
Subversion-Resilient Public Key Encryption with
Practical Watchdogs

Pascal Bemmann1, Sebastian Berndt3, Rongmao Chen2, and Tibor Jager1

1 University of Wuppertal,
{bemmann, tibor.jager}@uni-wuppertal.de

2 Universität zu Lübeck,
s.berndt@uni-luebeck.de

3 National University of Defense Technology,
chromao@nudt.edu.cn

Abstract. Restoring the security of maliciously implemented cryptosystems has
been widely considered challenging since the subverted implementation could ar-
bitrarily deviate from the official specification. Achieving security against adver-
saries that can arbitrarily subvert implementations seems to require trusted com-
ponent assumptions and/or architectural properties inherently. At ASIACRYPT
2016, Russell et al. proposed an attractive model where a watchdog is used to
test and approve individual components of an implementation before or during
deployment. Such a detection-based strategy has helped design various crypto-
graphic schemes that are provably resilient to subversion.
We consider Russell et al.’s watchdog model from a practical perspective re-
garding watchdog efficiency. We find that the asymptotic definitional framework
while permitting strong positive theoretical results, does not yet guarantee prac-
tical watchdogs because the running time of a watchdog is only bounded by an
abstract polynomial. Hence, in the worst case, the watchdog’s running time might
exceed the adversary’s running time, which seems impractical for most applica-
tions. We adopt Russell et al.’s watchdog model to the concrete security setting
and design the first subversion-resilient public-key encryption scheme, allowing
for highly efficient watchdogs with only linear running time.
At the core of our construction is a new variant of a combiner for key encapsu-
lation mechanisms (KEMs) by Giacon et al. (PKC’18). We combine this con-
struction with a new subversion-resilient randomness generator that can also be
checked by an efficient watchdog, even in constant time, which could be of inde-
pendent interest for designing other subversion-resilient cryptographic schemes.
Our work thus shows how to apply Russell et al.’s watchdog model to design
subversion-resilient cryptography with efficient watchdogs. We insist that this
work does not intend to show that the watchdog model outperforms other defense
approaches but to demonstrate that practical watchdogs are achievable.

The first author was supported by the research training group “Human Centered Systems Secu-
rity” (NERD.NRW) sponsored by the state of North-Rhine Westphalia. The third author was
supported by the National Natural Science Foundation of China (Grant No.62122092, No.
62032005). The fourth author was supported by the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme, grant agreement
802823.

2 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

This is the full version of a work published at PKC21. We identify a subtle flaw
in the proof of the previous version and show it is impossible to achieve CPA
security under subversion with the proposed approach. However, the same con-
struction can achieve one-way security under subversion.

Keywords: Subversion-Resilience · Watchdog · Randomness Generator · Public
Key Encryption.

1 Introduction

It has been of increasing concern that the robustness of security guarantees provided by
cryptographic tools in practice may be weaker than thought. In particular, cryptosystems
in the real world could be stealthily weakened by attackers who have the capability of
tampering with the actual algorithm implementation for exfiltrating secret information
while keeping it indistinguishable—in black-box testing—from a truthful one. Such a
powerful adversary was originally considered in the kleptographic setting by Young
and Yung [33, 34] over two decades ago, while the striking Snowden revelations (in
2013) of massive surveillance of encrypted communication attracted renewed attention
worldwide. News reports [16] have recently confirmed that a spying agency subverted
a widely-used implementation of the Dual EC pseudorandom number generator, which
was then also exploited by another government. This provides a concrete real-world
example showing the demand for subversion-resilient cryptosystems.

Recent research showed that such impactful subversion attacks could be mounted
on a large class of cryptographic primitives, including encryption schemes [6, 5, 17,
13], digital signatures [2] and non-interactive zero-knowledge proofs [3, 22]. More gen-
erally, Berndt and Liśkiewicz [9] proved that there exist universal algorithm substitu-
tion attacks on any cryptographic algorithm with sufficiently large min-entropy. These
negative results, in turn, significantly increased the awareness of the research commu-
nity. Consequently, extensive efforts have been made towards effective approaches to
subversion-resilient cryptography.

Since subversion attacks consider a much stronger adversary than many classical
security models, it turns out that further reasonable assumptions are generally needed,
since otherwise there is not much hope to achieve meaningful security guarantees [6, 5,
2, 4, 17, 29–31, 15, 1, 27, 14, 19, 21]. All the different assumptions considered in these
works, be they trusted components [27, 2, 14, 19, 12] or architectural requirements [29–
31, 15], have their own plausibility, and thus are generally incomparable, as they rely on
different assumptions and may be useful in different application contexts. Nevertheless,
it is still widely considered meaningful to weaken the specific assumptions adopted
within each model for more practical and/or broadly realizable subversion-resilience.
As we will explain below, this is the main motivation of our work.

Subversion-resilience in the watchdog model. In this work, we consider the watch-
dog model introduced by Russell et al. [29] at ASIACRYPT 2016. This model has been
useful to design a broad class of cryptographic tools secure against subversion attacks.
The watchdog model is based on an architectural assumption, namely the split-program
methodology, where an algorithm is decomposed into several functional components.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 3

The adversary supplies implementations of all components to a so-called “watchdog”,
which performs a black-box test to decide whether the (possibly subverted) implemen-
tation of each component is sufficiently compliant with the specification to provide the
expected security properties. A cryptographic scheme is said to be subversion-resilient,
if either there exists a watchdog that can detect the subversion of components with non-
negligible probability; or the security of the cryptographic scheme is preserved even if
the subverted implementation is used. It is shown that, under the aforementioned archi-
tectural assumption, such a watchdog-based approach is able to resist even complete
subversion, where all algorithms are implemented by the adversary, including the key
generation algorithm. Concretely, it is possible to construct various subversion-resilient
primitives, including one-way-permutations [29], pseudorandom generators [29], ran-
domness generators [30], semantically secure encryption schemes [30], random oracles
[31], and signature schemes [15].
Weaker watchdogs imply stronger security. Generally, the stronger a watchdog is,
the better it can prevent subversion attacks. As an extreme example, imagine a “su-
per” watchdog with unlimited running time, which would be able to exhaustively test
whether a given cryptographic algorithm perfectly meets the specification on all possi-
ble inputs, even if the input space is exponential (such as the randomness space of a key
generation algorithm, or the message and randomness space of an encryption algorithm,
for instance). Such a watchdog would be able to detect and reject any subverted imple-
mentation that deviates from the specification, and thus trivially imply security in the
subversion setting, since no subversion is permitted. However, such an ideal watchdog
is too strong to be efficiently constructable in practice.

Russell et al. [29] considered various notions of watchdogs:

– An offline watchdog performs a one-time check of the supplied implementations
prior to deployment;

– An online watchdog is executed in parallel to the deployment of the scheme, and
able to access the full transcript of cryptographic protocols by monitoring public
interactions between users;

– An omniscient watchdog is in addition also aware of the entire internal state (e.g.,
secret keys) of the implementation.

Note that among all of the above, the offline watchdog is the weakest and thus the
most desirable that one might want to use for achieving subversion resilience in the
watchdog model. In particular, recent efforts have been made to construct subversion-
resistant primitives in the offline watchdog model, including encryption schemes [30]
and signature schemes [15]. We emphasize that an offline watchdog can not defend
against stateful subversions, which are out of scope of this work (for more explanations
see Section 3).
Our motivation: Subversion-resilience with efficient watchdogs. The offline watch-
dog is particularly attractive from a practical perspective, as only a “one-time” check is
required. However, it turns out that such a one-time check can require very extensive
testing in order to achieve some desirable security guarantee in practice. Concretely, the
current approach [29] considers a watchdog already successful if it has a non-negligible
probability of detecting a malicious subversion. To obtain some concrete acceptable de-
tection probability, this could require the offline watchdog to do a polynomial amount

4 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

of testing, where in the worst case the running time of the watchdog might even have
to exceed the running time of the adversary, which seems not very practical. As pointed
out by Russell et al. in [30], amplifying a non-negligible detection probability ε to an
overwhelming detection probability 1 − δ would require ε−1 log(δ−1) repetitions of
testing. Also, due to the asymptotic definition, it is unclear how long the watchdog
would need to be run concretely in practice before it could state with high confidence
whether a given component is considered sufficiently secure or not.

In the theory of self-testing/correcting programs by Blum, Luby and Rubinfeld [10],
limited testing by the tester/corrector is also considered a central design goal. Therefore
we are interested in constructing subversion-resilient cryptosystems in the watchdog
model, such that we can construct extremely efficient watchdog algorithms, that are
guaranteed to run significantly faster than an adversary, ideally in linear or even in
constant time. We believe that this is a necessary step towards making Russell et al.’s
[29] watchdog model applicable in real-world applications. In particular, we are inter-
ested in techniques to construct cryptographic schemes that allow for watchdogs with
a concretely-bounded running time that only need to perform a very limited number of
tests in order to achieve strong security guarantees.
Remark. We stress that we do not intend to show that the watchdog model outperforms
other approaches in defending against subversion attacks, but mainly aim at explor-
ing the possibility of achieving security against subversion attacks in this model using
watchdogs with minimal running time. In fact, as mentioned above, all the existing
models are generally incomparable, due to the adoption of different specific approaches
and assumptions.

1.1 Our Results

Motivated by the aforementioned practical concerns, in this work, we design the first
random number generator and public key encryption scheme with offline watchdogs
that perform only limited testing, but still achieve strong standard security guarantees.
In particular, we make the following contributions.

– The main theoretical contribution of our work is a parameterized refinement of Rus-
sell et al.’s watchdog model. More precisely, we present a generic model to cap-
ture the goal of subversion-resilience with a universal offline watchdog and trusted
amalgamation for any cryptographic primitive. The model is defined with concrete
security parameters so that specific bounds on the runtime of the watchdog are
explicitly given. This requires a conceptual modification of the joint security ex-
periment involving the watchdog and the adversary.

– As the first contribution, we then construct an extremely simple randomness gen-
erator that is guaranteed to output uniformly random bits, even if the watchdog
only tests the underlying component for a constant time. Note that this random-
ness generator could also be used to design other subversion-resilient cryptographic
schemes with runtime-constrained watchdogs.

– Based on this randomness generator as well as an additional trusted XOR oper-
ation4, we design a subversion-resilient one-way key encapsulation mechanism

4 Such a trusted operation is also required in the PKE construction by Russell et al.. in [30]

Subversion-Resilient Public Key Encryption with Practical Watchdogs 5

(KEM) using watchdogs running in linear time. This KEM then implies a subversion-
resilient one-way public key encryption scheme that has a watchdog with practical
running time. The size of public keys and ciphertexts of this scheme are linear in
the security parameter.

Difference to conference version. This is the full version of [8], where we considered
CPA security of our proposed schemes. In this work, we identify a subtle flaw in the
presented proof. Technically speaking, it was claimed that the simulation of Game 2 in
the reduction was perfect, while the adversary can actually distinguish the simulation
with non-negligible probability. We formalize this problem and argue that it seems im-
possible that the approach presented in [8] can be used to achieve CPA security under
subversion. On the positive side, we will see that the underlying intuition (and even the
same construction, together with most of the proof) still allows for positive results if
one-way security is considered instead of CPA security. Note that while the security
of the randomness generator based on the von Neumann extractor also uses an indis-
tinguishability experiment, the security proof does not suffer from a similar problem
as the KEM construction. This is because there we utilize an independent information-
theoretical argument.

Below we elaborate on the proposed techniques in more detail.

1.2 Technical Overview

At the core of our proposed PKE scheme is a subversion-resilient KEM using offline
watchdogs doing constant-time testing. As mentioned above, such a construction is
challenging as we now only rely on watchdogs that do less testing. Below we first
present the intuition why this is a non-trivial task and then the idea behind our construc-
tion.

The difficulty of recognizing a subverted KEM with a watchdog. Let KEM = (Gen,
Encaps, Decaps) be the specification of a legitimate (i.e., not subverted) KEM. Let
Rgen, Renc be the randomness spaces of Gen and Encaps. Let F be the deterministic
function parameterized by a KEM which takes as input randomness (r, s) ∈ Rgen×Renc

for Gen and Encaps, respectively, and then computes

(pk , sk , C,K) = FKEM(r, s)

with
(pk , sk)← Gen(; r) , (C,K)← Encaps(pk ; s).

Now let K̃EM = (G̃en, Ẽncaps, D̃ecaps) be a (possibly subverted) implementation
of the algorithms of KEM. We observe that if

FKEM(r, s) = F
K̃EM

(r, s) (1)

on all (r, s) ∈ Rgen × Renc, then the security of the originally specified scheme KEM

implies security of K̃EM, if (r, s) are indeed chosen randomly. If Equation (1) holds,
then the implementations G̃en and Ẽncaps agree with the specification on all inputs,

6 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

and these are the only algorithms of K̃EM used in the security experiment. The same
holds if Equation (1) holds for all but a negligible fraction of all r, s, since the probabil-
ity that a security experiment chose (r, s) such that Equation (1) does not hold would
be negligible.

Unfortunately, we are not able to test efficiently whether Equation (1) holds for all
but a negligible fraction of all r, s. Let

Neq :=
{
(r, s) : FKEM(r, s) 6= F

K̃EM
(r, s)

}
(2)

and

Eq :=
{
(r, s) : FKEM(r, s) = F

K̃EM
(r, s)

}
. (3)

That is, Neq contains all “bad” randomness values such that Equation (1) does not hold
with respect to (KEM, K̃EM). Analogously, Eq contains all ”good” randomness values
for which Equation (1) does hold. Since Neq and Eq are disjoint sets, we have

Neq ∪ Eq = Rgen ×Renc and Neq ∩ Eq = ∅.

Note that testing whether |Neq|/2λ is negligible by repeatedly running F on differ-
ent inputs takes exponential time. Even if we granted the watchdog a very large running
time, by allowing it to evaluate F a polynomial P (λ) of times, where P (λ) is large,
this watchdog could still fail to recognize that |Neq| is non-negligible with very high
probability.

For instance, suppose that Neq ⊂ Rgen×Renc were a random subset of size |Neq| =
|Rgen ×Renc|/P 2(λ). Then a watchdog running in time P would detect the subversion
only with probability at most 1/P (λ) which results from applying the union bound and
using that sampling from Neq occurs with probability 1/P 2(λ) when sampling once.
At the same time, the scheme would be insecure, since we have

|Rgen ×Renc|/P 2(λ)

|Rgen ×Renc|
=

1

P 2(λ)

and thus the security experiment would choose “bad” randomness (r, s) ∈ Neq with
significant probability 1

P 2(λ) .

Our approach to overcoming the technical difficulties. We build a subversion-resilient
one-way KEM KEMSR = (GenSR, EncapsSR, DecapsSR) based on a regular KEM =
(Gen, Encaps,Decaps) in the following way. For ease of exposition, we describe a less
efficient scheme here. Our actual scheme can be instantiated much more efficiently, by
trading the size of keys and ciphertexts for reasonably increased running time of the
watchdog. For more details, see Section 5.3.

A key pair (pk , sk) = ((pk i)i∈[λ], (sk i)i∈[λ]) of KEMSR consists of λ many public
keys

(pk1, sk1), . . . , (pkλ, skλ)
$← Gen()

of KEM. In order to generate an encapsulated key, we run (Ci,Ki)← Encaps(pk i) for
all i ∈ [λ], and return

(C,K) := ((C1, . . . , Cλ),K1 ⊕ · · · ⊕Kλ).

Subversion-Resilient Public Key Encryption with Practical Watchdogs 7

Here the ⊕ is part of the trusted amalgamation function.
The security proof against subversion in the watchdog model of this construction is

based on the following idea. Let K̃EM be a subverted implementation of KEM 5 and let
Neq be as in Equation (6). We construct a reduction to the security of the underlying
KEM that goes through if the simulated security experiment generates at least one pair
(pk i, Ci) using “good” randomness, that is, choosing (r, s)

$← Rgen × Renc such that
(r, s) ∈ Eq.

Note that even if the underlying KEM is heavily subverted, for instance such that
half of all randomness tuples (r, s) are “bad” and we have

|Neq| = |Rgen ×Renc|
2

(4)

we would still have

Pr
[
(r, s) 6∈ Neq : (r, s)

$← Rgen ×Renc

]
= 1/2.

Therefore, the probability that the experiment generates at least one pair (pk i, Ci) us-
ing “good” randomness is 1 − 2

λ

, which is almost certain, up to a negligibly small
probability.

If the adversary produces a subverted implementation where |Neq| is larger than in
Equation (4), then of course it becomes less likely that the experiment chooses “good”
randomness. However, already for |Neq| as in Equation (4) we are able to detect the
subversion almost certainly, and with a very efficient watchdog. Concretely, a watchdog
running F λ times and comparing the output to the specification is able to detect the
subversion with overwhelming probability 1−2−λ. This detection probability increases
with larger |Neq|.

In order to ease the notation and make our approach clear, the above sketch of our
construction uses λ many executions of the KEM procedures as well as a watchdog
which tests each algorithm λmany times. As we will see later, in our construction these
parameters can be adjusted to allow for tradeoffs between ciphertext (and key) size and
runtime of the watchdog.
On the KEM combiner. Note that a similar idea of using a KEM combiner was also
used by Giacon et al. [23]. However, the work by Giacon et al. considers a different
setting from our work. In their work, it is assumed that there are different KEMs with
different security properties, in a situation where it is unclear which one is the most suit-
able candidate for establishing security (e.g., since they are based on different hardness
assumptions). Instead, we primarily address the problem of using a possibly subverted
KEM to realize secure key encapsulation. Our main approach is to use the watchdog
doing limited testing to ensure that the subverted KEM is consistent with its official
specification at some points, based on which we are able to have desirable security
guarantee via amplification.

One may wonder whether we could use combiners for public key encryption di-
rectly to obtain a subversion-resilient PKE scheme. The answer is negative. From a

5 In our model the adversary provides an implementation of each building block instead of an
implementation of KEMSR.

8 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

syntax level, most of the currently known combiners would be considered as part of the
trusted amalgamation in our model. However, since we consider a runtime-constrained
watchdog, we can not rule out the possibility that the PKE scheme would, for instance,
simply output the message instead of a ciphertext for a specified message m . Such an
attack is known as an “input trigger attack” [17] and prevents us from directly using
most of the existing combiners/amplifiers in our setting.

Russell et al. [30] argued that subverted encryption algorithms can not have direct
access to the input message in order to rule out input trigger attacks. Thus, they blind
the message with a random coin which is output as part of the ciphertext. We remark
that this approach does not work in our setting, since this still requires polynomial time
testing by the watchdog in order to obtain an overwhelming detection probability. In our
construction, we bypass this type of attacks by directly performing the XOR operation
on the message with the output key of our designed subversion-resilient KEM.
Limitations of our approach. Note that while our construction allows for watchdogs
with limited runtime, it comes with some limitations. Following Russel et al. [30], we
proved our results under the assumption that trusted amalgamation is feasible. This
means that all components of a cryptographic scheme can be split into multiple smaller
parts, which can be tested individually by the watchdog. During the security experiment
the amalgamation then assembles the building blocks without adversarial interference.
Further, in our model we only account for stateless subversions, as we only rely on of-
fline watchdogs with bounded runtime. If stateful subversions are allowed, a subverted
algorithm could behave honestly until the watchdogs stop testing and then arbitrarily
break security. For further discussion on alternative models, we refer to the following
section. Furthermore, note that our proposed PKE scheme uses the key produced by
our constructed subversion-resilient KEM to (in a trusted manner) XOR the message,
thus limiting the message length to be encrypted. Last but not least, our work consid-
ers the weaker notion of one-way security, in contrast to previous works who consider
CPA-security.

2 Related Work

Since the Snowden revelations in 2013, extensive efforts have explored the feasibil-
ity results in the subversion setting, relying on different assumptions regarding trusted
components and architectural requirements [6, 5, 2, 4, 17, 29–31, 15, 1, 27, 14, 19, 21].

2.1 Existing Constructions in the Watchdog Model

There have been various constructions in the typical watchdog model by [29]. Based on
the split-program methodology [29], several cryptographic schemes were proposed and
proved to be subversion-resilient in the complete subversion setting [29–31, 15]. Par-
ticularly, in [29], Russell et al. constructed subversion-resilient (trapdoor) one way per-
mutations (TDOWP) in the offline watchdog model (assuming fixed public input distri-
butions). The main idea is to use a standard hash function (modeled as a random oracle)
to disable the ability of an adversary to embed any potential backdoors in the func-
tion. Further, based on this general sanitizing strategy, they built a subversion-resilient

Subversion-Resilient Public Key Encryption with Practical Watchdogs 9

signature scheme with online watchdogs, and subversion-resilient pseudorandom gen-
erators (PRG) with offline watchdogs. To generically eliminate subliminal channels in
randomized algorithms, Russell et al. [30] proposed a “double-splitting” strategy where
the randomness generation is carried out by mixing the output of two independent com-
ponents with an immunization function. Based on this they showed how to further im-
munize each algorithm of an encryption scheme, including symmetric-key encryption
and public-key encryption, with offline watchdogs. In [13], Chen et al. also discussed
how to construct subversion-resilient key encapsulation mechanisms by using this use-
ful strategy. Russell et al. also considered how to correct subverted random oracles in
[31] and Chow et al. [15] further extended their results to construct subversion-resilient
signature schemes in the offline watchdog model. In [1], by relying on an additional
independent (untamperable) source of public randomness, Ateniese et al. proposed a
subversion-secure immunizer in the plain model for a broad class of deterministic prim-
itives. Based on the von Neumann extractor presented in this work, Bemmann et al. [7]
presented a subversion-resilient authenticated symmetric encryption scheme.

There are some other constructions which also implicitly rely on the (polynomial-
testing) watchdog to achieve subversion-resilience. In [6], Bellare, Patterson and Rog-
away showed that symmetric encryption producing unique ciphertexts could resist sub-
version attacks, assuming that all subverted ciphertext are decryptable. This decrypt-
ability condition was further relaxed by [17] for considering the possibility of input-
trigger attacks. Note that both of them require an omniscient watchdog that needs to
access the decryption key for verifying the ciphertext decryptability produced by the
supplied implementation of encryption algorithm. Similarly, Ateniese, Magri and Ven-
turi [2] showed that unique signatures are subversion-resilient on the condition that all
subverted signatures are valid. They also proved the unforgeability of unique signatures
still hold against random message attacks when the verifiability condition is relaxed in
a way similar to what considered by [17]. Note that their constructions require an online
watchdog as the signature scheme is publicly verifiable.

2.2 Combiner and Amplification

As mentioned earlier, Giacon et al. [23] also proposed the XOR combiner for KEMs
but in a different setting from ours. Roughly, a combiner is an algorithm that takes as
input several instantiations of the same primitive and then combines these into a single
scheme, aiming at achieving desirable security on the condition that at least one of
the underlying ”building blocks” is secure. There have been several works constructing
combiners for different primitives such as KEMs [23], authenticated encryption with
associated data (AEAD) [28] and functional encryption [26].

The watchdog model generally relies on trusted amplification to build fully func-
tional implementation from individual “secure enough” components for strong security.
In fact, amplification is strongly related to cryptographic combiners. Roughly speaking,
given a cryptographic scheme with some “weak” security guarantee, the amplifier can
construct a scheme with stronger security guarantees (for example simply by repeated
executions). Amplification has been applied to different primitives like functional en-
cryption [25], interactive cryptographic protocols [18] and CCA-secure public key en-
cryption [24].

10 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

2.3 Cryptographic Reverse Firewalls

Note that the watchdog model essentially relies on testing, combined with the split-
program methodology, to achieve feasibility results in the subversion setting. Alterna-
tively, one may consider other models relying on different assumptions, such as trusted
components. In particular, Mironov and Stephens-Davidowitz [27] introduced the no-
tion of cryptographic reverse firewalls, which permits quite extensive results [2, 19,
14, 11, 12]. A reverse firewall is an independent trusted on-line party, which could be
viewed as a proxy located between a (potentially) subverted machine and the outside
world. It is assumed that the reverse firewall has access to a source of trusted random-
ness and could faithfully re-randomize all incoming/outgoing communication generated
by the subverted algorithm, so that subversion-resilience is achieved even if the full im-
plementation has been tampered with by the adversary. It is worth mentioning that the
reverse firewall is not assumed to be a trusted party to achieve security in absence of
subversion. In particular, it has no access to any secret information, such as secret keys.
Note that similar to the online watchdog model, an (active) reverse firewall is able to de-
fend against stateful subversion, which is inherently not captured by the offline watch-
dog model. Furthermore, many constructions using the reverse firewall model, such as
[27, 2, 19, 14, 12], require some form of “re-randomizability” of the algorithm outputs
provided to an adversary, which limits their applicability to non-rerandomizable primi-
tives. Two notable exceptions are due to Mironov and Stephens-Davidowitz [27], who
proposed a generic approach to convert any protocol into a protocol that is compatible
with reverse firewalls, and Bossuat et al. [11], where the reverse firewall is in posses-
sion of a public key which allows it to sanitize protocol messages without requiring
rerandomizability of the underlying primitives.

2.4 Self-Guarding Mechanisms

Another alternative model is the so-called self-guarding mechanism, which was intro-
duced by Fischlin and Mazaheri [21]. This model assumes that there exists an honest
initialization phase where the algorithm is not subverted and thus produce a “clean”
output. Thus, during this phase, one could gather a collection of samples by executing
the honest implementation. After the implementation was tampered with, the output
would be sanitized by the honest samples to resist any possible secret exfiltration. The
main advantage of this model is that it does not require an active party (such as the
reverse firewall or the watchdog) but rather constructs primitives that are “inherently”
immune to subversion attacks. A limitation of this approach is the bounded security
which depends on the number of samples collected during the good initial phase. Also,
such a strategy only considers attacks that wake up at a later point in time, e.g., due to
the software update, while the watchdog model considers long-term subversion attacks
that might be active during the whole life cycle of the cryptosystem.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 11

3 A Definitional Framework for Subversion-Resilient
Cryptography

In this section, we present a variant of the security definitions from [29] which is similar
in spirit to theirs but captures our security goals for watchdogs with bounded running
time better.

3.1 Notations

Before we present our model, we first introduce the notations used in this work. We will
use x $← X to denote sampling x uniformly at random from the set X . Further, let A
be a randomized algorithm. In order to explicitly reference the random coins used by
A, we will use y ← A(x; r) to denote assigning y to the output of A running on input
x using the random coins r. [1, n] will denote the set of natural numbers from 1 to n,
i.e. {1, 2, . . . , n− 1, n}. To denote an implementation (provided by some adversary) of
some algorithm B, we will use B̃. Finally, we will use Π̂ to denote the specification of
a scheme.

3.2 A General Security Definition for Cryptographic Schemes

We define a cryptographic scheme Π as a tuple of n algorithms

Π = (Π1, . . . ,Πn).

Note that for a specific primitive, n is a fixed number and is usually small. For example,
for a public-key encryption scheme, which is typically defined as a tuple of algorithms
(Gen,Encrypt,Decrypt), we have n = 3 and

(Π1, Π2, Π3) = (Gen,Encrypt,Decrypt).

Security of Π is defined via a security experiment ExpΠA which involves Π and an
adversary A and outputs a bit b ∈ {0, 1}. In the sequel, we will focus on security
experiments based both on the indistinguishability of two distributions as well as so
called search problems. Then we can generically define the advantage function of A
with respect to Π and experiment Exp and a value δ ∈ {0, 1/2} indicating whether a
search or indistinguishability experiment is considered as

AdvΠ,δA :=
∣∣∣Pr [ExpΠA = 1

]
− δ
∣∣∣ .

In the concrete security setting, we say the scheme Π is (t, ε)-secure, if AdvΠA ≤ ε for
all A running in time at most t. Note that in later chapters δ will be clear from context,
and we thus take the liberty to drop it to ease notation.

12 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

3.3 Subversion-resilience with an Offline Watchdog

To define security against subversion attacks (adversarial implementations), we follow
Russell et al.’s approach [29] and consider a setting where the adversary itself provides
the implementation used in the security experiment of the considered scheme. More
precisely, we consider an adversary A that consists of two parts (A0,A1), where A0

produces a (possibly subverted) implementation and a state st

(Π̃1, . . . , Π̃n, st)
$← A0().

Then A1(st) engages in the security experiment Exp, which uses Π̃ = (Π̃1, . . .
, Π̃n). Note that in such a strong adversarial setting it is impossible to achieve mean-
ingful security without further assumptions. Therefore, based on the fact that in the
real world implementations of algorithms can be tested before deployment in an ap-
plication, Russell et al. [29] introduced an additional party called the watchdog. The
watchdog aims to detect a possible subversion in the implementation supplied by the
adversary. The watchdog WD is aware of an “honest” (not subverted) specification of
the scheme, denoted by

Π̂ = (Π1, . . . ,Πn),

and has oracle access to the implementation Π̃ = (Π̃1, . . . , Π̃n) produced by A0. The
adversaryA is only considered successful if it breaks the security of the scheme and the
subverted implementation evades detection by the watchdog. Hence, we consider the
subversion-resilience security experiment SR

A,WD

Exp,Π from Figure 1 (a), which involves a
subversion adversary A = (A0,A1), a watchdog WD, a protocol specification Π̂ and
an underlying experiment Exp .

At the beginning of the experiment, adversaryA0 produces a (subverted) implemen-
tation Π̃ and a state st. The watchdog is provided oracle access to Π̃ . If WD outputs
true, which means that the watchdog has detected a subverted implementation, the ex-
periment outputs either 0 or a random bit, depending on the value δ referring to search
or indistinguishability experiments. This implies that A has zero advantage, if it out-
puts an implementation that WD recognizes as subverted. If WDΠ̃ = false, then the
security experiment Exp is executed, using the adversarially-provided implementation
Π̃ of Π̂ and with an adversary A1(st) that may depend on the state produced by A0.

In order to avoid trivial watchdogs that always output true, such that any scheme
would be provably secure, we require that the watchdog is “correct” in the sense that
it always outputs false when provided with oracle access to the actual protocol. For-
mally:

Definition 1. We say that WD is a correct watchdog for protocol specification Π̂ , if

Pr
[
WDΠ̂ = false

]
= 1.

All watchdogs in this work will trivially fulfill this property. As one would intu-
itively expect, our watchdogs simply compare the output of the oracle with the expected
results of the specification. Thus, our watchdogs will never reject the protocol specifi-
cation.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 13

SR
A,WD

Exp,δ,Π̂

(Π̃, st)← A0()

If WDΠ̃() then
Draw bit b with Pr[b = 1] = δ
Return b

Return Exp
A1(st)

Π̃

(a) Without trusted amalgamation
and with Π̂ = (Π1, . . . , Πn)

SRA,WD

Exp,δ,Π̂

(Π̃, st)← A0()

If WDΠ̃() then
Draw bit b with Pr[b = 1] = δ
Return b

Return Exp
A1(st)

Am(Π̃)

(b) With trusted amalgamation and
Π̂ = (Am, Π1, . . . , Πn)

Fig. 1: Security experiments with watchdog and subverted implementation.

Note that in the above security experiment (Figure 1), WD verifies Π̃ prior to the
experiment Exp. That is, our definition only considers offline watchdogs that simply
check the supplied implementations by the adversary with no access to the full tran-
script of the experiment Exp. As discussed in [29, 30], such a watchdog is preferable
over online watchdogs in the sense that it only carries out a one-time check on the im-
plementation and does not require constant monitoring of all communication. We also
remark that in this work we will only consider a universal watchdog, which means it
is quantified before the adversary in the security definition. Thus, for a secure scheme
there exists a single watchdog that defends against all considered adversaries.

Stateless Subversion. We also remark here that we only consider stateless subversion
in this work. That is, the subverted implementation does not hold any state between
different executions. Note that we are mainly interested in offline watchdogs which run
in bounded time for testing. A trivial attack to evade such a detection is the so-called
time bomb attack which only becomes active when the underlying algorithm is at some
specific state. Specifically, the implementations would behave honestly when they are
under testing by the offline watchdog, and at a later point in time the malicious behavior
would be triggered to wake up. It is clear that such a tricky attack is impossible to be
detected by our considered (i.e. bounded running time) watchdog. In fact, to prevent
such an attack in hardware tokens, some previous work requires a semi-online watchdog
to perform testing regularly [20]. Therefore, we insist that stateful subversion is not
captured by our considered model. Another approach to consider stateful subversion
are reverse firewalls, as discussed in Section 2.3.

3.4 The Split-Program Model and Trusted Amalgamation

The above offline watchdog model is meaningful and was used to establish security
for some specific cryptographic primitives [29]. However, it turns out that it is still not
generic enough to achieve subversion-resilience for many other primitives. Particularly,
it is known that if the user makes only black-box use of the subverted implementation
of randomized algorithms, it is hopeless to eliminate a steganographic channel built on
the output of algorithms [30]. Therefore a non-black-box model is required for general
feasibility results.

14 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

Motivated by the above, Russell et al. [30] proposed the split-program model, where
the specification of each algorithm is split into a constant number of components. Pre-
cisely, a scheme Π is still represented by a tuple of algorithms (Π1, . . . ,Πn), but n
may be larger than the actual number of algorithms of a protocol. The actual algorithms
are then “amalgamated” by combining these underlying building blocks in a trusted
way that cannot be influenced by the adversary. Using such a somewhat relaxed model,
Russell et al. [30] showed how to generically design stego-free specifications for ran-
domized algorithms which play a crucial role in constructing subversion-resilient en-
cryption schemes (in their offline watchdog model). Basically, they further split the
specification of any probabilistic algorithm into two parts: the randomized component
and the deterministic component, that are tested individually by the watchdog. The ran-
domized component generates random coins which (perhaps together with other inputs
drawn from public distributions) are taken as input by the deterministic component to
generate the output of the composed algorithm.

Note that for a meaningful construction of a subversion-resilient cryptosystem, the
amalgamation should be as-simple-as-possible, such that most of the complexity of
the involved algorithms is contained in the algorithms Π = (Π1, . . . ,Πn) that may
be subject to subversion. To make this approach more precise, we explicitly define
an amalgamation function Am and include it in the specification of the scheme. For
instance, for a public-key encryption scheme we would have the specification

Π̂ = (Am, Π) = (Am, (Π1, . . . ,Πn))

for which
Am(Π1, . . . ,Πn) = (Gen,Encrypt,Decrypt)

holds.
As depicted in Figure 1 (b), the subversion-resilience security experiment with

trusted amalgamation proceeds exactly as the basic experiment described above, ex-
cept that the watchdog has access to all procedures

(Π̃1, . . . , Π̃n, st)
$← A0()

produced by A0 individually. The security experiment is then executed with the amal-
gamated primitive

Am(Π̃1, . . . , Π̃n).

Following our example for public key encryption, this would correspond to

Am(Π̃1, . . . , Π̃n) = (G̃en, Ẽncrypt, D̃ecrypt).

With our security model set up, we can now define the advantage of a subversion ad-
versary in the split program model with offline watchdog as

AdvSRA,WD

Exp,δ,Π̂
:=
∣∣∣Pr [SRA,WD

Exp,δ,Π̂

]
− δ
∣∣∣ .

This allows to present our formal definition of subversion-resilience.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 15

Definition 2. A specification of a cryptographic protocol Π̂ = (Am, Π) is (tWD, tA, ε)-
subversion-resilient in the offline watchdog model with trusted amalgamation, if one
can efficiently construct a correct watchdog algorithm WD running in time at most tWD

such that for any adversary A = (A0,A1) running in time at most tA it holds that

AdvSRA,WD

Exp,δ,Π̂
≤ ε

using the experiment shown in Figure 1 (b).

Here it might seem counterintuitive to define security with regards to the speci-
fication, if the underlying security experiment is executed with the subverted imple-
mentation. Our definition can be interpreted in the following way. While the security
experiment is executed with the subverted implementation provided by the adversary,
the watchdog (which is also executed in the experiment) tests the implementation with
respect to that specification, and the adversary outputs subverted algorithms that syn-
tactically follow the specification of the trusted amalgamation. Following Russell et al.
[30], we split randomized algorithms into a probabilistic part (the randomness gener-
ation) and a deterministic part, where all parts can be tested individually. The trusted
amalgamation then feeds the generated randomness into the deterministic algorithms.
Since we are considering universal offline watchdogs, we have to make the assumption
that a subverted implementation of a deterministic primitive also is deterministic. Other-
wise, a subverted implementation could probabilistically deviate from the specification
with some probability, where this probability could possibly be chosen depending on
the watchdog and its bounded running time, so that the watchdog might fail to detect the
subversion. (Note that is very closely connected to the reason why offline watchdogs
(which do not depend on the adversary) cannot consider stateful subversion.)

3.5 Comparisons with Previous Watchdog Models

The security model presented in this section is a refinement of the security models from
[30, 29]. We follow the “concrete security” approach instead of considering asymp-
totic definitions and assume the specification could be divided into an arbitrary number
of components. Similarly to [30], we consider a single security experiment that can
be separated in a ”detection phase” and a ”surveillance phase”. Note that in [30] two
advantage functions are defined: one for the watchdog and another for the adversary.
Security then holds if either the detection advantage of the watchdog is non-negligible
or the adversaries’ advantage is negligible. We change the model in the regard that we
enforce that the adversary “loses” the security experiment in case the watchdog detects
subversion, by outputting a random bit instead of executing the experiment. In this way,
we simplify the security definition by using a single advantage function.

Unfortunately, it seems that in this model it seems unlikely that CPA-security can
be achieved, as we will show in Section 6. We remark that our refined model is slightly
different from previous models [30, 29], as we distinguish between a “detection” game
that involves a watchdog, and the actual security experiment involving a subverted im-
plementation. Our choice for this model has mostly notational advantages for our goal
of achieving subversion-resilience with efficient watchdogs.

16 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

RGINDARG

b
$← {0, 1}

If b == 0 then
return AO() == b

If b == 1 then
return ARG() == b

(a) Experiment for a ran-
domness generator RG.
Oracle O returns uni-
formly random strings.

SRA,WD

RGIND,R̂GSR

(R̃GSR, st)← A0()

If WDR̃GSR() then
b

$← {0, 1}
Return b

Return RGIND
A1(st)

Am(R̃GSR)

(b) Subversion-resilience
experiment for random-
ness generators.

Fig. 2: Security experiments with watchdog and subverted implementation.

4 Subversion-Resilient Randomness Generators

After presenting our security model we will now show how to generate randomness in
a way that allows a watchdog to guarantee in constant time (also independent from an
adversary’s runtime), that the outputs of our construction are uniformly random (i.e., not
just indistinguishable from random, but truly random). This randomness generator will
then later be used to generate the random coins for our subversion-resilient KEM and
PKE scheme. Additionally, this construction is of independent interest as it is a general
and efficient tool to provide uniformly random coins to any cryptographic primitives in
our model.

A randomness generator is a randomized algorithm which on input of a security pa-
rameter outputs some strings. We consider a randomness generator secure if its outputs
are indistinguishable from uniformly random strings.

Definition 3. We say that a randomness generator RG is (t, ε)-indistinguishable if for
any adversary A running in time t it holds that

AdvRGA = |Pr[RGINDARG − 1/2]| ≤ ε

with RGINDARG displayed in Figure 2 (a).

Following Definition 2, we say that a randomness generator is subversion-resilient
under trusted amalgamation if the randomness generator produces outputs that are in-
distinguishable from random, even in a security experiment which uses a trusted amal-
gamation of a subverted implementation.

Definition 4. We say the specification of a randomness generator R̂GSR = (AmRG,
RGSR) is (tWD, tA, ε)-subversion-resilient in the offline watchdog model with trusted
amalgamation, if one can efficiently construct a correct watchdog WD running in time
at most tWD, such that for any adversary A = (A0,A1) running in time at most tA it
holds that:

AdvSRA,WD

RGIND,R̂GSR
≤ ε

with the used experiments shown in Figure 2 (a) and (b).

Subversion-Resilient Public Key Encryption with Practical Watchdogs 17

Known impossibilities. Russell et al. [30] showed that it is impossible to immunize
a single randomness generator against subversion with an immunizing function. Es-
sentially, they adopt the approach of subverting algorithms from [6, 5] to randomness
generators, showing that one can easily introduce a bias into a single source via rejec-
tion sampling. This bias can then be maintained by a subverted immunizing function.
This bias may furthermore be “hidden”, in the sense that detecting it requires knowl-
edge of a secret key only known to the adversary to compute some predicate, such that
a watchdog would not be able to efficiently detect it, while a subverting adversary may
easily distinguish the subverted RG from random.

In order to overcome this general impossibility, Russel et al. [30] introduce the
“double splitting” approach. Here, two RNGs are run independently in parallel. The
outputs of these two RNGs are then fed into an immunization function, which may also
be subverted. Russel et al. showed that if the immunization function is modeled as a
random oracle, then this yields a randomness generator whose output is indistinguish-
able from outputs of a non-subverted randomness generator, even for the subverting
adversary. They provide a standard-model construction of a randomness generator that
outputs a single bit and a watchdog which tests whether one bit appears significantly
more often than the other. Using the Chernoff bound, they argue that the watchdog will
notice a bias after gathering enough samples. The randomness generator would then be
run n times independently to obtain a n bit output.

We describe a new construction, which applies the “two independent RNG” ap-
proach of [30] in a different way. Our construction is extremely simple and efficient to
test, yet provides perfect random bits and does not require a random oracle.

4.1 Construction

The specification R̂GSR = (Am,RG,VN) of our randomness generator consists of the
following building blocks:

– A probabilistic algorithm RG that outputs a bit RG() ∈ {0, 1}.
– A simple binary and deterministic immunization function VN : {0, 1} × {0, 1} →
{0, 1}, which is defined as follows:

VN(b0, b1) :=

0 if b0 < b1,

1 if b0 > b1,

⊥ else.

Note that this function is the classical von Neumann extractor [32].

The von Neumann extractor takes as input two bits with some (arbitrary and un-
known but fixed) bias and outputs a uniformly random bit, as long as the two input bits
are distinct from each other.

Using these two building blocks, we construct an algorithm outputs a single bit
using trusted amalgamation. The amalgamation is essentially a very simple while-loop,
given in Figure 3. It can be easily generalized to output n bits by calling it n times.

18 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

AmRG(RG,VN)

b0 = b1 := ⊥
While b0 == b1 do
b0 ← RG()
b1 ← RG()

b := VN(b0, b1)
Return b

Fig. 3: The trusted amalgamation function AmRG for a randomness generator RG and a
von Neumann extractor VN.

The amalgamation function AmRG is extremely simple, it runs RG twice indepen-
dently and applies VN to the output. This is repeated in a while-loop, until the output of
VN is not the error symbol ⊥, but a bit b ∈ {0, 1}.
Correctness. Since we have VN(b0, b1) = ⊥ ⇐⇒ b0 = b1, the correctness of this
algorithm depends on the probability that the two executions of RG computing b0 and
b1 in the while-loop yield b0 6= b1. Let p := Pr [RG() = 1], then we have

Pr [b0 6= b1] = 2p(1− p).

Hence, it takes an expected (p(1−p))−1 executions of RG and (2p(1−p))−1 executions
of VN to generate an output bit. For instance, if RG is truly random, then we would have
4 expected executions of RG and 2 of VN. Even if RG is a rather bad random number
generator, say with p = 1/4, then one would expect about 5 + 1/3 executions of RG
and 2 + 2/3 of VN.

4.2 Security

The proof that R̂GSR is a subversion-resilient randomness generator uses the fact that
the adversary provides a single implementation R̃G which is then queried twice by the
trusted amalgamation. Therefore, the two bits b0, b1 are computed independently in ev-
ery while loop and are identically distributed. The watchdog only has to test the imple-
mentation of the von Neumann extractor on all four possible inputs. It is not necessary
to test the implementation of the randomness generator at all to achieve security.

Theorem 1. The specification R̂GSR as defined above is (O(1), tA, 0)-subversion-resilient
in the offline watchdog model with trusted amalgamation.

Note that the theorem asserts that we can construct a constant-time watchdog. It
will be independent of the runtime of the adversary or any bias possibly embedded in
the subverted implementation of RG.

Proof. The only component that we test is the implementation of VN : {0, 1}×{0, 1} →
{0, 1}, which is a very simple function with only four possible inputs. Therefore it can

Subversion-Resilient Public Key Encryption with Practical Watchdogs 19

be checked on all possible inputs in constant time. The watchdog WD runs a given im-
plementation ṼN on all four possible inputs and checks the correctness of the output
with the specification.

In case ṼN deviates from the specification on any input, the watchdog will detect
this with probability 1. Thus, this would immediately lead to an advantage of 0 for the
adversary.

Provided that ṼN implements VN correctly and using the fact that the two bits
b0, b1 ← R̃G() are computed independently in every while loop, we obtain that when
R̃G outputs a bit b then we have

Pr [b = 0] = Pr [b0 = 0 ∧ b1 = 1] = Pr [b0 = 1 ∧ b1 = 0]

= Pr [b = 1] ,

and thus Pr [b = 0] = Pr [b = 1] = 1/2, again leading to an advantage of 0 for the
adversary. ut

4.3 Discussions

The main advantage of our proposed RG is that it achieves perfect security using a
constant-time watchdog. Note that Russell et al. [30] also described several alternative
approaches to purify randomness in the standard model. Below we provide more discus-
sion about their approaches. It is worth mentioning that in [1], Ateniese et al. proposed
a different approach to eliminating the requirement of random oracles by essentially
relying on an additional independent and untamperable source of public randomness.
Simple multi-splitting. The first approach proposed in [30] is simple multi-splitting,
which means that n copies of RG (each outputting a single bit) are run and all outputs
are concatenated and output. The main problem with this approach is that RG has to
be tested very many times, otherwise the watchdog is unable to notice a small, but
non-negligible bias.
More efficient construction using randomness extractors. The second approach is to
use randomness extractors, but in a totally different way. Precisely, it is observed that
a watchdog making O(n2c) queries can verify that the output of each RG has at least
c log n bits of entropy (for some constant c). Thus, Russell et al. [30] proposed to run
RG for log n times to obtain a random string of length log n, which is then used as a
seed for a randomness extractor. This extractor can then be used to obtain more random
bits from RG, which afterward can be expanded with a pseudorandom generator (PRG).
Note that in this case a watchdog would not only have to check RG for entropy but also
recompute all calculations of the extractor and the PRG to check if these components
follow their specifications.

A disadvantage of our construction of RG is that we do not have a strict upper bound
on its running time, but only expected bounds. We consider this a minor disadvantage,
though, since lack of functionality will serve as an automated way to detect subversion
that introduces a too heavy bias in RG. The efficiency can be improved if one is willing
to do a little bit more testing. For instance, the watchdog could also test RG and check
for a too heavy bias p that would significantly harm performance. Note however that

20 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

even a particularly bad underlying randomness generator RG, which always outputs a
constant 0, for instance, would only harm correctness, but not the security of RG.

5 Subversion-Resilient Key Encapsulation Mechanisms

In this chapter, we will construct a (t, ε)-one-way key encapsulation mechanism that is
subversion-resilient even if all algorithms are subject to subversion, provided that we
have a very simple trusted amalgamation function. Our construction achieves subversion-
resilience with a watchdog whose running time is only linear in the security parameter,
while also allowing for tradeoffs between ciphertext size and the watchdog’s runtime.

5.1 Key Encapsulation Mechanisms and Security Definitions

Key encapsulation mechanisms are techniques to securely transport symmetric crypto-
graphic key material using public key cryptography. We will use the following standard
definitions for key encapsulation mechanisms and their security.

Definition 5. A key encapsulation mechanism (or KEM) consists of three algorithms
KEM = (Gen,Encaps,Decaps) with the following syntax.

– Gen(): The randomized key generation algorithm outputs a key pair (sk , pk).
– Encaps(pk): The randomized encryption algorithm takes as input a public key pk .

It outputs a key K ∈ KS, where KS is called the key space defined by pk (either
implicitly or explicitly), and a ciphertext C.

– Decaps(sk , C) : The deterministic decapsulation algorithm takes a secret key sk
and a ciphertext C. It outputs a key K ∈ KS or a distinguished error symbol ⊥.

Definition 6. We say that KEM = (Gen, Encaps, Decaps) is (tA, ε)-indistinguishable
if for any adversary A running in time at most tA it holds that

AdvKEMA := |Pr[KEMINDAKEM]− 1/2| ≤ ε

with KEMIND as defined in Figure 4 (a).

Definition 7. We say that KEM = (Gen, Encaps, Decaps) is (tA, ε)-one-way if for any
adversary A running in time at most tA it holds that

AdvKEMA := |Pr[KEMOWAKEM]| ≤ ε

with KEMOW as defined in Figure 4 (b).

We define subversion-resilient KEMs by adapting Definition 2 to KEMs.

Definition 8. We say that the specification K̂EMSR = (AmKEM,KEMSR) of a key en-
capsulation mechanism is (tWD, tA, ε) subversion-resilient one-way/indistinguishable
in the offline watchdog model with trusted amalgamation, if one can efficiently con-
struct a correct watchdog WD running in time at most tWD such that for any adversary
A = (A0,A1) running in time at most tA it holds that:

AdvSRA,WD

Exp,δ,K̂EMSR
≤ ε

with Exp ∈ {KEMIND,KEMOW} and δ ∈ {0, 1/2}, accordingly.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 21

KEMINDAKEM

(sk , pk)← Gen()

K0
$← KS

(C∗,K1)← Encaps(pk)

b
$← {0, 1}

bA ← A(pk ,Kb, C
∗)

If bA == b then return 1
Else return 0

(a) Indistinguishability ex-
periment for key encapsula-
tion mechanisms.

KEMOWAKEM

(sk , pk)← Gen()
(C,K)← (Encaps(pk)
(K∗)← A(pk , C)
If K∗ == K then return 1
Else return 0

(b) One-way experiment for
key encapsulation mecha-
nisms.

SRA,WD

Exp,δ,K̂EMSR

(K̃EMSR, st)← A0()

If WDK̃EMSR() then
Draw bit b with Pr[b = 1] = δ
Return b

Return Exp
Am(K̃EMSR)
A1(st)

(c) Subversion-resilience ex-
periment for key encapsu-
lation mechanisms where
Exp ∈ {KEMIND,KEMOW}
and δ ∈ {0, 1/2}, accordingly.

Fig. 4: Security experiments for KEMs.

22 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

5.2 Our Proposed KEM
Idea overview. Before we present the technical details of our construction, let us il-
lustrate our approach. In order to obtain random coins for our scheme, we will use the
subversion-resilient randomness generator from the previous chapter. Overall, we will
use n instantiations of a KEM in parallel, where n is a parameter that can be chosen
appropriately depending on the application. This means, we run the key generation al-
gorithm n times in parallel to obtain n key pairs. To encapsulate a key, we will also
run the Encaps algorithm n times in parallel, each time using a public key that was
previously generated. This gives us n ciphertext/key pairs. While all ciphertexts are just
output as the final ciphertext, the amalgamation executes an XOR function on all keys.
As we will see later in the security analysis, as long as one public key and the ciphertext
under that public key were executed honestly, this will be sufficient for our reduction to
be successful.

Construction. With these definitions in place, we are now ready to describe our con-
struction. Let R̂GSR = (AmRG, RGSR) be the specification of a subversion-resilient
randomness generator. Further, let n > 0 be an arbitrary constant which allows us to
adjust the construction. Since we focus on the key encapsulation mechanism in this
section, we will use

RG() := AmRG(RGSR)

to simplify notation. Let (Gen, Encaps, Decaps) be a key encapsulation mechanism.
From these building blocks we define a specification of a subversion-resilient key en-
capsulation mechanism

K̂EMSR = (AmKEM,KEMSR) = (AmKEM, (RGSR,Gen,Encaps,Decaps))

where the trusted amalgamation AmKEM defines algorithms (GenSR, EncapsSR, DecapsSR)
as follows.

– GenSR() : Compute ri ← RG() and (sk i, pk i) ← Gen(; ri) for all i ∈ [n] and
output

pk := (pk i)i∈[n] and sk := (sk i)i∈[n].

See Figure 5 for an illustration.
– EncapsSR(pk) : On input pk = (pk1, . . . , pkn) compute ri ← RG()) and (Ci,Ki)←
Encaps(pk i; ri) for all i ∈ [n] and output

C := (C1, . . . , Cn) and K := K1 ⊕ · · · ⊕Kn.

See Figure 6 for an illustration.
– DecapsSR(C, sk) : On input sk = (sk1, . . . , skn) and C = (C1, . . . , Cn) compute
Ki = Decaps(sk i, Ci) for all i ∈ [n]. If there exists i ∈ [n] such that Ki = ⊥, then
output ⊥. Otherwise output

K = K1 ⊕ · · · ⊕Kn.

The trusted amalgamation function AmKEM essentially consists of simple loops with
n independent iterations of calls to the underlying RG and KEM procedures, plus a
simple ⊕ function. Note that a trusted ⊕ was also used in [29] in order to handle large
message spaces for public key encryption.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 23

VN

VN

RG

RG

RG

RG

Gen

Gen

AmRG

AmRG AmKEM

r0

r1

r0

r1

(sk , pk)

r1

rn

(sk1, pk1)

(skn, pkn)

Fig. 5: Subversion-resilient KEM: Key generation algorithm.

Security analysis.

Theorem 2. Let KEM be a (tA, ε) one-way key encapsulation mechanism and R̂GSR
be the specification of a (O(1), tB, 0) subversion-resilient randomness generator. Then
K̂EMSR as defined above with parameters n, nWD > 0 ∈ N is (tWD, t

′
A, ε

′) subversion-
resilient one-way in the offline watchdog model with trusted amalgamation with

tWD ∈ O(nWD), t′A ∈ O(tA + tB + n),

ε′ ≤ max

{
2−nWD , 2ε+

(
nWD

nWD + n

)nWD

·
(
1− nWD

nWD + n

)n}
Proof. The following notation and helper functions will be useful for the proof. Let
Rgen, Renc denote the randomness space of the algorithms Gen and Encaps, respec-
tively. Let FKEM be the deterministic function parameterized by a key encapsulation
mechanism KEM = (Gen, Encaps, Decaps) which takes as input randomness (r, s) ∈
Rgen ×Renc for Gen and Encaps, respectively, and then computes

(pk , sk , C,K) = FKEM(r, s) (5)

with

(pk , sk)← Gen(; r) and (C,K)← Encaps(pk ; s).

For KEM (which is part of the specification K̂EMSR) and a corresponding implemen-
tation K̃EM we can now define sets Neq and Eq as

Neq :=
{
(r, s) : FKEM(r, s) 6= F

K̃EM
(r, s)

}
(6)

24 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

VN

VN

RG

RG

RG

RG

Encaps

pk1

pkn

Encaps

AmRG

AmRG AmKEM

r0

r1

r0

r1

(C,K)
⊕

r1

rn

C1
K1

Kn

K

Cn

Fig. 6: Subversion-resilient KEM: Encapsulation algorithm.

and

Eq :=
{
(r, s) : FKEM(r, s) = F

K̃EM
(r, s)

}
. (7)

Hence, set Neq contains all “bad” randomness values where the implementation de-
viates from the specification, and Eq contains all “good” randomness values where
specification and implementation match. Since Neq and Eq are disjoint sets, we have

Neq ∪ Eq = Rgen ×Renc and Neq ∩ Eq = ∅.

Watchdog construction. We construct a universal offline watchdog WD which pro-
ceeds as follows.

1. First WD runs the watchdog for R̂GSR as a subroutine. If this algorithm outputs
true, then WD outputs true. Otherwise, WD proceeds.

2. Then, for i ∈ [1, nWD], WD picks (ri, si)
$← Rgen×Renc uniformly at random and

checks whether

FKEM(ri, si) = F
K̃EM

(ri, si)

holds where F is as defined in Equation (5). If any of these checks fails, then the
watchdog outputs true. Otherwise, it outputs false.

Note that the above watchdog performs only a constant number of queries to check
RG plus nWD many evaluations of each Gen and Encaps.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 25

Security analysis. Before we dive into the analysis, let us start with a general bound
on the success probability of adversaries that will help us out later. We will use that
the fraction of randomness inputs eq to Gen× Encaps is at least 1/2 for any adversary
A winning the subversion security game with probability at least 1/2nWD . The reason
for this is that any implementation winning the subversion experiment need to pass the
watchdog’s test beforehand, and in both cases uniformly random coins are provided to
the subverted building blocks. Thus, we naturally obtain

Pr[WDK̃EMSR()] ≥ Pr[SRA,WD

KEMOW,K̂EMSR
= 1].

Now, assume that eq < 1/2. Then we can conclude that

Pr[SRA,WD

KEMOW,K̂EMSR
= 1] ≤ Pr[WDK̃EMSR()] < 1/2nWD .

This contradicts that A wins with probability at least 1/2nWD , which is why we can
conclude that eq ≥ 1/2 holds.

In order to analyze the security of our scheme with respect to this watchdog, con-
sider the following sequence of games.

Game 0. This Game is the SRA,WD

KEMOW,K̂EMSR
experiment.

Game 1. This game is identical to Game 0, except that all invocations of R̃G are re-
placed with uniformly random bits.

Since WD runs the watchdog for R̂GSR as a subroutine it outputs true only if the
watchdog for R̂GSR does. By the (O(1), tB, 0)-subversion-resilience of RG this game
is therefore perfectly indistinguishable from Game 0.

Game 2. This game is identical to Game 1, except that the execution of game KEMOWAKEM
is changed in the following way. After computing

(sk , pk) = ((pk i)i∈[n], (sk i)i∈[n])

for (sk i, pk i) = G̃en(; ri), and then

(C∗,K1) = ((C∗1 , . . . , C
∗
n), (K11 ⊕ . . .⊕K1n))

with (C∗i ,K1i) = Ẽncaps(pk i; si) and uniform ri, si, the experiment checks whether
an index i ∈ [1, n] exists such that

FKEM(ri, si) = (pk i, sk i, Ci,Ki) = F
K̃EM

(ri, si).

Thus, the experiment ensures that at least one ciphertext was computed according to the
specification, with a public key that was also computed according to the specification.
If such a ciphertext was not output, then the game simply aborts.

26 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

Note that Game 2 and Game 1 only differ if an abort occurs after the watchdog has
approved the implementation. Therefore, the probability for this event is

Pr[Abort] = Pr

[
WDK̃EM = false ∧

Challenger aborts KEMOWAKEM

]
(∗)
= Pr

[
WDK̃EM = false

]
· Pr

[
Challenger aborts KEMOWAKEM

]
≤
(

|Eq|
|Rgen ×Renc|

)nWD

·
(

|Neq|
|Rgen ×Renc|

)n
(∗∗)
≤
(

nWD

nWD + n

)nWD

·
(
1− nWD

nWD + n

)n
with Neq and Eq as defined in Equation (6) and Equation (7), respectively. Note here
that the equation marked with (∗) holds because the two events are independent, since
they only depend on the used randomness and the watchdog samples its randomness
independently from the experiment. The following inequality holds by definition of the
watchdog and the abort condition. The bound marked with (∗∗) holds since the previous
line can be written as pλ · (1−p)λ for some p ∈ [0, 1]. Calculating the derivative of this
function and computing the root yields that the term is maximized for

p =

(
|Eq|

|Rgen ×Renc|

)
=

nWD

nWD + n
.

Thus, if we fix nWD and n, the above term states the best bound any adversary can
achieve.

Now we are ready to argue that security in Game 2 is implied by the security of
the underlying KEM. To this end, consider a (tA, ε2) adversary A2 which breaks the
security of Game 2. From this, we construct a (tB, ε) adversary B breaking the security
of the underlying KEM.

Construction of B. Adversary B receives as input a challenge ch = (pk∗, C∗) and then
simulates Game 2 as follows.

First, B obtains an implementation K̃EMSR and state st fromA0. It runs the watch-
dog for K̂EMSR as specified above. In case that watchdog outputs false, B outputs 0,
just like the original security experiment. Otherwise, B continues to simulate Game 2.

If this is the case, then the adversaryB generates n keys (sk , pk) = ((sk1, . . . , skn),
(pk1, . . . , pkn)) using the amalgamated algorithm G̃en, based on the implementation
provided by A0. In order to compute the challenge ciphertexts, B computes ciphertexts
Ci and keys Ki for i ∈ [1, n] by running Ẽncaps using uniformly random coins. As in
Game 2, the adversary B now checks whether there exists (sk i, pk i, Ci,Ki) for some
i ∈ [1, n] which were computed according to the specification. In case no such pair is
found, B aborts.

Otherwise, let i denote the smallest index for which this condition is fulfilled. Then,
B computes the challenge ciphertext for A by replacing (pk i, Ci) by its own challenge
(pk∗, C∗). More formally, B outputs (st, pk , C) with pk = (pk1, . . . , pkn) and C =

Subversion-Resilient Public Key Encryption with Practical Watchdogs 27

(C1, . . . , Cn) to A1, where (pk i, Ci) = (pk∗, C∗). Finally, let A output a key K. B
then computes K∗ = K ⊕ni=1 Ki where Ki are the keys simulated by B.

Now observe that if A indeed computes the correct key, then so does B, since B
simulated n − 1 keys. and can therefore compute the correct solution for its own chal-
lenge.

It remains to analyze the advantage of B. If the embedded challenge could also
have been output by A’ implementation, then B simulates Game 2 correctly. We can
lower bound the probability of this event by 1/2, by utilizing our observation earlier
that eq ≥ 1/2. Thus, we have

Pr[KEMOWBKEM] = Pr[ch ∈ Eq] · Pr[A wins G2|ch ∈ Eq]

+ Pr[ch /∈ Eq] · Pr[A wins G2|ch /∈ Eq]

≥ 1/2 · Pr[A wins G2|ch ∈ Eq]

= 1/2 · Pr[A wins G2].

Putting the above together we obtain 2ε ≥ ε2.
Since Game 2 and Game 1 only differ by the abort condition, we obtain that

ε2 = ε1 − Pr[Abort] ≥ ε1 −
(

nWD

nWD + n

)nWD

·
(
1− nWD

nWD + n

)n
.

Finally, Game 1 and Game 0 are perfectly indistinguishable due to the (O(1), tB, 0)-
subversion-resilience of R̂G. Since Game 0 is the original subversion-resilience Game
SRA,WD

KEMIND,K̂EMSR
, we obtain that

ε0 ≤ 2ε+

(
nWD

nWD + n

)nWD

·
(
1− nWD

nWD + n

)n
which completes the proof. ut

5.3 Efficient Instantiation of the Subversion-Resilient KEM and the Watchdog

The variable n determines the efficiency of the constructed scheme in terms of the
number of parallel instances of the underlying KEM (note that this has direct impact on
the size of keys and ciphertexts), while nWD determines the number of tests performed
by the watchdog. Both together determine the overall security guarantee inherited from
the underlying KEM.

Defining nWD and n as variables yields interesting tradeoffs between the watchdog’s
runtime, the size of ciphertexts and keys, and the obtained security bounds.

In Table 1 we consider different choices of n and nWD for λ ∈ {128, 256}, i.e.,
“128-bit” and “256-bit” security. For different values of n, we compute the number
nWD of tests performed by the watchdog in order to achieve that(

nWD

nWD + n

)nWD

·
(
1− nWD

nWD + n

)n
≤ 2−λ

28 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

Security parameter λ n dlog2(nWD)e

128 32 8
128 16 11
128 8 18
128 4 33

256 64 9
256 32 12
256 16 19
256 8 34

Table 1: Instantiating our construction and the watchdog with different values n and
nWD. Recall that n is the number of parallel KEM instances used in our construction
and nWD is the number of tests (on each Gen and Encaps) done by the watchdog.

holds. Note that together with the assumption that the underlying KEM is instantiated
such that it provides ε ≤ 2−λ, we thus obtain a security bound on the subversion-
resilient KEM of

ε0 ≤ 2ε+

(
nWD

nWD + n

)nWD

·
(
1− nWD

nWD + n

)n
≤ 3 · 2−λ.

Table 1 shows how our subversion-resilient KEM can be instantiated. For instance,
for λ = 128 and with n = 8, the watchdog only needs to test the Gen and Encaps algo-
rithm only 218 times, which can be practically accomplished for many underlying KEM
constructions within a short time on moderate hardware. Even for λ = 128 and with
n as small as n = 4 only 233 tests are already sufficient, which also seems practically
feasible, since it can be accomplished for most underlying KEMs within minutes or at
most few hours on standard hardware such as a laptop computer.

5.4 From OW to CPA

Note that one-way security is strictly weaker than CPA security. However, as we will
show in Section 6, it seems that in our model and with our construction CPA-security
does not seem achievable via a combiner-like approach. That being said, there are trans-
formations to obtain a CPA secure KEM from a one-way KEM by applying a random
oracle to the computed key. As the random oracle behaves like a random function and
the key fed as input can not be computed by an adversary, the resulting output is indis-
tinguishable from random keys. In [31] Russell et al. showed how to sanitize subverted
random oracles in an asymptotic setting. Unfortunately, their approach heavily relies
on their asymptotic model and that after the watchdog’s testing specification and imple-
mentation deviate only on a negligible fraction of inputs, which does not seem possible
to guarantee in our model.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 29

6 Impossibility of subversion-resilient indistinguishability

The original security proof in [8] aimed to show subversion-resilience with regard to
the security notion of CPA-indistinguishability. Unfortunately, as we will show in the
following, the authors overlooked a very subtle detail which invalidates their security
proof. On a very high level, the proof strategy was the following:

– The testing of the watchdog guarantees with overwhelming probability that at least
one pair (pk i, Ci) generated in the subversion security experiment does not deviate
from the specification.

– We can replace this pair by the challenge pair (pk∗, C∗) obtained in the KEM
security experiment.

– In order to be successful, the subversion adversary thus needs to also solve this
challenge (pk∗, C∗) due to the combiner property.

Unfortunately, the above strategy does not hold up against scrutiny, as (pk∗, C∗)
might never be the output of the subverted implementation. A simple example for this
would be an implementation, which would never output a public key ending in ’0’. The
adversary could thus identify such instances and fail intentionally, effectively canceling
out its advantage. Based on this, we now show that every reduction, which performs
such a simple embedding such that the adversary has ’direct access’ to it, can not be
successful.

Theorem 3. Let R be a reduction which reduces the security of a subversion-resilient
KEM KEMSR to the security of an indistinguishable KEM KEM. Let pk = (pk0, . . . ,
pkn), C = (C0, . . . , Cn) be the public key and ciphertext of KEMSR. Furthermore, let
R be any reduction, that after running the watchdog for KEMSR, takes a public key / ci-
phertext pair (pk∗, C∗) of KEM and replaces any pk i, Ci where i ∈ [n] with (pk∗, C∗)
before handing this new challenge to some adversary. Then, if there exists an adversary
B which breaks the (t, ε)-subversion-resilience of KEMSR, there exists an adversary
A which breaks the (t, ε)-subversion-resilience of KEMSR but cannot be used by the
(single-stage) reduction R of the form above to break the indistinguishability of KEM.

In other words, for every such reduction R, there is always an attacker A that will be
able to break the subversion-resilience without breaking the indistinguishability for R.

Proof. First, the adversary prepares its implementation, such that the outputs of (Gen,
Encaps) deviate from the specification for a fraction neq of all (randomness) inputs
of Gen × Encaps. Similarly we use eq = 1 − neq to denote the fraction of inputs
for which outputs follow to the specification. Then, the watchdog performs q test on
(Gen,Encaps), as described in [8].

Now, we will construct the adversary A. If the watchdog approves of the imple-
mentation (i.e., it never encounters a deviation from the specification), A is given its
challenge ch = (pk∗,K∗, C∗). Due to the possibility of using our von-Neumann con-
struction, the keys in the challenge will always be uniform bitstrings. Thus, we can
ignore K∗ in the following and will simply use ch = (pk∗, C∗). We now distinguish
the two following scenarios:

30 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

– If the challenge given to A is correctly distributed with regard to the subverted
implementation, the adversary flips a biased coin with bias = neq/eq. If the result
is heads (which happens with probability bias), the adversary runs B to break the
security of the scheme with probability ε. Otherwise, if the result is tails (which
happens with probability 1 − bias), the adversary samples a uniformly distributed
bit and returns this random bit.

– If the challenge given to A is not correctly distributed, there is a public key / ci-
phertext pair that could not have been produced by the subverted implementation.
Now, A tries to to deliberately output a wrong solution, as they are aware of the
fact that they are used in a reduction R. To do so, A runs B to obtain a bit b and
then outputs 1− b. Hence, it outputs the correct bit with probability 1− ε.

Now, let us analyze Adv := KEMINDRKEM, i.e., the advantage of the reduction R
in breaking the indistinguishability security of the underlying KEM. By definition, this
advantage is equal to |Pr[SR = 1] − 1/2|. Here, SR is the subversion security game
played by A, where the reduction embeds a challenge somewhere in a construction
such that the adversary has access to this challenge. To analyze Adv, we introduce the
following events:

detected: This event describes that the Watchdog outputs ’true’ during its testing phase,
i.e., the watchdog accepts the implementation.

A: This event (“attack”) refers to A flipping its coin and then trying to break the secu-
rity of the considered scheme (which happens with probability bias).

R: This event (“random”) is the complementary event to “attack” and refers to A sim-
ply outputting a random bit.

Now, the law of total probability gives

Adv = |Pr[SR = 1|detected] · Pr[detected]
+ Pr[SR = 1|¬ detected ∧ ch /∈ Eq] · Pr[¬ detected ∧ ch /∈ Eq]

+ Pr[SR = 1|¬ detected ∧ ch ∈ Eq ∧A] · Pr[¬ detected ∧ ch ∈ Eq ∧A]
+ Pr[SR = 1|¬ detected ∧ ch ∈ Eq ∧R] · Pr[¬ detected ∧ ch ∈ Eq ∧R]
− 1/2|.

Subversion-Resilient Public Key Encryption with Practical Watchdogs 31

Plugging in the probabilities that the subverted implementation is detected (or not) and
the different scenarios for A shows that this is equal to

Adv
(1)
= |1/2 · (1− eqq)

+ ε · (eqq · neq)
+ (1− ε) · (eqq+1 · bias)
+ 1/2 · (eqq+1 · (1− bias))

− 1/2|
(2)
= |1/2 · (1− eqq)

+ ε · (eqq · neq)
+ (1− ε) · (eqq+1 · neq/eq)
+ 1/2 · (eqq+1 · (1− neq/eq))

− 1/2|
(3)
= |1/2 · (1− eqq)

+ (eqq · neq)
+ 1/2 · eqq+1

− 1/2 · eqq+1neq/eq))

− 1/2|
=|1/2 ·

(
1− eqq + eqq · neq+ eqq+1

)
− 1/2|

=|1/2 · (1− eqq + eqq(neq+ eq))− 1/2|
=|1/2 · (1− eqq + eqq)− 1/2| = 0

where in equation (1) we simply replaced the probabilities of the events with the cor-
responding values of eq and neq and the probabilities according to A’s strategy. In (2)
we substituted bias with neq/eq, according to its definition. All equations after (3) are
simple manipulations. Hence, we conclude thatA is not breaking the indistinguishabil-
ity of KEM. ut

Discussion Note that the bias bias = neq/eq chosen by the adversaryA is independent
of the amount of tests q performed by the watchdog. Hence, this value cancels out one
additional eq term, which is always true, independent of the size of q. Also, the size
of Neq (and therefore neq) can not be made arbitrarily small by simply more testing
of the watchdog, as long as the watchdog is independent of the adversary and engages
in a fixed number of tests. Consider an adversary which prepares its implementation
with neq = ((q/q + 1)) were q denotes the amount of testing queries by the watch-
dog, The probability that the adversary avoids detection is then (1 − (q/q + 1))q and
approaches 1/e for q → ∞, which is non-negligible, while the probability of being
handed a subverted challenge is neq, which is also non-negligible.

Note that Theorem 3 is specifically phrased in order to capture the results of [8].
It seems that even broader statements about impossibility are possible in this setting of

32 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

subversion-resilience: Instead of directly embedding a challenge, a reduction could also
try to rerandomize the challenge before embedding it, in case that KEM is sufficiently
rerandomizeable. However, this approach also does not seem to work, as the reduction
does not have knowledge whether the rerandomized challenge can be computed by
the implementation, as the reduction can not recompute the randomness used for the
challenge. Otherwise, it would directly break the security of KEM.

On the other hand, a general impossibility result regarding CPA security with lim-
ited testing is also not possible: If a construction shifts all computations to the trusted
amalgamation, it is trivially subversion-resilient. Thus, there is a tradeoff between the
amount of trust put into the amalgamation and the needed resources to guarantee this
trust for real applications. We leave this formalization as an open problem for future
work.

7 Subversion-Resilient Public-Key Encryption

After successfully constructing a subversion-resilient one-way KEM, we now proceed
to construct a subversion-resilient one-way public key encryption scheme. We will show
that the standard way to construct public-key encryption from a KEM also preserves
subversion-resilience, provided that a trusted XOR operation is given.

7.1 Definitions and Construction

We begin by recalling the standard definition for public key encryption and its standard
OW-style security definition.

Definition 9. Let PKE = (GenPKE, Encrypt, Decrypt) be a public key encryption
scheme with the following syntax:

– GenPKE() : The randomized key-generation algorithm outputs a key pair (sk , pk).
– Encrypt(pk ,M) : The randomized encrypt algorithm takes as input the public key
pk and a message M and outputs the ciphertext C.

– Decrypt(sk , C) : The deterministic decryption algorithm takes as input the secret
key sk and the ciphertext C. It outputs a message M or the error symbol ⊥.

Definition 10. We say that PKE = (GenPKE, Encrypt, Decrypt) with message space
M is (tA, ε)-one-way if for any adversary A running in time at most tA it holds that

AdvPKEA := |Pr[PKEOWAPKE]| ≤ ε

with PKEOWAPKE shown in Figure 7 (a).

Definition 11. We say that a specification of a public key encryption scheme P̂KESR =
(AmPKE,PKESR) is (tWD, tA, ε)-subversion-resilient one-way in the offline watchdog
model with trusted amalgamation if one can efficiently construct a correct watchdog
WD running in time at most tWD such that for any adversaryA = (A0,A1) running in
time tA it holds that

AdvSRA,WD

PKEOW,P̂KESR
≤ ε

with the used experiments shown in Figure 7 (a) and (b).

Subversion-Resilient Public Key Encryption with Practical Watchdogs 33

PKEOWAPKE

(sk , pk)← GenPKE()

m∗
$←M

C∗ ← Encrypt(pk ,m∗)
m← A(pk , C∗)
If m∗ == m then Return 1
Else Return 0

(a) One-way experiment for
public key encryption schemes
with message spaceM.

SRA,WD

PKEOW,P̂KESR

(P̃KESR, st)← A0()

If WDP̃KESR() then
Return b = 0

Return PKEOW
A1(st)

Am(P̃KESR)

(b) Subversion-resilience ex-
periment for public key en-
cryption schemes.

Fig. 7: Security experiments for public key encryption schemes.

Description of the construction. Let K̂EMSR = (AmKEM,KEMSR) be the specifica-
tion of a subversion-resilient key encapsulation mechanism with

AmKEM(K̂EMSR) = (GenSRKEM,EncapsSR,DecapsSR).

We then construct the specification of a public key encryption scheme P̂KESR =
(AmPKESR,KEMSR) with

AmPKESR(KEMSR) = (GenSRPKE,EncryptSR,DecryptSR)

where each algorithm is defined as follows:

– GenSRPKE(): Output (sk , pk) = GenSRKEM().
– EncryptSR(pk ,M): Compute (C,K)← EncapsSR(pk) and output (C,K ⊕M).
– DecryptSR(sk , C): Parse C = (C0, C1). Compute K ← DecapsSR(sk , C0). Out-

put M = C1 ⊕K.

Thus, the specification of our public key encryption scheme is basically the specification
of the underlying subversion-resilient key encapsulation mechanism and the amalgama-
tion AmPKESR is almost identical to AmKEM. The only difference is that during encrypt,
the message is additionally computed via an XOR to the key K.

Security analysis. Subversion-resilience of the new public key encryption scheme fol-
lows directly from the security of the underlying KEM and the usage of a trusted ⊕.

Theorem 4. Let K̂EMSR = (AmKEM,KEMSR) be the specification of a (tWD, tA, ε)

subversion-resilient one-way KEM. Then P̂KESR as described above is (tWD, tA, ε)
subversion-resilient one-way under a trusted ⊕ operation.

Proof sketch. The watchdog for PKE simply runs the watchdog for K̂EMSR as a sub-
routine. Thus, either the watchdog detects subversion or the ciphertext-key-pair output
is ε-one-way. Since the ⊕ operation is trusted, the resulting ciphertexts of PKE are also
ε-one-way. Therefore PKE is subversion-resilient iff K̂EMSR is subversion-resilient.

34 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

Discussion. One may wonder why we do not directly build a subversion-resilient public
key encryption scheme, since the experiment chooses m uniformly at random, and thus
do not allow the adversary to freely choose input triggers. However, we then again
run into problems similar to the ones presented in Section 6. There will always be non-
negligible many input trigger in the implementation, as long as the watchdog engages in
polynomial many testing queries. Thus, we utilize a trusted XOR and base the security
of our scheme on a subversion-resilient KEM.

Acknowledgments. We would like to thank Moti Yung and the anonymous reviewers of
PKC 2021 for their helpful comments and suggestions, and in particular Cristina Onete
for shepherding this paper and providing very detailed and valuable inputs. Additionally
we would like Denis Diemert for pointing out the flaw in our security proof.

References

1. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against complete
subversion without random oracles. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung,
M. (eds.) ACNS 19. LNCS, vol. 11464, pp. 465–485. Springer, Heidelberg (Jun 2019)

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: Ray, I., Li,
N., Kruegel, C. (eds.) ACM CCS 2015. pp. 364–375. ACM Press (Oct 2015)

3. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Security in the
face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II.
LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (Dec 2016)

4. Bellare, M., Hoang, V.T.: Resisting randomness subversion: Fast deterministic and hedged
public-key encryption in the standard model. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg (Apr 2015)

5. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly undetectable
algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
1431–1440. ACM Press (Oct 2015)

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass
surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp.
1–19. Springer, Heidelberg (Aug 2014)

7. Bemmann, P., Berndt, S., Diemert, D., Eisenbarth, T., Jager, T.: Subversion-resilient authen-
ticated encryption without random oracles. In: Applied Cryptography and Network Security
- 21st International Conference, ACNS 2023, Kyoto, Japan, June 19-22, 2023, Proceedings,
Part II. pp. 460–483 (2023), https://doi.org/10.1007/978-3-031-33491-7\
_17

8. Bemmann, P., Chen, R., Jager, T.: Subversion-resilient public key encryption with practical
watchdogs. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 627–658. Springer,
Heidelberg (May 2021)

9. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a steganographic perspective.
In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1649–
1660. ACM Press (Oct / Nov 2017)

10. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical
problems. In: 22nd ACM STOC. pp. 73–83. ACM Press (May 1990)

11. Bossuat, A., Bultel, X., Fouque, P.A., Onete, C., van der Merwe, T.: Designing reverse
firewalls for the real world. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) ES-
ORICS 2020, Part I. LNCS, vol. 12308, pp. 193–213. Springer, Heidelberg (Sep 2020)

Subversion-Resilient Public Key Encryption with Practical Watchdogs 35

12. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse firewalls for actively secure MPCs.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 732–
762. Springer, Heidelberg (Aug 2020)

13. Chen, R., Huang, X., Yung, M.: Subvert KEM to break DEM: Practical algorithm-
substitution attacks on public-key encryption. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 98–128. Springer, Heidelberg (Dec 2020)

14. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse fire-
wall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg (Dec 2016)

15. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.S.: Let a non-barking
watchdog bite: Cliptographic signatures with an offline watchdog. In: Lin, D., Sako, K. (eds.)
PKC 2019, Part I. LNCS, vol. 11442, pp. 221–251. Springer, Heidelberg (Apr 2019)

16. Claburn, T.: NSA: We’ve learned our lesson after foreign spies used one of our crypto back-
doors – but we can’t say how exactly. The Register, https://www.theregister.
com/2020/10/28/nsa_backdoor_wyden/ (2020)

17. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security against
mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 579–598. Springer,
Heidelberg (Mar 2015)

18. Dodis, Y., Impagliazzo, R., Jaiswal, R., Kabanets, V.: Security amplification for interactive
cryptographic primitives. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 128–145.
Springer, Heidelberg (Mar 2009)

19. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (Aug 2016)

20. Dziembowski, S., Faust, S., Standaert, F.X.: Private circuits III: Hardware trojan-resilience
via testing amplification. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016. pp. 142–153. ACM Press (Oct 2016)

21. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm substi-
tution attacks. In: CSF. pp. 76–90. IEEE Computer Society (2018)

22. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.)
PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Heidelberg (Mar 2018)

23. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R. (eds.)
PKC 2018, Part I. LNCS, vol. 10769, pp. 190–218. Springer, Heidelberg (Mar 2018)

24. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to circuit po-
larization and immunization of public-key encryption. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 478–493. Springer, Heidelberg (Aug 2005)

25. Jain, A., Korb, A., Manohar, N., Sahai, A.: Amplifying the security of functional encryption,
unconditionally. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol.
12170, pp. 717–746. Springer, Heidelberg (Aug 2020)

26. Jain, A., Manohar, N., Sahai, A.: Combiners for functional encryption, unconditionally. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 141–168.
Springer, Heidelberg (May 2020)

27. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686. Springer, Hei-
delberg (Apr 2015)

28. Poettering, B., Rösler, P.: Combiners for AEAD. IACR Trans. Symmetric Cryptol. 2020(1),
121–143 (2020)

29. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power of klepto-
graphic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol.
10032, pp. 34–64. Springer, Heidelberg (Dec 2016)

36 Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager

30. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a klepto-
graphic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017. pp. 907–922. ACM Press (Oct / Nov 2017)

31. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Correcting subverted random oracles. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 241–271.
Springer, Heidelberg (Aug 2018)

32. von Neumann, J.: Various techniques used in connection with random digits. In: House-
holder, A., Forsythe, G., Germond, H. (eds.) Monte Carlo Method, pp. 36–38. National
Bureau of Standards Applied Mathematics Series, 12, Washington, D.C.: U.S. Government
Printing Office (1951)

33. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we trust cap-
stone? In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg
(Aug 1996)

34. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In: Fumy, W.
(ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 62–74. Springer, Heidelberg (May 1997)

