
Factoring Integers by CVP and SVP Algorithms

Claus Peter Schnorr

Fachbereich Informatik und Mathematik,
Goethe-Universität Frankfurt, PSF 111932,

D-60054 Frankfurt am Main, Germany.
schnorr@cs.uni-frankfurt.de

work in progress 31.10.2019

Abstract. An integer N can be factored by finding for the n-th prime pn about n triples of pn-
smooth integers u, v, |u− vN |. We find such a triple by constructing a shortest vector of the lattice
L′n,c whose basis extends the basis Bn,c of the prime number lattice by a target vector Nc for the
closest vector problem where Nc repesents N . Such a triple u, v, |u−vN | can be found for N ≈ 2800

and n = 1800 by solving SVP for the lattice L′n,c with n = 1800 and c = 2. We identify each vector
of L(Bn,c) with some pair (u, v) of pn-sooth numbers. Our prime basis of n = 1800 primes is much
smaller than the prime basis of the quadratic sieve QS and the number field sieve NFS.

Keywords. Factoring integers, enumeration of short and close lattice vectors, prime number lattice.

1 Introduction and surview

The enumeration algorithm Enum of [SE94, SH95] for SVP and CVP for short, resp. close
lattice vectors cuts stages by linear pruning. For New Enum we introduce the success rate βt of
stages based on the Gaussian volume heuristic. New Enum first performs stages with high success
rate and stores stages of smaller but still reasonable success rate for later performance. New Enum
finds short / close vectors much faster than previous algorithms of Kannan [Ka87] and Fincke,
Pohst [FP85] that disregard the success rate of stages. This greatly reduces the number of stages
for finding a shortest/closest lattice vector. Under the success rate βt we show by (3.2), (5.9) that
New Enum factors integers faster than the quadratic sieve QS and the number field sieve NFS.

Section 4 summarizes results on time bounds of Enum under linear pruning for SVP / CVP
for a lattice basis B = [b1, ...,bn] ∈ Zn×n that satisfies GSA (i.e., the local reduction strength of
the reduced basis is ”uniform” for all 2-dimensional basis blocks). Prop. 1 shows that Enum finds
under linear pruning a shortest lattice vector b that behaves randomly (SA) under the volume
heuristics in polynomial time if rd(L) = o(n−1/4) holds for the relative density rd(L) of lattice
L, defined in section 2. It follows that the maximal SVP-time of Enum under linear pruning for

lattices of dim. n is 2
8
n

+o(n). Cor. 3 translates Prop. 1 from SVP to CVP proving pol. time under
similar conditions as Prop. 1 if ‖L − t‖ . λ1 holds for the target vector t.

Sections 5, 6 show for factoring N and reasonably large n ∈ N, c, δ ∈ R+ that there exists b ∈
L(Bn,c), b ∼ (u, v), v ∈ [1

2
Nδ, Nδ] such that |u − vN | . pn is pn-smooth with probability near 1.

We construct such b by solving SVP for the lattice L′n,c with basis matrix [Bn,c,Nc]. This requires
that λ1(L(Bn,c)) > λ1(L′n,c). Then the time for finding one pn-smooth triple (u, v, |u − vN |) is
the time for solving SVP for L′n,c. In order to find about n such triples we iteratively modify
L′n,c in several ways : we multiply the entries

√
ln pn of [Bn,c,Nc] with probability 1

4
by 2 – or we

iteratively replace c, δ by c′ = c + ln 2
ln pn

, δ′ = δ + ln 2
ln pn

. These small changes of L′n,c imply that the
SVP-solutions for reasonable n, c, δ yield distinct pn-smooth triples (u, v, |u− vN |).

2 Lattices

Let B = [b1, ...,bn] ∈ Rm×n be a basis matrix consisting of n linearly independent column vectors
b1, ...,bn ∈ Rm. They generate the lattice L(B) = {Bx |x ∈ Zn} consisting of all integer linear
combinations of b1, ...,bn. The dimension of L is n, the determinant of L is detL = (detBtB)1/2

for any basis matrix B and the transpose Bt of B. The length of b ∈ Rm is ‖b‖ = (btb)1/2.

Let λ1 = λ1(L) be the length of the shortest nonzero vector of L. The Hermite constant γn is
the minimal γ such that λ2

1 ≤ γ(detL)2/n holds for all lattices of dimension n.

The basis matrix B has the unique QR factorisation B = QR ∈ Rm×n, R = [ri,j]1≤i,j≤n ∈ Rn×n

where Q ∈ Rm×n is isometric (with pairwise orthogonal column vectors of length 1) and R ∈
Rn×n is upper-triangular with positive diagonal entries ri,i. The QR-factorization provides the
Gram-Schmidt coefficients µj,i = ri,j/ri,i which are rational for integer matrices B. The orthogonal
projection b∗i of bi in span(b1, ...,bi−1)

⊥ has length ri,i = ‖b∗i ‖, r1,1 = ‖b1‖ .

LLL-bases. A basis B = QR is LLL-reduced or an LLL-basis for δ ∈ (1
4
, 1] if

1. |ri,j |/ri,i ≤ 1
2

for all j > i, 2. δr2
i,i ≤ r2

i,i+1 + r2
i+1,i+1 for i = 1, ..., n− 1.

Obviously, LLL-bases satisfy r2
i,i ≤ α r2

i+1,i+1 for α := 1/(δ − 1
4
). [LLL82] introduced LLL-bases

focusing on δ = 3/4 and α = 2. A famous result of [LLL82] shows that LLL-bases for δ < 1 can be
computed in polynomial time and that they nicely approximate the successive minima :

3. α−i+1 ≤ ‖bi‖2λ−2
i ≤ αn−1 for i = 1, ..., n, 4. ‖b1‖2 ≤ α

n−1
2 (detL)2/n.

A basis B = QR ∈ Rm×n is an HKZ-basis (Hermite, Korkine, Zolotareff) if |ri,j |/ri,i ≤ 1
2

for all j > i, and if each diagonal entry ri,i of R = [ri,j] ∈ Rn×n is minimal under all transforms
of B to BT, T ∈ GLn(Z) that preserve b1, ...,bi−1.

A basis B = QR ∈ Rm×n, R = [ri,j]1≤i,j≤n is a BKZ-basis for block size k, i.e., a BKZ-k basis if
the matrices [ri,j]h≤i,j<h+k ∈ Rk×k form HKZ-bases for h = 1, ..., n− k + 1, see [SE94].

The shortest vector problem (SVP): Given a basis of L find a shortest nonzero vector of L, i.e., a
vector of length λ1. The closest vector problem (CVP): Given a basis of L and a target t ∈ span(L)
find a closest vector b′ ∈ L such that ‖t− b′‖ = ‖t− L‖ =def min{ ‖t− b‖ | b ∈ L}.

The efficiency of our algorithms depends on the lattice invariant rd(L) := λ1γ
−1/2
n (detL)−1/n, thus

λ2
1 = rd(L)2γn(det(L))

2
n which we call the relative density of L. Clearly 0 < rd(L) ≤ 1 holds for

all L, and rd(L) = 1 if and only if L has maximal density. Lattices of maximal density and γn are
known for n = 1, ..., 8 and n = 24.

3 Efficient enumeration of short lattice vectors

We outline the SVP-algorithm based on the success rate of stages. New Enum improves the
algorithm Enum of [SE94, SH95]. We recall Enum and present New Enum as a modification that
essentially performs all stages of Enum in decreasing order of success rates. This SVP-algorithm
New Enum finds a shortest lattice vector fast without enumerating all short lattice vectors.

Let B = [b1, ...,bn] = QR ∈ Rm×n, R = [ri,j]1≤i,j≤n ∈ Rn×n, be the given basis of L = L(B). Let
πt : span(b1, ...,bn) → span(b1, ...,bt−1)

⊥ = span(b∗t , ...,b
∗
n) for t = 1, ..., n denote the orthogonal

projections and let Lt = L(b1, ...,bt−1).

The success rate of stages. At stage u = (ut, ..., un) of ENUM for SVP of L a vector b =Pn
i=t uibi ∈ L is given such that ‖πt(b)‖2 ≤ λ2

1. (When λ2
1 is unknown we use instead some

A > λ2
1.) Stage u calls the substages (ut−1, ..., un) such that ‖πt−1(

Pn
i=t−1 uibi)‖2 ≤ λ2

1. We have

‖
Pn

i=1 uibi‖2 = ‖ζt +
Pt−1

i=1 uibi‖2 + ‖πt(b)‖2, where ζt := b − πt(b) ∈ spanLt is b’s orthogonal
projection in spanLt. Stage u and its substages enumerate the intersection Bt−1(ζt, %t) ∩ Lt of the
sphere Bt−1(ζt, %t) ⊂ spanLt with radius %t := (λ2

1 − ‖πt(b)‖2)1/2 and center ζt. The Gaussian
volume heuristics estimates for t = 1, ..., n the expected size |Bt−1(0, %t)∩(ζt +Lt)| to be the success

rate βt(u) =def volBt−1(0, %t) / detLt (3.1)

standing for the probability that there is an extension (u1, ..., un) of u = (ut, ..., un) such that

‖(
Pn

i=1 uibi)‖ ≤ λ1. Here volBt−1(0, %t) = Vt−1%
t−1
t , Vt−1 = π

t−1
2 /(t−1

2
)! ≈ (2eπ

t−1
)

t−1
2 /

p
π(t− 1)

is the volume of the unit sphere of dimension t−1 and detLt = r1,1 · · · rt−1,t−1. If ζt ∈ spanLt is uni-
formly distributed the expected size of this intersection satisfies Eζt [#

`
|Bt−1(0, %t)∩ (ζt +Lt)

´
] =

βt(u). This holds because 1/ detLt is the number of lattice points of Lt per volume in spanLt. We
do not simply cut ut due to a small βt because there might be a vector in Lt very close to ζt.

2

The success rate βt has been used in [SH95] to speed up Enum by cutting stages of very
small success rate. New Enum first performs all stages with sufficiently large βt giving priority
to small t and collects during this process the unperformed stages in the list L. For instance it
first performs all stages with βt ≥ 2−s lg t, where lg = log2. Thereafter New Enum increases s
to s + 1. So far our experiments simply perform all stages with βt ≥ 2−s. If λ2

1 is unknown we

can compute %t, βt replacing λ2
1 by the upper bound A = 1.744

2eπ
n det(BtB)

2
n ≥ λ2

1 which holds since
γn ≤ 1.744

2eπ
n ≈ 0.10211 n holds for n ≥ n0 by a computer proof of Kabatiansky, Levenstein [KaLe78].

Dabei ist e = 2.7182818284 · · · die Eulersche Zahl und π = 3.141592654 · · · die Kreiszahl.

Outline of New Enum

INPUT BKZ-basis B = QR, R = [ri,j] ∈ Rn×n of block size 32, A, s = lg n = log2 n
OUTPUT a sequence of b ∈ L(B) of decreasing length terminating with ‖b‖ = λ1.
1. L := ∅.
2. Let New Enum perform all stages ut = (ut, ..., un) with βt(u) ≥ 2−s lg t:

Upon entry of stage (ut, ..., un) compute βt(ut). If βt(ut) < 2−s lg t then
store (ut, ..., un) in the list L of delayed stages. Otherwise perform stage
(ut, ..., un), set t := t− 1, ut := −d

Pn
i=t+1 uirt,i/rt,tc and go to stage

(ut, ..., un). If for t = 1 some b ∈ L \ 0 of length ‖b‖2 ≤ A has been found,
give out b, we can then decrease A := ‖b‖2 − 1 if RtR ∈ Zn×n.

3. s := s + 1, IF L 6= ∅ THEN perform all stages ut ∈ L with βt(ut) ≥ 2−s lg t.

Running in linear space. If instead of storing the list L we restart New Enum in step 3 on level
s + 1 then New Enum runs in linear space and its running time increases at most by a factor n.

Practical optimization. New Enum computes R, βt, Vt, %t, ct in floating point and b, ‖b‖2 in exact
arithmetic. The final output b has length ‖b‖ = λ1, but this is only known when the more expensive
final search does not find a vector shorter than the final b.

Reason of efficiency. For short vectors b =
Pn

i=1 uibi ∈ L \ 0 the stages u = (ut, ..., un) have large
success rate βt(u). On average ‖πt(b)‖2 ≈ n−t+1

n
λ2

1 holds for a random b ∈R Bn(0, λ) of length λ1.
Therefore %2

t = A − ‖πt(b)‖2 and βt(u) are large. New Enum tends to output very short lattice
vectors first.

New Enum is particularly fast for small λ1. The size of its search space approximates λn
1 Vn, and

is by Prop. 1 heuristically polynomial if rd(L) = o(n−1/4). Having found b′ New Enum proves
‖b′‖ = λ1 in exponential time by a complete exhaustive enumeration.

Notation. We use the following function ct : Zn−t+1 → R :

ct(ut, ..., un) = ‖πt(
Pn

i=t uibi)‖2 =
Pn

i=t(
Pn

j=i ujri,j)
2.

Hence ct(ut, ..., un) = (
Pn

i=t uirt,i)
2 + ct+1(ut+1, ..., un).

Given ut+1, ..., un Enum takes for ut the integers that minimize |ut +yt| for yt :=
Pn

i=t+1 uirt,i/rt,t

in order of increasing distance to −yt adding to the initial ut := −dytc iteratively bνt/2c(−1)νtςt

where ςt := sign(ut + yt) ∈ {±1} and νt numbers the iterations starting with νt = 0, 1, 2, .. :

−dytc, −dytc − ςt, −dytc+ ςt, −dytc − 2ςt, −dytc+ 2ςt, · · · ,−dytc+ bνt/2c(−1)νtςt, · · · ,

where sign(0) := 1 and drc denotes a nearest integer to r ∈ R. The iteration does not decrease
|ut + yt| and ct(ut, ..., un), it does not increase %t and βt. Enum performs the stages (ut, ..., un) for
fixed ut+1, ..., un in order of increasing ct(ut, ..., un) and decreasing success rate βt. βt extends this
priority to stages of distinct t, t′ taking into accound the size of two spheres of distinct dimensions
n − t, n − t′ The center ζt = b − πt(b) =

Pn
i=t ui(bi − πt(bi)) ∈ span(Lt) changes continously

within New Enum which improves Enum from [SH95].

3

New Enum for SVP
INPUT BKZ-basis B = QR, R = [ri,j] ∈ Rn×n, A ≥ λ2

1, smax

OUTPUT a sequence of b ∈ L(B) such that ‖b‖ decreases to λ1.

1. L := ∅, t := tmax := 1, FOR i = 1, ..., n DO ci := ui := yi := 0, ν1 := u1 := 1, s := 5
c1 := r2

1,1, (ct = ct(ut, ..., un) always holds for the current t)

2. WHILE t ≤ n #perform stage ut := (ut, ..., un, yt, ct, νt, ςt, βt, A):
[[ct := ct+1 + (ut + yt)

2r2
t,t,

IF ct ≥ A THEN GO TO 2.1,
%t := (A− ct)

1/2, βt := Vt−1%
t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [b :=
Pn

i=1 uibi,
IF ‖b‖2 < A THEN [A := ‖b‖2, output (b, s, A), GO TO 2.1]]

IF βt ≥ 2−s THEN [t := t− 1, yt :=
Ptmax

i=t+1 uirt,i/rt,t,
ut := −dytc, ςt := sign(ut + yt), νt := 1, GO TO 2]

ELSE IF βt ≥ 2−smax THEN store ut := (ut, ...un, yt, ct, νt, ςt, βt, A) in L.
2.1. t := t + 1, tmax := max(t, tmax),

IF t = tmax THEN ut := ut + 1, νt := 1, yt := 0
ELSE ut := −dytc+ bνt/2c(−1)νtςt, νt := νt + 1.]]

3. perform all stages ut = (ut, ..., un, yt, ct, νt, ςt, βt, A) ∈ L with βt ≥ 2−s,
IF steps 2, 3 did not decrease A for the current s THEN terminate.

4. s := s + 1, IF s > smax THEN restart with a larger smax.

When step 3 performs stages ut∗ ∈ L the current A can be smaller than the A of ut∗ and this
can make the stored βt∗ of ut∗ smaller than 2−s so that ut∗ will not be performed but must be
stored in L with the adjusted smaller values A, βt∗ . The stored stages ut∗ with βt∗ ≥ 2−s should
be performed in a succession giving priority to large success rates and small t∗.

Time for solving SVP for L(B). New Enum performs for each s = 5, 6, ..., smax only stages ut

with success rate βt ≥ 2−s. Let #t,s,A denote the number of performed stages with t, s, A. If βt

is a reliable probability then New Enum performs on average at most 2s stages with success rate
βt ≥ 2−s before decreasing A - this number of performed stages is even smaller than 2s since New
Enum also performs stages with success rate βt ≥ 2−s+1. New Enum performs for each stage of
step 2 on average at most 2(n − t)(1 + o(1)) arithmetical steps for computing yt which add up toPn

t=1 2(n − t)(1 + o(1)) ≈ n(n + 1)(1 + o(1)) arithmetic steps and it performs O(n) arithmetical
steps for testing that ln βt ≥ −s ln 2 for t = 1, ..., n using βt ≈ Vt−tρ

t−1
t / detL assuming that

ln(2eπ), ln π, ln(1 + x) for x = 1, ..., n are given for free.

If the initial basis B ∈ Rn×n is a BKZ-basis with block size k then ||b1|| ≤ λ1γ
n−1
k−1
k . As New

Enum performs stages with high success rates first then each decrease of A will on average halve
A/λ2

1 so that there are at most log2(A/λ2
1) iterations of step 2 that decrease the initial A of step 1.

So after the initial reduction of B New Enum solves SVP for smax with error probability o(1) and
performs on average at most O(n22smax) arithmetic steps for each A. Hence SVP is solved by

2smax(n2 + O(n))2n−1
k−1

log2 γk arithmetic steps. (3.2)

Pruned New Enum for CVP. Given a target vector t =
Pn

i=1 τibi ∈ span(L) ⊂ Rm we minimize
‖t − b‖ for b ∈ L(B). [Ba86] solves ‖t − b‖2 ≤ 1

4

Pn
i=1 r2

i,i in polynomial time for an LLL-basis
B = QR, R = [ri,j]1≤i,j≤n.

Adaption of New Enum to CVP to finding b ∈ L(B) such that ‖t − b‖2 < Ä. Initially we set
Ä := d 1

4

Pn
i=1 r2

i,ie so that ‖t − L‖2 < Ä. Having found some b ∈ L such that ‖t − b‖2 < Ä New

Enum gives out b and decreases Ä to ‖t− b‖2.

Optimal value of Ä. If the distance ‖t−L‖ or a close upper bound of it is known then we initially
choose Ä to be that close upper bound. This prunes away many irrelevant stages. At stage (ut, ..., un)
New Enum searches to extend the current b =

Pn
i=t uibi ∈ L to some b′ =

Pn
i=1 uibi ∈ L such

that ‖t− b′‖2 < Ä. The expected number of such b′ is for random t:

β̈t = Vt−1%̈
t−1
t / detL(b1, ...,bt−1) for %̈t := (Ä− ‖πt(t− b)‖2)1/2.

Previously, stage (ut+1, ..., un) determines ut to yield the next integer minimum of

4

ct(τt − ut, ..., τn − un) := ‖πt(t− b)‖2

= (
Pn

i=t(τi − ui)rt,i)
2 + ct+1(τt+1 − ut+1, ..., τn − un).

Given ut+1, ..., un, ‖πt(t− b)‖2 is minimal for ut = d−τt −
Pn

i=t+1(τi − ui)rt,i/rt,tc.
New Enum solves CVP for

`
L, t

´
by solving CVP for

`
πt(L), πt(t)

´
for t = n, ..., 1.

New Enum for CVP
INPUT BKZ-basis B = QR ∈ Rm×n, R = [ri,j] ∈ Rn×n, t =

Pn
i=1 τibi ∈ span(L),

τ1, ..., τn ∈ Q, a small Ä ∈ Q such that ‖t− L(B)‖2 ≤ Ä, smax.

OUTPUT A sequence of b =
Pn

i=1 uibi ∈ L(B) such that ‖t− b‖ decreases to ‖t− L‖.
1. t := n, L := ∅, yn := τn, un := dync, c̈n+1 := 0, s := 5

(c̈t = ct(τt − ut, ..., τn − un) always holds for the current t, ut, ..., un)

2. WHILE t ≤ n #perform stage ut := (ut, ..., un, yt, c̈t, νt, ςt, β̈t, Ä)
[[c̈t := c̈t+1 + (ut − yt)

2r2
t,t,

IF c̈t ≥ Ä THEN GO TO 2.1,
%̈t := (Ä− c̈t)

1/2, β̈t := Vt−1%̈
t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [b :=
Pn

i=1 uibi

IF ||t−b||2 < Ä THEN [Ä := ||t−b||2, output(b, s, Ä,) GO TO 2.1]]
IF β̈t ≥ 2−s THEN [t := t− 1, yt := τt +

Pn
i=t+1(τi − ui)rt,i/rt,t,

ut := dytc, ςt := sign(ut − yt), νt := 1, GO TO 2]
IF β̈t ≥ 2−smax THEN store ut := (ut, ..., un, yt, c̈t, νt, ςt, β̈t, Ä) in L

2.1 t := t + 1, ut := dytc+ bνt/2c(−1)νtςt, νt := νt + 1]]
3. perform all stages ut = (ut, ..., un, yt, c̈t, νt, ςt, β̈t, Ä) ∈ L with β̈t ≥ 2−s,

IF steps 2, 3 did not decrease A for the current s THEN terminate.

4. s := s + 1, IF s > smax THEN restart with a larger smax.

4 New Enum for SVP and CVP with linear pruning

The heuristics of linear pruning gives weaker results but is easier to justify than handling the
success rate βt as a probability function. Proposition 1 bounds under linear pruning the time to
find b′ ∈ L(B) with ||b′|| = λ1. It shows that SVP is polynomial time if rd(L) is sufficiently small.
Note that finding an unproved shortest vector b′ is easier than proving ‖b′‖ = λ1. New Enum
finds an unproved shortest lattice vector b′ in polynomial time under the following conditions and
assumptions:

• the given lattice basis B = [b1, ...,bn] and the relative density rd(L) of L(B) satisfy

rd(L) ≤
`p

e π
2 n

λ1
‖b1‖

´ 1
2 , i.e., both b1 and rd(L) are sufficiently small.

GSA: The basis B = QR, R = [ri,j]1≤i,j≤n satisfies r2
i,i/r2

i−1,i−1 = q for 2 ≤ i ≤ n for some q > 0.

SA: There is a vector b′ ∈ L(B) such that ‖b′‖ = λ1 and ‖πt(b
′)‖2 . n−t+1

n
λ2

1 for t = 1, . . . , n.

(Later we will use a similar assumption CA for CVP).

• the vol. heur. is close: M%
t := #Bn−t+1(0, %t) ∩ πt(L) ≈ Vn−t+1%n−t+1

t
det πt(L)

for %2
t = n−t+1

n
λ2

1.

Remarks. 1. If GSA holds with q ≥ 1 the basis B satisfies ‖bi‖ ≤ 1
2

√
i + 3 λi for all i and

‖b1‖ = λ1. Therefore, q < 1 unless ‖b1‖ = λ1. GSA means that the reduction of the basis
is ”locally uniform”, i.e., the r2

i,i form a geometric series. It is easier to work with the idealized
property that all ri,i/ri−1,i−1 are equal. In practice ri,i/ri−1,i−1 slightly increases on the average
with i. [BL05] studies ”nearly equality”. B. Lange [La13] shows that GSA can be replaced by the
weaker property that the reduction potential of B is sufficiently small. GSA has been used in [S03,
NS06, GN08, S07, N10] and in the security analysis of NTRU in [H07, HHHW09].

2. The assumption SA is supported by a fact proven in the full paper of [GNR10]:

Pr[‖πt(b
′)‖2 ≤ n−t+1

n
λ2

1 for t = 1, ..., n] = 1
n

for random b′ ∈R span(L) with ||b′|| = λ1. Lange [La13, Kor. 4.3.2] proves that the prob. 1/n

5

increases to 1 − e−d2
by increasing n−t+1

n
of linear pruning to n−t+1

n
+ d/

√
n. Linear pruning

means to cut off all stages (ut, ..., un) that satisfy ||πt(
Pn

i=t uibi)||2 > n−t+1
n

λ2
1. Linear pruning is

impractical because it does not provide any information on SVP, CVP in case of failure. We use
linear pruning only as a theoretical model for easy analysis. We have implemented SVP, CVP via
New Enum and we will show in section 5 that stages (ut, ..., un) that are cut by linear pruning
have extremely low success probability so they will not be performed by New Enum.

3. Errors of the volume heuristics. The minimal and maximal values of #n := #(Bn(ζn, %n) ∩ L),
and similar for #t := #(Bt(ζt, %t) ∩ πn−t+1(L)), are for fixed n, %n very close for large radius %n,
but can differ considerably for small %n since #n can change a lot with the actual center ζn of the
sphere. For small %n the minimum of #n can be very small and then the average value for random
center ζn is closer to the maximum of #n. For more details see the theorems and Table 1 of [MO90].
As New Enum works with average values for #n, #t its success rate βt frequently overestimates
the success rate for the actual ζt. A cut of the smallest (resp. closest) lattice vector by New Enum
in case that it underestimates #t can nearly be excluded if stages are only cut for very small βt.

4. A trade-off between ‖b1‖/λ1 and rd(L) under GSA. B. Lange observed that

‖b1‖/λ1 = ‖b1‖/(rd(L)
√

γn det(L)
1
n) = q

1−n
4 /(rd(L)

√
γn).

Therefore rd(L)
√

γn ‖b1‖/λ1 ≤ 1 implies under GSA that detL ≥ 1 and q ≥ 1 and thus ‖b1‖ = λ1.

Hence rd(L) > λ1
||b1||

/
√

γn holds under GSA if ‖b1‖ > λ1.

Our time bounds must be multiplied by the work load per stage, a modest polynomial factor covering
the steps performed at stage (ut, ..., un) of Enum before going to a subsequent stage.

Proposition 1. Let the basis B = QR, R ∈ Rn×n of L satisfy rd(L) ≤
`

λ1
‖b1‖

p
e π
2 n

´ 1
2 and GSA

and let L have a shortest lattice vector b′ that satisfies SA. Then Enum with linear pruning finds
such b′ under the volume heuristics in polynomial time.

Proof. For simplicity we assume that λ1 is known. Pruning all stages (ut, ..., un) that satisfy
||πt(

Pn
i=t uibi)||2 > n−t+1

n
λ2

1 =: %2
t does not cut off any shortest lattice vector b′ that satisfies

SA. The volume heuristics approxinates the number M%
t of performed stages (ut, ..., un) to

M%
t := #Bn−t+1(0, %t) ∩ πt(L) ≈ (

q
n−t+1

n
λ1)

n−t+1Vn−t+1/(rt,t · · · rn,n)

≈ (
q

n−t+1
n

λ1)
n−t+1

`
2eπ

n−t+1

´ n−t+1
2 /(rt,t · · · rn,n

p
π(n− t + 1))

<
`
λ1

q
2eπ
n

´n−t+1
/(rt,t · · · rn,n). (4.1)

Here ≈ uses Stirling’s approximation Vn = πn/2/(n/2)! ≈ (2eπ
n

)n/2/
√

πn. Obviously ‖b∗i ‖ =

r1,1q
i−1
2 holds by GSA and thus

(rt,t · · · rn,n)/rn−t+1
1,1 = q

Pn−1
i=t−1 i/2 = q

n(n−1)−(t−1)(t−2)
4 .

For t = 1 this yields q
n−1

4 = (detL)1/n/r1,1 = λ1/(r1,1
√

γnrd(L)). Combining (4.1) with this equa-
tion and γn < n

eπ
which holds for n > n0, we get

M%
t .

`
λ1

r1,1

q
2eπ
n

´n−t+1`p
n
eπ

rd(L)
r1,1
λ1

´n− (t−1)(t−2)
n−1 (4.2)

Evaluating this upper bound for rd(L) ≤
`

λ1
r1,1

p
e π
2 n

´ 1
2 yields

M%
t .

`p
n

2 e π

r1,1
λ1

´−n+t−1`p
n

2 e π

r1,1
λ1

´+ n
2−

1
2

(t−1)(t−2)
n−1 .

This approximate upper bound has for t ≤ n its maximum 1 at t = n. This proves Prop. 1. �

Extension of Prop. 1 to GSAm,q-bases, i.e. lattice bases that satisfy for some m, 1 ≤ m ≤ n :

r2
i,i/r2

i−1.i−1 =

q for i ≤ m

1 for i > m
, r2

i,i/r2
1,1 =

qi−1 for i ≤ m

qm−1 for i > m

This increases ri,i/ri−1,i−1 of GSA for i ≥ m; many LLL-bases have such an increase for large i.

6

Proposition 2. Let B = QR, R ∈ Rn×n be a GSAm,q-basis, rd(L(B)) ≤ 1√
2

`
λ1
‖b1‖

q
2 e π

n

´ m
2n and

L have a shortest lattice vector b′ that satisfies SA. Then Enum with linear pruning finds such b′

under the volume heuristics in polynomial time.

Proof. We modify the proof of Prop. 1 and concentrate on t ≥ m since M%
t has its maximum for

t ≥ m. Then we have for t ≥ m

(rt,t · · · rn,n)/rn−t+1
1,1 = q(n−t+1) m−1

2

(detL)1/n/r1,1 = q
Pm

i=1
i−1
2 /n+ m−1

2
n−m

n = λ1
r1,1

√
γn rd(L)

where
Pm

i=1
i−1
2

/n + m−1
2

n−m
n

= (m+1)m
4n

− m
2n

+ m−1
2

(1− m
n

) = m−1
2

(1− m
2n

). Hence

M%
t ≈

`
λ1

r1,1

q
2eπ
n

´n−t+1
/q(n−t+1) m−1

2 =
`

λ1
r1,1

q
2eπ
n

´n−t+1` r1,1
λ1

√
γn rd(L)

´ n−t+1
1−m/2n

Evaluating
r1,1
λ1

√
γn rd(L) for rd(L) ≤ 1√

2

`
λ1
‖b1‖

q
2 e π

n

´ m
2n and γn ≤ n

eπ
we get

r1,1
λ1

√
γn rd(L) ≤ r1,1

λ1

p
n

2eπ

√
2 1√

2

`
λ1
‖b1‖

q
2 e π

n

´ m
2n =

`
λ1

r1,1

q
2eπ
n

´ m
2n
−1

and thus M%
t .

`
λ1

r1,1

q
2eπ
n

´(1−(1− m
2n

)/(1− m
2n

))(n−t+1)
=

`
λ1

r1,1

q
2eπ
n

´0
= 1.

In particular M%
t ≈ 1 holds for all t ≥ m if rd(L) = 1√

2

`
λ1

r1,1

q
2 e π

n

´ m
2n and γn = n

eπ
. �

Prop. 2 handles the case that ri,i decreases uniformly for i ≤ m with an abrupt stop at i = m.
Prop. 3 assumes a lattice basis of dimension n that satisfies for some 0 < q < 1 that

ri+1,i+1/ri.i = q1−i/nfor i = 1, · · · , n− 1 (4.3)

Hence rj,j/r1,1 = qj−1−
Pj−1

i=1 i/n and ri,i decreases slower and slower from i = 1 to i = n and the
decrease vanishes for i ≈ n. In fact for LLL-bases the decrease of ri,i can vanish slowly towards the
end of the basis because the LLL-algorithm works uniformly on the initial part but merely performs
size-reduction towards the end of an high-dimensional basis.

Proposition 3. Let B = QR,R ∈ Rn×n be a basis of lattice L satisfying (4.3), n > 4eπ and

rd(L) ≤
`

λ1
‖b1‖

p
e π
n

´ 1
2 and let L have a shortest lattice vector b′ that satisfies SA. Then Enum

with linear pruning finds such b′ under the volume heuristics in polynomial time.

Proof. Modifying the proofs of Prop.1, 2 we have rt,t · · · rn,n/rn−t+1
1,1 = q

Pn
j=t

Pj−1
i=1 1−i/n, wherePn

j=t

Pj−1
i=1 1− i/n =

Pn
j=t[j − 1− (j−1)j

2n
] = n(n−1)

2
− t(t−1)

2
− n((n+1)(2n+1)

12 n

+ (t−1)t(2t−1)
12 n

+ n(n+1)
4 n

− (t−1)t
4 n

= n2/3 + t2(t−3n)
6 n

+ O(n)

Hence
`

λ1
r1,1

√
γnrd(L)

´n
= detL/rn

1,1 = qn2/3+O(n).

This bounds the number M%
t of performed stages (ut, ..., un) under linear pruning to

M%
t .

`
λ1

q
2eπ
n

´n−t+1
/rt,t · · · rn,n =

`
λ1

r1,1

q
2eπ
n

´n−t+1
q−n2/3− t2(t−3n)

6n
−O(n)

=
`

λ1
r1,1

q
2eπ
n

´n−t+1ˆ
(det(L)1/n/r1,1

˜−n2/3−t2(t−3n)/6n−O(n)
n/3+O(1)

=
`

λ1
r1,1

q
2eπ
n

´n−t+1` r1,1
√

γnrd(L)

λ1

´n+
t2(t−3n)

2n2 +O(1)
. (4.2’)

We get for rd(L) ≤
`

λ1
r1,1

p
e π
n

´ 1
2 and γn < n

eπ
that r1,1

√
γnrd(L)/λ1 ≤

` r1,1
λ1

p
n
eπ

´1/2
and thus

M%
t .

`
λ1

r1,1

q
2eπ
n

´n−t+1−n/2−(t2(t−3n)−O(1))/4n2

2
n−t+1

2 =: Ht

For n > 2eπ this upper bound Ht of M%
t is monotonous decreasing in t ≤ n. This holds because

the exponent of λ1
r1,1

q
2eπ
n

is monotonous increasing in t and λ1
r1,1

q
2eπ
n

< 1. Hence for n > 4eπ :

M%
t . M%

1 .
`

λ1
r1,1

p
eπ
n

´n/2+O(1/n)
2n/2 = o(1). �

In practice all relevant bases satisfy some slightly modified version of GSA. The main problem for
the fast SVP algorithms for them is to find a sufficiently short b1 ∈ L. For this we first iteratively
BKZ-reduce the basis B with block sizes 2, 4, 8, 16, 32 and then for larger block sizes we use New

7

Enum with pruning and arranged to enumerate smallest vectors first.

The γ-unique SVP is to solve SVP for a lattice L of dim. n where λ2 ≥ γλ1 holds for the sec-
ond successive minimum λ2. Minkowski’s second theorem shows for such L with successive minima
λ1, ..., λn that λn

1 γn−1 < λ1 · · ·λn ≤ γ
n/2
n detL and thus

λ2
1 < γ−2+2/nγn(detL)2/n hence rd(L) < γ−1+1/n.

Prop. 3 shows that SVP for such L is solvable in polynomial time under SA, GSA and the volume

heuristic if
`

λ1
||b1||

p
eπ
n

´1/2 ≤ γ−1+1/n. Thus every na-unique SVP of dim. n is by Prop. 3 solvable

in heuristic pol. time if n−a+a/n ≤
`

λ1
||b1||

p
eπ
n

´1/2
. It has been proved that every BKZ-basis of block

size k satisfies ‖b1‖/λ1 ≤ γ
(n−1)/(k−1)
k . Hence the heuristic pol. time for na-unique SVP holds if

n−2a+2a/n+1/2 ≤ γ
−(n−1)/(k−1)
k

√
eπ, i.e. if γ

(n−1)/(k−1)
k ≤ n2a−2a/n−1/2√eπ. The latter holds for

1. a = 1.5, k = 24, γ24 = 4 for all n ≤ 245
2. a = 1, k = 24, γ24 = 4 for all n ≤ 140

We see that the security of cryptosystems based on na-unique SVP is quite weak for practical, not
extremely large dimension n. For cryptosystems based on na-unique SVP see [Reg04], [MR05].

SVP-time bound for rd(L)≤ 1 under linear pruning. (4.2) proves for rd(L) ≤ 1 that

M%
t .

`p
n
eπ

r1,1
λ1

´n− (t−1)(t−2)
n−1 −n+t−1

2
n−t+1

2 .

The exponent n− (t−1)(t−2)
n−1

−n + t− 1 is maximal for t = n/2 + 1 with maximal value 1
4

n2

n−1
. This

proves for r1,1/λ1 = no(1)√eπ the heuristic SVP time bound

nO(1)
`p

n
eπ

r1,1
λ1

´ 1
4

n2
n−1 2n/4 = nn/8+o(n) . (4.4)

This beats under heuristics the proven SVP time bound n
n
2e

+o(n) of Hanrot, Stehle [HS07]
which holds for a quasi-HKZ-basis B satisfying ||b1|| ≤ 2||b∗2|| and having a HKZ-basis π2(B). In
fact 1

2e
≈ 0.159 > 0.125 = 1

8
. The SVP-algorithm of Prop.1 can use fast BKZ for preprocessing and

works even for ||b1|| � 2λ1 – see the attack on γ-unique SVP – whereas [HS07] requires quasy-HKZ-
reduction for preprocessing. This eduction already guarantees ‖b1‖ ≤ 2λ1 and performs the main
SVP work during preprocessing. Our SVP time bound nn/8+o(n) only assumes ‖b1‖ ≤ no(1)√eπλ1.

Theorem 1. Given a lattice basis B ∈ Zm×nsatisfying GSA and ‖b1‖ ≤
√

eπ nb λ1 for some b ≥ 0,

New Enum solves SVP and proves to have found a solution in time 2O(n)(n
1
2+brd(L))

n+1+o(1)
4 .

Theorem 1 is proven in [S10], it does not assume SA and the vol. heuristic. Recall from remark 4

that n
1
2+brd(L) ≥ 1 holds under GSA. For b = o(1) Thm. 1 shows the SVP-time bound n

n
8 +o(n)

which beats n
n
2e

+o(n) from Hanrot, Stehle [HS07]. Cor. 1 translates Thm. 1 from SVP to CVP,
it shows that the corresponding CVP-algorithm solves many important CVP-problems in simple
exponential time 2O(n) and linear space.
[HS07] proves the time bound nn/2+o(n) for solving CVP by Kannan’s CVP-algorithm [Ka87].
Minimizing ‖b‖ for b ∈ L \ {0} and minimizing ‖t− b‖ for b ∈ L require nearly the same work if
‖t− L‖ ≈ λ1. In fact the proof of Theorem 1 yields:

Corollary 1. [S10] Given a basis B = [b1, ...,bn] satisfying GSA, ‖b1‖ ≤
√

eπ nbλ1 with b ≥ 0

and t ∈ span(L) with ‖L − t‖ ≤ λ1, New Enum solves this CVP in time 2O(n)(n
1
2+brd(L))

n
4 .

Corollary 1 proves under GSA, rd(L) = O(n−
1
2−b) and ‖L − t‖ ≤ λ1 the CVP time bound 2O(n)

even using linear space (by iterating New Enum for s = 1, ..., O(n) without storing delayed stages).
Moreover it proves under GSA and ‖b1‖ = O(λ1) and ‖L−t‖ ≤ λ1 the time bound 2O(n). However
subexponential time remains unprovable due to remark 4 of section 4.

CA: ‖πt(t− b̈)‖2 . n−t+1
n

‖t− L‖2 holds for t = 1, ..., n and some b̈ ∈ L closest to t.

CA translates the assumption SA from SVP to CVP. CA holds with probability 1/n for random
b̈ ∈ span(L) such that ||t − b̈|| = ||t − L|| [GNR10]. Obviously linear pruning extends naturally
from SVP to CVP. B. Lange [La13] proves that the probability 1/n increases towards 1 for the
increased bounds ‖πt(t− b̈)‖2 . n−t+1

n
‖t− L‖2(1 + 1/

√
n) for t = 1, ..., n.

8

Corollary 2. [S10] Given a basis B = [b1, ...,bn] ∈ Zm×n of L that satisfies GSA, ‖b1‖ = O(λ1)

and rd(L) ≤
`

λ1
‖b1‖

p
e π
2 n

´ 1
2 . Let some lattice vector b̈ that is closest to the target vector t satisfy

CA then New Enum finds b̈ for random t in average time nO(1)Et[(‖t− L‖/λ1)
n].

Cor. 2 eliminates the volume heuristics for a random target vector t. Prop. 1 translates into

Corollary 3. Let a basis B = [b1, ...,bn] ∈ Zm×n of L be given satisfying GSA, ‖b1‖ = O(λ1) and

rd(L) ≤
`

λ1
‖b1‖

p
e π
2 n

´ 1
2 . Let some b̈ ∈ L closest to the target vector t satisfy CA and let ‖t−L‖ . λ1

then Enum with linear pruning for CVP finds b̈ under the volume heuristics in pol. time.

B. Lange [La13] shows that GSA for B can be replaced by a less rigid condition, namely that the
”reduction potential”

Q
`i≥1 `i for `i = ‖b∗i ‖/(detL)1/n of the basis B is sufficiently small.

Next we study the success rate βt of stages (ut, ..., un) that are near the limit of linear pruning
||πt(

Pn
i=t uibi)||2 ≈ n−t+1

n
λ2

1. Following the proof of Prop. 1 the volume heuristics evaluates the
expected number of successful extensions (u1, ..., ut−1) of (ut, ..., un) at this pruning limit to

Vt−1

`
λ1

t−1
n

´ t−1
2 = π

t−1
2`

t−1
2

´
!

`
λ1

t−1
n

´ t−1
2 ≈

`
λ1

2eπ
n

´ t−1
2 /

p
π(t− 1)

Hence stage (ut, ..., un) has the success rate βt ≈
`
λ1

2eπ
n

´ t−1
2 /(r1,1 · · · rt−1,t−1

p
π(t− 1))

where r1,1 · · · rt−1,t−1 = det(L([b1, ...,bt−1])) and we have due to GSA that

r1,1 · · · rt−1,t−1 = rt−1
1,1 q

(t−1)(t−2)
4 = (detL)

(t−1)(t−2)
n(n−1) r

t−1
n−1 (n−t+1)

1,1 .

Hence βt ≈
`
λ1

2eπ
n

´ t−1
2 (detL(Bn,c))

− (t−1)(t−2)
n(n−1) r

− t−1
n−1 (n−t+1)

1,1 /
p

π(t− 1)

where det(L(Bn,c)) ≈ Nc(ln pn)n/2√n ln pn(1− o(1)).

Hence βt ≈
`
λ1

2eπ
n

´ t−1
2 [Nc(ln pn)

n+1
2
√

n]
− (t−1)(t−2)

n(n−1) r
− t−1

n−1 (n−t+1)

1,1 /
p

π(t− 1)

We get for N ≈ 1014, n = 48, pn = 223, c = 0.8468, r1,1 ≥ λ1(L′) that

β12 ≈ 1.85 · 10−5λ5.5
1 r−8.66

1,1 , β24 ≈ 3.77 · 10−20λ11.5
1 r−12.23

1,1 , β36 ≈ 5.89 · 10−41λ17.5
1 r−9.68

1,1 ..

Thus New Enum performs under linear pruning many stages with unresonable small success rate.
Cutting these stages by pruning saves time and space.

Enum with linear pruning solves SVP of L of dimL = n by (4.4) in worst case heuristic time
nn/8+o(1). New Enum solves SVP much faster. Short vectors are found much faster if available
stages with large success rate are always performed first and if stages with very small success rate
are cut. Our experiments show that New Enum for N ≈ 1014, 1020 and n = 90, 150 finds vectors
in L(Bn,c) close to Nc in polynomial time.

5 Factoring by CVP solutions for the Prime Number Lattice

Let N > 2 be an odd integer that is not a prime power, with all prime factors larger than pn the
n-th smallest prime. Then the pi with i ≤ n have inverses p−1

i mod N in Z/NZ. An integer is
called pn-smooth if it has no prime factor larger than pn. A classical method factors N via n + 1
independent pairs of pn-smooth integers u, |u− vN |. We call such (u, v) a fac-relation for N .

The classical factoring method. Given n + 1 fac-relations (uj , vj) we have for p0 := −1

uj =
Qn

i=1 p
ei,j

i , uj − vjN =
Qn

i=0 p
e′i,j

i with ei,j , e
′
i,j ∈ N. (5.1)

We have (uj − vjN)/uj ≡ 1 mod N since 1
uj

N ≡ 0 mod N holds due to gcd(N, uj) = 1. HenceQn
i=0 pi

ei,j−e′i,j ≡ 1 mod N . Any solution t1, ..., tn+1 ∈ {0, 1} of the equationsPn+1
j=1 tj(ei,j − e′i,j) ≡ 0 mod 2 for i = 0, ..., n (5.2)

solves X2 − 1 = (X − 1)(X + 1) = 0 mod N by X =
Qn

i=0 p
1
2

Pn+1
j=1 tj(ei,j−e′i,j)

i mod N . In case
X 6= ±1 mod N this yields two non-trivial factors gcd(X ± 1, N) /∈ {1, N} of N .

9

The linear equations (5.2) can be solved within O(n3) bit operations. We neglect this minor part of
the work load of factoring N . This reduces factoring N to finding about n + 1 pn-smooth integers
u, |u − vN |. This factoring method goes back to Morrison & Brillhart [MB75] and let to the first
factoring algorithm in subexponetial time by J. Dixon [D81].

We construct pn-smooth triples u, v, |u − vN | from CVP solutions for the prime number lattice
L(Bn,c) with basis Bn,c = [b1, . . . ,bn] ∈ R(n+1)×n and target vector Nc ∈ Rn+1 for some c > 0 :

Bn,c =

2664
√

ln p1 0 0

0
. . . 0

0 0
√

ln pn
Nc ln p1 · · · Nc ln pn

3775, Nc =

264
0
...
0

Nc ln N

375, (5.3)

`
detL(Bn,c)

´2
=

` Qn
i=1 ln pi

´
(1 + N2c Pn

i=1(ln pi)
2),`

detL(Bn,c)
´2/n

= ln pn ·N2c/n · (1± o(1))

det(L′n,c) =
Qn

i=1

√
ln pi Nc ln N ≈ (ln pn)n/2 Nc ln N , (5.4)

for L′n,c = L[Bn,c,Nc] and ln = loge ≈ log2.718. The prime number theorem shows
Qn

i=1 ln p
1/n
i / ln pn

= 1− o(1) for n →∞ and shows ≈ of (5.4). By definition let o(1) → 0 for n, N →∞. We identify
each vector b =

Pn
i=1 eibi ∈ L(Bn,c) with the pair (u, v) of relative prime and pn-smooth integers

u =
Q

ei>0 pei
i , v =

Q
ei<0 p−ei

i ∈ N denoting b ∼ (u, v).

For b ∼ (u, v) we denote ẑb := Nc ln u
v
, ẑb−Nc := Nc ln u

vN
the last coordinates of b and b−Nc.

As a factor p±ei
i of uv adds ±ei ln pi to ln uv and e2

i ln pi to ‖b‖2 we have ‖b‖2 ≥ ln uv + ẑ2
b with

equality if and only if uv is squarefree so that ei ∈ {−1, 0, 1} for all i. ||b||2 and ln uv + ẑb−Nc are
almost equal if (

P
ei /∈{−1,0,1} e2

i ln pi)/(
P

ei∈{−1,0,1} e2
i ln pi) = o(1). Similarly

Fact 1. ‖b−Nc‖2 ≥ ln uv+ẑ2
b−Nc

holds for (u, v) ∼ b ∈ L(Bn,c) with equality iff uv is square-free.

Moreover ‖L(Bn,c)−Nc‖2 is close to ln uv + ẑ2
b−Nc

if uv is nearly square-free.

Lemma 1. For (u, v) ∼ b ∈ L(Bn,c) and x = −1 + u
vN

= u−vN
vN

∈ [− 1
2
, 1] we have

ẑb−Nc = Nc ln(u
vN

) = −Nc P∞
i=1(−x)i/i = Nc(u−vN

vN
+ ε),

where −0.6932 < −
P

i≥ 2−i/i < ε <
P

i≥2 2−i/i < 0.7042.

Proof. We apply the Taylor form ln(1 + x) = −
P∞

i=1(−x)i/i holding for x ∈ (−1, 1] which we ap-
ply to x = −1+ u

vN
∈ [− 1

2
, 1]. This shows −Nc P

i≥1 2−i/i < ẑb−Nc−Nc u−vN
vN

< Nc P
i≥2 2−i/i. �

Lemma 5.3 of [MG02] proves that λ2
1 > 2c ln N holds if the prime 2 is excluded from the prime

basis. Lemma 2 extends this proof to include the prime 2 and increases the lower bound by 1−o(1).

Lemma 2. λ2
1 > 2c ln N +1− 2ε

Nc
1

Nc−ε
holds for L(Bn,c) where λ1 = ||b||, b ∼ u, v,

√
uv = Nc−ε.

Proof. Let b = Bn,cu 6= 0 be a shortest vector of L(Bn,c), corresponding to (u, v). Let u > v,
otherwise replace b by −b which permutes u, v. Then ln u

v
minimizes for some u ≥ v + 1. Hence

ln u
v
≥ ln(1 + 1/v) > ln(1 + 1/

√
uv) since u ≥ v + 1 and

√
uv > v

> 1√
uv
− 1

2
1

uv
= 1√

uv
(1− 1

2
1√
uv

) since ln(1 + x) = −
P∞

i=1(−x)i/i for x ∈ (−1, 1].

Hence λ2
1 ≥ ln uv+N2c ln2(u

v
) > ln uv+N2c 1

uv
(1− 1

2
√

uv
)2 =: f(

√
uv) where Nc ln u

v
= ẑb is the last

coordinate of b. We abbreviate h :=
√

uv. The derivative ϑf(h)
ϑh

= h−5[2h4 + N2c[−2h2 + 3h− 1]]
is zero for some h with Nc − 0.751 < h < Nc − 0.75, hence h ≈ Nc and this h determines the
minimal value f(h) of f . Then the Lemma follows from

f(Nc − ε) = ln((Nc − ε)2) + N2c

(Nc−ε)2
(1− 1

2(Nc−ε)
)2

= 2c ln N + 2 ln(1− ε/Nc) + 1
(1−ε/Nc)2

(1− 1
2(Nc−ε)

)2

≈ 2c ln N + 1− 1
2
N−c ±Ω(N−2c) for |ε− 0.7505| ≤ 10−3 by an easy proof.

If u ==
Q

ei>0 pei
i = O(Nc), u = v + 1 with all ei ∈ {−1, 0, 1} then λ2

1 = 2c ln N + O(1). Or else λ2
1

increases by the minimum of ẑ2
b ≥ N2c ln2(u

v
) for pn-smooth v < u of order u = O(Nc). �

10

Let Ψ(X, y) denote the number of integers in [1, X] that are y-smooth. Dickman [1930] shows

limy→∞ Ψ(yz, y)y−z = ρ(z) for any fixed z > 0.

ρ(z) is the Dickman, De Bruijn ρ - function, see [G08] for a recent surview. It is known that

ρ(z) = 1 for 0 ≤ z ≤ 1, ρ(z) = 1− ln z for 1 ≤ z ≤ 2

ρ(z) =
` e±o(1)

z ln z

´z
= 1/zz+o(z) for z →∞ (5.5)

Hildebrand [H84] extended (5.5) to a wide finite range of y and z. For any fixed ε > 0

Ψ(yz, y)y−z = ρ(z)
`
1 + O

` ln(z+1)
ln y

´´
(5.6)

holds uniformly for 1 ≤ z ≤ y1/2−ε, y ≥ 2 if and only if the Riemann Hypothesis is true.
Let Φ(N, pn, σ) denote the number of triples (u, v, |u−vN |) ∈ N3 that are pn–smooth and bounded
as v, |u− vN | ≤ pσ

n. We conclude from (5.6) that

Φ(N, pn, σ) = Θ(2p2 σ
n ρ

` ln(Npσ
n)

ln pn

´
ρ2(σ)) (5.7)

uniformly holds for ln N
ln pn

+ σ ≤ p
1/2−ε
n if the pn-smoothness events of u, v, |u − vN | are nearly

statistically independent. We will use (5.7) in a range where ln N
ln pn

+ σ < p0.4
n and we will neglect

the Θ(1)-factor of (5.7).

Proof of (5.7). There are 2p2σ
n pairs of integers u, v such that 0 < v, |u − vN | ≤ pσ

n. Clearly

u ≤ Npσ
n + pσ

n ≤ pz
n holds for z = ln(N+1)

ln pn
+ σ. Then (5.6) for yz = pz

n = (N + 1)pσ
n shows that the

fraction of u that are pn-smooth is ρ(z)
`
1 + O

` ln(z+1)
ln pn

´´
if ln N

ln pn
+ σ ≤ p0.4

n .
Moreover (5.6) for y = pn, z = σ shows that the fraction of 0 < v ≤ pσ

n that are pn-smooth is

ρ(σ)
`
1 + O

` ln(σ+1)
ln pn

´´
if σ ≤ p

1/2−ε
n . Therefore the statistical independence of the pn-smoothness

events of u, v, |u− vN | implies (5.7) if ln(z +1) = O(ln pn) holds for both ρ-values. The latter holds
due to ln N

ln pn
+ σ ≤ p0.4

n .

Example factoring for small v. Let N = 100000980001501 ≈ 1014 and n = 90, p90 = 463,
c = 1/2 . (5.7) shows that there are Θ(6.4 · 105) fac-relations such that v, |u − vN | ≤ 4633 are
pn-smooth. M. Charlet has constructed in 2013 several hundred such relations (5.1) for the above
N by the following program pruned to stages with success rate β̈t ≥ 2−14. This program found on
average a relation every 6.5 seconds. This amounts to a factoring time of 10 minutes. (Increasing
c from 1/2 to 5/7 did on average increase the v-values of the found relations (5.1) and of course
the entries in the last row of [Bn,c,Nc] that are multiples of Nc. However the average time for
constructing a fac-relation decreased from 6.5 to 6.08 seconds.

A program for finding relations (5.1) efficiently. Initially the given basis Bn,c gets strongly
BKZ-reduced with block size 32 and the target vector Nc is shifted modulo lattice vectors into the
ground mesh of the reduced basis. The initial value Ä, the upper bound on ‖Nc −L(Bn,c)‖2 is set
to 1

5
1
4

Pn
i=1 r2

i,i which is 1
5

the standard upper bound.

LOOP. IAfter the first round the vectors of the reduced basis of L(Bn,c) and the shifted Nc are
randomly scaled as follows. For i = 1, ..., n with probabiliy 1/2 all i-th coordinates of the basis
vectors and the shifted target vector are multiplied by 2. (The ”scaled” primes pi will appear less
frequently as factors of uv in relations (5.1) resulting from CVP-solutions.) The scaled basis gets
slightly reduced by BKZ-reduction of block size 20. Then New Enum for CVP is called to search
for lattice vectors that are close to the shifted target vector Nc. New Enum always decreases Ä to
the square distance to Nc of the closest found lattice vector. Whenever a fac-relation has been found
New Enum stops further decreasing Ä for this round and continues to enumerate all b ∈ L(Bn,c)
such that ||b−Nc||12 ≤ Ä.

u v |u− vN |

6 19 · 292 · 31 · 73 · 109 · 139 · 211 · 359 415 22 · 11 · 37 · 439

6 29 · 37 · 83 · 139 · 191 · 269 · 307 · 443 865 2 · 11 · 239 · 383

11

12 2 · 3 · 172 · 103 · 263 · 317 · 379 · 443 25 13 · 173

14 2 · 5 · 47 · 83 · 157 · 179 · 307 · 331 · 421 469 19 · 43 · 373

19 72 · 13 · 41 · 43 · 107 · 109 · 113 · 131 · 409 · 461 365571 24 · 5 · 112 · 197 · 433

19 2 · 7 · 13 · 31 · 107 · 127 · 149 · 179 · 383 · 397 · 439 1364927 3 · 5 · 11 · 61 · 337 · 419

21 43 · 131 · 139 · 193 · 307 · 353 · 401 · 439 28829 2 · 32 · 52 · 13 · 41 · 107

30 19 · 31 · 53 · 61 · 67 · 131 · 163 · 241 · 313 2055 22 · 59 · 71 · 89

31 132 · 17 · 101 · 137 · 199 · 229 · 277 · 331 1661 26 · 3 · 19 · 233

33 19 · 101 · 107 · 127 · 131 · 179 · 191 · 211 · 379 93398 33 · 13 · 29 · 109 · 167

The first 10 fac-relations of rounds 6 - 33 for c = 1/2. They mostly satisfy v, |u− vN | ≤ p3
90.

A. Schickedanz improved in 2015 Charlet’s program and found for N = 100000980001501 ≈ 1014,
n = 90, p90 = 463, c = 1/2 and pruned to stages with β̈t ≥ 2−14 on average one relation (5.1) in
0.32 seconds. This factors N ≈ 1014 in 30 seconds. He scaled a strong BKZ-basis of L(Bn,c) by
multiplying by 2 many of the first n rows only with probability 1/4 and almost skipped to adjust
success rates of the stored stages when Ä has been decreased. But for N ≈ 1020 this program took
for n = 150, c = 1/2 about 34.5 seconds per fac-relation and factored N in 86 minutes.

Alternatively we can find more fac-relations in fewer scaling rounds by decreasing Ä only to
||b −Nc||2(1 + ε) for the closest found b ∈ L(Bn,c). This larger final Ä increases all final success
rates β̈t and extends the final enumeration of b with ||b −Nc||2 ≤ Ä. We should experimentally
choose ε to maximize the number of fac-relations that are finally found for the available space to
store undone stages. The first round should work with an unscaled BKZ-basis and then one can
iterate with randomly scaled bases.

Searching fac-relations with large v : We search b ∈ L(Bn,c), b ∼ (u, v) so that |u−vN | . pn

and thus |u − vN | is pn-smooth and yields a fac-relation with probability near 1. Lemma 1 shows
for v ≈ δ that

ẑb−Nc = Nc−δ−1(u− vN) + εNc. (5.8)

where −0.6932 · · · = −
P

i even 2−i/i < ±ε <
P

i odd,i6=1 2−i/i = 0..7042 · · ·

Therefore minimizing |ẑb−Nc | for v ≈ Nδ for a reasonable δ should minimize |u− vN |. Neglecting
the small ε of (5.8) we get |ẑb−Nc | ≈ Nc−1−δ|u − vN |. We assume that the squared coordinates
of b −Nc are nearly uniformly distributed so that |ẑb−Nc |2 ≈ λ2

1(L′n,c)/(n + 1) where λ2
1(L′n,c) =

rd(L′n,c)
2γn+1 det[Bn,c,Nc]

2
n+1 . Approximating det[Bn,c,Nc] by (5.4) we get

|u− vN | . Nδ+1−crd(L′n,c)
q

γn+1
n+1

(ln pn)
n

2n+2 N
c

n+1 (ln N)
1

n+1 (5.9)

We start with n, c, δ such that (5.9) shows |u − vN | . pn. We use γn ≤ 1.744n
2eπ

from a computer
proof of Kabatianski, Levenshtein [KaLe78]. We know that rd(L′n,c) < 1 decreases when c increases.

Existing fac-relations following (5.9):

1. For N ≈ 1014 let n = 60, pn = 281, c = 1, δ = δ + 1− c = 0.1. We replace the factor (ln pn)n of
λ2

1(L′n,c) and of (5.9) by the more accurate value
Q60

i=1 ln pi ≈ 7.8 ∗ 1035. Then λ1(L′n,c) ≤ λ1(L′n,c)
if rd(L′n,c) ≤ 0.9435 and (5.9) shows that |u− vN | is < pn and pn-smooth.

2. Let N ≈ 2100, n = 200, pn = 1223, c = 1.4, δ = 0.5, δ+1−c = 0.1. Then λ1(L′n,c) < λ1(L(Bn,c))
if rd(L′n,c) < 0.7. Then (5.9) shows |u− vN | < pn and |u− vN | is pn-smooth.

3. Let N ≈ 2400, n = 900, pn = 6997, c = 1.8, δ = 0.84, δ + 1 − c = 0.04. Then λ1(L′n,c) <
λ1(L(Bn,c)) if rd(L′n,c) < 0.4. Then (5.9) shows |u− vN | ≤ 5571 < pn and |u− vN | is pn-smooth.

4. Let N ≈ 2800, n = 1800, pn = 15401, c = 1.8, δ = 0.82, δ+1−c = 0.02. Hence λ1(L′n,c) < λ1(Bn,c)
if rd(L′n,c) < 0.6. Then (5.9) shows |u− vN | < pn and |u− vN | is pn-smooth.

Distinct fac-relations for c, δ and c′, δ′ with c′ − c = δ′ − δ = ln 2/lnN : We show that we
get different fac-relations from shortest vectors of L′n,c = L[Bn,c,Nc] and L′n,c′ . By Lemma 1 most

vectors b ∈ L(Bn,c), b ∼ (u, v) close to Nc satisfy for c ≥ 1 that |ẑb−Nc | ≈ Nc |u−vN|
vN

. The vectors

12

b −Nc and b′ −Nc′ where b,b′ correspond to the same (u, v) coincide in the first n coordinates
but differ in the last coordinate ẑb−Nc = Nc u−vN

vN
as c 6= c′.

13

For large N, n we iteratively increase c and δ by ln 2/ ln N per round so that c, δ passe the area
for which the number of pn-smooth tripels (u, v, |u − vN |) ∈ N3 with v ∈ [1

2
Nδ, Nδ] is maximal.

Then we get distinct fac-relations for c and c′.

Expected time bounds for factoring N ≈ 2800. We have shown in example 4. that there exists
b ∈ L(Bn,c) with b ∼ (u, v), v ≈ Nδ for n = 1800 so that |u− vN | most likely yields a fac-relation
for N . We find the fac-relation by solving SVP for L′n,c. A shortest vector in L′n,c most likely yields
a vector b ∼ (u, v) in L(Bn,c) closest to Nc where b ∼ (u, v) and |u− vN | is pn-smooth. So we find
a fac-relation by solving SVP. (3.2) shows that this can be done by

2smax((n + 1)2 + O(n + 1)) n
k−1

log2 γk ≈ 4 ∗ 108 ∗ 2smax

arithmetic steps on integers of bit length (δ + 1)800 ≈ 1632 when given a BKZ-basis for L′n,c of
block size k = 32. So the number of arithmetic steps is quite small compared with QS and NFS
factorisation but the bit length of integers is large. BKZ-reduction for L′n,c is duable.

We extend the algorithm for solving SVP for L′n,c to find further vectors of L(Bn,c) that are nearly
closest to Nc and yield fac-relations for N . This should yield at least 2 fac-relations by 2-times more
arithmetic steps. Then we apply the same algorithm after scaling the initial strong BKZ-basis of
L′n,c by multiplying each of the first n rows with probability 1/4 by 2. By 4 independent scalings
this should give together about 8 fac-relations for one c using 8 ∗ 2smax arithmetic steps.

If the iterativ scaling of the basis for L′n,c gets to slow in generating new fac-relations we iteratively
increase c and δ by ln 2

ln N
and 225 different c′, δ′ where c′ − c, δ′ − δ ∈ [0, 0.28]. To minimize the

time for the round with c′, δ′ we use a reduced basis for L′n,c multiply the last coordinates of its

basis vectors by 2 = N
ln 2
ln N and slightly reduce the basis again. This way we should find about 1800

fac-relations and factorise N in about 7.2 ∗ 1011 ∗ 2smax arithmetic steps.

Comparison with QS and NFS factorisation : Our prime base is much smaller than the prime

base for the quadratic sieve QS which uses for N ≈ 2400 that pn ≈ e1/2
√

ln N·ln ln N ≈ 3.76 · 108 ≈
53737 · p900, see [CP01, section 6.1]. The prime base for the number field sieve NFS is even bigger
than for the quadratic sieve QS. The number of arithmetic steps of our factorisation is quite small
compared with QS and NFS factorisation but the bit length of integers is large. The numbers of
arithmetic steps for QS, NFS factorisation of N in [CP01, section 6.2] :

e
√

ln N ln ln N ≈ 5.08 · 1025 for QS

e(64/9)1/3(ln N)1/3(ln ln N)2/3
≈ 2.81 · 1023 for NFS.

New Enum for CVP of the prime number lattice creating fac-relations
INPUT B, R = [ri,j] ∈ Rn×n, Bn,c, c, T, τ1, ..., τn, a small Ä ∈ Q such that ||L−Nc||2 ≤

Ä, smax.
OUTPUT a sequence of b =

Pn
i=1 uibi ∈ L where ‖b−Nc‖ decreases to ||L −Nc||.

1. t := n, L := ∅, yn := τn, un := dync, c̈n+1 := 0, s := 5
c̈t = ct(τt − ut, ..., τn − un) always holds for the current t, ut, ..., un

u := (0, ..., 0, un)t ∈ Zn, b := B · u, u′ := T · u.
2. WHILE t ≤ n #perform stage (t, ut, ..., un, ..., yt):

[[c̈t := c̈t+1 + (ut − yt)
2r2

t,t,

IF c̈t ≥ Ä THEN GO TO 2.1 # this cuts the present stage
%̈t := (Ä− c̈t)

1/2, β̈t := Vt−1%̈
t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [b :=
Pn

i=1 uibi, Ä := c̈1 = ‖b − τ(Nc)‖2, output b, Ä, s,

update all stored %̈t′ , β̈t′ to the new Ä GO TO 2.1]
IF 2−smax < β̈t < 2−s THEN [store the stage and ρ̈t, β̈t in L, GO TO 2.1]

[t := t + 1, yt := τt +
Pn

i=t+1(τi − ui)rt,i/rt,t, ςt := sign(ut − yt)
ut := dytc, ν := 1, u′t := u′t + ti,iui for i = 1, ..., n, GO TO 2.]

2.1 t := t + 1, ut := −dytc+ bνt/2c(−1)νtςt, νt := νt + 1]]
3. perform all stages ut = (ut, ..., un, yt, c̈t, νt, ςt, β̈t, Ä) ∈ L with β̈t ≥ 2−s,

IF steps 2, 3 did not decrease A for the current s THEN terminate.

4. s := s + 1, IF s > smax THEN restart with a larger smax.

14

Outline of the CVP-algorithm for Bn,c,Nc using New Enum. Let B = QR = Bn,cT =
[b1, ...,bn] ∈ Z(n+1)×n be a BKZ-basis of L(Bn,c), |det(T)| = 1. For u = (u1, ..., un)t ∈ Zn

we denote u′ = (u′1, ..., u
′
n)t = Tu so that b := Bn,cu

′ = Bu ∼ (u, v) where u =
Q

u′i>0 p
u′i
i ,

v =
Q

u′i<0 p
−u′i
i ∈ N. We replace the input Nc by its projection τ(Nc) =

Pn
i=1 τibi ∈ span(L),

where τ : Rn+1 → span (L) satisfies Nc − τ(Nc) ∈ L⊥. Then τ(Nc) = dBn,c1 = dBT−11 holds
for d := ln N/(N−2c +

Pn
i=1 ln pi), 1 := (1, ..., 1)t ∈ Zn.

Starting at t = n the algorithm tries to satisfy (5.9) as t decreases to 1.

||πt(b− τ(Nc)) ||2 ≤ n−t+1
n

(2c− 1) ln N + ẑ2
b−τ(Nc) for b = Bu ∼ (u, v) (5.9)

This clearly holds for t = n + 1. If it holds at t = 1 then ||b − τ(Nc)|| and |u − vN | are so small
that they can provide a relation (5.1). We denote c̈t = ct(τt−ut, ..., τn−un) = ||πt(τ(Nc)−Bu)||2.
Recall that β̈t := Vt−1%̈

t−1
t /(r1,1 · · · rt−1,t−1) for %̈t := (Ä − c̈t)

1/2 where Ä ≥ ||L − τ(Nc)||2. The
success rate β̈t increases as c̈t decreases, The stored stages with small success rate β̈t will be done
after all stages with higher success rate β̈t. They can be cut off if β̈t is extremely small or if to many
stages with higher success rate β̈t have been stored and the algorithm runs out of storage space.
For the corresponding SVP- algorithm for L′ we initially replace Bn,c by [Nc,Bn,c].

Note that Cor. 4 shows that ||b−Nc||2 . λ2
1− ln N holds for c = δ+1− ln p3

n/ ln N if b ∼ (u, v)
and 1

2
Nδ < v ≤ Nδ and |u− vN | ≤ p3

n. Such b are particularly close to Nc and yield a fac-relation
if |u− vN | is pn-smooth which happens with probability ρ(3).

Extending New Enum by continued fractions (CF). A. Schickedanz [S16] has extended
New Enum by continued fractions generating fac-relations with large non pn-smooth v. Take b =Pn

j=1 ujbj ∈ L(Bn,c) at stage (1, u1, ..., un) of New Enum and (u, v) ∼ b, u =
Q

uj>0 p
uj

j and

compute the regular CF hi
ki

of δ := u
N
− d u

N
c with denominators ki . p3

n. This starts with α0 =

|δ|, α1 = 1/|δ| and iterates αi+1 := 1/(αi − bαic) as long as αi > bαic. Then hi
ki

is given by

hi = bαichi−1 + hi−2 and ki = bαicki−1 + ki−2 where (h−1, k−1, h0, k0) = (1, 0, 0, 1) and h1 = 1,
k1 = bα1c, hence ki ≥

Qi
j=1bαjc. Each hi

ki
is a best approximation under all rational approximations

h′i
k′i

of |δ| with denominators k′i ≤ ki. Lagrange has proved that ||δ|− hi
ki
| ≤ 1

kiki+1
, and that equality

holds if and only if |δ| = hi+1
ki+1

. This implies

Lemma 3. |ui − viN | ≤ N/ki+1 holds for ui := uki and vi := d u
N
cki + sign(δ)hi, where |ui − viN |

yields a relation (5.1) if ki and |ui − viN | are pn-smooth.

Proof. |ui − viN | = |(u− d u
N
cN)ki − sign(δ)hiN |

= |(u
N
− d u

N
c − sign(δ)hi

ki
)Nki| = |(δ − sign(δ)hi

ki
)Nki| ≤ N/ki+1

since ||δ| − hi
ki
| ≤ 1

kiki+1
holds due to Lagrange’s inequality. �

The fac-relations via CF have extremely large vi > N2. For N ≈ 1014, n = 90, pn = 463 and
c = 1.4 and one fixed scaling Schickedanz’s program found 14.000 fac-relations in 966 seconds, i.e.
it took 0.067 seconds per relation and factored N ≈ 1014 in 6.8 seconds. See below the first 10 of
the 14.000 relations. This performance of CF for N ≈ 1014 is due to N < p6

n. But the fac-relations
generated by CF vanish as p6

n/N decreases. We can increase the number of pn-smooth ki by using
αi+1 := 1/(αi − βi) for many βi ∈ N with |αi − βi| = O(1).

The first 10 of the 14.000 relations found for N ≈ 1014

via continued fractions for just one scaling

u = 29 · 89 · 101 · 103 · 109 · 127 · 163 · 167 · 179 · 227 · 257 · 337 · 401 · 409 · 431 · 449 · 457 · 4612 · 463
v = 508169841688914466584296878342775 |u− vN | = 26 · 13 · 157

u = 3 · 52 · 31 · 101 · 109 · 1572 · 1672 · 2292 · 257 · 263 · 347 · 349 · 383 · 389 · 409 · 439 · 449 · 457 · 461 · 463
v = 88490004923637711487480829355666391349 |u− vN | = 2 · 19 · 79 · 113

15

u = 3 · 5 · 11 · 23 · 372 · 43 · 47 · 73 · 101 · 157 · 163 · 211 · 257 · 263 · 277 · 293 · 313 · 347 · 409 · 4312 · 449 · 463
v = 39337475528468020686337374289751504 |u− vN | = 41 · 53 · 383

u = 3 · 43 · 472 · 732 · 101 · 131 · 157 · 1632 · 167 · 257 · 263 · 2692 · 409 · 431 · 449 · 457 · 461 · 463
v = 5285053154856578428430584864963772 |u− vN | = 13 · 199

u = 32 · 23 · 37 · 43 · 59 · 107 · 157 · 163 · 167 · 179 · 197 · 229 · 257 · 313 · 331 · 379 · 389 · 409 · 431 · 449 · 463
v = 103217349317428292671717081216913 |u− vN | = 2 · 227 · 311 · 461

u = 22 · 52 · 43 · 47 · 67 · 109 · 137 · 163 · 167 · 229 · 257 · 331 · 3892 · 4092 · 439 · 449 · 457 · 463
v = 1131979263675500365247847048973 |u− vN | = 83 · 157 · 317

u = 25 · 5 · 192 · 61 · 101 · 103 · 107 · 1572 · 163 · 257 · 281 · 313 · 3312 · 389 · 409 · 449 · 457 · 463
v = 5898454839361247518321213045467 |u− vN | = 7 · 133 · 53

u = 2 · 53 · 7 · 192 · 59 · 792 · 89 · 113 · 137 · 197 · 263 · 313 · 313 · 3892 · 431 · 439 · 449 · 457 · 463
v = 46796679363237306927028762631303 |u− vN | = 11 · 97 · 359

u = 52 · 13 · 192 · 59 · 1012 · 197 · 293 · 313 · 331 · 347 · 389 · 409 · 439 · 449 · 457 · 461 · 463
v = 4482276109673039704152771836 |u− vN | = 32 · 73 · 71 · 307

u = 17 · 192 · 43 · 47 · 73 · 103 · 109 · 113 · 257 · 263 · 281 · 313 · 337 · 3472 · 431 · 449 · 457 · 463
v = 113457285559875139699227627406 |u− vN | = 3 · 52 · 132 · 23 · 89 · 199

A. Schickedanz uses the following hardware and software.
Hardware: Prozessor AMD Phenom II X4 965 (3.41 GHz), storage: : 16 GB
Software operating system Windows 7 (64 Bit Version), Compiler: GCC 5.2.0 (Mingw-w64 Toolchain)
NTL: 9.6.2 (-02 -m64) Compiler Flags: -std=c++11 -O3 -m64

It makes sense to extend the generation of fac-relations from N to various integers aN with pn <
a < p2

n. We can store a with the stored stages. It can be useful to increase the success rate β̈t for
v = v2v′ with a small v′ because this can simplify solving v2 = ±1 mod N and factoring N . This
would be a step towards the quadratic sieve QS, see [CP01, section 6.1].

Comparison with [S93]. Our new results show an enormous progress compared to the previous
approach of [S93]. [S93] reports on experiments for N = 2131438662079 ≈ 2.1 · 1012, Nc = 1025,
c ≈ 2.0278 and the prime number basis of dimension n = 125 with diagonal entries ln pi for
i = 1, ..., n instead of

√
ln pi. The larger diagonal entries ln pi require a larger c and more time for

the construction of relations (5.1). The latter took 10 hours per found relation on a PC of 1993.

6 Exponentially many fac-relations for large v

Now let pn = (ln N)α for a small α > 2 and a large N . Then pn and n are larger than for the factoring
experiments reported in section 5. Theorem 2 shows for the larger n that there are exponentially
many pn-smooth u, v such that |u− vN | = 1, 1

2
Nδ ≤ v ≤ Nδ. Theorem 3 shows under the assump-

tions of Theorem 2 and Prop. 1 that vectors b ∈ L(Bn,c) closest to Nc can be found in pol. time.
The proof combines the results of Theorem 2, Prop. 1, Lemma 1, Lemma 2 and Cor. 3. We denote
for δ > 0

MN,n,δ =
n

(u, v) ∈ N2 |u− vN | = 1, 1
2
Nδ ≤ v ≤ Nδ

u, v are pn−smooth

o
.

Clearly every (u, v) ∈ MN,n,δ yields a relation (5.2) because |u − vN | = 1 and uv is pn-smooth.
Theorem 2 shows that #MN,n,δ ≥ Nε = 2εk, it is exponential in the bit length k of N .

Theorem 2. Let α ≥ 1.01 2δ+1
δ−ε

and 0 < ε < δ < α ln ln N . Assume the events that u, resp. v

is pn-smooth are nearly statistically independent for random v, 1
2
Nδ ≤ v ≤ Nδ under the equation

|u− vN | = 1 then #MN,n,δ ≥ Nε holds for sufficiently large N .

Proof. (5.7) shows for yz = N , y = (ln N)α = pn = N1/z, z = ln N/α ln ln N that

Ψ(N, pn)/N =
` e+o(1)

z ln z

´z
= z−z−o(z) holds for z →∞.

Extending this equation from N to Nδ and N1+δ our assumption shows for large N :

16

#MN,n,δ ≥ Nδ(zδ)−zδ−o(1)(zδ + z)−zδ−z−o(z),

ln #MN,n,δ ≥ δ ln N − zδ ln(zδ)− (zδ + z) ln(zδ + z) (1 + o(1)).

Here Nδ counts twice the number of integers v, 1
2
Nδ ≤ v ≤ Nδ. For every such v there are two

u = vN ±1; (zδ)−zδ−o(z) and (zδ + z)−zδ−z−o(z) lower bound the portions of these v and u that are
pn-smooth. We assume that the pn-smoothness events for u and v are nearly statistical independent
of the equation |u− vN | = 1. Hence we get for z = ln N/α ln ln N that

ln#MN,n,δ > δ ln N − (2δ+1) ln N ln(zδ)
α ln ln N

(1 + o(1))

(since ln(zδ + z) = ln(zδ)(1 + o(1)) for large z and constant δ)

> δ ln N − (2δ+1) ln N (ln ln N−ln(α ln ln N)+ln δ)
α ln ln N

(1 + o(1)) (since δ < α ln ln N)

≥ ln N
`
δ − 2δ+1

α
1.01

´
(for large N)

> ε ln N since α > 1.01 2δ+1
δ−ε

. Hence #MN,n,δ ≥ Nε. �

Theorem 3. Let 1 < c < (ln N)α/2−1. Assume the events that u, resp. v is pn-smooth are nearly
statistically independent for random v, 1

2
Nc ≤ v ≤ Nc under the equation |u − v| = 1. Then

λ2
1 = 2c ln N(1 + o(1)) and rd(L) = o(n−1/4). If a reduced version of the basis Bn,c is given that

satisfies GSA and ‖b1‖2 = O(2c ln N) and if some vector b̈ ∈ L(Bn,c) closest to Nc of (5.3)
satisfies CA then New Enum finds b̈ under the volume heuristics in pol. time.

Remarks. Theorem 3 shows that rd(L) = o(n−1/4) is as small as required for Prop. 1 and Cor. 3.

Without the volume heuristics the time bound of Theorem 3 increases to nO(1)(RL/λ1)
n where

RL = maxu∈span(L) ‖L − u‖ is the covering radius of L. The factor (RL/λ1)
n overestimates New

Enum’s running time since New Enum essentially enumerates only lattice points in a ball of radius
‖L −Nc‖ < λ1 < RL.

Proof. We first prove that λ2
1 = 2c ln N (1 + o(1)) for L := L(Bn,c) and N →∞. We denote

fMN,n,c =def

n
(u, v) ∈ N2 |u− v| = 1, 1

2
Nc ≤ v ≤ Nc

uv pn − smooth

o
.

Following the proof of Theorem 2 for δ = c we see that #fMN,n,c ≥ Nc(zc)−2zc−o(z) holds for

z = ln N
α ln ln N

. Recall that (u, v) ∈ fMN , n, c defines a vector b ∼ (u, v) in L. Hence

ln #fMN,n,c ≥ ln N
`
c− 2c

α
(1 + o(1))

´
= Θ(ln N),

since α > 2 due to 1 < (ln N)α/2−1. Let L(Bn,c) 3 b ∼ (u, v) ∈ fMN,n,c and let uv be essentially
square-free except for a few small primes. We see from 1

2
Nc ≤ v ≤ Nc and u = v ± 1 that

‖b‖2 = ln uv (1 + o(1)) + ẑ2
b ≤ 2c ln N (1 + o(1)) + ẑ2

b,

where c ln N − ln 2 ≤ ln v ≤ c ln N . Moreover ẑ2
b = N2c ln2(u/v) where | ln(u/v)| = | ln(1 + u−v

v
)| ≤

1
v
(1 + o(1)) ≤ 2N−c(1 + o(1)) holds for large N . Hence ẑ2

b ≤ 4(1 + o(1)) and thus λ2
1 ≤ 2c ln N (1 +

o(1)). On the other hand λ2
1 ≥ 2c ln N holds by Lemma 2 and thus ‖b‖2/λ2

1 = 1 + o(1).

Next we bound rd(L) for L = L(Bn,c). Using γn ≥ n
2eπ

we get

γn(detL)
2
n ≥ n

2eπ
(ln pn ± o(1)) ·N2c/n, and thus

rd(L) = λ1/(
√

γn(detL)
1
n) =

`
2eπ 2c ln N

n ln pn

´ 1
2 /Nc/n(1± o(1)).

Moreover c ≤ (ln N)α/2−1 =
√

pn/ ln N implies Nc/n = e
√

pn/n = eo(1) and Nc/n = 1 + o(1). Hence

rd(L) = (4eπc ln N
n ln pn

)1/2(1 + o(1)) = O(ln N
pn

)1/2

= O(p
α/2−1
n)1/2 = O(p

−1/4
n) = o(n−1/4).

since pn = O(n ln pn) and c < (ln N)α/2−1 and ln N = p
1/α
n and α > 2.

Following the proof of Prop. 1 and Cor. 3 New Enum for CVP finds for pn = (ln N)α some
b ∈ L(Bn,c) that minimizes ‖b − Nc‖ in polynomial time, without proving correctness of the
minimization. This proves the polynomial time bound. �

17

References

[Ad95] L.A. Adleman, Factoring and lattice reduction. Manuscript, 1995.
[Ba86] L. Babai, On Lovász lattice reduction and the nearest lattice point problem. Combinatorica

6 (1), pp. 1–13, 1986.
[BL05] J. Buchmann and C. Ludwig, Practical lattice basis sampling reduction. eprint.iacr.org, TR

072, 2005.
[Ch13] M.Charlet, Faktorisierung ganzer Zahlen mit dem NEW ENUM-Gitteralgorithmus. Diplo-

marbeit, Frankfurt 2013.
[CP01] R. Crandall and C. Pomerance, Prime Numbers, A Computational Perspective. Springer-

Verlag, New York, 2001.
[CS98] J.H. Conway and N.J.A. Sloane, Sphere Packings Lattices and Groups. Material for Third

Edition. Springer-Verlag, 1998.
[D30] K. Dickman, On the frequency of numbers containing prime factors of a certain relative

magnitude. Ark. Math. Astr. Fys. 22, pp. 1–14, 1930.
[D81] J.D. Dixon, Asymptotically Fast Factorization of Integers. Mathematics of Computation

36(153), pp. 255–260, 1981.
[FP85] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a

lattice, including a complexity analysis. Math. of Comput., 44, pp. 463–471, 1985.
[GN08] N. Gama and P.Q. Nguyen, Predicting lattice reduction, in Proc. EUROCRYPT 2008,

LNCS 4965, Springer-Verlag, pp. 31–51, 2008.
[GNR10] N. Gama, P.Q. Nguyen and O. Regev, Lattice enumeration using extreme pruning, Proc.

EUROCRYPT 2010, LNCS 6110, Springer-Verlag, pp. 257–278, 2010; final version to be
published.

[G08] A. Granville, Smooth numbers: computational number theory and beyond. in Algorithmic
Number Theory, MSRI Publications, 44, pp. 267–323, 2008.

[Hl44] E. Hlawka, Zur Geometrie der Zahlen, Mathematische Zeitschrift, Band 49, Seiten 285 -312,
1944.

[HS07] G. Hanrot and D. Stehle′, Improved Analysis of Kannans Shortest Lattice Vector Algorithm,
In Proc. CRYPTO 2007, LNCS 4622, Springer Verlag, pp. 170-186, 2007.

[H84] A. Hildebrand, Integers free of large prime factors and the Riemann hypothesis. Mathematika
31, pp. 258–271, 1984.

[HHHW09] P. Hirschhorn, J. Hoffstein, N. Howgrave-Graham and W. Whyte, Choosing NTRU-
Encrypt parameters in light of combined lattice reduction and MITM approaches. In Proc.
ACNS 2009, LNCS 5536, Springer-Verlag, pp. 437–455, 2009.

[H07] N. Howgrave-Graham, A hybrid lattice–reduction and meet-in-the-middle attiack against
NTRU. In Proc. CRYPTO 2007, LNCS 4622, Springer-Verlag, pp. 150–169, 2007.

[KaLe78] G.A. Kabatiansky und V.I. Levenshtein , Bounds for Packings on a Sphere and in Space,
Problems of Information Transmission, Band 14, Seiten 1–17, 1978.

[Ka87] R. Kannan, Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12, pp. 415–440, 1987.

[La13] B. Lange, Neue Schranken für SVP-Approximation und SVP-Algorithmen. Dissertation,
Frankfurt 2013, //www.mi.informatik.uni-frankfurt.de/ Ph.D. Theses.

[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovász, Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261, pp. 515–534, 1982.

[L86] L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM, 1986.
[Mar03] J. Martinet, Perfect Lattices in Euclidean Spaces. Springer-Verlag 2003.
[MG02] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Per-

spective. Kluwer Academic Publishers, Boston, London, 2002.
[MO90] J. Mazo and A. Odlydzko, Lattice points in high-dimensional spheres. Monatsh. Math. 110,

pp. 47–61, 1990.
[MR05] D. Micciancio and O. Regev, Worst-case to Average-case Reductions based on Gaussian

Measures, Siam J. on Computing 37(1), pp. 267-302. 2007.
[MV09] D. Micciancio and P. Voulgaris Faster exponential time algorithms for the shortest vector

problem. ECCC Report No. 65, 2009
[MB75] M.A. Morrison and J. Brillhart: A Method of Factoring and the Factorization of F7, Math-

ematics of Computation 29(129), pp. 183 –205, 1975.

18

[N10] P.Q. Nguyen, Hermite’s Constant and Lattice Algorithms. in The LLL Algorithm, Eds. P.Q.
Nguyen, B. Vallée, Springer-Verlag, Jan. 2010.

[Reg04] O. Regev, New lattice-based cryptographic constructions, J. ACM 51 (6), pp. 899-942, 2004.
[S16] A. Schickedanz, Faktorisierung ganzer Zahlen durch Gitteralgorithmen. Masterarbeit, Uni-

versitt Frankfurt, 2016. //www.mi.informatik.uni-frankfurt.de/
[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theoret.

Comput. Sci., 53, pp. 201–224, 1987.
[S93] C.P. Schnorr, Factoring integers and computing discrete logarithms via Diophantine ap-

proximation. In Advances in Computational Complexity, AMS, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, 13, pp. 171–182, 1993. Prelimi-
nary version in Proc. EUROCRYPT’91, LNCS 547, Springer-Verlag, pp. 281–293, 1991.
//www.mi.informatik.uni-frankfurt.de/

[SE94] C.P. Schnorr and M. Euchner, Lattce basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming 66, pp. 181–199, 1994.
//www.mi.informatik.uni-frankfurt.de/

[SH95] C.P. Schnorr and H.H. Hörner, Attacking the Chor–Rivest cryptosystem by improved
lattice reduction. In Proc. EUROCRYPT’95, LNCS 921, Springer-Verlag, pp. 1–12, 1995.
//www.mi.informatik.uni-frankfurt.de/

[S03] C.P. Schnorr, Lattice reduction by sampling and birthday methods. Proc. STACS 2003:
20th Annual Symposium on Theoretical Aspects of Computer Science, LNCS 2007, Springer-
Verlag, pp. 146–156, 2003. //www.mi.informatik.uni-frankfurt.de/

[S07] C.P. Schnorr, Progress on LLL and lattice reduction, Proceedings LLL+25, Caen, France,
June 29–July 1, 2007, The LLL Algorithm, Eds. P.Q. Phong, B. Vallée, Springer Verlag,
Jan. 2010. //www.mi.informatik.uni-frankfurt.de/

[S10] C.P. Schnorr, Average Time Fast SVP and CVP Algorithms for Low Density Lattices and
the Factorisation of Integers, //www.mi.informatik.uni-frankfurt.de/ publications 2010

[S13] C.P. Schnorr, Factoring integers by CVP Algorithms, Proceedings Number Theory and
Cryptography, LNCS 8260, Springer-Verlag, Nov. 2013, pp. 73–93, this is an early version
of the most recent version in //www.mi.informatik.uni-frankfurt.de/ Publications 2013

[Sage] http://doc.sagemath.org/html/en/reference/functions/sage/functions/transcendental.html

19

