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Abstract. In 2016, Guruswami and Wootters showed Shamir’s secret-
sharing scheme defined over an extension field has a regenerating property.
Namely, we can compress each share to an element of the base field by
applying a linear form, such that the secret is determined by a linear
combination of the compressed shares. Immediately it seemed like an
application to improve the complexity of unconditionally secure multiparty
computation must be imminent; however, thus far, no result has been
published.

We present the first application of regenerating codes to MPC, and show
that its utility lies in reducing the number of rounds. Concretely, we
present a protocol that obliviously evaluates a depth-d arithmetic circuit
in d+O(1) rounds, in the amortized setting of parallel evaluations, with
o(n2) ring elements communicated per multiplication. Our protocol is
secure against the maximal adversary corrupting t < n/2 parties. All
existing approaches in this setting have complexity Ω(n2).

Moreover, we extend some of the theory on regenerating codes to Galois
rings. It was already known that the repair property of MDS codes over
fields can be fully characterized in terms of its dual code. We show this
characterization extends to linear codes over Galois rings, and use it to
show the result of Guruswami and Wootters also holds true for Shamir’s
scheme over Galois rings.

1 Introduction

In 2016, Guruswami and Wootters showed that in a certain parameter regime,
Reed-Solomon codes have a regenerating property [9]. In the context of secret
sharing, we can illustrate this property with the following example.

Consider Shamir’s secret-sharing scheme with n shares and t-privacy defined
over the binary extension field F2m , subject to the regime t < n− 2m−1. Suppose
we are in an interactive scenario, where n parties P1, . . . , Pn are connected by
pairwise communication channels, with each party having a distinct share. We
know Shamir’s scheme has (t+ 1)-reconstruction: the secret can be computed
from any subset of t + 1 shares. Therefore, if the parties wish to reconstruct



the secret value towards one of the parties, say P1, they can do so by having t
other parties send their share, an element in F2m , to P1, resulting in m · t bits of
communication.

However, it turns out that it suffices for all parties to send a single bit to
P1, reducing communication by a factor mt/(n− 1). To accomplish this, each
party Pi applies an F2-linear compression function φi : F2m → F2 to their share,
each of which is chosen such that the n compressed shares jointly determine the
secret.

While at first sight this technique seems to immediately improve communica-
tion for information-theoretic multiparty computation (MPC), so far a concrete
application has remained elusive.5 There are a number of factors that play into
this.

First, one general observation is that since the reduction in communication
is proportional to m, the largest improvement is obtained when m is large. An
implication is that since 0 < t < n− 2m−1, this also means the number of players
must be large. Therefore, we restrict ourselves to asymptotic improvements only.
In the following, we assume the adversary threshold t is at least linear in n.

Second, even though regenerating codes apply to large fields, the function
that we wish to compute via MPC is typically expressed as a circuit over a finite
field of small fixed size, such as F2. Efficient computation over F2m to evaluate
circuits over F2 gives us an advantage in the amortized model, where we execute
the same circuit many times in parallel with different inputs. In this model, we
can obtain a lower amortized communication complexity (per circuit evaluation)
by using reverse multiplication-friendly embeddings (RMFEs) [3].

Third, using compressed shares only improves communication for the recon-
struction of a secret, and not for secret-sharing a value. This means that we
cannot hope to easily improve the standard 2-round protocol for secure multipli-
cation. In more detail, one way to securely multiply secret-shared values x and
y is for the parties to consume an additional random secret-shared element r,
and reconstruct their share of δ := xy − r towards one party, who subsequently
broadcasts δ. If we assume this broadcast is cheap, the online cost of this secure
multiplication is essentially the same as the reconstruction of one secret-sharing.
However, as mentioned, regenerating codes will not help us optimize the gener-
ation of the random secret-shared r, so the overall protocol still requires Ω(n)
bits of communication6.

All this leaves only one setting in which we can meaningfully ask if regener-
ating codes can help: we can consider the tradeoff between the communication
complexity and the number of rounds. The multiplication protocol we just con-

5 When Mary Wootters presented this result to the community in an invited talk of
the Beyond TCS workshop affiliated to CRYPTO 2018, she posed the question to
the community of what its implications to MPC are. It generated a bit of a buzz,
with several members of the community working on it even during the conference,
however no result has been published thus far.

6 We could try to get around this using computationally secure pseudorandom secret
sharing, but this requires an exponential number of keys in n.
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sidered has complexity O(n) bits, which is asymptotically optimal [7], however,
it uses two rounds.7 It can be modified to use only a single round, where each
player simply sends his share of δ to all players. But then the complexity increases
to Θ(n2). In fact, no currently known single-round protocol beats this bound,
and we conjecture that it is optimal for the non-amortized setting. Note that
in the amortized setting we can use packed secret sharing to get an improved
single-round multiplication. However, this only works for a submaximal adversary
t < (1/2− ε)n.

Decreasing the round complexity of secure multiparty computation protocols
is a well-motivated goal. Since information-theoretic MPC protocols typically
evaluate a circuit gate by gate, they require a number of sequential interactions
of at least the round complexity per multiplication times the circuit depth. When
the network latency is high, such as in wide area networks, the number of rounds
can become the dominant factor in the running time of the protocol. Further-
more, there are even scenarios where single-round multiplication is essential. For
example, the work of [4] introduces the concept of “fluid MPC protocols”, where
the set of compute parties changes from one round to the next, enabling secure
computation in a dynamic setting such as blockchains. In that work, the authors
present a protocol that heavily relies on secure multiplication in a single round,
and they leave it as an open problem to obtain a fluid MPC protocol that requires
less than Θ(n2) bits of communication per multiplication.

Motivated by the above, the question we ask is: can regenerating codes help
us to build a one-round secure multiplication protocol in the amortized setting
(and for a maximal adversary) where the complexity is o(n2)?

1.1 This work

We show the repair property is equivalent to a condition on the dual code
containing a particular subcode. This was already noted in [8] for MDS codes
over fields, but we give an alternative proof that extends to arbitrary linear codes
over Galois rings. All finite fields are Galois rings, but Galois rings also include
non-field rings Z/pkZ that have gained popularity for MPC recently. From this
characterization, we obtain a generalization of the result of [9], as we show that
Shamir’s scheme over Galois rings [1] also has the repair property.

We show the utility of regenerating codes in information-theoretic MPC
lies in reducing the number of rounds, and we obtain the first application of
regenerating codes in this domain. Answering the above question, we reduce the
communication complexity of single-round secure multiplication from O(n2) to
O(n2/ log(n)) ring elements.

We leverage this single-round multiplication and present an actively secure
MPC protocol that requires d + O(1) rounds for a depth-d circuit. This does
not trivially follow by just plugging our multiplication protocol into previous

7 The communication of the king-based protocol is O(n) field elements for the maximal
adversary n = 2t + 1. By incorporating a constant-rate RMFE we can achieve a
communication of O(n) bits, which is asymptotically optimal [7].
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work in the amortized setting, since the RMFE-based protocol from [3] adds
an extra round for each multiplication. This is due to the fact that the actual
multiplication protocol needs to do more than just a multiplication in the large
field; rather, the real goal of the protocol is to coordinate-wise multiply vectors
of values in the small field, and this requires encoding them as elements in the
large field, with a re-encoding step after every large field multiplication.

We show that we can use the same RMFE but encode values differently, which
allows us fit the entire multiplication into a single round. Since the compressed
shares do not offer any redundancy for detecting errors, we guarantee consistency
by verifying a single linear combination at the end of the protocol, and obtain
unconditional security with abort. To show our protocol remains private with an
active adversary sending erroneous values during the execution of the protocol,
we employ a novel use of function-dependent preprocessing. Our protocol assumes
an honest majority t < n/2, and works for the maximal adversary n = 2t+ 1.

Theorem 1. There exists a family of protocols, indexed by the number of par-
ties n → ∞, that privately computes a depth-d arithmetic circuit over Z/pkZ
many times in parallel on different vectors of inputs in d + O(1) rounds, and
communicates o(n2 log2(p)) bits per multiplication gate. The protocols are secure
against an active adversary that can corrupt t < n/2 parties and can also abort
the computation.

2 Preliminaries

All rings that we refer to are commutative and have a multiplicative identity 1.
For a ring R and R-modules A,B, we denote by HomR(A,B) the R-module of
R-linear maps from A to B.

A Galois ring R is a finite ring such that the set of zerodivisors, with 0
added, forms a principal ideal generated by p · 1 where p ∈ Z is prime. It is a
local ring, whose maximal ideal is precisely the ideal (p) of zerodivisors. R is
isomorphic to the ring (Z/pkZ)[X]/(h(X)), where k is a positive integer and p
is prime, and h(X) ∈ (Z/pkZ)[X] is a monic polynomial such that its reduction
modulo p is irreducible in Fp[X]. Conversely, all rings of this form are Galois
rings, and a choice of p, k and m = deg h(X) uniquely defines the Galois ring up
to isomorphism, so that we may write R = GR(pk,m). The kernel of the unique
ring homomorphism Z→ R is the ideal (pk) ⊂ Z, hence the characteristic of R
is char(R) = pk. All finite fields, as well as the rings Z/pkZ, are Galois rings.

Let t, n be non-negative integers with t < n. We denote by R[X]≤t the free
R-module of polynomials over R of degree at most t. A sequence of elements
α1, . . . , αn ∈ R is called exceptional if αi − αj is a unit for each pair of distinct
indices i 6= j. There exists an exceptional sequence in R of length pm (e.g., lift each
element of the residue field to R), and this is the maximum length. Given such
an exceptional sequence, and a vector of units (y1, . . . , yn) ∈ (R∗)n, a generalized
Reed-Solomon code over R of length n and rank t+ 1 is an R-submodule C ⊆ Rn
given by

C =
{

(y1f(α1), . . . , ynf(αn))
∣∣ f ∈ R[X]≤t

}
.
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Suppose we have a subring S ⊆ R. Then S is a Galois ring with char(R) =
char(S), and we call R/S an extension of Galois rings. If R = GR(pk,m) and
S = GR(pk, n), then n | m. We call m/n the degree of the extension, and denote
it [R : S]. Proofs of the above assertions and more details on Galois rings can be
found in [10]. More details on Galois rings in the context of secret sharing and
MPC can be found in [1].

Let ` be a positive integer and write m := [R : S]. We denote by S` the S-
module of ` copies of S. It is also an S-algebra with respect to the coordinatewise
product ∗. An (`,m)-reverse multiplication-friendly embedding (RMFE) for R/S
is a pair of S-linear maps φ : S` → R, ψ : R→ S`, such that

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ S`.
We are particularly interested in RMFEs for R/(Z/pkZ), since they allow

us to evaluate parallel circuits over Z/pkZ using MPC over R [3]. Such RMFEs
exist, even with the property of being asymptotically good (i.e., with the rate
`/m tending to a positive constant). This was shown in the following theorem
from [6, Theorem 29].

Theorem 2. There exists a family of (`,m)-RMFEs, indexed by m → ∞, for
the Galois ring extensions GR(pk,m)/(Z/pkZ) with ` = Ω(m).

Finally, for the security proofs of our protocol we make use of the UC model
for multiparty computation. Details can be found in [5]. Also, we assume that
whenever an honest party aborts, all the honest parties abort. This can be
assumed without loss of generality given that we assume a broadcast channel, so
the abort signals can be transmitted through this medium.

3 Regenerating codes over Galois rings

Let R/S be an extension of Galois rings of characteristic pk. Let n be a positive
integer, and let C ⊆ Rn+1 be an R-submodule with coordinates indexed by
0, 1, . . . , n. For each index i we denote the projection map onto the i-th coordinate
by πi : C → R. We say C is a regenerating code if it has the following repair
property.8

Definition 1. An R-submodule C ⊆ Rn+1 has linear repair over S of the 0-
coordinate if for each index i > 0 there exists an S-linear map φi : R→ S and
a scalar zi ∈ R, such that for each element (x0, x1, . . . , xn) ∈ C it holds that
x0 =

∑n
i=1 φi(xi) · zi.

8 We only regard 1-dimensional repair of the 0-th coordinate, since we specifically
target applications to MPC. In the literature on regenerating codes, the definition
typically includes all coordinates and allows for larger messages to be sent.
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We now show that the repair property can be fully characterized in terms
of the dual code C⊥. This was already shown in [8] for MDS codes over fields,
but we show it in our setting of 1-dimensional repair of the 0-coordinate, and
demonstrate it extends to arbitrary linear codes over Galois rings.

Theorem 3. Let C ⊆ Rn+1 be an R-submodule. Then C has linear repair over
S of the 0-coordinate if and only if there exists an S-submodule D0 ⊆ C⊥ of the
dual code, with the following properties.

1. π0(D0) = R
2. For each index i > 0 there is some integer j with 0 ≤ j ≤ k, such that

πi(D0) ∼= pjS as S-modules.

From this characterization, we will below easily derive a generalization of
a result of [9], namely that Reed-Solomon codes over Galois rings have linear
repair. To prove the theorem we use two general lemmas.

Lemma 1. Let f : R → S be a surjective S-linear map. For each α ∈ R, let
fα : R→ S denote the S-linear map given by x 7→ f(αx). Then, the map

R −→ HomS(R,S)

α 7−→ fα

is an S-module isomorphism.

Proof. We observe the map is S-linear. Since R ∼= S[R:S] as S-modules, we have
that R and HomS(R,S) are two finite sets of the same cardinality. Therefore, it
suffices to show injectivity.

Let α ∈ R be nonzero. By surjectivity of f , there exists w ∈ R such
that f(w) = 1. It must hold that w is a unit, otherwise pk−1 = pk−1f(w) =
f(pk−1w) = f(0) = 0. Write α = ptu, where t is an integer with 0 ≤ t < k and
u ∈ R∗ is a unit. For x := u−1w we have that fα(x) = f(αx) = f(ptw) = pt 6= 0,
which shows that fα is not the zero map. ut

Lemma 2. Let f : R → S be a surjective S-linear map. Let x, y ∈ R. Then
x = y if and only if, for all γ ∈ R, we have f(γx) = f(γy).

Proof. For an arbitrary γ ∈ R, we have f(γx) = f(γy) if and only if f((x−y)γ) =
0. The latter holds for all γ ∈ R if and only if fx−y is the zero map, which by
Lemma 1 holds if and only if x− y = 0. ut

Proof (of Theorem 3). Let f : R→ S be any surjective S-linear map (for example,
choose an S-basis of R and project onto the first coordinate). Assume C has linear
repair, i.e. there exist maps φ1, . . . , φn : R→ S and elements z1, . . . , zn ∈ R such
that for all x = (x0, x1, . . . , xn) ∈ C we have x0 =

∑n
i=1 φi(xi)zi. By Lemma 2

this equality holds if and only if for all g ∈ R we have

f(gx0) = f

(
g

n∑
i=1

φi(xi)zi

)
=

n∑
i=1

f(gφi(xi)zi) =

n∑
i=1

f(gzi)φi(xi).
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Using Lemma 1, we write each φi(xi) as f(αixi), for some α1, . . . , αn ∈ R, and
obtain

f(gx0) =

n∑
i=1

f(gzi)f(αixi) =

n∑
i=1

f(f(gzi)αixi) = f

(
n∑
i=1

f(gzi)αixi

)
.

By R-linearity of C we may replace x by γx for arbitrary γ ∈ R, therefore we
may apply Lemma 2 and see equality holds without application of f . Equivalently,
the vector (−g, f(gz1)α1, . . . , f(gzn)αn) is in the dual C⊥.

Let D0 denote the collection of these vectors where g varies over R, and note
that π0(D0) = −R = R. Now let i > 0 be any index, and consider the projection

πi(D0) =
{
f(gzi)αi

∣∣ g ∈ R} =
{
f(gzi)

∣∣ g ∈ R}αi.
We have that {f(gzi)

∣∣ g ∈ R} is an S-submodule of S, hence it is an ideal of S,

and therefore equal to pjS for some nonnegative integer j. We can write αi = pj
′
u,

where u ∈ R∗ is a unit and j′ is some nonnegative integer. Multiplication by u gives
an S-module isomorphism pj

′
S ∼= pj

′
Su = Sαi. We conclude πi(D0) ∼= pj+j

′
S,

and remark that if j + j′ ≥ k this is equal to pkS = 0, thus proving the forward
direction of the theorem.

For the converse, assume we have D0 ⊆ C⊥ as in the theorem. From the second
condition of D0, we know there exist α1, . . . , αn ∈ R such that πi(D0) = Sαi for
each index i > 0. Now, we choose an S-basis of R, say b1, . . . , bm ∈ R. By the first

condition on D0, we have that for each bj there exist λ
(bj)
1 , . . . , λ

(bj)
n ∈ S such that(

−bj , λ
(bj)
1 α1, . . . , λ

(bj)
n αn

)
∈ D0. For each g ∈ R we may write g =

∑m
j=1 gjbj ,

hence by S-linearity of D0 there exists a vector in D0 whose zeroth component is

−g and for each index i > 0 its i-th component is
(∑m

j=1 gjλ
(bj)
i

)
αi. Applying

Lemma 1 there exist fixed zi for each index i > 0 such that for all g ∈ R we have

f(gzi) =
∑m
j=1 gjλ

(bj)
i . We now have that for each g ∈ R, there exists a vector

(−g, f(gz1)α1, . . . , f(gzn)αn) ∈ C⊥.

We can follow the steps of the proof above in reverse direction, and writing
φ(xi) := f(αixi) for each index i > 0, we conclude for each (x0, . . . , xn) ∈ C we
have that x0 =

∑n
i=1 φi(xi)zi. ut

We now use our characterization of the repair property to show the result of
[9] generalized to Galois rings. Namely, a generalized Reed-Solomon code defined
over R has linear repair over S of the coordinate corresponding to the evaluation
point 0. To show this we make use of the generalized trace function corresponding
to the extension of Galois rings R/S.

Let Tr : R → S denoted the generalized trace function of the Galois ring
extension R/S. It is defined via the generalized Frobenius automorphism φ of R
over S, that sends

a0 + a1p+ · · ·+ ak−1p
k−1 φ7−→ aq0 + aq1p+ · · ·+ aqk−1p

k−1,
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where q = pm is the cardinality of the residue field of S. The generalized trace
function is then defined as follows,

Tr(x) := x+ φ(x) + φ2(x) + · · ·+ φm−1(x),

where φi denotes i-fold repeated application of φ. Observe that for k = 1 (so
R = Fqm) the above definition coincides with the field trace function. The
generalized trace function is an S-linear surjective map [10].

Theorem 4. Let α0, α1, . . . , αn ∈ R be an exceptional sequence with α0 = 0. Let
y = (y0, . . . , yn) ∈ (R∗)n+1 be a vector of units, and let t ≥ 0 be an integer with
qm−1 ≤ n− t. Then the generalized Reed-Solomon code

C =
{

(y0f(0), y1f(α1), . . . , ynf(αn))
∣∣ f ∈ R[X]≤t

}
over R of length n + 1 and rank t + 1, has linear repair over S of the 0-th
coordinate.

Proof. Since y is a vector of units, we have that the dual of C is a generalized
Reed-Solomon code with evaluation point sequence α0, . . . , αn and rank n− t.
Now without loss of generality, assume y = (1, . . . , 1).

For g ∈ R define

hg(X) =
Tr(gX)

X
∈ R[X].

This definition makes sense since X divides Tr(gX) as polynomials. In fact, we
may explicitly write hg(X) = g + φ(g)Xq−1 + · · ·+ φm−1(g)Xqm−1.

Now observe the following properties:

1. hg(0) = g;

2. {hg(u)
∣∣ g ∈ R} = S · u−1, for each unit u ∈ R∗; and

3. deg hg(X) < qm−1.

The second property follows from surjectivity of the trace function and the
fact that {gu

∣∣ g ∈ R} = R. Now let D0 be the S-linear code defined by
evaluations of hg(X), g ranging over R, evaluated in α0, . . . , αn. Since α0, . . . , αn
is an exceptional sequence that includes α0 = 0, it consists of units, and therefore
D0 satisfies the conditions of Theorem 3 by the first two properties. Moreover,
D0 is an S-submodule of the generalized Reed-Solomon code with evaluation
point sequence α0, . . . , αn, which is contained in C⊥ as long as qm−1 ≤ n− t. ut

4 Protocols

Let P1, . . . , Pn be parties connected by secure pairwise communication channels,
as well as a broadcast channel. We develop a protocol that allows the parties to
obliviously evaluate an arbitrary arithmetic circuit over Z/pkZ on many vectors
of inputs in parallel in d + O(1) rounds, where d is the depth of the circuit.
Security is defined against a computationally unbounded adversary that can
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statically corrupt a minority t < n/2 of parties and obtain full control, as well as
force the computation to abort.

Let m be a positive integer such that pm−1 ≤ n−t; asymptotically we can find
m = Ω(log(n)). In this section we write S := Z/pkZ and letR = GR(pk,m) be the
degree-m extension ring of S. Let [·] denote the secret-sharing scheme associated
to the rank-(t+1) length-(n+1) Reed-Solomon code over R from Theorem 4 with
y1 = · · · = yn = 1 and some fixed coordinates α1, . . . , αn ∈ R. More precisely,
for a secret x ∈ R we denote by [x] a vector of shares (x1, . . . , xn) ∈ Rn such
that there is a polynomial f(X) ∈ R[X]≤t with xi = f(αi) for all i and f(0) = x.
Whenever we discuss secret-sharings [x], we implicitly mean that each party Pi
has the share xi.

We can glean explicit compression functions from the proof of Theorem 3.
Concretely, we set φi(xi) = Tr(xi/αi) and zi = −αi for each i. Then, for all
share vectors [x] = (x1, . . . , xn) ∈ C, we can reconstruct the secret from the
compressed shares as

x =

n∑
i=1

φi(xi)zi = −
n∑
i=1

Tr(xi/αi)αi.

4.1 Single-round opening and R-multiplication

The repair property of C allows us to efficiently open secret-shared values.

Protocol 1. Open [x] using compressed shares.
Input: [x] = (x1, . . . , xn).

1. Each party Pj sends its compressed share φj(xj) to all other parties.
2. Each party calculates x =

∑n
j=1 φj(xj)zj , or aborts if any of the shares

are missing or malformed.

Protocol 1 communicates O(n2 log |S|) bits in one round, which represents an
improvement over the current best known (naive) O(n2 log |R|) bits.

Note that the compressed shares do not offer error detection. As such, any
maliciously corrupted party Pj may send a value different from φj(xj), which
causes a different value x′ 6= x to be opened. Moreover, Pj may send a different
value to each party and cause different honest parties to compute different values
for x′.

To check whether parties have behaved correctly in Protocol 1, we present
Protocol 2. In this separate protocol, we are able to batch check many openings
at once at constant cost, so this does not affect our per-gate communication.

For the protocol, we assume access to a functionality Fcoin that samples a
uniformly random value in R and sends this value to all parties.
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Protocol 2. Check whether sharings {[x`]}N`=1 where opened correctly.
Input: sharings {[x`]}N`=1 and the values {x′`}N`=1 they were opened to.
Note each party may input a different value x′`.

Broadcast check
Let m

(i)
` ∈ S denote the correct compressed share that Pi was supposed

to send during the opening of x`, and let m̂i→j
` ∈ S denote the value that

was actually sent to Pj .

1. The parties perform N calls to Fcoin to get s1, . . . , sN ∈ R.

2. Each party Pi broadcasts γi =
∑N
`=1 s` ·m

(i)
` .

3. If some Pj detects that γi 6=
∑N
`=1 s` · m̂

i→j
` , then it aborts.

Consistency check
1. The parties perform N calls to Fcoin to get r1, . . . , rN .
2. The parties compute [v] :=

∑N
`=1 r`([x`] − x′`). After the broadcast

check has passed, the values x′` are the same for each party.
3. Each party broadcasts their (uncompressed) share of [v].
4. Each party checks whether the received shares of [v] form a correct
sharing of 0. If it does not, they abort.

Remark 1. The number of calls to Fcoin in Protocol 2 can be reduced by the
following techniques:

– One can re-use the s1, . . . , sN from the broadcast check in the consistency
check, that is, the parties can set r` = s` for ` = 1, . . . , N .

– Instead of using s1, . . . , s` as independent random values, the parties can set
s` := s`−1 for one single random value s. This is at the expense of increasing
the cheating probability of the adversary by a polynomial factor of N .

We now show that Protocol 2 is statistically secure, and the probability
that an adversary successfully cheats is at most 1/pm. To get negligible error
probability, in practice we can interpret our secret-sharings over, and move Fcoin

to, a Galois ring extension K/R of degree d such that dm is larger than the
security parameter κ. If N is large, we can even pack d elements of R into K so
this can be done at no extra cost [1].

Proposition 1. After an execution Protocol 2 where no party aborts, we have
x′` = x` for all ` = 1, . . . , N , except with probability at most 1/pm.

Proof. We first show that if no party aborts the broadcast check, then for
each corrupt party Pi and each pair of honest parties Pj , Pj′ , we have that

m̂i→j
` = m̂i→j′

` for all ` = 1, . . . , N . We argue by contradiction: assume we have

i, j, j′, `∗ such that m̂i→j
`∗ 6= m̂i→j′

`∗ . Since Pi is corrupt, it may have introduced a
non-zero error εi and broadcast γi + εi instead of γi. Since neither Pj nor Pj′
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aborted, we have that

N∑
`=1

s` · m̂i→j
` = γi + εi =

N∑
`=1

s` · m̂i→j′
` .

This implies that
∑N
`=1 s` · (m̂

i→j′
` − m̂i→j

` ) = 0, and since s`∗ ∈ R is uniformly
random and independent of the values sent during the opening, this is satisfied
with probability at most p−m [1].

Assume the broadcast check passed, and so each honest party Pj received the
same value x′` for each `. If the consistency check also passed without an abort, we

know that in the reconstruction of [v] :=
∑N
`=1 r`([x`]− x′`), the opened value is

exactly equal to v due to the error-correction properties of Shamir secret-sharing.
This implies that

∑N
`=1 r`(x` − x′`) = 0, which by similar reasoning to the above

implies x` = x′` for all ` = 1, . . . , N except with probability at most p−m. ut

With Protocol 1 we can instantiate the secure multiplication of elements in
R in one single round. For example, we can use Beaver multiplication triples,
which are sharings ([a], [b], [c]), with a, b independent and uniformly random and
c = ab. To securely multiply two sharings [x], [y] using a multiplication triple,
the parties open (in one round) u = [x] − [a] and v = [y] − [b] and calculate
[xy] = uv + u[a] + v[b] + [c]. The protocol we will describe below in Section 4.2 is
a bit more involved than what we sketched above, given that it is our goal to
postpone the use of the broadcast channel until all multiplications have been
performed, and this turns out to lead to selective failure attacks in which an
adversary can learn sensitive information if one uses Beaver triples directly.

Finally, since we insist on a maximal adversary, we cannot use random
double sharings instead of multiplication triples. Random double sharings are
uniformly random sharings [r], together with a “product sharing” of r, i.e. a share
vector in the square code C2. They have the advantage of allowing for a simpler
multiplication protocol, that also extends to the inner product of two secret-
shared vectors at no extra cost. The square code C2 is also Reed-Solomon and
therefore could have linear repair. However, the rank of the square code is 2t+ 1,
and for the maximal adversary n = 2t+ 1 we cannot have pm−1 ≤ n− 2t = 1.9

4.2 Parallel multiplications

Let φ : S` → R,ψ : R → S` be an (`,m)-RMFE for the Galois ring extension
R/S, with ` = O(m). We can embed two `-length vectors x,y ∈ S` using φ
and use multiplication of elements in R to obtain the coordinatewise product
x ∗ y = ψ(φ(x)φ(y)). By secret-sharing [φ(x)], [φ(y)] we can therefore use secure
multiplication in R as explained above, and then open the result and apply ψ to
securely evaluate x ∗ y.

9 Also note that product sharings do not give error detection, so if we did not insist on
a maximal adversary and wanted to use random double sharings, we would have to
employ different techniques to get active security.
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Unfortunately, this only works for a single multiplication, since in general
x ∗y ∗ z 6= ψ(φ(x)φ(y)φ(z)). The problem is that φ(x) ·φ(y) ∈ R is not generally
contained in the image of φ. We get around this problem by “re-encoding” values,
as follows.10

We encode each input x ∈ S` of the circuit by an element in ψ−1(x) ∈ R.
Surjectivity of ψ follows from the definitions of an RMFE hence such an element
always exists, though it need not be unique. We proceed to multiply values in R,
and apply the S-linear map τ := φ ◦ ψ to the output of each multiplication. This
allows us to maintain the following invariant: the value on each wire is a vector
x ∈ S`, encoded as x ∈ R such that ψ(x) = x. This is because if x,y ∈ S` with
ψ(x) = x and ψ(y) = y, then

ψ (τ(x)τ(y)) = ψ (φ(x)φ(y)) = x ∗ y.

Following this invariant, we can define an S-linear secret-sharing scheme of
vectors x ∈ S`, with the share vector given by [x] ∈ C such that ψ(x) = x. Note
that since φ, ψ are not in general R-linear (but instead S-linear), parties cannot
apply τ to secret-shared values without any interaction.

Our multiplication protocol uses an input-independent offline phase, where
secret-shared random elements are generated that are used in the online phase
once the inputs are known. The offline phase generates quintuples

([a], [b], [τ(a)], [τ(b)], [τ(a)τ(b)]),

where a, b ∈ R are independent and uniformly random. Because all quintuples
can be generated in parallel, the round complexity is not important, and so we
can use known techniques. The only requirement is that the generated quintuples
are correct; for example, we can use from [1] the protocol RandElStat to get
pairs ([a], [τ(a)]), and combine it with their multiplication protocol to generate
the quintuples.

Given a quintuple, the online single-round protocol to compute [τ(x)τ(y)] is
very similar to using a regular multiplication triple. The parties open u = [x]− [a]
and v = [y]− [a] using Protocol 1 and then compute

[τ(x)τ(y)] = τ(u)[τ(a)] + τ(v)[τ(b)] + [τ(a)τ(b)] + τ(u)τ(v).

This operation is definitely secure against a passive adversary, however against
an active adversary the security is not so clear. Since we postpone the broadcast
and consistency checks until the end, an active adversary can introduce additive
errors when opening [u], [v], and it can do so at every multiplication throughout
the circuit. The question whether this compromises the privacy or not is closely
related to the amount of redundancy the compressed shares contain. We leave
this question for now, and return to it in Section 5.

10 The idea of re-encoding is based on [3], but we have developed an improved encoding
that allows us to decrease the number of rounds for a multiplication, and that
also allows for a simpler input phase. We explain the differences between the two
approaches in Section 5.
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Our protocol circumvents this issue entirely, by observing that the issue
does not arise when using function-dependent preprocessing [2]. Whereas Beaver
multiplication triples are generic in the sense that the triples are not specific to any
particular multiplication gate, with function-dependent preprocessing we generate
random sharings tailored to each multiplication gate. Besides sidestepping the
issue of security, this also has the advantage that it reduces communication by
half, and it allows computing the inner product of two secret-shared vectors at
the same communication cost as one secure multiplication.

Recall each wire in our circuit has an associated secret vector x ∈ S`. We
will maintain the invariant that each such vector x is secret-shared as the tuple
JxK := ([λx], µx), where λx ∈ R is a uniformly random element that is secret-
shared using the scheme [·], and µx = x− λx is a publicly known element such
that ψ(x) = x. Given λx and µx, a party can compute x = ψ(µx + λx) and
recover the secret value. This construction defines an S-linear secret-sharing
scheme.

To securely compute Jx ∗ yK from JxK and JyK, the parties can proceed as in
Protocol 3. We assume a functionality Fprep that generates the necessary prepro-
cessing material, consisting of quintuples ([λx], [λy], [τ(λx)], [τ(λy)], [τ(λx)τ(λy)]).
Generating these sharings can be done in a similar way as the quintuples men-
tioned above. Note that this data is specific to the topology of the circuit.

Protocol 3. Multiply JxK = ([λx], µx) and JyK = ([λy], µy).
Preprocessed: ([λz], [τ(λx)], [τ(λy)], [τ(λx)τ(λy)]) produced by Fprep.

1. Use Protocol 1 to open µw towards all parties, where
µw = τ(µx)τ(µy) + τ(µx)[τ(λy)] + τ(µy)[τ(λx)] + [τ(λx)τ(λy)]− [λw].
2. The parties return the shares JwK := ([λw], µw).

The reason why this multiplication protocol is private against an active
adversary, is the following. The adversary can still tamper with the reconstruction
of µw by adding some error (perhaps different to every party). However, here
this error is independent of any sensitive input and is in fact completely known
by the adversary, so intuitively speaking, it does not allow the adversary to learn
anything new. Formally speaking, the simulator will be able to extract these
errors and emulate the honest parties correctly in the ideal world.

4.3 Secure parallel computation

Let f be a function represented by an arithmetic circuit over S. For simplicity
and without loss of generality, we assume f is of the form Sn → S, where each
input in S is held by one party. We show how to securely evaluate f in parallel `
times in Protocol 4 below. Here, let xi ∈ S` be the vector of inputs of party Pi
for the ` executions of f . Also, let wj ∈ Sn denote the input vector to the j-th
execution of f (that is, the i-th entry of wj is the j-th entry of xi).
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Protocol 4. Obliviously evaluate f on ` vectors of inputs
w1, . . . ,w` ∈ Sn.
Output: f(w1), . . . , f(w`).

Input phase. Let xi ∈ S` be the input from Pi. For each i = 1, . . . , n,
the parties do the following.
1. The parties send their shares of [λxi

] to Pi.
2. Pi broadcasts µxi := xi − λxi , where ψ(xi) = xi.
3. Parties set JxiK = ([λxi ], µxi).
Computation phase. The parties process the circuit gate-by-gate, using
Protocol 3 and maintaining the invariant of J·K.
Output phase.
1. The parties run Protocol 2 to verify correctness of all opened values.
2. Each party broadcasts their shares corresponding the output wires.

The security of our protocol is proved in the following theorem, which in turn
proves Theorem 1.

Theorem 5. Protocol 4 securely computes ` copies of the function f in the
(Fcoin,Fprep)-hybrid model with statistical security with abort against an active
adversary.

Proof. We construct a simulator S that interacts with an environment Z and
with an MPC functionality in such a way that the environment cannot distinguish
between the simulated execution and the real protocol.

The simulator emulates the behavior of the honest parties towards the ad-
versary, as well as emulating the functionalities Fcoin and Fprep. S begins by
generating all the necessary preprocessing material. For the input phase, the
simulator receives µxi

:= xi − λxi
for each corrupt party Pi, and since S knows

λxi
, it can recover the inputs xi, which are then sent to the MPC functionality.

For the inputs from the honest parties S simply uses dummy values.
For the addition gates the simulator simply emulates the local operations

on the honest parties. On the other hand, for multiplication gates, S receives
the reduced shares φi(µw,i) from each corrupt party Pi, corresponding to the
secrets µw = x− λx from the protocol. Here the simulator samples uniformly at
random some value µw ∈ R, and sets the honest parties’ shares so that they are
consistent with this value and with the shares held by the corrupt parties. Then
S opens these (compressed) shares towards the adversary.

Observe that the adversary may cause each corrupt party Pi to send φi(µw,i)+
εij to each honest party Pj , instead of the correct reduced share. As a result, Pj
will think that µw is actually equal to

∑n
`=1(φ`(µw,`)+ε`j)·z`. Since the simulator

knows the actual shares that the corrupt parties must have sent, it knows the
value described above and it can continue emulating the honest parties.11

11 This is precisely what goes wrong if one uses traditional multiplication triples: The
error on each honest party’s share will depend on the honest parties’ inputs, which
the adversary cannot simulate.
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For the output phase the simulator begins by sending an abort signal if
there exists a corrupt party Pi and a pair of different honest parties Pj and Pj′

such that εij 6= εij′ , for some multiplication gate. If this is not the case let us
denote εi := εij . If e :=

∑n
`=1 ε` · z` 6= 0, then S sends an abort signal. Else, S

receives the output from the MPC functionality, sets the shares of the honest
parties so that they are consistent with this output and with the corrupt parties’
shares, and then emulates the reconstruction protocol by broadcasting the shares
corresponding to the honest parties.

Now we argue that the simulation is statistically indistinguishable to the
environment from the real execution. The input phase is clearly indistinguishable,
as well as the additions as they follow the exact same distribution in both
executions. For multiplications, observe that in the real world the adversary
only sees µw = w − λw, but since λw is uniformly random and unknown to the
adversary, then µw follows the uniform distribution, which coincides with what
the adversary sees in the ideal execution.

The only potential difference lies in the check performed by the parties at the
end. In the ideal execution the parties abort if any of the broadcasted values does
not match, which is also the case in the real execution except with negligible
probability thanks to Proposition 1 combined with the remark about moving to
a large Galois ring. ut

5 Discussion

Our results demonstrate that regenerating codes can improve the round complex-
ity of MPC protocols, or alternatively, when insisting on a minimum number of
rounds they can improve the communication complexity.

Differences with [3]. Our protocol uses techniques from [3] and the generalizations
to Galois rings [1, 6], but there are a few key differences. Evidently, we have
plugged in Protocol 1 to get an efficient single-round opening. But the essential
modification is that we encode vectors in S` not using φ, but using ψ−1. The
difference is subtle, but it allows us to combine a multiplication together with
ReEncode procedure from [3], that applies the map τ = φ ◦ ψ to the output of
a multiplication, into a single round. The original work also benefits from this
approach since it improves the number of rounds, even without using regenerating
codes. Additionally, this encoding simplifies correctness of the input phase, since
the security of the protocol does not require each wire value to be contained in
the image of φ.

Active security of the quintuple-based protocol. The quintuple-based protocol
sketched in Section 4.2 is passively secure, but it is not clear whether it is private
against a malicious adversary that introduces errors. Recall that to multiply
[x] and [y], the parties open u = [x] − [a] and v = [y] − [b] using Protocol 1
and then compute [τ(x)τ(y)] = τ(u)[τ(a)] + τ(v)[τ(b)] + [τ(a)τ(b)] + τ(u)τ(v).
Assume without loss of generality that P1 is honest. Since the adversary may
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send different compressed shares to different parties, it may cause P1 to think
that u and v are actually equal to u+ ε and v + δ, which causes P1’s share to be
equal to the correct share plus

e1 = τ(ε)τ(b)1 + τ(δ)τ(a)1 + τ(u)τ(δ) + τ(v)τ(ε) + τ(ε)τ(δ).

Assume the other honest parties learn u and v correctly. Notice that the adversary
does not know the value of e1 as it depends on the unknown values a and b.

Now imagine that as part of the function being computed, w = τ(x)τ(y) is
fed into another multiplication gate. As part of the protocol, the parties open
u′ = [w]− [a′]. Assume for a moment that instead of sending compressed shares,
the parties send their full shares. Hence, the adversary receives the share of
w − a′ from P1, which is altered by an amount of e1. However, note that the
adversary knows the corrupt parties’ shares of w − a′, so if all the shares sent by
the honest parties happen to be consistent with these shares, then the adversary
can conclude that e1 = 0, else, e1 6= 0 (and in this case the parties abort).

Notice that the adversary knows all values in the expression defining e1 except
for τ(a)1 and τ(b)1. Consider for simplicity that δ = 0, so e1 = τ(ε)τ(b)1+τ(v)τ(ε).
If ε is such that τ(ε) ∈ R∗, knowing whether e1 is non-zero or not leaks one bit
of information about τ(b)1, namely whether it equals −τ(v) or not. However, to
the adversary, τ(a) is a function of τ(a)1, so this leaks information about τ(a),
which in turn leaks information about τ(y) given that the adversary knows τ(v)
and v = y − b.

The attack above assumes that the parties send their full shares, but in the
protocol description they send their reduced shares. One may think that these
reduced shares, since they carry less redundancy than the original shares, may
hinder the attack. However, it seems hard to quantify this, since for example
a repair scheme with no compression (so φi is the identity for all i) would be
susceptible to the attack above, and it is not clear at what point the compression
level is “enough” so that the adversary cannot learn any sensitive information.
We leave this for future work.

Lower bound. We have shown that when amortizing over many parallel mul-
tiplications, we can multiply two elements of R in a single round with o(n2)
elements of R communication, in our model of honest majority and unconditional
security. To the best of our knowledge, there is no currently known way to achieve
o(n2) complexity without amortization, and we conjecture that this is in fact
impossible.

To support this conjecture, we note that a single-round opening of a sharing
over any fixed Galois ring requires Ω(n2) bits of communication. This is because
each party must hear from at least t other parties; if not, an adversary could
corrupt t parties and learn the secret without opening the value. All multiplication
protocols in the preprocessing model rely on opening a value, and the alternative
of re-sharing also requires each party to send Ω(n) shares to the other parties.
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