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Abstract. The knapsack cryptography is the public-key cryptography
whose security depends mainly on the hardness of the subset sum prob-
lem. Many of knapsack schemes were able to break by low-density at-
tacks, which are attack methods to use the situation that a shortest
vector or a closest vector in a lattice corresponds to a solution of the
subset sum problem. For the case when the Hamming weight of a so-
lution for a random instance of the subset sum problem is arbitrary, if
the density is less than 0.9408, then the instance can be solvable almost
surely by a single call of lattice oracle. This fact was theoretically shown
by Coster et al.
In Crypto 2000, Okamoto, Tanaka and Uchiyama introduced the concept
of quantum public key cryptosystems and proposed a knapsack cryp-
tosystem, so-called OTU cryptosystem. However, no known algorithm
breaks the OTU cryptosystem.
In this paper, we introduced Szemerédi-type assumptions, which are the
imitations of the statement of Szemerédi’s theorem on arithmetic pro-
gressions. From this mathematical point of view, we make clear what
the average case and the worst case are. For low density attacks, we
give better heuristics for orthogonal lattices than Gaussian heuristics.
Consequently, we show that the OTU scheme can be broken under some
heuristic assumptions.

Keywords: knapsack cryptography · subset sum problems · low density
attacks · additive combinatorics · extremal combinatorics · combinatorial
number theory · natural density.

1 Introduction

The knapsack cryptography is the public-key cryptography such as encryption
schemes and signature schemes whose security depends mainly on the hard-
ness of the knapsack problems. In the context of knapsack cryptography, the
following subset sum problem is mainly used as a knapsack problem. Here let
N := {1, 2, . . .}.
⋆ Supported by JSPS KAKENHI Grant Number 19J00126.



Definition 1.1 (Subset Sum Problem) For (a1, . . . , as) ⊆ Ns and C ∈ Z,
find (x1, . . . , xs) ∈ {0, 1}s satisfying

x1a1 + . . .+ xsas = C.

In the definition of the subset sum problem, if a solution (x1, . . . , xs) ∈ {0, 1}s
exists, then we say that C is representable as a subset sum of a (multi)set
{a1, . . . , as}, that the left hand side is a subset sum of a (multi)set {a1, . . . , as}
and that (x1, . . . , xs) is a represetation of C. Notice that the terminology “rep-
resentation” is sometimes used in knapsack cryptography (for example, [40])
and frequently in mathematics such as combinatorics, number theory and their
related areas.

The decisional version of the subset sum problem is NP-complete. In general,
NP-hard problems are believed to be not easy using a quantum computer. So,
it is very important in post-quantum cryptography.

The knapsack cryptography has been investigated since the proposals of
Merkle-Hellman cryptosystems in 1978 [26]. However, many of knapsack cryp-
tosystems are broken because of low density attacks from Lagarias and Odlyzko
[22].

Here we mention the notions of densities, shortly. Natively, the density mea-
sures denseness of a subset of an ambient set. Let [N ] := {1, . . . , N}. For
(a1, . . . , as) ∈ [N ]s, let A = {a1, . . . , as} denote an s-element (multi)set. Then
we can define the natural density

δ(A) :=
s

N
.

Usually, the natural density is defined for a set and not for a multiset. For con-
venience, we define the natural density also for a multiset. The natural density is
often used in mathematics, especially combinatorics, number theory and related
research areas. In the context of knapsack cryptography, the following density is
often used.

d(A) :=
s

log2 N
.

Notice that we can take N = maxA when A is not random.
We take the following three examples of encryption schemes in knapsack

cryptography.

1. The Merkle-Hellman encryption schemes, which are the first knapsack schemes
proposed in 1978. The basic Merkle-Hellman scheme was broken by Shamir
[39] in 1984.

2. The Chor-Rivest encryption scheme, which was proposed in 1988 and was
not broken approximately for a decade. This scheme was partially broken by
Schnorr-Hörner [37] and completely by Vaudenay [42, 43].

3. The OTU encryption scheme, which is an example of constructions of a
paradigm of quantum public-key cryptosystems. The paradigm and the OTU
encryption scheme are introduced by Okamoto, Tanaka and Uchiyama [33].
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Table 1. Basic information of the three knapsack encryption schemes

Encryption Scheme and Year Hamming Weight Break? Density d(A)

Merkle-Hellman 1978 arbitrary Yes about 0.5

Chor-Rivest 1988 fixed Yes about s
h log2 s

OTU 2000 fixed Yes (the present paper) at most s
h(log2 s−ε)

In the above table, ε > 0 is a real number depending on the parameter setting
of the OTU scheme. For more details of the OTU scheme, we discuss Section 5.

It is known that if d(A) is less than some critical bounds, then almost all
subset sum instances can be solved by a single call of the lattice oracle. Lagarias
and Odlyzko [22] showed that the critical bound is 0.645. Coster et. al. [9] showed
that the critical bound is 0.9408.

The insecurity of knapsack schemes is not only the low density case but also
the high density case. For example, the subset sum problem can be solved in
time complexity O(s2N) by a dynamic programming ([20]). Hence, knapsack
schemes are insecure when N is a polynomial in s.

Moreover, Nguyen and Stern [29] introduced the notion of pseudo densities
and showed that the security of knapsack schemes depends on the smallness of
the Hamming weight of a solution of the subset sum problem even when the
density d(A) is high. Later, Kunihiro [21] gave the compatibility between the
density d(A) and the pseudo density, and showed that the weaker lower bound
0.8677 for the density d(A) is necessary for the security of knapsack schemes
in the case of any Hamming weight. Consequently, the density must be some
moderate value.

It is known that there are exhaustive searches of a solution of the subset sum
problem. For example, it is shown in [3] that it can be solved in Õ(20.291s)
bit operations in the classical computer and in [4] that it can be solved in
Õ(2(0.241+o(1))s) qubit operations in the quantum computer. Recently in [5], two
algorithms are proposed, one is to solve the problem in Õ(20.283s) bit operations
in the classical computer and the other is to solve the problem in Õ(20.218s)
qubit operations in the quantum computer.

Our motivation comes from mathematics, especially, additive combinatorics,
extremal combinatorics and combinatorial number theory. In such areas, Sze-
merédi’s theorem on arithmetic progressions [41] is well-known theorem. To
consider the hardness of the subset sum problem, we introduce mathematical
assumptions which we call Szemerédi-type assumptions. These assumptions are
statements which are imitations of the statement of Szemerédi’s theorem on
arithmetic progressions.

For the subset sum problem, we make clear from Szemerédi-type assumptions
what the worst case hardness and the average case hardness are.
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The organization of this paper is as follows. In Section 2, we review the low
density attacks. In Section 3, we describe the basic experiments when low density
attacks fail on the average case or not. In Section 4, we introduce Szemerédi-type
assumptions and we give better heuristics for orthogonal lattices than Gaussian
heuristics. In Section 5, we show that the OTU scheme can be broken when the
heuristics given in Section 4 hold. In Section 6, we describe concluding remarks.

2 Low density attacks

2.1 Basic notions for lattices

A lattice L ⊆ Rn spanned by s linearly independent vectors b1, . . . , bs ∈ Rn is
defined as

L = {y1b1 + · · ·+ ysbs : y1, . . . , ys ∈ Z},

where s is the rank of L and n is the dimension of L. For a vector v =
(v1, . . . , vn) ∈ Rn, we call (v,v) :=

∑n
i=1 v

2
i the norm of v, where the Euclidean

norm of v is ‖v‖ :=
√

(v,v). The covolume covol(L) of a lattice L is the volume
of a fundamental region of L. λ1(L) is the Euclidean norm of a non-zero shortest
vector in L. The Hermite invariant γ(L) of a lattice L of rank s is defined by

γ(L) :=
λ1(L)

2

covol(L)2/s
.

The Hermite constant γs is defined by

γs := max{γ(L) : L is a lattice of rank s}.

A lattice L of rank s such that γ(L) = γs is called a critical lattice. It is known
that for sufficiently large s,

s

2πe
+

loge(πs)

2πe
+ o(1) ≤ γs ≤

1.744s

2πe
(1 + o(1)).

Shortest vector problem (SVP) is to find a non-zero shortest vector in a
lattice. This problem is known to be NP-hard under randomized reduction [1].

The worst case hardness of SVP is supposed to be the problems for critical
lattices and extreme lattices. Related these cases, in mathematics, Voronoi [44]
showed that a lattice is extreme if it is perfect and eutactic. By the way, a lattice
which is critical or extreme is corresponding to the global maximum or the local
maximum, respectively. For more details of lattices, see [27, 8, 24].

2.2 Basic idea of low density attacks

The knapsack cryptography is different from the lattice-based cryptography. It
does not require the hardness of lattice problems such as SVP. Lattice problems
are regarded as rather easier. This justifies low density attacks.
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Let A ⊆ [N ]s. We fix a representation x := (x1, . . . , xs) ∈ {0, 1}s. Then the
set A can be regarded as a set of subset sum instances since an instance of the
subset sum problem can be defined for a tuple a := (a1, . . . , as) ∈ A .

X stands for a kind of low density attacks, namely, LO, CJLOSS and CJLOSS+.
where the each of symbols comes from the names of the authors in [22, 9]. For
a = (a1, . . . , as) ∈ [N ]s, put A = {a1, . . . , as}. Assume that C ∈ Z is repre-
sentable as a subset sum. Then let L

X
(A;C) or L

X
(a;C) be a lattice spanned

by the rows of the following (s+ 1)-by-(s+ 1) matrix.

B
X
=


1 0 . . . 0 sa1
0 1 . . . 0 sa2
...

...
. . .

...
...

0 0 . . . 1 sas
β

X
β

X
. . . β

X
sC

 ,

with

β
X
=



0 if X = LO,

1

2
if X = CJLOSS,

h

s
if X = CJLOSS+,

where h =
∑s

i=1 xi is the Hamming weight of x ∈ {0, 1}s. Notice that when
X = CJLOSS+, the Hamming weight h must be known.

We define

x̂ = (x1 − βX , . . . , xs − βX , 0). (2.1)

It is clear that x̂ ∈ LX(A;C). Hence, finding x̂ ∈ LX(A;C)
We say that a low density attack with respect to SVP fails if there exists

ŷ ∈ LX(A;C) satisfying {
ŷ 6∈ {−x̂,0, x̂},
‖ŷ‖2 ≤ ‖x̂‖2.

(2.2)

Notice that SVP is replaced by uSVP (unique SVP) when C is uniquely
representable as a subset sum. Notice that since x ∈ {0, 1}s is fixed,

‖x̂‖2 =


h if X = LO,

s/4 if X = CJLOSS,

h(1− h/s) if X = CJLOSS + .

Let A ⊆ [N ]s. Then the failure probability P
X
(A ;x) of a low density attack

is defined by

P
X
(A ;x) =

|{a ∈ A : ∃ŷ ∈ L
X
(a;C) s.t. ŷ satisfies (2.2)}|

|A |
.
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A low density attack “succeeds almost surely” if

PX(A ,x) → 0 as s → ∞.

In other words, the subset sum problem can be solvable almost surely by a single
call of a lattice oracle.

Now we explain previous results. Define a combinatorial number M(s, k) by

M(s, k) := |{y ∈ Zs :

s∑
i=1

y2i ≤ k}|.

In several contexts, it is shown that

PX(A ;x) = O(sc
M(s, qs)

N
)

for some constants q > 0 and c > 0, and it is known that

M(s, qs) ≤ 2s/d
′

for some constant d′ depending on p (for example, see [25]).
The critical case of d′ is the bound of d(A) for the low density.

Table 2. the density condition for the “almost sure success” of low density attacks for
all Hamming weights h ≤ s/2 of x ∈ {0, 1}s

A p d′

Lagarias and Odlyzko (LO) 1985 [22] [N ]s 1/2 0.645...

Coster et al. (CJLOSS) 1992 [9] [N ]s 1/4 0.9408...

Kogure et al. 2012 [19]
∏s

i=1[Ni] (∗)

The details of (∗) are as follows. d(A) is replaced by

dHM(A) :=
s

log2 HM(N1, . . . , Ns)

where HM(N1, . . . , Ns) is the harmonic mean

HM(N1, . . . , Ns) =
s∑s

i=1 1/Ni
.

Then LO and CJLOSS are applied.

Remark 2.1. Related to X = CJLOSS+, Nguyen and Stern [29] showed that a
low density attack “succeeds almost surely” even when the Hamming weight h
of x ∈ {0, 1}s is sufficiently small and d(A) is greater than d′ in the table. In
the above setting, we suppose a single call of a lattice oracle. In [17], a tuple
(βX , . . . , βX) in BX is replaced by a set of polynomially many tuples. In such a
setting, we must suppose polynomially many calls of a lattice oracle. However,
when a low density attack succeeds almost surely as s → ∞, the optimal value
is somewhat smaller but asymptotically 0.9408.
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3 The average case hardness of the subset sum problem

In what follows, unless otherwise noted, we identify A = {a1, a2, . . . , as} with a
tuple (a1, a2, . . . , as) ∈ [N ]s satisfying a1 ≤ a2 ≤ . . . ≤ as.

In this paper, we investigate the following orthogonal lattice.

L(A) := {(y1, . . . , ys) ∈ Zs : y1a1 + · · ·+ ysas = 0}.

By the mapping (y1, . . . , ys) 7→ (y1, . . . , ys, 0), we can regard the lattice L(A) as
the common sublattice of the lattices LX(A;C) for all X ∈ {LO,CJLOSS,CJLOSS+}.
From this. it is important to investigate basics for low density attacks.

Let {A1, . . . , As} be a partition of [N ], i.e. [N ] =
⋃s

i=1 Ai and Ai ∩ Aj = ∅
(i 6= j). Put ni = |Ai|. Hence, N =

∑s
i=1 ni. Then maximize the multinomial

coefficient (
N

n1, . . . , ns

)
=

N !

n1! · · ·ns!
≈ 2NH(n1/N,...,ns/N),

where for pi ≥ 0 with
∑s

i=1 pi = 1,

H(p1, . . . , ps) = −
s∑

i=1

pi log2 pi.

The maximum attains when ni = |Ai| ≈ N/s for all i = 1, . . . , s. So, the case
ni ≈ 1/δ(A) can be regarded as the average case. One of possible choices is
Ai = ((i−1)N/s, iN/s] for each i. In this paper, the instances of the subset sum
problem for A =

∏s
i=1((i− 1)N/s, iN/s] are regarded as the average case.

Now, we present numerical experiments on the minimum norms of orthogonal
lattices L(A). We use the following computer resource.

– Computer: hp Mobile Workstation Zbook Studio G3

• Memory: 16.0GB
• CPU: Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz

– Software: SageMath 9.0

To obtain some heuristic law on the minimum norms of orthogonal lattices
L(A), we done the following experiments. Let s = 24 + 8l (l = 0, 1, . . . , 7). The
natural density δ(A) is of the form

δ(A) :=
s

N
= (csαk)−1,

where α = 0, 0.8, 0.9, 1.0, k = 4, 6, 12 and c is selected suitably. We do the
following procedure 100 times for every s in the case of α = 0 and for every
(α, s, k) in the case of α 6= 0.

– AsA = {a1, . . . , as}, each ai chosen uniformly at random from ((i−1)N/s, iN/s].
– Finding a shortest (or an approximate shortest) vector v in an orthogonal

lattice L(A).
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– In the only case of α 6= 0, decide whether the (minimum) norm v ·v coincides
with k or not.

The choices of the values of c are as follows.

– In the case of α = 0, we set c = 1/δ(A) = 216, 220, 224, 248. We find a shortest
vector in each lattice according to Algorithm 1.

– In the case of α 6= 0, we choose c in the table 3 so that log2 c is an integer
according to the values in the case of α = 0 and s = 80. We find a shortest
(or an approximate shortest) vector according to Algorithm 2.

Table 3. the values of k and c in the case of α ̸= 0

α k c

0.8 4 2−9 ≤ c ≤ 2−5

0.8 6 2−10 ≤ c ≤ 2−6

0.8 12 2−17 ≤ c ≤ 2−13

0.9 4 2−11 ≤ c ≤ 2−6

0.9 6 2−13 ≤ c ≤ 2−8

0.9 12 2−24 ≤ c ≤ 2−20

1.0 4 2−14 ≤ c ≤ 2−8

1.0 6 2−16 ≤ c ≤ 2−11

1.0 12 2−31 ≤ c ≤ 2−27

Consider the situation that the values of s vary in the 8 ways. In 100 times trials
for each of s, we take a look at the heuristic law when the frequency that v · v
coincides with k is the maximum. We see that this holds for at least 4 of all
the values of s. However, there is no such a heuristic law in the case of α = 0.
More precisely, for the case of α = 0, the value of the minimum norm of L(A)
for every s decreases as s increases.

Hence, using linear regressions, we investigate the distributions of (k, log2 c)
for every α = 0.8, 0.9, 1.0. Then we observed that for each α = 0.8, 0.9, 1.0, we
can see that there exist constants c0 > 0 and c1 > 0 such that

1/δ(A) ≈ cskα (c = 2−c1k−c0). (3.1)

In the expression (3.1), we can solve it for k. Then we have the following
heuristics.

Heuristic 3.1 (Explicit Version) Let k be a positive integer. Then λ1(L(A))2 =
k implies that

λ1(L(A))2 =
log2 1/δ(A) + c0
α log2 s− c1

,

where for some 0.9 < α < 1, c0 > 0 and c1 > 0 are some constants depending
on k and α.
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Here we describe Algorithm 1 and Algorithm 2. Let L′(A) be a lattice spanned
by the rows of the matrix

B :=


1 0 . . . 0 sa1
0 1 . . . 0 sa2
...
...
. . .

...
...

0 0 . . . 1 sas

 .

Notice that y ∈ L(A) implies (y, 0) ∈ L′(A), i.e. A lattice L(A) can be regarded
as a sublattice of a lattice L′(A). If C is representable as a subset sum, then
it is clear that L′(A) is a sublattice of LX(A;C). Unless otherwise noted, a
shortest vector in L(A) is a shortest vector that belongs to L′(A) such that its
last component is 0. Here, as a lattice basis reduction algorithm, we use the BKZ
algorithm of block size 32 (BKZ-32) in default of SageMath 9.0.

Algorithm 1 Calculation of the minimum norm in the case of α = 0.

Input: B
Output: the value of the (approximate minimum) norm
1: Apply BKZ-32 to B and let redB be its output.
2: Let ŷ be a shortest vector in redB.
3: norm = ŷ · ŷ.
4: nwloop = 10 {number of while loops}
5: while nwloop ̸= 0 do
6: Select a row b0 from redB so that sth component of b0 is non-zero.
7: Select the sth row bs from B.
8: Choose a row bi0 randomly from B so that iith component of b0 is zero.
9: c1 = bi0 + bs, c2 = bi0 + bs
10: Let B1 be a matrix for which (b1, b2) in B is replaced by (c1, c2).
11: Shuffle rows of B1 and let B1 be its output.
12: Apply BKZ-32 to B1 and let redB1 be its output.
13: Let ŷ be a shortest vector in redB1.
14: if ŷ · ŷ < norm then
15: norm = ŷ · ŷ
16: end if
17: nwloop = nwloop− 1
18: end while
19: return norm

To secure knapsack schemes, we require

d(A) ≥ s

(h− h2/s+ 1) log2 s− (h− h2/s)c1 − c0
, (3.2)

but is not necessarily bounded from below by constant 0.9408....
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Algorithm 2 Calculation of the minimum norm in the case of α 6= 0.

Input: B, k
Output: the value of the (approximate minimum) norm
1: Apply BKZ-32 to B and let redB be its output.
2: Let ŷ be a shortest vector in redB.
3: norm = ŷ · ŷ.
4: nwloop = 10 {number of while loops}
5: while nwloop ̸= 0 do
6: if norm < k then
7: return norm
8: else
9: Select a row b0 from redB so that sth component of b0 is non-zero.
10: Select the sth row bs from B.
11: Choose a row bi0 randomly from B so that iith component of b0 is zero.
12: c1 = bi0 + bs, c2 = bi0 + bs
13: Let B1 be a matrix for which (b1, b2) in B is replaced by (c1, c2).
14: Apply BKZ-32 to B1 and let redB1 be its output.
15: Let ŷ be a shortest vector in redB1.
16: if ŷ · ŷ < norm then
17: norm = ŷ · ŷ
18: end if
19: end if
20: nwloop = nwloop− 1
21: end while
22: if nwloop = 0 then
23: return norm
24: end if

Fig. 1. α = 1.0

slope c1 = −2.2934... and y-intercept c0 = −1.0434....
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Fig. 2. α = 0.9

slope c1 = −1.7310... and y-intercept c0 = −0.9493....

Fig. 3. α = 0.8

slope c1 = −1.0384... and y-intercept c0 = −2.3846....
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4 Mathematical interpretations

4.1 Szemerédi-type assumptions

In this section, we introduce Szemerédi-type assumptions, which are imitations
of the statement of Szemerédi’s theorem on arithmetic progressions [41].

For a finite set A = {a1, . . . , as}, let ZA denote the set

{(ya)a∈A : (ya1
, . . . , yas

) ∈ Zs},

and put 0 = (0)a∈A.
For positive integers k and N and a set A ⊆ [N ], let P(k,N,A) be the

following statement.

Definition 4.1 (the statement P(k,N,A)) There exists (ya)a∈A ∈ ZA \ {0}
satisfying 

∑
a∈A

y2a < k,

∑
a∈A

yaa = 0.
(4.1)

Now we introduce the assumptions which we call Szemerédi-type assump-
tions. These assumptions come from Szemerédi’s theorem on arithmetic pro-
gressions. See Appendix A for details of Szemerédi’s theorem, and see Appendix
B for a kind of the abstract (in)dependence.

Assumption 4.2 (Szemerédi-type assumption of finitary dependence version)
Let δ0 be a real number with 0 < δ0 ≤ 1 and k ≥ 4 be an integer. Then there
exists N0(δ0, k) > 0 such that if N ≥ N0(δ0, k), then for every set A ⊆ [N ] with
|A| ≥ δ0N , the statement P(k,N,A) is true.

For A ⊆ N, put A(N) = A ∩ [N ].

Assumption 4.3 (Szemerédi-type assumption of infinitary (dependence) version)
Let N0(δ0, k) > 0 be as above. Then if A ⊆ N has positive upper asymptotic den-
sity, i.e.

lim sup
N→∞

A(N)

N
≥ δ0

for some 0 < δ0 ≤ 1, then N ≥ N0(δ0, k) implies that the statements P(k,N,A(N))
is true for all k ≥ 4.

For a positive integer k, let r(k,N) denote the cardinality of a largest set
A ⊆ [N ] such that the statement P(k,N,A) is false.

Assumption 4.4 (Szemerédi-type assumption of finitary independence version)
For k ≥ 5,

r(k,N) = o(N).
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Notice that r(4, N) = o(N) does not hold since r(4, N) is the cardinality of a
largest sum free subset of [N ]. Indeed, there are two typical examples of maximal
sum free sets. One is the set of odd numbers in [N ]. The other is (N/2, N ]. Hence,
r(4, N) ≥ N/2, which implies that Szemerédi-type assumption does not hold.

On the other hand, r(5, N) = o(N) holds since any Sidon set in [N ] has

cardinarity at most
√

N
loge N . Hence, k ≥ 5 is necessary. Moreover, it should hold

the equivalence between Assumptions 4.2, 4.3 and 4.4. In [32], there are a lot of
information for additive combinatorics and related areas.

Assumption 4.4 will relate solution free sets for a linear equation over positive
integers.

Table 4. Examples of solution-free sets for given norms

norm forbidden equation structure

2 v1 = v2 a set (of distinct elements)

3 v1 + v2 = v3 a sum free set

4 v1 + v2 = v3 + v4 a Sidon set (B2 sequence)

6 v1 + v3 = 2v2 a progression free set (3-AP free set)

Notice that “variables” v1, v2, . . . in the above table mean elements of [N ].
From this point of view, a set of lattice points in L(A) can be regarded as a set
of homogeneous linear equations.

As fundamental combinatorial structures for broadcast encryptions and codes
with identifiable parent property there sometimes appear solution free sets to
forbid several equations [2, 15] and their improvements are given in [45].

Assume that A ⊆ [N ] has cardinality r(k,N) and satisfies property (4.1).
Then it is clear that λ1(L(A))2 ≥ k. We shall regard that λ1(L(A))2 = k since
we now interest in high density case. Given the set A ⊆ [N ] and a representation
x ∈ {0, 1}A, r(k,N) can be regarded as a characterization of the worst case
hardness of the subset sum problem.

Consider the average case. Assume that an s-element set A ⊆ [N ] satisfies
λ1(L(A))2 = k. Then to guarantee that low density attacks fail, we need

4k ≤ s ≤ r(k,N). (4.2)

Next, we state Proposition 4.5. We define the set A ⊆ [N ] from the following
procedure.

1. We select an element a1 from the set [N ], and then put A1 = {a1}.
2. For i = 2, 3, . . ., letting

Bi =

− 1

yi

i−1∑
j=1

yjaj : yj ∈ Z, yi 6= 0,

i∑
j=1

y2j < k

 ,
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select an element ai from [N ] \ Bi inductively when [N ] \ Bi 6= ∅, and then
put

Ai = Ai−1 ∪ {ai}.

Here, for some integer t, we assume that a “saturation condition”

[N ] \Bt 6= ∅,
[N ] \Bt+1 = ∅

holds, and for this t, put A = At.

Proposition 4.5 (cf. [7]) The set A ⊆ [N ] above has cardinality t and is a
maximal subset of [N ] for which there is no vector with norm less than k in its
orthogonal lattice L(A). Moreover, it holds that

N ≤ M(t, k − 1)− 1

2
.

From Proposition 4.5, we immediately deduce the following corollary.

Corollary 4.6 If k − 1 = pt for a constant p > 0, then there exists d′ > 0
depending on p such that

t ≥ d′ log2(2N + 1),

especially

r(k,N) ≥ d′ log2(2N + 1).

4.2 The elaboration

Proposition 4.5 can be regarded as the characterization of the worst case hardness
of the subset sum problem.

Here we need the exact calculation for M(s, k). Its calculation algorithm is
given in [29].

From numerical experiments, we show the relations between N and M(s, k)
when each of k = 4, 6, 12 coincides with (an approximate value of ) λ1(L(A))2

on the average case.

k minimum of N maximum of N

4 2−0.6756...M(s, k)0.7331... 2−2.3949...M(s, k)1.0124...

6 2−1.9556...M(s, k)0.8579... 2−2.0464...M(s, k)0.9842...

12 2−1.8272...M(s, k)0.9159... 2−1.4736...M(s, k)0.9626...

Notice that we made sure the above table from the procedure 100 times
in Section 3 and linear regressions for α 6= 0. There is some possibility that
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the values of exponential parts are around 0.9408 for sufficiently large s and k.
Hence, for the failure of low density attacks, we should suppose that

d(A) ⪆ 1

even if Hamming weight of x ∈ {0, 1}s is arbitrary. So, from our experiments, it
may hold that

N = Θ(M(s, k)α) (α ≈ 0.9408)

on the average case when k = λ1(L(A))2.

Remark 4.1. Our experiment does not require the value of C ∈ Z which is
representable as a subset sum of A ⊆ [N ]. it is numerically shown in several
literatures such as [36, 38] that taking into account the value of C, the time
consumption is highest. when a Hamming weight h satisfies h ≈ s/2 and the
density d(A) is close to 1. However, our experiments remains some possibility
that taking into account the value of C, the time consumption is highest for
every fixed Hamming weights h ≤ s/2.

For more exact analyses, we must make clear the concrete value of α and
some hidden constant in an asymptotic notation. For this, we can numerically
show that when λ1(L(A))2 = qs for several constants 0 < q ≤ 0.25,

N =
M(s, qs)0.9408 − 1

2
,

i.e. α ≈ 0.9408 and a hidden constant is about 1/2. The following table is its
details.

Table 5. Whether N =
(
M(s, qs)0.9408 − 1

)
/2 holds or not when λ1(L(A))2 = qs.

q\s 24 32 40 48 56 64 72 80

0.10 × ◦ × × ◦ ◦ ◦ ×
0.15 ◦ × ◦ ◦ ◦ ◦ ◦ ◦
0.20 × ◦ ◦ ◦ ◦ ◦ ◦ ◦
0.25 × ◦ ◦ ◦ ◦ ◦ ◦ ◦

Notice that we made sure the above table from the procedure 100 times in
Section 3 for α 6= 0.

Assume gcd(A) = 1. Then we have√
s(s− 1)(2s− 1)

6δ(A)
≤ covol(L(A)) ≤

√
s(s+ 1)(2s+ 1)

6δ(A)
(4.3)

since it holds that

covol(L(A)) =

√√√√ s∑
i=1

a2i .
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Hence, we can expect the following heuristics.

Heuristic 4.7 (Implicit Version (Gaussian Heuristic)) Let 0 < q ≤ 1/4.
Then λ1(L(A))2 = qs implies that

λ1(L(A))2 ∼ c
s

2πe
M(s, qs)

2α
s−1

as s → ∞, where 0 < c ≤ 1 increases as q increases.

Remark 4.2. Heuristic 4.7 is superior to Heuristic 3.1.

5 The security of OTU

In many knapsack encryption schemes, a set A ⊆ [N ] is a part of the public
key and an integer C representable as a subset sum of A is a ciphertext. The
OTU scheme, which has this property, is a knapsack encryption scheme using a
number field

5.1 Review of the OTU scheme

In this subsection, we review the OTU scheme for short.
Let K be a number field, let OK be its ring of integers and let p be a prime

ideal in OK . It is well-known that the residue field OK/p is isomorphic to the
finite field Fpf , where p is a rational prime number below p and f is called the
residue degree.

In many knapsack schemes, one must make a set A ⊆ [N ] as a part of the
public key. In the case of the OTU scheme, an s-element set A ⊆ [N ] is a set of s
distinct discrete logarithms over the residue field OK/p. A more precise descrip-
tion is as follows. Let g be a generator of the multiplicative group (OK/p)

×
, let

R(p) ⊆ OK be a complete system of representatives for OK/p, let {P1, . . . , Ps}
be a coprime set in R(p), i.e. any two elements Pi, Pj (i 6= j) satisfy

gcd(N (Pi),N (Pj)) = 1,

where N (Pi) is an ideal norm of the principal ideal (Pi) in OK . For simplicity,
we put N = pf although the value of N should be pf − 1. Assume that each
of elements in R(p) is written as “a small linear combination of a good integral
basis in OK”.

Then by using Shor’s algorithm, one must find a set A = {a1, . . . , as} ⊆ [N ]
such that

Pi ≡ gai (mod p).

As described in Table 1, the parameter setting for OTU scheme always follows
that

d(A) ≤ s

h(log2 s− ε)
(5.1)

for some ε > 0 depending on P1, . . . , Ps.
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Now, we describe (5.1) in details. We are interested in the value of s, which
is a common value of the cardinality of a set A = {a1, . . . , as} ⊆ [N ] and the
cardinality of a coprime set {P1, . . . , Ps} ⊆ R(p). Without loss of generality, we
consider the following two case.

– each Pi is a prime element above a rational prime number pi such that

N (Pi) = pi,

up to associate elements in K.
– each Pi is a rational prime number pi.

Immediately, K = Q implies the common case in the above.
The first case immediately implies (5.1). All the h-element subset products

of {P1, . . . , Ps} are bounded from above by N (p), i.e.∏
P∈S

P ≤ pf = N (p)

for any h-element set S ⊆ {P1, . . . , Ps}.
The second case implies the shortcoming case for K 6= Q as described in the

original paper [33]. In this case, the more precise estimate for the density d(A)
is

d(A) ≤ s

hf(log2 s− ε)
(5.2)

from the parameter setting of the OTU scheme. Indeed, all the h-element subset
products of {P1, . . . , Ps} are bounded from above by N (p)1/f , i.e.∏

P∈S

P ≤ p = N (p)
1
f

for any h-element set S ⊆ {P1, . . . , Ps} and this implies that

max{P1, . . . , Ps} ≤ 2εN (p)
1
hf

for some ε > 0 depending on P1, . . . , Ps. Hence, we have

s ≤ 2εN
1
hf . (5.3)

For an arbitrary setting of OTU scheme, (5.3) can be replaced by

s ≤ 2εN
1
h . (5.4)

From (5.3) and (5.4), we immediately have the lower bound for N , so we obtain
(5.2) and (5.1), respectively.

By the way, the original paper [33] shows the only case of ε = 0 as approxi-
mate estimates. However, we can expect ε ≈ 0. So, we suppose ε = 0.
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5.2 Some extremal property on integers in a number field

Here, we describe on coprime sets in R(p). In [7], the upper and lower estimates
for the number of coprime sets in [N ] are given. Later, the upper bound is
improved in [6]. Let π(N) be the number of prime numbers in [N ]. Then it is
easy to see that the number of coprime sets in [N ] is at least 2π(N) since the
set of prime numbers not greater than N is one of largest coprime sets and the
cardinality is π(N). There appears π(N) in the estimates due to [7] and [6].

For the secutrity of the OTU, we must consider the number field version of
coprime sets. Since s is the cardinality of a coprime set {P1, . . . , Ps} ⊆ R(p), it
suffices to consider the cardinality for a largest coprime set in R(p).

Landau showed that the following theorem in [23].

Theorem 5.1 (Landau’s prime ideal theorem) Let K be a number field and
let X be a positive real number. Then we have

|{p : p is a prime ideal of OK and N (p) ≤ X}| = (1 + o(1))
X

loge X

as X → ∞.

To consider the arbitrary settings of the OTU scheme, we are interested in
the number of principal ideals in OK which are prime. From Landau’s prime ideal
theorem, the number of principal ideals of norm at most X which are prime is
at most

(1 + o(1))
X

loge X
.

From (5.4), we put X = N1/h. Then it must hold that

s ≤ (1 + o(1))
hN

1
h

loge N
.

Notice that we know Heuristic 4.7. Although N = pf , we put

N =
M(s, k)α − 1

2
(0.9 ≤ α ≤ 1)

for simplicity, which includes the average case hardness and the worst case hard-
ness of the subset sum problem. Then we have

s ≤ (1 + o(1))
h
(

M(s,k)α−1
2

) 1
h

log2 e

log2(M(s, k)α − 1)− 1
.

Now we assume that h = qs and k = q(1 − q)s for some constant 0 < q ≤ 1/2.
Then simplifying the above estimate, we have

s ⪅ h (M(s, q(1− q)s))
α
h log2 e

α log2 M(s, q(1− q)s)
.

18



Moreover, we assume that

M(s, q(1− q)s) = 2
s

d′′

for some d′′ > 0 depending on q. Then we have

s ⪅ qd′′2
α

qd′′ log2 e

α
. (5.5)

5.3 How to break the OTU scheme

Here we consider the average case of the subset sum problem. Hence, we suppose
α = 0.9408 since the right hand side of (5.5) takes larger values in the case of
smaller values of α > 0. Define the function

F (x) :=
x

α
2

α
x log2 e,

where α = 0.9408.

From (4.2), we can see that to guarantee the 128bit security, we must have

s =
128

0.218

1

H(q)
, k =

128

0.218

q(1− q)

H(q)
.

To break OTU scheme, we must show that s > F (qd′′). Indeed, such situations
hold since it can be easily seen from Figure 4, Figure 5 and Figure 6, where the
values of 0 < q ≤ 1/2 are in the horizontal axis in each of the figures. The details
for calculations of d′′ are as follows. Define the following functions.

θ(z) := 1 + 2

∞∑
i=1

zi
2

and

G(x) := q(1− q)x+ loge θ(e
−x).

Then we can evaluate the value of d′′ > 0 by

d′′ :=
1

minx G(x)
.

By the way, we take a look at critical values for 128 bit security. Then we have

s ≥ 588, k ≤ 147.
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Fig. 4. the values of s and F (qd′′) for the 128bit security of the OTU scheme

Fig. 5. the values of F (qd′′) for the security of the OTU scheme
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Fig. 6. the values of s for the 128bit security of general knapsack schemes

6 Concluding Remarks

For the OTU scheme, several implementations and improvements were given
by the research group of Tokyo Metropolitan University [31, 30, 28]. However,
their several implementations do not always work. Compared with them, our
heuristic results gave some stronger evidence to them. So, as one of directions,
a new format of knapsack schemes may be proposed.

Several knapsack schemes other than the OTU scheme may be broken. For
example, in [16], Inoue, the author and Naito proposed a p-adic knapsack en-
cryption scheme. This scheme can be broken.

Here we explain the p-adic knapsack scheme for short. For the detailed de-
scription of this scheme, see Appendix C. Here we consider the security of this
p-adic knapsack scheme for low density attacks. Let A = {a1, . . . , as} ⊆ [N ] be
a public key in this scheme. Then the density d(A) can be estimated by

d(A) <
s

m log2 p+ log2 s
,

where p is a rational prime number and m is a positive integer.
To maximize the density d(A), a rational prime number p must be 2. Hence,

we have

d(A) <
s

m+ log2 s
.

Moreover, we must require the smallness of vp(bs). In such a case, it is optimal
when s = m, which implies that d(A) < 1, rigorously. One of our main results
is that on the average case, d(A) ⪆ 1 is necessary for the failures of low density
attacks. Consequently, the p-adic knapsack scheme is broken.
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In this paper, we introduced Szemerédi-type assumptions from which we
cryptanalysed the OTU scheme.

The Szemerédi-type assumptions were also to consider the worst case hard-
ness and the average case hardness of the subset sum problem from the aspects
of low density attacks. There should be some possibility of breaking a large part
of knapsack cryptography. It is difficult for us to mention how many concrete
knapsack schemes are broken, except the p-adic knapsack scheme. Moreover, it
is not enough to investigate the provable security and the security level (e.g.
128-bit security). We want the reader to find a knapsack scheme which is secure
or insecure.

The name of Szemerédi-type assumptions comes from Szemerédi’s theorem on
arithmetic progressions. For the Szemerédi’s theorem, there are many proofs such
as combinatorial proofs, Fourier analytic proofs and ergodic theoretic proofs. The
first combinatorial proof was given in the Szemerédi’s original paper [41]. The
Fourier analytic proofs were given in [34, 12]. The first ergodic theoretic proof
was given in [10], for which the book [11] is useful for the introductory study.

As a “relative” Szemerédi’s theorem, Green-Tao theorem [14] is well known,
This theorem states that there exists an arbitrarily long arithmetic progression
in the set of prime numbers. For this direction, a large generalization of Green-
Tao theorem is appeared in preprint [18], recently. In [18], they focus on the two
types of generalizations. One is a generalization of arithmetic progressions. The
other is a generalization from Z to OK for a number field K. Since the OTU
scheme requires the use of a number field, a new improvement of this scheme
may be close to such pure mathematics.

For Proposition 4.5, we imitate the description of a paper due to Cameron
and Erdös in 1990 [7], which we refer to CE1990.

CE1990 is also a paper that describes Cameron-Erdös conjecture on sum
free subsets of N = {1, 2, . . .}. This conjecture is now a theorem, proved in-
dependently by Green [13] and Sapozhenko [35]. The theorem states that the

number of sum free subsets of [N ] is O(2
1
2N ). Assuming this theorem, the set of

sum free subsets of N has Hausdorff dimension 1
2 .

On the other hand, CE1990 is a paper in pure mathematics (combinatorial
number theory), and of course, there is no mention about cryptography. However,
many of basic properties in knapsack schemes (Merkle-Hellman, Chor-Rivest,
OTU) are described in CE1990. From Szemerédi type assumptions, we need
some characterizations for a subset of 2N with Hausdorff dimension 0.

So, we hope some interaction between a large part of mathematics and knap-
sack cryptography.
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A Szemerédi’s theorem on arithmetic progressions

Here we describe Szemerédi’s theorem on arithmetic progressions [41]. The fol-
lowing Theorem A.1, Theorem A.2 and Theorem A.3 are equivalent.

Theorem A.1 (Szemerédi’s theorem of finitary dependence version)
Let δ0 be a real number with 0 < δ0 ≤ 1 and k ≥ 3 be an integer. Then there
exists N0(δ0, k) such that if N ≥ N0(δ0, k), then for every set A ⊆ [N ] with
|A| ≥ δ0N , the set A contains an arithmetic progression of length k.
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For a positive integer k, let r(k,N) denote the cardinality of a largest set
A ⊆ [N ] such that the set A does not contain an arithmetic progression of
length k.

Theorem A.2 (Szemerédi’s theorem of finitary independence version)
For k ≥ 3,

r(k,N) = o(N).

Theorem A.3 (Szemerédi’s theorem of infinitary (dependence) version)
If A ⊆ N has positive upper asymptotic density, i.e.

lim sup
N→∞

A(N)

N
> 0,

then the set A contains arbitrarily long arithmetic progressions, i.e. the set A
contains arithmetic progressions of length k for all k ≥ 3.

B The notion of independence systems

For a finite X, let I ⊆ 2X . The definition of the independence system is as
follows.

Definition B.1 (Independence System) An ordered pair (X, I) is an inde-
pendence system if the following conditions hold.

1. ∅ ∈ I.
2. If I2 ∈ I and I1 ⊆ I2, then I1 ∈ I.

Given an independence system (X, I), each set I ∈ I is called an independent
set and each set D ∈ 2X \ I is called a dependent set.

C The p-adic knapsack scheme

In the original paper [16], the p-adic knapsack scheme requires a Diophantine
inequality for a linear form over the ring of p-adic integers. Here, although we
do not require the advanced knowledge of the general theory of Diophantine
approximations, we review p-adic knapsack scheme for short.

Let p be a rational prime number. For x ∈ N, let vp(x) be the p-adic (additive)
valuation of x, i.e. the largest value of n such that

x = pnx′, p ∤ x′.

Notice that p-adic absolute value of x ∈ N is |x|p := p−vp(x).
Now we describe the p-adic knapsack scheme. For a positive integer m, let

{b1, . . . , bs} ⊆ [pm − 1] be an increasing sequence in the following sense.

vp(b1) < vp(b2) < · · · < vp(bs),
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which we call p-adic increasing sequence with respect to vp(·).
For a large rational prime N > spm, let r be a random integer such that

gcd(p, r) = 1. Let t be the inverse of r modulo N , i.e. tr ≡ 1 (mod N).
The sequence {a1, . . . , as} ⊆ [N − 1] is calculated by

ai ≡ rbi (mod N).

The private key is the tuple (p, q,m, t, b1, . . . , bs). The public key is the tuple
(a1, . . . , as). For the encryption, the ciphertext C ∈ Z of the p-adic scheme is
given by

C = x1a1 + · · ·+ xsas.

For the decryption, “the vp version of Merkle-Hellman type decryption” is re-
quired.
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