimistic case that half blocks are
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edited, the performance of validating such a redacted chain
remains acceptable (about 5X more than validating an unedited
chain).

II. FORMAL ABSTRACTION OF BLOCKCHAIN

In this section, we define the formal abstraction and secu-
rity properties of a blockchain. Our definitions are based on
the approach of Garay et al.[24] and Pass et al.[36][37].

A. Protocol Execution Model

We assume a protocol specifies a set of instructions for the
interactive Turing Machines (also called parties) to interact
with each other. The protocol execution is directed by an
environment Z , which activates a number of parties (either
honest or corrupt). Honest parties faithfully follow the pro-
tocol’s prescription, whereas corrupt parties are controlled by
an adversary A. We assume that honest parties can broadcast
messages to each other. The adversary A cannot modify the
content of messages broadcasted by honest parties, but it can
delay or reorder messages arbitrarily as long as it eventually
delivers all messages.

We follow the nice results on the foundation of blockchains
[32], [31] to assume a global clock, which can be seen as an
equivalent notion of the height of the latest chain (or more
specifically, the latest slot number in the blockchain). Notation-
wise, by Time, we denote that a blockchain node invokes the
global clock to get the current time. A protocol’s execution
proceeds in atomic time units. At the beginning of every time
unit, honest parties receive inputs from an environment Z;
while at the end of every time unit, honest parties send outputs
to the environment Z . The environment Z can spawn, corrupt,
and kill parties during the execution as follows.

• The environment Z can spawn new parties that are either
honest or corrupt any time during the protocol’s execution.

• The environment Z can corrupt an honest party and get
access to its local state.

• The environment Z can kill either an honest or a corrupt
party i, and at this moment, the party i is removed from the
protocol execution.

B. Blockchain Protocol

We recall basic definitions [18] of blockchain. There are n
parties P1, . . . ,Pn and each party Pi possesses a public/secret
key pair (pki, ski). Without loss of generality, we assume that
the public keys pk1, . . . , pkn are known by all system users.
The protocol execution is divided in time units, called slots.
We denote a block to be of the form Bj := (headerj , dj),
where headerj = (slj , stj , G(dj), πj) denotes the block
header information, and dj denotes the block data. In headerj ,
slj ∈ {sl1, · · · , slR} is the slot number, stj ∈ {0, 1}λ is the
hash of the previous block header H(headerj−1), G(dj)

1

denotes the state of the block data, and πj contains some
special header data for the block (e.g., in PoS, it is a signature
on (slj , stj , G(dj)) computed under the secret key of slot
leader generating the block, while in PoW, it is a nonce for the
puzzle of PoW). Here H and G denote two collision-resistent
hash functions.

1In practice G(dj) means the Merkle root of the block data.

A valid blockchain chain relative to the genesis block B0

is a sequence of blocks B1, · · · , Bm associated with a strictly
increasing sequence of slots, where B0 contains auxiliary
information and the list of parties identified by their respective
public-keys pk1, . . . , pkn. We use Head(chain) to denote the
head of chain (i.e., the block Bm). In a basic blockchain
protocol, the users always update their current chain to the
longest valid chain they have seen so far. Let eligible(Pi, sl)
be a function that determines whether a party Pi is an eligible
leader at the time slot sl, then Pi can create a block at
sl and broadcast the updated chain if eligible(Pi, sl) = 1,
where the leader election can be achieved according to specific
blockchain protocol.

C. Security Properties of Blockchain

We use view ← EXECΠ(A,Z, λ) to denote a randomized
execution of the blockchain protocol Π with security parameter
λ, which contains the joint view of all parties (i.e., all their
inputs, random coins and all messages sent and received) in
the execution. We use |view| to denote the number of time
units in the execution trace view, and chainti(view) denote the
output of party i to the environment Z at time unit t in view
of extracted ideal blockchain chain. The notation chain[i]
denotes i-th block of chain, chain[: l] denotes the prefix of
chain consisting of the first l blocks, chain[l :] denotes all
blocks at length l or greater, and chain[: −l] denotes the entire
chain except for the trailing l blocks.

Common Prefix. Informally speaking, the common prefix
property requires that all honest parties’ chains should be
identical except for roughly O(λ) number of trailing blocks
that have not stabilized.

Let prefixk(view) = 1 iff for all times t ≤ t′, and for all
parties i, j such that i is honest at t and j is honest at t′ in view,
we have that the prefixes of chainti(view) and chaint

′

j (view)
consisting of the first |chainti(view)| − k records are identical.

Definition 1. (Common Prefix). We say that a blockchain
protocol Π satisfies k0-common prefix, if for all (A,Z), there
exists a negligible function negl such that for every sufficiently
large λ ∈ N and every k ≥ k0 the following holds:

Pr[view← EXECΠ(A,Z, λ) : prefixk(view) = 1] ≥ 1−negl(λ).

Chain Quality. Informally speaking, the chain quality property
requires that the ratio of adversarial blocks in any segment of
a chain held by an honest party is not too large.

We say that a block B = chain[j] is honest w.r.t. view and
prefix chain[: j′] where j′ < j, if there exists some honest
party i at some time t < |view| who received B as input, and
its local chain chainti(view) contains the prefix chain[: j′].

Let qualityk(view, µ) = 1 iff for every time t and every
party i such that i is honest at t in view, among any consecutive
sequence of k blocks chain[j + 1..j + k] ⊆ chainti(view), the
fraction of blocks that are honest w.r.t. view and prefix chain[:
j] is at least µ.

Definition 2. (Chain Quality). We say that a blockchain
protocol Π satisfies (k0, µ)-chain quality, if for all (A,Z),
there exists a negligible function negl such that for every
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sufficiently large λ ∈ N and every k ≥ k0 the following holds:

Pr[view← EXECΠ(A,Z, λ) : qualityk(view, µ) = 1] ≥ 1−negl(λ).

Chain Growth. The chain growth property requires that the
chain grows proportionally with the number of time slots. Let
growthτ (view) = 1 iff for every time t ≤ |view|−t0 and every
two parties i, j such that in view i is honest at time t and j
is honest at t+ t0, |chaint+t0

j (view)| − |chainti(view)| ≥ τ · t0.

Definition 3. (Chain Growth). We say that a blockchain
protocol Π satisfies τ -chain growth, if for all (A,Z), there
exists a negligible function negl such that for every sufficiently
large λ ∈ N the following holds:

Pr[view← EXECΠ(A,Z, λ) : growthτ (view) = 1] ≥ 1−negl(λ).

III. REDACTING BLOCKCHAIN

In this section we present a generic construction that
converts a basic blockchain into redactable blockchain pro-
tocol. We also extend the redactable protocol to accommodate
multiple redactions for each block in Appendix E.

A. Overview of Redactable Blockchain Protocol

We construct our redactable blockchain protocol Γ by
modifying and extending the basic blockchain protocol. We
assume that the fraction of the computational power (or stake)
held by honest users in the blockchain is h (a constant greater
than 1/2). We also assume that there is some application-
specific function Cmt(chain, sl,P, T ) that examines whether
P is the committee member at the slot sl and outputs
(c, proof), where T is an optional parameter that determines
the expected (or true) number of the computational power (or
stake) in the committee, c is the weight of P in the committee,
proof is committee member proof, and the selection of T
will be discussed in Section VI. Correspondingly, there is
some application-specific function VerifyCmt(chain, pk, sl, c,
proof, T ) to verify (c, proof), where pk is the public key of
P . In the selected committee by Cmt, we set the fraction of
the computational power (or stake) held by honest users is at
least η (η > 1/2). Notice that some input parameters to Cmt
and VerifyCmt are related to specific applications, and here we
omit them.

First, a redaction policy is introduced to determine whether
an edit to the blockchain should be approved or not.

Definition 4. (Redaction Policy RP). We say that an edited
block B∗ at the slot sl satisfies the redaction policy, i.e.,
RP(chain,B∗, sl) = 1, if the number of votes on B∗ is not
less than (1− η) T , where votes are embedded in a block Br,
Br ∈ chain[: −λ], and λ is the common prefix parameter.

Next, in order to accommodate editable data, we extend
the above block structure to be of the form B := (header, d),
where header = (sl, st,G(d), ib, π) and the newly added item
ib denotes the original state of the block data. Specifically,
if a blockchain chain with Head(chain) = (header, d) is
updated to a new longer blockchain chain′ = chain∥B′,
the newly created block B′ = (header′, d′) sets header′ =
(sl′, st′, G(d′), ib′, π′) with st′ = H(header) and ib′ =
G(d′). Notice that in order to maintain the link relationships

between an edited block and its neighbouring blocks, inspired
by the work [20] we introduce ib to represent the initial and
unedited state of block, i.e., ib = G(d0) if original block data
is d0 in the edited block B = (header, d).

Generally, a blockchain chain = (B1, · · · , Bm) can be
redacted by the following steps.

1) Propose a redaction. If a user wishes to propose an edit
to block Bj in chain, he first parses Bj = (headerj , dj)
with headerj = (slj , stj , G(dj), ibj , πj), replaces dj with
the new data d∗j , and then broadcasts the candidate block
B∗j = (header∗j , d

∗
j ) to the network, where header∗j =

(slj , stj , G(d∗j ), ibj , πj), and d∗j is the empty data ε if the
user wants to remove all data from Bj .

2) Update the candidate block pool. Upon receiving B∗j
from the network, every party Pi first validates whether
B∗j is a valid candidate editing block, and stores it in his
own editing pool EPi if it is. Notice that each candidate
editing block in the pool EP has a period of validity tp.
At the beginning of each new slot sl, every party Pi tries
to update his own editing pool EPi. Specifically, for every
candidate editing block B∗j in EPi: (i) Pi checks whether
B∗j has expired or not, and if it is, Pi removes B∗j from
EPi; (ii) Pi computesRP(chain,B∗j , slj), and if it outputs
1, Pi removes B∗j from EPi.

3) Vote for candidate blocks. Firstly, we denote by w the
needed slots for votes diffusion, where w can be selected
based on specific environments to guarantee the votes can
be received by all users after w slots with a greater proba-
bility. For every sl mod w = 0, we call the slots between sl
and sl + w − 1 the voting period for the editing proposal.
For each candidate editing block B∗j in EPi, Pi checks
whether he has voting right for the slot sl with sl mod
w = 0, which is determined by Cmt(chain, sl,Pi, T, η). If
it outputs(c, proof) and c ̸= 0, Pi broadcasts (c, proof)
and the signature sig on H(B∗j ) with his own secret key
ski.

4) Propose new blocks. For each new slot the leader creates a
block and broadcasts chain in exactly the same manner as
the basic blockchain if his editing pool is empty. Otherwise,
we consider the case that the candidate editing block B∗j is
in the editing pool and it is voted in some slot sl0 (where
sl0 mod w = 0). For the immediately subsequent voting
period (i.e., between sl0 and sl0+w−1), the corresponding
leaders try to collect and validate the votes on B∗j by using
sub-protocol collectVote (Figure 2) with the input sl0. If
collectVote returns (msig, PROOF ) at the slot sl′ in the
current voting period, the leader of sl′ replaces Bj with
B∗j , adds (asig, PROOF ) to the data d′, creates a new
block and broadcasts chain, where d′ is the new block
data collected in sl′. Otherwise, the votes for B∗j in the
current voting period fail, and a new voting period for B∗j
would restart in the next w slots.

Redactable blockchain protocol offers public verifiability.
Concretely, to validate a redactable chain, users first check
each block exactly like in the underlying immutable blockchain
protocol. Once a “broken” link between blocks is found,
users check whether the link still holds for the old state
information, and whether the redaction policy RP is sat-
isfied. By this way, the redaction operation of blockchain
can be verified. For example, in the blockchain chain =
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(B1,· · · ,Bm), if stj ̸= H(headerj−1) for headerj−1 = (slj−1,
stj−1, G(dj−1), ibj−1, πj−1), chain is valid only under the
condition of stj = H(slj−1, stj−1, ibj−1, ibj−1, πj−1) and
RP(chain,Bj−1, slj−1) = 1.

For presentation simplicity, we extend the structure of
block headers in the underlying blockchains, but it is straight-
forward to perform engineering optimizations to maintain the
same block structure between the old and the new nodes.
The idea behind the “soft-fork” could be simple [42]: i) the
upgraded blockchain node maintains two separate storages for
the original blockchain and the modifications respectively, so
the blockchains upgrade does not have to change the structure
of block headers at the end of new nodes; ii) all modification
requests and approvals are sent to the blockchain by rephrasing
existing script opcodes, for example, through being attached to
OP RETURN in bitcoin-like script (e.g., Cardanos settlement
layer).

B. Redactable Blockchain Protocol

Before our protocol is described, we first define the format
of valid blocks, valid blockchains, and valid candidate editing
blocks. Roughly speaking, we need to ensure that for an edited
block, its original state before editing still can be accessible
for verification.

Valid Blocks. To validate a block B, the validateBlock algo-
rithm (Algorithm 1) first checks the validity of data included in
B according to the system rules. It then checks the validity of
the leader by eligible function. Finally, it verifies the signature
π (on (sl, st,G(d), ib) or on (sl, st, ib, ib)) with the public key
pk of the leader or verifies the nonce π for the puzzle of PoW.
In particular, for an edited block, the signature π is on the
“old” state (sl, st, ib, ib). We say that B is a valid block iff
validateBlock(B) outputs 1.

procedure validateBlock(B)
Parse B = (header, d), where header = (sl, st, G(d), ib, π);
Validate data d, if invalid return 0;
Validate the leader, if invalid return 0;
Validate data π, if invalid return 0;
return 1.

Algorithm 1: The block validation algorithm

Valid Blockchains. To validate a blockchain chain, the
validateChain algorithm (Algorithm 2) first checks the validity
of every block Bj , and then checks its relationship to the
previous block Bj−1, which has two cases depending on
whether Bj−1 is an edited block. If Bj−1 has been redacted
(i.e., stj ̸= H(headerj−1), its check additionally depends
on whether the redaction policy RP of the blockchain has
been satisfied. We say that chain is a valid blockchain iff
validateChain(chain) outputs 1.

Valid Candidate Editing Blocks. To validate a candidate
editing block B∗j for the j-th block of blockchain chain,
the validateCand algorithm (Algorithm 3) first checks the
validity of block B∗j . It then checks the link relationship with
Bj−1 and Bj+1, where the link with Bj+1 is “old”, i.e.,
stj+1 = H(slj , stj , ibj , ibj , πj). We say that B∗j is a valid
candidate editing block iff validateCand(chain,B∗j ) outputs
1.

procedure validateChain(chain)
Parse chain = (B1, · · · , Bm);
if m = 1 then return validateBlock(B1);
otherwise, for all j ∈ [2..m], parse Bj = (headerj , dj),
where headerj = (slj , stj , G(dj), ibj , πj), return 1 if:
1. validateBlock(Bj) = 1;
2. stj = H(headerj−1) or
3. stj = H(slj−1, stj−1, ibj−1, ibj−1, πj−1) and

RP(chain,Bj−1, slj−1) = 1

Algorithm 2: The blockchain validation algorithm

procedure validateCand(C, B∗
j )

Parse B∗
j = (headerj , d

∗
j ), where headerj = (slj , stj , G(d∗j ), ibj , πj);

if validateBlock(B∗
j ) = 0 then return 0;

Parse Bj−1 = (headerj−1, dj−1),
where headerj−1 = (slj−1, stj−1, G(dj−1), ibj−1, πj−1);

Parse Bj+1 = (headerj+1, dj+1),
where headerj+1 = (slj+1, stj+1, G(dj+1), ibj+1, πj+1);

if stj = H(slj−1, stj−1, ibj−1, ibj−1, πj−1)
and stj+1 = H(slj , stj , ibj , ibj , πj)

then return 1;
else return 0.

Algorithm 3: The candidate block validation algorithm

We now present redactable blockchain protocol Γ in Figure
1, where collectVote is used to collect the votes.

Collecting votes. The subroutine collectVote (Figure 2) col-
lects and validates the votes from the slot sl (where sl mod
w = 0) to the slot sl+w−1. The collected votes are stored in
msgs buffer. To validate a vote, it first verifies the signature
on H(B∗j ) under the public key of the voter, and then confirms
the voting right and the voting number c of the voter deter-
mined by VerifyCmt(chain, pk, sl, c, proof, T, η)2. As soon
as the number of votes collected is more than (1 − η) T ,
the algorithm generates an aggreagte signature asigj on all
these vote signatures SIG, aggregates corresponding proofs
PROOF , and returns them, where aggregate signature can
reduce the communication complexity and storage overhead
for blockchain. If not enough votes are collected within the
voting period, the algorithm halts.

IV. Security Analysis

In this section, we analyze the security of redactable
blockchain protocol Γ as depicted in Figure 1. The security
properties of redactable blockchain are same as that of basic
blockchain, except for the common prefix property.

Redactable Common Prefix. We observe that redactable
protocol Γ inherently does not satisfy the original definition of
common prefix due to the (possible) edit operation. In detail,
consider the case where the party P1 is honest at time slot sl1
and the party P2 is honest at time slot sl2 in view, such that
sl1 < sl2. For a candidate block B∗j to replace the original
Bj , whose votes are published at slot sl such that sl1 < sl <
sl2, the edit request has not been proposed in chainsl1P1

(view)

but may have taken effect in chainsl2P2
(view). As a result, the

original block Bj remains unchanged in chainsl1P1
(view) while it

2In this paper, we assume the identifier of the public key would be sent
to receivers associated with the signature, such that the corresponding public
key can be located for verification.
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Redactable Blockchain Protocol Γ (of Node P)

/ * Initialization * /
Upon receiving init() from Z , P is activated to initialize as follows:

let (pkp, skp) := Gen(1λ)
/ / For simpler presentation, VRF uses the same keys
let txpool be an empty FIFO buffer
let chain := B0, where B0 is the genesis block
let EP be an empty set (to store editing candidates)
let AEP be an empty set (to store approved editings)
let vote msgs be an empty FIFO buffer (to store votes)

/ * Receiving a longer chain * /
Upon receiving chain′ for the first time, the (online) P proceeds as:

assert |chain′| > |chain| and validateChain(chain′) = 1;
let chain := chain′ and broadcast chain

/ * Receiving transactions * /
Upon receiving transactions(d′) from Z (or other nodes) for the first time,
the (online) P proceeds as:

let txpool.enqueue(d′) and broadcast d′

/ * Receiving candidate blocks for editing * /
Upon receiving edit(B∗

j ) from Z (or other nodes) for the first time, the
(online) P proceeds as:

let EP := EP ∪ {B∗
j }, if B∗

j is a valid candidate to edit chain[j]

/ * Receiving vote information * /
Upon receiving vote(ci, proofi, pki, H(B∗

j ), sigj) for the first time, the
(online) P proceeds as:

let vote msgs.enqueue((ci, proofi, pki, H(B∗
j ), sigj))

/ * When collectVote subroutine returns * /
Upon receiving approval(v) from collectVote(sl, . . . ) through the subrou-
tine tape, the (online) P proceeds as:

let AEP := AEP ∪ v, where v is in form of
(H(B∗

j ), asigj , PROOF )

/ * Main procedure * /
for each slot sl′ ∈ {1, 2, . . . }, the (online) P proceeds as:

for each B∗
j in EP :

let EP := EP \{B∗
j }, if B∗

j is expired or RP(chain,B∗
j , slj) =

1

if EP ̸= ∅:
let sl := ⌊sl′/w⌋ ∗ w
activate collectVote(sl, vote msgs, . . . ) subroutine

if eligible(P, sl′) = 1:
let d′ := txpool.dequeue() ∪ AEP
let chain[j] := B∗

j , for each (H(B∗
j ), ·, ·) in AEP

let (header, d) := Head(chain)
let header′ := (sl′, st′, G(d′), ib′, π′), where st′ := H(header)
and π′ is the output of P (the signature or the nonce)
let chain := chain∥(header′, d′)
assert RP(chain,B∗

j , slj) = 1, for each (H(B∗
j ), ·, ·) in AEP

let AEP := ∅ and broadcast chain
if sl′ mod w = 0:

let (c, proof) := Cmt(chain, sl′,P, T, η)
if c is non-zero:

for each B∗
j in EP , broadcast vote(c, proof, pkP ,

H(B∗
j ), sigj), where sigj = Sign(skP ;H(B∗

j ))

output extract(chain) to Z , where extract outputs an ordered list of
each block in chain

Figure 1. Redactable Blockchain Protocol Γ

subroutine collectVote(sl,msgs, w, T, η) invoked by P
/ / msgs is a FIFO buffer keeping on receiving votes from the network
/ / sl is the number of the first slot in this w-slot voting period
let SIG be a dictionary of hash-set pairs;
let PROOF be a dictionary of hash-set pairs;
let votes be a dictionary of hash-integer pairs;
Upon Time∗ ≥ sl + w:

halt
Upon msgs not empty:

assert sl ≤ Time < sl + w
for each (c, proof, pk,H(B∗

j ), sigj) ← msgs.dequeue()
if votes[H(B∗

j )], SIG[B∗
j ] and PROOF [B∗

j ] not initialized yet
let votes[H(B∗

j )] := 0, SIG[B∗
j ] := ∅, PROOF [B∗

j ] := ∅;
if the signature sigj on H(B∗

j ) can be validated by pk
continue;

if VerifyCmt(chain, pk, sl, c, proof, T, η) = 1
continue;

votes[H(B∗
j )] := votes[H(B∗

j )] + c;
SIG[H(B∗

j )] := SIG[H(B∗
j )] ∪ {sig};

PROOF [H(B∗
j )] := PROOF [H(B∗

j )] ∪ {proof};
if votes > (1− η) T

compute aggregate signature asigj on H(B∗
j ) from SIG[H(B∗

j )]
send approval(H(B∗

j ), asigj , PROOF [H(B∗
j )]) to P , if not yet

∗Time represents to invoke the global clock to get the latest slot number

Figure 2. Collecting Votes

is replaced with the candidate B∗j in chainsl2P2
(view). Therefore,

prefixk(view) ̸= 1, which violates Definition 1.

The main reason lies in the fact that the original definition
of common prefix does not account for edits in the chain,
while any edit may break the common prefix property. To
address this issue, we introduce an extended definition called
redactable common prefix and consider the effect of each
edit operation, which is suitable for redactable blockchains.
Roughly speaking, the property of redactable common prefix
states that if the common prefix property is violated, it must
be the case that there exist edited blocks satisfying the editing
policy RP .

Let redactprefixk(view) = 1 if for all times t ≤ t′, and for
all parties Pi, Pi′ such that Pi is honest at t and Pi′ is honest
at t′ in view, one of the following conditions is satisfied:

1) the prefixes of chaintPi
(view) and chaint

′

Pi′
(view) consisting

of the first |chaintPi
(view)| − k records are identical, or

2) for each B∗j in the prefix of chaint
′

Pi′
(view) but not

in the prefix of chaintPi
(view) consisting of the first

|chaintPi
(view)| − k records, it must be the case that

RP(chain,B∗j , tj) = 1 where tj < t < t′.

Definition 5. (Redactable Common Prefix). We say a
blockchain protocol Π satisfies k0-redactable common prefix,
if for all (A,Z), there exists a negligible function negl such
that for every sufficiently large λ ∈ N and every k ≥ k0 the
following holds:

Pr[view← EXECΠ(A,Z, λ) : redactprefixk(view) = 1] ≥ 1−negl(λ).

Essentially, Γ behaves just like the underlying immutable
blockchain protocol in Appendix B if there is no edit in
the chain, and otherwise each edit must be approved by
the redaction policy RP . Therefore, we prove Γ preserves
the same properties (or a variation of the property) of the
underlying immutable blockchain protocol under the redaction
policy RP .

Theorem 1. (Security of Γ). Assume that the signature scheme
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SIG is EUF-CMA secure, the aggregate signature scheme ASIG
is unforgeable, the hash function H is collision-resistant, the
function Cmt ensures the fraction of honest users (in terms
of computational power or stake) in the committee is at
least η, and the underlying immutable blockchain protocol in
Appendix B satisfies k0-common prefix, (k0, µ)-chain quality,
and τ -chain growth. Then, redactable blockchain protocol
Γ satisfies the k0-redactable common prefix, (k0, µ)-chain
quality, and τ -chain growth.

Proof roadmap. We first consider a simple ideal-world protocol
denoted Πideal having access to an ideal functionality Ftree,
and prove that Πideal satisfies redactable common prefix, chain
quality, and chain growth. Then we show that the real-world
protocol Γ securely emulates the ideal-world protocol Πideal.
We prove the theorem in the following two subsections.

A. Security of Ideal Protocol Πideal

We first define an ideal functionality Ftree (Figure 3) and
analyze an ideal-world protocol Πideal (Figure 4) parameterized
with Ftree.

The ideal functionality Ftree keeps track of the set (denoted
tree) of all abstract blockchains mined so far. Initially, the only
blockchain in the set tree is genesis.Ftree, which decides
whether a party P is the elected leader for every time step t
with probability ϕ(s, p) or the committee member for every
time step t (t mod w = 0) with probability ϕ(s, p′), where
ϕ is a general function whose output is proportional to the
stake (or the computational power) s of P , and the parameter
p (or p′, resp.) provides the randomness. An adversary A can
know which party is elected as the leader (or voting committee
member, resp.) in time t (or time t mod w = 0, resp.) using the
Ftree.leader (or Ftree.committee, resp.) query. Further, honest
and corrupted parties can extend known chains with new block
by calling Ftree.extend, if they are elected as leaders for
specific time steps. Specifically, honest parties always extend
chains in the current time, while corrupted parties are allowed
to extend a malicious chain in a past time step t′ as long as
t′ complies with the strictly increasing rule. In addition, the
voting committee member can call Ftree.redact to redact the
blockchain, if the votes are more than the number of corrupted
committee members. Finally, Ftree keeps track of all valid
chains, and parties can check if any chain they received is
valid by calling Ftree.verify.

Theorem 2. (Security of Πideal). If the underlying immutable
ideal protocol in Appendix C satisfies k0-common prefix,
(k0, µ)-chain quality, and τ -chain growth, then Πideal satisfies
the k0-redactable common prefix, (k0, µ)-chain quality, and
τ -chain growth.

Proof. Note that if there is no edit in chain, then Πideal

behaves exactly like the underlying immutable ideal protocol in
Appendix C, and thus k0-common prefix, (k0, µ)-chain quality,
and τ -chain growth can be preserved directly.

Redactable common prefix. Assume that there exists B∗j
in the prefix of chaint

′

Pi′
(view) but not in the prefix of

chaintPi
(view) consisting of the first |chaintPi

(view)| − k0
records, where t ≤ t′, and a party Pi is honest at t and a
party Pi′ is honest at t′ in view, which means Bj is redacted

Ftree(p, p′)
Upon receiving init(): tree := genesis, time(genesis) := 0
Upon receiving leader(P, t) from A or internally:

let s be the stake (or computational power) of P at time t

if Γ[P, t] has not been set, let Γ[P, t] =

{
1 with probability ϕ(s, p)

0 otherwise
return Γ[P, t]

Upon receiving extend(chain,B) from honest party P:
let t be the current time
assert chain ∈ tree, chain∥B /∈ tree, and leader(P, t) = 1
append B to chain in tree, record time(chain∥B) := t
return “succ”

Upon receiving extend(chain,B, t′) from corrupted party P∗:
let t be the current time
assert chain ∈ tree, chain∥B /∈ tree, leader(P, t) = 1, and
time(chain) < t′ < t
append B to chain in tree, record time(chain∥B) := t′

return “succ”
Upon receiving committee(P, t) from A or internally:

let s be the stake (or computational power) of P at time t
if t mod w = 0 and Γ′[P, t] has not been set,

let Γ′[P, t]=

{
1 with probability ϕ(s, p′)

0 otherwise
return Γ′[P, t]

Upon receiving redact(chain, i, B∗) from ξ distinct parties Pj :
let t be the time such that t mod w = 0
assert chain ∈ tree and committee(Pj , t) = 1 for every Pj

assert ξ is more than the number of corrupted parties Pj with
committee(Pj , t) = 1

redact chain[i] := B∗ and return “succ”
Upon receiving verify(chain) from P: return (chain ∈ tree)

Figure 3. Ideal Functionality Ftree

Ideal Protocol Πideal

Upon receiving init(): chain := genesis
Upon receiving chain′:
if |chain′| > |chain| and Ftree.verify(chain′) = 1
chain := chain′ and broadcast chain

for every slot:
for the input B (or B∗) from Z:
–if Ftree.extend(chain,B) outputs “succ”, let chain := chain∥B
–if Ftree.redact(chain, i,B∗) outputs “succ”, let chain[i] := B∗

–output chain to Z

Figure 4. Ideal Protocol Πideal

with B∗j in chaint
′

Pi′
(view) but not in chaintPi

(view). Then it
must be the case that the party Pi′ receives enough votes
(more than the number of corrupt committee members) for
B∗j according to the ideal protocol specification. Therefore,
the redaction policy RP is satisfied, and we conclude Πideal

satisfies the k0-redactable common prefix.

Chain quality. If an honest block Bj is replaced with a
malicious block B∗j (e.g., containing illegal or harmful data),
the adversary A can increase the proportion of adversarial
blocks in chain and finally break the chain quality property.
However, according to the ideal protocol specification, an
edited block can only be adopted when the votes are more
than the number of adversarial committee members. Since
only those adversarial committee members would vote for the
malicious block B∗j , chain cannot be redacted. Therefore, we
conclude Πideal satisfies the (k0, µ)-chain quality.

Chain growth. Note that any edit operation would not alter the
length of chain, since it is not possible to remove any blocks
from chain according to the ideal protocol specification.
Moreover, the new block issue process in current time slot is
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not influenced by votes for any edit request. No matter whether
a party P has received enough votes, P always extends chain
at time slot t as long as leader(P, t) = 1. Therefore, we
conclude Πideal satisfies the τ -chain growth.

B. Real-world Emulates Ideal-world

So far, we have proved that the ideal-world protocol
Πideal satisfies the k0-redactable common prefix, (k0, µ)-chain
quality, and τ -chain growth. We next show that the real-world
protocol Γ as depicted in Figure 1 emulates the ideal-world
protocol Πideal, and thus Γ also satisfies the same three security
properties.

Theorem 3. (Γ emulates Πideal). For any probabilistic
polynomial-time (p.p.t.) adversary A of the real-word protocol
Γ, there exists a p.p.t. simulator S of the ideal protocol Πideal,
such that for any p.p.t. environment Z , for any λ ∈ N, we
have:

view(EXECΠideal(S,Z, λ)) c≡ view(EXECΓ(A,Z, λ)),

where
c≡ denotes computational indistinguishability.

Proof Sketch. The proof process can be shown by a standard
simulation argument. Specifically, for any adversary A in
the real world, we can construct a simulator S in the ideal
world such that no p.p.t. environment Z can distinguish an
ideal execution with the simulator S and Πideal from a real
execution with the adversary A and Γ under the security
assumption of the underlying primitives including the digital
signature scheme, aggregate signature scheme and verifiable
random function. We defer the (security) definitions of the
corresponding primitives and proof details of this theorem in
Appendix A and Appendix D respectively.

V. INSTANTIATION

Following the generic construction, we now present three
concrete instantiations of redactable proof-of-stake blockchain
and redactable proof-of-work blockchain.

A. Redactable Proof-of-Stake Blockchain

In proof-of-stake blockchain, we assume S is total stakes
in the system, T is the expected number of stakes in committee
for voting, and the fraction of stakes held by honest users in
the committee is at least η.

Checking committee members Cmt. The function Cmt (Al-
gorithm 4) checks whether a party Pi (with secret key ski
and stake si) is the committee member at the slot sl and
outputs (c, proof). Inspired by the idea of Algorand [25],
Cmt uses VRFs to randomly select voters in a private and
non-interactive way. Specifically, Pi computes (hash, π) ←
V RFski(seed∥sl) with his own secret key ski, where sl mod
w = 0, seed is identical to that in the underlying proof-
of-stake blockchain, and the pseudo-random hash determines
how many votes of Pi are selected. In order to select voters
in proportion to their stakes, we regard each unit of stakes as
a different “sub-user”. For example, Pi with stakes si owns
si units, each unit is selected with probability p = T

S , and the
probability that q out of the si sub-users are selected follows
the binomial distribution B(q; si, p) = C(si, q)p

q(1− p)si−q ,

where C(si, q) = si!
q!(si−q)! and Σsi

q=0B(q; si, p) = 1. To
determine how many sub-users of si in Pi are selected, the
algorithm divides the interval [0,1) into consecutive inter-
vals of the form Ic = [Σc

q=0B(q; si, p),Σ
c+1
q=0B(q; si, p)) for

c ∈ {0, 1, · · · , si−1}. If hash
2hashlen falls in the interval Ic, it

means that c sub-users (i.e., c votes) of Pi are selected, where
hashlen is the bit-length of hash.

procedure Cmt(chain, sl, ski, si, seed,Pi, T, S)
(hash, π) := V RFski(seed∥sl);
p := T

S
; c := 0;

while hash
2hashlen /∈ [Σc

q=0B(q; si, p),Σ
c+1
q=0B(q; si, p)) do

c := c+ 1
proof := (hash, π);
return (c, proof).

Algorithm 4: Checking committee members

Verifying committee members VerifyCmt. The function
VerifyCmt (Algorithm 5) verifies Pi (with public key pki)
is the committee member with the weight c using proof
(i.e., (hash, π)). Specifically, it first verifies proof by
VerifyVRFpki

(hash, π, seed∥sl), and then verifies hash
2hashlen

falls in the interval Ic.

procedure VerifyCmt(chain, pki, sl, si, seed, c, proof, T, S)
(hash, π) := proof ;
if VerifyVRFpki

(hash, π, seed∥sl) = 0
then return 0;

p := T
S

; χ := 0;
while hash

2hashlen /∈ [Σχ
q=0B(q; si, p),Σ

χ+1
q=0B(q; si, p)) do

χ := χ+ 1
if χ = c

then return 1;
else return 0.

Algorithm 5: Verifying committee members

Parameter Selection. As mentioned earlier, we consider each
unit of stakes as a different “sub-user”, for example, if user Ui

with si stakes owns si units, then Ui is regarded as si different
“sub-users”. We assume the total stakes S in the system is
arbitrarily large. When a redaction is proposed, a committee
for voting will be selected from all sub-users. The expected
number of committee, T , is fixed, and thus the probability ρs
of a sub-user to be selected is T

S . Then the probability that
exactly K sub-users are sampled is(
S

K

)
ρKs (1− ρs)

S−K =
S!

K!(S −K)!
(
T

S
)K(1− T

S
)(S−K)

=
S · · · (S −K + 1)

SK

TK

K!
(1− T

S
)(S−K)

If K is fixed, we have

lim
S→∞

S···(S−K+1)
SK = 1

and

lim
S→∞

(1− T
S )

(S−K) = lim
S→∞

(1−T
S )S

(1−T
S )K

= e−T

1 = e−T

Then the probability of sampling exactly K sub-user ap-
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proaches:
TK

K!
e−T (1)

We denote the number of honest committee members
by #good and the malicious ones by #bad. If we set the
majority of commmitee members are honest (i.e., η > 1/2),
the following conditions should be satisfied.

Condition(1): #good ≥ 1
2 · T . The condition is violated

when the number of honest committee members is < 1
2 · T .

From formula (1), the probability that we have exactly K

honest committee members is (h·T )K

K! e−h·T , where honest
stakes ratio in the system is h (h > 1/2). Thus, the probability
of violating the condition is given by the formula

1
2 ·T−1∑
K=0

(hT )K

K!
e−hT .

Condition(2): #bad < 1
2 · T . As above, the probability

that we have exactly L malicious committee members is
((1−h)·T )L

L! e−(1−h)·T . Thus, the probability that satisfying the
condition is given by the formula:

1
2 ·T−1∑
L=0

((1− h)T )L

L!
e−(1−h)T .

F is a parameter which marks a negligible probability
for failure of either condition, and our experience sets F =
5 × 10−9. Our goal is to minimize T , while maintaining the
probability that conditions (1) or (2) fails to be at most F.
If some value of T satisfies both conditions with probability
1−F , then any larger value of T also does with probability at
least 1−F . Based on the above observation, to find the optimal
T , we firstly let T be an arbitrary large value, for example
104, and then see whether both conditions are satisfied. If both
conditions are satisfied, we decrease T and check whether both
conditions are still satisfied. We continue this process until
finding the optimal T that ensures both conditions satisfied. In
this way, we can get Figure 5, plotting the expected committee
size T satisfying both conditions, as a function of h, with a
probability of violation of 5 × 10−9. A similar approach to
compute the threshold of committee size can be referred to
[25].

In the implementation of our system, we assume the
fraction of honest stakes is 0.65, and thus we select T = 1000
according to Figure 5. Recall that a valid editing block is
approved only when it obtains more than 1

2 · T votes.

Fraction of Honest Users. According to Theorem 5.2, we
only need to prove the fraction (in terms of stakes) of honest
users in the committee is at least η. If A can “presciently”
ensure which user would become the member of the voting
committee, he can adaptively corrupt and impersonate this
user, such that the fraction of honest users in the committee
is less than η. However, according to the uniqueness property
of the underlying VRF, the adversary has only a negligible
probability 1/2hashlen to win. In detail, the function value
hash of VRF is random and unpredictable, the adversary
without the secret key can only predict whether an honest
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Figure 5. The x-axis specifies h, the stakes fraction of honest
users. The committee size, T , is sufficient to limit the
probability of violating safety to 5× 10−9.

user is chosen as the committee member with a negligible
probability 1/2hashlen. In addition, A is allowed to corrupt
the known committee members only after the corresponding
w slots, which would not bring any non-negligible advantage
since the committee would be reselected in the next voting
period.

B. Redactable Proof-of-Work Blockchain I

We assume the underlying proof-of-work blockchain sat-
isfies λ-common prefix and (k, µ)-chain quality, T is the true
number (in terms of computational power) in the committee,
and the fraction of computational power held by honest users
in the committee is at least η. In the redactable instantiation,
we set T = k and η = µ > 1/2.

Checking committee members Cmt. The function Cmt (Al-
gorithm 6) checks whether a party P is the committee member
at the slot sl and outputs (c, proof). Specifically, the tailing λ
blocks (starting from sl) in the underlying blockchain chain
are removed, and in the remaining chain, the most recent k
blocks’ leaders are elected as the committee. If P is elected
as the leader c times in the most recent k blocks, it means the
weight of P in the committee is c. Since chain is public, there
is no need to have committee member proof, i.e., proof = ∅.

procedure Cmt(chain, sl, λ, k,P, T )
c := 0;
T := k;
for i = sl − λ− T + 1 to sl − λ

if P is the leader of the slot i in chain
c := c+ 1

proof := ∅;
return (c, proof).

Algorithm 6: Checking committee members

Verifying committee members VerifyCmt. The function
VerifyCmt (Algorithm 7) verifies P is the committee member
with the weight c, which is similar to Algorithm 6.
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procedure VerifyCmt(chain, pk, sl, λ, k, c, proof, T )
χ := 0;
for i = sl − λ− T + 1 to sl − λ

if pk is the public key of leader at the slot i in chain
χ := χ+ 1

if χ = c
then return 1;

else return 0.

Algorithm 7: Verifying committee members

Fraction of Honest Users. According to Theorem 5.2, we only
need to prove the fraction (in terms of computational power)
of honest users in the committee is at least η. First, due to the
λ-common prefix property, if the tailing λ blocks are removed,
all nodes can agree on the committee except with negligible
probability. Second, the (k, µ)-chain quality property ensures
at least µ fracation of blocks are contributed by honest nodes
in any k consecutive blocks, where we set η = µ. Finally, if
A is allowed to corrupt the known committee members only
after the corresponding λ+ k+w slots, the fraction of honest
committee remains unchanged.

C. Redactable Proof-of-Work Blockchain II

We also give an instantiation in synchronous network. To
get sufficient numbers of committee according to computa-
tional power distribution and ensure honest majority in the
committees, we just need to collect sufficient PoW puzzle
solutions at slot sl. This can be easily realized by creating a
virtual selection procedure using PoW with a bigger difficulty
parameter D.

Checking committee members Cmt. In the function Cmt
(Algorithm 8), if P can find different “virtual puzzle solutions”
for PoW with difficulty parameter D, the weight c of P in
the committee is the number of puzzle solutions, and the
committee member proof proof includes the corresponding
puzzle solutions.

procedure Cmt(chain, sl, pk,D,P)
c := 0;
proof := ∅;
Time := sl;
Parse chain = (B1, · · · , Bm);
Parse Bsl−1 = (sl − 1, st, G(d), ib, π, d);
while Time < sl + 1 do

if P finds new nonce such that H(pk, st, d, nonce) < D
c := c+ 1;
proof := proof ∪ nonce;

return (c, proof).

Algorithm 8: Checking committee members

Verifying committee members VerifyCmt. The function
VerifyCmt (Algorithm 9) verifies P with the public key pk
is the committee member by computing hash with the puzzle
solutions, which is similar to Algorithm 8.

Parameter Selection and Fraction of Honest Users. Assume
that 1

2 + ϵ fraction of nodes in the underlying blockchain are
honest, where ϵ ∈ (0, 1

2 ). As long as the committee size T is
set satisfying T ≥ R =

⌈
16 log( 1δ )

/
ϵ2
⌉
+ 1, we have that the

majority of the committee are honest with a high probability

procedure VerifyCmt(chain, pk, sl,D, c, proof )
Parse chain = (B1, · · · , Bm);
Parse Bsl−1 = (sl − 1, st, G(d), ib, π, d);
if the number of set member in proof is not c

then return 0;
for every nonce in proof

if H(pk, st, d, nonce) ≥ D
then return 0;

return 1.

Algorithm 9: Verifying committee members

1− δ − negl(λ), where δ is an error probability and λ is the
security parameter [40].

The difficulty parameter D′ for the underlying PoW
blockchain guarantees at least one party can find a puzzle
solution for PoW with difficulty D′ at each slot. We set
D = R · D′ to ensure at least R “virtual puzzle solutions”
for PoW with difficulty D will be found at slot sl [13], [44],
then at least R committee member will be selected at slot sl
with a high probability.

Each committee member will broadcast its proof no matter
whether it approves the redaction or not. Due to the syn-
chronous network, all proofs will be received at slot sl + 1,
then the committee size T is set to the number of valid proofs
and all valid proofs will be included in the blockchain. Notice
that during the mining for the underlying chain with difficulty
D′, each miner automatically obtains multiple virtual puzzle
solutions for PoW with difficulty D as well. Once a redaction
request is diffused, regular mining simultaneously emulates
this random selection of committee members.

VI. IMPLEMENTATION AND EVALUATION

To demonstrate the feasibility of our approach, we choose
redactable proof-of-stake blockchain just as an example and
develop a proof-of-concept (PoC) implementation that simu-
lates Cardano Settlement Layer (Cardano SL) [5]. We conduct
extensive experiments on it, and reveal this non-optimized
PoC implementation is already efficient. In particular, we
showcase, even if in some extremely pessimistic cases (having
tremendous redactions), the overhead of our approach remains
acceptable (relative to an immutable chain). Here down below
are the details.

A. Setup

Execution environment. We write in standard C language
(C11 version) to implement a proof-of-stake chain that sim-
ulates Cardano SL (i.e., generating a valid local Cardano
replica without executing consensus). The chain supports a
subset of Cardano SL’s bitcoin-style scripts, thus allowing to
record basic ledger operations such as transacting coins and
so on. Furthermore, we build our redaction protocol in it, thus
enabling each block to include a special redaction transaction
to solicit votes on editing earlier blocks. All tests are measured
on a low-profile personal laptop installed with Ubuntu 16.04
(64bits) system, and equipped with a 2.20GHz Intel Core i5-
5200U CPU and 8GB main memory.

Cryptographic building blocks. Our PoC implementation
adopts ECDSA over secp256k1 for all digital signatures in
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both editing votes and block proposals, which is a widely
adopted approach by PoC tests in the blockchain community
[43]. For VRF, we adopt a generic approach due to determin-
istic “ECDSA” in the random oracle model [35]. We import
the VRF’s concrete instantiation over secp256k1 in C language
from [2].

Other parameters. We set h = 0.65, namely, the adversary
might control up to 25% of stakes in the system, which
corresponds to the committee with expected size T = 1000.
Moreover, when implementing Ouroboros Praos [18] (for
simulating Cardano SL), we only consider one epoch, thus
omitting the dynamic change of stakes. We might fix the
block size in experiments. For example, we can specify that
each block contains up to 10 transactions, which is enough to
capture the number of transactions in nowadays Cardano. In
addition, we also assume that each redaction request of editing
a block only aims to modify a single transaction.

B. Experiments and measurements

Then we conduct extensive experiments in the above PoC
“sandbox” to tell the small overhead of our redaction protocol
relative to an immutable chain, through the lens of various
performance metrics.

Votes and proofs on redaction. As shown in Table I, we
begin with some preliminary experiments to understand (i) the
generating time, the validating time, and the size of each vote
on redaction as well as (ii) the validating time and the size of
each proof on approved redaction. In general, these votes and
proofs incur little computational burden and are also small in
size, which at least flatters the necessary conditions of efficient
redactions.

TABLE I. PRELIMINARY TESTS OF VOTES AND PROOFS ON REDACTION

Vote on redaction
candidate

Time to generate vote ∼ 9 ms
Time to validate vote ∼ 1 ms
Size of each vote ∼ 0.2 KB

Proof on approved
redaction

Time to validate proof ∼ 560 ms
Size of each proof ∼ 109 KB

Proposing/receiving new blocks with redaction proof. To
evaluate how redactions would impact the performance of
consensus, we consider two key metrics in the online nodes’
critical path: (i) the latency of producing new blocks with
redaction and (ii) the latency of appending new blocks with
redaction to the local replica.

First, we consider the latency of producing blocks with
redaction proof(s) and without redaction proof(s), respectively.
For both cases, we test 500 blocks (with fixed size up to
10 transactions), and do not realize any statistic differences.
Nevertheless, this is not surprising, because we explicitly
decouple the generation of blocks and the voting on redaction,
so the generation of blocks in the two cases would execute the
exactly same code.

Second, we measure the time spent on appending newly
received blocks to the local storage, for the cases with redac-
tion proof(s) and without redaction proof(s) respectively. As
illustrated in Figure 6, we compare appending a block with
a redaction proof to the benchmark case of appending a
block without any redaction proof. For each case, we conduct

extensive tests to get statistics on 500 blocks (at distinct slots
but with fixed block size up to 10 transactions) and visualize
the statistics. It reveals that the extra overhead (incurred by
validating redaction proof and editing earlier block) is small
and nearly constantly. In particular, compared to the immutable
case, the node only needs an extra time of 0.7 second to
(i) validate a redaction proof and (ii) edit an earlier block
accordingly.

Block without proof for editings Block with proof for editings
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Figure 6. The latency of appending a newcoming block
(without or with proof on redaction) to the local replica.

Validating a chain consisting of edited blocks. Then, we
conduct a series of experiments to measure the extra cost of
validating an entire chain with edited blocks. Comparing to
validating the immutable blockchain, validating an edited chain
further requires to fetch and validate the proof on redaction
for each edited block (besides validating the chain of block
headers). This could be another critical metric to reflect how
efficient our scheme is regarding re-spawning nodes.

To this end, our methodology evaluates the time needed to
validate a redactable chain, with respect to the varying portion
of edited blocks in the chain. In the experiments, we generate
redactable chains consisting of 1000 blocks and each block
contains 10 transactions, and measure the time to validate
them. As shown in Figure 7, the latency of validating chains
is almost increasing linearly in the number of redactions,
especially when the percentage of edited blocks is small or
moderately large (e.g., smaller than 25%). For example, when
the percentage of edited blocks is 6.25% and 12.5%, the extra
latency to verify the 1000-block chain is about 10 seconds and
30 seconds, respectively. Even if in the extremely pessimistic
case (i.e., 50% blocks are edited), the cost is still acceptable
(i.e., about 5x the immutable case).
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Figure 7. The latency of validating 1000-block redactable
chains (respect to various percentages of editings).

C. More discussions

Minimal impact on consensus. When proposing and receiving
(new) blocks with proofs on redaction, there is only small
overhead in our design. That means it places little burden
on the online blockchain nodes, and more importantly, it
causes minimal overhead to the critical path of consensus. In
particular, when proposing new blocks with redaction, there
is no extra cost to slow down the consensus; while receiving
new blocks with redaction, the extra latency is as small as 0.8
second.

Efficiency for re-spawning nodes. When some nodes are re-
spawning, they have to bootstrap to sync up to the current
longest chain. Our extensive experiments reveal it would be
feasible for the re-spawning node to download and then verify
the entire chain despite of a few editable blocks. Especially,
in the normal cases that edited blocks are rare (e.g., less than
6.25%), the extra cost incurred by redaction is overwhelmed by
the original cost of validating chain headers and transactions.

Instant redaction (close to actual network delay). Our
design dedicates to decouple voting from consensus: all votes
are diffused across the network via the underlying gossip
network; once the votes are successfully diffused, any honest
block proposer can include a proof on redaction in its block,
which would be confirmed immediately after the block be-
comes stable. This typically costs only a couple of minutes in
Cardano. In contrast, prior art [20] lets the node proposing a
block to embed its own vote in the block, resulting in a latency
liner to a large security parameter. For example, [20] requires
about 1024 consecutive blocks to collect votes, which means
about 6 hours in Cardano and 7 days in Bitcoin. To sum up,
our construction achieves significant improvement by greatly
reducing the latency of confirming redactions.

Possible storage optimizations. Different from the immutable
blockchain, our redaction protocol has to store the collected
votes on each redaction, which is the most significant storage
overhead relative to an immutable blockchain. Currently, our
PoC implementation requires about 110 KB to store the votes
for each redaction. We remark that various optimizations can
be explored to further reduce the storage overhead. For exam-
ple, we can use pairing-based multi-signature scheme [14] to

aggregate signatures of votes instead of trivially concatenating
secp256k1 ECDSA, which can reduce the size of votes to only
about 60 KB.

Hints on deploying the redaction-protocol by “soft-fork”?
For presentation simplicity, our protocol description modifies
the structure of block headers of the underlying blockchains.
Nevertheless, it is straight-forward to perform engineering
optimizations to maintain the block structure intact, after
adopting the upgrade to take our redaction protocol. The
realization could be simple: the upgraded blockchain node
keeps two separate storages for the original blockchain and the
modifications respectively [42], so the blockchains’ upgrade
does not have to change the structure of block headers.
Moreover, all redaction-related messages sent to the blockchain
(e.g., the proof on redaction) can be realized by re-purposing
existing script opcodes, for example, through being attached
to OP RETURN in bitcoin-like script.

The above observations provide us the next insight: even if
some (online) blockchain nodes do not accept the upgrade of
our redaction scheme, they might still be able to understand
the upgraded redactable chain (and think it as the valid longest
chain), though they would understand the chain in an “old-
fashion” way and not edit any blocks. Nevertheless, it hints
us the possibility of deploying our design in existing real-
world blockchains through the desired “soft-fork”. The actual
implementation of the “soft-fork” compatible redaction scheme
might correspond to an immediate open problem to explore.

VII. CONCLUSION

It is crucial and even legally required to design redactable
blockchain protocols with instant redaction. We propose a
generic approach to construct redactable blockchain protocol
with instant redaction, where redactable blockchain inherits the
same security assumption from the underlying blockchain. We
also prove our redactable construction can achieve the security
property of redactable common prefix, chain quality, and chain
growth. Moreover, we present three concrete instantiations
of redactable proof-of-stake blockchain and redactable proof-
of-work blockchain. Finally, we develop a proof-of-concept
implementation of our proof-of-stake instantiation, and the
experimental results demonstrate the high efficiency of our
design. Our work makes a step forward in understanding of
redactable blockchain protocols.
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APPENDIX A
PRELIMINARIES AND DEFINITIONS

In this paper, we say a function negl(·) : N → (0, 1) is
negligible, if for every constant c ∈ N, negl(n) < n−c for
sufficiently large n. Hereafter, we use negl(γ) to refer to a
negligible function in the security parameter γ.

A. Signature Scheme

A digital signature scheme SIG = (Gen, Sign, Verify)
with message spaceM(λ) consists of the standard algorithms:

key generation Gen
(
1λ

) $→ (pk, sk), signing Sign(sk;m) →
σ, and verification Verify(pk;m,σ) → {0, 1}. It is said
to be correct if Verify(pk;m,Sign(sk;m)) = 1 for all

(pk, sk)
$←Gen

(
1λ

)
and m ∈M(λ).

To define security [26], we consider the following game
between an adversary A and a challenger.

1) Setup Phase. The challenger chooses (pk, sk)
$←Gen

(
1λ

)
.

2) Signing Phase. The adversary A sends signature query
mi ∈M and receives σi = Sign(sk;mi).

3) Forgery Phase. A outputs a message m and its signature
σ. If m is not queried during the Signing Phase and
Verify(pk; m, σ) = 1, the adversary wins.

Definition 6. (EUF-CMA). We say that a signature scheme
SIG is existentially unforgeable under adaptive chosen-
message attacks (EUF-CMA), if for all adversaries A, there
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exists a negligible function negl(λ) such that

AdvEUF-CMA
SIG = Pr[A wins] ≤ negl(λ).

B. Aggregate Signature Scheme

An aggregate signature scheme [15] allows aggregating
multiple individual signatures into a single short signature in
a non-interactive way.

An aggregate signature scheme ASIG consists of five
algorithms: KeyGen, Sign, Ver, Agg and AggVer. The key
generation algorithm KeyGen(1λ)

$→(pki, ski) generates the
public/secret key pair for each participant. The signing al-
gorithm Sign(sk,m) → σ generates a signature σ on the
message m using the secret key sk. The verification algo-
rithm Ver(pk,m, σ) outputs 1 if σ is a valid signature on
m under pk, otherwise outputs 0. Given multiple individual
signatures (σ1, ..., σn), where σi is a signature on the mes-
sage mi under pki for i ∈ [n], the aggregation algorithm
Agg((pk1,m1, σ1), ... ,(pkn,mn, σn)) → asig aggregates
these signatures into one signature asig. The aggregate ver-
ification algorithm AggVer({(pk1,m1), ..., (pkn,mn)}, asig)
outputs 1 if asig is a valid aggregate signature on (m1, ...,mn)
under (pk1, ..., pkn), otherwise outputs 0.

An aggregate signature scheme should satisfy
completeness, which means that for any n,
{(pk1, sk1), ..., (pkn, skn)} ← KeyGen(1λ), any distinct
messages {m1, , ...,mn}, σi ← Sign(ski,mi) for i ∈ [n],
and asig ← Agg((pk1,m1, σ1), ..., (pkn,mn, σn)), we
have AggVer ({(pk1,m1),...,(pkn,mn)}, asig) = 1 if
Ver(pki,mi, σi) = 1 for i ∈ [n].

An aggregate signature scheme should also satisfy unforge-
ability. To define unforgeability, we consider the following
game between an adversary A and a challenger.

1) Setup Phase. The challenger generates the challenge pub-
lic/secret key pair (pk∗, sk∗) ← KeyGen(1λ), and sends
pk∗ to A.

2) Signing Phase. A can make signature queries on any
message m under pk∗, and the challenger returns σ ←
Sign(sk∗,m).

3) Forgery Phase. A outputs a public key set
PK = {pk1, ..., pkn−1}, a message set
M = {m∗,m1, ...,mn−1} and an aggregate signature
asig. If pk∗ ∈ PK, m∗ is not queried to Sign(sk∗, .), and
AggVer({(pk∗,m∗), (pk1,m1), ..., (pkn−1,mn−1)}, asig)
= 1, the adversary wins.

Definition 7. (Unforgeability). We say that an aggregate
signature scheme ASIG is unforgeable, if for all adversaries
A, there exists a negligible function negl(par) such that

AdvASIG = Pr[A wins] ≤ negl(par).

C. Verifiable Random Functions

The concept of verifiable random functions is introduced
by Micali et al.[34]. Informally, it is a pseudo-random function
that provides publicly verifiable proofs of its outputs’ correct-
ness.

Definition 8. (Verifiable Random Functions)[21]. A function
family F(·)(·) : {0, 1}l → {0, 1}lV RF is a family of VRFs

if there exist algorithms (Gen,VRF,VerifyVRF) such that
Gen outputs a pair of keys (pk, sk); VRFsk(x) outputs a
pair (Fsk(x), πsk(x)), where Fsk(x) is the output value of
the function and πsk(x) is the proof for verifying correctness;
and VerifyVRFpk(x, y, π) verifies that y = Fsk(x) using the
proof π, return 1 if y is valid and 0 otherwise. Formally, we
require the following properties:

• Uniqueness: no values (pk, x, y1, y2, π1, π2) can
satisfy VerifyVRFpk(x, y1, π1) = VerifyVRFpk(x, y2, π2)
unless y1 = y2.

• Provability: if (y, π) = VRFsk(x), then
VerifyVRFpk(x, y, π) = 1.

• Pseudorandomness: for any probabilistic polynomial time
algorithm A = (AE , AJ), which executes for a total of s(γ)
steps when its first input is 1γ , and does not query the oracle
on x,

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1γ);

(x, st)← A
V RF (.)
E (pk);

y0 = VRFsk(x); y1 ← {0, 1}ℓVRF ;

b← {0, 1}; b′ ← A
V RF (.)
J (yb, st)

 ≤ 1

2
+ negl(γ).

Intuitively, the pseudorandomness property states that no
function value can be distinguished from random, even after
seeing any other function values together with corresponding
proofs.

APPENDIX B
IMMUTABLE BLOCKCHAIN PROTOCOL

We now recall the immutable blockchain protocol Γ′ in
Figure 8. Compared with the redactable protocol Γ as depicted
in Figure 1, the redaction operations are pruned and the
original block structure is adopted.

APPENDIX C
IDEAL IMMUTABLE BLOCKCHAIN PROTOCOL

We present the corresponding ideal functionality F ′tree
(Figure 9) and the ideal immutable protocol Π′ideal (Figure
10) for Γ′, by pruning the redaction operations from Ftree

(c.f. Figure 3) and Πideal (c.f. Figure 4), respectively.

APPENDIX D
SECURITY PROOF OF THEOREM 3

Consider a p.p.t. adversary A in the real-world protocol Γ.
We construct the simulator S in the ideal protocol Πideal as
follows:

1) At the beginning of the protocol execution, S generates
public/secret key pair (pkP , skP) for each honest party P ,
and stores the party P and public key pkP mapping.

2) For the leader selection process, we consider two common
cases.
• The leader selection function eligible is modeled as the
random oracle H(·). Whenever A sends a hash query
H(P, t), S checks whether this query has been asked
before and returns the same answer as before if so. Oth-
erwise, S checks whether the identifier P corresponds to
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Immutable Blockchain Protocol Γ′ (of Node P)

/ * Initialization * /
Upon receiving init() from Z , P is activated to initialize as follows:

let (pkp, skp) := Gen(1λ)
let txpool be an empty FIFO buffer
let chain := B0, where B0 is the genesis block

/ * Receiving a longer chain * /
Upon receiving chain′ for the first time, the (online) P proceeds as:

assert |chain′| > |chain| and validateChain(chain′) = 1;
let chain := chain′ and broadcast chain

/ * Receiving transactions * /
Upon receiving transactions(d′) from Z (or other nodes) for the first
time, the (online) P proceeds as:

let txpool.enqueue(d′) and broadcast d′

/ * Main procedure * /
for each slot sl′ ∈ {1, 2, . . . }, the (online) P proceeds as:

if eligible(P, sl′) = 1:
let d′ := txpool.dequeue() ∪ AEP
let (header, d) := Head(chain)
let header′ := (sl′, st′, G(d′), ib′, π′), where st′ :=
H(header) and π′ is the output of P (the signature or the nonce)
let chain := chain∥(header′, d′) and broadcast chain

output extract(chain) to Z , where extract outputs an ordered list
of each block in chain

Figure 8. Immutable Blockchain Protocol

F ′
tree(p, p

′)
On init: tree := genesis, time(genesis) := 0
On receive leader(P, t) from A or internally:

if Γ[P, t] has not been set, let Γ[P, t] =

{
1 with probability ϕ(p)

0 otherwise
return Γ[P, t]

On receive extend(chain,B) from honest party P:
let t be the current time
assert chain ∈ tree, chain∥B /∈ tree, and leader(P, t) outputs 1
append B to chain in tree, record time(chain∥B) := t
return “succ”

On receive extend(chain,B, t′) from corrupt party P∗:
let t be the current time
assert chain ∈ tree, chain∥B /∈ tree, leader(P, t) outputs 1, and
time(chain) < t′ < t
append B to chain in tree, record time(chain∥B) := t′

return “succ”
On receive verify(chain) from P : return (chain ∈ tree)

Figure 9. Ideal functionality F ′
tree

Ideal Protocol Π′
ideal

On init : chain := genesis
On receive chain′:
Assert |chain′| > |chain| and F ′

tree.verify(chain
′) = 1

For every slot:
–receive input B from Z
–if Ftree.extend(chain,B) outputs “succ”, then let chain := chain∥B

and broadcast chain
–output chain to Z

Figure 10. Ideal Blockchain Protocol

this protocol instance. If not, S samples a random number
of the length |H(·)| and returns it to A. Else if the check
succeeds, S calls b← Ftree.leader(P, t), and returns b.
• The random oracle is replaced with normal function such
as PRFk(·). In this case, PRFk(·) is used by both S and
A. Most of the simulation proof is identical to the random
oracle case presented above, except that when S learns k
from Ftree, it simply gives k to A, and S no longer needs
to simulate random oracle queries for A.

3) S keeps track of the real-world chain for every honest
party Pi. Whenever it sends chain to A on behalf of Pi,
it updates this state for Pi. Whenever A sends chain to
honest party Pi, S checks the simulation validity of chain.
If it is valid and moreover chain is longer than the current
real-world chain for Pi, S also saves chain as the new
real-world chain for Pi.

4) Whenever an honest party P sends chain to S , S looks up
the current real-world state chain for P .
• If the editing pool EP is empty, S computes a new
chain′ using the real-world algorithm. Specifically, let sl
be the current slot, and if eligible(P, sl) = 1, then S sets
B := (header′, d′) with header′ = (sl, st′, G(d′), ib′, π′)
such that st′ = H(header) and π′ is the output of P (the
signature for Head(chain) = (header, d) or the nonce).
Finally, S sets chain′ := chain∥B and sends chain′ to A.
• If the editing pool EP is not empty (e.g., one candidate
edited block B∗j for Bj is included in EP), and the current
slot sl satisfies sl mod w = 0, S starts to collect the votes
for B∗j in the subsequent w slots from sl and simulate the
vote process using the real-world algorithm. Specifically,
for any party Pi who sends the candidate B∗j to S in
sl, if Cmt(chain, sl,Pi, ·) returns (ci, proofi), S votes for
B∗j in the name of Pi by computing vi = Sign (ski,
H(B∗j )), and then sends (ci, proofi, vi) to A. If in some
slot sl′ with sl ≤ sl′ < sl + w, S receives at least ξ
votes for B∗j , S computes (asig, PROOF ) for B∗j by the
aggregation of vi and (ci, proofi). If eligible(P, sl′) = 1,
S sets d′ := d′∥asig∥PROOF and B := (header′, d′)
with header′ = {sl′, st′, G(d′), ib′, π′}, such that st′ =
H(header) and π′ is the output of P (the signature for
Head(chain) = (header, d) or the nonce). Finally, S sets
chain′ := chain∥B and sends chain′ to A.

5) Whenever A sends a protocol message chain to an honest
party P , S intercepts the message and checks the validity of
chain by executing the real-world protocol’s checks (i.e.,
validateChain(.)). If the checks do not pass, S ignores the
message. Otherwise,
• For the candidate edited block B∗j , S abort outputting
vote-failure if RP(chain,B∗j , sl) = 1 for some slot sl
however S has never received enough votes for B∗j .
• Else, let chain := extract(chain), and let chain[: l] be
the longest prefix of chain such that Ftree.verify(chain[:
l]) = 1. If any block in chain[l + 1 :] is signed by an
honest party P , S aborts outputting sig-failure. Else, for
each l′ ∈ [l+1, |chain|], S calls Ftree.extend(chain[: l′−1],
chain[l′], t′) acting as a corrupted stakeholder P∗, where
t′ = Time. Then S forwards chain to P .

Lemma 1. If the signature scheme SIG is EUF-CMA secure
and the hash function H is collision-resistant, the simulated
execution never aborts with sig-failure except with negligible
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probability.

Proof. Note that the adversary A cannot produce a malicious
block B̃∗j such that H(B̃∗j ) = H(B∗j ) for the candidate
edited block B∗j , since the hash function H is collision-
resistant. Then, if sig-failure ever happens, the adversary A
must have forged a signature on a new message that S never
signed. Thus, we can immediately construct a reduction that
breaks the EUF-CMA security of the underlying signature
scheme SIG. Specifically, S simulates for A the protocol
executing just as the above specification, and guesses a random
party Pi whose signature security is broken. S generates the
public/secret key pair for all other parties and produces the
corresponding signatures. S also calls the signing oracle to
generate signatures for Pi. Eventually, if A outputs a valid
signature σ and σ has never been previously output by the
signing oracle, σ can be used as a forgery and EUF-CMA
security of SIG is broken.

Lemma 2. If the aggregate signature scheme ASIG is
unforgeable and the function Cmt ensures the fraction (in
terms of computational power or stake) of honest users in the
committee is at least η, the simulated execution never aborts
with vote-failure except with negligible probability.

Proof. If vote-failure ever happens, the adversary S under
static corruption must have forged an aggregate signature asig
on the individual messages in the name of the (1− η) T + 1
parties, among which there is at least one honest stake-
holder. Then we can construct a reduction that breaks the
security of the underlying aggregate signature scheme ASIG.
Specifically, S simulates the protocol executing for A as the
above specification, and guesses a random party Pi as the
honest party among the (1 − η) T + 1 parties. We denote
by (pk∗, sk∗) the public/secret key pair of Pi. S generates
the public/secret key pair for all other parties and produces
the corresponding signatures. S also calls the signing oracle
Sign(sk∗, .) to generate any signature for Pi as specified in the
security experiment. Eventually, if A outputs a valid aggregate
signature asig on the message set M = {m∗,m1, ...,mn−1}
under the public key set {pk∗, pk1, ..., pkn−1} and m∗ has
never been queried to the signing oracle Sign(sk∗, .), where
n = (1 − η) T + 1, then asig can be used as a forgery and
the security of ASIG is broken.

Conditioned on the fact that all of the above failure
events do not happen, the simulated execution is identically
distributed as the real-world execution from the perspective of
Z . We thus complete the proof of theorem.

APPENDIX E
EXTENSION FOR MULTIPLE REDACTIONS

We extend the redactable protocol of Figure 1 to accom-
modate multiple redactions for each block. Intuitively, each
redaction of one block must contain the entire history of
previous redactions of that block, and can only be approved
if all previous redactions (including the current one) are
approved. In this extension, the history information is stored
in the initial state component ib. We now sketch the main
protocol changes.

Proposing an edit. To propose a redaction for block
Bj = (slj , stj , dj , ibj , πj), the user replaces dj with the

new data d∗j and replaces ibj with ib∗j = ibj ||G(stj , dj) if
ibj ̸= G(stj , dj). It then generates a candidate block B∗j =
(slj , stj , d

∗
j , ib

∗
j , πj). Note that, if Bj has never been redacted

before, then ibj = G(stj , dj) and thus ib∗j = G(stj , dj).

Valid Blocks. To validate a block, the users run the
validateBlockExt algorithm (Algorithm 10). Intuitively, the
validateBlockExt algorithm performs the same operations as
the validateBlock algorithm (Algorithm 1), except that it con-
sider the case where the block can be redacted multiple times.
Note that ib stores the history information of the previous
redactions, and thus can be parsed as ib = ib(1)||...||ib(l) if
the block has been redacted l times, where ib(1) denotes the
original state information of the unredacted block version.

procedure validateBlockExt(B)
Parse B = (sl, st, d, ib, π);
Parse ib = ib(1)||...||ib(l), where ib(i) ∈ {0, 1}∗ ∀i ∈ [l];
Validate data d, if invalid return 0;
Validate the leader, if invalid return 0;
Validate data π, if invalid return 0;
return 1.

Algorithm 10: The extended block validation algorithm

Valid Blockchains. To validate a chain, the users run
the validateChainExt algorithm (Algorithm 11). The only
difference from the original Algorithm 2 is that now ib =
ib(1)||...||ib(l) where ib(1) denotes the original state informa-
tion of the unredacted block version.

Valid Candidate Editing Blocks. To validate a candidate
editing block, the users run validateCandExt algorithm (Algo-
rithm 12). If a block Bj has been redacted more than once,
then validation of a candidate block B∗j should account for the
previous redactions. That is, the proof of each redaction must
exist in the chain.
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procedure validateChainExt(chain)
Parse chain = (B1, · · · , Bm);
j = m;
if j = 1 then return Γ′.validateBlockExt(B1);
while j ≥ 2 do

parse Bj = (slj , stj , dj , ibj , πj);
parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, σj−1);
Parse ibj = ib

(1)
j ||...||ib(l)j , where ib

(i)
j ∈ {0, 1}∗;

Parse ibj−1 = ib
(1)
j−1||...||ib

(l′)
j−1, where ib

(i)
j−1 ∈ {0, 1}∗;

if Γ′.validateBlock(Bj) = 0 then return 0;
if stj = H(slj−1, G(stj−1, dj−1), ibj−1, πj−1) then
j = j − 1;

else if stj = H(slj−1, ib
(1)
j−1, ib

(1)
j−1, πj−1);

and RP(chain,Bj−1, slj−1) = 1
then j = j − 1;

else return 0;
return 1.

Algorithm 11: The extended blockchain validation algorithm

procedure validateCandExt(chain, B∗
j )

Parse B∗
j = (slj , stj , d

∗
j , ibj , πj);

Parse ibj = ib
(1)
j ||...||ib(l)j , where ib

(i)
j ∈ {0, 1}∗ ∀i ∈ [l];

if Γ′.validateBlock(B∗
j ) = 0 then return 0;

Parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, πj−1);

Parse ibj−1 = ib
(1)
j−1||...||ib

(l′)
j−1, where ib

(i)
j−1 ∈ {0, 1}∗ ∀i ∈ [l′];

Parse Bj+1 = (slj+1, stj+1, dj+1, ibj+1, πj+1);
if stj ̸= H(slj−1, ib

(1)
j−1, ib

(1)
j−1, πj−1) or

stj+1 ̸= H(slj , ib
(1)
j , ib

(1)
j , πj−1)

then return 0;
for i ∈ {2, ..., l} do

if there is no valid (asig, PROOF ) for hash of the
candidate block H(slj , ib

(i)
j , ib

(1)
j ||...||ib(i−1)

j ) in the chain
then return 0

return 1.

Algorithm 12: The extended candidate block validation algorithm
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