
MIRACLE: MIcRo-ArChitectural Leakage Evaluation
A study of micro-architectural power leakage across many devices, and
implications for evaluation of masking schemes and leakage modelling

Ben Marshall, Dan Page and James Webb

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom.
{ben.marshall,daniel.page,james.webb}@bristol.ac.uk

Abstract. In this paper, we describe an extensible experimental infrastructure
and methodology for evaluating the micro-architectural leakage, based on power
consumption, which stems from a physical device. Building on existing literature, we
use it to systematically study 14 different devices, which span 4 different instruction
set architectures and 4 different vendors. The study allows a characterisation of
each device with respect to any leakage effects stemming from sources within the
micro-architectural implementation; we use it, for example, to identify and document
several novel leakage effects (e.g., due to speculative instruction execution), and
scenarios where an assumption about leakage is non-portable between different yet
compatible devices.
Ours is the widest study of its kind we are aware of, and highlights a range of
challenges with respect to 1) the design, implementation, and evaluation of masking
schemes, 2) construction of accurate fine-grained leakage models, and 3) selection of
suitable devices for experimental research. For example, in relation to 1), we cast
further doubt on whether a given device can or does uphold the assumptions required
by a given masking scheme; in relation to 2), we ultimately conclude that real-world
leakage models (either statistical or formal) must include information about the
micro-architecture of the device being modelled; in relation to 3), we claim the near
mono-culture of devices that dominates existing literature is insufficient to support
general claims regarding security. This is particularly important in the context of the
FIPS 140-3 standard for non-invasive side-channel evaluation.
Keywords: side-channel attack, micro-architectural leakage, leakage modelling

1 Introduction
(Micro-)architecture as a concept. In the context of processor design, the term architec-
ture1 is understood as describing the interface between hardware and software. It defines
how hardware and software interact, i.e., what is “visible” to the programmer, and so
will typically include a definition of 1) state, 2) instructions that act on said state, and 3)
an execution model for said instructions. The term Instruction Set Architecture (ISA) is
often used synonymously, with micro-architecture2 describing an implementation of the

1The term architecture seems to stem from the IBM System/360 design, which considered it as capturing
“the attributes of a system as seen by the programmer” [ABB64, Page 84]; before this, the more nebulous
term organisation was typical.

2It seems likely the term micro-architecture stems from use of micro-coded implementations, where it
can be read as the architecture controlled by a micro-program (cf. architecture controlled by a program
written using the ISA).

mailto:{ben.marshall,daniel.page,james.webb}@bristol.ac.uk

2 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

associated ISA, i.e., as a specific processor core. As such, the ISA represents a logical
abstraction of an underlying, physical micro-architectural implementation.

Beyond pure definitional precision, this abstraction enables an important property
that we now, to some extent, expect and even rely on. Principally, it is responsible for
allowing behavioural diversity while ensuring functional compatibility, or, put another way,
maximising flexibility with respect to implementation while retaining consistency with
respect to usage: a by-design disconnection between behavioural and functional semantics
of instruction execution means different micro-architectures can realise the same ISA,
but, in doing so, employ features that differ in their design and/or implementation. By
harnessing this fact, specific3 micro-architectures can, for example, aggressively optimise
instruction execution to suit a given market or use-case, without placing a burden on
the programmer. Doing so often acts within a broader strategy to address limitations on
scaling (e.g., clock frequency) that stem from Moore’s Law.

(Micro-)architecture as an attack vector. Viewed from a different perspective, however,
the same property can be problematic. For example, consider that development of
high-assurance software typically requires both detailed knowledge of, and control over
both functional and behavioural semantics of instruction execution. When met, such
requirements permit 1) formal reasoning, and guarantees about functional correctness, and
2) management of the associated (implementation) attack surface, e.g., by instrumenting
suitable countermeasures. The abstraction of a micro-architecture by an ISA necessarily
limits the degree to which this is true, however, so means the requirements are often not
met (or at least not sufficiently so).

The way in which micro-architectural side-channel attack techniques (see, e.g., [Sze19,
Section 4] and [GYCH18, Section 4]) are enabled and/or exacerbated offers an pertinent
example of this problem. At a high level, such techniques harness leakage that stems from
sources in a particular micro-architecture: one can classify such leakage as either
1. discrete (or digital), meaning it relates to logical, or functional characteristics, e.g.,

data-dependent instruction execution latency (i.e., number of cycles) caused by micro-
architectural state and execution model, or

2. analogue, meaning it relates to physical, or behavioural characteristics, e.g., data-
dependant power consumption [KJJ99, MOP07] or EM [GMO01, AARR02] emission
caused by the behaviour of CMOS transistors which constitute the micro-architecture.

In a sense, the latter acts as a superset of the former: because analogue leakage can
capture fine-grained, potentially sub-cycle features, discrete forms of leakage will typically
be captured by it indirectly. Either way, however, micro-architectural abstraction implies
1) the security properties of software are difficult to reason about, and may even differ
depending on the micro-architecture it is executed on, and therefore 2) development of
robust software-based countermeasures is a significant challenge. Such implications have
led to arguments (see, e.g., [GYH18]) for migration of traditionally opaque ISAs toward
more (semi-)transparent alternatives in which (selected) micro-architectural features are
visible. Likewise, they have motivated hardened micro-architectural designs (see, e.g.,
[KGBR19, MGH19]) which mitigate the lack of such transparency.

Remit and organisation. Themajority of micro-architectural side-channel attacks harness
some form of discrete leakage. Equally, however, there is an increasing body of work
which explores analogue forms of leakage. To a significant degree, such work has been
motivated by observations about the security of software-based masked implementations of

3For example, modulo trifurcation into mobile, application, and real-time profiles, the same ISA has been
harnessed across a wide range of low(er)-end (e.g., ARMv7-M ISA, ARM Cortex-M3 micro-architecture),
mid-range (e.g., ARMv7-A ISA, ARM Cortex-A17 micro-architecture), and high(er)-end (e.g., ARMv7-A
ISA, Qualcomm Krait micro-architecture) micro-architectural implementations.

Ben Marshall, Dan Page and James Webb 3

cryptography: an exemplar is the “gap” between a theoretically, provably secure masking
scheme proposed by Rivain and Prouff [RP10], versus attacks on a practical implementation
thereof by Balasch et al. [BGG+14].

Set within the associated literature, we position this paper as contributing in the
following ways. First, versus the Rosita framework of Shelton et al. [SSB+20], for example,
we deliberately attempt to broaden the scope by 1) focusing on multiple, physical (vs.
single, emulated) processor cores, and 2) increasing the diversity and complexity of micro-
architectural features considered. Second, we place explicit value on increasing the extent
to which “folk-law” observations are explainable. To a greater degree than previously,
doing so provides a formal basis for the topic. Third, we place explicit value on the
reusability of associated artefacts. We posit, for example, that the infrastructure and data
sets stemming from our work can support forms of leakage-aware verification, such as that
of Barthe et al. [BGG+20], which demand accurate, fine-grained leakage models. More
specifically then, the paper is organised as follows:
• Section 2 surveys existing literature related to micro-architectural leakage. Based on this,

Section 3 then attempts to define a precise, unified terminology. This allows development
of a structured classification for leakage sources and effects, and so clearer discussion
and evaluation of associated work.

• Section 4 describes an extensible experimental infrastructure and methodology for evalu-
ating the micro-architectural leakage, based on power consumption, which stems from a
processor core: we dub this MIRACLE, which is a backronym for MIcRo-ArChitectural
Leakage Evaluation.

• Section 5 analyses specific data sets produced by the infrastructure, in order to docu-
ment several novel, low-level leakage effects, and to explore some overarching high-level
hypotheses. These include 1) to what extent common assumptions, such as Only Com-
putation Leaks (OCL) [MR04] and Independent Leakage Assumption (ILA) [RSVC+11,
Section 2.2], hold in practice, and 2) whether and how identical instruction sequences
leak on different but compatible devices, and therefore how “portable” some forms of
countermeasure are.

• Section 6 then, finally, attempts to summarise the implications for situations when
consideration of micro-architectural leakage is important; we pitch this as a limited set
of design or implementation guidelines for digital design and cryptographic engineers.

We carefully limit the remit of constituent work in the following ways. First, we focus
exclusively on analogue micro-architectural leakage related to power consumption. We use
the term micro-architectural leakage synonymously from here on, but stress that most of
our results are more general, e.g., apply to instances such as EM emission. Second, we
focus exclusively on identifying and documenting micro-architectural leakage; this means
we deem exploitation of, and countermeasures based on leakage effects out of scope.

2 Background
In this section, we survey existing literature related to micro-architectural leakage: in
however limited a sense, the goal is to 1) organise and summarise relevant work, which
spans different research fields and focuses, and 2) clarify the relationship between this
paper, and relevant work which we either build on and/or produce implications for.

(Micro-)architectural leakage effects. There have been many efforts to study particu-
lar micro-architectural sources of power leakage, and how they can undermine masking
based countermeasures. In [BGG+14], the authors discuss how physical effects in a
hardware device (“glitches and transition-based leakages”) can halve the security order
of a masked implementation. This was followed by [PV17], which details several specific

4 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

micro-architectural effects which can be repeatedly demonstrated as undermining a masked
software implementation. This includes the “overwrite-effect” where registers are over-
written with sensitive values, the “memory remnant” effect where values written or read
from memory are buffered unexpectedly and the “neighbour-leakage” effect, where explicit
accesses to one register can cause implicit accesses to an adjacent register. Subsequent
works such as [CGD18] and [SSB+20] replicate some or all of these effects in different
devices, and introduce either new variants, or more specific cases of known variants. In
[MMT20], the authors survey four devices and explicitly build on the work of [PV17].
We consider [MMT20] the work most similar to this one, in that it also surveys a wider
range of effects and devices, confirming (as discussed later) that leakage effects vary widely
between devices.

Other works have examined particular processor cores in great detail from a micro-
architectural perspective [CGMA+15, BP18, DAK19], but have not looked more widely
at families of cores, such as all ARM Cortex-M devices.

(Micro-)architectural leakage modelling and tooling. In [MWO16], the authors build
a statistical leakage model of ARM Cortex-M0 and Cortex-M4 cores by examining tuples
of adjacent instructions, and using statistical regression to model the resulting information
leakage. This successfully captures even very esoteric kinds of leakage in instructions
which are executed very closely together. However, as explored in [SSB+20], it can
fail to capture cases where instructions which are executed far apart in time can induce
leakage in one another. The best example being load and store instructions, which is
discussed in [SSB+20, Section IV(C)], and examined in detail in Section 5.1 of this work.
Another limitation of statistical modelling techniques is ensuring that a representative
sample of instruction executions and sequences are used to build the model. The authors
of [MWO16] found it was possible to group instructions into similarly leaking groups
to minimise the problem space, but the problem of generating large amounts of initial
stimulus remains.

Complementing statistical approaches to leakage modelling are formal modelling ap-
proaches. These have mostly been applied to masked hardware implementations, as with
the maskVerif [BBC+19] and REBECCA [BGI+18] tools, or more recently, SILVER
[KSM20].

Such techniques have also been applied to software masking. In [BGG+20], the
authors use a Domain Specific Language (DSL) to describe the individual instructions of a
processor core, and the state elements they update. This model of the micro-architecture
is supplied by the user, and may need to be reverse engineered from an existing device.
Assuming the accuracy of the micro-architecture model, this is a compelling approach.
The TORNADO tool [BDM+20] is another similar approach, which, combines the Usuba
bitslicing compiler [MDLG18] and the tightProve [BGR18] tools to generate C programs
with formal side-channel security assurance in the register probing model.

In [GHP+20], the authors describe techniques for co-design and formal verification of
hardware and side-channel resistant software using the REBECCA tool [BGI+18]. They
give a worked example of their tool using the Ibex RISC-V core, and the parts of the
hardware which gave rise to various micro-architectural sources of leakage. Their work is
an excellent guide to explaining why certain leakages might be visible in the black-box
processor cores analysed in this work.

3 Terminology
Per Section 2, study of micro-architectural leakage exists at the intersection of several
different research fields, and so, in part as a result of this, associated terminology has
evolved which is imprecise or inconsistent. This can, for example, make it difficult to clearly

Ben Marshall, Dan Page and James Webb 5

discuss and evaluate associated work. Before any technical contributions we attempt to
address this issue, doing so in two steps, i.e., first addressing architectural then micro-
architectural concepts. In each such step, we use a model for instruction execution to
classify associated leakage sources. Doing so allows one to reason about how and why
leakage occurs, and thus how it may be avoided (or not).

It is important to note that none of this will be deemed innovative to digital design
engineer. As well as supporting the remainder of this paper, however, we posit that shared
terminology and understanding is a necessary starting point to enable 1) digital design
engineers (cf. [BMT16]) to reason about the impact of leakage from their (hardware)
designs and implementations, and 2) cryptographic engineers to develop useful leakage
models, and thus leakage-free (software) designs and implementations.

3.1 Notation
Let MEM[i] denote the i-th element of memory: MEM[i]j is used to specify an access
granularity of j bytes where appropriate, with j = 1 (implying memory is byte addressed)
assumed if/when omitted. Let GPR[i] denote the i-th General Purpose Register (GPR);
we refer to a given Special Purpose Register (SPR) by name, including an optional field
where appropriate. Within the specific context of ARMv7-M, for example, PC ≡ GPR[15]
might denote the Program Counter (PC), whereas CPSR[C] ≡ CPSR29 might be used to
denote the carry flag within the Current Program Status Register (CPSR).

Let Ei and Ci denote some i-th execution and clock cycle respectively. We describe Ei

and Ej (resp. Ci and Cj) as being separated by a distance of n if |i− j| = n, noting that
the specific case where n = 1 implies they are consecutive.

3.2 Architectural leakage
3.2.1 Model

We assume an ISA will include a definition of (at least)
• a set of architectural state, namely storage elements such as GPRs, SPRs, and memory,
• a set of architectural instruction semantics: any given instruction may read values from

state elements, performs computation, and write values to state elements, and
• an instruction execution model.
An ISA will usually adopt a in-order execution model, wherein each execution cycle
will atomically and independently fetch, decode, then execute a single instruction; only
architectural state is guaranteed to be preserved between execution cycles.

3.2.2 Leakage

Definition 1. Architectural leakage can be inferred from the architectural definition
of instruction execution, meaning it stems purely from architecturally visible detail (and is
thus micro-architecture agnostic).

Definition 2. Intra-instruction leakage can be reasoned about with within the context
of 1 execution cycle (i.e., execution of 1 instruction). This contrasts with inter-instruction
leakage, which cannot: it occurs, and thus must be reasoned about over n > 1 execution
cycles (i.e., execution of n instructions).

Note that inter-instruction leakage is not limited to adjacent instructions, (i.e., those
executed in Ei and Ei±1). As we explore later, interaction between and thus leakage from
non-adjacent instructions (i.e., those executed in Ei and Ei±j for some j > 1) is also
plausible.

6 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Given an instruction sequence, the definitions above imply that associated architectural
leakage can be inferred abstractly, i.e., without using a concrete implementation of the ISA:
viable approaches include the use of an instruction set simulator, or even static analysis.
For example, consider the following 3-instruction sequence:

1 add a0, a1, a2 // HW(a1) + HW(a2) + HW(a1 + a2) + HD(a0, a1 + a2)
2 add t0, t0, t2 // HW(t0) + HW(t2) + HW(t0 + t2) + HD(t0, t0 + t2)
3 lsl t0, t0, #4 // HW(t0) + HW(t0 << 4) + HD(t0, t0 << 4)

Based on an assumed leakage model for register access and bus activity, the annotation
captures inferred architectural leakage, i.e., 1) Hamming weight leakage for each operand
related to each read from the GPRs, 2) Hamming weight leakage related to each result
computed, and 3) Hamming distance leakage related to each write to the GPRs. It is
trivial to identify instances of inter- and intra-instruction leakage: the former occurs when
an instruction reads operands from the GPRs or performs computation, whereas the latter
occurs when an instruction writes results to the GPRs and thereby overwrites a value
already there (as written by a previous instruction, and therefore implying the required
interaction).

As an aside, certain sources of architectural leakage are closely related to features in
the ISA design. A given compressed instruction format, such as the RISC-V standard
C extension [RV:19, Section 16] or ARMv7-M Thumb [ARM18, Chapter A5], will often
employ destructive, e.g.,

add r1, r2 7→ GPR[1]← GPR[1] + GPR[2],

versus non-destructive, e.g.,

add r0, r1, r2 7→ GPR[0]← GPR[1] + GPR[2],

semantics with respect to the destination register: use of the former forces Hamming
distance leakage between GPR[1] and GPR[1]+GPR[2] which can be avoided in (careful) use
of the latter. There is an increasingly accepted argument (see, e.g., [RKL+04, RRKH04])
that security should be considered as a first-class metric at design-time, and, as such, one
could argue this and similar examples should be considered within the ISA design process.

3.3 Micro-architectural leakage
3.3.1 Model

Existing literature (see, e.g., [PV17, CGD18, SSB+20, MMT20]) has now clearly demon-
strated that architectural leakage cannot accurately capture every pertinent leakage source
or, therefore, effect. To do so, one must consider leakage which stems from the imple-
mentation of an ISA, i.e., the micro-architecture. We address this fact by extending our
original model in Section 3.2: specifically, we
• extend the architectural state with a set of micro-architectural state plus a and a mapping

function between architectural and micro-architectural state elements, and
• extend the architectural instruction semantics with a set of micro-architectural instruction

semantics.
One could define micro-architectural state elements as being those implicitly supporting
execution of instructions (by maintaining any associated values while execution occurs); this
contrasts with architectural state elements, which are those explicitly used by instructions.
Likewise, micro-architectural semantics describe execution of an instruction in terms of
micro-architectural state elements; this contrasts with architectural semantics, which do
so in terms of architectural state elements.

Ben Marshall, Dan Page and James Webb 7

Q

D Q

Q

D Q

Q

D Q r

y

x

clk

t0

t1

t2 t3

(a) Non-glitching combinatorial leakage.

Q

D Q

Q

D Q

Q

D Q r

y

x

clk
sel

(b) Glitching combinatorial leakage.

Figure 1: Two example designs, illustrating the difference between non-glitching combina-
torial leakage and glitching combinatorial leakage. In the top design, only combinatorial
leakage is evident, based on how the signals t0 and t1 change on each clock cycle; subsequent
signals, e.g., t2 and t3, change only once per clock cycle. Note this ignores the effect of
wire delay on t0 and t1. In the bottom design (a multiplexer), if the sel, x, and y signals
all change, then the delayed sel signal will cause Hamming distance leakage on r: this
causes it to glitch, i.e., change multiple times per clock cycle.

In contrast with architectural state, micro-architectural state may or may not be
preserved across either execution or clock cycles. As such, the micro-architectural state
mapping function and the instruction semantics must be considered, to some extent, with
respect to an execution context which includes 1) the current micro-architectural state, 2)
the “current” instruction (i.e., that executed in Ei), and 3) the “surrounding” instructions
(i.e., those executed in Ei±j for 1 ≤ j < m given some m). For example: where pipelining
is employed, instructions following a branch may or may not be (completely) executed
depending whether the branch is taken or not; where pipelining is employed, the (concrete)
state element corresponding to an (abstract, architectural) register may be part of the
forwarding logic versus the register file; where register renaming is employed, the (concrete)
state element corresponding to an (abstract, architectural) register may differ for each
write to that register.

3.3.2 Leakage

Definition 3. Micro-architectural leakage cannot be inferred from the architectural
definition of instruction execution, meaning it stems purely from architecturally invisible
detail (and is thus micro-architecture specific).

Definition 4. Intra-cycle leakage can be reasoned about with within the context of 1
clock cycle. This contrasts with inter-cycle leakage, which cannot: it occurs, and thus
must be reasoned about over n > 1 clock cycles.

Definition 5. Sequential micro-architectural leakage occurs when the value of a
state element changes.

We specifically use the term sequential leakage, because it stems from the sequential logic
elements, flip-flops and registers constructed from them, used within a design. A specific
instance of sequential micro-architectural leakage is necessarily classified as inter-cycle,
because it occurs at the boundaries of clock cycles. However, it may be classified as either
intra-instruction, because it can stem from isolated execution of 1 instruction (e.g., during
iterative computation of a multiplication), or inter-instruction, because it can stem from
interaction between execution of n > 1 instructions (e.g., a specific state element is updated
by different instructions respectively executed in Ei and Ei±j for j 6= 0).

Definition 6. Non-glitching combinatorial micro-architectural leakage occurs
when the output of a combinatorial logic element toggles; glitching combinatorial

8 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

micro-architectural leakage occurs when the output of a combinatorial logic element
toggles more than once per clock cycle.

In existing literature, it is common for the catch-all term “glitching” to be used for either
case. We carefully distinguish between the cases, observing that all leakage caused by
glitching is combinatorial leakage but not all combinatorial leakage is caused by glitching.
The designs in Figure 1 represent (simple) instances of the non-glitching and glitching
cases respectively. Various other instances are arguably more subtle, in the sense they
relate more to the physical properties of an implementation than logical properties of a
design. For example, it is common to observe combinatorial leakage stemming from an
inverter chain: these structures are used, for example, to mitigate issues due to 1) the
standard cell library (e.g., to allow a high degree of fan-out), and/or 2) place-and-route
(e.g., to drive signals over long wires).

Beyond some niche exceptions (e.g., multi-cycle paths) we deem out of scope, a specific
instance of combinatorial micro-architectural leakage is necessarily classified as intra-cycle
and therefore intra-instruction. This is because, within the context of a sequential logic
design, the value produced by a combinatorial logic element must settle before the next
clock cycle (otherwise a violation of the critical path occurs).

3.4 Summary
Definition 7. A given leakage source can be classified as being either

1) architectural ≡ A-class
2) sequential micro-architectural ≡ SMA-class
3) non-glitching combinatorial micro-architectural ≡ NCMA-class
4) glitching combinatorial micro-architectural ≡ GCMA-class

and further qualified as manifesting on an a) intra-instruction, b) inter-instruction, c)
intra-cycle, or d) inter-cycle, basis. A leakage source is therefore defined as the design
or implementation feature that enables leakage to occur.

We stress that, due to our focus on the architectural and micro-architectural levels within
what is a larger stack of abstractions, this classification should be viewed as necessary
but not sufficient: it cannot and thus does not capture every leakage source. A pertinent
example is that of capacitive coupling between wires (see, e.g., [CBG+17, CEM18, LBS19]),
which, although important to model, we regard as a separate problem. Our justification
is that there is no architecture or micro-architecture at that level of abstraction, only
standard cells are wires: capacitive coupling leakage can therefore be regarded as at
best indirectly related to any particular instruction sequence and execution of it, versus
architectural or micro-architectural leakage where the same relationship is more direct.

Definition 8. A leakage effect is the form of information observable whenever a leakage
source causes leakage due to execution of an instruction sequence we term a leakage
trigger.

The term micro-benchmark4 refers to a well established concept: it is a short, self-contained
instruction sequence specifically designed to analyse (e.g., evaluate) some feature in the
processor core that executes it. For example, the performance counter based nanoBench
framework of Abel and Reineke [AR19] was used to determine (or reverse engineer) the
latency, throughput, and port usage of x86 instructions, and cache architecture of x86
processor cores. We adapt the term as follows:

4Different, context-specific terms are sometimes used for what is essentially the same concept. For
example, the term litmus test is common within the context of concurrent hardware or software.

Ben Marshall, Dan Page and James Webb 9

Definition 9. A leakage micro-benchmark is a specific instruction sequence con-
structed to prove or disprove a hypothesis about, e.g., the existence of a leakage source
(and hence associated leakage effect).

4 Infrastructure
Fundamentally, we are interested in evaluating the (micro-)architectural leakage stemming
from a given processor core. In this section we describe the components of MIRACLE, our
experimental infrastructure and methodology for doing so. We start by introducing high-
level terminology related to the components and processes involved, then, in subsequent
subsections, offer more, lower-level detail.

We refer to the physical integrated circuit containing some System on Chip (SoC) as a
device; such a device will contain one or more cores5. Most devices cannot be used in
a stand-alone manner, because, for example, they require surrounding infrastructure for
power delivery. We refer to this infrastructure as the host platform, noting that both
general-purpose (i.e., support multiple devices), and special-purpose (i.e., be specific to, and
even integrated with a device) instances are possible. As a result, the target of evaluation
is defined by a 3-tuple of core, device, and platform. An evaluation, which we refer to as
an experiment, is coordinated by a controller (i.e., a workstation) in two steps: it 1)
acquires a set of power consumption traces during execution of some micro-benchmark
by the target, then 2) subjects the traces to some form(s) of analysis, attempting to prove
or disprove an associated hypothesis. We refer to the power consumption traces as the
trace data set and results of analysis as the analysis data set.

Note that we avoid direct comparison of data sets stemming from different targets and
therefore devices. For example, a conclusion such as “leakage is stronger in target X than
target Y” is not possible. However, we do compare targets with respect to the associated
hypothesis with a particular micro-benchmark. For example, a conclusion such as “target
X and Y both exhibit leakage effect Z” is possible.

4.1 Devices
Let fd

i denote a device where f is the family identifier (e.g., ARM), d is the core identifier
(i.e., the specific processor core), and i is the instance number (where more than one exits).
Where necessary, we permit further annotation st.

fd
i =⇒ an ASIC-based (or “hard”) device

f̃d
i =⇒ an FPGA-based (or “soft”) device

fd
i [xMHz] =⇒ a device operating at a specific clock frequency (of xMHz)

We use this notation in Table 1, which describes the entire set of 14 different devices
(currently) supported by MIRACLE. Note that each FPGA-based device is synthesised
using Xilinx Vivado 2019.1; default synthesis settings are used, with no effort invested in
synthesis or post-implementation optimisation.

4.2 Platforms
Each device is supported by and so situated within a specific platform. MIRACLE (currently)
supports 3 different platforms, described in detail by the following:

5In our case these are processor cores, but note that the terminology could be extended to accommodate,
e.g., hardware accelerators.

10 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Identifier
Instances

P
latform

V
endor

D
evice

P
ackage

C
ore

M
icro-architecture

ISA
F
lash

SR
A
M

R
eferences

A
RM

N
0

1
SCA

LE
N
X
P

L
P
C
812M

101JD
H
16

T
SSO

P
-16

A
R
M

C
ortex-M

0+
32-bit

2-stage
pipeline

1-cycle
m
ultiplier

A
R
M
6-M

16
kB

4
kB

[A
R
M
b,

N
X
P
a]

A
RM

N
1

1
SCA

LE
N
X
P

L
P
C
1114F

N
28/102

D
IP

-28
A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

32
kB

4
kB

[A
R
M
c,

N
X
P
b]

A
RM

N
2

1
SCA

LE
N
X
P

L
P
C
1313F

B
D
48/151

L
Q
F
P
-48

A
R
M

C
ortex-M

3
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

32
kB

8
kB

[A
R
M
d,

N
X
P
c]

A
RM

N
3

3
CW

308
N
X
P

L
P
C
1115F

B
D
48/303

L
Q
F
P
-48

A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

64
kB

8
kB

[A
R
M
c,

N
X
P
b]

A
RM

S0
1

CW
308

ST
M

ST
M
32F

071R
B
T
6

T
Q
F
P
-64

A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

128
kB

16
kB

[A
R
M
c,

M
ea,

N
ew

]

A
RM

S1
1

CW
308

ST
M

ST
M
32F

100R
B
T
6B

T
Q
F
P
-64

A
R
M

C
ortex-M

3
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

128
kB

8
kB

[A
R
M
d,

M
eb,

N
ew

]

A
RM

S2
1

CW
308

ST
M

ST
M
32F

215R
E
T
6

T
Q
F
P
-64

A
R
M

C
ortex-M

3
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

512
kB

128
kB

[A
R
M
d,

M
ec,

N
ew

]

A
RM

S3
1

CW
308

ST
M

ST
M
32F

303R
C
T
7

T
Q
F
P
-64

A
R
M

C
ortex-M

4
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

256
kB

40
kB

[A
R
M
e,

M
ed,

N
ew

]

A
RM

S4
1

CW
308

ST
M

ST
M
32F

405R
G
T
6

T
Q
F
P
-64

A
R
M

C
ortex-M

4
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7E

-M
1

M
B

192
kB

[A
R
M
e,

M
ee,

N
ew

]

A
RM

S5
3

CW
308

ST
M

ST
M
32F

051C
8T

6
L
Q
F
P
-48

A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

64
kB

8
kB

[A
R
M
c,

M
ef]

M̃
B

X
0

1
SA

SEB
O

-G
III

X
L
N
X

M
icroB

laze
v10.0

32-bit
3-stage

pipeline
M
icroB

laze
[X

ila]

M̃
B

X
1

1
SA

SEB
O

-G
III

X
L
N
X

M
icroB

laze
v10.0

32-bit
5-stage

pipeline
M
icroB

laze
[X

ila]

M̃
B

X
2

1
SA

SEB
O

-G
III

X
L
N
X

M
icroB

laze
v10.0

32-bit
8-stage

pipeline
M
icroB

laze
[X

ila]

R̃V
PRV

1
SA

SEB
O

-G
III

P
icoR

V
32

32-bit
m
ulti-cycle

R
V
32IM

C
[W

ol]

Table
1:

Pertinent
technicaldetailfor

each
device

(currently)
supported

by
M

IRACLE.
N
ote

that
w
e
use

a
short-hand

for
vendors:

N
X
P

denotes
N
X
P,ST

M
denotes

ST
M
icroelectronics,IN

T
C

denotes
Intel,X

LN
X

denotes
X
ilinx.

Ben Marshall, Dan Page and James Webb 11

1 extern volatile void payload (word_t * inputs);
2

3 void driver (ctx_t* ctx) {
4 word_t * inputs = ctx -> receive_inputs ();
5 ctx -> device_set_trigger ();
6 payload (inputs);
7 ctx -> device_clear_trigger ();
8 }

(a) The goal-agnostic, high-level driver (implemented in C).

1 .global payload
2

3 payload : push { r4, r5, r6, r7, lr } // Preserve callee save GPRs
4 <clear callee save registers >
5 <load inputs >
6 kernel : <execute kernel >
7 <clear used registers >
8 pop { r4, r5, r6, r7, pc } // Restore callee save GPRs

(b) The goal-specific, low-level payload (implemented in assembly language).

Figure 2: The 2-part structure of each micro-benchmark.

• SCALE describes a platform based on the SCALE6 host board; it supports a range of
interchangeable target boards, and thus devices. The trace acquisition pipeline includes
an on-board NXP BGA2801 amplifier (with 22 dB gain), and an on-board 2.6 MHz
low-pass filter.

• CW308 describes a platform based on the ChipWhisperer CW308 (or UFO)7 host board;
it supports a range of interchangeable target boards, and thus devices. The trace
acquisition pipeline includes an off-board Agilent 8447D amplifier (with 25 dB gain),
and an off-board MiniCircuits SLP-30+ 32 MHz low-pass filter.

• SASEBO-GIII describes a platform based on the SASEBO-GIII [HKSS12] side-channel
analysis platform; it houses two FPGAs, a Xilinx Kintex-7 (model xc7k160tfbg676)
target FPGA, and a Xilinx Spartan-6 (model xc6slx45) support FPGA, and thus can
be reconfigured to support a range of devices. The trace acquisition pipeline includes
an off-board MiniCircuits BLK+89 D/C blocker, an off-board Agilent 8447D amplifier
(with 25 dB gain), and an off-board MiniCircuits SLP-30+ 32 MHz low-pass filter.

The trace acquisition process is coordinated by a controller, which is connected to and
so communicates with both the platform and a PicoScope 5000 series oscilloscope which
terminates the trace acquisition pipeline. Although a platform- and/or device-specific
approach to configuration and programming is required (e.g., via a Xilinx Platform Cable
USB II for the SASEBO-GIII platform, or a Segger J-Link and OpenOCD for ARM-based
devices), communication between the controller and platform is supported in a more
uniform manner: each platform uses an FTDI-based FT232 USB-to-UART bridge then
exposed to the device, which is on-board for the SCALE platform and off-board for the
CW308 and SASEBO-GIII platforms.

12 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

4.3 Micro-benchmarks
Notation. MIRACLE (currently) supports 23 different micro-benchmarks, each of which
we refer to using major/minor as a short-hand: major is the major micro-benchmark
identifier (or class), and minor is the minor micro-benchmark identifier (i.e., instance
within said class). Where clear from the context, we use the minor micro-benchmark
identifier alone.

Each micro-benchmark must be implemented for each device, or, rather, for each
unique ISA. The 7 different cores (currently) supported by MIRACLE span 4 different ISAs,
however, which presents a challenge with respect to how to describe them. We use one of
two approaches, depending on who or what the user of such a description is. First, our
human-readable “on paper” description uses the combination of 1) a written explanation of
the underlying goal, plus 2) an illustrative, pseudo-code example implementation modelled
on the use of ARMv7-M; in some instances, we employ stylistic alterations8 to improve
their readability. On one hand, we use ARMv7-M because we expect this to be the most
familiar of those ISAs support (and so add most value with respect to illustrating the
underlying goal). On the other hand, although concrete ARMv7-M assembly language
syntax and instruction mnemonics are used, for example, we opt for abstract, symbolic
notation for values, register identifiers, etc. More specifically, we use the following notation:
• A through H represent variables; note these are not hexadecimal literals, which would be

prefixed by #. Unless otherwise noted or self-evident, any two variables, say A and B,
are always allocated different architectural registers.

• rA, for example, denotes a register which contains some variable A which is relevant to
the associated experiment.

• rX and rY denote registers which contain an address or variable which is irrelevant to
the associated experiment.

• rZ denotes a register which contains zero.
Second, our machine-readable “as source code” description is then of course a functionally
equivalent but ISA-specific realisation of the pseudo-code; in doing so there is need to
cope with differences between ISAs (e.g., the availability of a specific instruction type, or
addressing mode), but, in all cases, we carefully avoid impact on the underlying hypothesis.
Beyond formulation of the micro-benchmark goal, we found this to be the most fragile and
therefore challenging aspect of the development process.

Structure. Each micro-benchmark is implemented using the 2-part structure described in
Figure 2: the goal-agnostic, high-level micro-benchmark driver (Figure 2a) is implemented
using C, whereas the goal-specific, low-level micro-benchmark payload (Figure 2b) is
implemented using assembly language for the appropriate ISA. The driver part is identical
for all devices, but specific to a given micro-benchmark: it is responsible, e.g., for 1)
receiving a set of inputs, which are generated uniformly at random then communicated
by the controller, 2) managing aspects of trace acquisition (e.g., the trigger signal),
and 3) invoking the associated payload. Note that word_t is typedef’ed to reflect the
word size, e.g., to uint32_t or uint64_t. The payload part is responsible for realising
the micro-benchmark itself; the micro-benchmark kernel is surrounded by additional
instructions, which, for example, 1) clear callee-save registers before execution to ensure a
fixed architectural state and prevent interaction with the input, and 2) clear all registers
used by the kernel after one execution to prevent interaction with subsequent executions.

6https://github.com/danpage/scale-hw
7https://wiki.newae.com/CW308_UFO_Target
8Examples include additional space or indentation, or labels which are either shorter or more meaningful

given the associated description.

https://github.com/danpage/scale-hw
https://wiki.newae.com/CW308_UFO_Target

Ben Marshall, Dan Page and James Webb 13

Analysis. For a given device, we execute each each micro-benchmark n times and so
acquire n associated traces of power consumption; these, along with the input variables
that allows us to completely all intermediate values, constitute the trace data set for a given
experiment. Unless otherwise stated, and without loss of generality, we fix n = 20, 000 for
ASIC-based devices and n = 30, 000 for FPGA-based devices; the traces are padded or
truncated appropriately so each one contains m samples.

MIRACLE (currently) supports 14 devices and 23 benchmarks, meaning a total of 322
such trace data sets. We subject each one to Hamming weight and Hamming distance
based correlation analysis, opting for this approach over techniques such as Test Vector
Leakage Assessment (TVLA) [GJJR11] or Welch’s t-test [Wel47] because it allows more
confidence in a qualitative assessment of 1) whether or not there was an interaction between
variables, and 2) exactly which interactions take place if so. Finally, the analysis data set
that results is manually used to reason about a conclusion to the hypothesis associated
with the experiment.

4.4 Artifacts
Among the goals of MIRACLE, we view accessibility, reproducibility, and extensibility as
important9 and so in need of explicit consideration: other researchers should, as far as
possible, be able to access all the associated artefacts (i.e., source code and data sets),
reproduce (and/or contest!) our conclusions, and develop and use, for example, additional
micro-benchmarks for their own platforms and/or devices.

Similar goals are now best practice for research in general, but, within the context of
MIRACLE specifically, we address them in two ways. First, all source code for MIRACLE is
available online at

https://github.com/scarv/miracle

Second, we developed a web-based interface at

https://miracle.scarv.org

which offers a straightforward way to 1) inspect the binary or disassembled form of each
micro-benchmark, and 2) view and compare the associated analysis data sets. Note,
however, that we do not (currently) retain any trace data sets. These (currently) represent
more than 1 TB, which means the monetary cost and logistics of long-term storage and
access are (currently) problematic. We hope to find a way to resolve this in the future.

5 Case studies
Note that all devices (currently) supported by MIRACLE, per Table 1, have a 32-bit
data-path and could be described as micro-controller class. Although MIRACLE is
general-purpose, this (initial) selection was intended to facilitate an exploration of (micro-
)architectural leakage stemming from ostensibly similar (i.e., from the same class, and so
designed to satisfy similar use-cases) devices commonly used in existing literature.

Using the MIRACLE infrastructure outlined in Section 4, this section presents said
exploration via a set of case studies: each has the same structure, in the sense it 1) describes
the set of micro-benchmarks used, 2) summarises the resulting analysis data sets, then
3) discusses those results, e.g., attempting to explain their occurrence, relevance, and/or
implication. Some case studies replicate and generalise results in existing literature, while
others, to the best of our knowledge, are novel (either in terms of the leakage effect and/or
associated source).

9We point, for example, to the TCHES artifact evaluation process at https://ches.iacr.org/2021/
artifacts.php as evidence for this claim.

https://github.com/scarv/miracle
https://miracle.scarv.org
https://ches.iacr.org/2021/artifacts.php
https://ches.iacr.org/2021/artifacts.php

14 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

1 .text
2 kernel : ldr rA, [rC, #0]
3 eor rE, rE, rE
4 ldr rB, [rD, #0]

(a) memory-bus/ld-ld: load-after-load.

1 .text
2 kernel : ldr rA, [rC, #0]
3 eor rE, rE, rE
4 str rB, [rD, #0]

(b) memory-bus/ld-st: store-after-load.

1 .text
2 kernel : str rA, [rC, #0]
3 eor rE, rE, rE
4 ldr rB, [rD, #0]

(c) memory-bus/st-ld: load-after-store.

1 .text
2 kernel : str rZ, [rA, #0]
3 eor rE, rE ,rE
4 str rZ, [rB, #0]

(d) memory-bus/st-st-1: store-after-store,
overwrite with zero value.

1 .text
2 kernel : str rA, [rC, #0]
3 eor rE, rE ,rE
4 str rB, [rD, #0]

(e) memory-bus/st-st-2: store-after-store,
overwrite with security-critical value.

1 .text
2 kernel : str rA, [rD, #0]
3 str rB, [rE, #0]
4 str rC, [rD, #0]

(f) memory-bus/st-st-3: store-after-store,
with intermediate flush.

Figure 3: Pseudo-code for micro-benchmarks described in Section 5.1.1, i.e., those related
to the case study on hidden state in the memory access path.

5.1 Memory: hidden state
This case study focuses on the so-called memory remnant effect, as observed, for example,
by Papagiannopoulos and Veshchikov [PV17, Section 3.2] who describe it as relating
to “leakage originating from consecutive SRAM accesses”. In short, it captures the
fact consecutive memory accesses may interact even if those accesses involve different
architectural state This can be a challenging effect to identify and resolve, because 1)
intermediate (e.g., ALU) instructions may not prevent leakage, and thus 2) leakage may
occur due to instructions which occur far apart.

5.1.1 Micro-benchmarks

Figure 3 includes pseudo-code for the micro-benchmarks used, which can be described as
follows:

1. memory-bus/ld-ld (Figure 3a): an ldr instruction, followed by an intermediate eor
(i.e., ALU) instruction, followed by an ldr instruction, none of which access the same
architectural state (i.e., general-purpose registers, nor addresses in memory). The aim
is to answer the question is there Hamming distance leakage between the values loaded,
i.e., is there hidden state in the memory access path for ldr instructions (implying a
possibility they interact)?

2. memory-bus/ld-st (Figure 3b): as memory-bus/ld-ld, except with the second ldr
instruction replaced by a str instruction. The aim is to answer the question is there
Hamming distance leakage between the values loaded and stored, i.e., is there hidden
state in the memory access path for ldr and str instructions (implying a possibility they
interact)?

3. memory-bus/st-ld (Figure 3c): as memory-bus/ld-st, but with the order of ldr
and str instructions swapped.

Ben Marshall, Dan Page and James Webb 15

Table 2: A summary of results stemming from the micro-benchmarks in Figure 3, i.e., cases
which explore Hamming distance leakage from combinations of ldr and str instructions.
Note that AC, for example, indicates that the Hamming distance between A and C was
leaked.

Device ld-ld ld-st st-ld st-st-1 st-st-2 st-st-3
ARMN0 AB AB
ARMN1 AB AB
ARMN2 AB AB AB AB
ARMN3 AB AB AB
ARMS0 AB AB AB AB
ARMS1 AB AB AB AB
ARMS2 AB
ARMS3 AB AB AB AB
ARMS4 AB AB
ARMS5 AB AB AB AB
MBX0 AB AB AB AB
MBX1

MBX2 AB
RVPRV

4. memory-bus/st-st-1 (Figure 3d): an str instruction, followed by an intermediate eor
(i.e., ALU) instruction, followed by an str instruction, none of which access the same
architectural state (i.e., general-purpose registers, nor addresses in memory). The aim is
to answer the question if a security-critical value is stored in memory, is the Hamming
weight leaked by overwriting it with zero?

5. memory-bus/st-st-2 (Figure 3e): as memory-bus/st-st-1, but with the str instruc-
tions storing a non-zero value. The aim is to answer the question is there Hamming
distance leakage between the values stored, i.e., is there hidden state in the memory access
path for str instructions (implying a possibility they interact)?

6. memory-bus/st-st-3 (Figure 3f): as memory-bus/st-st-2, but with 1) the str
instructions accessing the same address, and 2) the intermediate instruction replaced
with another str, which stores a zero value. The aim is to answer the question does the
intermediate str instruction flush hidden state in the memory access path, i.e., is any
Hamming weight leakage due to hidden state, or to the memory access itself.

5.1.2 Results

Each micro-benchmark in this case study is functionally equivalent across the set of devices
used, and, where permitted by the ISA, identical. Despite this fact, we observe markedly
different leakage behaviour across those targets. For example, from Table 2 one can identify
various classes of difference:
1. equivalent instruction sequences executed on different cores that use different ISAs, e.g.,

Xilinx MicroBlaze versus ARM,
2. identical instruction sequences executed on different cores (from the same vendor) that

use the same ISA, e.g., Xilinx MicroBlaze,
3. identical instruction sequences executed on different cores (from different vendors in

different SoCs), that use the same ISA, e.g., NXP- versus ST-based ARM Cortex-M3,
and

4. identical instruction sequences executed on the same core (from the same vendor in
different SoCs), e.g., ST-based ARM Cortex-M3.

16 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Some experiments show very consistent behaviour across architectures. For example, all of
the ARM cores behave identically for the memory-bus/ld-ld experiment. This result is
widely reported in the literature. However, when looking at interactions between load and
store instructions (such as might occur when spilling registers to the stack) separated by
an ALU instruction (memory-bus/ld-st and memory-bus/st-ld) we see very different
results not only between different CPU cores, but even between the same CPU core
implemented by the same manufacturer but in different devices. For example, loaded
and stored values interact in the ARMS1 and ARMS3 devices, both manufactured by ST
Microelectronics. However, the ARMS2 and ARMS4 devices when running exactly the same
code, do not leak in the same way, despite the underlying CPU core, and ISA (and hence
program binary) being identical. Closer inspection of the data-sheets for these devices
reveals that the ARMS2 and ARMS4 are high performance variants, with higher maximum
operating frequencies.

A similar comparison can be made between the Xilinx MicroBlaze cores, where the
3-stage MBX0 had clear interactions between loaded and stored values, but in the longer
pipelined MBX1 and MBX2, the loaded and stored values do not interact.

For the store-store experiments, we see no Hamming distance leakage between the
memory-bus/st-st-1 and memory-bus/st-st-3 variants. From this, we conclude that
(for the number of traces we collected), leakage originates exclusively from registers in
either the CPU core or the memory hierarchy, not from inside the SRAM. Indeed, only the
memory-bus/st-st-2 experiment causes Hamming distance leakage between the values
being stored. This suggests that in some cases, so long as there is an intervening store to
another address (thus flushing the store data-path), values with the same mask may be
safely overwritten in memory without causing leakage. This avoids the need for expensive
countermeasures (some of which are well described in [SSB+20]), but we urge developers
to verify that this holds on their own platforms themselves.

5.1.3 Discussion

In explaining some of the differences between targets with the same core but different leakage
behaviours (ARMS2 and ARMS4), we hypothesise that the need to meet tighter timing
requirements drove various design decisions regarding the core and memory interconnect,
which apparently have led to totally separate load and store data-paths. Regardless of the
actual reason for this difference in behaviour, from a leakage perspective, this is a critical
difference between cores which must be accounted for.

Based on our observations, we extend the notion of adjacent instructions to describe
different types of instruction:

Definition 10. Two distinct instructions can be described as
• program-adjacent if they are executed in consecutive execution cycles (i.e., they

appear consecutively in program order),
• memory-adjacent if they are both load or store instructions, and no intermediate load

or store instructions are executed between them,
• load-adjacent if they are both load instructions, and no intermediate load instructions

are executed between them,
• store-adjacent if they are both store instructions, and no intermediate store instructions

are executed between them.

It should be clear that store-adjacent and load-adjacent instructions are mutually exclusive,
and are both subsets of memory-adjacent instructions. We can now say that for some cores,
memory-adjacent instructions will leak the Hamming distance between values written or
read from memory, e.g. the ARMN2. However, in the case of the ARMS2, only load-adjacent
and store-adjacent instructions will leak as such. We believe that tagging instructions

Ben Marshall, Dan Page and James Webb 17

1 .data
2 .align 4
3 X: .byte 0,0,0,A,0,0,0,0
4

5 .text
6 kernel : ldr rX, =X
7 ldrb rA, [rX, I]

(a) memory-bus/width-ld-byte: load from
byte array.

1 .data
2 .align 4
3 X: .byte 0,0,0,A,0,0,0,0
4

5 .text
6 kernel : ldr rX, =X
7 strb rZ, [rX, I]

(b) memory-bus/width-st-byte: store zero
into byte array.

1 .data
2 .align 4
3 X: .hword 0,A,0,0
4

5 .text
6 kernel : ldr rX, =X
7 ldrh rA, [rX, I]

(c) memory-bus/width-ld-half: load from
half-word array.

1 .data
2 .align 4
3 X: .hword 0,A,0,0
4

5 .text
6 kernel : ldr rX, =X
7 strh rZ, [rX, I]

(d) memory-bus/width-st-half: store zero
into half-word array.

Figure 4: Pseudo-code for micro-benchmarks described in Section 5.2.1, i.e., those related
to the case study on width of the memory access path. Note that for both of these
experiments I is a parameter rather than a variable: the micro-benchmark is executed 8
separate times (i.e., for I ∈ {0, 1, . . . , 7}) for the byte cases, and 4 separate times (i.e., for
I ∈ {0, 1, . . . , 3}) for the half-word cases.

as such will make formal modelling of memory hierarchy related leakage much easier to
reason about. There are also obvious similarities between memory consistency models and
ordering constraints or fences in various ISAs. We hope that these rules can be easily
added to static program checkers, and be used as extra information when looking for
interactions between variables.

Based on the leakage taxonomy developed in Section 3, we classify these effects as
sequential, inter-instruction micro-architectural leakage. Per target device, we can now
explain concisely whether, e.g. load-adjacent instructions suffer from inter-instruction
sequential micro-architectural leakage, or not.

For the ARM devices, we believe that the range of observed behaviours are much less
surprising given a thorough reading of the AMBA-AHB bus standard [ARMa]. This bus
standard is used by all of the ARM micro-controllers in the study. It is explicitly described
as a pipelined bus architecture. Hence, the existence of some micro-architectural state
should be expected. Observing [ARMa, Figure 1-1], the AHB block diagram, it is clear
that there are opportunities for registers to be placed in several places, with only a finite
number of sensible design choices for engineers to follow. This is shown in our results,
because although different cores from the same manufacturer do differ, given that they
differ, they differ consistently. This suggests it is possible to separate the leakage modelling
of CPUs from the modelling of the memory interconnect.

5.2 Memory: data bus widths
This case study focuses on the interaction between data-type width (e.g., uint8_t,
uint16_t, and uint32_t) and memory bus width. The central question is how does
the memory sub-system satisfy an n-byte memory access, e.g., are exactly n bytes loaded,

18 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Table 3: A summary of results stemming from the micro-benchmarks in Figure 4a and
Figure 4c i.e., cases which explore Hamming distance leakage from 8-bit, byte load (ldrb)
instructions and 16-bit, half-word load (ldrh) instructions respectively. Note that each
numbered column refers to the offset I into the array X, with a bold number used to
highlight the offset for A; a 4in the i-th column indicates that the Hamming weight of A
was leaked.

Device ldrb ldrh
0 1 2 3 4 5 6 7 0 1 2 3

ARMN0 4 4 4 4 4 4

ARMN1 4 4 4 4 4 4

ARMN2 4 4 4 4 4 4

ARMN3 4 4 4 4 4 4

ARMS0 4 4 4 4 4 4

ARMS1 4 4 4 4 4 4

ARMS2 4 4 4 4 4 4

ARMS3 4 4 4 4 4 4

ARMS4 4 4 4 4 4 4

ARMS5 4 4 4 4 4 4

MBX0 4 4 4 4 4 4

MBX1 4 4 4 4 4

MBX2 4 4 4 4

RVPRV 4 4 4 4 4 4

Table 4: A summary of results stemming from the micro-benchmarks in Figure 4b and
Figure 4d, i.e., cases which explore Hamming distance leakage from 8-bit, byte store (strb)
instructions and 16-bit, half-word store (strh) instructions respectively. Note that each
numbered column refers to the offset I into the array X, with a bold number used to
highlight the offset for A; a 4in the i-th column indicates that the Hamming weight of A
was leaked.

Device strb strh
0 1 2 3 4 5 6 7 0 1 2 3

ARMN0

ARMN1

ARMN2

ARMN3

ARMS0 4 4 4 4

ARMS1 4 4 4 4

ARMS2

ARMS3 4 4 4 4

ARMS4

ARMS5 4 4 4

MBX0 4 4

MBX1

MBX2 4

RVPRV 4

Ben Marshall, Dan Page and James Webb 19

or are m > n bytes loaded and then m− n discarded? The answer is important, because
there are different approaches possible and each (potentially) has a different implication
for associated leakage. Shelton et al. [SSB+20, Section IV.E] note that such leakage is
evident on an ST-based ARM Cortex-M0 and in the ELMO [MWO16] power model: based
on their observations as a starting point, our aim is to then 1) evaluate whether the same
leakage effect is evident on other devices, and 2) explain the underlying leakage source(s).

5.2.1 Micro-benchmarks

Figure 4 includes pseudo-code for the micro-benchmarks used; both cases uses an 8-byte,
word-aligned array X. Each element of X is initialised to zero, bar one which is instead
initialised to a security-critical value A.

For the load (Figure 4a) case, the micro-benchmark loads an 8-bit (ldrb) or 16-bit
(ldrh) value from a given offset I within X. If only those bytes required are accessed,
we expect leakage only for an offset which implies access to the security-critical value; if
leakage is observed at other offsets, we infer that bytes other than those required are also
accessed. For the store (Figure 4b) case, the micro-benchmark stores an 8-bit (strb) or
16-bit (strh) zero value at a given offset I within X. Again, the presence (resp. absence)
of leakage for a given offset allows us to infer which bytes are accessed.

5.2.2 Results

Table 3 shows consistent sub-word load behaviour for all of the ARM cores in the study.
Again, this effect has been noted in the literature, and we are unsurprised to confirm
it across multiple devices and manufacturers. We note however the mixed results for
MicroBlaze devices.

For stores, Table 4 shows differing behaviour between different cores, and even the
same core implemented in different devices when adjacent bytes in memory are overwritten
with zeros. We note that results for ARMS1, ARMS3, ARMS2, and ARMS4 appear to mirror
the results observed in Table 2. Comparatively few devices showed any leakage in this case
and it is not immediately clear why Hamming weight leakage should be visible for a byte
in memory when the word is being written too, but that exact byte is not changing value.

For the store experiments, we also note the clear divide between ARM based targets
manufactured by ST-Microelectronics, which show various sources of leakage, and those
built by NXP, which show no leakage at all for the same experiments. Recall again that
where possible, the binary code running on each device is identical, yet still yields very
different leakage behaviour.

5.2.3 Discussion

For the differing results of the MicroBlaze devices, we hypothesise this is a side effect of
how FPGA BRAMs are grouped together to form different word sizes. The Xilinx 7-Series
FPGA BRAMS have port widths10 of 18, 36, and 72 bits [Xilb][Chapter 1]. Hence two
BRAMs must be grouped together to create a 32-bit word. There is no guarantee from the
Xilinx IP descriptions, or the synthesis tools, on how sub-word accesses to grouped BRAMs
will behave. This is evident from the somewhat inconsistent results for the MicroBlaze
cores when loading bytes and half-words. We ran all of the experiments through the Local
Memory Bus (LMB) [Xila][Chapter 3, P155] used by the MicroBlaze core “primarily to
access on-chip block RAM.”

For the stores case, we hypothesise that leakage behaviour here is heavily dependant
on the behaviour of the hardened RAMs. For example, it is possible that even when only

10Note that for some power-of-two n, use of an (n + m)-bit (e.g., 18) port width is intended to support
n bits (e.g., 24 = 16) of data plus m bits (e.g., 2) of error correction meta-data in hardware.

20 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

1 .data
2 .align 4
3 X: .byte A,B,C,D,E,F,G,H
4

5 .text
6 kernel : ldr rX, =X
7 ldrb rA, [rX, #0]
8 ldrb rB, [rX, #1]
9 ldrb rC, [rX, #2]

10 ldrb rD, [rX, #3]
11 ldrb rE, [rX, #4]
12 ldrb rF, [rX, #5]
13 ldrb rG, [rX, #6]
14 ldrb rH, [rX, #7]

(a) memory-bus/seq-ld: sequential load
bytes from array.

1 .data
2 .align 4
3 X: .byte 0,0,0,0,0,0,0,0
4

5 .text
6 kernel : ldr rX, =X
7 strb rA, [rX, #0]
8 strb rB, [rX, #1]
9 strb rC, [rX, #2]

10 strb rD, [rX, #3]
11 strb rE, [rX, #4]
12 strb rF, [rX, #5]
13 strb rG, [rX, #6]
14 strb rH, [rX, #7]

(b) memory-bus/seq-st: sequential store
bytes into array.

Figure 5: Pseudo-code for micro-benchmarks described in Section 5.3.1, i.e., those related
to the case study on sequential use of the memory access path.

a single byte is being explicitly accessed, the entire word is implicitly accessed (i.e. it’s
value is read out of the cell array) within the RAM, whether it is for a load or a store. We
note that we never see Hamming weight leakage when the value in memory is explicitly
overwritten with zeros. This might imply forwarding behaviour inside the RAMs, where
the RAM always reads the word being accessed (regardless of whether it is a load or store),
and where the word being read is being written in the same cycle, the written value is
forwarded to the RAMs read data register.

As to the difference in stored value leakage behaviour between manufacturers, again
we hypothesise this is down to differences in manufacturing approach for the hardened
RAMs. We do not believe it is reasonable to conclude that NXP devices are on the whole
less leaky, but note that this starkly illustrates how families of devices can behave very
differently under leakage analysis.

Again, we classify these effects as load/store-adjacent, inter-instruction, sequential
micro-architectural.

5.3 Memory: sequential accesses
This case study focuses on the behaviour of sequential accesses (i.e., loads or stores) to
memory. Such an access patter can arise, for example, when the nature data-type is
uint8_t, or when accessing regions of (e.g., an array in) memory with unknown alignment.
The central question is if one loads (resp. stores) bytes from (resp. into) different addresses
in memory into (resp. from) different architectural registers, is it possible they interact?
From an architectural perspective the answer should clearly be no, and so any leakage
must stem from (micro-architectural) state within the memory sub-system.

5.3.1 Micro-benchmarks

Figure 5 includes pseudo-code for the micro-benchmarks used; both cases uses an 8-byte,
word-aligned array X.

For the load (Figure 5a) case, the micro-benchmark loads a sequence of bytes from
different, consecutive addresses in memory into different architectural registers: note that
ldr rA, [rX, #0] should be read as “load the 0-th element of X, i.e., the variable A, into

Ben Marshall, Dan Page and James Webb 21

Table 5: A summary of results stemming from the micro-benchmarks in Figure 5a, i.e.,
cases which explore Hamming distance leakage from 8-bit, byte load (ldrb) instructions
using different, consecutive addresses and different architectural registers; the results focus
on ST-based devices only. Note that a 4in the i-th column and j-th row indicates that
the Hamming distance between the i-th and j-th bytes loaded was leaked.

0 1 2 3 4 5 6 7
0 4 4 4 4
1 4
2 4
3 4
4 4
5
6

(a) ARMS0.

0 1 2 3 4 5 6 7
0 4 4 4
1 4 4
2 4 4
3 4
4 4
5 4
6 4

(b) ARMS1.

0 1 2 3 4 5 6 7
0 4 4 4
1 4
2 4 4
3 4
4 4
5 4
6

(c) ARMS2.

0 1 2 3 4 5 6 7
0 4 4 4
1 4 4
2 4 4
3 4
4 4
5 4
6

(d) ARMS3.

0 1 2 3 4 5 6 7
0 4 4 4
1 4 4
2 4 4
3 4 4
4 4
5
6

(e) ARMS4.

0 1 2 3 4 5 6 7
0 4 4 4 4
1 4
2 4
3 4
4 4
5 4
6

(f) ARMS5.

22 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

register rA”. Any Hamming distance leakage between the bytes loaded allows us to infer
the presence of shared state, e.g., within 1) the memory sub-system, and/or 2) the pipeline
stages used by the core (i.e., between a value being received from memory by the core, and
being written into a GPR). For the load (Figure 5a) case, the micro-benchmark stores a
sequence of bytes from different architectural registers into different, consecutive addresses
in memory: note that str A, [rX, #0] should be read as “store register rA, i.e., the
variable A, into the 0-th element of X”. Any Hamming distance leakage allows similar
inferences to the load case, but could also indicate that additional pipeline register(s) exist
between the register file and the memory write-port.

5.3.2 Results

The results for a representative subset of the memory-bus/seq-ld experiment can be
found in Table 5. We can see two main effects, namely 1) bytes within a word can interact
but may not, and 2) the i-th byte of the array will often interact with the (i + 4)-th byte
of the array.

5.3.3 Discussion

We believe the first effect is due to the necessary multiplexing to select any byte of a loaded
memory word, and to place it in the least significant byte of an architectural register.
Clearly this multiplexing does not always cause visible leakage for the number of traces
used in these experiments.

For the second effect, we believe this is because (as established in prior experiments),
even when a byte of memory is requested, in reality, an entire word is loaded. Hence,
when we load the first four bytes of the array, we are really repeatedly loading the entire
first word. When we load byte 4 of the array, an entire new word is loaded into some
micro-architectural state, and we see Hamming distance leakage between all corresponding
bytes. Again, none of the instructions shared architectural destination registers, meaning
all of the interactions are due to the micro-architectural leakage.

We believe the inconsistency of our results is down to two major factors. First, that if
we collected more traces we would see more consistent results. Second, that for a given
number of traces, not all intra-cycle leakage (e.g. in multiplexer trees) can manifest, due
to subtle differences in the final post-layout silicon design.

For this particular effect, we note the existence of two distinct sources of micro-
architectural leakage according to our classification. First, we see inter-instruction sequen-
tial micro-architectural leakage, as we have with other memory bus experiments. However,
we also see intra-instruction, glitching combinatorial micro-architectural leakage, where
bytes of the loaded word interact with each other through the multiplexers, which select
which byte of the word is written back to a general purpose register.

5.4 Pipeline register overwrites
Shelton et al. [SSB+20] focus on an ST-based ARM Cortex-M0, which has a 3-stage
pipeline and thus 2 sets of pipeline registers. We extend this remit, applying a similar
methodology (i.e., that of using a set of micro-benchmarks) to devices which have more
diverse micro-architectures and hence different, more complex pipeline structures. In doing
so, we demonstrate how to answer an important question, namely in a scalar pipeline, do
consecutive instructions that use different destination registers cause Hamming distance
leakage between instruction results? From an architectural perspective the answer should
clearly be no, and so any leakage must stem from (micro-architectural) state within the
pipeline structure.

Ben Marshall, Dan Page and James Webb 23

1 .text
2 kernel : eor rA, rA, rB
3 eor rC, rC, rD

(a) pipeline/eor-eor: eor-eor interaction.

1 .text
2 kernel : eor rA, rA, rB
3 add rC, rC, rD

(b) pipeline/eor-add: eor-add interaction.

1 .text
2 kernel : eor rA, rA, rB
3 lsl rC, rD, #8

(c) pipeline/eor-lsl: eor-lsl interaction.

1 .text
2 kernel : eor rA, rA, rB
3 ror rC, rD, #8

(d) pipeline/eor-ror: eor-ror interaction.

1 .text
2 kernel : eor rA, rA, rB
3 ldr rC, [rD, #0]

(e) pipeline/eor-ldr: eor-ldr interaction.

1 .text
2 kernel : eor rA, rA, rB
3 str rC, [rD, #0]

(f) pipeline/eor-str: eor-str interaction.

1 .text
2 kernel : eor rA, rA, rB
3 nop
4 eor rC, rC, rD

(g) pipeline/nop-eor: eor-eor interaction,
with intermediate nop.

Figure 6: Pseudo-code for micro-benchmarks described in Section 5.4.1, i.e., those related
to the case study on pipeline register use.

Table 6: A summary of results stemming from the micro-benchmarks in Figure 6, i.e.,
during execution of a given instruction pair, was there Hamming distance leakage; N/A
indicates the instruction pair (e.g., due to use of ror) is not supported by the ISA associated
with that device.
Device eor-eor eor-add eor-lsl eor-ror eor-ldr eor-str eor-nop
ARMN0 4 4

ARMN1 4 4 4

ARMN2 4 4 4 4

ARMN3 4 4 4

ARMS0 4 4 4 4 4

ARMS1 4 4 4 4

ARMS2 4

ARMS3 4 4 4

ARMS4 4 4

ARMS5 4 4

MBX0 4 N/A 4 4

MBX1 4 4 4 N/A 4 4

MBX2 4 4 4 N/A 4 4

RVPRV N/A

24 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Table 7: A summary of results stemming from the micro-benchmarks in Figure 6, i.e.,
during execution of a given instruction pair, which operands caused Hamming distance
leakage; N/A indicates the instruction pair (e.g., due to use of ror) is not supported by the
ISA associated with that device. Note that AC, for example, indicates that the Hamming
distance between variables A and C was leaked. The Hamming distance between variables
A and B was leaked in all cases, so have been omitted.
Device eor-eor eor-add eor-lsl eor-ror eor-ldr eor-str eor-nop
ARMN0 BD BD AC AB BC
ARMN1 AC, AD, BD AC, BD AD, BD AC BC
ARMN2 AC, BD AC, BD AD, BD AC BC AC, BD
ARMN3 BD BD BC
ARMS0 AC, BD AC, BD AD, BD AC BC
ARMS1 AC, BD AC, BD, CD AD, BD AC BC AC, BD
ARMS2 AC, BD AC, BD AD, BD BC BD
ARMS3 AC, AD AC, AD, BD AD, BD AC, BC BC AC, AD
ARMS4 AC, AD, BD AC, AD, BD AD, BD BC BC
ARMS5 AC, BD AC, BD AD AC BC
MBX0 AC, BD AC, BD AD N/A
MBX1 AC, BD AC, BD AC, AD N/A AD AC
MBX2 AC, BD AC, BD AC, AD N/A AD AC
RVPRV AC, BD AC, BD AD N/A BC

The information generated by this methodology is useful, for example, to 1) reverse
engineer details of the (unknown) pipeline structure, and, therefore, 2) model how in-flight
instructions proceed through each stage of execution, e.g., whether and how they, and
associated intermediate values, interact with each other. Of course, with white-box access
to the micro-architectural design, e.g., the HDL, per the MAPS simulator of Le Corre
et al. [CGD18] for ARM Cortex-M3, one can obtain similar information more directly.
However, we argue that a grey-box approach is more scalable: it can cater for cases when
said design is unknown and/or inaccessible.

5.4.1 Micro-benchmarks

Figure 6 includes pseudo-code for the micro-benchmarks used, which can be described as
follows:

1. pipeline/eor-eor (Figure 6a): an eor instruction followed by another eor instruction,
neither of which access the same architectural state (i.e., general-purpose registers). The
aim is to answer the questions is there Hamming distance leakage between the operands,
and is there Hamming distance leakage between the results?

2. pipeline/eor-add (Figure 6b): as pipeline/eor-eor, except with the second eor
instruction replaced by an add instruction.

3. pipeline/eor-lsl (Figure 6c): as pipeline/eor-eor, except with the second eor
instruction replaced by an lsl instruction (i.e., a left-shift). The aim is to answer
the additional question which (potential) pipeline register stores the immediate value
involved?

4. pipeline/eor-ror (Figure 6d): as pipeline/eor-lsl, except with the lsl instruction
replaced by a ror instruction (i.e., a right-rotate).

5. pipeline/eor-ldr (Figure 6e): as pipeline/eor-eor, except with the second eor
instruction replaced by an ldr instruction. The aim is to answer the question do results
produced by the ALU interact with values loaded from memory?

Ben Marshall, Dan Page and James Webb 25

6. pipeline/eor-str (Figure 6f): as pipeline/eor-ldr, except with the ldr instruction
replaced by an str instruction. The aim is to answer the question do results produced
by the ALU interact with values stored into memory?

7. pipeline/nop-eor (Figure 6g): as pipeline/eor-eor, except with an intermediate
eor (i.e., ALU) instruction separating the eor instructions. The aim is to answer the
question does the intermediate nop instruction act as an effective barrier?

5.4.2 Results

Table 6 shows which devices leak the Hamming distance between the results of adjacent
instructions. Interactions between certain pairs of instructions consistently leak the
Hamming distance between instruction results across all devices (e.g. the eor-ldr) pair.
We were surprised not to see more clear evidence of Hamming distance leakage between
consecutive ALU type instructions; particularly the add, lsl and ror instructions. We
offer two possible explanations for this. 1) that the interactions are too weak to detect for
the number of traces we use, 2) that the results of the instructions make poor targets for
Hamming distance analysis anyway. It is also possible that some interactions are purely
combinatorial glitching leakage, which we would expect to be much weaker than sequential
leakage, which involves state elements.

Table 7 shows which instruction operands of the experiments in Figure 6 leak their
Hamming distance. We find generally very consistent behaviour for interactions between
the first and second operand registers of consecutive instructions. As has been reported
in the literature we find that two adjacent instructions will usually leak the Hamming
distance between their respective rs1 and rs2 operands. This was a key finding of [PV17]
and [CGD18], and we have replicated their results across many other CPU cores. This is
is visible in Table 7 as AC and BD interactions.

While some very consistent behaviour is easy to see in Table 7, we note two unexpected
effects. First, that for some cores, there are unexpected Hamming distance interactions
between operands which do not obviously interact. For example, the ARM Cortex-M4 base
devices leak the Hamming distance of rs1 of the eor, and rs2 of the add. We were also
surprised to consistently see Hamming distance leakage between both register operands of
the eor, and the register operand of the right shift by immediate instruction. This occurred
consistently in the ARM Cortex-M3 and Cortex-M4 devices, and the larger MicroBlaze
cores.

5.4.3 Discussion

We were able to discern, in the case of instructions with a register and immediate operand
(like the load / store word instructions) exactly which operands from the previous instruction
interact with the register operand, and which with the immediate operand. For example,
all of the ARM cores consistently leak the Hamming distance between rs2 of an eor
instruction followed by rs1 of a store word instruction. It is also useful to see that in the
larger MicroBlaze cores, it is actually rs1 of the eor instruction which collides with the
store word instruction. Knowing which operand register of the eor instruction interacts
with the store instruction is essential for leakage modelling.

Comparing Table 6 and Table 7, we can see that generally speaking, Hamming distance
leakage between consecutive instruction operands is much more consistently detectable
than Hamming distance leakage between the results of consecutive instructions. Given
that the result of one instruction will almost always become the operand of another, we
believe that operands are inevitably more effective attack targets. That said, we note that
leakage between the results of consecutive instructions, even when the instructions share
no architectural registers between them, is likely to be an unexpected source of leakage for
some implementations. Even in cores with very short pipelines.

26 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

In cores with longer pipelines (MBX1, MBX2) we see consistent leakage between the
results of adjacent instructions. This is expected, as there are likely multiple pipeline
stages between the result being calculated and the write-back of the result to the register
file. In general, we note the very different leakage behaviour across all of the devices (even
devices with the same CPU core) mirrors our results for the memory bus related leakage
experiments. This would suggest that leakage models, even when they only look to model
intra-core leakage effects, cannot be transferable between devices; even if the devices are
based on the same CPU core. Indeed, it raises the possibility that a device with multiple
identical CPU cores11, could find that core 0 leaks differently to core 1, despite being
implemented in the same piece of silicon.

We note the differing results for whether nop acts as a barrier between ALU type
instruction operands. Even two ARM Cortex-M4 based devices (ARMS3 and ARMS4)
behave differently. In the former a nop does not alter the pipeline registers which store
instruction operands, causing Hamming distance leakage. In the later, the nop does
act as a leakage barrier. Borrowing the notions introduced in Section 5.1, we can say
that even though the eor instructions are not program-adjacent, they still interact. This
behaviour, while not exactly expected, is certainly understandable given that the ARMv7-
M architecture only guarantees the behaviour of a nop in terms of memory alignment.
Researchers who use nop as a makeshift leakage barrier should beware that this is not
portable. This has implications for some of the experiments in [SSB+20] (e.g. Listings 1, 2)
where nop is used to separate instructions in time. We do not believe this had an adverse
effect on the experiments in [SSB+20], as our own results confirm nop is a reasonable
leakage barrier in the ARM Cortex-M0 core. However, this cannot be expected on other,
e.g., ARM Cortex-M4 cores. This lends some evidence to the utility of dedicated leakage
barrier instructions, such as FENL [GMPP20], which guarantee some level of leakage
barrier like behaviour.

Again, it is important to note the differences between different devices (even devices
with the same underlying CPU core). That such basic instruction sequences leak visibly
on some devices and not on others points to a real challenge for formal and statistical
leakage modelling approaches.

In terms of classifying these sources of leakage, we find that program-adjacent, inter-
instruction, sequential micro-architectural is the dominant source. This is expected, since
we specifically went searching for leakage related to pipeline registers.

5.5 Control-flow instructions
This case study focuses on a relatively complex case for pipelined instruction execution,
namely that of conditional and unconditional changes in control-flow. Note that we use
the terms branch and jump to refer to the conditional and unconditional cases respectively,
mirroring similar terminology used, e.g., in RISC-V and MicroBlaze. The central question
is how does a change in control-flow effect micro-architectural state, such as pipeline
registers, and so, e.g., does a change in control-flow prevent interaction between instructions
before and after it?

5.5.1 Micro-benchmarks

Figure 7 includes pseudo-code for the micro-benchmarks used, which can be described as
follows:
1. pipeline/branch-pre (Figure 7a): two eor instructions, separated in terms of their

execution by a beq instruction (i.e., a conditional branch). The aim is to answer the

11For example, some Xilinx FPGAs include two or more identical hardened ARM CPU cores.

Ben Marshall, Dan Page and James Webb 27

1 .text
2 kernel : cmp rE, rE
3 eor rA, rB
4 beq branch
5 .rept 10
6 eor rZ, rZ
7 .endr
8 branch : eor rC, rD

(a) pipeline/branch-pre: two eor instruc-
tions operating on security-critical values, sep-
arated by a conditional branch instruction.

1 .text
2 kernel : cmp rE, rE
3 beq branch
4 eor rA, rB
5 .rept 10
6 eor rZ, rZ
7 .endr
8 branch : eor rC, rD

(b) pipeline/branch-post: two eor instruc-
tions operating on security-critical values; only
the second is executed, as the result of a con-
ditional branch instruction.

1 .text
2 kernel : eor rA, rB
3 b branch
4 .rept 10
5 eor rZ, rZ
6 .endr
7 branch : eor rC, rD

(c) pipeline/jump-pre: two eor instructions
operating on security-critical values, separated
by an unconditional branch (i.e., jump) in-
struction.

1 .text
2 kernel : b branch
3 eor rA, rB
4 .rept 10
5 eor rZ, rZ
6 .endr
7 branch : eor rC, rD

(d) pipeline/jump-post: two eor instructions
operating on security-critical values; only the
second is executed, as the result of an uncon-
ditional branch (i.e., jump) instruction.

Figure 7: Pseudo-code for micro-benchmarks described in Section 5.4.1, i.e., those related
to the case study on conditional and unconditional changes in control-flow.

questions is there Hamming distance leakage between the operands, and is there Hamming
distance leakage between the results?

2. pipeline/branch-post (Figure 7b): as pipeline/branch-pre, except with the first
eor instruction moved immediately after the beq instruction rather than before it. Note
that if the branch is not taken, said eor instruction should not be executed therefore.

3. pipeline/jump-pre (Figure 7c): as pipeline/branch-pre, except with the beq in-
struction replaced with a b instruction (i.e., an unconditional branch, or jump) and the
associated cmp instruction removed.

4. pipeline/jump-post (Figure 7d): as pipeline/branch-post, except with the beq
instruction replaced with a b instruction (i.e., an unconditional branch, or jump). and
the associated cmp instruction removed.

5.5.2 Results

There are three broad outcomes from analysing these sequences.
1. There is no interaction between the ALU instructions, whether they are separated by a

branch/jump or not.
2. The ALU instructions interact if the branch/jump instruction is absent, but do not inter-

act if it is present. This tells us that any state which the ALU instruction interacts with
is somehow cleared or overwritten by the branch/jump instruction. The branch/jump
can then be thought of as a weak leakage barrier which prevents values manipulated in
one loop iteration bleeding through the pipeline into the next iteration.

3. The ALU instructions always interact, regardless of whether a branch/jump is placed

28 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Table 8: A summary of results stemming from the micro-benchmarks in Figure 7, i.e.,
cases which explore the impact a change in control-flow has on leakage. Note that AC, for
example, indicates that the Hamming distance between A and C was leaked; R indicates
that the Hamming distance between results produced by the two eor instructions was
leaked. The Hamming distance between variables A and B and variables C and D was leaked
in all cases, so have been omitted.

Device branch-pre branch-post jump-pre jump-post
ARMN0 R, BD
ARMN1 BD
ARMN2 BD
ARMN3 BD
ARMS0 BD
ARMS1 BD
ARMS2 BD
ARMS3 BD BD BD
ARMS4 BD
ARMS5 BD
MBX0 R, AC, BD R, AC, BD
MBX1 R, AC, BD R, AC, BD
MBX2 AC, BD BC BD
RVPRV AD, BD

between them. In this case, extra care must be taken with masking schemes employing
loops, as the “loop branch” instruction cannot be relied upon to stop micro-architectural
state from one loop iteration bleeding into the next.

This approach is similar to the dominating instruction approach taken in [SSB+20] to
identify whether instructions share micro-architectural state.

From the results in Table 8, we can see that while no instructions leak in the branch-
pre case, we get scattered Hamming distance leakage in some cases for the other experi-
ments.

For the MicroBlaze based targets (MBX0, MBX1, MBX2) We see leakage between the
operands and results of XOR instructions following the control-flow change, even when
the first XOR instruction is not executed.

On all of the ARM cores, we find leakage between one set of operands in the jump-pre
case. However, we note that the ARMS3 also leaks the Hamming distance of one set
of operands in the same way, even though ARM has no delay-slot mechanism in the
architecture. We investigate this further in Section 5.6.

5.5.3 Discussion

In the case of the MicroBlaze, we believe the leakage is explained by referring to the
MicroBlaze Architecture and its use of branch delay slots. This is a technique where the
instruction immediately following a branch or jump can be executed as a way of hiding
the latency of re-filling the pipeline after a control-flow change. MicroBlaze has variants
of branch and jump instructions with and without delay slots, and our experiments used
the non-delay-slot variants. We believe that on a micro-architectural level, the delay-slot
instruction is always executed, but its result is only thrown away at the last pipeline stage.
This is clearly the case for the MBX0 and MBX1 cores, which leak operands and results.
The MBX2 does not leak its result, suggesting the delay-slot instruction is killed before its
result is computed.

For the ARM jump-pre case, we suggest this is caused by the jump instruction
only over-writing a single pipeline register, and leaving the other unmodified from the

Ben Marshall, Dan Page and James Webb 29

instruction preceding the jump. The unmodified value will then collide with whatever the
next corresponding instruction operand is.

We note the lack of attention paid to branch and jump instructions with respect to
leakage behaviours in the literature. We believe this sort of analysis is important because
as we have shown, just because control-flow instructions don’t normally read secret or
sensitive variables, doesn’t mean they can’t cause or allow them to interact. Knowing if a
“loop back” instruction sequence clears pipeline registers can reduce the need to explicitly
clear certain micro-architectural state, or show that it is necessary.

We classify this effect as inter-instruction, sequential micro-architectural leakage be-
tween program-non-adjacent instructions. The non-adjacency of instructions is an impor-
tant distinction, since it is not the branch or jump instructions which cause the interaction,
rather, they fail to prevent interactions between other instructions.

5.6 Speculative execution in short pipelines
Despite being associated with larger, out-of-order and super-scalar cores with deep pipelines,
speculative execution still takes place even in very shallow pipelines. In an n stage
scalar pipeline, there are in principle n instructions in flight. Depending on the stages
where control-flow changes occur, several instructions which are never executed from an
architectural point of view, still enter the pipeline and interact with architectural and
micro-architectural state elements. Further, different types of control-flow change can
occur at different points in the pipeline. For example, a conditional branch can only occur
after reading and comparing some architectural state, in a decode or execute pipeline
stage. An unconditional jump however can occur at the decode or fetch stage, since the
destination address can be computed from just the program counter and the instruction.
All of this can occur in a scalar, pipelined CPU which may or may not have a branch
predictor.

These scenarios are all micro-architectural reasons for speculative execution to occur.
There is also an architectural reason: branch delay slots. These are a somewhat out-of-
fashion idea, where the instruction immediately following a control-flow change may also
be executed, even when the control-flow change is taken. This was a way of mitigating
some of the performance impact of control-flow changes in pipelined CPUs, since one
instruction may be executed for free while the new instruction stream is fetched. The
MIPS architecture made use of branch delay slots, as does the MicroBlaze architecture
analysed in this work. They are absent from most new and modern architectures now, as
they significantly complicate out-of-order and super-scalar core design.

Here, we present (to our knowledge) the first study of how speculative (and from a
software developers point of view, unexecuted) instructions can be identified from power
traces. We show how to very simply identify the depth of any speculative behaviour, which
guides software developers as to how much this issue might affect a side-channel secure
implementation. This is particularly important given the results in Section 5.5, which
shows that control-flow changes do not always act as a barrier between ALU instructions.

5.6.1 Micro-benchmarks

Figure 8 includes pseudo-code for the micro-benchmarks used. Although not obvious, each
one uses the same structure in which 1 initial eor instruction separated from n other
eor instructions by a branch; the branch is always taken, with the resulting change of
control-flow meaning the latter eor instructions are not executed from an architectural
perspective. The underlying question is does the initial eor instruction before the branch
interact with the unexecuted latter eor instructions after the branch, i.e., are the latter eor
instructions speculatively executed, and therefore does speculatively execution cause leakage
in a manner similar to, but more subtle than conventional execution? More specifically:

30 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

1 .text
2 kernel : cmp rG, rG
3 eor rA, rB
4 beq target
5 eor rC, rD
6 eor rE, rF
7 target : .rept 10;
8 eor rZ, rZ
9 .endr

10 bx lr

(a) speculation/branch-fwd:

1 .text
2 kernel :
3 eor rA, rB
4 b target
5 eor rC, rD
6 eor rE, rF
7 target : .rept 10
8 eor rZ, rZ
9 .endr

10 bx lr

(b) speculation/jump-fwd:

1 .text
2 kernel : b branch
3 target : .rept 10
4 eor rZ, rZ
5 .endr
6 bx lr
7 branch : .rept 10
8 eor rZ, rZ
9 .endr

10 cmp rZ, rZ
11 eor rA, rB
12 beq target
13 eor rC, rD
14 eor rE, rF

(c) speculation/branch-bwd:

1 .text
2 kernel : b branch
3 target : .rept 10
4 eor rZ, rZ
5 .endr
6 bx lr
7 branch : .rept 10
8 eor rZ, rZ
9 .endr

10

11 eor rA, rB
12 b target
13 eor rC, rD
14 eor rE, rF

(d) speculation/jump-bwd:

1 .text
2 kernel : mov rY, #0
3 loop: eor rY, rF
4 mov rY, #0
5 add rG, #-1
6 cmp rG, #0
7 bne loop
8 done: eor rA, rB
9 eor rC, rD

10 eor rE, rF
11 bx lr

(e) speculation/loop-0:

Figure 8: Pseudo-code for micro-benchmarks described in Section 5.6.1, i.e., those related
to the case study on speculative execution.

Ben Marshall, Dan Page and James Webb 31

Table 9: A summary of results stemming from the micro-benchmarks in Figure 8, i.e.,
cases which explore the impact speculative execution has on leakage.

Device jump-fwd jump-bwd branch-fwd branch-bwd loop-0
ARMN0

ARMN1 AF
ARMN2 BD BD BD AC, AD, AF, DF
ARMN3

ARMS0

ARMS1

ARMS2 AC, AD AD AE, AF
ARMS3 CD CD CD AF, BF
ARMS4 AD, AF, BF
ARMS5

MBX0 BC, CD BC, CD, DF BC, CD, DF BC, CD AB, BF
MBX1 CD, DE, DF CD, DE, DF CD, DE, DF CD, DE, DF AB, AC, BF, DF
MBX2 BC, DE, DF BC, DE, DF AC, BC, DE, DF BC, DE, DF AC, BF, DF
RVPRV

(a) Instances of Hamming distance leakage: AC, for example, indicates that the Hamming distance
between A and C was leaked, noting that only cases that involve speculatively executed instructions
are shown.

Device jump-fwd jump-bwd branch-fwd branch-bwd loop-0
ARMN0

ARMN1

ARMN2 C, D C, D C, D C, D
ARMN3

ARMS0

ARMS1 C, D C, D C, D A, C, D
ARMS2 C C C C A, C, D, E
ARMS3 C, D C, D C, D A, B
ARMS4 D C, D A
ARMS5

MBX0 C, D C, D C, D A, B, D, E
MBX1 C, D C, D C, D C, D A, B
MBX2 C, D, E C, D, E C, D, E C, D
RVPRV

(b) Instances of Hamming weight leakage: A, for example, indicates that the Hamming weight of
A was leaked, noting that only cases that involve speculatively executed instructions are shown.

32 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

• speculation/branch-fwd (Figure 8a): an eor instruction (line 3) separated from two
other eor instructions (lines 5 and 6) by a beq instruction (i.e., a conditional branch):
this causes a forward (versus backward) change in control-flow, i.e., using a target which
is at a higher (versus lower) address.

• speculation/jump-fwd (Figure 8b): as branch-fwd, except with the beq instruction
replaced with a b instruction (i.e., an unconditional branch, or jump) and the associated
cmp instruction removed.

• speculation/branch-bwd (Figure 8c): an eor instruction (line 11) separated from
two other eor instructions (lines 13 and 14) by a beq instruction (i.e., a conditional
branch): this causes a backward (versus forward) change in control-flow, i.e., using a
target which is at a lower (versus higher) address.

• speculation/jump-bwd (Figure 8d): as branch-bwd, except with the beq instruction
replaced with a b instruction (i.e., an unconditional branch, or jump) and the associated
cmp instruction removed.

• speculation/loop-0 (Figure 8e): a for loop structure in which an eor instruction
(line 3: at the beginning of the loop body) separated from three other eor instructions
(lines 8, 9, and 10: after the end of the loop terminates) by a beq instruction (i.e., a
conditional branch): this causes a backward (versus forward) change in control-flow, i.e.,
using a target which is at a lower (versus higher) address.

Note that we carefully distinguish between conditional and unconditional, and forward
and backward changes in control-flow. This allows us to deal with different static branch
prediction strategies, e.g. predict taken for a conditional backward branch (which is
indicative of a loop).

5.6.2 Results

Table 9 shows the results of our experiments. Each row represents a single device and shows
which variables leaked, and how, for each speculation experiment listed in Figure 8. We
identify this by using correlation analysis to search for the Hamming weight of operands,
and the Hamming distance between consecutively accessed operands, and consecutive
instruction results.

In terms of the Hamming distance results (Table 9a), there are a number of devices
which exhibit this effect. We believe that the MicroBlaze targets (MBX0, MBX1 and MBX2)
exhibit speculative leakage mainly because of the architectural branch delay slot. This is
explained in the MicroBlaze Processor Reference Manual [Xila, Page 44]:

When executing a taken branch with delay slot, only the fetch pipeline stage in
MicroBlaze is flushed. The instruction in the decode stage (branch delay slot)
is allowed to complete. This technique effectively reduces the branch penalty
from two clock cycles to one.

Looking at this part of the manual, we see clearly that this behaviour is built into the
micro-architecture. It explains why for the micro-blaze targets, we clearly see Hamming
weight leakage in the XOR instruction operands immediately following all taken control-
flow changes and Hamming distance leakage between the operands - i.e. the result of the
XOR.

We also see this behaviour in the ARMN2, ARMS2, ARMS3, and ARMS4 devices. Here,
we consistently see Hamming weight leakage from the operands of the instruction following
a control-flow change, and the Hamming weight of the instruction result. This is a purely
micro-architectural effect, since the ARM architecture has no notion of a branch delay slot.
This result was not expected, given the shallow pipeline of the ARM cores. We suggest
two possible reasons for seeing these effects in some cores and not others. First, there may

Ben Marshall, Dan Page and James Webb 33

be implementer visible design choices around configuring the core for high performance, or
low power. Some of these choices many affect when and if different registers are cleared,
or how multiplexer trees are implemented, all of which will affect the leakage. Second, it
is possible that EDA tooling plays a part, and that these effects are simply unintentional
side effects of synthesis and place and route tools optimising for various metrics other than
side channel resilience or energy efficiency. For example EDA tooling quirks might explain
Hamming distance leakage in the ARMN1 device for the jump-bwd experiment, since no
other ARM Cortex-M0 based core leaks this way.

5.6.3 Discussion

Ultimately, one may view the architectural and micro-architectural speculation shown
here as essentially caused by the same thing: pipelined instruction execution. The key
difference for a software developer being that it is only documented (however partially)
for the MicroBlaze architecture. In the ARM cores, that leakage effects are visible for
unexecuted instructions surprised us greatly, and to our knowledge, this is the first study
to detail the effect.

For first-order masking schemes, clearly these effects represent significant dangers that
software developers and leakage model builders need to be aware of. For higher order
schemes, they may naturally be more difficult to exploit owing to the small number of
share re-combinations they result in. That said, there is clearly potential for unexpected
combinations of all of the effects detailed in this and other works. In any case, they must
still be accurately modelled if the absence of leakage must be demonstrated or proved. We
believe simply knowing these effects exist is useful, as they are often unexpected. Who
would guess that unexecuted instructions after the end of a loop body could interact with
the first instruction of the next loop iteration?

We note that being able to detect the Hamming weight of the results of unexecuted
instructions could be thought of as comparable to a fault attack, since the values do not
represent algorithmically correct values, and may be used to further inform attacks.

Going forward, we believe that this effect breaks several assumptions which leakage
models (formal and statistical) have until now relied upon. Namely, that only computation
leaks (which for numerous reasons shown in this and past works, is clearly broken) and
that only architecturally executed instructions leak. This will make modelling of leakage
more complicated, and mean that all models will be much more dependant on the exact
micro-architecture of the CPU, rather than the ISA.

In terms of classification, we see these effects as program-non-adjacent, inter-instruction,
sequential micro-architectural leakages. To help with further classification, we suggest
using inter or intra-block (as in, basic block) as an additional distinguisher. Previous effects
have all been intra-block, whereas this effect shows how leakage can occur across basic
blocks. We can also tag this as speculative leakage, as opposed to non-speculative leakage,
which is the case for all prior experiments.

6 Discussion

This section frames the lower level findings presented in Section 5 at a higher level, and
so in a more directly usable form. That is, we aim to equip readers with an intuition for
micro-architectural leakage in general, and therefore the capacity to reason about it; we
then discuss the implications of our work for two specific fields, namely 1) the design,
implementation, and evaluation of masking schemes, and 2) construction of accurate
fine-grained leakage models.

34 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

6.1 A mental model of micro-architectural leakage
Having investigated leakage across different target devices, we now try to help researchers
and engineers develop an intuition for reasoning about them. We use a contrived CPU
and memory sub-system Figure 9 block diagram, and describe the journey of instructions
through the pipeline. At each stage, we note the different ways instructions could be
implemented in a reasonable micro-architecture, and link to examples of these options in
our case study results.

Intuitively, we can investigate if the micro-architecture will cause share combinations by
looking at convergence and divergence points in the data-flow of the system. Convergence
points are where data from multiple places meet, and the micro-architecture selects one of
the data items to progress. Divergence points are the opposite. Each can be further classified
using the scheme developed in Section 3.4 as ISA, sequential or glitching-combinatorial.

We discuss types of leakage which can occur, some of which we have observed in this
work, some of which are described in other works, and some of which are hypothetical.
Our intention is to provide a starting point for engineers and researchers to identify and
isolate causes of leakage in their own systems.

6.1.1 ALU-type instructions

An XOR (or similar) instruction might have two operand registers, or an operand register
and an immediate. Decoding of the immediate or register variant may cause glitches in the
register address decode logic, causing unexpected toggling between registers which are not
explicitly addressed by the instruction. This is described in [GHP+20] and can be mitigated
by structuring register file data ports as AND-OR trees, rather than multiplexer trees.
The same effect can occur in the forwarding network, where results from uncommitted
instructions are routed back to the decode stage to prevent stalls. This makes the decode
stage a convergence point for instruction operands and results, which may be in-flight or
at rest in the GPRs. The most common kind of leakage observed here is the sequential
micro-architectural leakage, where instruction operands are loaded into pipeline registers
P0 and P1, as seen in Section 5.4. Knowing which operands are loaded to which pipeline
register for each instruction is essential for leakage modelling. Convergences can also be
glitching-combinatorial, due to multiplexer switching, though in our experience, this is
much harder to detect. One concrete example of this is the results in Section 5.1. Due to
the nature of glitches, their occurrence can even be data dependant.

In the execute stage, we can see combinatorial and glitching-combinatorial leakage
depending on how the ALU is structured. For example, if different functions in the ALU
are not gated, we might see Hamming Weight leakage for the result of an XOR, the result
of and ADD, and the result of a shift. We may even see Hamming Distance leakage between
these results, as they converge through a multiplexer tree to the P2 register. Loading of
the P2 pipeline register will also cause sequential Hamming Distance leakage between the
results of the current instruction, and the previous instruction which loaded P2. Note this
is not always the previous instruction in program order.

Registers P2 and P3 are important as they force results of adjacent instructions to
interact before being written to a GPR. This implies that adjacent instructions which
share no architectural registers as operands or destinations will still interact from a leakage
perspective. We can see this clearly in, Section 5.4 where in most CPUs the results of
subsequent ALU instructions do interact, for ARM Cortex-M0+ and PicoRV32 based
systems, which have only 2 and 0 pipeline stages respectively, there is no such leakage.

Between P2 and P3, there is a convergence point between ALU instruction results and
data loaded from memory. We observed this sort of interaction between loaded data and
ALU results in the 5 and 8 stage Xilinx MicroBlaze cores in Section 5.4, but not in the
shorter pipelined cores.

Ben Marshall, Dan Page and James Webb 35

M0PC

Instruction memoryData memory

P0 P1

P2

P3

Forwarding
network

Instruction
decode

GPRs

LSU ALU

Select

+4

M2M1

M3

fetch
data

fetch
addr

store
data

load
addr

store
addr

load
data

Figure 9: A contrived 5-stage, pipelined processor micro-architecture with architectural
(blue), micro-architectural (red), and memory sub-system (yellow) components annotated
as appropriate. Note that, we deliberately 1) exclude some components related to the
control path, because they are usually irrelevant with respect to leakage, and 2) include
some components related to the memory sub-system, despite normally being outside the
micro-architectural remit, because they are highly relevant with respect to leakage.

36 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Finally, there is a divergence point where the result is written to the GPRs, where
there will be Hamming Distance leakage between the old and new GPR values. This is
the only form of ISA leakage which occurs.

6.1.2 Control-flow instructions

When first entering the pipeline, a jump instruction can change the program counter
immediately, as it is not dependant on any architectural state other than the program
counter. Hence in many cases, it need not alter any of the data-carrying pipeline registers
P0, P1, P2, and P3. We found in Section 5.5 that for all of the ARM cores, a jump
instruction placed between two XOR instructions does not prevent Hamming distance
leakage between some of the operands of the XOR instructions. This suggests that one
of the pipeline registers is updated (likely with the branch target), but the other is left
unchanged as an energy efficiency optimisation. We also found this was the case in the
MBX2 and RVPRV based systems.

A programmer must consider if they rely on control-flow changes to act as implicit
barriers between instructions to prevent share combinations, and whether that assumption
holds for their system. This effect is also apparent in the loop speculation experiment in
Section 5.6.

Branch instructions, being conditional on architectural state, tend to act as barriers
between ALU-type instructions in our experiments in Section 5.5. In our hypothetical
system, this would mean loading P0 and P1 with the operands to the comparison. Note
this does not necessarily change the values of P2 and P3, meaning that we could potentially
see Hamming distance leakage between the results of ALU instructions which are separated
by a conditional branch. This is observed the case of the MicroBlaze based MBx0 and
MBx1 systems.

On ARM systems, conditional branches are evaluated over two instructions: one does
the comparison (cmp) and sets a condition flag, another tests a condition flag and performs
the control flow change. Our experiments in Section 5.5 deliberately placed an ALU
instruction between the cmp and branch instructions. It would be reasonable to reorder
the cmp instruction to act as a barrier for the operands of the ALU instructions if the
branch does not already provide this. However, we did not a have access to an ARM core
with a longer pipeline (e.g. Cortex-M7), so we could not check if, as in the case of the
MicroBlaze cores, we still get Hamming distance leakage from pipeline registers which only
store instruction results.

For both branch and jump instructions, the actual control flow change may occur some
way down the pipeline. In our hypothetical system, branches feed the target address to the
PC from the execute stage. This allows for subsequent instructions in the decode stage to
speculatively read architectural state, either purely combinatorially, or sequentially into the
operand registers P0 and P1. Indeed, we observed exactly this behaviour in Section 5.6,
where the Hamming weight of operands were often detectable in unexecuted instructions.
In some cases, we even observed the Hamming weight of the instruction result, even in
ARM cores with a short pipeline.

A different approach would be to prevent updates to P0 and P1 whenever a branch
or jump is occurring in the execute stage. This is a recommendation supported by our
results, since it results in fewer register updates (thus saving energy) and make reasoning
about leakage much easier.

6.1.3 Load and store instructions

As shown in Section 5.1 and other works, memory accesses can have a large and counter-
intuitive effect on leakage. Here, we focus on explanations for differences in behaviour
shown in Table 2.

Ben Marshall, Dan Page and James Webb 37

A load instruction with a base address operand register, an immediate offset and
destination register enters the pipeline in the decode stage. It is subject to the same
sources of leakage described for the ALU type instructions. Note that unless the address
(either base or offset) is dependant on a secret value, a load instruction is unlikely to
explicitly cause leakage in the decode stage of our hypothetical system.

In the execute stage, the load address is sent to the memory, which on the next cycle
will load the M2 register with the requested data. The relevant bytes of M2 are then
selected (load word/half/byte) and converge with ALU results in the P3 register, before
being written back to the GPRs. Memory load data could have been put into P2, and
observations in Table 2 show that this is sometimes the case. Note that the same CPU
core, implemented by the same vendor in different devices, can exhibit different behaviours
here. We believe that some cores have a separate load-data register as part of the memory
bus for performance or timing reasons, while some merge this with a pipeline register to
reduce area. This design choice has implications for leakage behaviour. If the M2 and P2
are separate, then loads which are potentially many instructions apart can interact. If
they are represented by the same physical register, then ALU type instructions can act as
a barrier between load data instructions.

As with ALU instructions, the existence of P3 in our hypothetical system can mean
that load instructions which do not have the same architectural destination register can
still leak the Hamming Distance between their loaded values, and the result of an adjacent
ALU instruction. This is because the two streams of data converge before reaching the
architectural register file. The see this in many devices even with short pipelines, in Table 6.
For short pipelines, where P3 would not exist, this suggests that loaded data is actually
routed to P2 in our hypothetical system.

The bytes select block, between M2 and P3 is the reason we see the kind of leakage
patterns shown in Figure 5. Here, 1, 2 or 4 contiguous bytes of data are selected from
the loaded 4-byte memory word. This multiplexing can cause potentially all of the bytes
to leak their Hamming distance. This sort of leakage is expected in systems using a
word-orientated memory interconnect, such as AHB-Lite or AXI-Lite. This also explains
the effect noted in past works, where requesting a byte from memory can actually load the
entire word which contains the byte, leading to unexpected leakage. Our results in table
Table 3 show that this effect is common across most of the devices studies here.

For store instructions, the potential for leakage exists in the decode stage, as it must
read an extra architectural register as the data to be stored. Knowing which pipeline
register (P0 or P1 in our system) is overwritten with the data-to-be-stored, rather than
the address, is important to avoid leakage collisions or the need to add barrier instructions
which reduce performance. This need for barrier instructions to flush shared state is
detailed in [SSB+20]. Our results in Table 2 repeat similar experiments for a range
of cores, showing how diverse the actual behaviour of cores can be in terms of memory
hierarchy leakage. A programmer who implemented all of the [SSB+20] countermeasures
on a core which does not need them would have an unnecessarily inefficient program.

In the execute stage of our hypothetical system, the data to be stored and the address
must progress all the way to the final stage of the pipeline before being sent to memory.
Any earlier than this would cause incorrect program behaviour, as the store could be
perceived to have occurred before the instruction retires. In our design, the store data
travels down a separate pipeline (a dedicated store buffer, M1 and M3) rather than the
normal ALU pipeline. This separation or sharing of load, store and ALU data pipelines is
a design trade-off between performance and area, and we believe explains why in Table 2,
adjacently loaded and stored data interact in some cases but not others.

38 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

6.2 Implications for evaluation of masking schemes
Differences in leakage behaviour between devices can have a considerable impact on
the complexity, performance and code size of leakage resistant code. For example, the
ARMS2 and ARMS4 devices do not cause collisions between consecutively loaded and stored
values (see Table 2), while other similar devices do. Adding “flush” instructions for more
leaky devices may add a significant performance and energy efficiency penalty, which is
unnecessary on the non-leaking devices. Likewise, code which is secure on the less leaky
devices may not be secure on others.

We did not survey the literature to discover which devices were used to derive overhead
claims for different masking schemes and implementations, but suspect our results imply
considerable margin for variance across devices. If such devices are chosen as benchmarking
platforms for standardisation processes, it may be impossible to get a clear picture of
the overhead required to implement certain masking schemes due to the underlying
micro-architecture of the device.

As a single example, in [BDM+20], the authors apply their tool to several NIST
Lightweight Cryptography candidates, using an ARMCortex-M4 based Nucleo STM32F401RE
device. Our experiments clearly show that one ARM Cortex-M4 does not leak like another.
This poses the question of how portable the code generated by TORNADO or other
tools like is. This is especially important, given its reliance on GCC to perform register
assignment and low level instruction ordering, which may leave it open to some of the
effects described in this and other works.

We suggest evaluations of software masked algorithms be evaluated on at least two
devices which have different micro-architectural leakage characteristics. This will enable
researchers to separate the overhead from a masking scheme, and the overhead from a
particular micro-architecture. This has particular relevance for ongoing standardisation
processes, such as the NIST Lightweight Cryptography project. We hope this work can
inform the choice of devices.

Our results suggest tools which generate side-channel secure code will benefit con-
siderably from being more micro-architecture-aware. Indeed, we believe they must be
micro-architecture-aware in many cases in order to avoid generating leaking code. However,
knowing which mitigations they must apply, or when they can omit them because a
particular micro-architectural effect is not present in the target device, will likely lead to
considerable performance and security improvements. Adding more shares to a masking
scheme may remove the risk of the interactions seen in this and prior works, but this is
unsatisfactory where performance and code size are an issue. We still want to be able to
use the minimal number of shares possible for a given security requirement.

Finally, while the portability of side-channel resilient code has always been dubious,
our results emphasise just how challenging efficient and portable side-channel resilient
code is to build.

6.3 Implications for leakage modelling
Here, we discuss how our experimental results inform formal and statistical different
approaches to leakage modelling and tooling. Note that when talking about formal
modelling of leakage, we specifically mean in the context of CPU pipelines, not hardware
implementations of cryptographic primitives.

Capturing types of leakage. Using our list of leakage types in Section 3.4 and based
on past work, we know both formal and statistical models cope well with ISA leakage.
This is not sufficient to provide a usable leakage model for the real world, given the
micro-architectural effects described in this and other works.

Ben Marshall, Dan Page and James Webb 39

We next consider sequential micro-architectural modelling. Again, we believe there is
no inherent difficulty in using formal or statistical approaches, but the relative merits of
each approach now become apparent. Formal models must have perfect information about
the system being modelled. Based on our results in Section 5.6, we also know that a trace
of retired instructions is not enough, one must also model the pipeline of the target device
explicitly. This is considerably more effort to build for a formal model than a statistical
model, since a statistical model Elmo will capture all of this information as a side effect of
the initial device profiling. Statistical approaches are hence able to treat target devices as
a black box, and so build usable models with comparatively little information about the
micro-architecture. Formal models however must have access to this information, requiring
either an NDA with the device manufacturer, or exhaustive reverse engineering of the kind
we describe in this work. [BGG+20] is a good example of this, where the quality of the
security guarantee is heavily dependant on the user-supplied micro-architectural model of
the target device. We believe the kinds of leakage-benchmarks developed in this work can
play an important role in validating and building formal models of the kind described in
[BGG+20].

Once we move to combinatorial and glitching combinatorial leakage however, we see
formal modelling approaches to software masking begin to struggle, since the number of
variables and possible interactions explodes, even in the presence of perfect information
about the system.

Separating methodology, models, and devices. Given the variety of results we find,
including wildly different leakage behaviours even for devices with the same CPU core, we
believe that the community must focus heavily on building replicable methodologies for
leakage modelling, rather than very accurate leakage models for particular devices.

For formal models in particular, we believe that a machine readable description of
micro-architectural state elements, and when they are updated by instructions, will be an
essential part of their methods. This allows for manufacturers to re-use the model building
tool without sharing sensitive details about their device. In this respect, we believe the
Domain Specific Language (DSL) based approach to describing device micro-architectures
in [BGG+20] is very promising. Indeed, the authors even demonstrate the necessity of
their tool being micro-architecture aware by showing how a secure implementation in one
ARM Cortex-M0+ based device is not secure in a ARM Cortex-M4 based device. This is
well supported by our empirical results.

Temporal locality. In Section 5.1, Section 5.2 and Section 5.3, we saw how loads and
stores in many devices are the only instructions to interact with micro-architectural state
elements. As discussed in [SSB+20], this is a problem for statistical models, which only
consider N adjacent instructions in a sliding window as contributing to leakage at any one
moment. Clearly, if a load instruction outside the window previously altered a piece of
state, then this will be missed if there are greater than N instructions before the next load.

Based on our results, we believe one solution to this could be a hybrid model. Specifically,
ALU style instructions could be modelled statistically. We include in this interactions
between ALU style instructions and memory accesses, as documented in Section 5.4. This
has the clear benefit of not needing a very detailed model of the execution pipeline within
a CPU core, and being able to capture combinatorial and glitching leakage inherently
within the statistical profiling step.

For temporally distant interactions, like loads and stores, which affect pieces of micro-
architectural state which no other instructions interact with, we suggest formal modelling
(of the kind described in [BGG+20]) is a good approach. One would need only to model ISA
state, architectural data values and a very small set of micro-architectural state elements -
perhaps only two additional registers, as indicated by some of our results. The update

40 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

rules for these pieces of micro-architectural state are very easy to reverse engineer, because
there are only a small number (of the order of 6 or 12, depending on the addressing modes
supported by the ISA) of instructions which alter them.

The formal model would be able to prove that no load or store instruction cause leakage.
The statistical model would then be used to evaluate the rest of the instruction stream for
leakage.

Benchmarking for model quality. Anyone building, buying or using a leakage model
needs to verify its accuracy. Historically it has been hard to judge model accuracy outside
the results of a paper. We believe the set of leakage micro-benchmarks in this paper
provide an important route to improving the confidence people have in a model which they
did not personally develop. By isolating critical corner case behaviours into individual
experiments, we can realise something similar to unit testing for leakage models. By
publishing all of our micro-benchmarks and the analysis flow, we hope they can be used to
augment the development of new models.

We recognise that it may always be possible to identify pathological cases of micro-
architectural leakage which are not identified by leakage models, and these tools should
focus on cases which make them the most useful to software engineers.

7 Conclusion
Summary. In this paper, we first presented and then used MIRACLE to study leakage
from 32-bit micro-controllers which span a range of different architectures (or ISAs),
micro-architectures, and vendors. Although we expect the infrastructure presented in
Section 4 to be useful in the long term, the case studies in Section 5 provide evidence
which leads to or reinforces some important conclusions:
• The assumption that only computation leaks can be invalid. For example, Section 5.5

demonstrates that even instructions which are not retired, and thus not executed from an
architectural perspective, can cause leakage as a result of speculation: the attack surface
enabled by transient execution, which has been so well explored from the perspective of
discrete side-channels (see, e.g., [CBS+19]), also extends analogue side-channels.

• The assumption that instructions leak independently can be invalid. For example, Sec-
tion 5.4 replicates known leakage effects stemming from adjacent instructions; Section 5.1
extends this, proposing some more formal notions of adjacency, and demonstrates that
even architecturally independent instructions can interact under some circumstances.

• Given the above, for example, any claim regarding the portability of security proper-
ties between different devices can be invalid. For example, Section 5.4 demonstrates
differences in efficacy of ad hoc leakage barriers based on the use of nop-based; this was
also noted in [GMPP20, Section 4.1]. A corollary of this fact is that it is insufficient
to make a security claim based simply on an architecture (e.g., “ARMv7-M”) or even
a core (e.g., “ARM Cortex-M3”): throughout Section 5, we have demonstrated that
it one must quote and evaluate a given instruction sequence on a specific device (e.g.,
“STM32F100RBT6B”).
In our opinion, this has (at least) two implications: 1) authors should adopt this approach
in writing, alongside publication of associated artefacts to support reproducibility, and
2) care must be taken when selecting standard evaluation platforms, e.g., to support
standardisation.

• The protection of IP is clearly imperative within a commercial context, and, as a result,
many proprietary micro-architectures lack definitive, public documentation. MIRACLE is
specifically design to cater for this fact, in the sense it employs a grey- versus white-box
approach. On the other hand, however, access to such documentation clearly allows

Ben Marshall, Dan Page and James Webb 41

more precise analysis with respect to micro-architectural leakage; taken to an extreme
where the HDL is available, approaches such as that of Gigerl [GHP+20] become viable.
In our opinion, it is important to consider a shift with respect to this trade-off. For
example, if vendors of security-related IP can maximise access to pertinent details of the
micro-architectural design while maintaining appropriate level of IP protection, this will
afford a higher level of assurance with respect to security: modulo a limit on precision,
MIRACLE demonstrates such details can often be reverse engineered anyway.

Future work. In terms of future directions, we believe a more formal and quantitative
way of reasoning about the different types of leakage described in Section 3, and how
they contribute to leakage models would be of clear benefit. This includes insights into
when certain kinds of leakage may be safely ignored. We also believe investigation into
building hybrid leakage models, as described in Section 6 is a pragmatic way to get the
best of both worlds from different modelling approaches. Finally, we have only investigated
micro-architecture effects in terms of documenting their existence. Further research into
effective countermeasures (as described in [SSB+20]) and exploitation is needed.

Acknowledgements
We extend our thanks to Si Gao and Elisabeth Oswald for their invaluable insight, feedback,
questions, and encouragement.

This work has been supported in part by EPSRC via grant EP/R012288/1, under the
RISE (http://www.ukrise.org) programme.

References
[AARR02] D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The EM side-

channel(s). In Cryptographic Hardware and Embedded Systems (CHES),
LNCS 2523, pages 29–45. Springer-Verlag, 2002.

[ABB64] G.M. Amdahl, G.A. Blaauw, and F.P. Brooks. Architecture of the IBM
System/360. IBM Journal of Research and Development, 8:87–101, 1964.

[AR19] A. Abel and J. Reineke. nanoBench: A low-overhead tool for running
microbenchmarks on x86 systems, 2019.

[ARMa] ARM. https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_
ahb_protocol_spec.pdf.

[ARMb] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m0-plus.

[ARMc] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m0.

[ARMd] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m3.

[ARMe] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m4.

[ARM18] ARM. ARMv7-M Architecture Reference Manual, DDI0403E.d edition, 2018.
https://developer.arm.com/documentation/ddi0403.

http://www.ukrise.org
https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/documentation/ddi0403

42 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

[BBC+19] G. Barthe, S. Belaïd, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X.
Standaert. maskverif: Automated verification of higher-order masking in
presence of physical defaults. In European Symposium on Research in Com-
puter Security (ESORICS), LNCS 11735, pages 300–318. Springer-Verlag,
2019.

[BDM+20] S. Belaïd, P.-É. Dagand, D. Mercadier, M. Rivain, and R. Wintersdorff.
Tornado: Automatic generation of probing-secure masked bitsliced imple-
mentations. In Advances in Cryptology (EUROCRYPT), LNCS 12107, pages
311–341. Springer-Verlag, 2020.

[BGG+14] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert. On
the cost of lazy engineering for masked software implementations. In Smart
Card Research and Advanced Applications (CARDIS), LNCS 8968, pages
64–81. Springer-Verlag, 2014.

[BGG+20] G. Barthe, M. Gourjon, B. Grégoire, M. Orlt, C. Paglialonga, and L. Porth.
Masking in fine-grained leakage models: Construction, implementation and
verification. IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), 2021(2):189–228, 2020.

[BGI+18] R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter.
Formal verification of masked hardware implementations in the presence of
glitches. In Advances in Cryptology (EUROCRYPT), LNCS, pages 321–353.
Springer-Verlag, 2018.

[BGR18] S. Belaïd, D. Goudarzi, and M. Rivain. Tight private circuits: Achiev-
ing probing security with the least refreshing. In Advances in Cryptology
(ASIACRYPT), LNCS 11272, pages 343–372. Springer-Verlag, 2018.

[BMT16] W. Burleson, O. Mutlu, and M. Tiwari. Who is the major threat to tomorrow’s
security? You, the hardware designer. In Design Automation Conference
(DAC), pages 145:1–145:5, 2016.

[BP18] A. Barenghi and G. Pelosi. Side-channel security of superscalar CPUs:
evaluating the impact of micro-architectural features. In Design Automation
Conference (DAC), pages 120:1–120:6, 2018.

[CBG+17] T. De Cnudde, B. Bilgin, B. Gierlichs, V. Nikov, S. Nikova, and V. Rijmen.
Does coupling affect the security of masked implementations? In Constructive
Side-Channel Analysis and Secure Design (COSADE), LNCS 10348, pages
1–18. Springer-Verlag, 2017.

[CBS+19] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss. A systematic evaluation of
transient execution attacks and defenses. In USENIX Security Symposium,
pages 249–266, 2019.

[CEM18] T. De Cnudde, M. Ender, and A. Moradi. Hardware masking, revisited. IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2018(2):123–148, 2018.

[CGD18] Y. Le Corre, J. Großschädl, and D. Dinu. Micro-architectural power simulator
for leakage assessment of cryptographic software on ARM Cortex-M3 proces-
sors. In Constructive Side-Channel Analysis and Secure Design (COSADE),
LNCS 10815, pages 82–98. Springer-Verlag, 2018.

Ben Marshall, Dan Page and James Webb 43

[CGMA+15] C. Cernazanu-Glavan, M. Marcu, A. Amaricai, S. Fedeac, M. Ghenea,
Z. Wang, A. Chattopadhyay, J. Weinstock, and R. Leupers. Direct FPGA-
based power profiling for a RISC processor. In IEEE International Instrumen-
tation and Measurement Technology Conference (I2MTC), pages 1578–1583,
2015.

[DAK19] W. Diehl, A. Abdulgadir, and J.-P. Kaps. Vulnerability analysis of a soft
core processor through fine-grain power profiling. Cryptology ePrint Archive,
Report 2019/742, 2019.

[GHP+20] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem. Coco: Co-design
and co-verification of masked software implementations on CPUs. Cryptology
ePrint Archive, Report 2020/1294, 2020.

[GJJR11] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for
side-channel resistance validation. In NIST Non-Invasive Attack Testing
Workshop, 2011.

[GMO01] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete
results. In Cryptographic Hardware and Embedded Systems (CHES), LNCS
2162, pages 251–261. Springer-Verlag, 2001.

[GMPP20] S. Gao, B. Marshall, D. Page, and T. Pham. FENL: an ISE to mitigate
analogue micro-architectural leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2020(2):73–98, 2020.

[GYCH18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal of
Cryptographic Engineering (JCEN), 8:1–27, 2018.

[GYH18] Q. Ge, Y. Yarom, and G. Heiser. No security without time protection: we
need a new hardware-software contract. In Asia-Pacific Workshop on Systems
(APSys), 2018.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global
Conference on Consumer Electronics, pages 657–660, 2012.

[KGBR19] M. Arsath KF, V. Ganesan, R. Bodduna, and C. Rebeiro. PARAM: A
microprocessor hardened for power side-channel attack resistance. 2019.

[KJJ99] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology (CRYPTO), LNCS 1666, pages 388–397. Springer-Verlag, 1999.

[KSM20] D. Knichel, P. Sasdrich, and A. Moradi. SILVER – Statistical Independence
and Leakage Verification. In Advances in Cryptology (ASIACRYPT), LNCS
12491, pages 787–816. Springer-Verlag, 2020.

[LBS19] I. Levi, D. Bellizia, and F.-X. Standaert. Reducing a masked implementation’s
effective security order with setup manipulations. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2019(2):293–317,
2019.

[MDLG18] D. Mercadier, P.-É. Dagand, L. Lacassagne, and G. Gilles. Usuba: optimizing
& trustworthy bitslicing compiler. In Workshop on Programming Models for
SIMD/Vector Processing (WPMVP), pages 1–8, 2018.

44 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

[Mea] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f071cb.pdf.

[Meb] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f100cb.pdf.

[Mec] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f215re.pdf.

[Med] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f303cb.pdf.

[Mee] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/dm00037051.pdf.

[Mef] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/dm00039193.pdf.

[MGH19] E. De Mulder, S. Gummalla, and M. Hutter. Protecting RISC-V against side-
channel attacks. In Design Automation Conference (DAC), pages 45:1–45:4,
2019.

[MMT20] L. De Meyer, E. De Mulder, and M. Tunstall. On the effect of the (mi-
cro)architecture on the development of side-channel resistant software. Cryp-
tology ePrint Archive, Report 2020/1297, 2020.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, 2007.

[MR04] S. Micali and L. Reyzin. Physically observable cryptography. In Theory of
Cryptography (TCC), LNCS 2951, pages 278–296. Springer-Verlag, 2004.

[MWO16] D. McCann, C. Whitnall, and E. Oswald. ELMO: Emulating leaks for the
ARM Cortex-M0 without access to a side channel lab. Cryptology ePrint
Archive, Report 2016/517, 2016.

[New] NewAE. https://wiki.newae.com/CW308T-STM32F.

[NXPa] NXP. Data-sheet. https://www.nxp.com/docs/en/data-sheet/LPC81XM.
pdf.

[NXPb] NXP. Data-sheet. https://www.nxp.com/docs/en/data-sheet/LPC111X.
pdf.

[NXPc] NXP. Data-sheet. https://www.nxp.com/docs/en/data-sheet/LPC1311_
13_42_43.pdf.

[PV17] K. Papagiannopoulos and N. Veshchikov. Mind the gap: Towards secure
1st-order masking in software. In Constructive Side-Channel Analysis and
Secure Design (COSADE), LNCS 10348, pages 282–297. Springer-Verlag,
2017.

[RKL+04] S. Ravi, P.C. Kocher, R.B. Lee, G. McGraw, and A. Raghunathan. Security
as a new dimension in embedded system design. In Design Automation
Conference (DAC), pages 753–760, 2004.

[RP10] M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In
Cryptographic Hardware and Embedded Systems (CHES), LNCS 6225, pages
413–427. Springer-Verlag, 2010.

https://www.st.com/resource/en/datasheet/stm32f071cb.pdf
https://www.st.com/resource/en/datasheet/stm32f071cb.pdf
https://www.st.com/resource/en/datasheet/stm32f100cb.pdf
https://www.st.com/resource/en/datasheet/stm32f100cb.pdf
https://www.st.com/resource/en/datasheet/stm32f215re.pdf
https://www.st.com/resource/en/datasheet/stm32f215re.pdf
https://www.st.com/resource/en/datasheet/stm32f303cb.pdf
https://www.st.com/resource/en/datasheet/stm32f303cb.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00039193.pdf
https://www.st.com/resource/en/datasheet/dm00039193.pdf
https://wiki.newae.com/CW308T-STM32F
https://www.nxp.com/docs/en/data-sheet/LPC81XM.pdf
https://www.nxp.com/docs/en/data-sheet/LPC81XM.pdf
https://www.nxp.com/docs/en/data-sheet/LPC111X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC111X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC1311_13_42_43.pdf
https://www.nxp.com/docs/en/data-sheet/LPC1311_13_42_43.pdf

Ben Marshall, Dan Page and James Webb 45

[RRKH04] S. Ravi, A. Raghunathan, P.C. Kocher, and S. Hattangady. Security in
embedded systems: Design challenges. ACM Transactions on Embedded
Computer Systems, 3(3):461–491, 2004.

[RSVC+11] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flan-
dre. A formal study of power variability issues and sidechannel attacks for
nanoscale devices. In Advances in Cryptology (EUROCRYPT), LNCS 6632,
pages 109–128. Springer-Verlag, 2011.

[RV:19] The RISC-V instruction set manual. Technical Report Volume I: User-
Level ISA (Version 20190608-Base-Ratified), 2019. http://riscv.org/
specifications/.

[SSB+20] M.A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and Y. Yarom.
Rosita: Towards automatic elimination of power-analysis leakage in ciphers,
2020.

[Sze19] J. Szefer. Survey of microarchitectural side and covert channels, attacks, and
defences. Journal of Hardware Systems Security, 3(3):219–234, 2019.

[Wel47] B.L. Welch. The generalization of “student’s” problem when several different
population variances are involved. Biometrika, 34(1-2):28–35, 1947.

[Wol] C. Wolf. https://github.com/cliffordwolf/picorv32.

[Xila] Xilinx. https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_2/ug984-vivado-microblaze-ref.pdf.

[Xilb] Xilinx. https://www.xilinx.com/support/documentation/user_
guides/ug473_7Series_Memory_Resources.pdf.

http://riscv.org/specifications/
http://riscv.org/specifications/
https://github.com/cliffordwolf/picorv32
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf

46 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

A Links for web-based interface
Table 10 captures the correspondence between micro-benchmarks listed in this paper, and
those accessible via the web-based interface described in Section 4.4: differences between
the two stem from use of a shorter or more meaningful alias, and, in either case, improved
readability, within the paper.

Table 10: Correspondence between micro-benchmarks listed in this paper, and those
accessible via the web-based interface.

Paper Online
pipeline/branch-pre (Figure 7a) pipeline/branch-flush-regs-pre
pipeline/branch-post (Figure 7b) pipeline/branch-flush-regs-post
pipeline/jump-pre (Figure 7c) pipeline/jump-flush-regs-pre
pipeline/jump-post (Figure 7d) pipeline/jump-flush-regs-post
speculation/branch-fwd (Figure 8a) speculation/branch-fwd
speculation/jump-fwd (Figure 8b) speculation/jump-fwd
speculation/branch-bwd (Figure 8c) speculation/branch-bwd
speculation/jump-bwd (Figure 8d) speculation/jump-bwd
speculation/loop-0 (Figure 8e) speculation/loop-0
pipeline/eor-add (Figure 6b) pipeline/iseq-xor-add
pipeline/eor-lsl (Figure 6c) pipeline/iseq-xor-srli
pipeline/eor-ror (Figure 6d) pipeline/iseq-xor-ror
pipeline/eor-ldr (Figure 6e) pipeline/iseq-xor-lw
pipeline/eor-str (Figure 6f) pipeline/iseq-xor-sw
pipeline/nop-eor (Figure 6g) pipeline/iseq-nop-xor
memory-bus/ld-ld (Figure 3a) memory-bus/implicit-regs-ld-ld
memory-bus/ld-st (Figure 3b) memory-bus/implicit-regs-ld-st
memory-bus/st-ld (Figure 3c) memory-bus/implicit-regs-st-ld
memory-bus/st-st-1 (Figure 3d) memory-bus/implicit-regs-st-st-1
memory-bus/st-st-2 (Figure 3e) memory-bus/implicit-regs-st-st-2
memory-bus/st-st-3 (Figure 3f) memory-bus/implicit-regs-st-st-3

	Introduction
	Background
	Terminology
	Notation
	Architectural leakage
	Micro-architectural leakage
	Summary

	Infrastructure
	Devices
	Platforms
	Micro-benchmarks
	Artifacts

	Case studies
	Memory: hidden state
	Memory: data bus widths
	Memory: sequential accesses
	Pipeline register overwrites
	Control-flow instructions
	Speculative execution in short pipelines

	Discussion
	A mental model of micro-architectural leakage
	Implications for evaluation of masking schemes
	Implications for leakage modelling

	Conclusion
	Links for web-based interface

