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Abstract. In this work, we first present general methods to construct
information rate-1 PKE that is KDM(n)-secure with respect to block-
affine functions for any unbounded polynomial n. To achieve this, we
propose a new notion of extractor that satisfies reusability, homomor-
phism, and security against correlated-source attacks, and show how to
use this extractor to improve the information rate of the KDM-secure
PKE of Brakerski et al. (Eurocrypt 18). Then, we show how to ampli-
fy KDM security from block-affine function class into general bounded
size circuits via a variant of the technique of Applebaum (Eurocrypt 11),
achieving better efficiency. Furthermore, we show how to generalize these
approaches to the IBE setting.

Additionally, our PKE and IBE schemes are also leakage resilient, with
leakage rates 1 − o(1) against a slightly smaller yet still general class –
block leakage functions. We can instantiate the required building blocks
from LWE or DDH.

1 Introduction

The classic notion of semantic security by Goldwasser and Micali [25] guar-
antees security when the secret key is generated randomly and independently
of the message being encrypted. This notion however, is not sufficient in vari-
ous scenarios, e.g., [1, 13, 17, 33]. To tackle this issue, [11, 12] formally defined
Key Dependent Message (KDM) security, which requires Enc(pk, f(sk)) to be in-
distinguishable from Enc(pk, 0) for all f in a certain class. The setting can be

generalized to n-users, i.e., KDM(n)-security, where security holds even when
the attacker obtains the encryption of f(sk1, . . . , skn) under some user’s (public)
key. The community has established various theoretical feasibility results – we
know how to construct KDM(n)-secure PKE for unbounded polynomial n from
the LWE [8], DDH [12], or LPN [8,22,31] assumption, for bounded polynomial n
from QR/DCR assumption [13], and for n = 1 from CDH [16].



On the other hand however, all the prior constructions have relatively small
information rate5 even for the class of linear functions, resulting in very large
overhead in scenarios that require encrypting large data, e.g., storing large en-
crypted files in the cloud, or streaming encrypted high-resolution movies over
the internet. To remove this limitation and enhance usability, it is necessary to
determine whether a low information rate is inherent for KDM security.

As folklore, this issue (low information rate) can be solved easily for regular
PKE, as one can always achieve rate 1 − o(1) by using the technique of hybrid
encryption (the KEM-DEM paradigm). It is however, not clear whether KDM se-
curity can be preserved under a general hybrid encryption [29]. This direction
has remained an important open problem (ref. [12, 13]). Therefore, we ask:

Main Question: Can we construct a KDM(n)-secure PKE with better
information rate, e.g. 1− o(1), even for n = 1 and linear functions?

1.1 Our Contributions

This work answers the main question and makes the following contributions:

Contribution 1. We show how to construct a KDM(1)-secure PKE with in-
formation rate 1 − o(1) with respect to block-affine functions, a slightly more
restricted class than that of bit-affine functions. To achieve this, we first propose
a new primitive – reusable homomorphic extractor against correlated-source at-
tacks, and instantiate it based on DDH or LWE. Next, we show how to use this
primitive to improve the approach of Batch Encryption (BE) [16], which was

used to derive KDM(1)-secure PKE (albeit low information rates.)
Particularly, we identify that BE implies a weak hash proof system (wHPS)

with important additional properties. Then we show that our new extractor can
be integrated with such a wHPS to achieve KDM(1)-security with information
rate 1 − o(1). Our proof technique connects wHPS and the new reusable ho-
momorphic extractor in a novel way, which deviates from the prior simulation
approach [8, 10, 12–14, 16]. The new extractor and proof technique can be of
independent interest.

Contribution 2. We show how to upgrade the above approach to achieve
KDM(n)-secure PKE for unbounded polynomial n. Particularly, we identify the
technical barrier of the current BE-based approach [16], which inherently can
only achieve a bounded polynomial n. To tackle this, we construct an enhanced
variant of the current BE by adding a new reusable property. By using this
stronger BE as the underlying building block of wHPS, the scheme in Contri-
bution 1 can be proved KDM(n)-secure for any unbounded polynomial n. For
instantiations, we construct the required extractor and BE from DDH or LWE.
Thus, either of these assumptions implies KDM(n)-secure PKE with the optimal
information rate, i.e., 1− o(1).

5 Information rate is defined as the message-length-to-ciphertext-length ratio when
one encrypts sufficiently long plaintexts.
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Our design of KDM-PKE is quite modular, which might open a path for
further constructions from other assumptions, as long as we can construct the
required building blocks.

Contribution 3. We generalize the above approach in two directions. First, we
show that the class of block-affine function is still sufficient for KDM amplifica-
tion to the class of general bounded-sized circuits via a variant of the technique
in [7], even the class of block-affine functions is more restricted, i.e., it does not
contain all projection functions, so that the generic KDM amplification of Apple-
baum [7] does not work. Thus, the block-affine function class is still sufficiently
general, and can yield more efficient constructions.

Second, we construct KDM(n)-secure IBE for unbounded n with the 1− o(1)
information rate. The corresponding KDM function class here is slightly smaller
than the allowable KDM class for our PKE. We discuss this allowable class next.
Moreover, the required building blocks can be instantiated based on DDH in the
bilinear group or LWE.

In addition to KDM security, our PKE schemes (both DDH and LWE-based)
are leakage resilient. The leakage rate is optimal, i.e., 1 − o(1), against block
leakage, which is slightly smaller than the general leakage class6. The IBE schemes
are as well leakage resilient. For the same class of leakage functions, the IBE
leakage rate can achieve 1 − o(1) under LWE or DDH with respect to some
bilinear maps.

1.2 Technical Overview

In this section, we present a technical overview of our contributions. We start
with the construction of KDM(1)-secure PKE with information rate 1 − o(1).
To achieve this target, we first identify several new properties from (Identity-
based) weak Hash Proof Systems (wHPS) [4, 28], Batch Encryption (BE) [16],
and randomness extractors [5], and then describe our new idea to integrate these
properties. Before describing our new insights, we first review the following two
important tools – wHPS and BE.

(Weak) Hash Proof System. A hash proof system can be described as a key
encapsulation mechanism that consists of four algorithms (Setup,Encap,Encap∗,Decap):
(1) Setup generates a key pair (pk, sk), (2) Encap(pk) outputs a pair (CT, k) where
k is a key encapsulated in a “valid” ciphertext CT, (3) Encap∗(pk) outputs an
“invalid” ciphertext CT∗, and (4) Decap(sk,CT) outputs a key k′. A (weak) hash
proof system needs to satisfy the following three properties:

– Correctness. For a valid ciphertext CT, the Decap algorithm always outputs

the encapsulated key k′ such that k′ = k, where (CT, k)
$←− Encap(pk).

– Ciphertext Indistinguishability. Valid ciphertexts and invalid cipher-
texts are computationally indistinguishable, even given the secret key sk.
This property is essential for achieving leakage resilience and KDM security.

6 When the secret key is stored in blocks, a block leakage function can leak individual
blocks one after another, as long as the blocks still remain a block source.
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– Universal. The wHPS is (`, w)-universal if given the public key pk and an
invalid ciphertext CT∗, the decapsulated key length is ` and the condition-
al min-entropy of the decapsulation of CT∗ is greater or equal to w, i.e.,
H∞(Decap(sk,CT∗)

∣∣ (pk,CT∗)) ≥ w. A wHPS only requires this property

to hold for a random invalid ciphertext, i.e. CT∗
$←− Encap∗(pk), while a

full-fledged HPS requires it to hold for any invalid ciphertext.

We note that wHPS has been used to achieve leakage resilience (LR) in prior

work [4,36]. Homomorphic wHPS has been used to achieve KDM(1)-security [42].

It was not clear whether wHPS can be used to achieve KDM(1)-security with the
optimal information rate.

Batch Encryption [16]. A Batch Encryption (BE) consists of four algorithms:
(Setup,KeyGen,Enc,Dec). The secret key is a vector x ∈ ZnB for B,n ∈ N. The
Setup algorithm simply outputs a random common reference string CRS, and
KeyGen(CRS,x) is a projection function that outputs (a short) hash value h of
x and CRS. The encryption algorithm takes an n × B matrix M and (CRS, h)
as input, and outputs a ciphertext CT ← Enc((CRS, h),M). The decryption al-
gorithm taking as input a ciphertext CT and a secret key x, can only recover
Mi,xi , i.e., the xi-th entry in the i-th row, for 1 ≤ i ≤ n, while the other entries
remain hidden even given the secret key x. The work [16] showed that BE can be
instantiated from LWE, CDH, and LPN with the succinctness property, i.e. the
size of |h| depends only on the security parameter and can be set as o(n). Using a
succinct BE as a central building block, the work [16] constructed a PKE that si-

multaneously achieves KDM(1)-security for affine functions and leakage resilience
with the optimal leakage rate, i.e., 1− o(1).

Even though the above tools have been demonstrated powerful, there are
two common limitations for the current techniques – (1) KDM-security can be
achieved only for bounded users, and (2) the information rate is quite low, e.g.,

1
O(λ) . Next, we present our new insights to break these technical barriers.

1.2.1 Our New Insights

We start with a simple observation that BE can be used to construct wHPS
with additional structures, which are critical in achieving KDM-security. Then
we introduce our new variant of random extractor, and sketch its instantiations
from DDH and LWE. With all these preparations, we show our new ideas to
achieve KDM security.

wHPS from BE. We can construct a wHPS from BE in the following simple
way. wHPS.sk is a random x ∈ ZnB , and wHPS.pk = (CRS, h) where CRS, h are
generated according to the underlying BE. The valid encapsulation algorithm
wHPS.Encap just samples a random vector k = (k1, . . . , kn)> ∈ ZnB as the en-
capsulated key and generates the ciphertext by BE.Enc(M), where the i-th row
of M is set as (ki, ki, . . . , ki) for i ∈ [n]. On the other hand, the invalid encapsula-
tion algorithm wHPS.Encap∗ generates an invalid ciphertext CT∗ ← BE.Enc(M)
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by first sampling a random vector k′ = (k′1, . . . , k
′
n)> and then setting the i-th

row of M as (k′i+0, k′i+1, . . . , k′i+B−1) for i ∈ [n]. Moreover, the decapsulation
algorithm wHPS.Decap simply outputs the decryption result of BE.Dec(x,CT).

It is not hard to show that this construction is an (n logB,n logB − |h|)-
universal wHPS, which can be used to achieve a LR-PKE that tolerates (n logB−
|h| − k)-bit leakage by using a (k, ε)-extractor (ref. [4, 36]).7 Particularly, the
corresponding leakage resilient public-key encryption scheme PKE1 can be con-
structed as follows: PKE1.pk = wHPS.pk and PKE1.sk = wHPS.sk. To encrypt
a message m, the encryption algorithm first generates (CT,k) ← wHPS.Encap
and samples r as the randomness of a strong randomness extractor Ext(·, ·), and
then outputs (CT, r,Ext(r,k) +m) as the ciphertext.

Generally, a plain extractor is not sufficient to derive KDM security for PKE1

in the above paradigm. Interestingly, this task is possible if we use our reusable
homomorphic extractor against correlated-source attacks, and the wHPS has
appropriate additional structures. Next, we describe the required extractor.

Our New Notion of Extractor and Constructions. We identify three
properties of an extractor: (1) reusable, (2) homomorphic, and (3) secure against
correlated-source attacks.

Let Ext(r, s) be an extractor, where s is the source and r is the seed. A
reusable extractor requires that the same source s can be repeatedly extracted
by different seeds for any polynomially many times while maintaining pseudoran-
domness. That is, for any m = poly(λ) and source s with sufficient entropy, we
have (r1, . . . , rm,Ext(r1, s), . . . ,Ext(rm, s)) ≈ (r1, . . . , rm, u1, . . . , um), where
each ui is uniformly random.8 Previously, the work [5,20,36] showed that under
computational assumptions, e.g., DDH or LWE, the reusability can be achieved.

The extractor Ext(r, s) is (output) homomorphic with respect to a function
h if there exists a related function h′ such that Ext(r, s) + h(s) = Ext(h′(r), s).
Similar to the work of [42], we will use this homomorphic property in a critical
way to achieve KDM security.

We say the (reusable) extractor Ext(r, s) is secure against correlated-source
attacks if for functions (perhaps chosen adaptively by the attacker) in some
class F , such that for m = poly(λ) and g1, . . . , gm ∈ F , the extractor remains
pseudorandom as follows:

(r1, . . . , rm,Ext(r1, g1(s)), . . . ,Ext(rm, gm(s))) ≈ (r1, . . . , rm, u1, . . . , um) .9

Our notion of correlated-source attacks is similar to that of a recent work
by Goyal and Song [26], yet with the following major differences. First, the
security requirements are different. The work [26] considers information-theoretic

7 The extractor can extract uniform string (up to statistical distance ε) for any source
with min-entropy k.

8 Clearly, this notion cannot be achieved unconditionally, as an information-theoretic
extractor requires (conditional) min-entropy from the source, which would be ex-
hausted after a bounded number of extractions.

9 Clearly, this notion is stronger than the reusable extractor, which can be viewed as a
special case where gi’s are all the identity function. Thus, this notion is only possible
under computational assumptions.
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indistinguishability of one instance of extraction from the original source, even
given multiple extractions from the modified source, i.e.,

(r,Ext(r, s), {ri,Ext(ri, gi(s))}i∈m) ≈ (r, u, {ri,Ext(ri, gi(s))}i∈m) .

In contrast, our notion requires that all instances of Ext(ri, gi(s)) remain
pseudorandom, which is a stronger requirement (in this aspect).

Second, the ranges of feasible function classes are different. Specifically, our
notion is too strong to achieve for the class of all functions. For example, if gi is
a constant function, then Ext(ri, gi(s)) becomes a fixed value given ri, and thus
cannot be pseudorandom. This indicates a necessary condition for feasibility that
the function must be entropy preserving. However, the notion in [26] is possible
to achieve even unconditionally for the class of all functions, as their challenge
instance is extracted from an unmodified source.

Third, to achieve information-theoretic extraction for all arbitrary input cor-
related functions, the number m of extraction samples given extra in the distri-
bution in [26] must be bounded inherently, and thus cannot be fully reusable.

Summing up the above analyses, we conclude that our security requirement
is stronger, resulting in a relatively smaller feasible function class. Moreover, our
notion requires reusability for an unbounded polynomial samples, and thus a
computational assumption is necessary.

Next, we discuss how to construct such an extractor that simultaneously
achieves all the three properties.

Construction based on DDH. We start with a review of the existing DDH-
based reusable extractor. Let G be the DDH group of order q, r ∈ Gn be seed, and
s ∈ Znq be source. The following function has been proved to be a reusable extrac-
tor in [5,36]: Ext(r, s) =

∏n
i=1 r

si
i . Moreover, we notice the following two proper-

ties about this extractor: (1) it is output homomorphic with respect to functions
of the form hb(s) =

∏n
i=1 b

si
i , as Ext(r, s) ·hb(s) =

∏n
i=1(ri · bi)si = Ext(r ◦b, s),

where ◦ is the component-wise group multiplication; (2) the extractor remains
pseudorandom against the correlated source attacks with respect to linear shift
functions of the form gv(s) = s+v. Due to the fact Ext(r, s+v) =

∏n
i=1 r

si+vi
i =

Ext(r, s)·Ext(r,v), we can simulate Ext(r, gv(s)) given (r,Ext(r, s)) and gv. Via
this simple reduction, the security of the reusable extractor directly translates
to the security against correlated-source attacks with respect to linear shifts.

At first, it seems that the existing construction already fulfills the three re-
quired properties. However, when considering the application to KDM-secure
PKE, we notice an obstacle that this extractor is still not compatible with the
above mentioned framework of the weak hash proof system based on batch en-
cryption (BE). Below, we sketch the major reason for this incompatibility, and
discuss our solution in the following.

Particularly, the BE-based system requires that each component of the secret
vector comes from a polynomial-sized domain, i.e., s ∈ Sn for |S| = poly(λ).
However, the above construction has the domain Gn, which is clearly too large, as
DDH assumption holds only when the order q is super-polynomial. To tackle this
issue, one might set S = Zp for some small p. However, for a subtle reason this
approach faces an additional technical difficulty. More specifically, due to the BE
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feature, the linear shift should work in Zp, i.e., gv(s) = s+ v mod p. However,
this equation might not hold for the above mentioned reduction on correlated-
source security, i.e., Ext(r, (s+ v mod q)) = Ext(r, s) ·Ext(r,v) 6= Ext(r, (s+ v
mod p)). Thus, it is unclear whether we can achieve correlated-source security
against linear shifts (modulo p) by using the linearity of the extractor, which
essentially works only in modulo q.

To solve this issue, we set S = Z2, and use another route of reduction that
avoids using the above linearity equation. Particularly, we show a way to trans-
form an instance of the form (r, z = Ext(r, s)) into (r′,Ext(r′, (s+ b mod 2)))
given b, without using the linearity of the extractor. Furthermore, via a reduction
from the reusability of the extractor, we can establish security against correlated-
source attacks for linear shifts in modulo 2. This would suffice to achieve KDM
security as we discuss later. More formally, the transformation works as follow:

– For i ∈ [n], if bi = 0, set r′i = ri and z′i = 1; otherwise for bi = 1, set r′i = r−1
i

and z′i = r−1
i .

– Output (r′, z ·
∏n
i=1 z

′
i).

We note that if bi = 0, then the term rsii would appear in z, or otherwise r1−si
i .

With a simple check, our transformation is consistent with this fact. It is not
hard to formalize the security proof using this idea.

Construction based on LWE. Next we look at the LWE-based reusable ex-
tractor [5]. Let q > p > 1 be parameters, S be some small set over Zq, r ∈ Znq
be seed, and s ∈ Sn be source. The work [5,9] showed that Ext(r, s) = d〈r, s〉cp
is a reusable extractor where d·c is some rounding function, and the number of
reusable samples can be any arbitrary polynomial if q/p = λω(1). For general
settings of parameters however, this extractor might not be output homomor-
phic, as linearity might not hold for rounding of inner products. Nevertheless,
we identify that if p|q, then the extractor is output homomorphic with respect
to linear functions (i.e. hb(s) = 〈b, s〉 mod p) by using the following equation:

d〈r, s〉cp + 〈b, s〉 = d〈r, s〉+ (q/p)〈b, s〉cp = d〈r + (q/p)b, s〉cp.

Thus, we can set h′b(r) = r + (q/p)b, achieving the desired property.
Next, we would like to show that the construction is secure against correlated-

source attacks for linear shifts. Similar to the DDH construction, we need to
tackle the issue that gb(s) and Ext(r, s) are working on different moduli. To
solve this issue, we first apply the same idea by setting S = Zn2 , and then
hopefully a similar reduction would work. However, this method does not work
in a straight-forward way as rounding breaks linearity. Let us consider a simple
case where b = (1, 0, 0, . . . , 0)T , i.e., only b1 = 1 and others 0. Then the reduction
would need to simulate dr1(1− s1) +

∑n
i=2 risicp = d−r′1 + r′1s1 +

∑n
i=2 r

′
isicp,

where r′1 = −r1 and r′i = ri for i = 2 ∼ n. However, d−r′1 +r′1s1 +
∑n
i=2 r

′
isicp 6=

d−r′1cp + dr′1s1 +
∑n
i=2 r

′
isicp in general, and thus the previous transformation

would break down.
To solve this, we use the proof technique of [9], who first switches the rounded

inner products into rounded LWE samples. Then we show that LWE is resilient
to correlated-source attacks for linear shifts, translating to security of the whole
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construction. More specifically, we first switch d〈r, s〉cp to d〈r, s〉 + ecp. The
switch incurs a negligible statistical distance if q/p = λω(1), which is required for
the reusability for an arbitrary polynomial samples anyway (under current proof
techniques). Then by using the above idea, we can easily show that samples
of the form 〈r, (s + b mod 2)〉 + e are computationally indistinguishable from
random samples, and therefore so are their rounded versions. This describes the
proof ideas.

1.2.2 KDM(1)-PKE with 1− o(1) Rate via the Extractor

Below, we first sketch how to achieve KDM(1)-security, and then present how to
improve the information rate to 1− o(1).

Achieving KDM(1)-security. To illustrate our idea, we consider the case
where Ext is homomorphic with respect to linear functions and secure against
correlated-attacks with respect to linear shifts. Next, we identify three important
additional structures of wHPS from the above construction:

1. The secret key of wHPS (and PKE1) is just a vector x ∈ ZnB as the BE.
2. The decapsulation of an invalid ciphertext CT∗ has the following form:

Decap(x,CT∗) = x+ k′, where k′ ∈ ZnB is certain vector related to CT∗.
3. Given k′, the above CT∗ can be simulated faithfully.

Let h be some linear functions, and let us take a look at the equation of upon a
KDM query of an encryption of h(sk).

PKE1.Enc(h(sk))

=(CT, r,Ext(r,k) + h(x)) By Structure 1

=(CT, r,Ext(r,Decap(x,CT)) + h(x)) Correctness of wHPS

≈(CT∗, r,Ext(r,Decap(x,CT∗)) + h(x)) Ciphertext indistinguishability

=(CT∗, r,Ext(r,x+ k′) + h(x)) By Structure 2

=(CT∗, r,Ext(r,x′) + h(x′ − k′)) Change of variable

=(CT∗, r,Ext(r,x′) + h(x′)− h(k′)) Linearity of h

=(CT∗, r,Ext(h′(r),x′)− h(k′)) Homomorphism of Ext

=(CT∗, h′−1(r),Ext(r,x′)− h(k′)) Change of variable

=(CT∗, h′−1(r),Ext(r,x+ k′)− h(k′)) Change of variable

Via a hybrid argument, we can switch all the adversary’s KDM queries to the
form in the last equation. However, as Ext(r,x+k′)−h(k′) still depends on the
secret key x, we cannot follow the prior proof technique in [8,10,12–14,16], which
requires to simulate the KDM queries without using the secret key. To handle
this, we observe that now the adversary’s view of his Q queries is of the form{

(CT∗i , h
′−1
i (ri),Ext(ri,x+ k′i)− h(k′i))

}
i∈[Q]

. We can then leverage the security

of the extractor to switch these outputs of the extractor to uniformly random
strings at one shot. Since CT∗i can be generated given k′i (the third additional
property of wHPS), and Ext is secure against correlated-source attacks (even
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given k′i’s), we can prove that {PKE1.Enc(hi(sk))}i∈[Q] is indistinguishable from
random via a simple reduction from the required extractor. We refer the details
to Section 5.2.

Improving Information Rate. The information rate of the above scheme
is w
|CT|+|r|+w , where w denotes the length of the output of extractor. In our

instantiations of the extractor, we have |CT| > |k|λ and |k| ≥ w, and thus |CT|
dominates the denominator, resulting in the ratio at most O(1/λ). To improve
the rate, we use the same CT (encapsulation) and repeatedly extract from the
same source with different seeds when encrypting many different messages. That
is, we consider the following scheme PKE2, where PKE2.pk and PKE2.sk are the
same as the above PKE1. The encryption algorithm is modified as below:

PKE2.Enc((m1,m2, . . . ,mt))

= (CT, r1,Ext(r1,k) +m1, r2,Ext(r2,k) +m2, . . . , rt,Ext(rt,k) +mt) .

By using the same proof idea of PKE1, we can show that suppose the reusable
extractor is homomorphic with respect to linear functions and secure against
correlated-source attacks, then the scheme PKE2 is KDM(1)-secure with respect
to affine functions. In this case, the information rate would be wt

|CT|+|r|t+wt ,

approaching w
|r|+w for sufficiently large t.

However, in our both LWE and DDH instantiations, w � |r|, and thus the
rate is still far from the optimal. To tackle this issue, we use a parallel repetition
of the source, i.e., let K = (k1,k2, . . . ,kd), and define

Ext||(r,K) = (Ext(r,k1),Ext(r,k2), . . . ,Ext(r,kd)) .

We can show that suppose K forms a block source, then the output of Ext|| will
be computationally indistinguishable from random. Moreover, Ext|| is as well ho-
momorphic and secure against correlated-source attacks for appropriate classes.
By using Ext||, we can still derive KDM(1) security, for a slightly weaker class of

block -affine functinos. Now, the information rate would be wd
|r|+wd , approaching

1− o(1) by setting d such that |r| = o(wd).

1.2.3 Achieving Arbitrary Polynomial n̄

Next, we discuss how to upgrade the above framework to achieve KDM(n̄)-
security for an unbounded polynomial n̄. Before presenting our approach, we
first abstract some important features from the above schemes PKE1 and PKE2

– (1) the schemes are based on BE as the most underlying tool, and (2) they
have the following features: (a) the secret key is just a vector x, and (b) the
public key has the form (CRS,H(CRS,x)), where H denotes the projection func-
tion KeyGen(·, ·) of BE in [16]. We call this type of schemes as BE-based public
key encryption scheme.

Next we generalize the idea of [12], showing that if a BE-based scheme satisfies

certain key and ciphertext homomorphic properties, then one can prove KDM(n̄)-
security from KDM(1) by the following two steps: Let Π be a BE-based PKE.
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1. First we define an intermediate scheme Π n̄ that runs n̄ times the encryption
algorithm of Π to encrypt the same message, with n̄ distinct public parame-
ters but corresponding to the same secret key. Particularly, Π n̄.sk = Π.sk =
x, and Π n̄.pk = (Π.pk1, . . . ,Π.pkn̄), where Π.pki = (CRSi, hi = H(CRSi,x))
for all i ∈ [n̄]. The encryption algorithm works as follows:

Π n̄.Enc(m) = (Π.Enc(pk1,m), Π.Enc(pk2,m), . . . ,Π.Enc(pkn̄,m)).

2. Then we show, if Π n̄ is KDM(1)-secure with respect to affine functions, then
Π is KDM(n̄)-secure with respect to affine functions.

Thus, to show that PKE2 is KDM(n̄) secure, it suffices to show that its interme-
diate scheme, i.e., PKEn̄2 , is KDM(1) secure.

However, the current instantiation of the underlying BE [16] can only derive

KDM(1) security of PKEn̄2 for a bounded polynomial n̄. When n̄ becomes too
large, PKEn̄2 may completely loses security. As each hi = H(CRSi,x) leaks some
small information of the secret x, thus the secret might have no entropy given too
many hashes in the pki’s. Even worse, in the LWE-based instantiation of [16], one
can obtain x given only n (the dimension of x) hashes of hi’s by simply solving
linear equations. This approach seems to hit an entropy barrier, inherently.

To tackle this challenge, we propose a new pseudorandom property of BE
(and BE-based PKE) by adding reusability to the projection function H. Par-
ticularly, the reusable property requires that the following two distributions
are indistinguishable, even in conjunction with the reusable extractor against
correlated-source attacks for any n̄,m = poly(λ):(
{CRSi,H(CRSi,x)}i∈[n̄] , {rj ,Ext(r, hj(x))}j∈[m]

)
≈c
(
{CRSi, ui}i∈[n̄] ,

{
rj , u

′
j

}
j∈[m]

)
Conceptually, this would guarantee secrecy of x even if the adversary can obtain
many hashes on the same x and samples from the reusable extractor (under
correlated-source attacks).

As a result, by using a BE with this reusable property as the underlying
building block of wHPS, we are able to show that PKEn̄2 is KDM(1)-secure for

any n̄ = poly(λ), implying that PKE2 is KDM(n̄)-secure for any n̄ = poly(λ).

New BE Constructions. To instantiate the required BE, we observe that
the CDH-based scheme in [16] as is, can achieve the reusability property if
DDH is further assumed. However, the LWE-based scheme becomes insecure
if n hashes are given to the adversaries as we stated before, where n is the
dimension of x. To solve this, we design a new projection function H′ that
makes a simple yet essential modification of the original H of [16]. Particularly,
H′(CRS,x) = H(CRS,x)+e, for some appropriate noise e. In this way, the distri-
bution (CRS,H′(CRS,x)) in this modified BE would be a sample of LWE, which
is pseudorandom even when polynomially many samples are given, and can be
used in conjunction with the LWE-based reusable extractor. This enables us to
achieve KDM(n̄)-PKE for any unbounded polynomial n̄ with optimal information
rate with respect to affine functions.
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Amplification. We first notice that the class of block-affine functions does
not contain all projection functions, so the generic technique of Applebaum [7]
does not apply to amplify the class. Nevertheless, we show that this class can
still be used to encode the labels of Garbled Circuits (a common realization of
randomized encoding), and thus we can amplify the class to be any bounded-
sized boolean circuits.

As our scheme can encrypt messages of an indefinite length, we are able to
further achieve KDM function class for (Fs||Qτ ), where Fs is the class of circuits
up to sized s, Qτ is the class of affine functions with τ -element outputs, and
(Fs||Qτ ) denotes the concatenation of two classes, i.e., every function f in the
class can be represented by f = (h, q) for some h ∈ Fs and q ∈ Qτ such that
f(sk) = (h(sk)||q(sk)). For the parameter range τ � s, our scheme achieves the
optimal information rate, i.e., 1− o(1).

1.2.4 Upgrade to KDM-IBE
The above framework can be further generalized to construct IBE with KDM-
security and leakage resilience. Particularly, we design a new compiler that uses
an IB-wHPS to amply the on-the-fly KDM-security (a new notion) of PKE into
KDM-security of IBE, and simultanesouly the resulting IBE achieves leakage re-
silience. This improves the compiler of [31], which might not be leakage resilient.

Our compiler is straight-forward. Let Π be a BE-based PKE and IB-wHPS be
an identity-based wHPS that has additional structures: (1) the secret key has
the structure skid = (x, skid,x), (2) IB-wHPS.Decap(skid,CT

∗) = x + k, and (3)
given k, the above CT∗ can be simulated faithfully. (This is similar to the
additional structures of our required wHPS above). Then we can design an
IBE.{Setup,KeyGen,Enc,Dec} as follows. IBE.{Setup,KeyGen} and IBE.{mpk,msk, skid}
are the same as those of IB-wHPS. To encrypt a message m with an id, IBE.Enc
first generates an encapsulation (CT1,k)← IB-wHPS.Encap(mpk, id), then gener-
ates pk = (CRS, h(CRS,k)) from the BE, and then computes CT2 ← Π.Enc(pk,m).
The resulting ciphertext would be (CT1, pk,CT2).

Next we present a simple case that demonstrates the key idea of our KDM-
security proof. Consider the simple case of only one KDM query, i.e., an encryp-
tion for some message f(skid) = f(x, skid,x) (by Structure 2 of IB-wHPS) with
respect to some id. We can derive the following:

IBE.Enc(f(x, skid,x))

=(CT1,CRS,H(CRS,k),CT2)

≈c(CT∗1,CRS,H(CRS, IB-wHPS.Decap(CT∗1)),CT2) Valid/Invalid Ciphertext

Indistinguishability

=(CT∗1,CRS,H(CRS,x + k′),CT2) By Structure 1

=
(
CT∗1,CRS,H(CRS,x′), Π.Enc

(
CRS,H(CRS,x′),

f((x′ − k′), skid,(x′−k′))
))

Change of Variable

=
(
CT∗1,CRS,H(CRS,x′), Π.Enc

(
CRS,H(CRS,x′), g(x′)

))
(*) Explain Below

≈c
(
CT∗1,CRS,H(CRS,x′), Π.Enc

(
CRS,H(CRS,x′), u

))
KDM of Π
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We observe that if f((x′ − k′), sk(x′−k′)) can be expressed as g(x′) and the un-
derlying Π is KDM-secure with respect to the function g, then the resulting IBE
is KDM-secure with respect to f. We further identify that the equation (*) holds
even if the master secret key msk of IB-wHPS is given. Thus, we can hardcode
msk and k′ and randomness r into g and set the function as follow: gmsk,k′,r(x

′)
first computes skid,x′−k′ = IB-wHPS.KeyGen(msk, id,x′−k′; r) and then output-
s f((x′ − k′), skid,(x′−k′)). We can instantiate Π by using the above mentioned
schemes PKE1 or PKE2 and the bootstrapping technique of Applebaum [7]. In
this way, we can obtain a KDM-secure PKE with respect to the class of bounded
polynomial circuits, which includes the required g.

The above idea cannot be trivially extended to the general case where there
are many KDM queries. A simple reason is that pk needs to be generated on-
the-fly for each ciphertext. This does not match the traditional notion of KDM-
security for PKE. To handle this technical issue, we propose a new notion called
on-the-fly KDM-security, where there is no pk upfront, and the adversary receives
an on-the-fly pk = (CRS,H(CRS,x′)) with respect to the same secret key x′ upon
each KDM query. By using this on-the-fly KDM-PKE with the IB-wHPS, we are
able to achieve KDM-IBE. Moreover, we can prove that the above PKE2 satisfies
the on-the-fly notion. We refer details to Section 10.

1.3 Reading Map

We first present the necessary mathematical notations, cryptographical defini-
tions and related lemmas in Section 2. In Section 3, we first define a new variant
of (computational) randomness extractors, which serve as the most important
tools of this paper. And then, we instantiate the required extractors based on
LWE or DDH, respectively. In Section 4, we first identify several new important
structures of wHPS, and then show an instantiation of the required wHPS from
BE. In section 5, we show that a weak hash proof system with the additional
structure as Definition 4.1 can be used to obtain a public-key encryption scheme
that is simultaneously leakage resilient and KDM secure. Then, in Section 6, we
show how to upgrade our Construction 5.3 to achieve KDM(n̄)-security for an
unbounded polynomial n̄. Furthermore, in Section 7, we show how to instantiate
the required BE in Section 6.3. Moreover, in Section 8, after putting all above
things together, we conclude that we can get PKE that is leakage resilient against
block leakage and KDM(n̄)-secure w.r.t. block -affine functions for any unbound-
ed polynomial n̄, from DDH or LWE. In Sections 9 and 10, we further extend
our above results in Section 8 in two directions: the first one is to enlarge the
class of KDM functions via Garbled Circuits; the second one is to generalize our
results to the setting of IBE. Besides, in Section 11, we instantiate the generic
construction of IBE proposed in Section 10.

2 Preliminaries

In this section, we first introduce several standard mathematical notations for
our constructions, then present necessary definitions and related lemmas.
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2.1 Notations

In this paper, N, Z and R denote the sets of natural numbers, integers and real
numbers, respectively. We use λ to denote the security parameter, which is the
implicit input for all algorithms presented in this paper. A function f(λ) > 0
is negligible and denoted by negl(λ) if for any c > 0 and sufficiently large λ,
f(λ) < 1/λc. A probability is called to be overwhelming if it is 1 − negl(λ). A
column vector is denoted by a bold lower case letter (e.g., x). A matrix is denoted
by a bold upper case letter (e.g., A). For a vector x, its Euclidean norm (also
known as the `2 norm) is defined to be ‖x‖ = (

∑
i x

2
i )

1/2. For a matrix A, its
ith column vector is denoted by ai and its transposition is denoted by A>, and
its component in i-th row and j-th column is denoted by Ai,j . The Euclidean
norm of a matrix is the norm of its longest column: ‖A‖ = maxi ‖ai‖.

For a set D, we denote by u
$←− D the operation of sampling a uniformly

random element u from D, and represent |u| as the bit length of u. For an
integer ` ∈ N, we use U` to denote the uniform distribution over {0, 1}`. Given

a randomized algorithm or function f(·), we use y
$←− f(x) to denote y as the

output of f and x as input. For a distribution X, we denote by x
$←− X the

operation of sampling a random x according to the distribution X. Given two
different distributions X and Y over a countable domain D, we can define their
statistical distance to be ∆(X,Y ) = 1

2

∑
d∈D |X(d)− Y (d)|, and say that X and

Y are ∆(X,Y ) close. Moreover, if ∆(X,Y ) is negligible in λ, we say that the two

distributions are statistically close, which is always denoted by X
s
≈ Y . If for

any ppt algorithm A that
∣∣Pr[A(1λ, X) = 1]− Pr[A(1λ, Y ) = 1]

∣∣ is negligible in
λ, then we say that the two distributions are computationally indistinguishable,

denoted by X
c
≈ Y .

2.2 KDM-Security and Leakage Resilience of PKE Scheme

Definition 2.1 (KDM-securePKE in [7, 8, 12] ) Let ΠPKE = PKE.{KeyGen,
Enc,Dec} be a PKE scheme,and let F be a class of functions F := {f : SKn →
M}, where n > 0 is an integer, SK and M denote the secret key space and
the message space, respectively. Then the KDM-security with respect to F can be
defined by the following experiment.

13



Experiment ExpF-KDM
PKE,A (λ)

Key Generation: The challenger selects a random bit b
$←− {0, 1}. It generates n pairs

of (pk1, sk1), . . . , (pkn, skn) by running PKE.KeyGen(1λ) n times, and then sends
(pk1, . . . , pkn) to the advarsary A.

KDM Queries: The adversary A repeatedly queries the challenger with (i, f) ∈ [n]×F ,
The challenger responds by setting y = f(sk1, . . . , skn) ∈M, and computing

c
$←− PKE.Enc(pki, y) if b = 0 or c

$←− PKE.Enc(pki, 0
|f(·)|) if b = 1. Then the

challenger returns c to the adversary A.
Output: The adversary A outputs a bit b′ ∈ {0, 1}.

Table 1. Security Experiment of KDM-secure PKE

We define the advantage of A in the above experiment to be

AdvF-KDM
PKE,A (λ) = |Pr[b = b′]− 1/2| .

A PKE scheme is said to be KDM(n)-secure with respect to F if for any ppt
adversary A, we have AdvF-KDM

PKE,A (λ) ≤ negl(λ).

Definition 2.2 (`-Leakage-ResilientPKE) A leakage-resilient PKE in the rel-
ative leakage model consists of three algorithms PKE.{KeyGen,Enc,Dec}, which
are parameterized by a security parameter λ and a leakage parameter `. In par-
ticular, its `-leakage-resilient security can be defined by the following experiment.

Experiment ExpLR
PKE,A(λ, `)

Key Generation: The challenger C gets a pair of (pk, sk) by running PKE.KeyGen
(1λ, 1`), and sends pk to A.

Leakage Queries: The adversary A queries the challenger C with a leakage

function f : {0, 1}∗ → {0, 1}`, and gets f(sk) from C.
Challenge Stage: A chooses two message µ0,µ1∈M and sends them to C. Then C

selects b
$←−{0, 1} and computes cb

$←−PKE.Enc(pk, µb). Finally, C returns cb to A.
Output: The adversary A outputs a bit b′ ∈ {0, 1}.

Table 2. Security Experiment of Leakage-Resilient PKE

We define the advantage of A in the above experiment to be

AdvLR
PKE,A(λ, `) = |Pr[b = b′]− 1/2| .

A PKE scheme is said to be `-leakage resilient if for any ppt adversary A, we
have AdvLR

PKE,A(λ, `) ≤ negl(λ), and the leakage rate of the scheme is `
|sk| .

Remark 2.3 Furthermore, we define more general case of leakage on block
source secret, i.e., block leakage. More formally, for the case that sk := S =
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(S1, . . . , Sm) is an m × e block source as in Definition 5.1, we define leakage
functions fi : {0, 1}∗ → {0, 1}` independently for each block Si with all i ∈ [m].
We say (f1, . . . , fm) are block leakage functions, if the min-entropy of Si is still
large enough even given leakage (f1(S1), . . . , fi−1(Si−1)) for any i ∈ [m]. Clear-
ly, when m = 1, this is the trivial case in Definition 2.2. Here, we call m`

|sk| the

block leakage rate of the corresponding scheme.

Below, we present the syntax of two important tools – batch encryption and
weak hash proof systems, which are important for our constructions.

2.3 Batch Encryption (BE)

Definition 2.4 (Batch Encryption in [16]) A batch encryption (BE) scheme
consists of the following four algorithms {Setup,KeyGen,Enc,Dec}:

– Setup(1λ, 1n): The algorithm takes as input the security parameter λ and
key length n, and outputs a common reference string CRS which includes a
parameter B = B(λ, n).

– KeyGen(CRS,x): Given a common reference string CRS and the secret key
x ∈ ZnB as input, the algorithm projects the secret key x to a public key h.

– Enc(CRS, h,M): Given a common reference string CRS, a public key h, and
a message matrix M = (Mi,j)i∈[n],j∈ZB ∈ Zn×BB as input, the algorithm
outputs a ciphertext CT.

– Dec(CRS,x,CT): Given a common reference string CRS, a secret key x, and
a ciphertext CT as input, the algorithm outputs a message vector m′ =
(Mi,xi)i∈[n].

Remark 2.5 Let ˆ̀ denote the bit-length of the public key h. Then we notice
that given the public key pk, the conditional min-entropy of sk is H∞(sk|pk) =

H∞(x|h) ≥ n logB − ˆ̀.

Correctness of Batch Encryption. The correctness of a batch encryption
scheme is defined as follows.

Definition 2.6 (Correctness of BE) For all CRS = Setup(1λ, 1n), x = (xi)i∈[n] ∈
ZnB and M = (Mi,j)i∈[n],j∈ZB ∈ Zn×BB , h = KeyGen(CRS,x), CT← Enc(CRS, h,M),
and m′ = (m′i)i∈[n] = Dec(CRS,x,CT), it holds that for all i ∈ [n], m′i = Mi,xi

with probability at least 1− 2λ over the randomness of Enc.

Semantic Security of Batch Encryption.

Definition 2.7 (Batch Encryption Security) The security of a batch en-
cryption scheme can be defined through the following game between a challenger
and an adversary.

We define the advantage of A in the above game to be

AdvBE
A (λ) = |Pr[A wins ]− 1/2| .

Semantic security means that AdvBE
A (λ) ≤ negl(λ) for any polynomial time A.
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Ciphertext Indistinguishability Experiment

Pre-stage: With the security parameter λ and the size value B as input, the
adversary chooses and sends n,x ∈ ZnB to the challenger.

Setup: The challenger generates CRS← Setup(λ, n), and sends CRS to the adversary.

Challenge Stage: The adversary chooses two matrices M(0),M(1) ∈ Zn×BB such that

M
(0)
i,xi

= M
(1)
i,xi

, and sends these two matrices to the challenger.

Respond Stage: The challenger computes h = KeyGen(CRS,x) and encrypt

CT = Enc(CRS, h,M(β)) for a random bit β ∈ {0, 1}. Then, C sends CT to the
adversary.

Output: The adversary outputs a bit β′ ∈ {0, 1} and wins the game if β = β′.

Table 3. Security Experiment of Batch Encryption

Instantiations: BE can be constructed from LWE, LPN, and CDH [16].

2.4 Weak Hash Proof System (wHPS)

Definition 2.8 (Weak Hash Proof System in [28]) A weak hash proof sys-
tem (wHPS) with the encapsulated-key-space K consists of four algorithms
wHPS.{Setup,Encap,Encap∗,Decap} as follows. (We will omit wHPS when the
context is clear).

– Key generation. Setup(1λ) takes a security parameter λ as input, and
generates a pair of public key and secret key (pk, sk).

– Valid encapsulation. Encap(pk) takes a public key pk as input, and outputs
a valid ciphertext CT and its corresponding encapsulated key k ∈ K.

– Invalid encapsulation. Encap∗(pk) takes a public key pk as input, and
outputs an invalid ciphertext CT∗.

– Decapsulation. Decap(sk,CT) takes as input a secret key sk and ciphertext
CT, and deterministically outputs k ∈ K.

A (weak) hash proof system needs to satisfy the following three properties.

Correctness. For all (pk, sk)
$←− Gen(λ), it holds

Pr
[
k = k′

∣∣∣(CT, k)
$←− Encap(pk), k′ = Decap(sk,CT)

]
= 1.

Ciphertext Indistinguishability. For (pk, sk)
$←− Setup(λ), (CT, k)

$←− Encap(pk),

and CT∗
$←− Encap∗(pk), it holds (pk, sk,CT)

c
≈ (pk, sk,CT∗). Namely, for any ppt

adversary even given the secret key sk, a valid ciphertext CT sampled by Encap is
still computationally indistinguishable from an invalid ciphertext CT∗ sampled
by Encap∗.
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Universality. Except for the above mentioned correctness and indistinguisha-
bility, we need one additional information theoretic property. Particularly, for
the adversary with public parameters, the decapsulation of an invalid ciphertext
should have information entropy. Below, we define this property in the following
way.

Definition 2.9 (Universal wHPS) We say that a wHPS is (`, w)-universal, if

for (pk, sk)
$←− Setup(λ), CT∗

$←− Encap∗(pk), and k∗ = Decap(CT∗, sk), it holds

|k∗| = ` and H∞(k∗|(pk,CT∗)) ≥ w.

Namely, the decapsulated value Decap(sk,CT∗) has bounded length and min-
entropy over the encapsulated key space K, where the randomness comes from
the choice of sk. This implicitly means that there are many possible choices of sk
for a fixed pk. Clearly, w should be a value between 0 and `.

Remark 2.10 A weak hash proof system only requires the universal property to

hold for random invalid ciphertexts, i.e. CT∗
$←− Encap∗(pk), instead of all possi-

ble ciphertexts (in the worst case manner). This is the main difference between
weak hash proof system and standard hash proof system [19], which was origi-
nally designed for achieving CCA2 security. The weak hash proof system is not
sufficient to achieve the CCA2 security, but nevertheless, can achieve leakage
resilience as pointed out by [28].

Furthermore, the notion of KDM-security, leakage resilience and wHPS can be
easily generalized to the identity-based setting, resulting in the notion of KDM-
secure IBE, Leakage-Resilient IBE and identity-based weak hash proof system in
Section 2.5 and 2.6.

2.5 KDM-security and Leakage Resilience of IBE scheme.

Definition 2.11 (KDM-secure IBE by [3, 31]) Let Π be an IBE scheme, and
F be a function family. We define the F-KDM-CPA game between a challenger
and an adversary A as follows. Let SK, ID, andM be the user secret key space,
identity space, and message space of IBE, respectively. Then the KDM security
of Π with respect to F can be defined by the following experiment.
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Experiment ExpF-KDM
IBE,A (λ)

Key Generation: First, the challenger chooses a challenge bit b
$←− {0, 1}. Next, the

challenger generates (pp,msk)
$←− Setup(1λ) and sends pp to A. Finally, the

challenger prepares lists Lext, Lch, and Lsk all of which are initially empty.
KDM Queries: A may adaptively make the following three types of queries

polynomiallymany times.
1. Extraction queries. A sends id ∈ ID\(Lext ∪ Lch) to the challenger.

The challengerreturns skid ← KeyGen(msk, id) to A and adds id to Lext.
2. Registration queries. A sends id ∈ ID\(Lext ∪ Lch) to the challenger.

The challenger generates skid ← KeyGen(msk, id) and adds id to Lch and skid to Lsk.
3. KDM queries. A sends (id, f) ∈ Lch ×F to the challenger. We require that

f be a function such that f : SK|Lch| →M. If b = 1, the challenger returns

ct← Enc(pp, id, f(sk))to A. Otherwise, the challenger returns ct← Enc(pp, id, 0|f(·)|)
to A.

Output: The adversary A outputs a bit b′ ∈ {0, 1}.
Table 4. Security Experiment of KDM-secure IBE

In this game, we define the advantage of the adversary A as

AdvF-KDM
IBE,A (λ) =

∣∣∣Pr[b = b′]− 1

2

∣∣∣.

We say that IBE is F-KDM secure if for any ppt adversary A, we have AdvF-KDM
IBE,A (λ) =

negl(λ).

Definition 2.12 (Leakage-Resilient IBE) A leakage-resilient IBE with respec-
t to identity secret keysin the relative leakage model consists of four algorithms
IBE.{Setup,KeyGen,Enc,Dec}, which are all parameterized by a security param-
eter λ and a leakage parameter `. In particular, `-leakage-resilient security can
be defined by the following experiment.
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Experiment Expids-LR
IBE,A(λ, `)

Setup: The challenger C gets a pair of (mpk,msk) by running IBE.Setup(1λ), and
sends mpk to A.

Secret Key Query 1: A adaptively queries the challenger C with function id ∈ ID.
For each query, C responds with skid.

Leakage Queries Stage: A adaptively queries the challenger C with pair h where

h : {0, 1}∗ → {0, 1}` is a leakage function. The adversary gets h(skf ) from C.
Challenge Stage: A chooses the challenge identity id∗ ∈ ID and two message

µ0, µ1 ∈M and sends them to C, where id∗ has not been queried before. Then

C chooses b
$←− {0, 1} and computes cb

$←−IBE.Enc(mpk, x∗, µb). Finally, C returns
cb to A.

Secret Key Query 2: A adaptively queries the challenger C with id ∈ ID.
Then C responds with skid if id 6= id∗ and ⊥ otherwise.

Output: The adversary A outputs a bit b′ ∈ {0, 1}.
Table 5. Security Experiment of Leakage-Resilient IBE

We define the advantage of A in the above experiment to be

Advids-LR
IBE,A(λ, `) = |Pr[b = b′]− 1/2| .

The scheme is `-leakage resilient if for any ppt adversary A, we have
Advids-LR

IBE,A(λ, `) ≤ negl(λ), and the leakage rate of this ABE is `
|sk| .

Note that, this definition can be extended to the selective security with respect
to identity, if the challenge identity is fixed advanced before seeing the master
public-key, rather than chosen adaptively by the adversary. Also, in this paper,
we only focus on leakage query to the identity secret key, but not the master
secret key.

Similar to the case of PKE for Definition 2.2, we can also generalize this
leakage for IBE to the case of block leakage. Hence, we call `

m|sk| the block

leakage rate of the corresponding scheme.

2.6 Identity-Based Weak Hash Proof System

Definition 2.13 (IB-wHPS in [4]) An identity-based weak hash proof system
(IB-wHPS) with the encapsulated key space K consists of five algorithms
IB-wHPS.{Setup,KeyGen,Encap,Encap∗,Decap}:

– Setup. IB-wHPS.Setup(1λ) takes a security parameter λ as input, and gen-
erates a pair of master public key and master secret key (mpk,msk). The
identity space ID and the encapsulated key space K are determined by mpk.

– Key generation. IB-wHPS.KeyGen (id,msk) takes as input an identity id ∈
ID and the master secret key msk, and generates a secret key skid.

– Valid encapsulation. IB-wHPS.Encap(mpk, id) takes as input the master
public key mpk and an identity id ∈ ID, and outputs a valid ciphertext CT
and its corresponding encapsulated key k ∈ K.
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– Invalid encapsulation. IB-wHPS.Encap∗(mpk, id) takes as input the master
public key mpk and an identity id ∈ ID, and outputs an invalid ciphertext
CT∗.

– Decapsulation. IB-wHPS.Decap(CT, skid) takes as input a secret key skid
and a ciphertext CT, and deterministically outputs the encapsulated key k ∈
K.

Similarly, an IB-wHPS needs to satisfy three properties: correctness, cipher-
text indistinguishability, and smoothness.

Correctness. For (mpk,msk)
$←− IB-wHPS.Setup(λ), any id ∈ ID, we have

Pr
[
k = k′

∣∣∣skid $←− IB-wHPS.KeyGen(msk, id),

(CT, k)
$←− IB-wHPS.Encap(mpk, id), k′ = IB-wHPS.Decap(CT, skid)

]
= 1.

Ciphertext Indistinguishability. The valid ciphertexts output by IB-wHPS.Encap
and the invalid ciphertexts output by IB-wHPS.Encap∗ are indistinguishable even
given the identity secret key skid. More formally, this indistinguishability is al-
ways described by the experiment between an adversary A and a challenger C
in the following Table 6.

Valid/Invalid Ciphertext Indistinguishability Experiment

Setup: The challenger C gets a pair of (mpk,msk) by running IB-wHPS.Setup(1λ),
and sends mpk to A.

Test Stage 1: A adaptively queries the challenger C with id ∈ ID, and C responds
with skid.

Challenge Stage: A selects an arbitrary challenge identity id∗ ∈ ID, and sends it to C.
C selects b

$←− {0, 1}.
If b = 0, C computes (CT, k)

$←−IB-wHPS.Encap(mpk, id∗).

If b = 1, C computes CT
$←−AB-wHPS.Encap∗(mpk, id∗).

Then C returns CT to A.
Test Stage 2: A adaptively queries the challenger C with id ∈ ID. Then C responds

with skid.
Output: A outputs a bit b′ ∈ {0, 1} as the output of the experiment. We say that A

wins the experiment if b = b′.

Table 6. Ciphertext Indistinguishability of IB-wHPS

We define the advantage of A in the above experiment to be

AdvVI-IND
IB-wHPS,A(λ) = |Pr[A wins]− 1/2| .

Ciphertext indistinguishability means that AdvVI-IND
IB-wHPS,A(λ) ≤ negl(λ).
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Remark 2.14 Similar to IBE, the ciphertext indistinguishability of an IB-wHPS
can also be categorized into two types: selective security and adaptive security.
The selective security requires the adversary to commit to the challenge identity
before seeing the mpk. In contrast, adaptive security means the adversary can
choose the challenge identity adaptively. Our definition can be easily twisted to
the selective security setting.

Universality. We say that an IB-wHPS is (`, w)-universal, if for (mpk,msk)
$←−

IB-wHPS.Setup(λ), any id ∈ ID and k∗ = Decap(CT∗, skid), it holds

|k∗| = ` and H∞(Decap(CT∗, skid)|mpk,CT∗) ≥ w.

where CT∗
$←− IB-wHPS.Encap∗(mpk, id), and skid

$←− IB-wHPS.KeyGen(id,msk).

2.7 Useful Function Classes for KDM-Security

Additionally, we define the following function families that are useful for our
results on KDM security.

Definition 2.15 (Linear, Affine and Shift Functions) Let X ,Y be some ad-
ditive groups. A function g : X → Y is linear if for every x, x′ ∈ X , we have
g(x + x′) = g(x) + g(x′); a function h : X → Y is affine if there exist a linear
function g : X → Y and a constant a ∈ Y such that h(x) = g(x) + a for every
x ∈ X . Moreover, a function s : X → X indexed by certain element x ∈ X is
shift, if for every x, x′ ∈ X , we have sx(x′) = x+ x′.

Definition 2.16 Let X ,Y be some additive groups. Given a class of linear
functions G = {g : X → Y}, we define a related class of affine functions
Gt = {g′ : X → Yt} where each g′ ∈ Gt can be indexed by a constant vector
a = (a1, . . . , at)

> ∈ Yt and t functions in G, i.e., g1, g2, . . . , gt ∈ G, such that
for every x ∈ X , g′(x) = (g1(x), g2(x), . . . , gt(x))> + a = (g1(x) + a1, g2(x) +
a2, . . . , gt(x) + at)

>.
Besides, if the underlying linear functions g ∈ G is a block function, i.e., each

output component of g depends only on one block of its input, then the resulting
functions g′ ∈ Gt are called block-affine function.

3 Randomness Extractor and Its Variants

In this section, we first define a new variant of (computational) randomness
extractors, which serve as the most important tools of this paper. Then, we
instantiate the required extractors based on LWE or DDH, respectively.

3.1 Our New Variant of Randomness Extractors

We require an extractor that is (1) reusable, (2) secure against correlated-source
attacks, and (3) homomorphic. We present their definitions below.
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Definition 3.1 (Reusable Extractor in [5]) Let X ,S,Y be efficient ensem-
bles parameterized by the security parameter λ. An efficient function Ext : X ×
S → Y is an (e, t)-reusable-extractor10, if for any correlated random variables
(s, aux) where s is over S and H∞(s|aux) ≥ e, the following two distributions
are computationally (statistically) indistinguishable:

(aux, r1, . . . , rt,Ext(r1, s), . . . ,Ext(rt, s)) ≈ (aux, r1, . . . , rt, u1, . . . , ut),

where the strings {ri
$←− X}, {ui

$←− Y} are sampled independently.

If e > t log |Y|+O(log(1/ε)) for some ε = negl(λ), we can construct an (e, t)-
reusable extractor information theoretically, e.g,. Leftover hash lemma [21]. On
the other hand for e < t log |Y| + O(log(1/ε)), it is still possible to construct
(e, t)-reusable extractor under appropriate computational assumptions, such as
DDH or LWE [5, 36], for t being a bounded or even any arbitrary polynomial
depending on the parameter settings.

Definition 3.2 (Reusable Extractor against Correlated-Source Attacks)
Let Ext : X × S → Y be some function, and F = {f : S → S} be some func-
tion class. We say Ext is an (e, t)-reusable extractor against correlated-source
attacks with respect to F , if for every random variables s, aux where s is over S
and H∞(s|aux) ≥ e, the following oracles, Os(·) and U(·), are computationally
indistinguishable given up to t queries:

– Os(·) : Take a function f ∈ F as input, sample a fresh random r ← X , and
return (r,Ext(r, f(s))) upon each query.

– U(·) : Take a function f ∈ F as input, return a uniform sample (r, u) ←
(X ,Y) upon each query.

Remark 3.3 The above Definition 3.2 can also be described in the indistin-
guishability form – for any correlated random variables (s, aux) such that s is over
S and H∞(s|aux) ≥ e, the following two distributions are computationally (sta-

tistically) indistinguishable:
(
aux, {ri,Ext(ri, fi(s))}i∈[t]

)
≈
(
aux, {ri, ui}i∈[t]

)
,

where the strings {ri
$←− X}i∈[t], {ui

$←− Y}i∈[t] are sampled independently, and
{fi ∈ F}i∈[t] are chosen (adaptively) by any ppt adversary A.

Clearly, an (e, t)-reusable extractor is also one against correlated-source at-
tacks with respect to the identity function.

Definition 3.4 (Homomorphic Extractor) Let Y be a group associated with
operation ‘◦’, Ext : X × S → Y be an extractor following the syntax as in
Definition 3.1, and H = {h : S → Y} be some function class. We say that Ext
is homomorphic with respect to H, if for any function h ∈ H, there exists an
invertible function h′ : X → X (efficiently computable given h) such that for any
x ∈ X and s ∈ S, we have Ext(x, s) ◦ h(s) = Ext(h′(x), s).

10 Here, t denotes the number of times the weak source being reused.
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3.2 Instantiations from LWE and DDH

Definition 3.5 For integers n and δ, we define the linear function class.

– SFδ,n = {sa : Znδ → Znδ } where each function sa is indexed by a vector
a ∈ Znδ such that sa(x) = x+ a mod δ, for every x ∈ Znδ .

Construction 3.6 (LWE-Based Extractor) Let X = Znq , S = Zn2 and Y =
Zp, where p is a prime and p|q. We define Ext : X × S → Y as:

Ext(a, s) = b〈a, s〉 mod qeq,p,

where a ∈ X , s ∈ S and b·eq,p is defined as the definition of LWR in [9]. The

construction has ratio |Y||X | = log p
n log q .

Theorem 3.7 Let λ be the security parameter, q, p, d, β, σ be parameters such
that q ≥ pβλω(1), β = σλω(1), and p|q. Let χ be some σ-bounded distribution
over Znq , e ≥ (d + Ω(λ)) log q. Assuming the hardness of LWEd,q,χ, then Ext
in Construction 3.6 is an (e, ` = poly(λ))-reusable extractor against correlated-
source attacks with respect to the function class SF2,n. Furthermore, this Ext is
homomorphic with respect to the function class Gp,n = {gb : Zn2 → Zp}, where
each function gb is indexed by a vector b ∈ Znq such that gb(x) = 〈b,x〉 mod p,
for every x ∈ Zn2 .

Proof. We start the proof by recalling a prior result of Alwen et al. [5], which
states that LWE holds even if the secret comes from a weak source.

Claim 3.8 ( [5]) Let ψβ be the discrete Gaussian distribution with width β, and
the other parameters are as specified in this theorem. Then the following variant
of bin-LWEn,q,ψβ holds for any polynomially number of samples, as long as the
secret vector is binary, i.e., Zn2 , and has min-entropy e, i.e., the following two
distributions are computationally indistinguishable for any ` = poly(λ):

(aux,A, st ·A + e) ≈c (aux,A,u),

where e← ψ`β, A← Zn×`q , u← Z`q, and H∞(s|aux) ≥ e.

Next we would show that Ext is an (e, ` = poly(λ))-reusable extractor against
correlated-source attacks with respect to SF2,n. In particular, we need to show
that the two oracles Os(·) and U(·) are computationally indistinguishable given
up to ` queries. To achieve this, we define an intermediate oracles below:
Õs(·) : on input a function sb ∈ SF2,n, the oracle samples a random a ∈ Znq and
η ← ψβ , and returns (a, b〈a, s+ b)〉+ ηeq,p). Note, (s+ b) is operated in Zn2 .

Below we will show that Os(·) is statistically indistinguishable from Õs(·),
which is computationally indistinguishable from U(·), up to ` queries.

Claim 3.9 Given ` = poly(λ) oracle queries, the distribution of Os(·) is statis-
tically close to that of Õs(·).
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Proof. We know η is sampled from ψβ , so |η| < β
√
` with 1−negl(λ) probability.

We also know that as long as 〈a, s+ b〉 does not fall within ±β
√
` of a multiple

of q/2, we will have b〈a, s+ b)〉+ ηeq,2 = b〈a, s+ b)〉eq,2.

Since s + b operates in Zn2 , we know for any s + b 6= 0, the probability
over random a ← Znq that 〈a, s + b〉 falls within ±β

√
` of a multiple of q/2 is

2(2β
√
`+ 1)/q. By the union bound, we have the probability that there exists a

query that b〈a, s+b〉+ηeq,p 6= b〈a, s+b〉eq,p is upper bounded by 2`(2β
√
`+1)/q,

which is negligible in our setting of parameter.

Finally, the probability that there exists a query that s + b = 0 is up-
per bounded by `2−e, according to the min-entropy of s and the union bound.
Clearly, this probability is negligible. This concludes the proof of the claim. ut

Claim 3.10 Assume the hardness of bin-LWEn,q,ψβ . Then the oracle Õs(·) and
U(·) are computationally indistinguishable, given ` = poly(λ) oracle queries.

Proof. We prove this claim by reduction. Assume that there exists an adversary
A that distinguishes Õs(·) from U(·) using ` oracle queries with probability ε,
then we would construct a reduction B that breaks LWE∗n,q,ψβ with probability
ε, using ` samples.

B runs A as a subroutine, and is defined as follows.

– When A makes an oracle query with sb for certain b ∈ Zn2 , B queries the
LWE challenge oracle and receives a sample (a, z).

– Then for i ∈ [n],

1. if bi = 0, B sets z′i = 0 and a′i = ai.

2. if bi = 1, B sets z′i = −ai and a′i = −ai.

– B computes z′ = bΣn
i=1z

′
i + zeq,p and sets a′ = (a′1, . . . , a

′
n)>, and then

forwards (a′, z′) to A.

– B outputs whatever A outputs.

Clearly, if (a, z) comes from the uniform distribution, then B simulates faith-
fully the oracle U(·) to A. On the other hand, if (a, z) comes from the LWE ora-
cle, then z′ = bΣn

i=1z
′
i+zeq,2 = bΣn

i=1z
′
i+〈a, s〉+ηeq,2 = bΣn

i=1(z′i+aisi)+ηeq,2 =
bΣn

i=1a
′
i(si + bi mod 2) + ηeq,2 = b〈a′, gb(s)〉 + ηeq,2. This faithfully simulates

the oracle Õs(·). Thus, B has the same distinguishing probability as A does. ut

Combining the above three claims, we prove that Ext is an (e, ` = poly(λ))-
reusable extractor against the correlated-source attacks with respect to the class
SF2,n.

Finally, we show the homomorphic property.M is associate with the addition
operation over Zmp . Given any function gb ∈ G indexed by b ∈ Znq , we define the

24



function g′b as follows: g′b(x) = x+ q
pb mod q for any x ∈ Znp , then

Ext(a, s) + g(s) = bp
q
〈a, s〉e+ 〈b, s〉 mod p

= bp
q
〈a, s〉e+ bp

q
· q
p
〈b, s〉e mod p

= bp
q
〈(a+

q

p
b), s〉e

= Ext(a+
q

p
b, s) = Ext(g′b(a), s).

This satisfies Definition 3.4. ut

Construction 3.11 (DDH-Based Extractor) Let G be a group of prime or-
der q, X = Gn, S = Zn2 , and Y = G. We define Ext : X × S → Y as:

Ext(a, s) =

n∏
i=1

asii ,

where a ∈ X , s ∈ Zn2 . The construction has ratio |Y||X | = 1
n .

Theorem 3.12 Let λ be the security parameter, G be a group of prime order q.
Assuming that DDH is hard with respect to the group G and e ≥ log q+2 log(1/ε)
where ε ∈ (0, 1) is negligible, then Ext defined as 3.11 is an (e, t = poly(λ))-
reusable extractor against correlated-source attacks with respect to the function
class SF2,n. Furthermore, Ext is homomorphic with respect to the function class
G′q,n, where each g ∈ G′q,n is indexed by certain vector b ∈ Gn, i.e., gb(s) =∏n
i=1 b

si
i for input s ∈ Zn2 .

Proof. We prove that the DDH-based Ext is an (e, t = poly(λ))-reusable extractor
against correlated-source attacks with respect to the function class SFq,n, in the
following steps. (1) We recall that Ext is an (e, t = poly(λ))-reusable extractor,
which can be easily derived from the work of Naor and Segev [36], as stated
in the work [5]. (2) We prove our desired statement via a reduction from (1),
i.e., we give an efficient transformation that maps a sample (a,Ext(a, s)) to
(a′,Ext(a′, gb(s))), and (a, u) to (a′, u′), for any gb ∈ SF2,n. Thus, if a ppt
adversary can break the correlated-source security, then there exists an efficient
reduction that breaks (1), reaching a contradiction.

The transformation takes input (a, z) and gb ∈ SF2,n as input (b ∈ Zn2 ), and
does the following:

– For i ∈ [n], if bi = 0, set a′i = ai and z′i = 1; Else if bi = 1, set a′i = a−1
i and

z′i = a−1
i .

– Output (a′, z ·
∏n
i=1 z

′
i).

Clearly, the transformation maps the uniform distribution to the uniform dis-
tribution. On the other hand if (a, z =

∏n
i=1 a

si
i ), then the output would be of the
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form (a′,
∏n
i=1 a

si
i ·
∏n
i=1 z

′
i) =

(
a′,
∏n
i=1 a

′(si+bi mod 2)
i

)
= (a′,Ext(a′, gb(s))).

Finally, we show the homomorphic property. Y is associated with multiplica-
tion operation over G. Given any function gb ∈ G′q,n indexed by b ∈ Gn, we set
another function g′b as follows: for any x ∈ Gn, g′b(x) = (x1b1, . . . , xnbn) ∈ Gn.
It is clear that the function g′b is invertible. Then for any a ∈ Gn, s ∈ Zn2 and
gb ∈ G, we have

Ext(a, s) ◦ gb(s) =

n∏
i=1

asii ·
n∏
i=1

bsii

=

n∏
i=1

(aibi)
si

= Ext(g′b(a), s).

This satisfies Definition 3.4. ut

4 wHPS and Its Instantiation from Batch Encryption

In this section, we first identify several new important structures of wHPS, and
then show an instantiation of the required wHPS from BE.

4.1 Additional Structure of wHPS

Definition 4.1 (wHPS with Additional Structures) We say that Π is a
wHPS with additional structures, if the following conditions hold:

1. Π satisfies all conditions for a wHPS defined in Definition 2.8;

2. The secret key, sk, of Π can be written as sk := (a, ska) ∈ Znm × {0, 1}∗, for
certain positive integers m,n ∈ Z. In particular, ska ∈ {0, 1}∗ can be viewed
as an arbitrary bit string, but is related to the prefix vector a ∈ Znm.

3. The decapsulation of an invalid ciphertext, Decap(sk,CT∗), can be written as
sk′(a) = a + k′ mod m, where the a is the first part of the secrete key sk,
and k′ ∈ Znm is the index vector related to the invalid ciphertext CT∗.

4. Given some k′ ∈ Znm, one can generate CT∗ such that Decap(sk,CT∗) =
sk′(a) and the distribution of CT∗ is identical to that of Encap∗(pk).

Remark 4.2 This additional structure can also be generalized to the notion of
IB-wHPS in Definition 2.13. In particular, for the case of skid := (a, ska,id) in the
IB-wHPS, ska,id is the output of an integrated algorithm IB-wHPS.KeyGen(msk, id,a),
where msk denotes the master secret key.
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4.2 wHPS from BE

Construction 4.3 (Construction of wHPS from BE) Let Π = Π.{Setup,
KeyGen,Enc,Dec} be a batch encryption scheme with the message space Zn×BB ,

the secret-key space ZnB and the projected public key size ˆ̀. Then, we construct
a weak hash proof system HPS scheme ΠwHPS = ΠwHPS.{Setup,Encap,Encap∗,
Decap} with the same ciphertext space as Π and the encapsulated key space
K = ZnB as follows:

– ΠwHPS.Setup(1λ): The algorithm runs CRS
$←− Π.Setup(1λ, 1n) for an integer

n ∈ N, and then runs Π.KeyGen(CRS,x) to generate h for a randomly chosen
vector x ∈ ZnB . Finally, the algorithm outputs pk := (CRS, h) and sk := x.

– ΠwHPS.Encap(pk): Given a public-key pk as input, the algorithm first chooses
a random vector k = (k1, . . . , kn)> ∈ ZnB, and set matrix M = (Mi,j)i∈[n],j∈ZB
such that Mi,j = ki for every i ∈ [n], j ∈ ZB, i.e., all components in each row

of M are the same. Then the algorithm runs CT
$←− Π.Enc(CRS, h,M), and

outputs CT and k as a valid ciphertext and its encapsulated key, respectively.

– ΠwHPS.Encap
∗(pk): Given a public-key pk as input, the algorithm chooses a

random vector k = (k1, . . . , kn)> ∈ ZnB, and set matrix M = (Mi,j)i∈[n],j∈ZB
such that Mi,j = ki+ j mod B for every i ∈ [n], j ∈ ZB. (In this way, every
element in a row is different from the others in the same row.) Then the

algorithm runs CT∗
$←− Π.Enc(CRS, h,M), and outputs CT∗ as an invalid

ciphertext.

– ΠwHPS.Decap(sk,CT): Given a ciphertext CT and a secret key sk := x as
input, the algorithm runs m′ = Π.Dec(CRS,x,CT), and outputs m′ as the
encapsulated key.

It is clear that this construction of wHPS satisfies the additional structures
in Definition 4.1. Moreover, the secret key of wHPS does not have the second
part ska, which is one of our key points to prove the KDM security. Below we
present the formal theorem and its proof.

Theorem 4.4 (wHPS from BE) Suppose Π is a semantically secure batch en-
cryption scheme with the message space Zn×BB , the secret-key space ZnB and the

projected public key size ˆ̀. Then Construction 4.3 is an (n logB,w)-universal
weak hash proof system with the encapsulated key space K = ZnB and w =

n logB − ˆ̀, and has the additional structure as Definition 4.1.

Proof. According to the definition of a wHPS, we need to prove the following
three properties: correctness, universality and ciphertext indistinguishability.

Correctness. Correctness of this wHPS follows directly from the correctness of
the underlying BE.
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Universality and the Additional Structure as Def 4.1. Given the public

key pk and a random invalid ciphertext CT∗
$←− Π.Enc(CRS, h,M), we have

ΠwHPS.Decap(sk,CT∗) = ΠwHPS.Decap(x,CT∗) = x+ k′,

where k′ is the vector used to generate the invalid ciphertext. Clearly, this func-
tion is an efficiently computable and invertible permutation, i.e., the decryption
function can be written as the permutation sk′(x) = x+ k′.

As this is an injective function of x (for any fixed k′), the min-entropy of x re-
mains the same after applying this function, i.e., H∞(Decap(sk,CT∗)|(h,CT∗)) =
H∞(x+k′|(h,CT∗)) = H∞(x|(h,CT∗)). Moreover, we note that given h, CT∗ is
independent of x, so H∞(x|(h,CT∗)) = H∞(x|h). Therefore, we have

H∞(x+k|(h,CT∗)) = H∞(x|(h,CT∗)) = H∞(x|h) ≥ H∞(x)−|h| = n logB− ˆ̀.

It is also clear from the argument that the scheme ΠwHPS satisfies the addi-
tional structure as Definition 4.1, i.e. the secret key sk has the structure x ∈ ZnB ,
and ΠwHPS.Decap(sk,CT∗) = x + k′, where k′ is a vector related to the invalid
ciphertext CT∗.

Ciphertext Indistinguishability. Directly from the security of BE, we can
prove that the ciphertexts output by ΠwHPS.Encap(pk) and ΠwHPS.Encap

∗(pk)
are computationally indistinguishable, even given the secret key x. Particularly,
given the adversary A distinguishing valid and invalid ciphertexts successfully,
we can directly use it to break the ciphertexs indistinguishability of BE. This is
because, we directly use the BE ciphertexts encrypting different message as the
valid/invalid ciphertexts of ΠwHPS. ut

5 Generic construction PKE from wHPS

In this section, we show that a weak hash proof system with the additional
structure as Definition 4.1 can be used to obtain a public-key encryption scheme
that is simultaneously leakage resilient and KDM secure.

Before presenting our generic construction, we introduce a useful definition
of block source, and a parallel repetition description of randomness extractor.

Definition 5.1 (Block Source [41]) A random variable S = (S1, . . . , Sm) is
a (e1, . . . , em) block source if for every s1, . . . , si−1, Si|S1=s1,S2=s2,...,Si−1=si−1

is
a ei-source, which means the conditional min-entropy of Si|S1=s1,S2=s2,...,Si−1=si−1

is ei. If e1 = e2 = · · · = em = e, then we call S an m× e block source.

Definition 5.2 (Parallel Repetition of Extractor) For any input s =
(s1, . . . , sm) ∈ Sm and an underlying extractor Ext : R × S → Y, we use
Ext||(r, s) = (Ext(r, s1), . . . ,Ext(r, sm)) to denote a parallel repetition of extrac-
tor.
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Clearly, for a sufficient m × e block source, the output indistinguishability of
Ext|| follows naturally from that of the underlying Ext.

Next, our generic construction of PKE can be derived from wHPS and Ext in
the following way.

Construction 5.3 (PKE from wHPS and Ext) Suppose that ΠwHPS =
ΠwHPS.{Setup,Encap,Encap∗,Decap} is a wHPS with the secret key space and
the encapsulated key space being K = ZnB with n = n′ ·m. For convenience, we

denote S = Zn′B with K = Sm, and let Ext : R× S →M is an (e, poly)-reusable
extractor. Then, for any polynomial integer t, we define a public-key encryption
scheme ΠPKE = ΠPKE.{KeyGen,Enc,Dec} with message space Mt×m as follows:

– ΠPKE.KeyGen(1λ): The algorithm runs (pkΠwHPS , skΠwHPS)
$←− ΠwHPS.Setup(1λ),

and then outputs pk := pkΠwHPS and sk := skΠwHPS .

– ΠPKE.Enc(pk,µ): Given a public-key pk and a message µ = (µ1, . . . ,µt) ∈
Mt×m as input with each µj ∈ Mm, the algorithm runs wHPS.Encap to

generate (CT0,k)
$←− ΠwHPS.Encap(pk) for k ∈ ZnB. The algorithm interprets

k ∈ (Zn′B )m, and then samples rj
$←− R for j ∈ [t]. Furthermore, the algorithm

computes and outputs CT = (CT0,CT1, . . . ,CTt), where

CTj = (CT
(1)
j ,CT

(2)
j ) = (rj ,Ext||(rj ,k) + µj), for j ∈ [t].

– ΠPKE.Dec(sk,CT): Given a ciphertext CT = (CT0,CT1, . . . ,CTt) and a secret
key sk as input, the algorithm first computes k′ = ΠwHPS.Decap(sk,CT0), and
then outputs µ = (µ′1, . . . ,µ

′
t), where

µ′j = CT
(2)
j − Ext||(CT

(1)
j ,k′).

Our construction achieves KDM security and leakage-resilience simultaneous-
ly. We summarize the results in the following theorem.

Theorem 5.4 Assume that (1) ΠwHPS is a (n logB,w)-universal wHPS with
the secret key space and the encapsulated key space being K = ZnB, n = mn′,

S = Zn′B with K = Sm, w = n logB − ˆ̀, where ˆ̀ denotes the bit length of pk,

and n′ logB ≥ ˆ̀+ λ + e, (2) ΠwHPS has the additional structures as Def 4.1
and the secret key does not have the additional string skx, (3) the extractor
Ext : R×S →M is an (e, poly)-reusable extractor11, which is also homomorphic
with respect to the class of linear functions G : {g : Zn′B → M} and robust
against correlated-source attacks with respect to the class of the shift functions
SFB,n′ : {s : Zn′B → Zn′B }.Then the above scheme ΠPKE is

11 This means that for the individual source S = Zn
′
B with sufficient entropy, the

output of the underlying extractor Ext is indistinguishable from uniform. This further
implies that for the block source with sufficient entropy, the output of the parallel
repetition extractor Ext|| is still indistinguishable from uniform.
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1. leakage-resilient against block leakage12, with block leakage rate (1− e+ˆ̀+λ
n′ logB )

per block.
2. KDM(1)-secure with respect to the block-affine functionclass Gt = {g′ : ZnB →
Mm×t} as defined in Definition 2.16.

3. The information rate is |M|mt
|CT0|+|R|t+|M|mt , where | · | denotes the bit descrip-

tion length of its elements. As a result, for large enough t and m, we obtain
rate-1 KDM-secure PKE scheme.

Remark 5.5 We note that any wHPS (without the additional structures) and
reusable extractor (without the homomorphic and robust property) already suffice
to prove leakage resilience, which detailed proof is deferred to Section 5.1 for the
clarity of our presentation. The extra properties will be used for deriving KDM
security, which will be formally presented in Sections 5.2 and 6. In Section 3.2,
we have presented homomorphic extractors from DDH and LWE.

5.1 Proof of Leakage-Resilience of Construction 5.3

In this section, we present the proof of the first part of Theorem 5.4.
As this Theorem follows from prior work [28], we just present a sketch of the

hybrids in the proof for self-completeness.

Hybrid H0: This hybrid is defined to be the security experiment with ` block-
leakage in Definition 2.2, with ` = (n′ logB − e − ˆ̀− λ). In this hybrid, the
view of A consists of the public-key pk, leakage information l(sk), and challenge

ciphertext CT = (CT0,CT1, . . . ,CTt), where (pk, sk)
$←− wHPS.Setup(1λ), ri

$←− R
for i ∈ [t], µ(b) = (µ

(b)
1 , . . . ,µ

(b)
t ) ∈Mm×t, and

(CT0,k)
$←− wHPS.Encap(pk), CTi = (CT

(1)
i ,CT

(2)
i ) = (ri,µ

(b)
i + Ext(ri,k)),

for i ∈ [t]. Notice that the leakage function l : {0, 1}∗ → {0, 1}` is chosen
adaptively by the adversary.

Hybrid H1: This hybrid is almost identical to the Hybrid 0, except the challenge
ciphertext is computed in the following way:

(CT0,k)
$←− wHPS.Encap(pk), k1 = wHPS.Decap(sk,CT0),

CTi = (CT
(1)
i ,CT

(2)
i ) = (ri,µ

(b)
i + Ext(ri,k1)),

for i ∈ [t]. The only difference between Hybrid 0 and Hybrid 1 is the usage of k
and k1 in the computation of CTi. In fact, k = k1 according to the correctness
of the underlying wHPS. Hence, Hybrid 0 and Hybrid 1 are identical.

12 Just as described in Remark 2.3, block leakage means that each block of source
is leaked by an independent function and remain enough entropy conditioned on
leakage against other blocks.
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Hybrid H2: This hybrid is almost same to Hybrid 1, except the challenge
ciphertext is computed in the following way:

CT∗0
$←− wHPS.Encap∗(pk), k1 = wHPS.Decap(sk,CT∗0),

CTi = (CT
(1)
i ,CT

(2)
i ) = (ri,µ

(b)
i + Ext(ri,k1)),

for i ∈ [t]. The only difference between Hybrid 1 and Hybrid 2 is the computation
and usage of CT0 and CT∗0. In fact, according to the ciphertext indistinguishabil-
ity of the underlying wHPS, CT0 and CT∗0 are computationally indistinguishable
even for the adversary having secret key sk. Hence, Hybrid 1 and Hybrid 2 are
indistinguishable for the adversary even holding the leakage information l(sk).

Hybrid H3: This hybrid is almost same to Hybrid 2, except that the challenge
ciphertext is computed in the following way:

CT∗0
$←− wHPS.Encap∗(pk), ui

$←−Mm, CTi = (ri,ui),

for i ∈ [t]. Essentially, pk, CT∗0, k1 = wHPS.Decap(sk,CT∗0) and l(sk) are corre-
lated variables. According to the universality of underlying wHPS, we know that
the conditional min-entropy of k1 when given pk and CT∗0 is

H∞(k1|(pk,CT∗0)) ≥ n logB − ˆ̀.

By [41], we know that k1 is 2−λ close to (n′ logB − ˆ̀− λ)×m block source.

Furthermore, since the block-leakage l(sk) has length ` = n′ logB− e− ˆ̀−λ per
block, we have that k1 is anm×e block source, when given aux := (pk,CT∗0, l(sk)).
Since Ext|| is an (m×e, t)-block source reusable-computational-extractor, we have

(aux, r1, . . . , rt,µ
(b)
1 + Ext||(r1,k1), . . . ,µ

(b)
t + Ext||(rt,k1))

≈c(aux, r1, . . . , rt,u1, . . . ,ut),

As a result, Hybrid 2 and Hybrid 3 are computationally indistinguishable.

Notice that the view of A in Hybrid 3 is completely independent of µ(b) and
b. Therefore, the advantage of A in Hybrid 3 is negligible. Finally, combining all
the above hybrids together, we conclude that the advantage of A in Hybrid 0 is
also negligible in λ. Thus the PKE scheme ΠPKE is `-block-leakage-resilient, and

the corresponding leakage rate is (1− e+ˆ̀+λ
n′ logB ).

5.2 Proof of KDM(1)-security of Construction 5.3

In this section, we present the proof of the second part of Theorem 5.4. Our
proof takes the following high-level steps:
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– We first define a modified encryption algorithm Enc′, and then switch the
responses of the KDM queries by using Enc′ instead of the real Enc. By a
hybrid argument, we argue that the adversary cannot distinguish whether
he is answered by Enc or Enc′.

– We next modify the KDM responses by using Enc′′, which essentially gener-
ates random strings as the ciphertexts. We argue that this is indistinguish-
able from the above case by the security of the reusable extractor robust
against correlated-source attacks with respect to the class of shift functions
(ref. Definition 2.15);

– Finally, we show that even given multiple KDM encryption queries, Enc′′ is
indistinguishable from Enc(0), implying KDM-security.

Below, we first define the modified encryption algorithm Enc′. On input a
public-key pk, a secret-key sk := x ∈ ZnB = (Zn′B )m and a function g′ ∈ Gt,
where g′ can be indexed by a vector a = (a>1 , . . . ,a

>
t )> ∈ Mm×t and t func-

tions g1, . . . , gt ∈ G (ref. Definition 2.16). Besides, for each j ∈ [t], aj =

(aj,1, . . . , aj,m)> ∈ Mm, gj = (gj,1, . . . , gj,m) with gj,l : Zn′B →M and l ∈ [m],
the algorithm does the following:

1. Generate an invalid ciphertext CT∗0. By Property 4 in Definition 4.1, set
x′ := Decap(sk,CT∗0) = x+ k′ for some k′.

2. Compute t ·m invertible functions {h1,l}l∈[m], . . . , {ht,l}l∈[m] such that
Ext||(r, s) + gj(s) = (Ext(r, s1), . . . ,Ext(r, sm)) + (gj,1(s1), . . . , gj,m(sm)) =
(Ext(hj,1(r), s1), . . . ,Ext(hj,m(r), sm)) for any j ∈ [t], by the property of
homomorphic extractor (ref. Definition 3.4). Here, s is a block source, i.e.,
s = (s1, . . . , sm).

3. Then sample t random seeds r1, . . . , rt ∈ R for the extractor, and compute
zj = {Ext(hj,l(rj),x′l)− gj,l(k

′
l) + aj,l}l∈[m] for j ∈ [t], where x′ = (x′l)l∈[m]

and k′ = (k′l)l∈[m].

4. Output the ciphertext CT′:
(
CT∗0, r1, z1, . . . , rt, zt

)
.

Then, we define the other modified encryption algorithm Enc′′:

1. Generate an invalid ciphertext CT∗0.

2. Then for each j ∈ [t], sample rj
$←− R and zj

$←−Mm;
3. Output the ciphertext CT′′:

(
CT∗0, r1, z1, . . . , rt, zt

)
.

Furthermore, we define a series of hybrids as follows:

– Hybrid H0: This hybrid is identical to the original KDM queries case, i.e.
the responses of all the Q KDM queries are generated as the real encryptions
of the g′(i)(sk) for i ∈ [Q].

– Hybrid H0.i for each i ∈ [Q]: Upon receiving the first i KDM queries, this
hybrid uses Enc′ to reply and then generates the remaining KDM responses
according to the original encryption algorithm as H0.

– Hybrid H1: This hybrid replies all KDM queries with Enc′′.
– Hybrid H2: This hybrid replies all KDM queries with Enc(0).
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Let events E0, E1, E2 denote that the KDM adversary A outputs 1 in H0,
H1, and H2, respectively. Similarly, we define events E0.i. To show that Pr[E0] ≈
Pr[E2], we will take the following path:

Pr[E0] ≈ Pr[E0.1] ≈ · · · ≈ Pr[E0.Q] ≈ Pr[E1] ≈ Pr[E2].

We note that proving indistinguishability of H1 and H2 follows essentially the
same idea from proving its semantic security. This can be captured in the proof
of leakage resilience (ref. Subsection 5.1), so we just omit the proof to avoid
repetition. For notational convenience, we define H0.0 := H0.

Finally, we use the following three lemmas to accomplish the above mentioned
proof idea.

Lemma 5.6 For i ∈ [Q],
∣∣Pr[E0.i−1]− Pr[E0.i]

∣∣ ≤ negl(λ), assuming the cipher-
text indistinguishability of the underlying wHPS.

Proof. We prove this lemma by contradiction. Assume that for some i and ad-
versary A, we have

∣∣Pr[E0,i−1]−Pr[E0,i]
∣∣ = ε for some non-negligible ε. Then we

are going to construct a reduction B that breaks the ciphertext indistinguisha-
bility of the underlying wHPS with the same non-negligible advantage ε. This
reaches a contradiction.

Let CT
∗(i)
0 be the invalid wHPS ciphertext generated in the i-th KDM response

by Enc′, such that x′i := Decap(sk,CT
∗(i)
0 ) = x+k′i. Then the overall ciphertext

with respect to KDM function g′i ∈ Gt in this round can be re-written as

(
CT
∗(i)
0 , ri,1, {Ext(hi,1,l(ri,1),x′i,l)− gi,1,l(k

′
i,l) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(hi,t,l(ri,t),x′i,l)− gi,t,l(k
′
i,l) + ai,t,l}l∈[m]

)
=
(
CT
∗(i)
0 , ri,1, {Ext(ri,1,x′i,l) + gi,1,l(x

′
i,l)− gi,1,l(k

′
i,l) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(ri,t,x′i,l) + gi,t,l(x
′
i,l)− gi,t,l(k

′
i,l) + ai,t,l}l∈[m]

)
(1)

=
(
CT
∗(i)
0 , ri,1, {Ext(r1,1,x

′
i,l) + gi,1,l(x

′
i,l − k′i,l) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(ri,t,x′i,l) + gi,t,l(x
′
i,l − k′i,l) + ai,t,l}l∈[m]

)
(2)

=
(
CT
∗(i)
0 , ri,1, {Ext(ri,1,Decap(x,CT

∗(i)
0 )l) + gi,1,l(xl) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(ri,t,Decap(x,CT
∗(i)
0 )l) + gi,t,l(xl) + ai,t,l}l∈[m]

)
. (3)

=
(
CT
∗(i)
0 , ri,1,Ext||(ri,1,Decap(x,CT

∗(i)
0 )) + gi,1(x) + ai,1,

. . . , ri,t,Ext||(ri,t,Decap(x,CT
∗(i)
0 )) + gi,t(x) + ai,t

)
. (4)

Here, we use Decap(x,CT
∗(i)
0 )l ∈ Zn′B to denote the l-th block of Decap(x,CT

∗(i)
0 ) ∈

(Zn′B )m. Similarly, xl ∈ Zn′B denote the l-th block of x ∈ (Zn′B )m.
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Then we rewrite the real KDM ciphertext as(
CT

(i)
0 , ri,1, {Ext(ri,1,ki,l) + gi,1,l(xl) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(ri,t,ki,l) + gi,t,l(xl) + ai,t,l}l∈[m]

)
=
(
CT

(i)
0 , ri,1, {Ext(ri,1,Decap(x,CT

(i)
0 )l) + gi,1,l(xl) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(ri,t,Decap(x,CT
(i)
0 )l) + gi,t,l(xl) + ai,t,l}l∈[m]

)
(5)

=
(
CT

(i)
0 , ri,1,Ext||(ri,1,Decap(x,CT

(i)
0 )) + gi,1(x) + ai,1,

. . . , ri,t,Ext||(ri,t,Decap(x,CT
(i)
0 )) + gi,t(x) + ai,t

)
(6)

Similarly, we use Decap(x,CT
(i)
0 )l ∈ Zn′B to denote the l-th block of

Decap(x,CT
(i)
0 ) ∈ (Zn′B )m.

The equation (1) follows from the homomorphic property of the underlying
extractor Ext, where each function hi,j,l is generated according to the function
gi,j,l for i ∈ [Q], j ∈ [t], l ∈ [m]. The equation of (2) follows from the linear
property of gi,j,l. The equations of (3) and (5) follow from the property 4 in
definition 4.1 together with the block source property of x′i = (x′i,l)l∈[m] and
ki = (ki,l)l∈[m]. The equations of (4) and (6) follow from the parallel repetition
description of the underlying extractor Ext.

Now we define the reduction B. On input (pk, sk := x) and the challenge

ciphertext C̃T (either CT← Encap(pk) or CT∗ ← Encap∗(pk)) acts as follows:

– B first forwards pk to A;
– Upon receiving the ī-th KDM query with function g′(̄i) ∈ Gt,13 if ī < i, then
B replies with Enc′(pk, sk, g′(̄i)); if ī = i, B replies(

C̃T,ri,1,Ext||(ri,1,Decap(x, C̃T)) + gi,1(x) + ai,1,

. . . , ri,t,Ext||(ri,t,Decap(x, C̃T)) + gi,t(x) + ai,t
)

;

otherwise if ī > i, B replies with Enc(pk, g′(̄i)(sk)).
– Finally, B outputs whatever A outputs.

Then, we analyze the above reduction process. If C̃T is a valid ciphertext, then

k = Decap(x, C̃T) is independent of x. This implies the distribution of the replied
ciphertext for i-th query is identical to that of Enc(pk, g′(i)(sk)), which means

that B simulates H0,i−1. If C̃T is an invalid ciphertext, then x′i = Decap(x, C̃T)
and x′i = k′i + x. Then the distribution of the replied ciphertext for i-th query
is identical to that of Enc′(pk, sk, g′(i)), meaning that B simulates H0,i.

13 Here, for each ī ∈ [Q], g′(̄i) is indexed is indexed by a vector aī = (a>ī,1, . . . ,a
>
ī,t)
> ∈

Mm×t and t functions gī,1, . . . , gī,t ∈ G (ref. Definition 2.16), where for each j ∈ [t],

aī,j = (aī,j,1, . . . , aī,j,m)> ∈Mm, gī,j = (gī,j,1, . . . , gī,j,m) with gī,j,l : Zn
′
B →M and

l ∈ [m].
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Thus, B can break the ciphertext indistinguishability of wHPS with the same
advantage as A who distinguished the two adjacent hybrids. This reaches a
contradiction. ut

Lemma 5.7
∣∣Pr[E0.Q] − Pr[E1]

∣∣ ≤ negl(λ), assuming that (e, poly)-reusable ex-
tractor is homomorphic with respect to the class of linear functions G : {g :
Zn′B →M} and robust against correlated-source attacks with respect to the class

of the shift functions SFB,n′ : {s : Zn′B → Zn′B }.

Proof. Clearly, it suffices to prove that for m > 1, the view of the adversary in
H0.Q is computationally indistinguishable from that of H1. Recall that the view
of the adversary in H0.Q consists of(

pk, g′(1),CT′(1), . . . , g′(Q),CT′(Q)
)
, (7)

where

CT′(i) =
(
CT
∗(i)
0 , ri,1,Ext||(ri,1,Decap(x,CT

∗(i)
0 )) + gi,1(xi) + ai,1,

. . . , ri,t,Ext||(ri,t,Decap(x,CT
∗(i)
0 )) + gi,t(xi) + ai,t

)
=
(
CT
∗(i)
0 , ri,1, {Ext(hi,1,l(ri,1),x′i,l)− gi,1,l(k

′
i,l) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(hi,t,l(ri,t),x′i,l)− gi,t,l(k
′
i,l) + ai,t,l}l∈[m]

)
,

=
(
CT
∗(i)
0 , ri,1, {Ext(hi,1,l(ri,1),xl + k′i,l)− gi,1,l(k

′
i,l) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(hi,t,l(ri,t),xl + k′i,l)− gi,t,l(k
′
i,l) + ai,t,l}l∈[m]

)
,

Next, we analyze the the view of the adversary in H1, which consists of(
pk, g′(1),CT′′(1), . . . , g′(Q),CT′′(Q)

)
, (8)

where

CT′′(i) =
(
CT
∗(i)
0 , ri,1, {ui,1,l}l∈[m], . . . , ri,t, {ui,t,l}l∈[m]

)
,

with ri,j
$←− R and ui,j,l

$←−M. We argue that the two views are indistinguishable
by the security of the reusable extractor against correlated-source attacks with
respect to shift functions.

More specifically, we define a series of hybrids between H0,Q and H1 as follows:

– Hybrid H̄0: This hybrid is the view of adversary in H0,Q, i.e.,(
pk, g′(1),CT′(1), . . . , g′(Q),CT′(Q)

)
.

– Hybrid H̄0.l̄ for each l̄ ∈ [m]: For all CT′(i) with i ∈ [Q], their final l exactors
with respect to certain ri,j , i.e., {Ext(hi,j,l(ri,j),x′i,l)}j∈[t],l∈[(m−l̄+1),m], are
replaced with random values {ui,j,l}j∈[t],l∈[(m−l̄+1),m] from M.
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– Hybrid H̄1: This hybrid is the view of adversary in H1, i.e.,(
pk, g′(1),CT′′(1), . . . , g′(Q),CT′′(Q)

)
.

Then, we can prove the indistinguishability of H̄0.l̄ and H̄0.(l̄+1), through re-
lying on the correlated source security of reusable extractor in Definition 3.2
and the block-source property of x = (xl)l∈[m]. Notice that the differences
between H̄0.l̄ and H̄0.(l̄+1) are that for i ∈ [Q], j ∈ [t], zi,j,m−l̄ are whether

Ext(hi,j,m−l̄)(ri,j),xm−l̄ + k′i,m−l̄)− gi,j,m−l̄(k
′
i,m−l̄) + ai,j,m−l̄ or ui,j,m−l̄.

More specifically, we prove this indistinguishability by reduction. Assume
there exists an efficient adversary A that distinguishes H̄0.l̄ and H̄0.(l̄+1) with
certain non-negligible advantage ε, then we can construct a reduction algorithm
B that breaks the correlated-source security of (e, t ·Q)-reusable extractor with
respect to the class of shift functions, with the same non-negligible advantage ε.

According to Definition 3.2, the target of B is, given an unknown oracle Õ(·),
to distinguish whether it is Ox∗(·) or a random oracle, with some auxiliary input
aux, such that H∞(x∗|aux) ≥ e. Here, in order to help the following reduction
algorithm B to simulate the environment of the adversary A, we assume the
challenger C for the correlated-source security of reusable extractor to generate

aux in the following way: (1) choose sk := (xl)l∈[m−l̄] ∈ (Zn′B )m−l̄ with xl
$←− Zn′B ;

(2) invoke the key generation algorithm to generate the public key pk; (3) set
aux := pk. Clearly, from the same argument as that in Section 5.1, we know that
H∞(x∗ := xm−l̄|aux, {xl}l∈[m−l̄−1]) ≥ e, under our choice of parameters.

Now we define the reduction B in details.

– After receiving aux := pk and {xl}l∈[m−l̄−1] from C, B forwards pk to A;

– Whenever A makes the i-th KDM query with some function g′(i) ∈ Gt for
each i ∈ [Q],14 B conducts the following steps:

• Choose a random k′i = (k′i,l)l∈[m] ∈ (Zn′B )m and then generate CT
∗(i)
0 .

• Make t queries, i.e., {Õ(k′i,m−l̄)}, and get replies {(ri,j , zi,j,m−l̄)}j∈[t].
• Compute the corresponding invertible functions {hi,j,l : R → R}j∈[t],l∈[m−l̄]

(ref. Definition 3.4).
• Set

1. z′
i,j,m−l̄ = zi,j,m−l̄ − gi,j,m−l̄(k

′
i,m−l̄) + ai,j,m−l̄ for each j ∈ [t];

2. Let r′i,j = h−1
i,j (ri,j) for j ∈ [t], and set z′i,j,l = Ext(hi,j,l(r

′
i,j),xl +

k′i,l)− gi,j,l(k
′
i,l) + ai,j,l for all j ∈ [t] and l ∈ [m− l̄ − 1];

• Reply A with the ciphertext

C̃T
(i)

=
(
CT
∗(i)
0 , r′i,1, {z′i,1,l}l∈[m−l̄], {ui,1,l}l∈[m−l̄+1,m],

. . . , r′i,t, {z′i,t,l}l∈[m−l̄], {ui,t,l}l∈[m−l̄+1,m]

)
.

14 From above, we know that the function g′(i) ∈ Gt is indexed by a vector
ai = (a>i,1, . . . ,a

>
i,t)
> ∈ Mm×t and t functions gi,1, . . . , gi,t ∈ G (ref. Defini-

tion 2.16), where for each i ∈ [Q], j ∈ [t], ai,j = (ai,j,1, . . . , ai,j,m)> ∈ Mm,

gi,j = (gi,j,1, . . . , gi,j,m) with gi,j,l : Zn
′
B →M and l ∈ [m].
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– Finally, B outputs whatever A outputs.

Note that in order to answer all KDM queries from A for Q times, B need to
query the correlate source oracle Õ(·) up to t ·Q times.

Then, we analyze the above reduction. If Õ(·) is the real extractor oracle
Ox∗(·), then the reply of zi,j,m−l̄ would be Ext(ri,j ,xm−l̄ + k′i,m−l̄) for all i ∈
[Q], j ∈ [t]. In this case, the view of A is identical to that of H̄0.l̄. On the

other hand, if Õ(·) is a random oracle, then the view of the adversary A follows
H̄0.l̄+1. Thus, the reduction B breaks the correlated-source security of (e, t ·Q)-
reusable extractor with respect to the class of shift functions, with the same
advantage as that of A. Clearly, this implies the indistinguishability between
H̄0.l̄ and H̄0.l̄+1. Furthermore, a simple hybrid argument implies that for any
polynomial parameter m and any ppt adversary, H̄0 and H̄1 are computational
indistinguishability. Up until now, we complete the proof of this lemma. ut

Lemma 5.8
∣∣Pr[E1]−Pr[E2]

∣∣ ≤ negl(λ), assuming the ciphertext indistinguisha-
bility of the underlying wHPS.

Proof. Just as pointed above, this proof has been captured by the proof of leakage
resilience (ref. Section 5.1), so we just omit the proof to avoid repetition. ut

Combining Lemma 5.6, 5.7 and 5.8, we can conclude that the advantage
AdvF-KDM

PKE,A (λ) of A in the KDM security game satisfies that:

AdvF-KDM
PKE,A (λ) ≤ (Q+ 2) · negl(λ) ≤ negl(λ).

This completes the proof that ΠPKE in Construction 5.3 is KDM(1)-secure
with respect to Gt.

6 Achieving KDM(n̄)-security from KDM(1)-security

In this section, we show how to upgrade our Construction 5.3 to achieve KDM(n̄)-
security for an unbounded polynomial n̄. In order to do this, we first define a
more general design paradigm called BE-based scheme, capturing several impor-
tant features of Construction 5.3. Then we identify two homomorphic properties
of BE-based scheme, which only implies the KDM(n̄)-security for bounded poly-
nomial n̄. Finally, we define an additional pseudorandom property for BE-based
scheme, and prove KDM(n̄)-security for unbounded polynomial n̄ with all these
properties.

6.1 BE-Based PKE and its Two Key-homomorphic Properties

Definition 6.1 (BE-based PKE) Let BE be a batch encryption as Definition 2.4.
A BE-based PKE Π is a public-key encryption scheme with the following prop-
erties: (1) the secret key of Π is a vector x ∈ ZnB for some B,n ∈ Z, as in the
scheme BE, (2) the public key is (CRS,H(CRS,x)), where CRS is generated by
BE.Setup, and H(·, ·) = BE.KeyGen(·, ·) is the projection function of BE. In this
way, CRS is independent of the secret key.
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Clearly, Construction 5.3, whose wHPS scheme is instantiated by Construc-
tion 4.2, is BE-based PKE. Next, we identify two crucial key-homomorphic prop-
erties on BE-based PKE schemes, which can be used to achieve the KDM(n̄)-
security.

Property 1: There is a deterministic algorithm T1 that takes as input a pair
(CRS,H(CRS,x)) and a vector k ∈ ZnB , and outputs (CRS′,H(CRS′,x+k)), i.e.,
T1(CRS,H(CRS,x),k) = (CRS′,H(CRS′,x+ k)).

Moreover, for any vectors x,k ∈ ZnB and CRS
$←− Π.Setup(1λ, 1n), the follow-

ing two distributions are identical (or statistically close):

(CRS,H(CRS,x+ k),x,k) ≡ (T1(CRS,H(CRS,x),k),x,k) .

Property 2: There exists a deterministic algorithm T2 that takes a pair (CT,k)
as input and outputs a ciphertext CT′, i.e., T2(CT,k) = CT′. Moreover,

For any message µ ∈ M, vectors x,k ∈ ZnB , and CRS, the following distri-
butions are identical (or statistically close):

(CT1, T1(CRS,H(CRS,x),k),x,k) ≡ (T2(CT,k), T1(CRS,H(CRS,x),k),x,k) ,

where CT ← Π.Enc(CRS,H(CRS,x), µ), and CT1 ← Π.Enc(CRS,H(CRS,x +
k), µ).

Remark 6.2 These two properties can also be defined for BE schemes. Further-
more, if the underlying BE scheme has these two properties, Construction 5.3
would inherit these two properties, due to its designs of public key and ciphertext.

6.2 Intermediate Scheme Πn̄

Following the above mentioned BE-based PKE schemeΠ = Π.{KeyGen,Enc,Dec},
we define the following intermediate scheme Π n̄.

Construction 6.3 (Intermediate BE-based PKE Πn̄) Given a BE-based PKE
Π = Π.{KeyGen,Enc,Dec} with the message space M, we construct a new
scheme Π n̄ = Π n̄.{KeyGen,Enc,Dec} with the same message space M as fol-
lows:

– Π n̄.KeyGen(1λ, 1n̄): The algorithm does the following steps:
1. Take the security parameter λ and an integer n̄ ∈ N as input, run

Π.KeyGen for n̄ times to obtain CRSi
$←− Π.KeyGen(1λ, 1n̄) for 1 ≤ i ≤ n̄,

where all these CRSi contain the same size parameter B ∈ Z.

2. Choose a random vector x
$←− ZnB to generates hi = H(CRSi,x) for

1 ≤ i ≤ n̄;
3. Output pk := (pki)1≤i≤n̄ and sk := x, where pki = (CRSi, hi).

– Π n̄.Enc(pk, µ): Given a public-key pk and a message µ ∈ M as input, the

algorithm runs Π.Enc for n̄ times to generate CTi
$←− Π.Enc(pki, µ) for 1 ≤

i ≤ n̄, and then outputs CT = (CT1, . . . ,CTn̄) as the ciphertext of µ ∈M.
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– Π n̄.Dec(sk,CT): Given a ciphertext CT = (CT1, . . . ,CTn̄) and a secret key
sk as input, the algorithm runs Π.Dec to generate µ′ = Π.Dec(sk,CTi) for
some i ∈ [n̄], and then output µ′ as a plaintext for CT.

We note that the correctness of the scheme Π n̄ follows clearly from that of Π.
Next we present a KDM-security reduction between Π and Π n̄.

Theorem 6.4 (KDM(n̄)-security of Π) Suppose that (1) a BE-based PKE scheme
Π satisfies Properties 1 and 2 in Section 6.1, and (2) the intermediate scheme

Π n̄ in Definition 6.3 is KDM(1)-secure with respect to the class G = {g : SK →
M} of all affine (resp., block-affine) functions from SK to M. Then Π is
KDM(n̄)-secure with respect to the class F = {f : SKn̄ → M} of all affine
(resp., block-affine) functions from SKn̄ to M.

Proof. We prove this theorem by using security reduction. In particular, suppose
there is an efficient adversary A breaking the KDM(n̄)-security of Π, then we can
construct an efficient reduction algorithm R that can break the KDM(1)-security
of Π n̄ with the same advantage as A. Here, we denote C as the challenger in
the KDM(1)-security experiment of Π n̄. We summarize the reduction idea in
Figure 1, and describe the detailed process below.

Fig. 1. Our Reduction Idea.

– Setup.
1. C first runs the algorithm Π n̄.KeyGen to generate pk := (pki)1≤i≤n̄ and

sk := x, where pki = (CRSi, hi). Then, C chooses a random bit b ∈ {0, 1}
and sends pk to R.

2. R selects vectors k1, . . . ,kn̄
$←− ZnB , and runs algorithm T1(pki,ki) to

generate pk′i = (CRS′i, h
′
i) for 1 ≤ i ≤ n̄. Then, R sends all these pk′i to

A as the challenge public keys of Π.
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– KDM Queries.

1. With {pk′i}1≤i≤n̄ from R, A can adaptively conduct KDM queries in the
form of (i, f) to R, where 1 ≤ i ≤ n̄ and f ∈ F .

2. With the KDM query (i, f) from A, R first transforms the function f :
SKn̄ → M into the function g{ki}i∈[n̄]

: SK → M with the help of the
previously chosen k1, . . . ,kn̄. Then, R sends this function g{ki}i∈[n̄]

∈ G
to C as a KDM query.

– KDM Responses.

1. After receiving g{ki}i∈[n̄]
∈ G from R, C computes

CT0 = Π n̄.Enc(pk, g{ki}i∈[n̄]
(x)) = (CT0,1, . . . ,CT0,n̄)

if b = 0, otherwise computes

CT1 = Π n̄.Enc(pk, 0) = (CT1,1, . . . ,CT1,n̄).

Then, C responds CTb to R.
2. After receiving CTb from C, in order to respond the KDM query (i, f)

from A, R runs the algorithm T2(CTb,i,ki), and returns it to A.

– Output Stage.

1. A outputs a bit b′ ∈ {0, 1} and sends it to R.
2. R outputs the same b′ as the guess for b.

Notice that, the KDM query function f(x1, . . . ,xn̄) from A is essential f(x +
k1, . . . ,x+kn̄), since xi = x+ki for 1 ≤ i ≤ n̄ according to the assumed Property
1 in Section 6.1. Clearly, with the previously known knowledge of (k1, . . . ,kn̄),
it is easy to rewrite

f(x+ k1, . . . ,x+ kn̄) = g{ki}i∈[n̄]
(x).

At the same time, according to Property 2, the transformations among cipher-
texts under different CRS are perfect. From all above analyses, we can conclude
that the above simulation process is perfect, no matter b = 0 or 1. Therefore, it
makes sense for R to output the same value as A. And the success advantage of
R is the same as A.

Finally, this complete the proof of this theorem. ut

Remark 6.5 Our construction can support more general relationship between F
and G. Particularly, the theorem also holds for the following relation. For every
k1, . . . ,kn̄ and h ∈ F , we have gk1,...,kn̄(x) := h(x+ k1, . . . ,x+ kn̄) ∈ G.

6.3 Proving KDM(1)-Security of Πn̄

In this section, we first define the required new pseudorandom property, and
then show how it derives KDM(1)-security of Π n̄

PKE for unbounded polynomial n̄.
In the next section, we show how to construct such an underlying BE.
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Definition 6.6 Let Ext : R×ZnB →M be some (reusable) extractor. A BE-based
PKE satisfies an additional pseudorandom property if the following holds. For
any polynomial n̄ = poly(λ), the following two distributions are computationally
indistinguishable: ((

CRS1, · · · ,CRSn̄
h1, · · · , hn̄

)
, {ri,Ext(ri,x + ki)}i∈[t]

)
≈c
((

CRS1, · · · ,CRSn̄
u1, · · · , un̄

)
,
{
ri, u

′
i

}
i∈[t]

)

where {CRSi}i∈[n̄], {ui}i∈[n̄] and {u′i}i∈[t̄] are uniformly random, x
$←− ZnB, and

hi = H(CRSi,x) for all i ∈ [n̄].

Theorem 6.7 Let ΠPKE be the BE-based scheme as Construction 5.3. Suppose
the underlying BE satisfies the pseudorandom property as Definition 6.6. Then
for any polynomial n̄, the intermediate scheme Π n̄

PKE is KDM(1)-secure with re-
spect to all block-affine functions.

The proof of this theorem is similar to that of Theorem 5.4. Particularly, we
would switch all the real KDM responses to Enc′ as in the Hybrid H0,Q, and
then use the reusable extractor (against shift functions) to further switch the
responses to Enc′′ as in the Hybrid H1. The key observation is the following:
H(CRS,x) does not leak x in the computational sense and can be used in connec-
tion with the extractor. Thus, the same argument of Theorem 5.4 goes through
in this case.

Proof. This proof takes the same high-level steps and the algorithms Enc′k and
Enc′′k as that of Section 5.2. Thus, we omit them here.

Furthermore, in order to deal with hi = h(CRSi,x) for i ∈ [n̄] in the public
key, we adopt the pseudorandom property of the public key in Definition 6.6,
and redefine the series of hybrids as follows:

– Hybrid H0: This hybrid is identical to the original KDM queries case, i.e.
the responses of all the Q KDM queries are generated as the real encryptions
of the g′(i)(sk) for i = 1, ..., Q.

– Hybrid H0.i for each i ∈ [Q]: Upon receiving the first i KDM queries, this
hybrid uses Enc′ to reply and then generates the remaining KDM responses
according to the original encryption algorithm as H0.

– Hybrid H1: This hybrid first chooses and uses the real random {ui}i∈[n̄] in
public key, instead of the real ones {hi = H(CRSi,x)}i∈[n̄], and then does the
following. Upon receiving all KDM queries, this hybrid uses Enc′′ to reply
through using the random public key.

– Hybrid H2: This hybrid replies all KDM queries with Enc(0) through using
the random public key.

– Hybrid H3: This hybrid replies all KDM queries with Enc(0) through using
the real public key.
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Let events E0, E1, E2 and E3 denote that the KDM adversary A outputs 1 in
H0, H1, H2 and H3 respectively. Similarly, we define events E0.i. To show that
Pr[E0] ≈ Pr[E3], we will take the following path:

Pr[E0] ≈ Pr[E0.1] ≈ · · · ≈ Pr[E0.Q] ≈ Pr[E1] ≈ Pr[E2] ≈ Pr[E3].

For notational convenience, we define H0.0 := H0.

Lemma 6.8 For i ∈ [Q],
∣∣Pr[E0.i−1]− Pr[E0.i]

∣∣ ≤ negl(λ), assuming the cipher-
text indistinguishability of the underlying wHPS.

Proof. This proof is the same as that of Lemma 5.6. Hence, we omit the details
here. ut

Lemma 6.9
∣∣Pr[E0.Q] − Pr[E1]

∣∣ ≤ negl(λ), assuming the pseudorandomness in
Definition 6.6.

Proof. Similar to the proof in Lemma 5.7, the view of the adversary in H0.Q

consists of (
pk, g′(1),CT′(1), . . . , g′(Q),CT′(Q)

)
, (9)

where

pk :=

(
CRS1, · · · ,CRSn̄
h1, · · · , hn̄

)
and

CT′(i) =
(
CT
∗(i)
0 , ri,1,Ext||(ri,1,Decap(x,CT

∗(i)
0 )) + gi,1(xi) + ai,1,

. . . , ri,t,Ext||(ri,t,Decap(x,CT
∗(i)
0 )) + gi,t(xi) + ai,t

)
=
(
CT
∗(i)
0 , ri,1, {Ext(hi,1,l(ri,1),x′i,l)− gi,1,l(k

′
i,l) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(hi,t,l(ri,t),x′i,l)− gi,t,l(k
′
i,l) + ai,t,l}l∈[m]

)
,

=
(
CT
∗(i)
0 , ri,1, {Ext(hi,1,l(ri,1),xl + k′i,l)− gi,1,l(k

′
i,l) + ai,1,l}l∈[m],

. . . , ri,t, {Ext(hi,t,l(ri,t),xl + k′i,l)− gi,t,l(k
′
i,l) + ai,t,l}l∈[m]

)
,

for any i ∈ [Q].
Similarly, the view of the adversary in H1 consists of(

pk′, g′(1),CT′′(1), . . . , g′(Q),CT′′(Q)
)
, (10)

where

pk′ =

(
CRS1, · · · ,CRSn̄
u1, · · · , un̄

)
and

CT′′(i) =
(
CT
∗(i)
0 , ri,1, {ui,1,l}l∈[m], . . . , ri,t, {ui,t,l}l∈[m]

)
,
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with ri,j
$←− R and ui,j,l

$←−M.

Next, it is sufficient for us to prove (9) ≈c (10) through using the reduction
approach from the pseudorandom property in Definition 6.6. This is quite similar
to the reduction in Lemma 5.7, which is omitted here. ut

Lemma 6.10
∣∣Pr[E1]−Pr[E2]

∣∣ ≤ negl(λ), assuming the ciphertext indistinguisha-
bility of the underlying wHPS.

Proof. We omit the detailed proof, since it is quite similar to that of Lemma 5.8.
ut

Lemma 6.11
∣∣Pr[E2] − Pr[E3]

∣∣ ≤ negl(λ), assuming the pseudorandomness of
the public key in Definition 6.6.

Proof. We omit the detailed proof, since it is quite similar to that of Lemma 6.9.
ut

Combining Lemma 6.8, 6.9, 6.10 and 6.11, we can conclude that the advan-
tage AdvF-KDM

PKE,A (λ) of A in the KDM security game satisfies that:

AdvF-KDM
PKE,A (λ) ≤ (Q+ 3) · negl(λ) ≤ negl(λ).

This completes the proof that Π n̄
PKE in Construction 6.3 is KDM(1)-secure

with respect to Gt. ut
For the clarity of our presentation, we defer the detailed constructions of the

required BE to Section 7.

Summing up Theorems 6.4, 6.7 and the instantiations of the required BE in
Section 7, we conclude that for any polynomial n̄, Construction 5.3 is KDM(n̄)-
secure with respect to block-affine functions.

7 Instantiations of BE

In this section, we show how to instantiate the required BE in Section 6.3 as
below.

– In Section 7.1, we verify that the existing CDH-based BE scheme in [16]
satisfy the two key-homomorphic properties, which can be used to derive
a KDM(n̄)-secure PKE for bounded polynomial n̄. Furthermore, we observe
that this CDH-based BE scheme also satisfies the pseudorandom condition if
we further assume the DDH assumption. In this case, we can further prove
the corresponding construction is KDM(n̄)-secure for unbounded polynomial
n̄ from DDH.

– In Section 7.2, we construct a new LWE-based BE scheme that satisfies the
two key-homomorphic properties and the pseudorandom condition simulta-
neously, which can be used to derive a KDM(n̄)-secure PKE for unbounded
polynomial n̄.
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7.1 CDH/DDH-based BE Scheme in [16]

In this section, we first recall the existing CDH-based BE Scheme in [16], and
then verity that it satisfies two key-homomorphic properties. Moreover, this
BE scheme can also be verified to satisfy the additional pseudorandom condition,
if the DDH assumption holds.

Definition 7.1 Define gl-enc(x, µ) as a randomized function that on input x ∈
{0, 1}`, µ ∈ {0, 1} samples α ∈ {0, 1}` and outputs (α, 〈α, x〉 ⊕ µ), where the
inner product is over the binary field. Define gl-dec(x, (α, σ)) be the function
that takes x ∈ {0, 1}` and (α, σ) ∈ {0, 1}`+1 and outputs σ ⊕ 〈α, x〉.

Construction 7.2 (CDH-based BE in [16]) Let G be a group sampler as the
definition of CDH assumption, and Goldreich-Levin encoding/decoding procedure
gl-enc/gl-dec defined as Definition 7.1. The CDH-based batch encryption scheme
is as follows:

– CDH-BE.Setup(1λ, 1n). Taking λ and n as input, the algorithm first samples
(G, g, q)← G(1λ) such that n ≥ log q+2 log(1/ε) for some negligible function
ε of λ, and then samples αi,b ← Zq for i ∈ [n], b ∈ {0, 1}. Furthermore, the al-
gorithm defines gi,b = gαi,b , and outputs CRS = ((G, g, q), {gi,b}i∈[n],b∈{0,1}).

– CDH-BE.KeyGen(CRS,x). The algorithm computes and outputs h =
∏
i gi,xi .

– CDH-BE.Enc(CRS, h,M). Taking as input a common reference string CRS,
the public key h, and a matrix M ∈ {0, 1}n×2, the algorithm does the follow-
ing steps. For each i ∈ [n], sample ri ← Zq. Then for all j 6= i and b ∈ {0, 1}
compute: ĝj,b = grij,b. Compute ĝi,b = hrig−rii,b , and let µi,b = gl-enc(ĝi,b,Mi,b).
Output CT = {cti}i∈[n] = {({ĝj,b}j 6=i,b∈{0,1}, {µi,b}b∈{0,1})}i∈[n].

– CDH-BE.Dec(CRS,x,CT). Taking as input CRS, x and CT, the algorithm
first parses CT = (ct1, ..., ctn). Then for cti = ({ĝj,b}j 6=i,b∈{0,1}, {µi,b}b∈{0,1})
with i ∈ [n], the algorithm computes ĝi,xi =

∏
j 6=i ĝj,xj and mi,xi = gl-dec(ĝi,xi ,

µi,xi). Finally, the algorithm outputs m = (m1,x1 , ...,mn,xn).

Two key-homomorphic properties of CDH-BE. We show that the CDH-
based BE satisfies the two properties in Section 6.1. We first define algorithm T1

as follows:

T1(CRS, h, k′): Take CRS = ((G, g, q), {gi,b}i,b), h =
∏
i gi,xi for a random key

vector x ∈ {0, 1}n, and a random vector k′ ∈ {0, 1}n as input. Do the followings:

1. For k′ = (k′1, ..., k
′
1) ∈ {0, 1}n, define g′i,b = gi,b+k′i , where b + k′i is the bit

addition operation.
2. Set CRS′ = ((G, g, q), {g′i,b}i,b), and set h′ = h.

3. Output (CRS′, h′).

It’s easy to see that

h =

n∏
i=1

gi,xi =

n∏
i=1

g′i,xi+k′i .
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So h′ can also be viewed as a projection of the vector (x+ k′) under CRS′, i.e.,
h′ = h(CRS′,x+k′). Then we can show that the Property 1 in Section 6.1 holds,
i.e., the following equation holds(

CRS, h(CRS,x+ k′),x,k′
)
≡
(
T1(CRS, h(CRS,x),k′),x,k′

)
.

It’s sufficient to show(
CRS, h(CRS,x+ k′),x,k′

)
≡
(
CRS′, h(CRS′,x+ k′),x,k′

)
.

According to the relationship between CRS and CRS′, it is clear that

(CRS,k′) ≡ (CRS′,k′).

As a result, the Property 1 holds.
Next, we define the algorithm T2 in the following way:

T2(CT, k′): Take a random ciphertext CT = {({ĝj,b}j 6=i,b∈{0,1}, {µi,b}b∈{0,1})}i∈[n]

and k′ ∈ {0, 1}n as input, where CT= CDH-BE.Enc(CRS, h,M) for CRS =
(G, g, q), {gi,b}i,b), h = h(CRS,x) =

∏
i gi,xi and plaintext M = (mi,j)i∈[n],j∈{0,1}.

Do the followings:

1. For the vector k′ = (k′1, . . . , k
′
n) ∈ {0, 1}n, define ĝ′j,b = ĝj,b+k′i for each

i ∈ [n], where j 6= i, b ∈ {0, 1}.
2. Set µ′i,b = µi,b+k′i for i ∈ [n], b ∈ {0, 1}.
3. Output CT′ = {({ĝ′j,b}j 6=i,b∈{0,1}, {µ′i,b}b∈{0,1})}i∈[n].

We want to show the property 2 in Section 6.1 holds, i.e., the following
equation holds

(CT1, T1(CRS, h(CRS,x),k),x,k) ≡ (T2(CT,k), T1(CRS, h(CRS,x),k),x,k) ,

where CT ← Π.Enc(CRS, h(CRS,x), µ), and CT1 ← Π.Enc(CRS, h(CRS,x +
k), µ). By our setting, it’s easy to see T2(CT,k) = CT′ = Π.Enc(CRS′, h(CRS′,x+
k′), µ). It’s sufficient to show

(Π.Enc(CRS, h(CRS,x+ k), µ), T1(CRS, h(CRS,x),k),x,k)

≡
(
Π.Enc(CRS′, h(CRS′,x+ k′), µ), T1(CRS, h(CRS,x),k),x,k

)
,

which is clear by our setting. As a result, the Property 2 holds.

Pseudorandom properties of DDH-BE. We show that the BE scheme con-
structed above satisfies the pseudorandom property as definition 6.6 under DDH
assumption. Firstly, we need to show that for any polynomial t = poly(λ), the
following two distributions are computationally indistinguishable:(

CRS1, · · · ,CRSt
h1, · · · , ht

)
≈c
(
CRS1, · · · ,CRSt
u1, · · · , ut

)
,
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where {CRSs}s∈[t] and {us}s∈[t] are uniformly random, x
$←− Zn2 , and hs =

h(CRSs,x) for all s ∈ [t]. By our construction, CRSs = ((G, g, q), {g(s)
i,b }i,b),

hs =
∏n
i=1 g

(s)
i,xi

, for each s ∈ [t]. We can rewrite {g(s)
i,b }i,b as gα

(s)

where α(s) =

(α
(s)
1,0, α

(s)
2,0, . . . , α

(s)
n,0, α

(s)
1,1, α

(s)
2,1, . . . , α

(s)
n,1) ∈ Z2n

q , then hs = g〈α
(s),x̃〉, where x̃> =

(x̄>,x>) = (1−x1, . . . , 1−xn, x1, . . . , xn) ∈ {0, 1}2n. Therefore, we can rephrase(
CRS1, · · · ,CRSt
h1, · · · , ht

)
as ((G, g, q), gA> , gA>x̃), where A = (α(1), · · · ,α(t)),

(CRS1, · · · ,CRSt) = ((G, g, q), gA>) and (h1, · · · , ht)> = gA>x̃. Then it’s suffi-
cient to show that

((G, g, q), gA> , gA>x̃) ≈c ((G, g, q), gA> ,u),

where u is uniformly random in Gt. Clearly we have H∞(x̃) = n ≥ log q +
2 log(1/ε) from the parameter setting. Then by Theorem 3.12, the above two
distributions are computationally indistinguishable.

Next, we show that for any M1,M2 ∈ Zn×BB , we have

DDH-BE.Enc(CRS, u,M1) ≈c DDH-BE.Enc(CRS, u,M2)

for uniformly random CRS, u. It’s equivalent to show

{({ĝj,b}j 6=i,b∈{0,1}, {µ
(1)
i,b }b∈{0,1})}i∈[n] ≈c {({ĝj,b}j 6=i,b∈{0,1}, {µ

(2)
i,b }b∈{0,1})}i∈[n],

(11)

where µ
(a)
i,b = gl-enc(ĝi,b,M

(a)
i,b ) and M

(a)
i,b is the component of Ma, for a ∈ {1, 2}.

According to the DDH assumption, given {ĝj,b = grij,b}j 6=i,b∈{0,1}, uri is com-
putationally indistinguishable from the uniform over G. This means that ĝi,b =
urig−rii,b is also computationally indistinguishable from the uniform over G. Fur-

thermore, by Goldreich-Levin Theorem [24], ({ĝj,b}j 6=i,b∈{0,1}, {µ
(a)
i,b }b∈{0,1}) is

computationally indistinguishable from ({ĝj,b}j 6=i,b∈{0,1},u) for any {µ(a)
i,b }b∈{0,1},

where u is uniformly random. Summing us above analyses, we conclude that (11)
is set up.

7.2 New LWE-based BE Scheme

In this section, we first propose a new BE scheme based on LWE, and then
show this BE satisfies two key-homomorphic properties in Section 6.1 and the
pseudorandomness property in Definition 6.6.

Construction 7.3 (LWE-based BE) In order to simplify the description of
this construction, we set the size parameter to be B = 2. More formally, this
LWE-based BE scheme can be described as follows.

– LWE-BE.Setup(λ, n): Given the security parameter λ and the size parameter
n ∈ N as input, the algorithm does the following
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1. Set β > 0 such that βq >
√
ñ, and β < 1

24ñ3/2 . Select random matrices

A0 = [a0,1| · · · |a0,n]
$←− Zñ×nq , A1 = [a1,1| · · · |a1,n]

$←− Zñ×nq ;

2. Output CRS := (A0,A1);

– LWE-BE.KeyGen(CRS,x): Given the common parameter CRS and the secret
key sk := x ∈ {0, 1}n as input, the algorithm first samples a noise vector

e
$←− ψ̄ñβ , and then computes h = (A0 · x̄+ A1 ·x+ e) mod q, where x̄ is the

complement of x. Finally, the algorithm output h as the public key pk.

– LWE-BE.Enc(CRS,h,M): Given the common parameter CRS, the public key
pk := h and a message matrix M = (Mi,b)i∈[n],b∈{0,1} ∈ Zn×2

2 as input, the
algorithm does the following:

1. For each Mi,b with i ∈ [n], b ∈ {0, 1}, define

Ab,−i = [ab,1| · · · |ab,i−1|ab,i+1| · · · |ab,n] ∈ Zñ×(n−1)
q ;

2. Choose s(i,b)
$←− {0, 1}ñ, e(i,b), e

′
(i,b)

$←− ψ̄(n−1)
β and e′′(i,b)

$←− ψ̄β;

3. Compute

v
(i,b)
0 =

(
A>0,−i · s(i,b) + e(i,b)

)
mod q ∈ Zn−1

q ,

v
(i,b)
1 =

(
A>1,−i · s(i,b) + e′(i,b)

)
mod q ∈ Zn−1

q

and

v
(i,b)
2 =

(
〈s(i,b),h− ab,i〉+ e′′(i,b) +Mi,bb

q

2
c
)

mod q ∈ Zq;

4. Output CT = (v(i,b))i∈[n],b∈{0,1} as the ciphertext, where (v(i,b))> =

((v
(i,b)
0 )>‖(v(i,b)

1 )>‖v(i,b)
2 ).

– LWE-BE.Dec(CRS,x,CT): Given the common parameter CRS, the secret key
sk := x and a ciphertext CT as input, the algorithm does the following:

1. For each i ∈ [n], define x−i = (x1, . . . , xi−1, xi+1, . . . , xn)> ∈ {0, 1}n−1

and x̄−i as the complement of x−i;

2. Compute yi =
(
v

(i,xi)
2 − 〈x̄−i,v(i,xi)

0 〉 − 〈x−i,v(i,xi)
1 〉

)
. Finally, set ki =

0 if yi is closer to 0 than to b q2c. Otherwise, set ki = 1.

3. The algorithm finally outputs k = (k1, k2, . . . , kn)>.

Lemma 7.4 (Correctness of LWE-BE) The scheme LWE-BE is correct ex-
cept with a negligible probability.

Proof. Let CRS := (A0,A1), sk := x, M = (Mi,b)i∈[n],b∈Z2
∈ {0, 1}n×2 be

arbitrary, and consider the public key h = (A0 · x̄ + A1 · x + e) mod q and

v(i,xi) = (v
(i,xi)
0 ‖v(i,xi)

1 ‖v(i,xi)
2 ) as the encryption of M(i,xi) ∈ {0, 1}. Then by
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the decryption algorithm, we have

v
(i,xi)
2 − 〈x̄−i,v(i,xi)

0 〉 − 〈x−i,v(i,xi)
1 〉

=〈s(i,xi),h− axi,i〉+ e′′(i,xi) +Mi,xib
q

2
c − 〈x̄−i,A>0,−i · s(i,xi) + e(i,xi)〉−

〈x−i,A>1,−i · s(i,xi) + e′(i,xi)〉

=〈s(i,xi),h〉−〈s(i,xi),axi,i〉+e
′′
(i,xi)+Mi,xib

q

2
c−〈(A0,−i · x̄−i+A1,−i · x−i), s(i,xi)〉−

〈x̄−i, e(i,xi)〉−〈x−i, e
′
(i,xi)〉

=〈s(i,xi), e〉+ e′′(i,xi) +Mi,xib
q

2
c − 〈x̄−i, e(i,xi)〉−〈x−i, e

′
(i,xi)〉.

Hence, 〈s(i,xi), e〉 + e′′(i,xi) − 〈x̄−i, e(i,xi)〉−〈x−i, e′(i,xi)〉 is the noise in the de-

cryption. For s(i,xi) ∈ {0, 1}ñ, x̄−i,x−i ∈ {0, 1}n−1, e(i,j), e
′
(i,j)

$←− ψ̄
(n−1)
β ,

e′′(i,j)
$←− ψ̄β and e

$←− ψ̄ñβ , it holds∣∣∣〈s(i,xi), e〉+ e′′(i,xi) − 〈x̄−i, e(i,xi)〉−〈x−i, e
′
(i,xi)
〉
∣∣∣

≤
∣∣〈s(i,xi), e〉

∣∣+
∣∣∣e′′(i,xi)∣∣∣+

∣∣〈x̄−i, e(i,xi)〉
∣∣+
∣∣∣〈x−i, e′(i,xi)〉∣∣∣

≤ βqñ3/2 +
1

2
ñ3/2 + βqñ1/2 +

1

2
+ 2βq(ñ− 1)

3/2
+ (ñ− 1)

3/2

< βq(6ñ3/2),

except with a negligible probability. Furthermore, by condition β < 1
24ñ3/2 , we

know that the absolute value of the above noise is bounded by q
4 . As a result,

the decryption algorithm of LWE-BE is correct with overwhelming probability.
ut

Lemma 7.5 (Security of LWE-BE) The scheme LWE-BE is semantically se-
cure under the LWE assumption.

Proof. According to Definition 2.7, our target is to prove that the view of the
adversary is computationally indistinguishable from one where all v(i,b) are uni-
formly random for all i ∈ [n] and b 6= xi. Here we just focus on the computational
indistinguishability with respect to one row of M (e.g., the i-th row of M for
certain i ∈ [n]), which implies the security of the batch encryption scheme by a
simple hybrid argument [16].

Let t be index of the row that we want to prove indistinguishability. Consider
that the simulator receives the challenge x from the adversary and the LWE
challenge of the form a′0,1,a

′
1,1, . . . ,a

′
0,n,a

′
1,n ∈ Zñq , {zb,i}i∈[n],b∈{0,1}, where each

zb,i is either uniformly random or from the LWE distribution, i.e., zb,i = s> ·ab,i+
eb,i. Define zb,−t = (zb,1, . . . , zb,t−1, zb,t+1, . . . , zb,n)> for b ∈ {0, 1}.

The simulator sets A′ = (a′0,1| . . . |a′0,n|a′1,1| . . . |a′1,n) ∈ Zñ×2n
q and samples a

noise vector e′
$←− ψñβ , then computes h′ =

(
A′ ·

(
x̄
x

)
+ e′

)
mod q. Then, for all
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i 6= t it sets a0,i = a′0,i,a1,i = a′1,i, and sets axt,t = a′xt,t,a1−xt,t = a′1−xt,t +h′.

The simulator sets CRS := A = (a0,1| . . . |a0,n|a1,1| . . . |a1,n), and h = h′.
It’s easy to see the distribution of (CRS,h) are identical to that in the original

game. Particularly, it is easy to verify that h(CRS,x) = h(CRS′,x) = h′ = h.
The simulator sends (CRS,h) to the adversary and receives the message

vectors. It then samples s(xt), e(xt) itself and generates v(t,xt) properly. For the
other part, set

v
(t,1−xt)
0 = z0,−t, v

(t,1−xt)
1 = z1,−t, and v

(t,1−xt)
2 = −z1−xt,t +M1−xt,t.

We notice that if the vectors {zb,i}b∈{0,1},i∈[n] were generated from the LWE

distribution, then v(t,1−xt) has the distribution of the ciphertext. On the other
hand, if the vectors are uniform, then v(t,1−xt) is uniform. Thus, if the adversary
can distinguish the ciphertext from the uniform distribution, the simulator can
break the LWE assumption with the same advantage. ut

Two key-homomorphic properties of LWE-BE. We show that the LWE-
based BE satisfies the two properties in Section 6.1. We first define algorithm T1

as follows:

T1(CRS, h, k′): Take CRS = A = [A0|A1] = [a0,1| . . . |a0,n|a1,1| . . . |a1,n] ∈

Zñ×2n
q , h = A ·

(
x̄
x

)
+ e ∈ Zñq for a random key vector x ∈ {0, 1}n, and a

random vector k′ ∈ {0, 1}n as input. Do the followings:

1. For k′ = (k′1, ..., k
′
1) ∈ {0, 1}n, set a′b,i = ab⊕k′i,i for each i ∈ [n], b ∈ {0, 1},

then set CRS′ = A′ = [a′0,1| . . . |a′0,n|a′1,1| . . . |a′1,n].

2. Set h′ = h.
3. Output (CRS′,h′).

Then we have

h = A ·
(
x̄
x

)
+ e

=
∑
i∈[n]

(1− xi)a0,i +
∑
i∈[n]

xia1,i + e

=
∑
i∈[n]

(1− xi)a′k′i,i +
∑
i∈[n]

xia
′
1−k′i,i

+ e

=
∑
i∈[n]

(1− (xi ⊕ k′i))a′0,i +
∑
i∈[n]

(xi ⊕ k′i)a′1,i + e

= A′ ·
(

(x+ k′)
x+ k′

)
+ e

= h′.
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So h′ can also be viewed as a projection of the vector (x+ k′) under CRS′, i.e.,
h′ = h(CRS′,x+k′). Then we can show that the Property 1 in Section 6.1 holds,
i.e., the following equation holds(

CRS, h(CRS,x+ k′),x,k′
)
≡
(
T1(CRS, h(CRS,x),k′),x,k′

)
.

It’s sufficient to show(
CRS, h(CRS,x+ k′),x,k′

)
≡
(
CRS′, h(CRS′,x+ k′),x,k′

)
.

According to the relationship between CRS and CRS′, it is clear that

(CRS,k′) ≡ (CRS′,k′).

As a result, the Property 1 holds.
Next, we define the algorithm T2 in the following way:

T2(CT, k′): Take a random ciphertext (v(i,b))i∈[n],b∈{0,1} and k′ ∈ {0, 1}n as
input, where CT= LWE-BE.Enc(CRS, h,M) for CRS = [A0|A1],h = h(CRS,x) =
A0 · x̄+ A1 · x+ e and plaintext M = (mi,b)i∈[n],b∈{0,1}. Do the followings:

1. For the vector k′ = (k′1, . . . , k
′
n) ∈ {0, 1}n, define the matrix

Pi = [e0,1| . . . |e0,i−1|e0,i+1| . . . |e0,n|e1,1| . . . |e1,i−1|e1,i+1| . . . |e1,n] ∈ {0, 1}2(n−1)×2(n−1),

where e0,j is the 2(n − 1)-dimensional unit vector such that 1 is in the
j + k′j(n − 1)-th position, and e1,j is the 2(n − 1)-dimensional unit vector
such that 1 is in the j + (1− k′j)(n− 1)-th position.

2. Set (v
′(i,b)
0 |v′(i,b)1 ) = (v

(i,b)
0 |v(i,b)

1 ) ·Pi.

3. Output CT′ = {v′(i,b)}i∈[n],b∈{0,1} = {(v′(i,b)0 |v′(i,b)1 |v(i,b+ki)
2 )}i∈[n],b∈{0,1}.

Then we have

(v
′(i,b)
0 |v′(i,b)1 ) =

(
s(i,b)[A0,−i|A1,−i] + (ei,b|e′i,b)

)
·Pi

= s(i,b) · [A0,−i|A1,−i] ·Pi + (ei,b|e′i,b) ·Pi

= s(i,b) ·A′−i + (ei,b|e′i,b) ·Pi,

where

A′−i = [ak′1,1| . . . |ak′i−1,i−1|ak′i+1,i+1| . . . |ak′n,n|a1−k′1,1| . . . |a1−k′i−1,i−1|a1−k′i+1,i+1| . . . |a1−k′n,n].

So v′(i,b) can be represented as

v′(i,b) = s(i,b) · [A′−i|h− ab+k′i,i] + [(ei,b|e′i,b) ·Pi|e′′i,b+k′i ] +Mi,bbq/2c

= s(i,b) · [A′−i|h
′ − a′b,i] + [(ei,b|e′i,b) ·Pi|e′′i,b+k′i ] +Mi,bbq/2c.

By the setting of Pi, the distribution of (ei,b|e′i,b) ·Pi is identical to the original

vector. So the resulting ciphertext CT′ can be viewed as a valid ciphertext of M
under CRS′ := A′ and h = h(CRS′,x+ k′).
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On the other hand, we want to show the property 2 in Section 6.1 holds, i.e.,
the following equation holds

(CT1, T1(CRS, h(CRS,x),k),x,k) ≡ (T2(CT,k), T1(CRS, h(CRS,x),k),x,k) ,

where CT ← Π.Enc(CRS, h(CRS,x), µ), and CT1 ← Π.Enc(CRS, h(CRS,x +
k), µ). By our setting, T2(CT,k) = CT′ = Π.Enc(CRS′, h(CRS′,x + k′), µ). It’s
sufficient to show

(Π.Enc(CRS, h(CRS,x+ k), µ), T1(CRS, h(CRS,x),k),x,k)

≡
(
Π.Enc(CRS′, h(CRS′,x+ k′), µ), T1(CRS, h(CRS,x),k),x,k

)
,

which is clear by our setting. As a result, the Property 2 holds.

Pseudorandom properties of LWE-BE. We show that the BE scheme con-
structed above satisfies the pseudorandom property as definition 6.6 under LWE
assumption. Firstly, we need to show that for any polynomial t = poly(λ), the
following two distributions are computationally indistinguishable:(

CRS1, · · · ,CRSt
h1, · · · , ht

)
≈c
(
CRS1, · · · ,CRSt
u1, · · · , ut

)
,

where {CRSs}s∈[t] and {us}s∈[t] are uniformly random, x
$←− {0, 1}n, and hs =

h(CRSs,x) for all s ∈ [t]. By our construction, CRSs = As = [a
(s)
0,1| . . . |a

(s)
0,n|a

(s)
1,1| . . . |a

(s)
1,n],

hs = As·
(
x̄
x

)
+es, for each s ∈ [t]. Therefore, we can rephrase

(
CRS1, · · · ,CRSt
h1, · · · , ht

)

as

(
A∗,A∗ ·

(
x̄
x

)
+ e∗

)
, where A∗ =

A1

...
At

 ∈ Ztñ×2n
q , e∗ = (e1| . . . |et) ∈ ψtñβ .

Then we need to show that

(A∗,A∗ ·
(
x̄
x

)
+ e∗)

c
≈ (A∗,u),

where u is uniformly random in Ztñq . In order to show this, we decompose A∗

into two part A∗0 and A∗1, where A∗b =

A1
b

...
At
b

, then

(
A∗,A∗ ·

(
x̄
x

)
+ e∗

)
=

(A∗0,A
∗
1,A

∗
0 · x̄+ A∗1 · x+ e∗). If we can show

(A∗0,A
∗
1,A

∗
0 · x̄+ e∗0,A

∗
1 · x+ e∗1)

c
≈ (A∗0,A

∗
1,u
∗
0,u
∗
1) ,

where e∗b ← ψtñβ√
2

for b ∈ {0, 1}, then we can easily derive the following approxi-

mate equation

(A∗0,A
∗
1,A

∗
0 · x̄+ A∗1 · x+ e∗)

c
≈ (A∗0,A

∗
1,u
∗) ,
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for e∗ ∈ ψtñβ . It’s easy to see that the distribution of (A∗0,A
∗
1,A

∗
0 · x̄+ e∗0,A

∗
1 · x+ e∗1)

is identical to (A∗0,A
∗
1,A

∗
0 − (A∗0 · x+ e∗0),A∗1 · x+ e∗1), it’s sufficient to show

(A∗0,A
∗
1,A

∗
0 · x+ e∗0,A

∗
1 · x+ e∗1)

c
≈ (A∗0,A

∗
1,u
′∗
0 ,u

′∗
1 ) ,

which can be proved by the hardness of LWE with Binary Secrets [34].

8 Putting Things Together

By instantiating Construction 5.3 with (1) the specific reusable extractor from
LWE in Construction 3.6 and (2) the LWE-based BE in Construction 7.3, we are
able to achieve the following corollary via Theorems 6.4, 6.7:

Corollary 8.1 Assuming that LWE is hard, there exists a rate-1 (both informa-
tion and leakage rates) PKE that is leakage resilient against block leakage and

KDM(n̄)-secure w.r.t. block-affine functions for any unbounded polynomial n̄.

Similarly, by instantiating Construction 5.3 with (1) the specific reusable extrac-
tor from DDH in Construction 3.11 and (2) the DDH-based BE in Construction
7.2, we are able to achieve the following corollary via Theorems 6.4, 6.7:

Corollary 8.2 Assuming that DDH is hard, there exists a rate-1 (both informa-
tion and leakage rates) PKE that is leakage resilient against block leakage and

KDM(n̄)-secure w.r.t. block-affine functions for any unbounded polynomial n̄.

We notice that the overall construction of the DDH-based scheme resembles
a modification of the scheme of [12]. We do not present this variant. Instead, we
take a more modular approach by identifying a framework that suffices for KDM
security and can be instantiated from various assumptions.

Remark 8.3 The class of block affine functions is more restricted than the reg-
ular (bit) affine class. In particular, each output component of a block affine
function can depend only on one block of the input, whereas the output of a bit
affine function can depend on every bit of the input. Nevertheless, this restricted
class already suffices for KDM amplification to any bounded-size functions, and
moreover allows constructions with better information rate. We discuss how to
amplify the function class in the following section.

9 Extension 1: Enlarge the class of KDM functions

In this section, we further extend our above results in Section 8, i.e., enlarging
the class of KDM functions via Garbled Circuits.
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9.1 Garbled Circuits

In this section, we recall the key ingredient for the KDM amplification of Apple-
baum [7]: Garbled Circuits.

Definition 9.1 (Garbled Circuits [16]) A garbling scheme consists of three
algorithms (Garble,Eval,Sim) as follows:

– Garble(1λ, 1n, 1m, C) is a ppt algorithm that first takes as input λ, a circuit
C : {0, 1}n → {0, 1}m together with its input length n and output length m,

and then outputs a garbled circuit Ĉ along with labels {labi,b}i∈[n],b∈{0,1},

where each label labi,b ∈ {0, 1}λ.

– Eval(1λ, Ĉ, L̂) is a deterministic algorithm that first takes as input a garbled

circuit Ĉ along with a set of n labels L̂ = {labi}i∈[n], and then outputs a
string y ∈ {0, 1}m.

– Sim(1λ, 1|C|, 1n, y) is a ppt algorithm that first takes as input λ and a bit
description length of circuit C, an input length n and a string y ∈ {0, 1}m,

then outputs a simulated garbled circuit C̃ and labels L̃ = {l̃abi}i∈[n].

Moreover, the garbling scheme needs to satisfy the following two properties.

1. Correctness. For any circuit C : {0, 1}n → {0, 1}m, any input x = (xi)i∈[n] ∈
{0, 1}n, and any (Ĉ, {labi,b})← Garble(C), it holds Eval(Ĉ, L̂) = C(x) where

L̂ = {labi,xi}i∈n.
2. Simulation Security. For any circuit C : {0, 1}n → {0, 1}m, any input

x = (xi)i∈[n] ∈ {0, 1}n, the following two distributions are computational
indistinguishability:

{(Ĉ, L̂) : (Ĉ, {labi,b})← Garble(C), L̂ = {labi,xi}i∈n}

≈{(C̃, L̃) : (C̃, L̃)← Sim(1λ, 1|C|, 1n, C(x))}.

9.2 Bootstrapping to Larger Classes of KDM Functions

We first present a bootstrapped variant of Construction 5.3 by using the tech-
nique of garbled circuits.15 Then, we analyze the KDM-security and information
rate of this improved scheme.

Construction 9.2 (Amplification of Our KDM Security) Let Π =
Π.{KeyGen,Enc,Dec} be the PKE of Construction 5.3 instantiated with param-
eter B = 2 such that its secret key size |sk| = n = n′ · m. And let GC =
GC.(Garble,Eval,Sim) be a garbled scheme, whose label size |labi,j | is equivalen-

t to the bit length of element in M. Then, we construct a new scheme Π̂ =
Π̂.{KeyGen,Enc,Dec} with the message space M̂ =M(t−n′+1)×m as follows:

15 In [7], Applebaum leverages the abstract notion of randomized encoding to achieve
KDM amplification. Here, we directly amplify our scheme through using Garbled
Circuits, which is a well-known instantiation of randomized encoding.
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– Π̂.KeyGen(1λ): The algorithm gets (pk, sk) just as Π.KeyGen(1λ).

– Π̂.Enc(pk, µ): Given a public-key pk and a message µ = {µi,j}i∈[t−n′+1],j∈[m] ∈
M(t−n′+1)×m as input, the algorithm first invokes (C̃, L̃)← GC.Sim(µ1,1, . . . , µ1,m)

with L̃ = {labi,j}i∈[n′],j∈[m], and then runs Π.Enc to output the ciphertext

CT :=
(
C̃,Π.Enc(pk, L̃, {µi,j}i∈[2,t−n′+1],j∈[1,m])

)
=
(
C̃,CT0, r1, {Ext(r1,k1) + lab1,1, . . . ,Ext(r1,km) + lab1,m},

. . . , rn′ , {Ext(rn′ ,k1) + labn′,1, . . . ,Ext(rn′ ,km) + labn′,m},
rn′+1, {Ext(rn′+1,k1) + µ2,1, . . . ,Ext(rn′+1,km) + µ2,m},

. . . , rt, {Ext(rt,k1) + µ(t−n′+1),1, . . . ,Ext(rt,km) + µ(t−n′+1),m}
)
.

Here, we use {labi,j}i∈[n′] to denote the garbled results of the j-th block of
sk for any j ∈ [m].

– Π̂.Dec(sk,CT): Given a ciphertext CT and a secret key sk as input, the algo-
rithm first runs Π.Dec to recover all {labi,j}i∈[n′],j∈[m] and {µ′i,j}i∈[2,t−n′+1],j∈[m],

and then runs GC.Dec(C̃, {labi,j}) to get {µ′1,j}j∈[m]. Finally, the algorithm
outputs

µ′ = {µ′i,j}i∈[t−n′+1],j∈[m] ∈M(t−n′+1)×m.

Remark 9.3 For simplicity of presentation, we have implicitly assumed that
|labi,j | = |M|. For the more general case such that |labi,j | > |M|, we can easily
handle through using many more elements in M to cover each labi,j.

It is not hard to verify that the correctness of Π̂ follows from that of the under-
lying scheme Π and garble scheme GC. Below, we first argue the KDM-security
of the scheme Π̂, and then analyze its information rate.

Before presenting the formal theorem about the KDM security of Π̂, we define
a particular KDM function class F̂ = (Fs||Qτ ) as follows.

Definition 9.4 Let Fs be the class of functions of the secret key sk := x ∈ ZnB,
where the circuit size of each function in Fs is up to s. Let Qτ denote the
block-affine function class {g′ : ZnB → Mτ×m}, which is defined similarly as
in Definition 2.16. Moreover, (Fs||Qτ ) denotes the concatenation of two classes,
i.e., every function f in the class can be represented by f = (h, q) for some h ∈ Fs
and q ∈ Qτ such that f(sk) = (h(sk)||q(sk)).

Theorem 9.5 For the parameter setting in Construction 9.2, if Π is KDM(1)-
secure with respect to Gt = {g′ : ZnB → Mt×m} as defined in Definition 2.16,

and GC is a secure garbling scheme, then Π̂ is KDM(1)-secure with respect to
F̂ = (Fs||Qτ ) as defined in Definition 9.4.

Proof (Sketch). As pointed out by [7], we just need to focus on KDM reduction
from Fs to the corresponding part of block-affine function class Gt, denoted by
Gn′ , i.e., Fs ≤KDM Gn

′
. Particularly, it suffices to show that block-affine functions
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in Gn′ can encode any bounded size circuits of x ∈ Zn2 , according to Applebaum’s
concepts on the KDM reduction in [7].

More specifically, suppose that A is the adversary against the KDM-security
of Π̂ with respect to h ∈ Fs, and C is the challenger for the KDM-security
of Π with respect to Gn′ . Then, through using A as a building block, we can
establish a reduction algorithm B to break the KDM-security of Π with the same
advantage as that of A.

In particular, after receiving a function h(·) ∈ Fs of sk from A, B conducts
the followings

1. Choose 2n labels {labi,j,0, labi,j,1}i∈[n′],j∈[m], with |sk| = n = n′ ·m.

2. For each j ∈ [m],

– Set a matrix A(j) = (a
(j)
1 , . . . ,a

(j)
n′ ) of dimension (n′ × n′), where for

l ∈ [n′], the l-th component of a
(j)
l is (labl,j,1 − labl,j,0) and all others

are 0.

– Set a vector b(j) = (lab1,j,0, . . . , labn′,j,0)> of n′ dimension.

– Take (A(j))> and b(j) as the index of the j-th block-affine function

gj(skj) = (A(j))> · skj + b(j), where skj ∈ {0, 1}n
′

is the j-th block
of sk.

3. Send the indexes of all m block-affine functions to C to conduct KDM query.

4. Receive the KDM ciphertexts {cti,j}i∈[n′],j∈[m] from C.
5. Run the algorithm GC.Garble to obtain the garbled circuit Ĉ with respect to

the KDM query function h(·) from A.

6. Send CT := (Ĉ, {cti,j}i∈[n′],j∈[m]) to A.

7. Finally, B outputs whatever A outputs.

It is not hard to verify that cti,j will be a encryption of labi,j,b for b := ski,j .
Thus, the above reduction process is clearly set up. Finally, this theorem holds.
ut

Remark 9.6 Although Theorem 9.5 just focuses on the case of KDM(1), the
above construction and analysis can be easily (though somewhat tedious) extended

to KDM(n̄) for any polynomially unbounded n̄.

Finally, we focus on the information rate of the above construction. We remark
that for this amplified KDM function class F̂ = (Fs||Qτ ), the parameters t, s
and τ should satisfy: τ < t and s is the size of circuits amplified from block-affine
function with outputs (t− τ) vectors over Mm.

By setting τ � s, our scheme achieves the optimal information rate, i.e., 1−
o(1). This is because although the additional garble circuit in the ciphertext and
the encryption of labels will increase the ciphertext length to certain bounded
size, we can use large enough τ � s such that the last τ part of ciphertext
dominates the whole information rate.
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10 Extension 2: Upgrade to KDM-Secure and Leakage
Resilient IBE

In this section, we further extend our above results in Section 8 to generalize
our results to the setting of IBE.

Particularly, we present our general compiler to construct an IBE that is
both KDM-secure and leakage resilient. The compiler uses as key ingredients an
IB-wHPS (ref. Definition 2.13) with additional structure (ref. Remark 4.2) and
an on-the-fly KDM-secure PKE (ref. Section 10.1). Conceptually, this general
IBE scheme can be view as the hybrid encryption of the IB-wHPS and PKE:
to encrypt a message m, the IBE encryption algorithm first generates (1) a
pair of encapsulated key and ciphertext (CT,k) according to the IB-wHPS, and
then generates (2) a pair of session public-key and ciphertext according to the
PKE, i.e., pk = (CRS,H(CRS,k)) and Enc(pk,m), respectively, under the same
encapsulated key k. By connecting the two security properties in a novel way,
we are able to derive the desired IBEwith optimal information rate and leakage
resilient security.

10.1 On-the-fly KDM-security

Given a BE-based PKE Π = Π.{KeyGen,Enc,Dec}, we define a new security
notion called on-the-fly KDM-security. Intuitively, this on-the-fly notion captures
security where the CRS and H(CRS,x) are generated on-the-fly, i.e., upon a query
for a new ciphertext, the adversary gets a newly sampled CRS and H(CRS,x)
where x remains the same secret. This is different from the classical security
guaranteed by PKE, where CRS and H(CRS,x) are sampled at the beginning
and will remain the same for the whole security experiment. We identify that
this on-the-fly notion is the key to our compiler.

Definition 10.1 (On-the-fly KDM(n)-security) Let Π.{KeyGen,Enc,Dec} be
a BE-based PKE (as Definition 6.1), and let F be a class of functions F := {f :
SKn →M}, where n > 0 is an integer, SK and M denote the secret key space

and the message space, respectively. Then the on-the-fly KDM(n,Q)-security with
respect to F can be defined by the following experiment. Let A be an adversary
and Q be the upper bound of the number of KDM queries.

Experiment ExpF-OTF KDM
PKE,A (λ)

Key Generation: The challenger selects a random bit b
$←− {0, 1}. It then sample n

secret keys {ski}i∈[n], which are n vectors {ai}i∈[n] according to the BE-based PKE.
KDM Queries: The adversary A repeatly queries the challenger with (i, f) ∈ [n]×F .

Upon each query, the challenger samples a new CRS and computes h = H(CRS,ai).

Then he sets pk = (CRS, h), y = f(sk1, . . . , skn) ∈M, and c
$←− PKE.Enc(pk, y)

if b = 0 or c
$←− PKE.Enc(pk, u) where u

$←− {0, 1}|y| if b = 1. Finally the challenger
returns (pk, c) to the adversary A.

Output: The adversary A outputs a bit b′ ∈ {0, 1}.
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We define the advantage of A in the above experiment to be

AdvF-OTF KDM
PKE,A (λ) = |Pr[b = b′]− 1/2| .

A PKE scheme is said to be on-the-fly KDM(n,Q)-secure with respect to F if for
any ppt adversary A who makes at most Q KDM queries, we have
AdvF-OTF KDM

PKE,A (λ) ≤ negl(λ).

For the clarity of our presentation, we defer the instantiation of on-the-fly
KDM-secure PKE to Section 11.1.

10.2 Generic Construction of KDM-secure and Leakage Resilient
IBE

In this section, we present our general compiler to construct an IBE that is
both leakage resilient and KDM-secure. The compiler uses as key ingredients an
IB-wHPS (ref. Definition 2.13) with additional structure (ref. Remark 4.2) and
an on-the-fly KDM-secure PKE (ref. Section 10.1). Conceptually, this general
IBE scheme can be view as the hybrid encryption of the IB-wHPS and PKE:
to encrypt a message m, the IBE encryption algorithm first generates (1) a
pair of encapsulated key and ciphertext (CT,k) according to the IB-wHPS, and
then generates (2) a pair of session public-key and ciphertext according to the
PKE, i.e., pk = (CRS,H(CRS,k)) and Enc(pk,m), respectively, under the same
encapsulated key k. By connecting the two security properties in a novel way,
we are able to derive the desired IBE.

Construction 10.2 (KDM-secure IBE) Let ΠIB-wHPS = ΠIB-wHPS.{Setup,
KeyGen,Encap,Encap∗,Decap} be an IB-wHPS with the encapsulated key space K
and the identity space ID. Let ΠPKE = ΠPKE.{KeyGen,Enc,Dec} be a BE-based
PKE. Then, we construct an IBE scheme ΠIBE = ΠIBE.{Setup,KeyGen,Enc,Dec}
for message space M as follows.

– ΠIBE.Setup(1λ): The algorithm runs (mpkΠIB-wHPS ,mskΠIB-wHPS)
$←− ΠIB-wHPS.Setup(1λ),

and then outputs mpk := mpkΠIB-wHPS and msk := mskΠIB-wHPS .
– ΠIBE.KeyGen(msk, id): Given a master secret-key msk and an identity id ∈
ID as input, the algorithm runs IB-wHPS.KeyGen to generate and output

skid := skΠIB-wHPS

id
$←− ΠIB-wHPS.KeyGen(msk, id).

– ΠIBE.Enc(mpk, id, µ): Given a master public-key mpk, an identity id ∈ ID
and a message m ∈M as input, the algorithm does the following steps:
1. Generates (CT1,k)← ΠIB-wHPS.Encap(mpk, id);
2. Chooses an on-the-fly common reference string CRS for ΠPKE;
3. Computes CT2 = ΠPKE.Enc(CRS, h, µ) where h = H(CRS,k);
4. Outputs CT = (CT1,CRS, h,CT2) as the ciphertext of m under the iden-

tity id.
– ΠIBE.Dec(skid,CT): Given a ciphertext CT = (CT1,CRS, h,CT2) and a secret

key skid as input, the algorithm does the following steps:
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1. Run ΠIB-wHPS.Decap to generate k′ = ΠIB-wHPS.Decap(skid,CT1);
2. Output m′ = ΠPKE.Dec(CRS,k

′,CT2).

Before presenting the theorem statement about the above Construction 10.2,
we first define a specific function class that is convenient for us to argue KDM
security for IBE. In particular, for IBE with the additional structure on identity
secret key in Remark 4.2, i.e., skid := (x, skx,id), we define KDM-IBE function

class F̂ ′ = (Fs′ ||Q̂τ
′
) in the following way.

Definition 10.3 For any integer n̄, Fs′ is the class of functions of all n̄ identity
secret keys skidi := (xi, skxi,idi) with i ∈ [n̄], and the circuit size of each function

in Fs′ is up to s′. Q̂τ ′ is the class {g′ : ZnB →Mτ ′×m} of block-affine functions
of all vectors xi with i ∈ [n̄], which is defined similarly as in Definition 2.16.
Moreover, (Fs′ ||Q̂τ

′
) denotes the concatenation of two classes, i.e., every func-

tion f in the class can be represented by f = (h, q) for some h ∈ Fs and q ∈ Q̂τ ′

such that f(sk) = (h(sk)||q(x1, . . . ,xn̄)), where sk := (skid1 , . . . , skidn̄).

Next we prove the following theorem, and present its proof.

Theorem 10.4 Assume that (1) ΠIB-wHPS is an universal IB-wHPS against
adaptive (or selective) adversaries, (2) ΠIB-wHPS has the additional structure

as Definition 4.1, (3) ΠPKE = ΠPKE.{KeyGen,Enc,Dec} is on-the-fly KDM(n̄,Q)-
secure for any polynomial n̄, Q with respect to the class F̂ = (Fs||Qτ ) in Defini-
tion 9.4, and (4) ΠPKE is leakage resilient to `-bit block leakage with m blocks.
Then the above scheme ΠIBE is adaptive (or selective) secure and

1. an leakage-resilient IBE against `-bit (block) leakage; the (block) leakage rate
is m·`
|skid| = m·`

|a|+|ska| , (according to the additional structure.) The rate can be

optimal, i.e. 1− o(1), if ` = (1− o(1)) |a|m and |ska| = o(|a|).

2. KDM(n̄)-secure up to Q queries with respect to the class F̂ ′ = (Fs′ ||Q̂τ
′
) in

Definition 10.3, where s′ < s and t′ = t such that s − s′ is the size of the
algorithm ΠIBE.KeyGen(msk, id) with known msk and id, but unknown x.

3. The information rate is |M|
|CT1|+|CT2|+|CRS|+|h| = ratePKE

(|CT1|+|CRS|+|h|)/|CT2|+1 , where

| · | denotes the bit-length, ratePKE denotes the information rate of the un-
derlying PKE. As a result, for the underlying PKE with optimal information
rate and large enough ciphertext size |CT2|, we obtain rate-1 KDM-secure
IBE scheme.

Proof. Overall, the whole proof consists of two parts: leakage resilience and KDM
security.

Proof of Leakage-Resilience of Construction 10.2

First we analyze the leakage-resilience by the following lemma.

Lemma 10.5 Assume ΠIB-wHPS is an unversal IB-wHPS, and PKE is leakage-
resilient against `-bit block leakage. Then the scheme ΠIBE in Construction 10.2
is leakage-resilient against `-bit block leakage.
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Proof. According to the definition of ΠIBE.Enc(mpk, id, µ), we know

CT = (CT1,CRS, h,CT2)

= (CT1,CRS, h(CRS,k), ΠPKE.Enc(CRS, h(CRS,k), µ))

≈c (CT∗1,CRS, h(CRS,Decap(x,CT∗1)), ΠPKE.Enc(CRS, h(CRS,Decap(x,CT∗1)), µ)).

Clearly, the ` bits block leakage of x will at most result in the ` bits block
leakage of Decap(x,CT∗1) = x+k′, which happens to be the secret key of ΠPKE.
Thus, the leakage resilience of ΠIBE follows naturally from that of ΠPKE. As the
detailed proof is very similar to that of Section 5.1, we just omit the hybrids. ut

It is clear that the allowed block leakage rate of ΠIBE is m`
|skid| if |skid| > m`,

where m is the number of blocks of secret key. Furthermore, according to the
additional structure of IB-wHPS, we have skid := (a, ska,id) ∈ (ZnB , {0, 1}∗) and
k ∈ ZnB for certain parameters n,B ∈ N. In order to achieve the optimal block
leakage-resilience rate, we need to (1) enlarge the leakage size ` to be optimal,
and (2) compress the bit-length of skid such that |skid| ≈ m`, which means that

` = (1 − o(1)) |a|m and ska,id = o(|a|). It seems that all existing IB-wHPS with
additional structure, including the generic IB-wHPS constructed from IBE by
Hazay et al. [28], can not satisfy this requirement for the bit-length of identity
secret key and encapsulated-key.

To overcome this technical dilemma, we introduce a new notion IB-ABE,
which can be used to construct an IB-wHPS. Essentially, The intuitive idea of
IB-ABE is that of compressing |ska,id| by means of attribute-based idea.

Proof of KDM(n̄)-security of Construction 10.2

Below, we prove the KDM(n̄)-security with respect to F̂ ′ = (Fs′ ||Q̂τ
′
) in Defi-

nition 10.3 by a sequence of hybrid experiments. For each experiment i, we use
Wi to denote the event that the adversary A wins the experiment Hi.

Hybrid H0: This hybrid is defined to be the KDM-security experiment for IBE in
Definition 2.11. In this hybrid, A can adaptively conduct three types of queries,
including extraction queries, registration queries and KDM queries. For conve-
nience, we assume that the challenge identities registered by A is {id1, . . . , idn̄},
and the number of KDM queries is Q for any polynomial Q = poly(λ). In this
case, for any KDM-query in the form of (idi, f) ∈ Lch×F̂ ′, the ciphertext returned
from the challenger C with a random bit b ∈ {0, 1} should be

CT = (CT1,CRS, h,CT2)

= (CT1,CRS,H(CRS,k), ΠPKE.Enc(CRS,H(CRS,k), µb)),

where µ0 = f(skid1 , . . . , skid1), µ1 = 0 ∈M, (CT1,k)
$←− ΠIB-wHPS.Encap(mpk, idi)

and CRS is chosen randomly and freshly.
In this H0, W0 indicates that A outputs a bit b′ ∈ {0, 1} such that b = b′. As

a result, we have
Pr[W0] = AdvKDM

IBE,F̂ ′,A(λ).
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Hybrid H1: This experiment is identical to the H0, except that all KDM ci-
phertexts are computed as

CT = (CT1,CRS, h,CT2)

= (CT1,CRS,H(CRS,k1), ΠPKE.Enc(CRS,H(CRS,k1), µb)),

where (CT1,k)
$←− ΠIB-wHPS.Encap(mpk, idi) and k1 = ΠIB-wHPS.Decap(skidi ,CT1).

Hybrid H2: This experiment is identical to the H1, except that all KDM ci-
phertexts are computed as

CT = (CT∗1,CRS, h,CT2)

= (CT∗1,CRS,H(CRS,k1), ΠPKE.Enc(CRS,H(CRS,k1), µb)),

where CT∗1
$←− ΠIB-wHPS.Encap

∗(mpk, idi) and k1 = ΠIB-wHPS.Decap(skidi ,CT
∗
1).

Hybrid H3: This experiment is identical to the H2, except that all KDM ci-
phertexts are computed as

CT = (CT∗1,CRS, h,CT2)

= (CT∗1,CRS,H(CRS,k1), ΠPKE.Enc(CRS,H(CRS,k1), µb)),

where (1) CT∗1
$←− ΠIB-wHPS.Encap

∗(mpk, idi) and k1 = k′ + xi, and k′ ∈ ZnB is a
vector used to generate the invalid ciphertext CT∗1, and (2) skidi := (xi, skxi,idi) ∈
ZnB × {0, 1}∗ according to the additional structure of ΠIB-wHPS.

Next, we use the following claims to prove the indistinguishability among the
above games.

Claim 10.6 The distributions of H0 and H1 are identical.

Proof. This follows clearly from the correctness of ΠIB-wHPS. ut

Claim 10.7 The distributions of H1 and H2 are computationally indistinguisha-
bility.

Proof. This follows from the valid/invalid ciphertext indistinguishability ofΠIB-wHPS. ut

Claim 10.8 The distributions of H2 and H3 are identical.

Proof. This follows clearly from the additional structure of ΠIB-wHPS. ut

Summing up the above three claims, we conclude that |Pr[W0]− Pr[W3]| ≤
negl(λ) for any efficient adversary A. To complete the proof, it suffices to show
that the probability Pr[W3] is negligible, i.e. the advantage of an efficient adver-
sary in H3.

Next, we analyze the KDM-security of hybrid H3 in details.
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Claim 10.9 Suppose the PKE scheme ΠPKE is on-the-fly KDM(n̄,Q)-secure with
respect to F̂ = (Fs||Qτ ) in Definition 9.4, then for any efficient adversary A who

makes KDM queries for Q times in the KDM(n̄) experiment with respect to F̂ ′ =
(Fs′ ||Q̂τ

′
) in Definition 10.3 according to H3, it holds Pr[W3] ≤ negl(λ), where

s′ < s and τ ′ = τ such that s−s′ is the size of the algorithm ΠIBE.KeyGen(msk, id)
with known msk and id, but unknown x.

Proof. Similar to the proof of Theorem 6.4, we prove this claim by establishing
a security reduction between the KDM(n̄)-security of ΠIBE in H3 and the on-
the-fly KDM-security of ΠPKE. More specifically, suppose there is an efficient
adversary A wining H3 with success probability ε (within Q times KDM queries),
then we construct an efficient reduction algorithm R that breaks the on-the-fly
KDM(n̄,Q)-security of ΠPKE with the same probability ε.

Let C be the challenger in the on-the-fly KDM(n̄,Q)-security experiment of
ΠPKE. We describe the detailed reduction algorithm below.

– Setup.

1. C runs the algorithm ΠPKE.KeyGen n̄ times to generate ski := ki ∈ K,
and selects a random bit b ∈ {0, 1}.

2. R runs the algorithm ΠIBE.Setup to generate (mpk,msk), and sends mpk
to the adversary A. At the same time, R prepares lists Lext, Lch, all of
which are initially empty.

– Query Stage. A may adaptively make the following three types of queries
polynomially many times.

1. Extraction queries. A sends id ∈ ID\(Lext ∪ Lch) to R. As a re-
sponse, R first chooses a random vector kid, then generates skid ←
KeyGen(msk, id,kid) and sends it to A. Finally, R adds id to Lext.

2. Registration queries. A sends id ∈ ID\(Lext ∪ Lch) to R. Then, R
adds id to Lch and relates it to one of the unknown vectors {ki}i∈[n̄]

generated secretly by C. E.g., R can keep a counter t, relate a new id to
the next unknown secret vector kt, and then increase the counter t.

3. KDM queries. A sends (id, f) ∈ Lch × F̂ ′ to R. With the KDM query
(id, f) ∈ Lch × F̂ ′ from A, R first transforms the function f : SKn̄ →M
into a new function gmsk ∈ F̂ mapping Kn̄ to M with the following in-
formation hard-coded: (1) the master secret key msk, (2) the algorithm
ΠIBE.KeyGen, and (3) the one-to-one correspondence between idi ∈ Lch

and the secret vectors ki. Particularly, gmsk(k1, . . . ,kn) does the follow-
ing:

• It first samples skki,idi ← IB-wHPS.KeyGen(msk, idi,ki) (according
to the additional structure as Remark 4.2) for i ∈ [n̄], where idi
corresponds to the secret vector ki.
• Then it defines skidi = (ki, skki,idi) for i ∈ [n̄], and outputs f(sk1, . . . , skn̄).

Then, R sends (i, gmsk) ∈ [n̄] × F̂ to C as a KDM query for the scheme
ΠPKE.

– KDM Responses.
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1. After receiving (i, gmsk) ∈ [n̄]× F̂ from R, C computes

CT0 = ΠPKE.Enc(pk, gmsk(k1, . . . ,kn̄)) = (CRS, h = H(CRS,ki),CT
′
0)

if b = 0, otherwise computes

CT1 = ΠPKE.Enc(pk, 0) = (CRS, h = H(CRS,ki),CT
′
1),

for 0 ∈M. Then, C responds CTb to R.
2. After receiving CTb = (CRS, h,CT′b) from C, in order to respond the

KDM query (id, f) from A, R first chooses a random vector k′
$←− ZnB to

generate an invalid ciphertext CT∗id, and then uses both transformations
T1 and T2 on CTb to generate and send

CT = (CT∗id,CRS
′, h′,CT′′b )

to A, where (CRS′, h′) = T1(CRS, h,k′) and CT′′b = T2(CT′b,k
′).

– Output Stage.
1. A outputs a bit b′ ∈ {0, 1} and sends it to R.
2. R outputs the same b′ as the guess for b.

We notice that the following facts about the above reduction process:

1. As R generates the master secret key msk for IBE scheme ΠIBE by himself,
the extraction queries from A can be answered perfectly by R.

2. For i ∈ [n̄], we have skidi ← ΠIBE.KeyGen(msk, idi,ki) according to the
additional structure of the used IB-wHPS. In this case, with the help of
msk, the KDM query function f ∈ F̂ ′, i.e., f(skid1 , . . . , skidn̄), can be viewed
as the function of unknown k1, . . . ,kn̄. More formally, we have

f(skid1
, . . . , skidn̄) = gmsk(k1, . . . ,kn̄).

Thus, R can use gmsk ∈ F̂ = (Fs||Qτ ) to simulate f ∈ F̂ ′ = (Fs′ ||Q̂τ
′
)

faithfully, where s′ < s and τ ′ = τ such that s−s′ is the size of the algorithm
ΠIBE.KeyGen(msk, id) with known msk and id, but unknown x.

3. For the KDM query on certain challenge identity id, which is in the form of
(id, f) ∈ Lch × F̂ ′, R returns the ciphertext CT = (CT∗id,CRS

′, h′,CT′′b ) to A.
According to the encryption algorithm ΠPKE.Enc and the properties of T1

and T2, this ciphertext CT is statistically identical to the ciphertext in H3.

From all above analyses, we can conclude that the above simulation process
is perfect, no matter b = 0 or 1. Therefore, the advantage of R in breaking the
on-the-fly KDM security is ε, the same as that of A in breaking the IBE KDM
security. This completes the proof of this claim. ut
Combining Claims 10.6-10.9, we complete the proof of KDM(n̄)-security of Con-
struction 10.2. ut

Notice that one of interesting aspects of Theorem 10.4 is that the resulting
KDM-IBE function F̂ ′ = (Fs′ ||Q̂τ

′
) is large enough to encode all bounded size

functions of the secret keys, just as in Theorem 9.5. This means that our KDM
results on IBE is essentially complete, i.e., we can further apply the approach of
randomized encoding to amplify the class of KDM-IBE functions to circuits of
any bounded size in a black box way.
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11 Instantiations of Construction 10.2

In this section, we show how to instantiate the building blocks for Construc-
tion 10.2.

11.1 Instantiations of the Required Ingredients in Section 10

In this section, we show how to instantiate the required ingredients in Section 10
to achieve an IBE that is both leakage resilient and KDM(n̄)-secure for any un-
bounded polynomial n̄. Particularly, we need the following two tools: (1) a PKE
Π that is both leakage resilient up to `-bit leakage and on-the-fly KDM-secure
with respect to some class G (discussed later), and (2) an IB-wHPS with the
additional structure as Definition 4.1 and Remark 4.2. In Section 11.1, we show
how to instantiate the former, and in Section 11.1, we show how to instantiate
the latter.

Instantiations of PKE with On-the-fly KDM-security

To instantiate such a PKE, we prove that Construction 5.3 can achieve leak-
age resilience and as well this notion of on-the-fly KDM security. Clearly by
Theorem 5.4 (particularly security proof in Section 5.1) with the computation-
al reusable extractor in Section 3.2, Construction 5.3 is leakage resilient with
any (block-source) leakage function with bounded output length. We next focus
on proving the on-the-fly KDM-security. Particularly, we first show that for any
BE-based PKE Π, if

1. Π satisfies the two key-homomorphic properties (ref. Section 6.1),

2. Π n̄Q is KDM(1)-secure,

then Π is on-the-fly-KDM(n̄)-secure up to Q KDM queries. More formally, we
state the following theorem:

Theorem 11.1 (On-the-fly KDM(n̄)-security of Π) Suppose that (1) the BE-
based PKE scheme Π satisfies Properties 1 and 2 in Section 6.1, and (2) the

intermediate scheme Π n̄Q in Definition 6.3 is KDM(1)-security with respect to
the class G = {g : SK → M}. Then Π is on-the-fly KDM(n̄)-secure up to Q
KDM queries, with respect to the class F = {f : SKn̄ → M} that satisfies the
relation as stated in Remark 6.5.

The proof is essentially the same as that of Theorem 6.4, so we omit the details.

Next, as stated in Section 6, we have proved that the scheme Π n̄
PKE (derived

from ΠPKE in Construction 5.3) is KDM(1)-secure for unbounded polynomial n̄
(when the underlying BE is instantiated properly, e.g., from the DDH in Section
7.1, or LWE in Section 7.2). Then by using Applebaum’s randomized encod-

ing technique [7], we can obtain Π
′n̄
PKE that is KDM(1)-secure with respect to

G = {All bounded polynomial sized circuits}. Since Applebaum’s randomized
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encoding technique does not change the public key and secret key, and it just
uses the underlying encryption algorithm in a black-box way, the scheme Π

′n̄
PKE

also satisfies the two key-homomorphic properties in Section 6.1 if the original
one (i.e., Π n̄

PKE) does.
Combining the above arguments and Theorem 11.1, we conclude the following

corollary:

Corollary 11.2 Under the DDH/LWE assumptions, there exists a PKE that is
both leakage resilient with leakage rate 1 − o(1), and on-the-fly KDM(n̄)-secure
for any polynomial n̄ with respect to any bounded size circuits.

The parameters of LWE are referred to Constructions 7.3.

Instantiations of the Required IB-wHPS

In this section, we show how to instantiate the required IB-wHPS for Sec-
tion 10.2. Particularly, we need an IB-wHPS with the additional structure as
Definition 4.1 and Remark 4.2, i.e., the secret key has the form skid = (a, ska),
and Decap(sk,CT∗) = k + a for an invalid ciphertext CT∗. As shown in Sec-
tion 10.2, any IB-wHPS with such a structure can be used to achieve IBE schemes
that are both KDM-secure and leakage resilient with the leakage rate `

|a|+|ska| ,

where ` is the number of leakage bits that the ΠPKE can tolerate. By Corol-
lary 11.2 and Construction 10.2, we know that ` = (1 − o(1))|a|, implying the

leakage rate 1−o(1)
1+|ska|/|a| .

Below, we show several instantiations with different |ska|/|a|. First, Hazay et
al. [28] showed an elegant construction of IB-wHPS with the additional structure

from any IBE16. Their construction yields |ska|/|a| ≈ s(λ)|a|
|a| = s(λ)17, where s(λ)

is the size of the secret key in the underlying IBE. In particular, the work [28]
proved the following theorem:

Theorem 11.3 ( [28]) Suppose there exists an adaptive (or selective) IBE scheme
with the secret-key size s = s(λ), then there exists an adaptive (or selective)
IB-wHPS with key space K = Znm and additional structure. Furthermore, for

skid := (a, ska), it holds |ska|/|a| = s(λ)n
|a| .

By using this general construction [28], our IBE Construction 10.2 would achieve

leakage rate 1−o(1)
1+s(λ) . Next, we describe better instantiations of the required

IB-wHPS, improving |ska|/|a| significantly. In particular, this ratio can achieve
o(1) from LWE, and o(1) from certain assumptions in bilinear groups. Thus, our
IBE Construction 10.2 would achieve leakage rate 1−o(1) from LWE and 1−o(1)
from these assumptions in bilinear groups.

16 Even though the work [28] did not consider the additional structure, their construc-
tion clearly satisfies this structure.

17 This rate can be improved to s(λ)/ log λ.
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Better Instantiations of IB-wHPS

In this section, we present better instantiations of IB-wHPS, improving the ratio
|ska|/|a| significantly. We observe that any adaptive (resp. selective) ABE with
succinct secret keys18 suffices to derive an adaptive (resp. selective) IB-wHPS
with the ratio |ska|/|a| = o(1), and thus achieves the optimal leakage rate. For
lattice-based instantiations however, we are not aware of any adaptively secure
ABE. To construct the desired IB-wHPS from lattices, we use a more fine-grained
primitive IB-ABE [32].

Briefly, an IB-ABE consists of four algorithms IB-ABE.{Setup,KeyGen,Enc,Dec}
similar to IBE and ABE. Each secret key skid,f is associated with an id and a
policy function f , and a ciphertext is associated with an id′ and attribute x. The
secret key skid,f can decrypt the ciphertext if and only if the IDs match and the
attribute satisfies the policy function, i.e. id = id′ and f(x) = 1. We present the
formal definition of syntax and security below.

Definition 11.4 (IB-ABE) An identity-attribute-based encryption (IB-ABE) scheme
for a class of functions Fλ = {f : Xλ → Yλ} consists of four algorithms
IB-ABE.{Setup,KeyGen,Enc,Dec} as follows.

– Setup. IB-ABE.Setup(1λ) takes a security parameter λ as input, and gen-
erates a pair of master public key and master secret key (mpk,msk), where
mpk will define the identity space ID, attribute space Xλ, policy function
class Fλ, message space M and ciphertext space C.

– Key generation. IB-ABE.KeyGen (id, f,msk) takes as input an identity id ∈
ID, a function f ∈ Fλ and the master secret key msk, and generates a secret
key skid,f .

– Encryption. IB-ABE.Enc(mpk,x, µ) takes as input the master public key
mpk, an attribute x ∈ Xλ and message m ∈ M, and outputs a ciphertext
c ∈ C.

– Decryption. IB-ABE.Dec(skid,f , c) takes as input a secret key skid,f and ci-
phertext c, and outputs m ∈M if f(x) 6= 0 or ⊥ if f(x) = 0, where x is the
corresponding attribute used to generate c.

Here, for an IB-ABE scheme, we consider its security notion with respect to
adaptive identity and selective attribute.

Definition 11.5 (Partial-adaptive Security of IB-ABE [32]) An IB-ABE scheme
Π = IB-ABE.{Setup,KeyGen,Enc,Dec} for a class of functions Fλ = {f : Xλ →
{0, 1}} is partial-adaptively secure, i.e., with respect to adaptive identities and
selective attributes, if for all probabilistic polynomial-time adversaries A, it holds

AdvIB-ABE
Π,A (λ) =

∣∣∣Pr
[
ExpIB-ABE

Π,A (1λ)
]
− 1/2

∣∣∣ ≤ negl(λ).

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExpIB-ABE
Π,A (1λ) is defined in

Table 7.

18 The secret key size only depends on the depth of the policy function when the
function description is given.
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Experiment ExpIB-ABE
Π,A (1λ)

Pre-stage: The adversary A chooses an challenge attribute x∗ ∈ Xλ and sends it
to the challenger C.

Setup: The challenger C runs IB-ABE.Setup(1λ) to obtain (mpk,msk), and sends
mpk to A.

Test Stage 1: A queries the challenger C with pairs {(id, f)} where each (id, f) ∈
ID × Fλ. Then C responds with skid,f , and stores the tuple.

Challenge Stage: A chooses an arbitrary challenge identity id∗ ∈ ID and two
messages µ0, µ1 ∈M, and sends them to C for challenge query.
• If there exists a pair (id∗, f) such that f(x∗) = 1 that had been queried in

Test Stage 1, C aborts the experiment.

• Otherwise, C first selects b
$←− {0, 1}, then computes cb

$←−IB-ABE.Enc(mpk,
id∗,x∗, µb). Finally, C returns cb to A.

Test Stage 2: A queries the challenger C with with pairs {(id′, f ′) ∈ ID × Fλ}
under the constraint that id∗ ∈ {id′} and f ′(x∗) = 1 can not happen at the
same time. Then C responds with skid′,f ′ .

Output: The adversary A outputs a bit b′ ∈ {0, 1}. If b′ = b, the experiment
outputs 1; and 0 otherwise.

Table 7. Security Experiment of IB-ABE

A secure IB-ABE with respect to selective identity and attribute can be de-
fined similarly, except that both the challenge identity id∗ and attribute x∗ must
be provided simultaneously to the challenger C prior to the setup step.

Next we present the general construction in [32], which derives an adaptive
IB-wHPS from IB-ABE that is partial-adaptively secure, i.e., adaptive over ID
and selective over attribute. Then we discuss several instantiations.

Construction 11.6 (Generic Construction of IB-wHPS from IB-ABE [32])
Let m = m(λ) and n = n(λ) be two parameters and let Π = IB-ABE.{Setup,KeyGen,Enc,Dec}
be an IB-ABE scheme with identity space ID = {0, 1}∗, attribute space X =
[n]× [m], message-spaceM = Zm and ciphertext space C for a class of functions
Fλ : {f : Xλ → {0, 1}}, where all function fy ∈ Fλ is indexed by a vector y =
(y1, . . . , yn)> ∈ [m]n. More specifically, for any vector x = (x1, x2)> ∈ [n]× [m],
fy(x) = 1 if and only if x2 = yx1 . Then, an IB-wHPS with output space K = Znm
can be constructed in the following way:

– IB-wHPS.Setup(1λ): Given the security parameter λ as input, the algorith-

m runs the algorithm IB-ABE.Setup to generate (mpkIB-ABE,mskIB-ABE)
$←−

IB-ABE.Setup(1λ), and outputs mpk := mpkIB-ABE and msk := mskIB-ABE.

– IB-wHPS.KeyGen(msk, id): Given a master secret-key msk and an identity
id ∈ ID as input, the algorithm first chooses a function fy ∈ F indexed

by a random vector y
$←− [m]n, and then runs IB-ABE.KeyGen to generate

skIB-ABEid,fy

$←− IB-ABE.KeyGen(msk, id, fy). Then the algorithm outputs skid :=

(y, skIB-ABEid,fy ) as the secret key for identity id.
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– IB-wHPS.Encap(mpk, id): Given a master public-key mpk and an identity id ∈
ID as input, the algorithm samples a random vector k = (k1, . . . , kn)> ∈ Znm,
and run the algorithm IB-ABE.Enc mn times with attributes xi,j = (i, j)> ∈
[n]× [m] to set

c := {ci,j
$←− IB-ABE.Enc(mpk, id,xi,j , ki)}(i,j)∈[n]×[m] ∈ Cn×m, i.e.,

c :=

 IB-ABE.Enc(mpk, id,x1,1, k1) . . . IB-ABE.Enc(mpk, id,x1,m, k1)
...

. . .
...

IB-ABE.Enc(mpk, id,xn,1, kn) . . . IB-ABE.Enc(mpk, id,xn,m, kn)

 .
Finally, the algorithm outputs (c,k).

– IB-wHPS.Encap∗(mpk, id): Given a master public-key mpk and an identity
id ∈ ID as input, the algorithm samples a random vector k = (k1, . . . , kn)> ∈
Znm, and run the algorithm IB-ABE.Enc mn times with attributes xi,j =
(i, j)> to set

c∗ := {c∗i,j
$←− IB-ABE.Enc(mpk, id,xi,j , ki + j)}(i,j)∈[n]×[m] ∈ Cn×m, i.e.,

c∗ :=

 IB-ABE.Enc(mpk, id,x1,1, k1 + 1) . . . IB-ABE.Enc(mpk, id,x1,m, k1 +m)
...

. . .
...

IB-ABE.Enc(mpk, id,xn,1, kn + 1) . . . IB-ABE.Enc(mpk, id,xn,m, kn +m)

 ,
where the addition ki + j is performed over Zm. Finally, the algorithm

outputs c∗.
– IB-wHPS.Decap(skid, c): Given a secret key skid := (y, skIB-ABEid,fy ) and c :=
{ci,j}(i,j)∈[n]×[m] as input, the algorithm runs IB-ABE.Dec to compute ki =

IB-ABE.Dec(skIB-ABEid,fy , ci,yi) for all i∈ [n], and then outputs k = (k1, . . . , kn)>,
if fy(i, yi) = 1 for all i ∈ [n], and ⊥ otherwise.

Theorem 11.7 (IB-wHPS from IB-ABE [32]) Suppose ΠIB-ABE is a secure IB-ABE
scheme for the function class F = {f : [n] × [m] → {0, 1}}, then the construc-
tion ΠIB-wHPS described above is an IB-wHPS with the encapsulated-key-space
K = Znm. Furthermore,

– if the underlying IB-ABE ΠIB-ABE is secure with respect to adaptive identity
and selective attribute, then the IB-wHPS ΠIB-wHPS is adaptively secure;

– if the key-size of the IB-ABE scheme for policy function f is s(f), then the
key size of the IB-wHPS is s(f) + n logm.

11.2 Instantiations of IB-ABE

We observe that any adaptive ABE for polynomial evaluation [30] suffices to con-
struct the required IB-ABE, as we can encode (id, 1, y1), (id, 2, y2), . . . , (id, n, yn)
as n roots of the polynomial p(x), and skid,fy corresponds to skp(x). Moreover, the
work [30] constructed such an ABE from some bilinear groups, even though their
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secret key size is not succinct. Subsequent work [18] constructed a more efficien-
t ABE for inner products (which implies ABE for polynomial evaluation [30]) with
succinct secret keys from some bilinear groups. Thus, the construction of [18]
suffices to achieve the desired IB-wHPS and leakage resilient IBE with the opti-
mal rate 1 − o(1), via our framework. Recently, Nishimaki and Yamakawa [37]
proposed a new method to succinctly encode several different identity secret
keys through using inner product encryption, which can also be viewed as an
instantiation for IB-ABE that achieves the ratio |ska|/|a| = o(1). However, since
there is not existing adaptive inner product encryption scheme from lattices, we
still can not obtain the required IB-ABE from lattices by using the approach of
inner product encryption as Nishimaki and Yamakawa [37].

To tackle this challenge, we use the new construction of the work [32]. For
completeness, we present the necessary lattice back ground information in Sec-
tion 11.2. And then, in Section 11.2 we present their construction, which achieves
the desired ratio |ska|/|a| = o(1), and thus leakage-resilient adaptive IBE with
the optimal leakage rate.

Background Knowledge on Lattices

A lattice is a discrete additive subgroup of Rm. Let B = (b1, . . . , bm) ⊂ Rm con-
sists of m linearly independent vectors. The m-dimensional lattice Λ generated
by the basis B is Λ = L(B) = {B · c =

∑
i∈[m] ci·bi : c = (c1, . . . , cm) ∈ Zm}.

The minimum distance λ1(Λ) of a lattice Λ is the length in the Euclidean `2
norm of the shortest nonzero vector: λ1(Λ) = min

0 6=x∈Λ
‖x‖. For an approximation

factor γ = γ(n) > 1, we define the problem GapSVPγ as follows: given a basis
B of an m-dimensional lattice Λ = L(B) and a positive number d, distinguish

between the case where λ1(Λ) ≤ d and the case where λ1(Λ) ≥ γd. We let B̃

denote the Gram-Schmidt orthogonalization of B, and ‖B̃‖ is the length of the
longest vector in it.

In this paper, we will focus on a particular family of integer lattices. Let
A ∈ Zm×nq for three positive integers m, n, q, where m and q are functions of n.
We consider the following two kinds of full-rank m-dimensional integer lattices
defined by Λ⊥q (A) = {e ∈ Zm : A> · e = 0 mod q} and its shift Λuq (A) = {e ∈
Zm : A> · e = u mod q}.

Lemma 11.8 ( [6]) For any integers n ≥ 1, q ≥ 2, and sufficiently large
m = d6n log qe, there is a probabilistic polynomial-time algorithm TrapGen(q, n)
that outputs a pair (A ∈ Zm×nq ,TA ∈ Zm×m) such that the distribution of A
is statistically close to the uniform distribution over Zm×nq and TA is a short

basis for Λ⊥q (A) satisfying ‖T̃A‖ ≤ O(
√
n log q) and ‖TA‖ ≤ O(n log q) with

overwhelming probability.

Gaussians on Lattices Let σ be any positive real number. The Gaussian
distribution Dσ,c with parameter σ and c is defined by probability distribu-
tion function ρσ,c(x) = exp(−π‖x − c‖2/σ2). For any set S ∈ Rm, define
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ρσ,c(S) =
∑
x∈S ρσ,c(x). The discrete Gaussian distribution DS,σ,c over S with

parameter σ and c is defined by the probability distribution function ρσ,c(x) =
ρσ,c(x)/ρσ,c(S) for all x ∈ S.

Lemma 11.9 ( [2], Lemma 8) Let A and TA be a pair of matrices output by

TrapGen(q, n), and r > ‖T̃A‖ · ω(
√

logm). Then for c ∈ Rm and u ∈ Znq , we
have:

1. Pr[x← DΛu
q (A),r : ‖x‖ > r

√
m] ≤ negl(n).

2. There is a probabilistic polynomial-time algorithm SampleGaussian(A,TA, r,
c) that outputs a sample from a distribution statistically to DΛ,r,c.

3. There is a probabilistic polynomial-time algorithm SamplePre(A,TA,u, r)
that outputs a sample from a distribution statistically to DΛu

q (A),r.

Definition 11.10 For an β ∈ (0, 1) and a integer q, let ψ̄β denote the distribu-
tion over Zq of the random variable bqxe, where x is a normal random variable
with mean 0 and standard deviation β/

√
2π.

The next two efficient algorithms SampleLeft is used to generate identity
secret key for our new constructions.

Lemma 11.11 ( [2], Theorem 17) Let A ∈ Zn×mq and TA ∈ Zm×m be a
pair of matrices output by TrapGen(q, n), let M be a matrix in Zn×m1

q , u be a

vector in Znq , and r satisfy r > ‖T̃A‖ ·ω(
√

log(m+m1)). There is a probabilistic
polynomial-time algorithm SampleLeft(A,M,TA,u, r) that outputs a vector e ∈
Zm+m1 distributed statistically close to DΛu

q (F1),r, where F1 = (A|M).

Learning With Errors. The Learning with errors problem, or LWE, is the
problem of determining a secret vector over Fq given a polynomial number of
“noisy” inner products. The decision variant is to distinguish such samples from
random. More formally, we define the problem as follows:

Definition 11.12 ( [39]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a
probability distribution on Zq. For s ∈ Znq , Let As,χ be the probability distribution
on Znq ×Zq obtained by choosing a vector a ∈ Znq uniformly at random, choosing
e ∈ Zq according to χ and outputting (a, 〈a, s〉+ e).

The decision LWEq,n,χ problem is: for uniformly random s ∈ ZNq , given a
poly(n) number of samples that are either (all) from As,χ or (all) uniformly
random in Znq × Zq, output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time
algorithms A, the probability that A solves the decision-LWE problem (over s
and A’s random coins) is negligibly close to 1/2 as a function of n. the works
of [15,38,39] show that the LWE assumption is as hard as (quantum or classical)
solving GapSVP and SIVP under various parameter regimes.
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Concrete Instantiation of IB-ABE from Lattices [32]

We describe the construction of [32] that achieves a partial-adaptively secure
IB-ABE as needed in Section 11.1 from LWE with a polynomial modulus.

– IB-ABE.Setup(1λ) The setup algorithm takes as input a security parameter
λ, and then dose the following:
1. Sample a random matrix A ∈ Zn×mq along with a trapdoor basis TA ∈

Zm×m of lattice Λ⊥q (A) by running TrapGen.
2. Select `1 + 1 uniformly random matrices A1, . . . ,A`1 ,B ∈ Zn×mq .
3. Select `2 uniformly random matrices C1, . . . ,C`2 ∈ Zn×mq .

4. Select a random matrix U
$←− Zn×zq .

5. Output the public parameters

mpk = (A, {Ai}i∈[`1], {Ci}i∈[`2],B,U)

and the master secret key msk = (TA).
– IB-ABE.KeyGen(mpk,msk, id, f) The key generation algorithm takes as input

mpk,msk, an identity id = (b1, b2, ..., b`1) ∈ {1,−1}`1 and a policy function
f with depth d, and then does the following:
1. Compute Aid = B +

∑`1
i=1(biAi) ∈ Zn×mq .

2. Define function f̄(·) = 1− f(·), and compute
Hf = Evalpk(f̄ ,C1, . . . ,C`2) ∈ Zn×mq .

3. Let Fid,f = (A|A′id,f ) = (A|Aid|Hf ) ∈ Zn×3m
q .

4. Sample D ∈ Z3m×z as D← SampleLeft(A,TA,A
′
id,f ,U, σ).

5. Output skid,f := D, where Fid,f ·D = U mod q.
– IB-ABE.Enc(mpk, id,x,µ) In order to encrypt a message µ ∈ {0, 1}z with

respect to an identity id = (b1, b2, ..., b`1) ∈ {1,−1}`1 and attribute x =
(x1, . . . , x`2) ∈ Z`2q , the encryption algorithm first chooses a random vector
s ← Znq and two error vectors e0 ← χm, e1 ← χz where χ is a B bounded
discrete Gaussian distribution, and then does the following:
1. Compute Aid = B +

∑`1
i=1(biAi) ∈ Zn×mq .

2. Choose `1 uniformly random matrices Ri ← {−1, 1}m×m for i ∈ [`1],

and compute Rid =
∑`1
i=1(biRi) ∈ {−`1, . . . , `1}m×m.

3. Set e2 = R>id · e0 ∈ Zmq .

4. Set Hx = (x1G + C1| · · · |x`2G + C`2) ∈ Zn×m`2q .
5. Choose `2 uniformly random matrices R′j ← {−1, 1}m×m for j ∈ [`2],

and set e3 = (R′1| · · · |R′`2)> · e0 ∈ Zm`2q .

6. Set Fid,x = (A|A′id,x) = (A|Aid|Hx) ∈ Zn×(2+`2)m
q .

7. Output c = (F>id,f ·s+(e>0 , e
>
2 , e

>
3 )>,U> ·s+e1 +bq/2eµ) ∈ Z(2+`2)m+z

q .
– IB-ABE.Dec(mpk, skid,f , (x, c)) The decryption algorithm uses the key

skid,f := D to decrypt c with attribute x. If f(x) 6= 1, output ⊥. Otherwise,

let the ciphertext c = (cin,1, cin,2, c1, . . . , c`2 , cout) ∈ Z(2+`2)m+z
q , compute

cf = Evalct(f̄ , {(xi,Ci, ci)}`2i=1) ∈ Zmq , where cin,1, cin,2 ∈ Zmq , cout ∈ Zzq
and ci ∈ Zmq for 1 ≤ i ≤ `2.

Let c′f = (cin,1, cin,2, cf ) ∈ Z3m
q and output Round(cout−D> ·c′f ) ∈ {0, 1}m.
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Correctness. The correctness of the scheme follows from our choice of param-
eters. Specifically, to show correctness first note that when f(x) = 1 we know
cf = H>f · s+ ef , then we have during decryption,

µ′ = Round(cout −D> · c′f )

= Round(cout −D> · ((A|Aid|Hf )> · s− (e0, e2, ef + e3)))

= Round(U> · s+ e1 + bq/2eµ−U> · s−D> · (e0, e2, ef + e3))

= Round(bq/2eµ+ e1 −D> · (e0, e2, ef + e3))

= µ

This completes the proof of correctness.

Parameter Setting for our Construction. For arbitrarily small constant ε,
we set the system parameters according to the Table below.

Parameters Description Setting

λ security parameter

z message length O(log λ)

n PK-lattice row dimension λ

m PK-lattice column dimension n1+ε

q modulus n5m4

d depth of f O(log λ)

σ SampleLeft and SampleRight parameter n2m2

B bound of errors
√
λ

`1 identity length n

`2 attribute length n

Table 8. Parameter Setting

The work [32] showed the following theorem, which is what we need and
omitted just for clarity.

Theorem 11.13 For parameter setting in Table 8, the above IB-ABE scheme
in the Appendix 11.2 is correct and secure with respect to adaptive identity and
selective attribute, assuming the LWEn,q,χ assumption holds.

Finally, by instantiating Construction 10.2 with (1) the specific IB-wHPS from
LWE in Construction 11.6 and (2) the LWE-based on-the-fly KDM-secure PKE in
Corollary 11.2, we are able to achieve the following corollary via Theorem 10.4:

Corollary 11.14 Assuming that LWE is hard, there exists a rate-1 (both infor-
mation and leakage rates) IBE that is leakage resilient against block leakage and

KDM(n̄)-secure w.r.t. F̂ ′ = (Fs′ ||Q̂τ
′
) for any unbounded polynomial n̄.
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Similarly, by instantiating Construction 10.2 with (1) the specific IB-wHPS
from DDH in the bilinear group in Construction 11.6 and (2) the DDH-based on-
the-fly KDM-secure PKE in Corollary 11.2, we are able to achieve the following
corollary via Theorem 10.4:

Corollary 11.15 Assuming that DDH (in the bilinear group) is hard, there ex-
ists a rate-1 (both information and leakage rates) IBE that is leakage resilient a-

gainst block leakage and KDM(n̄)-secure w.r.t. F̂ ′ = (Fs′ ||Q̂τ
′
) for any unbounded

polynomial n̄.
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