
Fast Factoring Integers by SVP Algorithms

Claus Peter Schnorr

Fachbereich Informatik und Mathematik,
Goethe-Universität Frankfurt, PSF 111932,

D-60054 Frankfurt am Main, Germany.
schnorr@cs.uni-frankfurt.de

work in progress 11.03.2021

Abstract. To factor an integer N we construct n triples of pn-smooth integers u, v, |u − vN | for
the n-th prime pn. Denote such triple a fac-relation. We get fac-relations from a nearly shortest
vector of the lattice L(Rn,f) with basis matrix Rn,f ∈ R(n+1)×(n+1) where f : [1, n] → [1, n] is

a permutation of [1, 2, ..., n] and (N ′f(1), ..., N ′f(n)) for N ′ = N
1

n+1 is the diagonal of Rn,f . An
independent permutation f ′ yields an independent fac-relation. We find sufficiently short lattice
vectors by strong primal-dual reduction of Rn,f . We factor N ≈ 2400 by n = 47 and N ≈ 2800

by n = 95. Our accelerated strong primal-dual reduction of [GN08] factors integers N ≈ 2400 and
N ≈ 2800 by 4.2 · 109 and 8.4 · 1010 arithmetic operations, much faster then the quadratic sieve and
the number field sieve and using much smaller primes pn. This destroys the RSA cryptosystem.

Keywords. Primal-dual reduction, SVP, fac-relation.

1 Introduction and surview

Section 3 presents factoring algorithms for N that construct independent fac-relations from nearly
shortest vectors of the lattice L(Rn,f) and quite distinct permutations f : [1, n] → [1, n]. We con-
struct a nearly shortest vector of L(Rn,f) by primal-dual reduction of the basis Rn,f ∈ R(n+1)(n+1)

using n = 47 for N ≈ 2400 and n = 95 for N ≈ 2800 and blocks of size 24. Alg. 6.7 accelerates
strong primal-dual reduction of [GN08]. This yields a nearly shortest vector of L(Rn,f). Lemma 5.1
shows that this reduction yields a fac-relation. The determinant of Rn,f is the same for all f .
Independent random permutations of [1, n] yield independent fac-relations. Our accelerated primal-
dual reduction further halves the number of arithmetic operations. Then integers N ≈ 2400 and
N ≈ 2800 are factored by 4.2 · 109 and 8.4 · 1010 arithmetic operations using a much smaller prime
basis than the quadratic sieve QS and the number field sieve NFS. The main result in section 3
uses from section 5 only the upper bound (5.2) for M%

t and (5.3). Sections 4 and 5 can be replaced
by slide reduction of Gama and Nguyen [GN08] which uses no heuristics.

The enumeration algorithm Enum of [SE94] for short lattice vectors cuts stages by linear pruning.
New Enum of [SE94] uses the success rate βt of stages based on the Gaussian volume heuristic. It
first performs stages with high success rate and stores stages of smaller but still reasonable success
rate for later performance. New Enum finds short vectors much faster than previous algorithms of
Kannan [Ka87] and Fincke, Pohst [FP85] that disregard the success rate of stages. This greatly
reduces the number of stages for finding a shortest lattice vector. Section 4 presents time bounds
of New Enum under linear pruning for SVP for arbitrary lattice bases B = [b1, ...,bn] ∈ Zn×n.

2 Lattices

Let B = [b1, ...,bn] ∈ Rm×n be a basis matrix consisting of n linearly independent column vectors
b1, ...,bn ∈ Rm. They generate the lattice L(B) = {Bx |x ∈ Zn} consisting of all integer linear
combinations of b1, ...,bn. The dimension of L is n, the determinant of L is detL = (detBtB)1/2

for any basis matrix B and its transpose Bt. The length of b ∈ Rm is ‖b‖ = (btb)1/2.
Let λ1 = λ1(L) be the length of the shortest nonzero vector of L. The Hermite constant γn is

the minimal γ such that λ2
1 ≤ γ(detL)2/n holds for all lattices of dimension n.

The basis matrix B has the unique decomposition B = QR ∈ Rm×n, R = [ri,j]1≤i,j≤n ∈ Rn×n

where Q ∈ Rm×n is isometric (with pairwise orthogonal column vectors of length 1) and R is

upper-triangular with positive diagonal entries ri,i. R = GNF(B) is the generic normal form of B.
Its Gram-Schmidt coefficients µj,i = ri,j/ri,i are rational for integer matrices B. The orthogonal
projection b∗i of bi ∈ span(b1, ...,bi−1)

⊥ has length ri,i = ‖b∗i ‖, r1,1 = ‖b1‖ .

LLL-bases. A basis B = QR is LLL-reduced or an LLL-basis for δ ∈ (1
4
, 1] if

1. |ri,j |/ri,i ≤ 1
2

for all j > i (size-reduced), 2. δr2
i,i ≤ r2

i,i+1 + r2
i+1,i+1 for i = 1, ..., n− 1.

Obviously, LLL-bases satisfy r2
i,i ≤ α r2

i+1,i+1 for α := 1/(δ − 1
4
). [LLL82] introduced LLL-bases

focusing on δ = 3/4 and α = 2. A famous result of [LLL82] shows that LLL-bases for δ < 1 can be
computed in polynomial time and that they nicely approximate the successive minima :

3. α−i+1 ≤ ‖bi‖2λ−2
i ≤ αn−1 for i = 1, ..., n, 4. ‖b1‖2 ≤ α

n−1
2 (detL)2/n.

A basis B = QR ∈ Rm×n is an HKZ-basis (Hermite, Korkine, Zolotareff) if |ri,j |/ri,i ≤ 1
2

for all j > i, and if each diagonal entry ri,i of R = [ri,j] ∈ Rn×n is minimal under all transforms
of B to BT, T ∈ GLn(Z) that preserve b1, ...,bi−1.

A basis B = QR ∈ Rm×n, R = [ri,j]1≤i,j≤n is a BKZ-basis for block size k, (or is a BKZ-reduced)
if the matrices [ri,j]h≤i,j<h+k ∈ Rk×k form HKZ-bases for h = 1, ..., n− k + 1, see [SE94].

The efficiency of some algorithms depends on the lattice invariant rd(L) := λ1γ
−1/2
n (detL)−1/n,

thus λ2
1 = rd(L)2γn(det(L))

2
n . We call rd(L) the relative density of L. Clearly 0 < rd(L) ≤ 1 holds

for all L, and rd(L) = 1 if and only if L has maximal density. Lattices of dim n of maximal density
and γn are known for n = 1, ..., 8 and n = 24. .

3 Fast factoring integers by short vectors of the lattices L(Rn,f)

Let N > 2 be an odd integer that is not a prime power and with all prime factors larger than
pn the n-th smallest prime. An integer is pn-smooth if it has no prime factor larger than pn. The
classical method factors N by n + 1 independent pairs of pn-smooth integers u, |u − vN |. We call
such u, |u− vN | a fac-relation. Our factoring method generates fac-relations wih pn-smooth v.

The classical method of factoring N . Given n + 1 fac-relations (uj , vj) we have for p0 := −1

uj =
Qn

i=1 p
ei,j

i , uj − vjN =
Qn

i=0 p
e′i,j

i with ei,j , e
′
i,j ∈ N. (3.1)

We have (uj − vjN)/uj ≡ 1 mod N since (uj − vjN) = uj mod N . HenceQn
i=0 pi

ei,j−e′i,j ≡ 1 mod N . Any solution t1, ..., tn+1 ∈ {0, 1} of the equationsPn+1
j=1 tj(ei,j − e′i,j) ≡ 0 mod 2 for i = 0, ..., n (3.2)

solves X2−1 = (X−1)(X +1) = 0 mod N by X =
Qn

i=0 p
1
2

Pn+1
j=1 tj(ei,j−e′i,j)

i mod N . If X 6= ±1
mod N this yields two non-trivial factors gcd(X ± 1, N) /∈ {1, N} of N .

The linear equations (3.2) can be solved within O(n3) bit operations. We neglect this minor part
of the work load of factoring N . Hence N can be factored by finding about n+1 fac-relations. This
factoring method goes back to Morrison & Brillhart [MB75] and let to the first factoring algorithm
in subexponetial time by J. Dixon [D81].

We generate fac-relations from short vectors of the lattices L(Rn,f) where f : [1, n] → [1, n] is a
permutation of [1, n] = [1, 2, ..., n]. We construct short vectors of Rn,f ∈ R(n+1)×(n+1) by strong
primal-dual reduction with algorithm 3.2. In order to get distinct fac-relations from distinct per-
mutations f : [1, n] → [1, n] it is important that these permutations are quite differant, for instance
nearly random. The first n lines of Rn,f have all nonzero entries on the diagonal.

Rn,f =

26664
N ′f(1) 0 0

0
. . . 0

...

0 N ′f(n) 0

N ′ ln p1 · · · N ′ ln pn N ′ ln N

37775 = [b1, ...,bn+1],

2

Here ln = loge for the Euler number e = 2.7182818284 · · · . Let N ′ = N1/(n+1) and R′
n,f =

[b1, ...,bn]. We identify each vector b =
Pn

i=1 eibi ∈ L(R′
n,f) with the pair (u, v) of relative prime

and pn-smooth integers
u =

Q
ei>0 pei

i , v =
Q

ei<0 p−ei
i ∈ N denoting b ∼ (u, v).

For b ∼ (u, v) we denote ẑb := N ′ ln u
v
, ẑb−bn+1 := N ′ ln u

vN
the last coordinates of b and b−bn+1.

As a factor p±ei
i of uv adds ±ei ln pi to ln uv and e2

i ln pi to ‖b‖2 we have ‖b‖2 ≥ ln uv + ẑ2
b with

equality if and only if uv is squarefree so that ei ∈ {−1, 0, 1} for all i. Similarly

‖b− bn+1‖2 ≥ ln uv+ ẑ2
b−bn+1

holds for (u, v) ∼ b ∈ L(R′
n,q) (3.3)

with equality iff uv is square-free.

Lemma 3.1 We have ẑb−bn+1 = N ′ ln(u
vN

) = −N ′ P∞
i=1(−x)i/i for x = u−vN′

vN′ , (u, v) ∼ b ∈
L(R′

n,f). Let x ∈ [− 1
2
, 1

2
] and ||b − bn+1|| = λ1(L(R′

n,f)) then |u − vN ′| < v|ẑb−bn+1 |/(1 − ε/2)
holds if either vN ′ < u < vN ′1 + ε) or u < vN ′ < u(1 + ε).

Proof. We apply the Taylor form ln(1 + x) = −
P∞

i=1(−x)i/i holding for x ∈ [− 1
2
, 1]. Clearly

ẑb−bn+1 lies between the sums −N ′ Pj
i=1(−x)i/i for j = 1, 2.

If vN ′ < u < (1 + ε)vN ′ then N u−vN′

vN
(1− u−vN′

2vN′) < ẑb−bn+1

and this implies u− vN ′ < vN ′1−cẑb−N′
c/(1− ε/2).

If u < vN ′ < (1 + ε)u then N ′ vN′−u
vN′ (1− vN′−u

2vN′) < |ẑb−bn+1 |
and this implies v − u < v|ẑb−bn+1/(1− ε/2). �

Lemma 3.1 shows |u − vN ′| = pz
n for z = ln |u − vN ′|/ ln pn. Hence random |u − vN | is pn-

smooth and yields a fac-relation with probability ρ(z). If z = bzc + z̃, with 0 < z̃ < 1 then

ρ(z) ≈ ρ(bzc)
` ρ(bzc+1)

ρ(bzc)

´z̃
. Note that large f(i) implies that pi is unlikely a factor of (u,v) of the

constructed fac-relation u, v, |u− vN ′|. For quite different permutations f, f ′ this implies that they
generate different fac-relations.

Algorithm 3.2 for lattice reduction of L(Rn,f)

1. LLL-reduce Rn,f for α = 1/(δ − 1
4
), compute R = GNF(Rn,f) ∈ R(n+1)×(n+1) in pol. time.

2. Primal-dual reduce R to RT1 following [GHKN06] by algorithm 6.3 and iteratively incriesing
the block size following [AWHTT16]. This yields a vector b1 ∈ L(R) satisfying

||b1||2 ≤ γk(αγ2
k)

h−1
2 (detR)

2
n+1 .

Number of arithmetic operations of algorithm 3.2 for N ≈ 2400 and factoring N ≈ 2400:

For n + 1 = 48 we have (det(Rn,f))
2
48 = 2

2
48 247!

2
48 (N ′ ln 2) ≈ 8.621441018 · 109. Primal-dual

reduce the basis R47,f ∈ R48×48 by alg. 3.2 where 48 = hk, k = 24, h = 48/k = 2. Theorem

6.4 shows that step 2 of algorithm 3.2 performs at most 482h
12

· log1/δB
(α) iterations. Each itera-

tion HKZ-reduces two blocks R`+1,R
∗
` ∈ Rk×k, performing per block kk/8+1.1 arithmetic opera-

tions according to (5.3), and activates this reduction if a subsequent size-reduction of the columns
[b`k−k+1, ...,b`k+k] of the GNF decreases det(R`) by the factor δ2

B . Step 2 of alg. 3.2 performs at

most 482h
12

log1/δB
(α) kk/8+1.1 . 1.75 · 108 arithmetic operations, where log1/δB

(α) = 1, δB = 3/4,
α = 4/3. The minor work for LLL-reduction can be neglected. Alg. 3.2 is performed 48 times to
find 48 fac-relations. This requires at most 48 · 1.75 · 108 = 8.4 · 109 arithmetic operations.

Number of arithmetic operations of algorithm 3.2 for N ≈ 2800 and factoring N ≈ 2800:

For n + 1 = 96 we have (det(Rn,f))
2
96 = 2

2
96 2495!

2
96 (N ′ ln 2) ≈ 6.993734051 · 1010. Primal-dual

reduce the basis R95,f ∈ R96×96 by algorithm 6.3 where 96 = hk, k = 24, h = 96/k = 4. By

theorem 6.2 this yields a vector b1 ∈ L(R95,f) with ||b1||2 ≤ γk(αγ2
k)

h−1
2 det(L(R95,f))

2
96

< 0.8408696, where det(L(R95,f))
2
96 = 2.133441 · 10−3. Hence ||b1|| < 0.917. Lemma (3.1) shows

for b− bn+1 ∼ (u, v), v . pn = p95 = 499, ε = 1
4

that
|u− vN | < pn|ẑb−bn+1 |/(1− ε/2) . 522.946 = p0.007544

n

3

ρ(0.007544) = ρ(2)0.007544 = 0.991126 and |u − vN | is pn-smooth and yields fac-relation with

prob. ≈ 1. Then alg. 6.3 performs 9624
12

log1/δB
(α)kk/8+1.1 < 1.38 · 109 arithmetic operations for

δB = 3/4, α = 4/3. Alg. 3.2 is performed 96 times to find 96 fac-relations. This requires at most
96 · 1.75 · 109 = 1.68 · 1011 arithmetic operations.

Using strong primal-dual reduction of Gama, Nguyen [GN08] based on the accelerated
alg. 6.7 performs about half as many arithmetic operations as alg. 6.3 for primal-dual reduction. It
factors integers N ≈ 2400 and N ≈ 2800 by 4.2 · 109 and 8.4 · 1010 arithmetic operations.

Hence the number of arithmetic operations for factoring N increases from N ≈ 2400 to N ≈ 2800

by the factor 20. Again it increases from N ≈ 2800 to N ≈ 21600 and to N ≈ 23200 by the factor 20.
Hence N ≈ 2400 can be factored by 4.2 ·109 arithmetic operations in about 1 minute and N ≈ 23200

can be factored by about 203 = 8000 minutes or in about 5.55 days.

Using Improved Progressive BKZ Algorithm of [AWHTT16] can still accelerate the time
for finding shortest lattice vectors, in particular for factoring N ≈ 2800 and finding a nearly shortest
vector in a lattice with basis R95,f ∈ R96×96. It may also be helpful to use the results of [MW16]
to speed up lattice reduction.

Factoring time bounds for quadratic sieve QS and number field sieve NFS : The QS

uses for the factoring of N ≈ 2400 that pn ≈ e1/2
√

ln N·ln ln N ≈ 3.76 · 108, see [CP01, section 6.1].
The prime base for NFS is bigger than for QS. The number of arithmetic steps of our factorisa-
tion is quite small compared with QS and NFS factorisation but the bit length of integers is large.
The numbers of arithmetic operations for QS, NFS factorisation of N ≈ 2400 in [CP01, section 6.2] :

e
√

ln N ln ln N ≈ 1.415 · 1017 for QS

e(64/9)1/3(ln N)1/3(ln ln N)2/3
≈ 1.675 · 1017 for NFS.

NFS factoring of N ≈ 2800 performs 2.8126× 1023 arithmetic operations.

4 Efficient enumeration of short lattice vectors

We outline the SVP-algorithm based on the success rate of stages. New Enum improves the
algorithm Enum of [SE94, SH95]. We recall Enum and present New Enum as a modification that
essentially performs all stages of Enum in decreasing order of success rates. This SVP-algorithm
New Enum finds a shortest lattice vector fast without enumerating all short lattice vectors.

Let B = [b1, ...,bn] = QR ∈ Rm×n, R = [ri,j]1≤i,j≤n ∈ Rn×n, be the given basis of L = L(B). Let
πt : span(b1, ...,bn) → span(b1, ...,bt−1)

⊥ = span(b∗t , ...,b
∗
n) for t = 1, ..., n denote the orthogonal

projections and let Lt = L(b1, ...,bt−1).

The success rate of stages. At stage u = (ut, ..., un) of ENUM for SVP of L a vector b =Pn
i=t uibi ∈ L is given such that ‖πt(b)‖2 ≤ λ2

1. (When λ2
1 is unknown we use instead some

A > λ2
1.) Stage u calls the substages (ut−1, ..., un) such that ‖πt−1(

Pn
i=t−1 uibi)‖2 ≤ λ2

1. We have

‖
Pn

i=1 uibi‖2 = ‖ζt +
Pt−1

i=1 uibi‖2 + ‖πt(b)‖2, where ζt := b − πt(b) ∈ spanLt is b’s orthogonal
projection in spanLt. Stage u and its substages enumerate the intersection Bt−1(ζt, %t) ∩ Lt of the
sphere Bt−1(ζt, %t) ⊂ spanLt with radius %t := (λ2

1 − ‖πt(b)‖2)1/2 and center ζt. The Gaussian
volume heuristics estimates for t = 1, ..., n the expected size |Bt−1(0, %t)∩(ζt +Lt)| to be the success

rate βt(u) =def volBt−1(0, %t) / detLt (4.1)

standing for the probability that there is an extension (u1, ..., un) of u = (ut, ..., un) such that

‖(
Pn

i=1 uibi)‖ ≤ λ1. Here volBt−1(0, %t) = Vt−1%
t−1
t , Vt−1 = π

t−1
2 /(t−1

2
)! ≈ (2eπ

t−1
)

t−1
2 /

p
π(t− 1)

is the volume of the unit sphere of dimension t−1 and detLt = r1,1 · · · rt−1,t−1. If ζt ∈ spanLt is uni-
formly distributed the expected size of this intersection satisfies Eζt [#

`
|Bt−1(0, %t)∩ (ζt +Lt)

´
] =

4

βt(u). This holds because 1/ detLt is the number of lattice points of Lt per volume in spanLt. We
do not simply cut ut due to a small βt because there might be a vector in Lt very close to ζt.

The success rate βt has been used in [SH95] to speed up Enum by cutting stages of very small
success rate. New Enum first performs all stages with sufficiently large βt giving priority to small t
and collects during this process the unperformed stages in the list L. For instance it first performs
all stages with βt ≥ 2−s log2(t). Thereafter New Enum increases s to s + 1. So far our experiments
simply perform all stages with βt ≥ 2−s. If λ2

1 is unknown we can compute %t, βt replacing λ2
1 by

the upper bound A = 1.744
2eπ

n det(BtB)
2
n ≥ λ2

1 which holds since γn ≤ 1.744
2eπ

n ≈ 0.10211 n holds for
n ≥ n0 by a computer proof of Kabatiansky, Levenstein [KaLe78]. Dabei ist e = 2.7182818284 · · ·
Euler’s number und π = 3.141592654 · · · .

Outline of New Enum

INPUT BKZ-basis B = QR, R = [ri,j] ∈ Rn×n of block size 32, A, s = lg n = log2 n
OUTPUT a sequence of b ∈ L(B) of decreasing length terminating with ‖b‖ = λ1.
1. L := ∅.
2. Let New Enum perform all stages ut = (ut, ..., un) with βt(u) ≥ 2−s lg t:

Upon entry of stage (ut, ..., un) compute βt(ut). If βt(ut) < 2−s lg t then
store (ut, ..., un) in the list L of delayed stages. Otherwise perform stage
(ut, ..., un), set t := t− 1, ut := −d

Pn
i=t+1 uirt,i/rt,tc and go to stage

(ut, ..., un). If for t = 1 some b ∈ L \ 0 of length ‖b‖2 ≤ A has been found,
give out b, we can then decrease A := ‖b‖2 − 1 if RtR ∈ Zn×n.

3. s := s+1, IF L 6= ∅ THEN perform all stages ut ∈ L with βt(ut) ≥ 2−s log2 t.

Running in linear space. If instead of storing the list L we restart New Enum in step 3 on level
s + 1 then New Enum runs in linear space and its running time increases at most by a factor n.

Practical optimization. New Enum computes R, βt, Vt, %t, ct in floating point and b, ‖b‖2 in exact
arithmetic. The final output b has length ‖b‖ = λ1, but this is only known when the more expensive
final search does not find a vector shorter than the final b.

Reason of efficiency. For short vectors b =
Pn

i=1 uibi ∈ L \ 0 the stages u = (ut, ..., un) have large
success rate βt(u). On average ‖πt(b)‖2 ≈ n−t+1

n
λ2

1 holds for a random b ∈R Bn(0, λ) of length λ1.
Therefore %2

t = A − ‖πt(b)‖2 and βt(u) are large. New Enum tends to output very short lattice
vectors first.

New Enum is particularly fast for small λ1. The size of its search space approximates λn
1 Vn, and

is by Prop. 4.1 heuristically polynomial if rd(L) = o(n−1/4). Having found b′ New Enum proves
‖b′‖ = λ1 in exponential time by a complete exhaustive enumeration.

5

New Enum for SVP
INPUT BKZ-basis B = QR, R = [ri,j] ∈ Rn×n, A ≥ λ2

1, smax

OUTPUT a sequence of b ∈ L(B) such that ‖b‖ decreases to λ1.

1. L := ∅, t := tmax := 1, FOR i = 1, ..., n DO ci := ui := yi := 0, ν1 := u1 := 1, s := 5
c1 := r2

1,1, (ct = ct(ut, ..., un) always holds for the current t)

2. WHILE t ≤ n #perform stage ut := (ut, ..., un, yt, ct, νt, ςt, βt, A):
[[ct := ct+1 + (ut + yt)

2r2
t,t,

IF ct ≥ A THEN GO TO 2.1,
%t := (A− ct)

1/2, βt := Vt−1%
t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [b :=
Pn

i=1 uibi,
IF ‖b‖2 < A THEN [A := ‖b‖2, output (b, s, A), GO TO 2.1]]

IF βt ≥ 2−s THEN [t := t− 1, yt :=
Ptmax

i=t+1 uirt,i/rt,t,
ut := −dytc, ςt := sign(ut + yt), νt := 1, GO TO 2]

ELSE IF βt ≥ 2−smax THEN store ut := (ut, ...un, yt, ct, νt, ςt, βt, A) in L.
2.1. t := t + 1, tmax := max(t, tmax),

IF t = tmax THEN ut := ut + 1, νt := 1, yt := 0
ELSE ut := −dytc+ bνt/2c(−1)νtςt, νt := νt + 1.]]

3. perform all stages ut = (ut, ..., un, yt, ct, νt, ςt, βt, A) ∈ L with βt ≥ 2−s,
IF steps 2, 3 did not decrease A for the current s THEN terminate.

4. s := s + 1, IF s > smax THEN restart with a larger smax.

Notation. We use the following function ct : Zn−t+1 → R :

ct(ut, ..., un) = ‖πt(
Pn

i=t uibi)‖2 =
Pn

i=t(
Pn

j=i ujri,j)
2.

Hence ct(ut, ..., un) = (
Pn

i=t uirt,i)
2 + ct+1(ut+1, ..., un).

Given ut+1, ..., un Enum takes for ut the integers that minimize |ut +yt| for yt :=
Pn

i=t+1 uirt,i/rt,t

in order of increasing distance to −yt adding to the initial ut := −dytc iteratively bνt/2c(−1)νtςt

where ςt := sign(ut + yt) ∈ {±1} and νt numbers the iterations starting with νt = 0, 1, 2, .. :

−dytc, −dytc − ςt, −dytc+ ςt, −dytc − 2ςt, −dytc+ 2ςt, · · · ,−dytc+ bνt/2c(−1)νtςt, · · · ,

where sign(0) := 1 and drc denotes a nearest integer to r ∈ R. The iteration does not decrease
|ut + yt| and ct(ut, ..., un), it does not increase %t and βt. Enum performs the stages (ut, ..., un) for
fixed ut+1, ..., un in order of increasing ct(ut, ..., un) and decreasing success rate βt. βt extends this
priority to stages of distinct t, t′ taking into accound the size of two spheres of distinct dimensions
n − t, n − t′ The center ζt = b − πt(b) =

Pn
i=t ui(bi − πt(bi)) ∈ span(Lt) changes continously

within New Enum which improves Enum

When step 3 performs stages ut∗ ∈ L the current A can be smaller than the A of ut∗ and this
can make the stored βt∗ of ut∗ smaller than 2−s so that ut∗ will not be performed but must be
stored in L with the adjusted smaller values A, βt∗ . The stored stages ut∗ with βt∗ ≥ 2−s should
be performed in a succession giving priority to large success rates and small t∗.

Time for solving SVP for L(B). New Enum performs for each s = 5, 6, ..., smax only stages ut

with success rate βt ≥ 2−s. Let #t,s,A denote the number of performed stages with t, s, A. If βt

is a reliable probability then New Enum performs on average at most 2s stages with success rate
βt ≥ 2−s before decreasing A - this number of performed stages is even smaller than 2s since New
Enum also performs stages with success rate βt ≥ 2−s+1. New Enum performs for each stage of
step 2 on average at most 2(n − t)(1 + o(1)) arithmetical steps for computing yt which add up toPn

t=1 2(n − t)(1 + o(1)) ≈ n(n + 1)(1 + o(1)) arithmetic steps and it performs O(n) arithmetical
steps for testing that ln βt ≥ −s ln 2 for t = 1, ..., n using βt ≈ Vt−tρ

t−1
t / detL assuming that

ln(2eπ), ln π, ln(1 + x) for x = 1, ..., n are given for free.

If the initial basis B ∈ Rn×n is a BKZ-basis with block size k then ||b1|| ≤ λ1γ
n−1
k−1
k . As New

Enum performs stages with high success rates first then each decrease of A will on average halve
A/λ2

1 so that there are at most log2(A/λ2
1) iterations of step 2 that decrease the initial A of step 1.

So after the initial reduction of B New Enum solves SVP for smax with error probability o(1) and
performs on average at most O(n22smax) arithmetic steps for each A. Hence SVP is solved by

2smax(n2 + O(n))2n−1
k−1

log2 γk arithmetic steps. (4.2)

6

5 New Enum for SVP with linear pruning

The heuristics of linear pruning gives weaker results but is easier to justify than handling the suc-
cess rate βt as a probability function. Proposition 5.1 bounds under linear pruning the time to find
b′ ∈ L(B) with ||b′|| = λ1. It shows that SVP is polynomial time if rd(L) is sufficiently small.
Note that finding an unproved shortest vector b′ is easier than proving ‖b′‖ = λ1. New Enum
finds an unproved shortest lattice vector b′ in polynomial time under the following conditions and
assumptions:

• the given lattice basis B = [b1, ...,bn] and the relative density rd(L) of L(B) satisfy

rd(L) ≤
`p

e π
2 n

λ1
‖b1‖

´ 1
2 , i.e., both b1 and rd(L) are sufficiently small.

GSA: The basis B = QR, R = [ri,j]1≤i,j≤n satisfies r2
i,i/r2

i−1,i−1 = q for 2 ≤ i ≤ n for some q > 0.

SA: There is a vector b′ ∈ L(B) such that ‖b′‖ = λ1 and ‖πt(b
′)‖2 . n−t+1

n
λ2

1 for t = 1, . . . , n.

(Later we will use a similar assumption CA for CVP).

• the vol. heur. is close: M%
t := #Bn−t+1(0, %t) ∩ πt(L) ≈ Vn−t+1%n−t+1

t
det πt(L)

for %2
t = n−t+1

n
λ2

1.

Remarks. 1. If GSA holds with q ≥ 1 the basis B satisfies ‖bi‖ ≤ 1
2

√
i + 3 λi for all i and

‖b1‖ = λ1. Therefore, q < 1 unless ‖b1‖ = λ1. GSA means that the reduction of the basis is
”locally uniform”, i.e., the r2

i,i form a geometric series. It is easier to work with the idealized prop-
erty that all ri,i/ri−1,i−1 are equal. In practice ri,i/ri−1,i−1 slightly increases on the average with
i. [BL05] studies ”nearly equality”. GSA has been used in [S03, NS06, GN08, S10, N10] and in the
security analysis of NTRU in [H07, HHHW09].

2. The assumption SA is supported by a fact proven in the full paper of [GNR10]:

Pr[‖πt(b
′)‖2 ≤ n−t+1

n
λ2

1 for t = 1, ..., n] = 1
n

for random b′ ∈R span(L) with ||b′|| = λ1.

Linear pruning means to cut off all stages (ut, ..., un) that satisfy ||πt(
Pn

i=t uibi)||2 > n−t+1
n

λ2
1.

Linear pruning is impractical because it does not provide any information on SVP in case of failure.
We use linear pruning only as a theoretical model for easy analysis. We have implemented SVP
via New Enum and we will show in section 5 that stages (ut, ..., un) that are cut by linear pruning
have extremely low success probability so they will not be performed by New Enum.

3. Errors of the volume heuristics. The minimal and maximal values of #n := #(Bn(ζn, %n) ∩ L),
and similar for #t := #(Bt(ζt, %t) ∩ πn−t+1(L)), are for fixed n, %n very close for large radius %n,
but can differ considerably for small %n since #n can change a lot with the actual center ζn of the
sphere. For small %n the minimum of #n can be very small and then the average value for random
center ζn is closer to the maximum of #n. For more details see the theorems and Table 1 of [MO90].
As New Enum works with average values for #n, #t its success rate βt frequently overestimates
the success rate for the actual ζt. A cut of the smallest (resp. closest) lattice vector by New Enum
in case that it underestimates #t can nearly be excluded if stages are only cut for very small βt.

Our time bounds must be multiplied by the work load per stage, a modest polynomial factor cov-
ering the steps performed at stage (ut, ..., un) of Enum before going to a subsequent stage.

Proposition 5.1 Let the basis B = QR, R ∈ Rn×n of L satisfy rd(L) ≤
`

λ1
‖b1‖

p
e π
2 n

´ 1
2 and GSA

and let L have a shortest lattice vector b′ that satisfies SA. Then Enum with linear pruning finds
such b′ under the volume heuristic in polynomial time.

Proof. For simplicity we assume that λ1 is known. Pruning all stages (ut, ..., un) that satisfy
||πt(

Pn
i=t uibi)||2 > n−t+1

n
λ2

1 =: %2
t does not cut off any shortest lattice vector b′ that satisfies SA.

The volume heuristics approxinates the number M%
t of performed stages (ut, ..., un) to

M%
t := #Bn−t+1(0, %t) ∩ πt(L) ≈ (

q
n−t+1

n
λ1)

n−t+1Vn−t+1/(rt,t · · · rn,n)

≈ (
q

n−t+1
n

λ1)
n−t+1

`
2eπ

n−t+1

´ n−t+1
2 /(rt,t · · · rn,n

p
π(n− t + 1))

7

<
`
λ1

q
2eπ
n

´n−t+1
/(rt,t · · · rn,n). (5.1)

Here ≈ uses Stirling’s approximation Vn = πn/2/(n/2)! ≈ (2eπ
n

)n/2/
√

πn. Obviously ‖b∗i ‖ =

r1,1q
i−1
2 holds by GSA and thus

(rt,t · · · rn,n)/rn−t+1
1,1 = q

Pn−1
i=t−1 i/2 = q

n(n−1)−(t−1)(t−2)
4 .

For t = 1 this yields q
n−1

4 = (detL)1/n/r1,1 = λ1/(r1,1
√

γnrd(L)). Combining (5.1) with this equa-
tion and γn < n

eπ
which holds for n > n0, we get

M%
t .

`
λ1

r1,1

q
2eπ
n

´n−t+1`p
n
eπ

rd(L)
r1,1
λ1

´n− (t−1)(t−2)
n−1 (5.2)

Evaluating this upper bound for rd(L) ≤
`

λ1
r1,1

p
e π
2 n

´ 1
2 yields

M%
t .

`p
n

2 e π

r1,1
λ1

´−n+t−1`p
n

2 e π

r1,1
λ1

´+ n
2−

1
2

(t−1)(t−2)
n−1 .

This approximate upper bound has for t ≤ n its maximum 1 at t = n. This proves Prop. 5.1. �

Note that (5.2) only assumes the volume heuristic and GSA, but no upper bound on rd(L).

SVP-time bound for rd(L)≤ 1 under linear pruning. (5.2) proves for rd(L) ≤ 1 that

M%
t .

`p
n
eπ

r1,1
λ1

´n− (t−1)(t−2)
n−1 −n+t−1

2
n−t+1

2 .

The exponent n− (t−1)(t−2)
n−1

−n + t− 1 is maximal for t = n/2 + 1 with maximal value 1
4

n2

n−1
. This

proves for r1,1/λ1 = no(1)√eπ the heuristic SVP time bound

O(n)
`p

n
eπ

r1,1
λ1

´ 1
4

n2
n−1 2n/4 = nn/8+1.1 . (5.3)

This beats under heuristics the proven SVP time bound n
n
2e

+o(n) of Hanrot, Stehle [HS07]
which holds for a quasi-HKZ-basis B satisfying ||b1|| ≤ 2||b∗2|| and having a HKZ-basis π2(B). In
fact 1

2e
≈ 0.159 > 0.125 = 1

8
. The SVP-algorithm of Prop.1 can use fast BKZ for preprocessing and

works even for ||b1|| � 2λ1 – see the attack on γ-unique SVP – whereas [HS07] requires quasy-HKZ-
reduction for preprocessing. This eduction already guarantees ‖b1‖ ≤ 2λ1 and performs the main
SVP work during preprocessing. Our SVP time bound nn/8+o(n) only assumes ‖b1‖ ≤ no(1)√eπλ1.

Theorem 5.4 Given a lattice basis B ∈ Zm×nsatisfying GSA and ‖b1‖ ≤
√

eπ nb λ1 for some b ≥
0, New Enum solves SVP and proves to have found a solution in time 2O(n)(n

1
2+brd(L))

n+1+o(1)
4 .

Theorem 5.4 is proven in [S10], it does not assume SA and the vol. heuristic. Recall from remark 4

that n
1
2+brd(L) ≥ 1 holds under GSA. For b = o(1) Thm. 5.4 shows the SVP-time bound n

n
8 +o(n)

which beats n
n
2e

+o(n) from Hanrot, Stehle [HS07]. Cor. 1 translates Thm. 1 from SVP to CVP,
it shows that the corresponding CVP-algorithm solves many important CVP-problems in simple
exponential time 2O(n) and linear space.

[HS07] proves the time bound nn/2+o(n) for solving CVP by Kannan’s CVP-algorithm [Ka87].
Minimizing ‖b‖ for b ∈ L \ {0} and minimizing ‖t− b‖ for b ∈ L require nearly the same work if
‖t− L‖ ≈ λ1. In fact the proof of Theorem 1 yields

Enum with linear pruning solves SVP of L of dimL = n by (5.4) in worst case heuristic time
nn/8+o(1). New Enum solves SVP much faster. Short vectors are found much faster if available
stages with large success rate are always performed first and if stages with very small success rate
are cut.

6 Primal-dual reduction

Definition 6.1

Let B = QR ∈ Rm×hk be a lattice basis with R =GNF(B) = [ri,j]1≤i,j≤hk with blocks
R` = [ri,j]`k−k<i,j≤`k, ` = 1, ..., h of size k. Then B is a primal-dual basis if

8

1. it is LLL-basis with HKZ-bases R`, ` = 1, ..., h.

2. max
T

r2
k`,k` ≤ α r2

k`+1,k`+1 for ` = 1, ..., h− 1, where r2
k`,k` of GNF(R`T)

is maximized over all T ∈ GLk(Z) for the α = 1/(δ − 1
4
) of LLL-reduction.

Theorem 6.2 [GHKN06]

Every primal-dual basis B = QR ∈ Rm×hk of lattice L satisfies ||b1||2 ≤ γk(αγ2
k)

h−1
2 (detR)

2
hk .

Proof. Def. 6.1 shows for R = [ri,j]1≤i,j≤hk and rk`,k` of GNF(R`T) that max
T

r2
k`,k` ≤ α r2

k`+1,k`+1.

The inverse matrix Uk =
h

1·
1

i
∈ Zk×k yields for the lower triangular matrix R−t

` ∈ Rk×k the

upper triangular matrix R∗
` = UkR

−t
` Uk, where R−t

` is the transpose of the matrix R`.

The Hermite inequality λ2
1(L(R∗

`)) ≤ γkD−1/k
` for L(R∗

`), D` = (detR`)
2 and HKZ-reduction of

R∗
` imply

D1/k
` ≤ γk maxT r2

k`,k` = γk/λ2
1(L(R∗

`)).

The HKZ-basis R`+1 satisfies

λ2
1(L(R`+1)) = r2

k`+1,k`+1 ≤ γkD1/k
`+1.

The combination of these two inequalities and Def. 6.1, part 2, yields

D1/k
` ≤ γk maxT r2

k`,k` ≤ αγkr2
k`+1,k`+1 ≤ αγ2

k D
1/k
`+1. (6.1)

For the HKZ-basis R1 follows by induction over ` that

||b1||2 ≤ γkD1/k
1 ≤ γk(αγ2

k)`D1/k
`+1 für ` = 0, ..., h− 1.

The h-th root of the product of these h inequalities proves the claim, as
Ph−1

`=0 ` = h−1
2

,Qh
`=1D` = (detR)2. �

Algorithm 6.3 : for Primal-dual reduction

INPUT LLL-basis B = [b1, ...,bn+1] = QR ∈ Zm×hk, n + 1 = hk, for α = 1/(δ − 1
4
),

with blocks R1, ...,Rh ⊂ R of size k, [bk`−k+1, ...,bk`] = B` = Q`R`, ` = 1

1. HKZ-reduce the block R`+1 to R`+1Tk with Tk ∈ GLk(Z), B`+1 := B`+1Tk

2. HKZ-reduce R∗
` to R∗

`T? with T? ∈ GLk(Z), B` := B`UkT
−t
? Uk, size-reduce B`,B`+1,

compute R`,`+1 = GNF([B`,B`+1]), LLL-reduce R`,`+1 with δ, α to R`,`+1T2k

3. IF step 2 exchanged the columns k und k + 1 of R`,`+1

THEN [B`,B`+1] := [B`,B`+1]T2k, size-reduce [B`,B`+1], ` := max(`− 1, 1)

ELSE ` := ` + 1

4. IF ` < h THEN GO TO 1

OUTPUT primal-dual basis B

Comments on Alg. 6.3. Step 2 maximizes the last diagonal entry rk,k of GNF(R`T) ∈ Rk×k

for T ∈ GLk(Z). The reversal matrix Uk =
h

1·
1

i
∈ Zk×k yields for R−t

` ∈ Rk×k, the transpose of

R`, an upper triangular matrix R∗
` = UkR

−t
` Uk, R−t

` , R−t
` is the transpose of R`. HKZ-reduction

of R∗
` to R∗

`T∗ with T∗ ∈ GLk(Z) minimizes the first diagonal entry r1,1 of GNF(R∗
`T∗) and max-

imizes 1/r1,1 the last diagonal entry of GNF(R`UkT
−t
∗ Uk). The transformation T∗ of R∗

` yields
the transformation UkT

−t
∗ Uk for R` and B`.

The LLL-reduction of R`,`+1 in step 2 either starts by exchanging the columns k and k+1 of R`,`+1

or R`,`+1 is already LLL-reduced, because rk,k of R` is maximal and rk+1,k+1 of R`+1 ist minimal.

The primal-dual output B of Alg. 6.3 is of the form BT1 for the input B of Alg.6.3 and T1 ∈ GLn(Z).

Theorem 6.4 : Alg. 6.3 performs at most n2h
12

log1/δ α iterations before arriving at DB ≤ 1.

9

Proof. We replace the Lovász invariante D by the following invariante DB where D` = (detR`)
2:

DB :=
Qh−1

`=1 (D`/D`+1)
h2/4−(h/2−`)2 .

The exponent h2/4− (h/2−`)2 is maximal for ` = h/2, is zero for ` = 0 and ` = h and is symmetric

to ` = h/2. For the LLL-input basis we have D` ≤ αk2
D`+1 and therefore her DB-value D inp

B

satisfies D inp
B ≤ αk2s for s =def

Ph−1
`=1 h2/4− (h/2− `)2.

The well known sum s̄ :=
Ph−1

`=1 `2 = h(h− 1)(h− 1/2)/3 yieldsPh−1
`=1 (h/2− `)2 = −h2(h− 1)/4 + s̄ = h(h− 1)(h− 2)/12

and therefore s = (h + 1)h(h− 1)/6 = (h3 − h)/6.

Hence we have D inp
B ≤ αk2(h3−h)/6. An active step 3 changes from DB only the factorY

t=`−1,`,`+1

(Dt/Dt+1)
t(h−t) = D(`−1)(h−`+1)

`−1 (D`D`+1)
h−2`−1D2

` D
−(`+1)(h−`−1)
`+2 .

Every iteration with D new
` ≤ δ2D old

` decreases as shown DB to D new
B ≤ δ2D old

B . For the number
#It of iterations until arriving at DB ≤ 1 we get from s =

Ph
`=1(h

2/4− (h/2− `)2) = (h3 − h)/6
that

#It ≤ 1
2
log1/δ DEin

B ≤ 1
2

log1/δ αk2s ≤ k2h3

12
log1/δ α = n2h

12
log1/δ α. �

Part 2 of def. 6.1. has been hightend by Gama, Nguyen [GN08] to

2+ max
R′

`
T

rk`+1,k`+1 ≤ (1 + ε) rk`+1,k`+1 for ` = 1, ..., h− 1, 0 < ε ≈ 0. [GN08 slide-reduction]

Let R′
` := [ri,j]k`−k+2≤i,j≤k`+1 ∈ Rk×k denote the segment one unit to the right of R`. max

R′
`
T

r2
k`+1,k`+1

marks the maximum over r̄2
k`+1,k`+1 of [r̄i,j] = GNF(R′

`T) over all T ∈ GLk(Z). B′
` = [bk`−k+2, ...,bk`+1]

is the block one unit to the right of B`.

Definition 6.5 A size-reduced basis B = QR ∈ Rm×hk is strong primal-dual
if R1, ...,Rh are HKZ-bases satisfying 2+.

Theorem 6.6 [GN08]
A strong primal-dual basis B = QR ∈ Rm×hk with 0 ≈ ε > 0 in 2+ of the lattice L satisfies

||b1|| < ((1 + ε) γk)
1
2

hk−k
k−1 (detL)1/hk.

Proof. Hermite showed for an HKZ-basis R` that r2k
k`−k+1,k`−k+1 ≤ γk

k D`. The dual of this in-

equality shows for D′` := (det R′
`)

2 that max
R′

`
T

r2k
k`+1,k`+1 ≥ D′`/γk

k for T ∈ GLk(Z).

For ` = `max this shows that 2+ implies for every primal-dual basis that

D′` ≤ (1 + ε)2kγk
k r2k

k`+1,k`+1. (6.2)

Combination of (6.2) with r2k
k`−k+1,k`−k+1 ≤ γk

k D` and D′`/r2
k`+1,k`+1 = D`/r2

k`−k+1,k`−k+1 limplies

rk`−k+1,k`−k+1 ≤ ((1 + ε) γk)
k

k−1 rk`+1,k`+1 for ` = `max und ` = h− 1. (6.3)

For ` = `max we get from (6.2) and r2k
k`−k+1,k`−k+1 ≤ γk

k D` that

D′` ≤ (1 + ε)2kγk
kr2k

k`+1,k`+1 ≤ (1 + ε)2kγ2k
k D`+1. (6.3) implies

D` = r2
k`−k+1,k`−k+1D′`/r2

k`+1,k`+1 ≤ ((1 + ε) γk)
2k

k−1D′`. (6.4)

The combination of the two previous unequalities yields for ` = `max

(D` ≤ ((1 + ε) γk)
2k

k−1+2kD`+1 ≤ ((1 + ε) γk)
2k2
k−1D`+1. (6.5)

Therefore we get for `max and also for all ` = 1, ..., h− 1 that D` ≤ ((1 + ε) γk)
2k2
k−1D`+1.

10

For the HKZ-basis R1 this implies for ` = 1, ..., h that

||b1||2 ≤ γkD1/k
1 ≤ γk((1 + ε) γk)

2k(`−1)
k−1 D1/k

` .

The product of these h unequalities and
Ph

`=1(`− 1) = h(h−1)
2

yields

||b1||2h ≤ γh
k ((1 + ε) γk)

kh(h−1)
k−1 (detL)2/k.

This proves the claim ‖|b1||2 ≤ γk((1 + ε) γk)
1
2

hk−k
k−1 (detL)2/hk < ((1 + ε) γk)

hk−1
k−1 (detL)2/hk. �

Algorithm 6.7 : Accelerated, strong primal-dual reduction

Input LLL-basis B = QR ∈ Zm×n, n = hk, 0 ≈ ε > 0.

1. Choose `, 1 ≤ ` < n where D`/D`+1 is maximal.

2. HKZ-reducee R`+1 to R`+1T with T ∈ GLk(Z), B`+1 := B`+1T, size-reduce B`+1,

renew R`+1. HKZ-reduce (R′
`)
∗ to (R′

`)
∗T? with T? ∈ GLk(Z),

[r new
k`+i,k`+j]2≤i,j≤1+k := GNF(R′

`T
−1
? Uk) for the reversal matrix Uk =

h
1·

1

i
∈ Zk×k.

3. IF r new
k`+1,k`+1 > (1 + ε) r old

k`+1,k`+1 THEN B′
` := B′

`T
−1
? Uk, size-reduce B′

`,

renew R`,`+1, GO TO 1

Output strong primal-dual basis B.

Theorem 6.8 Alg. 6.7 performs at most n2h
24

log1+ε α iterationen until arriving at DB ≤ 1.

Proof. An active step 3 implayes Dnew
` ≤ Dold

` /(1 + ε)2 and thus Dnew
B ≤ D′old

B /(1 + ε)4. The

input-LLL-basis B satisfies Dinp
B ≤ αk2 h3−h

6 . Hence #It ≤ k2h3

24
log1+ε α until DB ≤ 1.

[GN08] replaces (1 + ε) in 2+ by
√

1 + ε for all ` ≤ h − 1; [GN08] nearly proves Theorem 6.6
for slide reduced bases. Since we require 2+ only for `max then Alg. 6.7 for strong primal-dual
reduction performes at most 2 HKZ-reductions of dim. k per iteration and therefore is clearly faster
than strong primal-dual reduction of [GN08]. Alg. 6.7 for accelerated, strong primal-dual reduction
performs about half as many arithmetic operations as alg. 6.3 for primal-dual reduction.

References

[AWHTT16] Y.Aono, Y. Wang, T. Hayashi and T. Takagi, Improved Progressive BKZ Algorithm
and their Precise Cost Estimatian by Sharp Simulator. Eurocrypt 2016.

[BL05] J. Buchmann and C. Ludwig, Practical lattice basis sampling reduction. eprint.iacr.org,
TR 072, 2005.

[Ch13] M.Charlet, Faktorisierung ganzer Zahlen mit dem NEW ENUM-Gitteralgorithmus. Diplo-
marbeit, University Frankfurt 2013.

[CP01] R. Crandall and C. Pomerance, Prime Numbers, A Computational Perspective. Springer-
Verlag, New York, 2001.

[D30] K. Dickman, On the frequency of numbers containing prime factors of a certain relative
magnitude. Ark. Math. Astr. Fys. 22, pp. 1–14, 1930.

[D81] J.D. Dixon, Asymptotically Fast Factorization of Integers. Mathematics of Computation
36(153), pp. 255–260, 1981.

[FP85] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a
lattice, including a complexity analysis. Math. of Comput., 44, pp. 463–471, 1985.

[GHKN06] N. Gama, N. How-Grave-Graham, H. Koy and P. Nguyen, Rankin’s Constant and
Blockwise Lattice Reduction, In Proc. CRYPTO 2006, LNCS 4117, Springer-Verlag,
Berlin/Heidelberg, pp. 112–139, 2006.

[GN08] N. Gama and P.Q. Nguyen, Finding Short Lattice Vectors within Mordell’s Inequality.
Proc. of the 2008 ACM Symposiumon on Theory of Computing, pp. 208-216, 2008.

[GNR10] N. Gama, P.Q. Nguyen and O. Regev, Lattice enumeration using extreme pruning, Proc.
EUROCRYPT 2010, LNCS 6110, Springer-Verlag, pp. 257–278, 2010.

11

[G08] A. Granville, Smooth numbers: computational number theory and beyond. in Algorithmic
Number Theory, MSRI Publications, 44, pp. 267–323, 2008.

[HS07] G. Hanrot and D. Stehlé, Improved Analysis of Kannans Shortest Lattice Vector Algorithm,
In Proc. CRYPTO 2007, LNCS 4622, Springer Verlag, pp. 170-186, 2007.

[H84] A. Hildebrand, Integers free of large prime factors and the Riemann hypothesis. Mathematika
31, pp. 258–271, 1984.

[HHHW09] P. Hirschhorn, J. Hoffstein, N. Howgrave-Graham and W. Whyte, Choosing NTRU-
Encrypt parameters in light of combined lattice reduction and MITM approaches. In Proc.
ACNS 2009, LNCS 5536, Springer-Verlag, pp. 437–455, 2009.

[H07] N. Howgrave-Graham, A hybrid lattice–reduction and meet-in-the-middle attiack against
NTRU. In Proc. CRYPTO 2007, LNCS 4622, Springer-Verlag, pp. 150–169, 2007.

[KaLe78] G.A. Kabatiansky und V.I. Levenshtein , Bounds for Packings on a Sphere and in Space,
Problems of Information Transmission, Band 14, Seiten 1–17, 1978.

[Ka87] R. Kannan, Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12, pp. 415–440, 1987.

[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovász, Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261, pp. 515–534, 1982.

[Mar03] J. Martinet, Perfect Lattices in Euclidean Spaces. Springer-Verlag 2003.
[MG02] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Per-

spective. Kluwer Academic Publishers, Boston, London, 2002.
[MW16] D. Micciancio and Walter, Practical, Predictable Lattice Basis Reduktion, Eurocrypt 2016.
[MO90] J. Mazo and A. Odlydzko, Lattice points in high-dimensional spheres. Monatsh. Math. 110,

pp. 47–61, 1990.
[MR05] D. Micciancio and O. Regev, Worst-case to Average-case Reductions based on Gaussian

Measures, Siam J. on Computing 37(1), pp. 267-302. 2007.
[MV09] D. Micciancio and P. Voulgaris Faster exponential time algorithms for the shortest vector

problem. ECCC Report No. 65, 2009
bibitem[MW09]MW16 D. Micciancio and Walter Practical, Predictitable Lattice Basis Re-
duktion. Eurocrypt 2016.

[MB75] M.A. Morrison and J. Brillhart: A Method of Factoring and the Factorization of F7, Math-
ematics of Computation 29(129), pp. 183 –205, 1975.

[N10] P.Q. Nguyen, Hermite’s Constant and Lattice Algorithms. in The LLL Algorithm, Eds. P.Q.
Nguyen, B. Vallée, Springer-Verlag, Jan. 2010.

[Reg04] O. Regev, New lattice-based cryptographic constructions, J. ACM 51 (6), pp. 899-942, 2004.
[S16] A. Schickedanz, Faktorisierung ganzer Zahlen durch Gitteralgorithmen. Masterarbeit, Uni-

versity Frankfurt, 2016.
[SE94] C.P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and

solving subset sum problems. Mathematical Programming 66, pp. 181–199, 1994.
[S03] C.P. Schnorr, Lattice reduction by sampling and birthday methods. Proc. STACS 2003:

20th Annual Symposium on Theoretical Aspects of Computer Science, LNCS 2007, Springer-
Verlag, pp. 146–156, 2003.

[S10] C.P. Schnorr, Progress on LLL and lattice reduction, Proceedings LLL+25, Caen, France,
June 29–July 1, 2007, The LLL Algorithm, Eds. P.Q. Phong, B. Vallée, Springer Verlag,
Jan. 2010.

12

