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Abstract. CSURF (CSIDH on the surface) was recently proposed by
Castryck, and Decru in PQCrypto-2020, and then improved by the rad-
ical isogeny formulæ in Asiacrypt-2020. The main advantage of using
CSURF and radical isogenies is the possibility of using isogenies of de-
gree two and radical isogeny chains of odd degree requiring only a sin-
gle random sampling of points. This work addresses the practical im-
plications of a constant-time implementation of CSURF and the rad-
ical isogeny procedures. In particular, this paper introduces the �rst
constant-time formulation and implementation of the radical isogenies
using projective representation, which are twice as e�cient as the orig-
inal radical isogeny formulæ. Nevertheless, the overhead introduced by
going to constant-time is signi�cant: in terms of �nite �eld operations,
our experiments illustrate that the speed-up of using a constant-time
CSURF-512 is reduced to 1.64% in comparison to the fastest state-of-
the-art constant-time CSIDH-512 implementation. Furthermore, these
savings disappear when using constant-time radical isogenies and when
moving to higher parameter sets. This negatively answers the open ques-
tion from Castryck and Decru: constant-time CSIDH implementations
outperform both CSURF and radical isogenies.
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1 Introduction

The �rst proposal of an isogeny-based Di�e-Hellman key exchange was done by
Couveignes [8] and centered on the action of an ideal class group on a set of ordi-
nary elliptic curves. But, it wasn't until Rostovtsev and Stolbunov [15,14] inde-
pendently rediscovered it and recognized its potential as a strong post-quantum
candidate. After this, isogeny-based cryptography developed further with SIDH
in [10,9,1]. In Asiacrypt 2018, Castryck, Lange, Martindale, Panny, and Renes
introduced CSIDH (as a possible improvement to SIDH) by reformulating Cou-
veignes' system by focusing on supersingular curves de�ned over a prime �eld [5]
and only using odd degree isogenies. With the hope to improve CSIDH perfor-
mance, Castryck and Decru proposed CSURF by giving an interesting way of
exploiting and performing degree-2 isogenies [3] by moving to the surface of



the isogeny graph. Indirectly hinted by CSURF's nature, Castryck, Decru, and
Vercauteren presented in Asiacrypt 2020 a couple of new ideas for constructing
isogenies with small odd degree based on radical computations (N -th roots) [4].
With this they gained a speed-up of about 19% over CSIDH. It is worth men-
tioning that both of the works in [3] and [4] focused on non-constant-time in-
stantiations. In particular, Castryck, Decru, and Vercauteren left the analysis
of a constant-time implementation of CSURF and radical isogenies as an open
problem.

Dealing with constant-time implementations of CSIDH (and CSURF) can
be tricky as there are multiple approaches, such as using dummy isogenies or a
dummy-free approach. The �rst constant-time CSIDH instantiation is the proce-
dure using dummy isogenies proposed by Meyer, Campos, and Reith in [12], and
then improved by Onuki et al. in [13]. Subsequently, Cervantes-Vázquez et al.
proposed a dummy-free variant of CSIDH [6]. In summary, all of the previously
mentioned constant-time implementations of CSIDH perform a �xed number of
isogeny constructions.

Let's explain the general idea of how a constant-time CSIDH implementations
works by using CSIDH-512 as an example. That is, we use the prime p = 4 ·∏74
i=1 `i − 1, where `1 up to `73 are the smallest 73 odd prime numbers and

`74 = 587. Next, let E/Fp : y2 = x3 + Ax2 + x be a supersingular Montgomery
curve with (p+ 1) rational points. Additionally, assume we require exactly m =
5 isogenies per `i, then our keyspace corresponds with the integer exponent
vectors (e1, . . . , e74) ∈ J−m . . mK74 3. Finally, we have all the ingredients for
describing what the main block of CSIDH is. In a dummy-based variant, one
starts performing |ei| secret degree-`i isogenies and then proceeds by computing
(m−|ei|) dummy-isogenies. The degree-`i isogeny kernel belongs to either E[π−
1] or E[π+1] (the sign of ei determines which one will be used). Now, the dummy-
free variant removes the (m−|ei|) dummy-isogeny constructions by assuming ei
has same parity as m, and alternatingly uses kernels in E[π − 1] and E[π + 1].

Contributions. We have investigated constant-time implementation of CSURF
and radical isogenies, which claimed to be 5% and 19% faster than CSIDH
in a non-constant-time setting, and we have explored di�erent approaches to
constant-time implementations. More speci�cally, the main contributions of this
work are the new projective radical isogeny formulæ and the �rst constant-time
implementation of CSURF and chain of projective radical isogenies of degree
up to nine. The proposed projective radical isogeny formulæ are almost twice as
e�cient as the original (a�ne) radical isogeny formulæ in constant time. We have
also provided further optimizations by speeding up the costly exponentiations
used in radical isogenies, and we have added the optimal bounds and optimal
strategies as in [7]. Our Python-code implementation allows isogeny evaluation
strategies using both traditional and Vélu square-root formulæ, as well as radical
isogenies and degree-2 isogenies (on the surface), and is freely available at

https://github.com/Krijn-math/Constant-time-CSURF-CRADS.

3 The word exponent comes from the associated group action (see section 2)

https://github.com/Krijn-math/Constant-time-CSURF-CRADS


The provided implementation allows us to compare CSURF and radical isoge-
nies against state-of-the-art constant-time implementations of CSIDH. We have
performed this comparison both theoretically and practically using six di�erent
parameter sets of 512-, 1024-, 1792-, 2048-, 3074-, and 4096-bits. We show that in
low parameter sets, with the additional cost of moving to constant-time, CSURF
performs on par with current CSIDH implementations, with a 1.64% speed-up
for 512 bits and a 0.34% speed-up for 1024 bits. In high parameter sets, or when
using radical isogenies, there is no speed-up in comparison to CSIDH. This neg-
atively answers an open question in [4]: the impact of moving to constant-time
is signi�cant for CSURF and radical isogenies, and we do not achieve a speed-up
by implementing it. In high parameter sets, we show that the cost of CSURF and
radical isogenies scale worse than those of current CSIDH implementations. Our
results illustrate that constant-time CSURF and radical isogenies perform worse
than large CSIDH instantiations, at least at the level of �nite �eld operations.

Outline. Section 2 recaps the theoretical preliminaries on isogenies, the Tate nor-
mal form, CSIDH, CSURF and radical isogenies. Our constant-time proposed
a�ne and projective radical isogenies formulæ are presented in Section 3, as well
as the use of fast exponentiations with addition chains. In addition, Section 3 also
focuses on the performance impact of moving to constant-time implementations
and concludes with a theoretical cost analysis of degree-2 and odd degree radi-
cal isogeny constructions. Our experiments in comparing CSIDH with CSURF
and radical isogenies are described in Section 4. Finally, Section 5 presents the
concluding remarks and lists a number of open problems.

2 Preliminaries

In this section we describe the basics of isogenies, CSIDH, CSURF and radical
isogenies.

Given two elliptic curves E and E′ over a prime �eld Fp, an isogeny is a
morphism ϕ : E → E′ such that OE 7→ OE′ . A separable isogeny ϕ has a
degree deg(ϕ) equal to the size of its kernel, and for any isogeny ϕ : E → E′ a
there is a unique isogeny ϕ̂ : E′ → E called the dual isogeny, with the property
ϕ̂ ◦ ϕ = [deg(ϕ)] is the scalar point multiplication on E. A separable isogeny is
uniquely de�ned by its kernel and vice versa; a �nite subgroup G ⊂ E de�nes a
unique separable isogeny ϕG : E → E/G (up to isomorphism).

Vélu's formulæ [16] provide the construction and evaluation of separable iso-
genies with cyclic kernel G = 〈P 〉 for some N -torsion point P ∈ E. Both the
isogeny construction of ϕG and the evaluation of ϕG(R) for R ∈ E have a run-
ning time of O(#G), which becomes infeasible for large subgroups G. A new
procedure presented by Bernstein, De Feo, Leroux, and Smith in ANTS-2020
based on the Baby-step-giant-step algorithm decreases this cost to Õ(

√
#G) �-

nite �eld operations [2]. This new approach is based on multi-evaluations of a
given polynomial and at its heart is still the traditional Vélu's formulæ.

Isogenies from E to itself are endomorphisms, and the set of all endomor-
phisms of E forms a ring, which is usually denoted as End(E). The scalar point



multiplication map (x, y) 7→ [N ](x, y) and the Frobenius map π : (x, y) 7→
(xp, xp) are examples of such endomorphisms over the �nite �eld of character-
istic p. In particular, the order O ∼→ Z[π] is a subring of End(E). An elliptic
curve E is ordinary if it has a (commutative) endomorphism ring isomorphic
to a suborder O of the ring of integers OK for some quadratic number �eld K.
Now, a supersingular elliptic curve has a larger endomorphism ring: End(E) is
isomorphic to an order O in a quaternion algebra, and thus non-commutative.

2.1 CSIDH and its surface

CSIDH works with a smaller commutative subring Endp(E) ⊂ End(E) of isoge-
nies of a supersingular elliptic curve de�ned over a prime �eld Fp. In addition,

Endp(E)
∼→ O ⊂ OK and both [N ] and π are de�ned over Fp, which implies

Z[π] ⊂ Endp(E). To be more precise, the CSIDH protocol is based on the com-
mutative action of the class group C̀ (O) on the set E`̀ p(O) of supersingular
elliptic curves E for some order O ⊂ OK . The group action for an ideal class
[a] ∈ C̀ (O) maps a curve E ∈ E`̀ p(O) to another curve a ? E also in E`̀ p(O)
(see section 2.2). Furthermore, the CSIDH group action is believed to be a hard
homogeneous space [8] that allows a Merkle-Di�e-Hellman-like key agreement
protocol with commutative diagram

E a ? E

b ? E ab ? E

a

a

b b

The original CSIDH protocol uses the set E`̀ p(O) with O
∼→ Z[π] and p = 3

mod 4. Now, CSURF protocol was designed to bene�t from degree-2 isogenies
by switching to the elliptic curves on the surface of the isogeny graph by using
E`̀ p(O) for order O

∼→ Z[ 1+π2 ] and p = 7 mod 8.

2.2 The group action of CSIDH and CSURF

The traditional way of evaluating the group action of an element a ∈ C̀ (O) is by
using traditional [16] or square-root [2] Vélu's formulæ. The group action maps
E → [a] ? E and can be described by the kernel E[a] of an isogeny ϕa of �nite
degree. Moreover, [a] ? E = E/E[a] and

E[a] =
⋂
ϕ∈a

Ker(ϕ).

In both CSIDH and CSURF, we apply speci�c elements li ∈ C̀ (O) such that
l±1i = (`i, π ∓ 1) and `i is the i-th odd prime dividing (p+ 1). For li, we have

E[l±1i ] = E[`i] ∩ E[π ∓ 1],



where P ∈ E[`i] means P is a point of order `i and P ∈ E[π ∓ 1] implies
π(P ) = ±P , so P is either an Fp-rational point or a zero-trace point over Fp2 .
Thus, the group action E → [l±1i ] ? E is usually calculated by sampling a point
P ∈ E[l±1i ] and applying Vélu's formulæ with input point P . On the other
hand, CSURF takes advantage of changing the order O to also perform degree-
2 isogenies on the surface of the isogeny graph; these degree-2 isogenies do not
require the sampling of a 2-order point but can instead be calculated by a speci�c
formula based on radical computations.

2.3 The Tate normal form

Fix an N -order point P on E with N ≥ 4. Then there is a unique isomorphic
curve E(b, c) over Fp such that P is mapped to (0, 0) on E(b, c). The curve E(b, c)
is given by Equation 1, and is called the Tate normal form of E.

E(b, c)/Fp : y2 + (1− c)x− by = x3 − bx2 (1)

The curve E(b, c) has a non-zero discriminant ∆(b, c) and in fact, it can be
shown that the reverse is also true: for b, c ∈ Fp such that ∆(b, c) 6= 0, the curve
E(b, c) is an elliptic curve over Fp with (0, 0) of order N ≥ 4. Thus the pair (b, c)
uniquely determines a pair (E,P ) with P having order N ≥ 4 on some elliptic
curve E over Fp. In short, there is a bijection between the set of isomorphism
classes of pairs (E,P ) and the set of Fp-points of A2 − {∆ = 0}.

2.4 Radical isogenies

Let E0 be a supersingular Montgomery curve over Fp and P0 an N -order point
with N ≥ 4. Additionally, let E1 = E0/〈P0〉, and P1 an N -order point on E1 such
that ϕ̂(P1) = P0 where ϕ̂ is the dual of the degree-N isogeny ϕ : E0 → E1. The
pairs (E0, P0) and (E1, P1) uniquely determine Tate normal parameters (b0, c0)
and (b1, c1) with bi, ci ∈ Fp.

Castryck, Decru, and Vercauteren proved the theoretical existence of a func-
tion ϕN that maps (b0, c0) to (b1, c1) [4]. Such a ϕN can be applied iteratively
to compute a chain of degree-N isogenies without sampling points of order N .
As a consequence, writing a given supersingular Montgomery curve E/Fp into
Tate normal form allows a generalization of the idea of evaluating E → [li] ? E
without sampling a point every time (we only require one initial point of order
`i to move to the right Tate normal form). Speci�cally, it allows us to compute
E → [li]

k ? E without having to sample k points of order N .

E [li] ? E . . . [li]
k ? E

E(b0, c0) E(b1, c1) . . . E(bk, ck)

Vélu

ϕN

To Tate normal form To Montgomery



The map ϕN is an elementary function in terms of b, c and α = N
√
ρ for

a speci�c element ρ ∈ Fp(b, c): hence the name `radical' isogeny. Over Fp, an
N -th root is unique whenever N and p − 1 are co-prime (as the map x 7→ xN

is then a bijection). Notice that this in particular holds for all odd primes `i
of a CSIDH prime p = h ·

∏
`i − 1 for some suitable cofactor h. Castryck,

Decru, and Vercauteren provided the explicit formulæ of ϕN for small values of
N ∈ {2, 3, 4, 5, 7, 9, 11, 13}, for larger degrees the formulæ become too complex.
They also suggest the use of radical isogenies of degree 4 and 9 instead of 2 and
3, respectively.

3 Constant-time radical isogenies

The experiments presented in [4] suggest a speed-up of about 19% when using
radical isogenies instead of Vélu's formulæ (for a prime of 512 bits). However,
these experiments focused on a non-constant-time Magma implementation for
both the group action evaluation and the chain of radical isogenies. This implies
that the radical isogeny Magma implementation computes exactly |ei| degree-`i
radical isogenies, where ei ∈ J−mi . . miK is a secret exponent of the private key
(for instance when ei = 0 the group action is trivial). Clearly, when measuring
random instances of CSURF the average number of degree-`i radical isogenies
to be performed is mi

2 , whereas in constant-time implementations the number
of isogenies of degree `i is the �xed bound mi. Furthermore, in the original
implementation of [4] the �eld inversion is performed in variable time depending
on the input, as Magma prioritizes speed above constant-time.

In this section we analyse the theoretical cost of radical isogenies in constant-
time. We describe three major performance impacts of moving to constant-time
and higher parameter sets: constant-time �eld inversions cost what an exponen-
tiation costs, exponentiations do not scale well to larger primes, and dummy-free
isogenies are more expensive. Part of this impact can be remedied by two im-
provements: �rstly, by moving to a projective version of radical isogenies to save
an expensive inversion per iteration; secondly, by decreasing the cost per expo-
nentiation using e�cient addition chains. Notice, the use of addition chains and
projective radical isogenies can also be used in the original implementation of [4]
to provide a small speed-up.

3.1 Performance of radical isogenies in constant time

In a constant-time implementation one can compute the inverse of an element
α ∈ Fp by Fermat's little theorem: α−1 = αp−2. Therefore, inversion becomes
as costly as exponentiation. This almost doubles the cost of CSURF and radical
isogenies in low degrees (2, 3, 4, 5, 7) and signi�cantly increases the cost of
radical isogenies of degree 9, 11 and 13. Furthermore, this signi�cantly increases
the overhead of switching to Tate normal form and back to Montgomery form,
and then performing eN radical isogenies becomes less e�ective.



The cost of a radical isogeny of degree N is dominated by the cost of of
one N -th root and one inversion. On average an exponentiation costs 1.5 log(p)
multiplications (using the square and multiply method). For radical isogenies,
speci�c �xed exponentiations are required instead of generic ones, which makes
it possible to decrease their cost by using short addition chains. Each N -th
root and the inversion in Fp correspond to an exponentiation by a speci�c µN
(with µ−1 for the inversion). We therefore decided to look for a close-to-optimal
addition chain using [11], which reduces the cost to something in the range
[1.05 log(p), 1.19 log(p)]. These close-to-optimal addition chains save at least 20%
and at most 30% of the cost of an exponentiation, bringing the total cost of an
(a�ne) radical isogeny in constant-time to the range of [2.1 log(p), 2.4 log(p)].

Dummy-free radical isogenies. Recall, radical isogenies require sampling an ini-
tial N -order point P to switch to the right Tate normal form, depending on the
direction of the isogeny. So two kinds of curves in Tate normal form arise: P
belongs either to E[π − 1] or to E[π + 1]. Now, a dummy-free chain of radical
isogenies requires (at some steps of the group action) to switch the direction of
the isogenies, and therefore to switch to a Tate normal form where P belongs to
either E[π− 1] or E[π+ 1]. As we switch direction mi − |ei| times, this requires
us to sample mi − |ei| points. That is, a dummy-free implementation of a chain
of radical isogenies will require sampling at least (mi− |ei|) points, and this will
not be a constant-time procedure. We can make this procedure constant-time by
sampling mi points every time, but this costs too much and kills the idea of rad-
ical isogenies. Clearly, these costs may be decreased by pushing points through
radical isogenies, which is still an open problem. In any case, we will only focus
on dummy-based implementations of radical isogenies.

3.2 Decreasing cost using projective coordinates

The original (a�ne) radical isogenies cost approximately two exponentiations
(the N -th root and the inversion) per iteration. In this subsection we show
that one exponentiation can be saved by performing the radical isogeny with
projective coordinates, at the cost of a few extra multiplications per iteration.
After a chain of radical isogenies, one inversion is required to go back to a�ne
coordinates.

One can do a straightforward translation to projective coordinates for rad-
ical isogenies. Such an approach saves an inversion by writing the Tate normal
parameter b (respectively c) as (X : Z), but comes at the cost of having to cal-
culate both N

√
X and N

√
Z in the next iteration. We can save one exponentiation

using the following lemma.

Lemma 1. Let N be a natural number such that gcd(N, p− 1) = 1. Let α ∈ Fp.
Write α as (XZN−1 : ZN ) in projective coordinates with X,Z ∈ Fp. Then
N
√
α = (

N
√
XZN−1 : Z).

Proof. As N is co-prime with p− 1, the map x 7→ xN is a bijection. Therefore,
the N -th root N

√
ρ is unique for ρ ∈ Fp, so

N
√
ZN = Z.



Corollary 1. The representation (XZN−1 : ZN ) brings the cost of a projective
radical isogeny of small degree `i down to below 1.25 log(p) as it saves an expo-
nentiation in the calculation of a radical isogeny in projective coordinates. More-
over, compared with the original a�ne radical isogeny formulæ, which roughly
cost two exponentiations, our projective formulæ cost half of the a�ne ones.

The e�ect this has for small degrees can be seen in Table 1a. A similar
approach as Lemma 1 works for radical isogenies of degree N = 4. It is worth
mentioning that degree-3 radical isogenies do not perform �eld inversions, and
thus it is not required to write them in projective representation. We give three
examples of these projective radical isogenies.

Example 1 (Projective isogeny of degree 4.). The Tate normal form for degree 4
is E : y2 + xy − by = x3 − bx2 for some b ∈ Fp. From [4], we get ρ = −b and
α = 4

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = −α(4α
2 + 1)

(2α+ 1)4

In projective form, write α as (X : Z) with X,Z ∈ Fp. Then the projective
transformation becomes

(X : Z) 7→ (X ′Z ′4 : Z ′)

X ′ = (4X2 + Z2)XZ

Z ′ = 2X + Z

(2)

This isogeny is a bit more complex than it seems. First, notice that the de-
nominator of the a�ne map is a fourth power. One would assume that it is
therefore enough to map to (X ′ : Z ′) and continue by taking only the fourth

root of X ′ and re-use Z ′ =
4
√
Z ′4. However, as gcd(4, p − 1) = 2, the root

δ = 4
√
Z ′ is not unique. Following [4] we need to �nd the root δ that is a

quadratic residue in Fp. We can force δ to be a quadratic residue: notice that
(X ′ : Z ′4) is equivalent to (X ′Z ′4 : Z ′8), so that taking fourth roots gives

(
4
√
X ′Z ′4 :

4
√
Z ′8) = (

4
√
X ′Z ′4 : Z ′2), where we have forced the second argument

to be a square, and so we get the correct fourth root.

Therefore, if we map to (X ′Z ′4 : Z ′) then we can compute 4
√
−b′ as ( 4

√
X ′Z ′4 :

Z ′2) using only one 4-th root. This allows us to repeat equation 2 using only one
exponentiation, without the cost of the inversion required in the a�ne version.

Example 2 (Projective isogeny of degree 5.). The Tate normal form for degree 5
is E : y2 + (1− b)xy− by = x3 − bx2 for some b ∈ Fp. From [4] we get ρ = b and
α = 5

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = α · α
4 + 3α3 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1



In projective form, write α = X/Z with X,Z ∈ Fp and work with (X : Z). Then
the projective transformation becomes

(X : Z) 7→ (X ′Z ′4 : Z ′)

X ′ = X(X4 + 3X3Z + 4X2Z2 + 2XZ3 + Z4)

Z ′ = Z(X4 − 2X3Z + 4X2Z2 − 3XZ3 + Z4)

(3)

Notice that the image is (X ′Z ′4 : Z ′) instead of (X ′ : Z ′) = (X ′Z ′4 : Z ′5),
following Lemma 1. This allows us in the next iteration to compute 5

√
b = ( 5

√
X :

5
√
Z) = (

5
√
X ′Z ′4 : Z ′) using only one 5-th root. This allows us to repeat equation

3 using only one exponentiation, without the cost of the inversion required in
the a�ne version.

Example 3 (Projective isogeny of degree 7.). The Tate normal form for degree 7
is E : y2 + (−b2 + b+ 1)xy + (−b3 + b2)y = x3 + (−b3 + b2)x2 for some b ∈ Fp,
with ρ = b5 − b4 and α = 7

√
ρ. However, the a�ne radical isogeny is already too

large to display here, and the projective isogeny is even worse. However, we can
still apply Lemma 1. The projective isogeny maps to (X ′Z ′6 : Z ′) and in a next
iteration we can compute α = 7

√
ρ = 7
√
b5 − b4 as ( 7

√
X4Z2(X − Z) : Z).

Projective isogenies of degree N ≥ 9. As mentioned by Castryck, Decru, and
Vercauteren in [4], the e�ectiveness of using radical isogenies is most noticeable
for small degrees such as 2,3,4,5,6, and 7. This is also the case for their projective
versions. For that reason, we do not focus on implementing projective radical
isogenies of degrees larger than 7. We limit our implementation to also include
the a�ne radical isogenies of degree nine.

3.3 Summary of cost in �eld operations

Addition chains and projective coordinates give a decrease in cost of constant-
time radical isogenies from about 3 log(p) to less than 1.25 log(p). Table 1 shows
the exact cost of such a single constant-time radical isogeny and their overhead
to move between the curve models. These numbers allow us to compute the
theoretical cost of k radical isogenies for a speci�c degree and compare this to
the number of bits of security this provides. For example, for a prime of 512
bits we have per bit of security the theoretical optimal bounds e2 = 6, e3 = 5,
e4 = 8, e5 = 5, e7 = 5 and e9 = 3 (OAYT-style, excluding the cost of point
sampling). For low parameter sets, this is around 2000 �nite �eld operations
per bit of security for the most e�cient isogeny, but high parameter sets give
something close to 15000 �nite �eld operations per bit of security.

From Table 1, CSURF-512 (as it uses only degree 2 isogenies) should be very
competitive against the fastest CSIDH-512 instantiations. Nevertheless, large
CSURF instantiations are expected to be slower than any of CSIDH, because of
the high cost of the exponentiation (at least in the current approach). E�ectively,
this implies the optimal bound for degree 2 becomes 0. Due to the increased cost
per radical isogeny in constant time, radical isogenies of degree 3 to 9 seem to
cost more than the traditional Velu's formulæ.



Degree 512 1024 1792 2048 3072 4096

2 607 1114 1888 2144 3165 4192
3 606 1162 1934 2216 3243 4285
4 612 1119 1893 2149 3170 4197
5 619 1164 1967 2230 3264 4288
7 638 1190 1965 2245 3282 4320
9 1254 2354 3948 4465 6553 8607

(a) Radical isogeny cost.

Degree 512 1024 1792 2048 3072 4096

2 5469 10188 17262 19582 28851 38102
3 3677 6846 11542 13112 19284 25465
4 7910 14735 24959 28311 41704 55067
5 4292 8007 13504 15334 22547 29757
7 4287 8002 13499 15329 22542 29752
9 4290 8005 13502 15332 22545 29755

(b) Overhead cost

Table 1: Number of �nite �eld operations required for (a) a radical isogeny of
a certain degree and (b) their corresponding overhead when moving to curve
models. It considers only multiplication (M) and squaring (S) operations, and
assumes S = M.

4 Experimental results

All the experiments presented in this section are centred on constant-time CSIDH
and CSURF instantiations with 512-, 1024-, 1792-, 2048-, 3072-, and 4096-bits.
To be more precise, we restrict our experiments to i) the most competitive
CSIDH-con�gurations according to [7], ii) the CSURF-con�guration presented
in [3] and iii) the radical isogenies-con�guration presented in [4]. As mentioned
in section 3, we only focus on dummy-based variants such as MCR-style [12]
and OAYT-style [13]. The experiments regarding CSURF using radical isoge-
nies are labelled by CRADS, and we assume one �eld squaring costs what a
�eld multiplication costs. The primes used are of the form p = h ·

∏74
i=1 `i − 1,

with h = 2k or h = 2k · 3, and the key space size is about 2256. All the CSIDH
instantiations use the optimal exponent bounds presented in [7].

Our CSURF and CRADS constant-time implementations were done by doing
�rst a group action as CSIDH does on the �oor, then performing the 2-isogenies
on the surface and �nishing with the radical isogenies on the �oor if applicable.
So, the only curve arithmetic required is on Montgomery curves of the form
E/Fp : By2 = x3 +Ax2 + x. We noticed no performance improvements in using
degree 4 radical isogenies in comparison to degree 2 isogenies, due to the larger
overhead of performing degree 4 radical isogenies in constant time. We therefore
use degree 2 isogenies on the surface.

Concluding, we compare three di�erent implementations which we name
CSIDH, CSURF and CRADS. The CSIDH implementation uses traditional Vélu's
formulæ to perform an `i-isogeny for `i ≤ 101 and switches to square-root Vélu
for `i > 101. The CSURF implementation is adds the functionality of degree
2 isogenies on the surface. The CRADS implementation uses degree 2 isogenies
and uses radical isogenies to compute the isogenies of degree 3, 5 and 7.



4.1 Benchmarking performance

We �rst compare the performance of these di�erent implementations using the
�traditional� bounds proposed initially in [3] and [4]. After that, we compare per-
formance using more suitable bounds for CSURF and CRADS using an adapted
algorithm from [7].

Traditional bounds. We �rst focus on CSURF and CRADS instantiations us-
ing the exponent bounds given in [3] and [4]. We use the same prime as [3].
Then, Table 2 compares constant-time CSIDH-512, CSURF-512 and CRADS-
512 under state-of-the-art con�gurations, and illustrates CSIDH-512 beats both
of CSURF-512 and CRADS-512. However, these bounds have been computed
using non-constant-time cost assumptions, which gives an unfair advantage to
the CSIDH strategy.

Suitable bounds. Next we use suitable exponent bounds that minimize the cost
of CSURF and CRADS by using a slight modi�cation of the greedy algorithm
presented in [7], which is included in the provided repository. In summary, the
greedy algorithm starts by increasing the exponent bound m2 ≤ 256 of two
(required for CSURF), and then applies the exponent bounds search procedure
for minimizing the group action cost on the �oor (the CSIDH computation part).
Once having the optimal bound for CSURF, we proceed in a similar way for
CRADS: this time the optimal exponent bound m2 of CSURF is �xed and the
algorithm increases the exponent bounds m3,m5,m7 ∈ J1 . . m2K of radical
isogenies until it is optimal.

Comparisons. The full results are given in Table 2. From Figure 1a we can
see that CSURF-512 and CSURF-1024 now have a smaller running time than
CSIDH-512 and CSIDH-1024 have. To be more precise, using OAYT-style, CSURF-
{512,1024} provides a speed-up over CSIDH-{512,1024}, respectively by 1.64%
and 0.34%. Nevertheless, larger instantiations of CSURF becomes less competi-
tive to CSIDH as the 2-isogenies scale worse than Vélu's (square-root) formulæ.
As hinted in section 3, CRADS instantiations do not provide a speed-up (the
radical computations scale with respect to log(p)). On the other hand, CSIDH
gives a better performance against CSURF and CRADS when using MCR-style.
Table 2 presents the results obtained in this benchmark and highlights the best
result per parameter set.

5 Concluding remarks and future research

Our proposed constant-time chain of projective radical isogenies integrated to
CSURF-512 and CSURF-1024 provides a speed-up over CSIDH-512 and CSIDH-
1024 of about 1.64% and 0.34%, respectively. Nevertheless, larger dummy-based
instantiations of CSURF become less competitive to CSIDH (the degree-2 isoge-
nies scale worse than Vélu square-root formulæ), and thus the use of constant-
time radical isogenies has a signi�cant negative impact on performance.
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Fig. 1: Running time regarding the group action evaluations of CSIDH, CSURF,
and CRADS. The numbers are given in millions of multiplications, and they
correspond with the average of 1024 random instances.

Dummy-style 512-bits 1024-bits 1792-bits 2048-bits 3072-bits 4096-bits

CSURF (traditional bounds) 0.895 - - - - -
CRADS (traditional bounds 1.013 - - - - -

CSIDH-MCR 0.972 1.055 1.180 1.217 1.380 1.550
CSURF-MCR 0.979 1.067 1.204 1.244 1.418 1.602
CRADS-MCR 1.082 1.283 1.482 1.542 1.797 2.064

CSIDH-OAYT 0.791 0.874 1.000 1.040 1.202 1.372

CSURF-OAYT 0.778 0.871 1.011 1.053 1.229 1.418
CRADS-OAYT 0.825 0.968 1.186 1.247 1.498 1.767

Table 2: Results for di�erent prime sizes. The numbers are given in millions of
multiplications, and they correspond with the average of 1024 random instances.
It considers only multiplication (M) and squaring (S) operations, and assumes
S = M. Numbers in bold are optimal results for that prime size.

We mentioned that a dummy-free chain of radical isogenies requires sampling
many points. For that reason, we list a number of open questions that could
improve the performance of CSURF and radical isogenies in constant-time:

1. It is currently not known if points can be pushed through radical isogenies,
which would allow a random-free variant of radical isogenies.

2. A fully projective version of CSURF and radical isogenies might save some
overhead required to switch between di�erent forms of curves.

3. In the end, radical isogenies are given for curves in Tate normal form. Thus,
having a fully Tate normal curve arithmetic could save the overhead from
moving between the required curve models.
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