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Abstract. In this work, we first present general methods to construct
information rate-1 PKE that is KDM(n)-secure with respect to block-
affine functions for any unbounded polynomial n. To achieve this, we
propose a new notion of extractor that satisfies reusability, homomor-
phic, and security against correlated-source attacks, and show how to
use this extractor to improve the information rate of the KDM-secure
PKE of Brakerski et al. (Eurocrypt 18). Then, we show how to ampli-
fy KDM security from block-affine function class into general bounded
size circuits via a variant of the technique of Applebaum (Eurocrypt 11),
achieving better efficiency. Furthermore, we show how to generalize these
approaches to the IBE setting.
Additionally, our PKE and IBE schemes are also leakage resilient, with
leakage rates 1 − o(1) against a slightly smaller yet still general class –
block leakage functions. We can instantiate the required building blocks
from LWE or DDH.

1 Introduction

The classic notion of semantic security by Goldwasser and Micali [18] guar-
antees security when the secret key is generated randomly and independently
of the message being encrypted. This notion however, is not sufficient in var-
ious scenarios, e.g., [1, 10, 13, 24]. To tackle this issue, [8, 9] formally defined
Key Dependent Message (KDM) security, which requires Enc(pk, f(sk)) to be in-
distinguishable from Enc(pk, 0) for all f in a certain class. The setting can be

generalized to n-users, i.e., KDM(n)-security, where security holds even when
the attacker obtains the encryption of f(sk1, . . . , skn) under some user’s (public)
key. The community has established various theoretical feasibility results – we
know how to construct KDM(n)-secure PKE for unbounded polynomial n from
the LWE [5], DDH [9], or LPN [5, 16, 23] assumption, for bounded polynomial n
from QR/DCR assumption [10], and for n = 1 from CDH [12].

On the other hand however, all the prior constructions have relatively small
information rate4 even for the class of linear functions, resulting in very large

4 Information rate is defined as the message-to-ciphertext ratio when one encrypts
sufficiently long plaintexts.



overhead in scenarios that require encrypting large data, e.g., storing large en-
crypted files in the cloud, or streaming encrypted high-resolution movies over
the internet. To remove this limitation and enhance usability, it is necessary to
determine whether a low information rate is inherent for KDM security.

As folklore, this issue (low information rate) can be solved easily for regular
PKE, as one can always achieve rate 1 − o(1) by using the technique of hybrid
encryption (the KEM-DEM paradigm). It is however, not clear whether KDM se-
curity can be preserved under a general hybrid encryption [22]. This direction
has remained an important open problem (ref. [9, 10]). Therefore, we ask:

Main Question: Can we construct a KDM(n)-secure PKE with better
information rate, e.g. 1− o(1), even for n = 1 and linear functions?

1.1 Our Contributions

This work answers the main question and makes the following contributions:

Contribution 1. We show how to construct a KDM(1)-secure PKE with in-
formation rate 1 − o(1) with respect to block-affine functions, a slightly more
restricted class than that of bit-affine functions. To achieve this, we first propose
a new primitive – reusable homomorphic extractor against correlated-source at-
tacks, and instantiate it based on DDH or LWE. Next, we show how to use this
primitive to improve the approach of Batch Encryption (BE) [12], which was

used to derive KDM(1)-secure PKE (albeit low information rates.)
Particularly, we identify that BE implies a weak hash proof system (wHPS)

with important additional properties. Then we show that our new extractor can
be integrated with such a wHPS to achieve KDM(1)-security with information
rate 1 − o(1). Our proof technique connects wHPS and the new reusable ho-
momorphic extractor in a novel way, which deviates from the prior simulation
approach [5,7,9–12]. The new extractor and proof technique can be of indepen-
dent interest.

Contribution 2. We show how to upgrade the above approach to achieve
KDM(n)-secure PKE for unbounded polynomial n. Particularly, we identify the
technical barrier of the current BE-based approach [12], which inherently can
only achieve a bounded polynomial n. To tackle this, we construct an enhanced
variant of the current BE by adding a new reusable property. By using this
stronger BE as the underlying building block of wHPS, the scheme in Contri-
bution 1 can be proved KDM(n)-secure for any unbounded polynomial n. For
instantiations, we construct the required extractor and BE from DDH or LWE.
Thus, either of these assumptions implies KDM(n)-secure PKE with the optimal
information rate, i.e., 1− o(1).

Our design of KDM-PKE is quite modular, which might open a path for
further constructions from other assumptions, as long as we can construct the
required building blocks.
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Contribution 3. We generalize the above approach in two directions. First, we
show that the class of block-affine function is still sufficient for KDM amplifica-
tion to the class of general bounded-sized circuits via a variant of the technique
in [4], even the class of block-affine functions is more restricted, i.e., it does
not contain all projection functions, so that the generic KDM amplification of
Applebaum [4] does not work. Thus, the affine function class is still sufficiently
general, and can yield more efficient constructions.

Second, we construct KDM(n)-secure IBE for unbounded n with the 1− o(1)
information rate. The corresponding KDM function class here is slightly smaller
than the allowable KDM class for our PKE. We discuss this allowable class next.
Moreover, the required building blocks can be instantiated based on DDH in the
bilinear group or LWE.

In addition to KDM security, our PKE schemes (both DDH and LWE-based)
are leakage resilient. The leakage rate is optimal, i.e., 1 − o(1), against block
leakage, which is slightly smaller than the general leakage class5. The IBE schemes
are as well leakage resilient. For the same class of leakage functions, the IBE
leakage rate can achieve 1 − o(1) under LWE or DDH with respect to some
bilinear maps.

1.2 Technical Overview

In this section, we present a technical overview of our contributions. We start
with the construction of KDM(1)-secure PKE with information rate 1 − o(1).
To achieve this target, we first identify several new properties from (Identity-
based) weak Hash Proof Systems (wHPS) [2, 21], Batch Encryption (BE) [12],
and randomness extractors [3], and then describe our new idea to integrate these
properties. Before describing our new insights, we first review the following two
important tools – wHPS and BE.

(Weak) Hash Proof System. A hash proof system can be described as a key
encapsulation mechanism that consists of four algorithms (Setup,Encap,Encap∗,Decap):
(1) Setup generates a key pair (pk, sk), (2) Encap(pk) outputs a pair (CT, k) where
k is a key encapsulated in a “valid” ciphertext CT, (3) Encap∗(pk) outputs an
“invalid” ciphertext CT∗, and (4) Decap(sk,CT) outputs a key k′. A (weak) hash
proof system needs to satisfy the following three properties:

– Correctness. For a valid ciphertext CT, the Decap algorithm always outputs

the encapsulated key k′ such that k′ = k, where (CT, k)
$←− Encap(pk).

– Ciphertext Indistinguishability. Valid ciphertexts and invalid cipher-
texts are computationally indistinguishable, even given the secret key sk.
This property is essential for achieving leakage resilience and KDM security.

– Universal. The wHPS is (`, w)-universal if given the public key pk and an
invalid ciphertext CT∗, the decapsulated key length is ` and the condition-
al min-entropy of the decapsulation of CT∗ is greater or equal to w, i.e.,

5 When the secret key is stored in blocks, a block leakage function can leak individual
blocks one after another, as long as the blocks still remain a block source.
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H∞(Decap(sk,CT∗)
∣∣ pk,CT∗) ≥ w. A wHPS only requires this property

to hold for a random invalid ciphertext, i.e. CT∗
$←− Encap∗(pk), while a

full-fledged HPS requires it to hold for any invalid ciphertext.

We note that wHPS has been used to achieve leakage resilience (LR) in prior

work [2,26]. Homomorphic wHPS has been used to achieve KDM(1)-security [29].

It was not clear whether wHPS can be used to achieve KDM(1)-security with the
optimal information rate.

Batch Encryption [12]. A Batch Encryption (BE) consists of four algorithms:
(Setup,KeyGen,Enc,Dec). The secret key is a vector x ∈ ZnB for B,n ∈ N. The
Setup algorithm simply outputs a random common reference string CRS, and
KeyGen(CRS,x) is a projection function that outputs (a short) hash value h of
x and CRS. The encryption algorithm takes an n × B matrix M and (CRS, h)
as input, and outputs a ciphertext CT ← Enc((CRS, h),M). The decryption al-
gorithm taking as input a ciphertext CT and a secret key x, can only recover
Mi,xi

, i.e., the xi-th entry in the i-th row, for 1 ≤ i ≤ n, while the other entries
remain hidden even given the secret key x. The work [12] showed that BE can be
instantiated from LWE, CDH, and LPN with the succinctness property, i.e. the
size of |h| depends only on the security parameter and can be set as o(n). Using a
succinct BE as a central building block, the work [12] constructed a PKE that si-

multaneously achieves KDM(1)-security for affine functions and leakage resilience
with the optimal leakage rate, i.e., 1− o(1).

Even though the above tools have been demonstrated powerful, there are
two common limitations for the current techniques – (1) KDM-security can be
achieved only for bounded users, and (2) the information rate is quite low, e.g.,

1
O(λ) . Next, we present our new insights to break these technical barriers.

Our New Insights

We start with a simple observation that BE can be used to construct wHPS
with additional structures, which are critical in achieving KDM-security. Then
we introduce our new variant of random extractor, and sketch its instantiations
from DDH and LWE. With all these preparations, we show our new ideas to
achieve KDM security.

wHPS from BE. We can construct a wHPS from BE in the following simple
way. wHPS.sk is a random x ∈ ZnB , and wHPS.pk = (CRS, h) where CRS, h are
generated according to the underlying BE. The valid encapsulation algorithm
wHPS.Encap just samples a random vector k = (k1, . . . , kn)> ∈ ZnB as the en-
capsulated key and generates the ciphertext by BE.Enc(M), where the i-th row
of M is set as (ki, ki, . . . , ki) for i ∈ [n]. On the other hand, the invalid encapsula-
tion algorithm wHPS.Encap∗ generates an invalid ciphertext CT∗ ← BE.Enc(M)
by first sampling a random vector k′ = (k′1, . . . , k

′
n)> and then setting the i-th

row of M as (k′i+0, k′i+1, . . . , k′i+B−1) for i ∈ [n]. Moreover, the decapsulation
algorithm wHPS.Decap simply outputs the decryption result of BE.Dec(x,CT).
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It is not hard to show that this construction is an (n logB,n logB − |h|)-
universal wHPS, which can be used to achieve a LR-PKE that tolerates (n logB−
|h| − k)-bit leakage by using a (k, ε)-extractor (ref. [2, 26]).6 Particularly, the
corresponding leakage resilient public-key encryption scheme PKE1 can be con-
structed as follows: PKE1.pk = wHPS.pk and PKE1.sk = wHPS.sk. To encrypt
a message m, the encryption algorithm first generates (CT,k) ← wHPS.Encap
and samples r as the randomness of a strong randomness extractor Ext(·, ·), and
then outputs (CT, r,Ext(r,k) +m) as the ciphertext.

Generally, a plain extractor is not sufficient to derive KDM security for PKE1

in the above paradigm. Interestingly, this task is possible if we use our reusable
homomorphic extractor against correlated-source attacks, and the wHPS has
appropriate additional structures. Next, we describe the required extractor.

Our New Notion of Extractor and Constructions. We identify three
properties of an extractor: (1) reusable, (2) homomorphic, and (3) secure against
correlated-source attacks.

Let Ext(r, s) be an extractor, where s is the source and r is the seed. A
reusable extractor requires that the same source s can be repeatedly extracted
by different seeds for any polynomially many times while maintaining pseudoran-
domness. That is, for any m = poly(λ) and source s with sufficient entropy, we
have (r1, . . . , rm,Ext(r1, s), . . . ,Ext(rm, s)) ≈ (r1, . . . , rm, u1, . . . , um), where
each ui is uniformly random.7 Previously, the work [3,14,26] showed that under
computational assumptions, e.g., DDH or LWE, the reusability can be achieved.

The extractor Ext(r, s) is (output) homomorphic with respect to a function
h if there exists a related function h′ such that Ext(r, s) + h(s) = Ext(h′(r), s).
Similar to the work of [29], we will use this homomorphic property in a critical
way to achieve KDM security.

We say the (reusable) extractor Ext(r, s) is secure against correlated-source
attacks if for functions (perhaps chosen adaptively by the attacker) in some
class F , such that for m = poly(λ) and g1, . . . , gm ∈ F , the extractor remains
pseudorandom as follows:

(r1, . . . , rm,Ext(r1, g1(s)), . . . ,Ext(rm, gm(s))) ≈ (r1, . . . , rm, u1, . . . , um) .8

Our notion of correlated-source attacks is similar to that of a recent work
by Goyal and Song [19], yet with the following major differences. First, the
security requirements are different. The work [19] considers information-theoretic
indistinguishability of one instance of extraction from the original source, even
given multiple extractions from the modified source, i.e.,

(r,Ext(r, s), {ri,Ext(ri, gi(s))}i∈m) ≈ (r, u, {ri,Ext(ri, gi(s))}i∈m) .

6 The extractor can extract uniform string (up to statistical distance ε) for any source
with min-entropy k.

7 Clearly, this notion cannot be achieved unconditionally, as an information-theoretic
extractor requires (conditional) min-entropy from the source, which would be ex-
hausted after a bounded number of extractions.

8 Clearly, this notion is stronger than the reusable extractor, which can be viewed as a
special case where gi’s are all the identity function. Thus, this notion is only possible
under computational assumptions.
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In contrast, our notion requires that all instances of Ext(ri, gi(s)) remain
pseudorandom, which is a stronger requirement (in this aspect).

Second, the ranges of feasible function classes are different. Specifically, our
notion is too strong to achieve for the class of all functions. For example, if gi is
a constant function, then Ext(ri, gi(s)) becomes a fixed value given ri, and thus
cannot be pseudorandom. This indicates a necessary condition for feasibility that
the function must be entropy preserving. However, the notion in [19] is possible
to achieve even unconditionally for the class of all functions, as their challenge
instance is extracted from an unmodified source.

Third, to achieve information-theoretic extraction for all arbitrary input cor-
related functions, the number m of extraction samples given extra in the distri-
bution in [19] must be bounded inherently, and thus cannot be fully reusable.

Summing up the above analyses, we conclude that our security requirement
is stronger, resulting in a relatively smaller feasible function class. Moreover, our
notion requires reusability for an unbounded polynomial samples, and thus a
computational assumption is necessary.

Next, we discuss how to construct such an extractor that simultaneously
achieves all the three properties.

Construction based on DDH. We start with a review of the existing DDH-
based reusable extractor. Let G be the DDH group of order q, r ∈ Gn be seed, and
s ∈ Znq be source. The following function has been proved to be a reusable extrac-
tor in [3,26]: Ext(r, s) =

∏n
i=1 r

si
i . Moreover, we notice the following two proper-

ties about this extractor: (1) it is output homomorphic with respect to functions
of the form hb(s) =

∏n
i=1 b

si
i , as Ext(r, s) ·hb(s) =

∏n
i=1(ri · bi)si = Ext(r ◦b, s),

where ◦ is the component-wise group multiplication; (2) the extractor remains
pseudorandom against the correlated source attacks with respect to linear shift
functions of the form gv(s) = s+v. Due to the fact Ext(r, s+v) =

∏n
i=1 r

si+vi
i =

Ext(r, s)·Ext(r,v), we can simulate Ext(r, gv(s)) given (r,Ext(r, s)) and gv. Via
this simple reduction, the security of the reusable extractor directly translates
to the security against correlated-source attacks with respect to linear shifts.

At first, it seems that the existing construction already fulfills the three re-
quired properties. However, when considering the application to KDM-secure
PKE, we notice an obstacle that this extractor is still not compatible with the
above mentioned framework of the weak hash proof system based on batch en-
cryption (BE). Below, we sketch the major reason for this incompatibility, and
discuss our solution in the following.

Particularly, the BE-based system requires that each component of the secret
vector comes from a polynomial-sized domain, i.e., s ∈ Sn for |S| = poly(λ).
However, the above construction has the domain Gn, which is clearly too large, as
DDH assumption holds only when the order q is super-polynomial. To tackle this
issue, one might set S = Zp for some small p. However, for a subtle reason this
approach faces an additional technical difficulty. More specifically, due to the BE
feature, the linear shift should work in Zp, i.e., gv(s) = s+ v mod p. However,
this equation might not hold for the above mentioned reduction on correlated-
source security, i.e., Ext(r, (s+ v mod q)) = Ext(r, s) ·Ext(r,v) 6= Ext(r, (s+ v
mod p)). Thus, it is unclear whether we can achieve correlated-source security
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against linear shifts (modulo p) by using the linearity of the extractor, which
essentially works only in modulo q.

To solve this issue, we set S = Z2, and use another route of reduction that
avoids using the above linearity equation. Particularly, we show a way to trans-
form an instance of the form (r, z = Ext(r, s)) into (r′,Ext(r′, (s+ b mod 2)))
given b, without using the linearity of the extractor. Furthermore, via a reduction
from the reusability of the extractor, we can establish security against correlated-
source attacks for linear shifts in modulo 2. This would suffice to achieve KDM
security as we discuss later. More formally, the transformation works as follow:

– For i ∈ [n], if bi = 0, set r′i = ri and z′i = 1; otherwise for bi = 1, set r′i = r−1
i

and z′i = r−1
i .

– Output (r′, z ·
∏n
i=1 z

′
i).

We note that if bi = 0, then the term rsii would appear in z, or otherwise r1−si
i .

With a simple check, our transformation is consistent with this fact. It is not
hard to formalize the security proof using this idea.

Construction based on LWE. Next we look at the LWE-based reusable ex-
tractor [3]. Let q > p > 1 be parameters, S be some small set over Zq, r ∈ Znq
be seed, and s ∈ Sn be source. The work [3,6] showed that Ext(r, s) = d〈r, s〉cp
is a reusable extractor where d·c is some rounding function, and the number of
reusable samples can be any arbitrary polynomial if q/p = λω(1). For general
settings of parameters however, this extractor might not be output homomor-
phic, as linearity might not hold for rounding of inner products. Nevertheless,
we identify that if p|q, then the extractor is output homomorphic with respect
to linear functions (i.e. hb(s) = 〈b, s〉 mod p) by using the following equation:

d〈r, s〉cp + 〈b, s〉 = d〈r, s〉+ (q/p)〈b, s〉cp = d〈r + (q/p)b, s〉cp.

Thus, we can set h′b(r) = r + (q/p)b, achieving the desired property.
Next, we would like to show that the construction is secure against correlated-

source attacks for linear shifts. Similar to the DDH construction, we need to
tackle the issue that gb(s) and Ext(r, s) are working on different moduli. To
solve this issue, we first apply the same idea by setting S = Zn2 , and then
hopefully a similar reduction would work. However, this method does not work
in a straight-forward way as rounding breaks linearity. Let us consider a simple
case where b = (1, 0, 0, . . . , 0)T , i.e., only b1 = 1 and others 0. Then the reduction
would need to simulate dr1(1− s1) +

∑n
i=2 risicp = d−r′1 + r′1s1 +

∑n
i=2 r

′
isicp,

where r′1 = −r1 and r′i = ri for i = 2 ∼ n. However, d−r′1 +r′1s1 +
∑n
i=2 r

′
isicp 6=

d−r′1cp + dr′1s1 +
∑n
i=2 r

′
isicp in general, and thus the previous transformation

would break down.
To solve this, we use the proof technique of [6], who first switches the rounded

inner products into rounded LWE samples. Then we show that LWE is resilient
to correlated-source attacks for linear shifts, translating to security of the whole
construction. More specifically, we first switch d〈r, s〉cp to d〈r, s〉 + ecp. The
switch incurs a negligible statistical distance if q/p = λω(1), which is required for
the reusability for an arbitrary polynomial samples anyway (under current proof
techniques). Then by using the above idea, we can easily show that samples
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of the form 〈r, (s + b mod 2)〉 + e are computationally indistinguishable from
random samples, and therefore so are their rounded versions. This describes the
proof ideas.

KDM(1)-PKE with 1 − o(1) Rate via the Extractor

Achieving KDM(1)-security. To illustrate our idea, we consider the case
where Ext is homomorphic with respect to linear functions and secure against
correlated-attacks with respect to linear shifts. Next, we identify three important
additional structures of wHPS from the above construction:

1. The secret key of wHPS (and PKE1) is just a vector x ∈ ZnB as the BE.
2. The decapsulation of an invalid ciphertext CT∗ has the following form:

Decap(x,CT∗) = x+ k′, where k′ ∈ ZnB is certain vector related to CT∗.
3. Given k′, the above CT∗ can be simulated faithfully.

Let h be some linear functions, and let us take a look at the equation of upon a
KDM query of an encryption of h(sk).

PKE1.Enc(h(sk))

=(CT, r,Ext(r,k) + h(x)) By Structure 1

=(CT, r,Ext(r,Decap(x,CT)) + h(x)) Correctness of wHPS

≈(CT∗, r,Ext(r,Decap(x,CT∗)) + h(x)) Ciphertext indistinguishability

=(CT∗, r,Ext(r,x+ k′) + h(x)) By Structure 2

=(CT∗, r,Ext(r,x′) + h(x′ − k′)) Change of variable

=(CT∗, r,Ext(r,x′) + h(x′)− h(k′)) Linearity of h

=(CT∗, r,Ext(h′(r),x′)− h(k′)) Homomorphism of Ext

=(CT∗, h′−1(r),Ext(r,x′)− h(k′)) Change of variable

=(CT∗, h′−1(r),Ext(r,x+ k′)− h(k′)) Change of variable

Via a hybrid argument, we can switch all the adversary’s KDM queries to the
form in the last equation. However, as Ext(r,x + k′) − h(k′) still depends on
the secret key x, we cannot follow the prior proof technique in [5,7,9–12], which
requires to simulate the KDM queries without using the secret key. To handle
this, we observe that now the adversary’s view of his Q queries is of the form{

(CT∗i , h
′−1
i (ri),Ext(ri,x+ k′i)− h(k′i))

}
i∈[Q]

. We can then leverage the security

of the extractor to switch these outputs of the extractor to uniformly random
strings at one shot. Since CT∗i can be generated given k′i (the third additional
property of wHPS), and Ext is secure against correlated-source attacks (even
given k′i’s), we can prove that {PKE1.Enc(hi(sk))}i∈[Q] is indistinguishable from
random via a simple reduction from the required extractor. We refer the details
to Section 5.1.

Improving Information Rate. The information rate of the above scheme
is w
|CT|+|r|+w , where w denotes the length of the output of extractor. In our

instantiations of the extractor, we have |CT| > |k|λ and |k| ≥ w, and thus |CT|
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dominates the denominator, resulting in the ratio at most O(1/λ). To improve
the rate, we use the same CT (encapsulation) and repeatedly extract from the
same source with different seeds when encrypting many different messages. That
is, we consider the following scheme PKE2, where PKE2.pk and PKE2.sk are the
same as the above PKE1. The encryption algorithm is modified as below:

PKE2.Enc((m1,m2, . . . ,mt))

= (CT, r1,Ext(r1,k) +m1, r2,Ext(r2,k) +m2, . . . , rt,Ext(rt,k) +mt) .

By using the same proof idea of PKE1, we can show that suppose the reusable
extractor is homomorphic with respect to linear functions and secure against
correlated-source attacks, then the scheme PKE2 is KDM(1)-secure with respect
to affine functions. In this case, the information rate would be wt

|CT|+|r|t+wt ,

approaching w
|r|+w for sufficiently large t.

However, in our both LWE and DDH instantiations, w � |r|, and thus the
rate is still far from the optimal. To tackle this issue, we use a parallel repetition
of the source, i.e., let K = (k1,k2, . . . ,kd), and define

Ext||(r,K) = (Ext(r,k1),Ext(r,k2), . . . ,Ext(r,kd)) .

We can show that suppose K forms a block source, then the output of Ext|| will
be computationally indistinguishable from random. Moreover, Ext|| is as well ho-
momorphic and secure against correlated-source attacks for appropriate classes.
By using Ext||, we can still derive KDM(1) security, for a slightly weaker class of

block -affine functinos. Now, the information rate would be wd
|r|+wd , approaching

1− o(1) by setting d such that |r| = o(wd).

Achieving Arbitrary Polynomial n̄

Next, we discuss how to upgrade the above framework to achieve KDM(n̄)-
security for an unbounded polynomial n̄. Before presenting our approach, we
first abstract some important features from the above schemes PKE1 and PKE2

– (1) the schemes are based on BE as the most underlying tool, and (2) they
have the following features: (a) the secret key is just a vector x, and (b) the
public key has the form (CRS,H(CRS,x)), where H denotes the projection func-
tion KeyGen(·, ·) of BE in [12]. We call this type of schemes as BE-based public
key encryption scheme.

Next we generalize the idea of [9], showing that if a BE-based scheme satisfies

certain key and ciphertext homomorphic properties, then one can prove KDM(n̄)-
security from KDM(1) by the following two steps: Let Π be a BE-based PKE.

1. First we define an intermediate scheme Π n̄ that runs n̄ times the encryption
algorithm of Π to encrypt the same message, with n̄ distinct public parame-
ters but corresponding to the same secret key. Particularly, Π n̄.sk = Π.sk =
x, and Π n̄.pk = (Π.pk1, . . . ,Π.pkn̄), where Π.pki = (CRSi, hi = H(CRSi,x))
for all i ∈ [n̄]. The encryption algorithm works as follows:

Π n̄.Enc(m) = (Π.Enc(pk1,m), Π.Enc(pk2,m), . . . ,Π.Enc(pkn̄,m)).
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2. Then we show, if Π n̄ is KDM(1)-secure with respect to affine functions, then
Π is KDM(n̄)-secure with respect to affine functions.

Thus, to show that PKE2 is KDM(n̄) secure, it suffices to show that its interme-
diate scheme, i.e., PKEn̄2 , is KDM(1) secure.

However, the current instantiation of the underlying BE [12] can only derive

KDM(1) security of PKEn̄2 for a bounded polynomial n̄. When n̄ becomes too
large, PKEn̄2 may completely loses security. As each hi = H(CRSi,x) leaks some
small information of the secret x, thus the secret might have no entropy given too
many hashes in the pki’s. Even worse, in the LWE-based instantiation of [12], one
can obtain x given only n (the dimension of x) hashes of hi’s by simply solving
linear equations. This approach seems to hit an entropy barrier, inherently.

To tackle this challenge, we propose a new pseudorandom property of BE
(and BE-based PKE) by adding reusability to the projection function H. Par-
ticularly, the reusable property requires that the following two distributions
are indistinguishable, even in conjunction with the reusable extractor against
correlated-source attacks for any n̄,m = poly(λ):(
{CRSi,H(CRSi,x)}i∈[n̄] , {rj ,Ext(r, hj(x))}j∈[m]

)
≈c
(
{CRSi, ui}i∈[n̄] ,

{
rj , u

′
j

}
j∈[m]

)
Conceptually, this would guarantee secrecy of x even if the adversary can obtain
many hashes on the same x and samples from the reusable extractor (under
correlated-source attacks).

As a result, by using a BE with this reusable property as the underlying
building block of wHPS, we are able to show that PKEn̄2 is KDM(1)-secure for

any n̄ = poly(λ), implying that PKE2 is KDM(n̄)-secure for any n̄ = poly(λ).

New BE Constructions. To instantiate the required BE, we observe that
the CDH-based scheme in [12] as is, can achieve the reusability property if
DDH is further assumed. However, the LWE-based scheme becomes insecure
if n hashes are given to the adversaries as we stated before, where n is the
dimension of x. To solve this, we design a new projection function H′ that
makes a simple yet essential modification of the original H of [12]. Particularly,
H′(CRS,x) = H(CRS,x)+e, for some appropriate noise e. In this way, the distri-
bution (CRS,H′(CRS,x)) in this modified BE would be a sample of LWE, which
is pseudorandom even when polynomially many samples are given, and can be
used in conjunction with the LWE-based reusable extractor. This enables us to
achieve KDM(n̄)-PKE for any unbounded polynomial n̄ with optimal information
rate with respect to affine functions.

Amplification. We first notice that the class of block-affine functions does
not contain all projection functions, so the generic technique of Applebaum [4]
does not apply to amplify the class. Nevertheless, we show that this class can
still be used to encode the labels of Garbled Circuits (a common realization of
randomized encoding), and thus we can amplify the class to be any bounded-
sized boolean circuits.
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As our scheme can encrypt messages of an indefinite length, we are able to
further achieve KDM function class for (Fs||Qτ ), where Fs is the class of circuits
up to sized s, Qτ is the class of affine functions with τ -element outputs, and
(Fs||Qτ ) denotes the concatenation of two classes, i.e., every function f in the
class can be represented by f = (h, q) for some h ∈ Fs and q ∈ Qτ such that
f(sk) = (h(sk)||q(sk)). For the parameter range τ � s, our scheme achieves the
optimal information rate, i.e., 1− o(1).

Upgrade to KDM-IBE

The above framework can be further generalized to construct IBE with KDM-
security and leakage resilience. Particularly, we design a new compiler that uses
an IB-wHPS to amply the on-the-fly KDM-security (a new notion) of PKE into
KDM-security of IBE, and simultanesouly the resulting IBE achieves leakage re-
silience. This improves the compiler of [23], which might not be leakage resilient.

Our compiler is straight-forward. Let Π be a BE-based PKE and IB-wHPS be
an identity-based wHPS that has additional structures: (1) the secret key has
the structure skid = (x, skid,x), (2) IB-wHPS.Decap(skid,CT

∗) = x + k, and (3)
given k, the above CT∗ can be simulated faithfully. (This is similar to the
additional structures of our required wHPS above). Then we can design an
IBE.{Setup,KeyGen,Enc,Dec} as follows. IBE.{Setup,KeyGen} and IBE.{mpk,msk, skid}
are the same as those of IB-wHPS. To encrypt a message m with an id, IBE.Enc
first generates an encapsulation (CT1,k)← IB-wHPS.Encap(mpk, id), then gener-
ates pk = (CRS, h(CRS,k)) from the BE, and then computes CT2 ← Π.Enc(pk,m).
The resulting ciphertext would be (CT1, pk,CT2).

Next we present a simple case that demonstrates the key idea of our KDM-
security proof. Consider the simple case of only one KDM query, i.e., an encryp-
tion for some message f(skid) = f(x, skid,x) (by Structure 2 of IB-wHPS) with
respect to some id. We can derive the following:

IBE.Enc(f(x, skid,x))

=(CT1,CRS,H(CRS,k),CT2)

≈c(CT∗1,CRS,H(CRS, IB-wHPS.Decap(CT∗1)),CT2) Valid/Invalid Ciphertext

Indistinguishability

=(CT∗1,CRS,H(CRS,x + k′),CT2) By Structure 1

=
(
CT∗1,CRS,H(CRS,x′), Π.Enc

(
CRS,H(CRS,x′),

f((x′ − k′), skid,(x′−k′))
))

Change of Variable

=
(
CT∗1,CRS,H(CRS,x′), Π.Enc

(
CRS,H(CRS,x′), g(x′)

))
(*) Explain Below

≈c
(
CT∗1,CRS,H(CRS,x′), Π.Enc

(
CRS,H(CRS,x′), u

))
KDM of Π

We observe that if f((x′ − k′), sk(x′−k′)) can be expressed as g(x′) and the un-
derlying Π is KDM-secure with respect to the function g, then the resulting IBE
is KDM-secure with respect to f. We further identify that the equation (*) holds
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even if the master secret key msk of IB-wHPS is given. Thus, we can hardcode
msk and k′ and randomness r into g and set the function as follow: gmsk,k′,r(x

′)
first computes skid,x′−k′ = IB-wHPS.KeyGen(msk, id,x′−k′; r) and then output-
s f((x′ − k′), skid,(x′−k′)). We can instantiate Π by using the above mentioned
schemes PKE1 or PKE2 and the bootstrapping technique of Applebaum [4]. In
this way, we can obtain a KDM-secure PKE with respect to the class of bounded
polynomial circuits, which includes the required g.

The above idea cannot be trivially extended to the general case where there
are many KDM queries. A simple reason is that pk needs to be generated on-
the-fly for each ciphertext. This does not match the traditional notion of KDM-
security for PKE. To handle this technical issue, we propose a new notion called
on-the-fly KDM-security, where there is no pk upfront, and the adversary receives
an on-the-fly pk = (CRS,H(CRS,x′)) with respect to the same secret key x′ upon
each KDM query. By using this on-the-fly KDM-PKE with the IB-wHPS, we are
able to achieve KDM-IBE. Moreover, we can prove that the above PKE2 satisfies
the on-the-fly notion. We refer details to full version.

2 Preliminaries

We use several standard mathematical notations, whose detailed descriptions are
deferred to the full version. In the full version we present the formal definitions
of KDM-security and leakage resilience. Below, we present the syntax of two
important tools – batch encryption and weak hash proof systems. Due to space
limit, we defer their detailed security properties to the full version.

Definition 2.1 (Batch Encryption in [12]) A batch encryption (BE) scheme
consists of the following four algorithms {Setup,KeyGen,Enc,Dec}:
– Setup(1λ, 1n): The algorithm takes as input the security parameter λ and

key length n, and outputs a common reference string CRS which includes a
parameter B = B(λ, n).

– KeyGen(CRS,x): Given a common reference string CRS and the secret key
x ∈ ZnB as input, the algorithm projects the secret key x to a public key h.

– Enc(CRS, h,M): Given a common reference string CRS, a public key h, and
a message matrix M = (Mi,j)i∈[n],j∈ZB

∈ Zn×BB as input, the algorithm
outputs a ciphertext CT.

– Dec(CRS,x,CT): Given a common reference string CRS, a secret key x, and
a ciphertext CT as input, the algorithm outputs a message vector m′ =
(Mi,xi)i∈[n].

Remark 2.2 Let ˆ̀ denote the bit-length of the public key h. Then we notice
that given the public key pk, the conditional min-entropy of sk is H∞(sk|pk) =

H∞(x|h) ≥ n logB − ˆ̀.

Definition 2.3 (Weak Hash Proof System in [21]) A weak hash proof sys-
tem (wHPS) with the encapsulated-key-space K consists of four algorithms
wHPS.{Setup,Encap,Encap∗,Decap} as follows. (We will omit wHPS when the
context is clear).
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– Key generation. Setup(1λ) takes a security parameter λ as input, and
generates a pair of public key and secret key (pk, sk).

– Valid encapsulation. Encap(pk) takes a public key pk as input, and outputs
a valid ciphertext CT and its corresponding encapsulated key k ∈ K.

– Invalid encapsulation. Encap∗(pk) takes a public key pk as input, and
outputs an invalid ciphertext CT∗.

– Decapsulation. Decap(sk,CT) takes as input a secret key sk and ciphertext
CT, and deterministically outputs k ∈ K.

Additionally, we define the following function families that are useful for our
results on KDM security.

Definition 2.4 (Linear, Affine and Shift Functions) Let X ,Y be some ad-
ditive groups. A function g : X → Y is linear if for every x, x′ ∈ X , we have
g(x + x′) = g(x) + g(x′); a function h : X → Y is affine if there exist a linear
function g : X → Y and a constant a ∈ Y such that h(x) = g(x) + a for every
x ∈ X . Moreover, a function s : X → X indexed by certain element x ∈ X is
shift, if for every x, x′ ∈ X , we have sx(x′) = x+ x′.

Definition 2.5 Let X ,Y be some additive groups. Given a class of linear func-
tions G = {g : X → Y}, we define a related class of affine functions Gt =
{g′ : X → Yt} where each g′ ∈ Gt can be indexed by a constant vector a =
(a1, . . . , at)

> ∈ Yt and t functions in G, i.e., g1, g2, . . . , gt ∈ G, such that for
every x ∈ X , g′(x) = (g1(x), g2(x), . . . , gt(x))> + a = (g1(x) + a1, g2(x) +
a2, . . . , gt(x) + at)

>.
Besides, if the underlying linear functions g ∈ G is a block function, i.e., each

output component of g depends only on one block of its input, then the resulting
functions g′ ∈ Gt are called block-affine function.

3 Randomness Extractor and its Variants

In this section, we first define a new variant of (computational) randomness
extractors, which serve as the most important tools of this paper. Then, we
instantiate the required extractors based on LWE or DDH, respectively.

3.1 Our New Variant of Randomness Extractors

We require an extractor that is (1) reusable, (2) secure against correlated-source
attacks, and (3) homomorphic. We present their definitions below.

Definition 3.1 (Reusable Extractor in [3]) Let X ,S,Y be efficient ensem-
bles parameterized by the security parameter λ. An efficient function Ext : X ×
S → Y is an (e, t)-reusable-extractor9, if for any correlated random variables

9 Here, t denotes the number of times the weak source being reused.
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(s, aux) where s is over S and H∞(s|aux) ≥ e, the following two distributions
are computationally (statistically) indistinguishable:

(aux, r1, . . . , rt,Ext(r1, s), . . . ,Ext(rt, s)) ≈ (aux, r1, . . . , rt, u1, . . . , ut),

where the strings {ri
$←− X}, {ui

$←− Y} are sampled independently.

If e > t log |Y|+O(log(1/ε)) for some ε = negl(λ), we can construct an (e, t)-
reusable extractor information theoretically, e.g,. Leftover hash lemma [15]. On
the other hand for e < t log |Y| + O(log(1/ε)), it is still possible to construct
(e, t)-reusable extractor under appropriate computational assumptions, such as
DDH or LWE [3, 26], for t being a bounded or even any arbitrary polynomial
depending on the parameter settings.

Definition 3.2 (Reusable Extractor against Correlated-Source Attacks)
Let Ext : X × S → Y be some function, and F = {f : S → Y} be some func-
tion class. We say Ext is an (e, t)-reusable extractor against correlated-source
attacks with respect to F , if for every random variables s, aux where s is over S
and H∞(s|aux) ≥ e, the following oracles, Os(·) and U(·), are computationally
indistinguishable given up to t queries:

– Os(·) : Take a function f ∈ F as input, sample a fresh random r ← X , and
return (r,Ext(r, f(s))) upon each query.

– U(·) : Take a function f ∈ F as input, return a uniform sample (r, u) ←
(X ,Y) upon each query.

Remark 3.3 The above Definition 3.2 can also be described in the indistin-
guishability form – for any correlated random variables (s, aux) such that s is over
S and H∞(s|aux) ≥ e, the following two distributions are computationally (sta-

tistically) indistinguishable:
(
aux, {ri,Ext(ri, fi(s))}i∈[t]

)
≈
(
aux, {ri, ui}i∈[t]

)
,

where the strings {ri
$←− X}i∈[t], {ui

$←− Y}i∈[t] are sampled independently, and
{fi ∈ F}i∈[t] are chosen (adaptively) by any ppt adversary A.

Clearly, an (e, t)-reusable extractor is also one against correlated-source at-
tacks with respect to the identity function.

Definition 3.4 (Homomorphic Extractor) Let Y be a group associated with
operation ‘◦’, Ext : X × S → Y be an extractor following the syntax as in
Definition 3.1, and H = {h : S → Y} be some function class. We say that Ext
is homomorphic with respect to H, if for any function h ∈ H, there exists an
invertible function h′ : X → X (efficiently computable given h) such that for any
x ∈ X and s ∈ S, we have Ext(x, s) ◦ h(s) = Ext(h′(x), s).

3.2 Instantiations from LWE and DDH

Definition 3.5 For integers n and δ, we define the linear function class.
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– SFδ,n = {sa : Znδ → Znδ } where each function sa is indexed by a vector
a ∈ Znδ such that sa(x) = x+ a mod δ, for every x ∈ Znδ .

Construction 3.6 (LWE-Based Extractor) Let X = Znq , S = Zn2 and Y =
Zp, where p is a prime and p|q. We define Ext : X × S → Y as:

Ext(a, s) = b〈a, s〉 mod qeq,p,

where a ∈ X , s ∈ S and b·eq,p is defined as the definition of LWR in [6]. The

construction has ratio |Y||X | = log p
n log q .

Theorem 3.7 Let λ be the security parameter, q, p, d, β, σ be parameters such
that q ≥ pβλω(1), β = σλω(1), and p|q. Let χ be some σ-bounded distribution
over Znq , e ≥ (d + Ω(λ)) log q. Assuming the hardness of LWEd,q,χ, then Ext
in Construction 3.6 is an (e, ` = poly(λ))-reusable extractor against correlated-
source attacks with respect to the function class SF2,n. Furthermore, this Ext is
homomorphic with respect to the function class Gp,n = {gb : Zn2 → Zp}, where
each function gb is indexed by a vector b ∈ Znq such that gb(x) = 〈b,x〉 mod p,
for every x ∈ Zn2 .

Due to space limit, we defer the detailed proof to the full version.

Construction 3.8 (DDH-Based Extractor) Let G be a group of prime order
q, X = Gn, S = Zn2 , and Y = G. We define Ext : X × S → Y as:

Ext(a, s) =

n∏
i=1

asii ,

where a ∈ X , s ∈ Zn2 . The construction has ratio |Y||X | = 1
n .

Theorem 3.9 Let λ be the security parameter, G be a group of prime order q.
Assuming that DDH is hard with respect to the group G and e ≥ log q+2 log(1/ε)
where ε ∈ (0, 1) is negligible, then Ext defined as 3.8 is an (e, t = poly(λ))-
reusable extractor against correlated-source attacks with respect to the function
class SF2,n. Furthermore, Ext is homomorphic with respect to the function class
G′q,n, where each g ∈ G′q,n is indexed by certain vector b ∈ Gn, i.e., gb(s) =∏n
i=1 b

si
i for input s ∈ Zn2 .

Due to space limit, we defer the detailed proof to the full version.

4 wHPS and its Instantiation from Batch Encryption

In this section, we first identify several new important structures of wHPS, and
then show an instantiation of the required wHPS from BE.
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4.1 Additional Structure of wHPS

Definition 4.1 (wHPS with Additional Structures) We say that Π is a
wHPS with additional structures, if the following conditions hold:

1. Π satisfies all conditions for a wHPS defined in Definition 2.3;
2. The secret key, sk, of Π can be written as sk := (a, ska) ∈ Znm × {0, 1}∗, for

certain positive integers m,n ∈ Z. In particular, ska ∈ {0, 1}∗ can be viewed
as an arbitrary bit string, but is related to the prefix vector a ∈ Znm.

3. The decapsulation of an invalid ciphertext, Decap(sk,CT∗), can be written as
sk′(a) = a + k′ mod m, where the a is the first part of the secrete key sk,
and k′ ∈ Znm is the index vector related to the invalid ciphertext CT∗.

4. Given some k′ ∈ Znm, one can generate CT∗ such that Decap(sk,CT∗) =
sk′(a) and the distribution of CT∗ is identical to that of Encap∗(pk).

Remark 4.2 This additional structure can also be generalized to the notion of
IB-wHPS described in full version. In particular, for the case of skid := (a, ska,id)
in the IB-wHPS, ska,id is the output of an integrated algorithm IB-wHPS.KeyGen(msk, id,a),
where msk denotes the master secret key.

4.2 wHPS from BE

Construction 4.3 (Construction of wHPS from BE) Let Π = Π.{Setup,
KeyGen,Enc,Dec} be a batch encryption scheme with the message space Zn×BB ,

the secret-key space ZnB and the projected public key size ˆ̀. Then, we construct
a weak hash proof system HPS scheme ΠwHPS = ΠwHPS.{Setup,Encap,Encap∗,
Decap} with the same ciphertext space as Π and the encapsulated key space
K = ZnB as follows:

– ΠwHPS.Setup(1λ): The algorithm runs CRS
$←− Π.Setup(1λ, 1n) for an integer

n ∈ N, and then runs Π.KeyGen(CRS,x) to generate h for a randomly chosen
vector x ∈ ZnB . Finally, the algorithm outputs pk := (CRS, h) and sk := x.

– ΠwHPS.Encap(pk): Given a public-key pk as input, the algorithm first chooses
a random vector k = (k1, . . . , kn)> ∈ ZnB, and set matrix M = (Mi,j)i∈[n],j∈ZB

such that Mi,j = ki for every i ∈ [n], j ∈ ZB, i.e., all components in each row

of M are the same. Then the algorithm runs CT
$←− Π.Enc(CRS, h,M), and

outputs CT and k as a valid ciphertext and its encapsulated key, respectively.
– ΠwHPS.Encap

∗(pk): Given a public-key pk as input, the algorithm chooses a
random vector k = (k1, . . . , kn)> ∈ ZnB, and set matrix M = (Mi,j)i∈[n],j∈ZB

such that Mi,j = ki+ j mod B for every i ∈ [n], j ∈ ZB. (In this way, every
element in a row is different from the others in the same row.) Then the

algorithm runs CT∗
$←− Π.Enc(CRS, h,M), and outputs CT∗ as an invalid

ciphertext.
– ΠwHPS.Decap(sk,CT): Given a ciphertext CT and a secret key sk := x as

input, the algorithm runs m′ = Π.Dec(CRS,x,CT), and outputs m′ as the
encapsulated key.
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It is clear that this construction of wHPS satisfies the additional structures
in Definition 4.1. Moreover, the secret key of wHPS does not have the second
part ska, which is one of our key points to prove the KDM security. Below we
present the formal theorem and its proof.

Theorem 4.4 (wHPS from BE) Suppose Π is a semantically secure batch en-
cryption scheme with the message space Zn×BB , the secret-key space ZnB and the

projected public key size ˆ̀. Then Construction 4.3 is an (n logB,w)-universal
weak hash proof system with the encapsulated key space K = ZnB and w =

n logB − ˆ̀, and has the additional structure as Definition 4.1.

Proof. According to the definition of a wHPS, we need to prove the following
three properties: correctness, universality and ciphertext indistinguishability.

Correctness. Correctness of this wHPS follows directly from the correctness of
the underlying BE.

Universality and the Additional Structure as Def 4.1. Given the public

key pk and a random invalid ciphertext CT∗
$←− Π.Enc(CRS, h,M), we have

ΠwHPS.Decap(sk,CT∗) = ΠwHPS.Decap(x,CT∗) = x+ k′,

where k′ is the vector used to generate the invalid ciphertext. Clearly, this func-
tion is an efficiently computable and invertible permutation, i.e., the decryption
function can be written as the permutation sk′(x) = x+ k′.

As this is an injective function of x (for any fixed k′), the min-entropy of x re-
mains the same after applying this function, i.e., H∞(Decap(sk,CT∗)|(h,CT∗)) =
H∞(x+k′|(h,CT∗)) = H∞(x|(h,CT∗)). Moreover, we note that given h, CT∗ is
independent of x, so H∞(x|(h,CT∗)) = H∞(x|h). Therefore, we have

H∞(x+k|(h,CT∗)) = H∞(x|(h,CT∗)) = H∞(x|h) ≥ H∞(x)−|h| = n logB− ˆ̀.

It is also clear from the argument that the scheme ΠwHPS satisfies the addi-
tional structure as Definition 4.1, i.e. the secret key sk has the structure x ∈ ZnB ,
and ΠwHPS.Decap(sk,CT∗) = x + k′, where k′ is a vector related to the invalid
ciphertext CT∗.

Ciphertext Indistinguishability. Directly from the security of BE, we can
prove that the ciphertexts output by ΠwHPS.Encap(pk) and ΠwHPS.Encap

∗(pk)
are computationally indistinguishable, even given the secret key x. ut

5 Generic construction PKE from wHPS

In this section, we show that a weak hash proof system with the additional
structure as Definition 4.1 can be used to obtain a public-key encryption scheme
that is simultaneously leakage resilient and KDM secure.

Before presenting our generic construction, we introduce a useful definition
of block source, and a parallel repetition description of randomness extractor.
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Definition 5.1 (Block Source [28]) A random variable S = (S1, . . . , Sm) is
a (e1, . . . , em) block source if for every s1, . . . , si−1, Si|S1=s1,S2=s2,...,Si−1=si−1

is
a ei-source. If e1 = e2 = · · · = em = e, then we call S an m× e block source.

Definition 5.2 (Parallel Repetition of Extractor) For any input s =
(s1, . . . , sm) ∈ Sm and an underlying extractor Ext : R × S → Y, we use
Ext||(r, s) = (r,Ext(r, s1), . . . ,Ext(r, sm)) to denote a parallel repetition of ex-
tractor.

Next, our generic construction of PKE can be derived from wHPS and Ext in the
following way.

Construction 5.3 (PKE from wHPS and Ext) Suppose that ΠwHPS =
ΠwHPS.{Setup,Encap,Encap∗,Decap} is a wHPS with the secret key space and the
encapsulated key space being S = K = ZnB with n = n′·m, and Ext : R×Zn′B →M
is an (e, poly)-reusable extractor. Then, for any polynomial integer t, we define
a public-key encryption scheme ΠPKE = ΠPKE.{KeyGen,Enc,Dec} with message
space Mt×m as follows:

– ΠPKE.KeyGen(1λ): The algorithm runs (pkΠwHPS , skΠwHPS)
$←− ΠwHPS.Setup(1λ),

and then outputs pk := pkΠwHPS and sk := skΠwHPS .
– ΠPKE.Enc(pk,µ): Given a public-key pk and a message µ = (µ1, . . . ,µt) ∈
Mt×m as input with each µj ∈ Mm, the algorithm runs wHPS.Encap to

generate (CT0,k)
$←− ΠwHPS.Encap(pk) for k ∈ ZnB. The algorithm interprets

k ∈ (Zn′B )m, and then samples rj
$←− R for j ∈ [t]. Furthermore, the algorithm

computes and outputs CT = (CT0,CT1, . . . ,CTt), where

CTj = (CT
(1)
j ,CT

(2)
j ) = (rj ,Ext||(rj ,k) + µj), for j ∈ [t].

– ΠPKE.Dec(sk,CT): Given a ciphertext CT = (CT0,CT1, . . . ,CTt) and a secret
key sk as input, the algorithm first computes k′ = wHPS.Decap(sk,CT0), and
then outputs µ = (µ′1, . . . ,µ

′
t), where

µ′j = CT
(2)
j − Ext||(CT

(1)
j ,k′).

Our construction achieves KDM security and leakage-resilience simultaneous-
ly. We summarize the results in the following theorem.

Theorem 5.4 Assume that (1) ΠwHPS is a (n logB,w)-universal wHPS with
the secret key space and the encapsulated key space being S = K = ZnB, n = mn′,

w = n logB− ˆ̀, where ˆ̀ denotes the bit length of pk, and n′ logB ≥ ˆ̀+λ+e, (2)
ΠwHPS has the additional structures as Def 4.1 and the secret key does not have
the additional string skx, (3) the extractor Ext : R × Zn′B → M is an (e, poly)-
reusable extractor, which is also homomorphic with respect to the class of linear
functions G : {g : Zn′B → M} and robust against correlated-source attacks with

respect to the class of the shift functions SFB,n′ : {s : Zn′B → Zn′B }.Then the
above scheme ΠPKE is
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1. leakage-resilient against block leakage10, with block leakage rate (1− e+ˆ̀+λ
n′ logB )

per block.

2. KDM(1)-secure with respect to the block-affine functionclass Gt = {g′ : ZnB →
Mm×t} as defined in Definition 2.5.

3. The information rate is |M|mt
|CT0|+|R|t+|M|mt , where | · | denotes the bit descrip-

tion length of its elements. As a result, for large enough t and m, we obtain
rate-1 KDM-secure PKE scheme.

Remark 5.5 We note that any wHPS (without the additional structures) and
reusable extractor (without the homomorphic and robust property) already suffice
to prove leakage resilience, which detailed proof is deferred to full version due to
space limit. The extra properties will be used for deriving KDM security, which
will be formally presented in Sections 5.1 and 6. In Section 3.2, we have presented
homomorphic extractors from DDH and LWE.

5.1 Proof of KDM(1)-security

In this section, we present the proof of the second part of Theorem 5.4. Our
proof takes the following high-level steps:

– We first define a modified encryption algorithm Enc′, and then switch the
responses of the KDM queries by using Enc′ instead of the real Enc. By a
hybrid argument, we argue that the adversary cannot distinguish whether
he is answered by Enc or Enc′.

– We next modify the KDM responses by using Enc′′, which essentially gener-
ates random strings as the ciphertexts. We argue that this is indistinguish-
able from the above case by the security of the reusable extractor robust
against correlated-source attacks with respect to the class of shift functions
(ref. Definition 2.4);

– Finally, we show that even given multiple KDM encryption queries, Enc′′ is
indistinguishable from Enc(0), implying KDM-security.

Below, we first define the modified encryption algorithm Enc′. On input
a public-key pk, a secret-key sk := x ∈ ZnB = (Zn′B )m and a function g′ ∈
Gt, where g′ can be indexed by a vector a = (a>1 , . . . ,a

>
t )> ∈ Mm×t and

t functions g1, . . . , gt ∈ G (ref. Definition 2.5), where for each j ∈ [t], aj =

(aj,1, . . . , aj,m)> ∈ Mm, gj = (gj,1, . . . , gj,m) with gj,l : Zn′B →M and l ∈ [m],
the algorithm does the following:

1. Generate an invalid ciphertext CT∗0. By Property 4 in Definition 4.1, set
x′ := Decap(sk,CT∗0) = x+ k′ for some k′.

10 Just as described in full version, block leakage means that each block of source
is leaked by an independent function and remain enough entropy conditioned on
leakage against other blocks.
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2. Compute t ·m invertible functions {h1,l}l∈[m], . . . , {ht,l}l∈[m] such that
Ext||(r, s) + gj(s) = (Ext(r, s1), . . . ,Ext(r, sm)) + (gj,1(s1), . . . , gj,m(sm)) =
(Ext(hj,1(r), s1), . . . ,Ext(hj,m(r), sm)) for any j ∈ [t], by the property of
homomorphic extractor (ref. Definition 3.4). Here, s is a block source, i.e.,
s = (s1, . . . , sm).

3. Then sample t random seeds r1, . . . , rt ∈ R for the extractor, and compute
zj = {Ext(hj,l(rj),x′l)− gj,l(k

′
l) + aj,l}l∈[m] for j ∈ [t], where x′ = (x′l)l∈[m]

and k′ = (k′l)l∈[m].

4. Output the ciphertext CT′:
(
CT∗0, r1, z1, . . . , rt, zt

)
.

Then, we define the other modified encryption algorithm Enc′′:

1. Generate an invalid ciphertext CT∗0.

2. Then for each j ∈ [t], sample rj
$←− R and zj

$←−Mm;
3. Output the ciphertext CT′′:

(
CT∗0, r1, z1, . . . , rt, zt

)
.

Furthermore, we define a series of hybrids as follows:

– Hybrid H0: This hybrid is identical to the original KDM queries case, i.e.
the responses of all the Q KDM queries are generated as the real encryptions
of the g′(i)(sk) for i ∈ [Q].

– Hybrid H0.i for each i ∈ [Q]: Upon receiving the first i KDM queries, this
hybrid uses Enc′ to reply and then generates the remaining KDM responses
according to the original encryption algorithm as H0.

– Hybrid H1: This hybrid replies all KDM queries with Enc′′.
– Hybrid H2: This hybrid replies all KDM queries with Enc(0).

Let events E0, E1, E2 denote that the KDM adversary A outputs 1 in H0,
H1, and H2, respectively. Similarly, we define events E0.i. To show that Pr[E0] ≈
Pr[E2], we will take the following path:

Pr[E0] ≈ Pr[E0.1] ≈ · · · ≈ Pr[E0.Q] ≈ Pr[E1] ≈ Pr[E2].

We note that proving indistinguishability of H1 and H2 follows essentially the
same idea from proving its semantic security. This can be captured in the proof of
leakage resilience in the full version, so we just omit the proof to avoid repetition.
For notational convenience, we define H0.0 := H0.

Finally, we use the following three lemmas to accomplish the above mentioned
proof idea. Due to space limit, we defer the detailed proof to the full version.

Lemma 5.6 For i ∈ [Q],
∣∣Pr[E0.i−1]− Pr[E0.i]

∣∣ ≤ negl(λ), assuming the cipher-
text indistinguishability of the underlying wHPS.

Lemma 5.7
∣∣Pr[E0.Q] − Pr[E1]

∣∣ ≤ negl(λ), assuming that (e, poly)-reusable ex-
tractor is homomorphic with respect to the class of linear functions G : {g :
Zn′B →M} and robust against correlated-source attacks with respect to the class

of the shift functions SFB,n′ : {s : Zn′B → Zn′B }.
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Lemma 5.8 For i ∈ [Q],
∣∣Pr[E1] − Pr[E2]

∣∣ ≤ negl(λ), assuming the ciphertext
indistinguishability of the underlying wHPS.

Combining Lemma 5.6, 5.7 and 5.8, we can conclude that the advantage
AdvF-KDM

PKE,A (λ) of A in the KDM security game satisfies that:

AdvF-KDM
PKE,A (λ) ≤ (Q+ 2) · negl(λ) ≤ negl(λ).

This completes the proof that ΠPKE in Construction 5.3 is KDM(1)-secure
with respect to Gt.

6 Achieving KDM(n̄)-security from KDM(1)-security

In this section, we show how to upgrade our Construction 5.3 to achieve KDM(n̄)-
security for an unbounded polynomial n̄. To achieve this, we first define a more
general design paradigm called BE-based scheme, capturing several important
features of Construction 5.3. Then we identify two homomorphic properties of
BE-based scheme, which only implies the KDM(n̄)-security for bounded polyno-
mial n̄. Finally, we define an additional pseudorandom property for BE-based
scheme, and prove KDM(n̄)-security for unbounded polynomial n̄ with all these
properties.

6.1 BE-Based PKE and its Two Key-homomorphic Properties

Definition 6.1 (BE-based PKE) Let BE be a batch encryption as Definition 2.1.
A BE-based PKE Π is a public-key encryption scheme with the following prop-
erties: (1) the secret key of Π is a vector x ∈ ZnB for some B,n ∈ Z, as in the
scheme BE, (2) the public key is (CRS,H(CRS,x)), where CRS is generated by
BE.Setup, and H(·, ·) = BE.KeyGen(·, ·) is the projection function of BE. In this
way, CRS is independent of the secret key.

Clearly, Construction 5.3 is BE-based PKE. Next, we identify two crucial
key-homomorphic properties on BE-based PKE schemes, which can be used to
achieve the KDM(n̄)-security.

Property 1: There is a deterministic algorithm T1 that takes as input a pair
(CRS,H(CRS,x)) and a vector k ∈ ZnB , and outputs (CRS′,H(CRS′,x+k)), i.e.,
T1(CRS,H(CRS,x),k) = (CRS′,H(CRS′,x+ k)).

Moreover, for any vectors x,k ∈ ZnB and CRS
$←− Π.Setup(1λ, 1n), the follow-

ing two distributions are identical (or statistically close):

(CRS,H(CRS,x+ k),x,k) ≡ (T1(CRS,H(CRS,x),k),x,k) .
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Property 2: There exists a deterministic algorithm T2 that takes a pair (CT,k)
as input and outputs a ciphertext CT′, i.e., T2(CT,k) = CT′. Moreover, for any
message µ ∈ M, vectors x,k ∈ ZnB , and CRS, the following distributions are
identical (or statistically close):

(CT1, T1(CRS,H(CRS,x),k),x,k) ≡ (T2(CT,k), T1(CRS,H(CRS,x),k),x,k) ,

where CT ← Π.Enc(CRS,H(CRS,x), µ), and CT1 ← Π.Enc(CRS,H(CRS,x +
k), µ).

Remark 6.2 These two properties can also be defined for BE schemes. Further-
more, if the underlying BE scheme has these two properties, Construction 5.3
would inherit these two properties, due to its designs of public key and ciphertext.

6.2 Intermediate Scheme Πn̄

Following the above mentioned BE-based PKE schemeΠ = Π.{KeyGen,Enc,Dec},
we define the following intermediate scheme Π n̄.

Construction 6.3 (Intermediate BE-based PKE Πn̄) Given a BE-based PKE
Π = Π.{KeyGen,Enc,Dec} with the message space M, we construct a new
scheme Π n̄ = Π n̄.{KeyGen,Enc,Dec} with the same message space M as fol-
lows:

– Π n̄.KeyGen(1λ, 1n̄): The algorithm does the following steps:
1. Take the security parameter λ and an integer n̄ ∈ N as input, run

Π.KeyGen for n̄ times to obtain CRSi
$←− Π.KeyGen(1λ, 1n̄) for 1 ≤ i ≤ n̄,

where all these CRSi contain the same size parameter B ∈ Z.

2. Choose a random vector x
$←− ZnB to generates hi = H(CRSi,x) for

1 ≤ i ≤ n̄;
3. Output pk := (pki)1≤i≤n̄ and sk := x, where pki = (CRSi, hi).

– Π n̄.Enc(pk, µ): Given a public-key pk and a message µ ∈ M as input, the

algorithm runs Π.Enc for n̄ times to generate CTi
$←− Π.Enc(pki, µ) for 1 ≤

i ≤ n̄, and then outputs CT = (CT1, . . . ,CTn̄) as the ciphertext of µ ∈M.
– Π n̄.Dec(sk,CT): Given a ciphertext CT = (CT1, . . . ,CTn̄) and a secret key

sk as input, the algorithm runs Π.Dec to generate µ′ = Π.Dec(sk,CTi) for
some i ∈ [n̄], and then output µ′ as a plaintext for CT.

We note that the correctness of the scheme Π n̄ follows clearly from that of Π.
Next we present a KDM-security reduction between Π and Π n̄.

Theorem 6.4 (KDM(n̄)-security of Π) Suppose that (1) a BE-based PKE scheme
Π satisfies Properties 1 and 2 in Section 6.1, and (2) the intermediate scheme

Π n̄ in Definition 6.3 is KDM(1)-security with respect to the class G = {g :
SK → M} of all affine (resp., block-affine) functions from SK to M. Then Π
is KDM(n̄)-secure with respect to the class F = {f : SKn̄ → M} of all affine
(resp., block-affine) functions from SKn̄ to M.
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Due to the limitation of space, the detailed proof is deferred to the full version.

Remark 6.5 Our construction can support more general relationship between F
and G. Particularly, the theorem also holds for the following relation. For every
k1, . . . ,kn̄ and h ∈ F , we have gk1,...,kn̄

(x) := h(x+ k1, . . . ,x+ kn̄) ∈ G.

6.3 Proving KDM(1)-Security of Πn̄

In this section, we first define the required new pseudorandom property, and
then show how it derives KDM(1)-security of Π n̄

PKE for unbounded polynomial n̄.
In the next section, we show how to construct such an underlying BE.

Definition 6.6 Let Ext : R×ZnB →M be some (reusable) extractor. A BE-based
PKE satisfies an additional pseudorandom property if the following holds. For
any polynomial n̄ = poly(λ), the following two distributions are computationally
indistinguishable: ((

CRS1, · · · ,CRSn̄
h1, · · · , hn̄

)
, {ri,Ext(ri,x + ki)}i∈[t]

)
≈c
((

CRS1, · · · ,CRSn̄
u1, · · · , un̄

)
,
{
ri, u

′
i

}
i∈[t]

)

where {CRSi}i∈[n̄], {ui}i∈[n̄] and {u′i}i∈[t̄] are uniformly random, x
$←− ZnB, and

hi = H(CRSi,x) for all i ∈ [n̄].

Theorem 6.7 Let ΠPKE be the BE-based scheme as Construction 5.3. Suppose
the underlying BE satisfies the pseudorandom property as Definition 6.6. Then
for any polynomial n̄, the intermediate scheme Π n̄

PKE is KDM(1)-secure with re-
spect to all block-affine functions.

The proof of this theorem is similar to that of Theorem 5.4. Particularly, we
would switch all the real KDM responses to Enc′ as in the Hybrid H0,Q, and
then use the reusable extractor (against shift functions) to further switch the
responses to Enc′′ as in the Hybrid H1. The key observation is the following:
H(CRS,x) does not leak x in the computational sense and can be used in connec-
tion with the extractor. Thus, the same argument of Theorem 5.4 goes through
in this case.

Due to the limitation of space, we defer the detailed proof and the construc-
tions of the required BE to the full version.

Summing up Theorems 6.4, 6.7 and the instantiations of the required BE in
full version, we conclude that for any polynomial n̄, Construction 5.3 is KDM(n̄)-
secure with respect to block-affine functions.
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7 Putting Things Together

By instantiating Construction 5.3 with (1) the specific reusable extractor from
LWE in Construction 3.6 and (2) the LWE-based BE in full version. we are able
to achieve the following corollary via Theorems 6.4, 6.7.

Corollary 7.1 Assuming that LWE is hard, there exists a rate-1 (both informa-
tion and leakage rates) PKE that is leakage resilient against block leakage and

KDM(n̄)-secure w.r.t. block-affine functions for any unbounded polynomial n̄.

Similarly, by instantiating Construction 5.3 with (1) the specific reusable extrac-
tor from DDH in Construction 3.8 and (2) the DDH-based BE in full version, we
are able to achieve the following corollary via Theorems 6.4, 6.7:

Corollary 7.2 Assuming that DDH is hard, there exists a rate-1 (both informa-
tion and leakage rates) PKE that is leakage resilient against block leakage and

KDM(n̄)-secure w.r.t. block-affine functions for any unbounded polynomial n̄.

We notice that the overall construction of the DDH-based scheme resembles
a modification of the scheme of [9]. We do not present this variant. Instead, we
take a more modular approach by identifying a framework that suffices for KDM
security and can be instantiated from various assumptions.

Remark 7.3 The class of block affine functions is more restricted than the reg-
ular (bit) affine class. In particular, each output component of a block affine
function can depend only on one block of the input, whereas the output of a bit
affine function can depend on every bit of the input. Nevertheless, this restricted
class already suffices for KDM amplification to any bounded-size functions, and
moreover allows constructions with better information rate. We discuss how to
amplify the function class in the following section.

8 Extensions

In this section, we further extend our above results in Section 7 in two directions:
the first one is to enlarge the class of KDM functions via Garbled Circuits; the
second one is to generalize our results to the setting of IBE.

8.1 Garbled Circuits

In this section, we recall the key ingredient for the KDM amplification of Apple-
baum [4]: Garbled Circuits.

Definition 8.1 (Garbled Circuits [12]) A garbling scheme consists of three
algorithms (Garble,Eval,Sim) as follows:

– Garble(1λ, 1n, 1m, C) is a ppt algorithm that first takes as input λ, a circuit
C : {0, 1}n → {0, 1}m together with its input length n and output length m,

and then outputs a garbled circuit Ĉ along with labels {labi,b}i∈[n],b∈{0,1},

where each label labi,b ∈ {0, 1}λ.
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– Eval(1λ, Ĉ, L̂) is a deterministic algorithm that first takes as input a garbled

circuit Ĉ along with a set of n labels L̂ = {labi}i∈[n], and then outputs a
string y ∈ {0, 1}m.

– Sim(1λ, 1|C|, 1n, y) is a ppt algorithm that first takes as input λ and a bit
description length of circuit C, an input length n and a string y ∈ {0, 1}m,

then outputs a simulated garbled circuit C̃ and labels L̃ = {l̃abi}i∈[n].

Moreover, the garbling scheme needs to satisfy the following two properties.

1. Correctness. For any circuit C : {0, 1}n → {0, 1}m, any input x = (xi)i∈[n] ∈
{0, 1}n, and any (Ĉ, {labi,b})← Garble(C), it holds Eval(Ĉ, L̂) = C(x) where

L̂ = {labi,xi
}i∈n.

2. Simulation Security. For any circuit C : {0, 1}n → {0, 1}m, any input
x = (xi)i∈[n] ∈ {0, 1}n, the following two distributions are computational
indistinguishability:

{(Ĉ, L̂) : (Ĉ, {labi,b})← Garble(C), L̂ = {labi,xi}i∈n}

≈{(C̃, L̃) : (C̃, L̃)← Sim(1λ, 1|C|, 1n, C(x))}.

8.2 Bootstrapping to Larger Classes of KDM Functions

We first present a bootstrapped variant of Construction 5.3 by using the tech-
nique of garbled circuits.11 Then, we analyze the KDM-security and information
rate of this improved scheme.

Construction 8.2 (Amplification of Our KDM Security) Let Π =
Π.{KeyGen,Enc,Dec} be the PKE of Construction 5.3 instantiated with param-
eter B = 2 such that its secret key size |sk| = n = n′ · m. And let GC =
GC.(Garble,Eval,Sim) be a garbled scheme, whose label size |labi,j | is equivalen-

t to the bit length of element in M. Then, we construct a new scheme Π̂ =
Π̂.{KeyGen,Enc,Dec} with the message space M̂ =M(t−n′+1)×m as follows:

– Π̂.KeyGen(1λ): The algorithm gets (pk, sk) just as Π.KeyGen(1λ).

– Π̂.Enc(pk, µ): Given a public-key pk and a message µ = {µi,j}i∈[t−n′+1],j∈[m] ∈
M(t−n′+1)×m as input, the algorithm first invokes (C̃, L̃)← GC.Sim(µ1,1, . . . , µ1,m)

with L̃ = {labi,j}i∈[n′],j∈[m], and then runs Π.Enc to output the ciphertext

CT :=
(
C̃,Π.Enc(pk, L̃, {µi,j}i∈[2,t−n′+1],j∈[1,m])

)
=
(
C̃,CT0, r1, {Ext(r1,k1) + lab1,1, . . . ,Ext(r1,km) + lab1,m},

. . . , rn′ , {Ext(rn′ ,k1) + labn′,1, . . . ,Ext(rn′ ,km) + labn′,m},
rn′+1, {Ext(rn′+1,k1) + µ2,1, . . . ,Ext(rn′+1,km) + µ2,m},

. . . , rt, {Ext(rt,k1) + µ(t−n′+1),1, . . . ,Ext(rt,km) + µ(t−n′+1),m}
)
.

11 In [4], Applebaum leverages the abstract notion of randomized encoding to achieve
KDM amplification. Here, we directly amplify our scheme through using Garbled
Circuits, which is a well-known instantiation of randomized encoding.
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Here, we use {labi,j}i∈[n′] to denote the garbled results of the j-th block of
sk for any j ∈ [m].

– Π̂.Dec(sk,CT): Given a ciphertext CT and a secret key sk as input, the algo-
rithm first runs Π.Dec to recover all {labi,j}i∈[n′],j∈[m] and {µ′i,j}i∈[2,t−n′+1],j∈[m],

and then runs GC.Dec(C̃, {labi,j}) to get {µ′1,j}j∈[m]. Finally, the algorithm
outputs

µ′ = {µ′i,j}i∈[t−n′+1],j∈[m] ∈M(t−n′+1)×m.

Remark 8.3 For simplicity of presentation, we have implicitly assumed that
|labi,j | = |M|. For the more general case such that |labi,j | > |M|, we can easily
handle through using many more elements in M to cover each labi,j.

It is not hard to verify that the correctness of Π̂ follows from that of the under-
lying scheme Π and garble scheme GC. Below, we first argue the KDM-security
of the scheme Π̂, and then analyze its information rate.

Before presenting the formal theorem about the KDM security of Π̂, we define
a particular KDM function class F̂ = (Fs||Qτ ) as follows.

Definition 8.4 Let Fs be the class of functions of the secret key sk := x ∈ ZnB,
where the circuit size of each function in Fs is up to s. Let Qτ denote the
block-affine function class {g′ : ZnB → Mτ×m}, which is defined similarly as
in Definition 2.5. Moreover, (Fs||Qτ ) denotes the concatenation of two classes,
i.e., every function f in the class can be represented by f = (h, q) for some h ∈ Fs
and q ∈ Qτ such that f(sk) = (h(sk)||q(sk)).

Theorem 8.5 For the parameter setting in Construction 8.2, if Π is KDM(1)-
secure with respect to Gt = {g′ : ZnB → Mt×m} as defined in Definition 2.5,

and GC is a secure garbling scheme, then Π̂ is KDM(1)-secure with respect to
F̂ = (Fs||Qτ ) as defined in Definition 8.4.

Proof (Sketch). As pointed out by [4], we just need to focus on KDM reduction
from Fs to the corresponding part of block-affine function class Gt, denoted by
Gn′ , i.e., Fs ≤KDM Gn

′
. Particularly, it suffices to show that block-affine functions

in Gn′ can encode any bounded size circuits of x ∈ Zn2 , according to Applebaum’s
concepts on the KDM reduction in [4].

More specifically, suppose that A is the adversary against the KDM-security
of Π̂ with respect to h ∈ Fs, and C is the challenger for the KDM-security
of Π with respect to Gn′ . Then, through using A as a building block, we can
establish a reduction algorithm B to break the KDM-security of Π with the same
advantage as that of A.

In particular, after receiving a function h(·) ∈ Fs of sk from A, B conducts
the followings

1. Choose 2n labels {labi,j,0, labi,j,1}i∈[n′],j∈[m], with |sk| = n = n′ ·m.
2. For each j ∈ [m],

– Set a matrix A(j) = (a
(j)
1 , . . . ,a

(j)
n′ ) of dimension (n′ × n′), where for

l ∈ [n′], the l-th component of a
(j)
l is (labl,j,1 − labl,j,0) and all others

are 0.
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– Set a vector b(j) = (lab1,j,0, . . . , labn′,j,0)> of n′ dimension.

– Take (A(j))> and b(j) as the index of the j-th block-affine function

gj(skj) = (A(j))> · skj + b(j), where skj ∈ {0, 1}n
′

is the j-th block
of sk.

3. Send the indexes of all m block-affine functions to C to conduct KDM query.
4. Receive the KDM ciphertexts {cti,j}i∈[n′],j∈[m] from C.
5. Run the algorithm GC.Garble to obtain the garbled circuit Ĉ with respect to

the KDM query function h(·) from A.

6. Send CT := (Ĉ, {cti,j}i∈[n′],j∈[m]) to A.
7. Finally, B outputs whatever A outputs.

It is not hard to verify that cti,j will be a encryption of labi,j,b for b := ski,j .
Thus, the above reduction process is clearly set up. Finally, this theorem holds.
ut

Remark 8.6 Although Theorem 8.5 just focuses on the case of KDM(1), the
above construction and analysis can be easily (though somewhat tedious) extended

to KDM(n̄) for any polynomially unbounded n̄.

Finally, we focus on the information rate of the above construction. We remark
that for this amplified KDM function class F̂ = (Fs||Qτ ), the parameters t, s
and τ should satisfy: τ < t and s is the size of circuits amplified from block-affine
function with outputs (t− τ) vectors over Mm.

By setting τ � s, our scheme achieves the optimal information rate, i.e., 1−
o(1). This is because although the additional garble circuit in the ciphertext and
the encryption of labels will increase the ciphertext length to certain bounded
size, we can use large enough τ � s such that the last τ part of ciphertext
dominates the whole information rate.

8.3 Upgrade to KDM-Secure and Leakage Resilient IBE

In this section, we present our general compiler to construct an IBE that is
both KDM-secure and leakage resilient. The compiler uses as key ingredients an
IB-wHPS (described in full version) with additional structure (ref. Remark 4.2)
and an on-the-fly KDM-secure PKE (described in full version). Conceptually, this
general IBE scheme can be view as the hybrid encryption of the IB-wHPS and
PKE: to encrypt a message m, the IBE encryption algorithm first generates (1) a
pair of encapsulated key and ciphertext (CT,k) according to the IB-wHPS, and
then generates (2) a pair of session public-key and ciphertext according to the
PKE, i.e., pk = (CRS,H(CRS,k)) and Enc(pk,m), respectively, under the same
encapsulated key k. By connecting the two security properties in a novel way,
we are able to derive the desired IBE.

Construction 8.7 (KDM-secure IBE) Let ΠIB-wHPS = ΠIB-wHPS.{Setup,
KeyGen,Encap,Encap∗,Decap} be an IB-wHPS with the encapsulated key space K
and the identity space ID. Let ΠPKE = ΠPKE.{KeyGen,Enc,Dec} be a BE-based
PKE. Then, we construct an IBE scheme ΠIBE = ΠIBE.{Setup,KeyGen,Enc,Dec}
for message space M as follows.
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– ΠIBE.Setup(1λ): The algorithm runs (mpkΠIB-wHPS ,mskΠIB-wHPS)
$←− ΠIB-wHPS.Setup(1λ),

and then outputs mpk := mpkΠIB-wHPS and msk := mskΠIB-wHPS .
– ΠIBE.KeyGen(msk, id): Given a master secret-key msk and an identity id ∈
ID as input, the algorithm runs IB-wHPS.KeyGen to generate and output

skid := skΠIB-wHPS

id
$←− ΠIB-wHPS.KeyGen(msk, id).

– ΠIBE.Enc(mpk, id, µ): Given a master public-key mpk, an identity id ∈ ID
and a message m ∈M as input, the algorithm does the following steps:

1. Generates (CT1,k)← ΠIB-wHPS.Encap(mpk, id);
2. Chooses an on-the-fly common reference string CRS for ΠPKE;
3. Computes CT2 = ΠPKE.Enc(CRS, h, µ) where h = H(CRS,k);
4. Outputs CT = (CT1,CRS, h,CT2) as the ciphertext of m under the iden-

tity id.

– ΠIBE.Dec(skid,CT): Given a ciphertext CT = (CT1,CRS, h,CT2) and a secret
key skid as input, the algorithm does the following steps:

1. Run ΠIB-wHPS.Decap to generate k′ = ΠIB-wHPS.Decap(skid,CT1);
2. Output m′ = ΠPKE.Dec(CRS,k

′,CT2).

We sketch that the above construction can be proven to be a rate-1 (both
information and leakage rates) IBE that is leakage resilient against block leakage

and KDM(n̄)-secure w.r.t. a restricted block-function class for any polynomial
unbounded n̄. Due to space limit, the corresponding formal theorem statement
and its detailed proof are deferred to the full version.
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