
Compressed Linear Aggregate Signatures
Based on Module Lattices

Katharina Boudgoust and Adeline Roux-Langlois

katharina.boudgoust@irisa.fr, adeline.roux-langlois@irisa.fr

Univ Rennes, CNRS, IRISA

Abstract. The Fiat-Shamir with Aborts paradigm of Lyubashevsky
(Asiacrypt’09) has given rise to efficient lattice-based signature schemes.
One popular implementation is Dilithium which is a finalist in an ongoing
standardization process run by the NIST. An interesting research ques-
tion is whether it is possible to combine several unrelated signatures,
issued from different signing parties on different messages, into one sin-
gle aggregated signature. Of course, its size should be much smaller than
the trivial concatenation of all signatures. Ideally, the aggregation can
be done offline by a third party, called public aggregation. Doröz et al.
(IACR eprint 2020/520) proposed a first lattice-based aggregate signa-
ture scheme allowing public aggregation. However, its security is based
on the hardness of the Partial Fourier Recovery problem, a structured
lattice problem which neither benefits from worst-to-average reductions
nor wasn’t studied extensively from a cryptanalytic point of view.
In this work we give a first instantiation of an aggregate signature al-
lowing public aggregation whose hardness is proven in the aggregate
independent-chosen-key model assuming the intractability of two well-
studied problems on module lattices: The Module Learning With Er-
rors problem (M-LWE) and the Module Short Integer Solution prob-
lem (M-SIS). Both benefit from worst-case to average-case hardness re-
ductions. The security model we use is a more restricted variant of the
original aggregate chosen-key model. Our protocol can be seen as an
aggregated variant of Dilithium. Alternatively, it can be seen as a trans-
formation of the protocol from Doröz et al. to the M-LWE/M-SIS frame-
work.

Keywords. Lattice-Based Cryptography, Module Lattices, Signature
Aggregation

1 Introduction

For a long time, the main focus of cryptology was on secure encryption. With the
invention of public key cryptology in the 1970s and the spread of the internet, the
need of secure key exchange and authentication of data became more and more
important. This is why nowadays the focus of public key cryptology increasingly
shifts towards digital signatures. A digital signature scheme ΠS with message
spaceM is composed of three algorithms KGen,Sig and Vf. The algorithm KGen

mailto:katharina.boudgoust@irisa.fr
mailto:adeline.roux-langlois@irisa.fr

2 K. Boudgoust et al.

generates a key pair (sk, vk) for a given user, who can then use their1 secret key sk
to generate a signature σ on a given message m ∈ M by running Sig(sk,m).
Afterwards, this signature can be verified by anyone using the verification key vk,
which is publicly available, by running {0, 1} ← Vf(vk,m, σ). If the verification
procedure outputs 1, the signature passes validation.

An interesting research question is whether it is possible to define an addi-
tional algorithm σagg ← AggSig(VK,M,Σ) which takes as input a vector of N ∈
Z verification keys VK = (vkj)j∈[N], a vector of N messages M = (mj)j∈[N] and
a vector of N signatures Σ = (σj)j∈[N], that were generated by the N different
signing parties with corresponding verification keys vkj , and outputs a single
signature σagg. We further require a way for others to verify that σagg is indeed
an aggregation of valid signatures. Thus, we need to provide a second additional
algorithm {0, 1} ← AggVf(VK,M, σagg), that outputs 1 if σagg is a valid ag-
gregation of N valid signatures. All five algorithms define a so-called aggregate
signature scheme ΠAS = (KGen,Sig,Vf,AggSig,AggVf), where we require that
it must satisfy correctness and unforgeability properties. A trivial solution is to
set σagg as the concatenation of all the N different signatures and verify one
after the other. In the following we are searching for an aggregate scheme that
produces a σagg which is significantly shorter than this trivial solution. Ideally,
the aggregation algorithm AggSig can be performed by a third, even untrusted
party without needing to communicate with the N signing parties. We call this
public aggregation. The concept and a first realization of aggregate signatures
with public aggregation were given by Boneh et al. [BGLS03] by using bilinear
maps constructed over elliptic curves in the generic group model. Aggregate sig-
natures are a useful tool to save communication costs in settings where different
users have to authenticate their communication, for instance in consensus pro-
tocols or certificate chains. More recently, they attracted increased interest as
they help to reduce the size of blockchains such as the Bitcoin blockchain.

A first attempt to build lattice-based aggregate signatures with public aggre-
gation was recently made by Doröz et al. [DHSS20]. Their construction builds
upon the signature scheme PASS Sign, introduced by Hoffstein et al. [HPS+14].
As a warm-up, they introduce a simple linear aggregate signature, which they
call MMSA (multi-message, multi-user signature aggregation). However, in this
version, the aggregate signature is larger than the trivial concatenation of N
different signatures. In order to improve the efficiency and thus to get something
meaningful, they first compress the signature, leading to MMSAT (the T stands
for a linear compression function T), and then compress the verification keys,
leading to MMSATK. Unfortunately, their construction has two disadvantages:
First, the size of an aggregated signature is still linear in the number N of in-
volved signatures, even though it is much smaller than simply concatenating
them all thanks to the compression. Second, they only provide a security proof

1 Throughout the paper, the neutral singular pronouns they/their are used in or-
der to keep the language as inclusive as possible. See also https://www.acm.org/
diversity-inclusion/words-matter

https://www.acm.org/diversity-inclusion/words-matter
https://www.acm.org/diversity-inclusion/words-matter

Compressed Linear Aggregate Signatures Based on Module Lattices 3

for the first variant MMSA2 by showing that it inherits the security of the under-
lying PASS Sign, and subsequently its security can be based on the hardness of
the Partial Fourier Recovery problem (PFR). The PFR asks to recover a poly-
nomial in the ring Z[x]/〈xn − 1〉 of small norm having access only to a partial
list of its Fourier transform. It can be formulated as a shortest vector problem
over some structured lattices. However, up to date there are no connections to
worst-case lattice problems, which may be seen as a security concern.

In a parallel line of research, aggregate signature schemes that only allow for
private aggregation have been proposed. In this setting, the different signing par-
ties interact with each other to generate an aggregated signature on one message,
which can be the concatenation of different messages. Those are also known as
multi-signature schemes and there have been several recent protocols following
the Fiat-Shamir with Aborts (FSwA) paradigm [Lyu09] providing lattice-based
inter-active aggregate signatures, see for instance [BS16], [DOTT20] and [BK20].

Contributions. In this paper, we propose an aggregate signature allowing pub-
lic aggregation, whose security is proven assuming simultaneously the hardness
of Module Learning With Errors (M-LWE) and Module Short Integer Solu-
tion (M-SIS) and therefore on worst-case module lattice problems [LS15]. Earlier
proposals either only offered security based on (non-standard) average-case lat-
tice problems, or didn’t allow for public aggregation. From a high level perspec-
tive, we take the practical signature from Güneysu et al. [GLP12] as a starting
point. It follows the FSwA paradigm for lattice-based schemes [Lyu09,Lyu12],
which is also used in the signature Dilithium [DKL+18], a finalist in the ongoing
NIST standardization process3. The emphasis of our work lies on a proper secu-
rity proof, in a security model we explain below, also for the compressed version
of the aggregate signature. We think that it is important to adapt the interest-
ing ideas of the MMSA(TK) aggregate signature to the setting of lattice-based
signatures within the M-LWE/M-SIS framework to stimulate further research in
this direction.

Technical Details. Let us quickly recall the FSwA paradigm for lattice-based
signatures. In the following, all computations are done over the ring Rq =
Zq[x]/〈xn + 1〉, where n is a power of two and q is some prime modulus. A
verification key is given as t = [A|I] · s ∈ Rkq , where s ∈ R`+kq is a vector of small
norm (defining sk), A ∈ Rk×`q is a public uniform matrix and I the identity
matrix of order k. A signature is provided by σ = (u, z) ∈ Rkq × R`+kq , where u
is a commitment that via some hash function Hc defines a challenge c, and z
is the answer to this challenge. For verification, one checks that z is small and
that [A|I] · z = t · c + u, where c = Hc(u, t,m) for the verification key t and a
message m. Adding t to the input of Hc is a simple countermeasure to prevent
so-called rogue key attacks [BGLS03, Sec. 3.2]. The size of a single signature can
be reduced by replacing u ∈ Rkq by c ∈ R. As we detail out later in Section 3 this

2 The authors announced that a security proof for MMSAT will appear in a full version
which was not available at the time of writing.

3 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

4 K. Boudgoust et al.

can’t be done in the aggregate setting. A naive way to aggregate N different sig-
natures (σj)j∈[N] with σj = (uj , zj) into one signature σagg would be to compute
the sum of all components (

∑
j uj ,

∑
j zj). However, we wouldn’t be able to ver-

ify this aggregated signature as we can’t re-compute the different challenges cj
as we don’t know the inputs uj to Hc, originally used by the signing parties.
Thus, we can only sum up the zj parts and still have to transmit all the uj ,
which produces an aggregate signature of the form σagg = ((uj)j ,

∑
j zj). This

is essentially how the aggregate signature in MMSA looks like [DHSS20, Sec. 4].
In order to gain efficiency, we use the following observation made in [DHSS20,
Sec. 5]. For the security of the signature scheme, we need the collision prop-
erty of the random oracle Hc to be negligible in our security parameter λ,
say 2−2λ. However, a commitment u is an element of Rkq and thus the commit-
ment space is much bigger than we need for combinatorial security. By taking a
linear map T : Rkq → Zn0

q with n0 log2(q) ≈ 2λ, we can compress the input to Hc

to T (uj). For the verification, we only need the sum of the uj , i.e., û =
∑
j uj .

Now, the aggregate signature is set to σagg = (û, T (uj)j , z), where z =
∑
j zj .

In order to pass verification, the norm of z has to be small enough and the
equation [A|I] · z =

∑
j tj · cj + û has to be true, where cj = Hc(T (uj), tj ,mj).

Further, one checks that T (û) =
∑
j T (uj), to make sure that the T (uj) and û

are well defined. We formally present our aggregate signature scheme in Sec-
tion 3. An aggregated signature is composed of N + 2 elements, which is linear
in the number of involved signatures. Still, it is much smaller than the trivial
concatenation, as the size of the vector T (uj)j is only linear in the security
parameter λ and not linear in the lattice dimension kn, where λ� kn.

To illustrate the gain in efficiency, we consider the concrete parameters
of Dilithium for the security level III with security parameter λ = 128. In this
setting, one signature σ = (z, c) ∈ R`q × Rq with ‖z‖∞ ≤ B and ‖c‖∞ = 1 is of
size 2 701 Bytes. Taking the concatenation of N = 1000 signatures results in an
aggregate signature of size 2 701 000 Bytes. In our construction, an aggregate
signature σagg = (û, (T (uj))j∈[N], z) ∈ Rkq×(Zn0

q)N×Rk+`q with ‖z‖∞ ≤
√
N ·B

and n0 · log2(q) ≈ 2λ. In order to keep the same ratio between the bound and the
modulus, in our scheme log2(q) has to be larger than in Dilithium by an additive
factor log2(

√
N). The resulting σagg is of size ≈ 43 700 Bytes, which is more

than 60 times smaller than the trivial solution.

In Section 4, we provide a rigorous security proof (Theorem 1), where the
proof idea follows the one of Damgård et al. [DOTT20] for their inter-active
multi-signature. It is composed of a sequence of indistinguishable games (as-
suming the hardness of M-LWE), where the starting one is the security game
of our aggregate signature. The game is specified by the aggregate independent-
chosen-key model, a restricted variant of the more general aggregate chosen-key
model originally introduced by Boneh et al. [BGLS03]. The main difference be-
tween both notions is that in our security game the adversary has to generate
a set of signatures before receiving the challenge in order to make sure that
they are independent of it. In Section 4.3 we show a subtle attack against our
aggregate signature in the more general chosen-key model, motivating the intro-

Compressed Linear Aggregate Signatures Based on Module Lattices 5

duction of our new model.4 It was observed by Zhao [Zha19] in the context of
Schnorr-based aggregate signatures on elliptic curves. Note that Zhao proposed
a modified protocol to prevent this type of attacks at the expense of introducing
a new non-standard problem. This modified protocol was later attacked with a
sub-exponential algorithm by Hanaoka et al. [HOS+20].

In the last game, the signing procedure is simulated by some algorithm that
doesn’t depend on the secret key and the challenge verification key is sampled
uniformly at random. By applying the General Forking Lemma from Bellare
and Neven [BN06] we can use two different responses of a successful adversary
against the scheme in the last game to solve an instance of M-SIS. As we don’t
need trapdoor commitment schemes, the proof is less technical than the one
in [DOTT20]. We use a Gaussian distribution for the masking vectors and the
rejection sampling, as done in [DOTT20]. This leads to tighter norm bounds of
an aggregate signature, see Remark 2.
Open Problems. The General Forking Lemma induces two problems: First,
we currently don’t know how to extend it to the quantum setting. And second,
it leads to non-tight security proofs. To circumvent both issues, one could try to
adapt the techniques of Abdalla et al. [AFLT16] and of Kiltz et al. [KLS18]. As we
point out in Remark 3 the signature compression impedes their straight-forward
adaption. Furthermore, we leave as an open problem to provide an aggregate
signature scheme based on standard lattice-problems which allows public ag-
gregation and at the same time is provably secure in the aggregate chosen-key
security model. More generally, the design of such a scheme which addition-
ally produces aggregated signatures of length independent of the number N of
aggregated signatures, is an important open problem.

2 Preliminaries

For k ∈ N, we represent the set {1, . . . , k} by [k]. Vectors are denoted in bold
lowercase and matrices in bold capital letters and the identity matrix of order k
is denoted by Ik. The concatenation of two matrices A and B with the same
number of rows is denoted by [A|B]. For any set S, we denote by U(S) the
uniform distribution over S. We write x← D to denote the process of sampling
an element x following the distributionD. Throughout the paper R = Z[x]/〈xn+
1〉 denotes the ring of integers of the 2n-th cyclotomic field, where n is a power of
two. Further, q is a prime such that q = 1 mod 2n defining the quotient ring Rq =
Zq[x]/〈xn+1〉. An element a =

∑n
j=1 ajx

j−1 of R is identified with its coefficient
vector a = (aj)j∈[n] ∈ Zn. For any ring element a ∈ R, we set ‖a‖∞, ‖a‖2
and ‖a‖1 as the infinity, the Euclidean and the `1-norm of its coefficient vector,
respectively. All norms can be generalized to vectors a ∈ Rk for k ∈ N, by
considering the coefficient vector of dimension kn defined by a. We rely on the
key set Sβ = {a ∈ R : ‖a‖∞ ≤ β} with β ∈ N. We define continuous and discrete
Gaussian distributions over Rm, for m ∈ Z.
4 In an earlier version of this paper, we weren’t aware of this attack.

6 K. Boudgoust et al.

Definition 1. For z ∈ Rm let ρv,s(z) = (1/
√
2πs)m exp(−‖z− v‖22/2s2) be

the continuous Gaussian distribution centered at v ∈ Rm with standard devi-
ation s > 0. Its discrete analogue is defined as Dm

v,s(z) =
ρv,s(z)
ρv,s(Rm) , where we

set ρv,s(Rm) =
∑

x∈Rm ρv,s(x). If v = 0, we simply write Dm
s (z).

We restate a result on the distribution of the sum of discrete Gaussians over Rm.
It uses the so-called smoothing parameter η(Rm) of Rm, which was introduced
in [MR07] and can be bounded by η(Rm) ≤

√
ω(log(nm)) [MR07, Lem. 3.3]. In-

formally, it describes a threshold above which many properties of the continuous
Gaussian distribution also hold for its discrete analogue.

Lemma 1 (Thm. 3.3 [MP13]). Suppose that s ≥ η(Rm)/
√
π. Let m,N ∈ Z

and for j ∈ [N] let zj ← Dm
s be independent samples. Then the distribution

of z =
∑
j∈[N] zj is statistically close to Dm

s
√
N
.

Finally, we use the following tail bound on discrete Gaussians.

Lemma 2 (Lem. 4.4 [Lyu12]). For any parameter γ > 1 it yields Pr[‖z‖2 >
γs
√
mn : z← Dm

s] < γmn exp(mn(1− γ2)/2).

Throughout the paper we choose γ such that this probability is negligibly small
for a fixed m.

2.1 Module Lattice Problems

We also recall two lattice problems and refer to [LS15] for more details. We state
them in their discrete, primal and HNF form.

Definition 2 (M-LWE). Let k, `, β ∈ N. The Module Learning With Errors
problem M-LWEk,`,β is defined as follows. Given A ← U(Rk×`q) and t ∈ Rkq .
Decide whether t← U(Rkq) or if t = [A|Ik] · s, where s← U(S`+kβ).

The M-LWE assumption states that no PPT distinguisher can distinguish the
two distributions with non-negligible advantage. Worst-case to average-case re-
ductions guarantee that M-LWE is quantumly [LS15] and classically [BJRW20]
at least as hard as the approximate shortest vector problem over module lattices.

Definition 3 (M-SIS). Let k, `, b ∈ N. The Module Short Integer Solution prob-
lem M-SISk,`,b is as follows. Given a uniformly random matrix A ← U(Rk×`q).
Find a non-zero vector s ∈ Rk+`q such that ‖s‖2 ≤ b and [A|Ik] · s = 0 ∈ Rkq .

The M-SIS assumption states that no PPT adversary can solve this problem
with non-negligible probability. Worst-case to average-case reductions guarantee
that M-SIS is classically [LS15] at least as hard as the approximate shortest
independent vector problem over module lattices.

Compressed Linear Aggregate Signatures Based on Module Lattices 7

2.2 Aggregate Signature Schemes

We present the formal definition of aggregate signature schemes and their prop-
erty of correctness.

Definition 4. An aggregate signature scheme ΠAS for a message spaceM con-
sists of a tuple of PPT algorithms ΠAS = (KGen,Sig,Vf,AggSig,AggVf), pro-
ceeding as specified in the following protocol:

KGen(1λ)→ (sk, vk) : On input a security parameter λ, the key generation algo-
rithm returns a secret signing key sk and a public verification key vk.

Sig(sk,m)→ σ : On input a signing key sk and a message m ∈ M, the signing
algorithm returns a signature σ.

Vf(vk,m, σ)→ {0, 1} : On input a verification key vk, a message m ∈ M and
a signature σ, the verification algorithm either accepts (i.e. outputs 1) or
rejects (i.e. outputs 0).

AggSig(VK,M,Σ)→ σagg : On input a vector of verification keys VK = (vkj)j∈[N],
a vector of messagesM = (mj)j∈[N] and a vector of signatures Σ = (σj)j∈[N],
the signature aggregation algorithm returns a aggregated signature σagg.

AggVf(VK,M, σagg)→ {0, 1} On input a vector of verification keys VK = (vkj)j∈[N],
a vector of messages M = (mj)j∈[N] and an aggregated signature σagg, the
aggregated verification algorithm either accepts (i.e. outputs 1) or rejects (i.e.
outputs 0).

Definition 5. Let ΠAS = (KGen,Sig,Vf,AggSig,AggVf) be an aggregate sig-
nature scheme for a message space M. It is called correct if for all security
parameters λ ∈ N and number of signers N ∈ N it yields

Pr[AggVf(VK,M,AggSig(VK,M,Σ)) = 1] = 1,

where mj ∈ M, (skj , vkj) ← KGen(1λ) and σj ← Sig(skj ,mj) for j ∈ [N]
and VK = (vkj)j∈[N], M = (mj)j∈[N] and Σ = (σj)j∈[N].

2.3 General Forking Lemma

For the sake of completeness and to fix notations, we restate the General Forking
Lemma from Bellare and Neven [BN06].

Lemma 3 (General Forking Lemma). Let Nq ≥ 1 be an integer and let C be
a set of size |C| ≥ 2. Let B be a randomized algorithm that on input x, h1, . . . , hNq
returns a pair (j, out), where j ∈ {0, . . . , Nq} and a side output out. Let IGen be a
randomized algorithm called the input generator, parametrized by some security
parameter λ. We define the accepting probability of B as

acc = Pr[j 6= 0: x← IGen(1λ);h1, . . . , hNq ← U(H); (j, out)← B(x, h1, . . . , hNq)].

Let FB be a forking algorithm that works as in Figure 1, given x as input and
black-box access to B. We define the forking probability of FB as

frk = Pr[(out, õut) 6= (⊥,⊥) : x← IGen(1λ); (out, õut)← FB(x)].

Then it yields acc ≤ Nq/ |C|+
√
Nq · frk.

8 K. Boudgoust et al.

Upon input x, the algorithm FB does the following:
1. Pick a random coin ρ for B
2. Generate h1, . . . , hNq ← U(C)
3. (j, out)← B(x, h1, . . . , hNq , ρ)
4. If j = 0, then return (⊥,⊥)
5. Regenerate h̃j , . . . , h̃Nq ← U(C)

6. (j̃, õut)← B(x, h1, . . . , hj−1, h̃j , . . . , h̃Nq , ρ)

7. If j = j̃ and hj 6= h̃j , then return (out, õut)
8. Else return (⊥,⊥).

Fig. 1: The forking algorithm FB.

3 Our Lattice-Based Aggregate Signature Scheme

In this section we first present the underlying single signature scheme (Sec-
tion 3.1) before introducing our aggregate signature scheme in Section 3.2.
From a high level perspective, we take the practical signature from Güneysu et
al. [GLP12] as a starting point. The linear aggregation follows the idea of Doröz
et. al [DHSS20], where the main difference is that we moved to theM-LWE/M-SIS
framework instead of the Partial Fourier Recovery framework of the original
scheme. We think that M-LWE and M-SIS are more standard lattice problems
and thus they increase our confidence in the security of the proposed scheme.

3.1 The Single Signature Scheme

In the following we describe the underlying single signature scheme, which is
essentially the signature scheme from Güneysu et al. [GLP12] with minor mod-
ifications. Let Rq = Zq[x]/〈xn + 1〉, with n a power of two and q a prime such
that q = 1 mod 2n. For k, ` ∈ N, let A ∈ Rk×`q follow the uniform distribution
and be a public shared parameter of the system. The number of columns ` and
the number of rows k should be adapted to the required security level, but usually
they are small constants. Let Hc : {0, 1}∗ → C = {c ∈ R : ‖c‖1 = d, ‖c‖∞ = 1}
be a random oracle with d such that |C| > 22λ, where λ denotes the required
security level. Let s, β,M ∈ Z and the message space M = {0, 1}∗. Further,
let T denote a linear map T : Rkq → Zn0

q , such that n0 · log2 q ≈ 2λ.
The signature scheme ΠS = (KGen,Sig,Vf) from [GLP12] with minor modi-

fications and allowing signature compression is illustrated in Figure 2.
Description. The algorithm KGen samples a secret key vector s, composed of
elements of R with coefficients of size at most β, and sets the verification key
to t = [A|Ik] · s ∈ Rkq . At the beginning of the signing procedure, a masking
vector y following the Gaussian distribution D`+k

s is sampled. The signing party
then computes u = [A|Ik] · y ∈ Rkq , which serves together with the verifica-
tion key t and the message m as input to the random oracle Hc. The output c
of Hc is a polynomial in R with exactly d coefficients that are ±1 and the re-
maining coefficients are 0. The second part of a potential signature is defined

Compressed Linear Aggregate Signatures Based on Module Lattices 9

KGen(1λ) : sample s← U(S`+kβ)

set sk = s and vk = t = [A|Ik] · s ∈ Rkq
return (sk, vk)

Sig(sk,m) : set z = ⊥
while z = ⊥ do:
sample y← D`+k

s

set u = [A|Ik] · y ∈ Rkq
compute c = Hc(T (u), t,m) ∈ C
set z = s · c+ y

with probability 1−min(1, D`+k
s (z)/M ·D`+k

c·s,s(z))
set z = ⊥

return σ = (u, z)
Vf(vk, σ,m) : re-construct c = Hc(T (u), t,m)

if ‖z‖2 < B and [A|Ik] · z = t · c+ u,
then return 1

else return 0

Fig. 2: The signature scheme from [GLP12] with minor modifications, allowing
signature compression.

as z = s · c+ y. In order to make the distribution of the signature independent
of the secret key, the algorithm only outputs the potential signature with prob-
ability min(1, D`+k

s (z)/M ·D`+k
c·s,s(z)), where M is a constant that depends on β

(the Euclidean norm of the secret s) and d (the `1-norm of the challenge c).
This step is called rejection sampling. In order to verify σ, the verifier first re-
constructs the hash value c = Hc(T (u), t,m) and then checks if the norm of z is
smaller than B, where B = γs

√
n(`+ k) is as in Lemma 2 with m = `+ k, and

that [A|Ik]·z = t·c+u. The parameters β, d,M and γ have to be set strategically
such that the scheme is correct, efficient and secure, see [Lyu12,DKL+18].

Modifications. A first difference to the signature scheme in [GLP12] is that we
use a Gaussian distribution for y (and thus for z and the rejection sampling)
as originally done in [Lyu12], instead of a bounded uniform distribution. This
change is motivated by the fact that the sum of independent Gaussians provides
better bounds on its norm than the sum of uniformly distributed elements. This
becomes crucial when aggregating the signatures in Section 3.2.

Another minor difference is that instead of transmitting c in the signature,
we send u. For a single signature, both cases are equivalent, as u defines c via the
hash function Hc (and the verification key t and the message m) and c defines u
via the equation u = [A|Ik] · z − t · c over Rq. In Section 3.2 we see that this
is not the case for an aggregate signature scheme and we thus need to transmit
the information u (and some additional information on the compressed values,
see Sec. 3.2). Note that the size of u is much larger than the one of c, but for a
large number of aggregated signatures, this additional cost will be amortized.

A third modification is that we add the verification key t to the input of
the hash function Hc to compute the challenge c. As proposed by Boneh et

10 K. Boudgoust et al.

al. [BGLS03, Sec. 3.2] and implemented for MMSA(TK) in [DHSS20, Sec. 8.2],
adding t to the input ofHc ties the hash value to the (sk, vk)-pair, which prevents
so-called rogue key attacks (also called key swap attacks) on aggregate signatures.

A forth modification is that we compress the input to the hash function
via the linear map T , which will later help to compress the size of an aggre-
gated signature. Concretely, one can take any matrix T ∈ Zn0×nk

q to define the
linear map T . Taking T as the identity map (and n0 = nk) gives the usual
uncompressed signature. Note that the verification of a signature still requires
computations over Rq, so that we keep the same hardness guarantees for the
underlying lattice problem and thus the same security level.
Security. Overall, the security of the scheme ΠS = (KGen,Sig,Vf) as specified
in Figure 2 is based on the hardness of M-LWE and M-SIS. For the reason of
space limits, we don’t go into detail here, but refer the interested reader to the
original security proofs in [Lyu12] and [GLP12] in the ROM.

3.2 Linear Signature Aggregation With Compression

In the following we describe how to aggregate signatures from the scheme above.
We use the linear aggregation with compression approach from [DHSS20]. As-
sume that we have N different users with corresponding secret keys s1, . . . , sN
and verification keys VK = (vkj)j∈[N], where vkj = tj = [A|Ik] · sj using the
same public matrix A. The N users signed N different messagesM = (mj)j∈[N],
producing N independent signatures Σ = (σj)j∈[N] = (uj , zj)j . The signature
aggregation with compression is illustrated in Figure 3. The aggregate signature
scheme is given by ΠAS = (KGen,Sig,Vf,AggSig,AggVf).

AggSig(VK,M,Σ) : For all j ∈ [N] compute T (uj)
set z =

∑
j zj ∈ R

`+k
q

and û =
∑
j uj ∈ R

k
q

if ‖z‖2 ≤
√
N ·B,

then return σagg = (û, (T (uj))j , z);
else
return ⊥;

AggVf(VK,M, σagg) : Re-construct cj = Hc(T (uj), tj ,mj) for all j ∈ [N]

If ‖z‖2 <
√
N ·B

and if [A|Ik] · z =
∑
j(tj · cj) + û

and if T (û) =
∑
j T (uj)

return 1; else return 0;

Fig. 3: Linear Signature Aggregation with Compression.

In order to aggregate N signatures (σj)j∈[N] the algorithm AggSig simply com-
putes the two sums z =

∑
j zj and û =

∑
j uj , together with the compressed

values T (uj)j∈[N] and outputs the aggregated signature σagg = (û, (T (uj))j , z),

Compressed Linear Aggregate Signatures Based on Module Lattices 11

if the Euclidean norm of z is bounded above by
√
N · B. Else the algorithm

outputs ⊥. The probability that AggSig outputs ⊥ is negligible by Lemma 1.
The aggregation can be done by anyone, even by untrusted parties, as long as
they have access to the random oracle Hc. Thus, public aggregation is enabled.

To verify an aggregated signature σagg, AggVf first re-constructs the chal-
lenges cj for j ∈ [N] by using the compressed commitment T (uj) provided
in σagg, the verification key tj and the message mj . The algorithm then checks
if the norm of z lies within the correct bound. Finally it verifies the equa-
tions [A, Ik]·z =

∑
j(tj ·cj)+û and T (û) =

∑
j T (uj). If all checks go through, it

outputs 1, else 0. It now becomes clear that transmitting cj wouldn’t be sufficient
to verify the aggregated signature: as the verifier only knows the term z, but not
all the zj , they cannot reconstruct uj from cj . Without knowing uj , however,
the verifier would not be able to verify the aggregated signature. Inter-active
multi-signatures circumvent this issue by generating inter-actively one common
input u to the random oracle that depends on all the uj , before sending the
multi-signature, see for instance [BS16] or [DOTT20]. As a public aggregation
is our main objective, we accept a larger aggregated signature size.

The correctness of our protocol ΠAS simply follows from the linearity of
matrix-vector multiplication over Rq.

Lemma 4 (Correctness). Let ΠAS = (KGen,Sig,Vf,AggSig,AggVf) be the ag-
gregate signature scheme for a message space M with the algorithms as in Fig-
ures 2 and 3. Assuming the correctness of the corresponding single signature
scheme ΠS = (KGen,Sig,Vf), the aggregate signature is correct, i.e.,

Pr[AggVf(VK,M,AggSig(VK,M,Σ)) = 1|AggSig(VK,M,Σ) 6= ⊥] = 1,

where mj ∈ M, (skj , vkj) ← KGen(1λ) and σj ← Sig(skj ,mj) for j ∈ [N]
and VK = (vkj)j∈[N], M = (mj)j∈[N] and Σ = (σj)j∈[N].

Proof. Let σagg 6= ⊥ be the aggregate signature produced by AggSig(VK,M,Σ).
The first two checks if ‖z‖2 ≤

√
N · B and if T (û) =

∑
j∈[N] T (uj) succeed by

the construction of AggSig. For the last check, we compute

[A|Ik] · z = [A|Ik] ·

 N∑
j=1

zj

 =

N∑
j=1

[A|Ik] · zj

=

N∑
j=1

tj · cj + uj =

N∑
j=1

tj · cj + û,

where we used the linearity over Rq and the correctness of ΠS . ut

Remark 1. In order to guarantee the correctness of the scheme, it is important
that all key pairs (sk, vk) share the same public matrix A. It can be computed
interactively by all, or by a reasonable large subset of all parties together during
a setup-phase as in [DOTT20]. In order to gain in efficiency, it can instead also
be computed by some compact random seed.

12 K. Boudgoust et al.

The key idea behind the compression is that (û, T (uj)j∈[N]) is much smaller
than transmitting the complete (uj)j∈[N]. At the same time, n0 is large enough
to guarantee combinatorial security as we set n0 such that it is hard to find a col-
lision of Hc for fixed verification key t and message m. By verifying that T (û) =∑
j T (uj), we know that û was correctly generated. If we set T as the identity

map (and n0 = kn), then T (uj) = uj defines the full vector and we can delete
the sum û from the aggregate signature.

Remark 2. Throughout the paper we use the Gaussian distribution for the mask-
ing vectors yj and thus the resulting signature components zj . Alternatively, one
can use a bounded uniform distribution, as originally done in [GLP12], as well
as in Dilithium. In this case, the bound on the norm of the aggregate signa-
ture component z increases by a factor of N (instead of a factor of

√
N in the

Gaussian setting). To mitigate this loss, one can use a randomized weighted sum
and the Central Limit Theorem as done for MMSA in [DHSS20, Sec. 4], which
requires the introduction of a second hash function, increasing the aggregation
complexity.

4 Security of Our Aggregate Signature Scheme

We present in Section 4.1 our security model for aggregate signatures before
proving in Section 4.2 the security of our scheme from Section 3.

4.1 The Aggregate Independent-Chosen-Key Security Model

Informally speaking, the security notion we use within this paper of an aggregate
signature scheme captures that there exists no efficient adversary who is able to
existentially forge an aggregate signature, within a specified game. We call it the
aggregate independent-chosen-key security model, which can be seen as a weaker
variant of the more general aggregate chosen-key security model as originally
introduced by Boneh et al. [BGLS03]. In Section 4.3 we show that this model
is too strong for our aggregate signature scheme by presenting a subtle attack
against it, first observed by Zhao [Zha19]. More generally, this attack applies to
all Schnorr-type signatures which use a linear aggregation as we do. Let ΠAS =
(KGen,Sig,Vf,AggSig,AggVf) be an aggregate signature scheme with message
spaceM as in Definition 4 and let N be the number of signatures to aggregate.
At the beginning of the game, an adversary A attacking ΠAS is asked to output
a vector of messages M ′ = (mj)j∈[N−1], of verification keys VK′ = (vkj)j∈[N−1]
and of signatures Σ′ = (σj)j∈[N−1]. Note that the signatures don’t necessarily
have to be valid signatures on the messages in M ′ under the keys VK′. Only
then A is given a single verification key vkN , the challenge key. Their goal is
the existential forgery of an aggregate signature σagg involving N signatures,
where we oblige A to include a signature that can be verified using the challenge
key and to include the verification keys of VK′, the messages of M ′ and the
signatures of Σ′.The adversary is also given access to a signing oracle on the
challenge key vkN .

Compressed Linear Aggregate Signatures Based on Module Lattices 13

The reason why this is called the independent-chosen-key model, is that we
force the adversary to forge an aggregate signature, where N −1 of the N signa-
tures on verification keys and messages chosen by the adversary have to be fixed
before receiving the challenge. With this restriction, we guarantee that the signa-
tures are independent of the challenge. Their advantage, denoted by Adv AggSigA,
is defined to be their probability of success in the following game.

Commit. For j ∈ [N − 1], the aggregate forger A outputs messages mj , ver-
ification keys vkj and signatures σj , defining M ′ = (mj)j , VK′ = (vkj)j
and Σ′ = (σj)j .

Setup. Then, A is provided with a challenge verification key vkN .
Queries. Proceeding adaptively,A queries signatures on messages of their choice

that can be verified using the challenge key vkN .
Response. Finally, A outputs an aggregate signature σagg, together with an N -

th signature σN = (zN ,uN) and message mN .
Result. The forger A wins the game if σagg = AggSig(VK,M,Σ), where VK =

[VK′|tN], M = [M ′|mN] and Σ = [Σ′|σN], and if 1 ← AggVf(VK,M, σagg).
In order to avoid trivial solutions,A is not allowed to hand in a pair (vkN ,mN),
which was queried on the signing oracle before.

If we show the security in the Random Oracle Model (ROM), we also have to
give A the possibility to query the used random oracles.

Definition 6. Let H denote a hash function that is modeled as a random oracle.
An aggregate signature scheme ΠAS is called (NH , NSig, N)-secure against exis-
tential forgery in the aggregate independent-chosen-key model in the ROM, if
there exists no PPT algorithm A that existentially forges an aggregate signature
on N verification keys in the aggregate independent-chosen-key model, where A
has non-negligible advantage, makes at most NH queries to the random oracle H
and at most NSig queries to the signing oracle on the challenge key.

4.2 Proof of Security

We now prove that our scheme is secure against existential forgery in the inde-
pendent-chosen-key model. The proof follows the one of Damgård et al. [DOTT20]
for their inter-active multi-signature. As we don’t need trapdoor commitment
schemes, our proof is less technical. Let ΠAS = (KGen,Sig,Vf,AggSig,AggVf) be
the aggregate signature from Section 3.

Theorem 1. Let Hc be the hash function from our aggregate signature, modeled
as a random oracle, with image space C. Assume the hardness of M-LWEk,`,β
and of M-SISk,`+1,b, where b = 2(

√
N · B +

√
d) with B = γs

√
n(k + `). Then,

the aggregate signature ΠAS with parameters (`, k, β, s, γ, d,N) is secure against
existential forgery in the aggregate independent-chosen-key model in the ROM.
The advantage of some PPT adversary A against ΠAS is bounded above by

Adv AggSigA ≤ AdvM-LWEk,`,β +Nq/ |C|+
√
Nq · AdvM-SISk,`+1,b

+ negl(λ) ,

14 K. Boudgoust et al.

where λ denotes the security parameter and A makes at most NHc queries to Hc

and NSig queries to the signing oracle and we set Nq = NHc +NSig.

Proof. Let A be an adversary against ΠAS with advantage Adv AggSigA. Our
high level goal is to show that their advantage is negligible in the security param-
eter λ by providing a sequence of games G0, G1 and G2, where G0 is the original
independent-chosen-key security game as in Section 4.1. Assuming the hardness
of M-LWE, the adversary A can distinguish between those games only with neg-
ligible advantage. In the last game G2 we apply the General Forking Lemma in
order to obtain two forgeries σagg, σ̃agg, with distinct challenges for the challenge
key vkN . The two forgeries then allow to construct a solution to M-SIS.

G0: Set Nq = NHc +NSig, where A makes at most NHc queries to Hc and NSig

queries to the signing oracle on vkN . Recall that C denotes the challenge
space from Sig. Let B be a second algorithm that is provided with some
randomly chosen hj ← U(C) for j ∈ [Nq]. For the random oracle Hc, the al-
gorithm B maintains a table HTc which is empty at the beginning. Further B
stores a counter ctr, initially set to 0.
Commit. For j ∈ [N−1], the aggregate forger A outputs messages mj , ver-

ification keys tj and signatures σj = (uj , zj), defining VK′ = (tj)j ,M ′ =
(mj)j andΣ′ = (σj)j . After receiving this information, B checks if HTc[xj]
was already set for xj = (T (uj), tj ,mj) for j ∈ [N − 1]. If no, they sam-
ple HTc[xj] ← U(C). With this, B sets the random oracle’s output for
the committed signatures (even if A queries them later).

Setup. B generates (skN , vkN)← KGen(1λ) and sends vkN to A.
Queries on Hc. On input x = (T (u), t,m), if HTc[x] is already set, B re-

turns HTc[x]. Else, if t = tN , they increment ctr and set HTc[x] = hctr.
Else they sample HTc[x]← U(C). Finally, they output c = HTc[x].

Signing queries. B follows the honest signing procedure Sig from ΠAS
for skN on input message m.

Forgery. Suppose that A outputs a forgery σagg = (û, (T (uj))j , z,) and
the N -th signature σN = (uN , zN) together with a message mN , defin-
ing the message vector M = [M ′|mN], the verification key vector VK =
[VK′|tN] and the signature vector Σ = [Σ′|σN]. Without loss of gen-
erality we assume that HTc was programmed on x = (T (uN), tN ,mN)
and thus cN = hjf for some counter index jf . If not, A would only
have a probability of 1 − 1/ |C| to guess the correct cN . If σagg =
AggSig(VK,M,Σ) and if AggVf(VK,M, σagg) = 1, then B outputs the
tuple (jf , out), where out = (VK,M, σagg,C), with C = (cj)j∈[N] such
that cj = Hc(T (uj), tj ,mj). Else, B outputs (0,⊥).

For j = 0, 1, 2, let Pr[Gj] denote the probability that B doesn’t output (0,⊥)
in game Gj . It yields Pr[G0] = Adv AggSigA .

G1: The game G1 is identical to the previous game G0 except that B doesn’t
generate the signature honestly, but instead simulates the transcript without
using the secret key skN .

Compressed Linear Aggregate Signatures Based on Module Lattices 15

Signing queries. On input message m, B samples c ← U(C) and z ←
D`+k
s . They compute u = [A|Ik] · z − tN · c and program c = HTc[x]

with x = (T (u), tN ,m) afterwards. Finally, B outputs σ = (u, z) with
probability 1/M .

Due to the rejection sampling, the distribution of z is identical in both sign-
ing variants (see [DOTT20, Lem. 4] for more details). The only difference
between the actual and the original signing algorithm is that now the output
of Hc is programmed at the end, without checking whether it has already
been set for x. Following the same argument as in [Lyu12, Lem. 5.3] this hap-
pens only with negligible probability and thus |Pr[G1]− Pr[G0]| ≤ negl(λ).

G2: The game G2 is identical to the previous game G1 except how B generates
the vkN during the setup phase.
Setup. B samples tN ← U(Rkq), sets vkN = tN and outputs vkN to A.
As the signing queries are answered without using the corresponding secret
key skN , B can replace vkN by a random vector without A noticing, assuming
the hardness of M-LWEk,`,β . Thus |Pr[G2]− Pr[G1]| ≤ AdvM-LWE.

Now comes the final step of the proof. Note that in game G2 the matrix A′ =

[A|tN] follows the uniform distribution over Rk×(`+1)
q .

We construct another algorithm B′ around B who invokes the General Fork-
ing Lemma (Lemma 3), where the input generator IGen is defined to output A′.
Let acc denote the accepting probability of B and frk the forking probability
of FB as defined in Lemma 3. Thus, the forking algorithm FB outputs with
probability frk two different outputs out, õut 6= (⊥,⊥), where Pr[G2] = acc ≤
Nq/ |C| +

√
Nq · frk. Let out = (VK,M, σagg,C) and õut = (ṼK, M̃ , σ̃agg, C̃).

During the forking, neither B not A is aware of being rewinded. In particular,
before arriving at the fork, they will behave exactly the same in both execu-
tions. As A fixed (mj , tj , zj ,uj)j∈[N−1] before receiving the challenge key and B
verified that the same signatures where used in the aggregate signature, it is
guaranteed that A queried the random oracle Hc on the corresponding inputs
before the fork. As the random coins of B are the same in both executions and as
the simulation of Hc is for tj 6= tN independent of the input (hj)j∈[Nq] to B, we
have tj = t̃j and cj = c̃j for all j ∈ [N−1]. Further it yieldsM = M̃ and û = ˜̂u.
As in both cases, the forgery passes validation, it yields ‖z‖2 , ‖z̃‖2 <

√
N · B.

Additionally, [A|Ik] · z =
∑
j∈[N] tj · cj + û and [A|Ik] · z̃ =

∑
j∈[N] t̃j · c̃j + ˜̂u.

Hence, we can deduce that [A|Ik] · z − tNcN = [A|Ik] · z̃ − tN c̃N . In other
words, B′ can compute the vector x = (z − z̃, c̃N − cN)T which is a solution to
the M-SIS problem for the matrix A′. The Euclidean norm of the vector x is
bounded above by ‖x‖2 ≤ 2(

√
NB+

√
d) = b. This implies that frk ≤ AdvM-SIS.

Overall, we get

Adv AggSigA ≤ AdvM-LWEk,`,β +Nq/ |C|+
√
Nq · AdvM-SISk,`+1,b

+ negl(λ) .

Implicitly, we assumed that A queries Hc for the challenge key vkN and the
message mN using the same commitment uN leading to the same T (uN). If A

16 K. Boudgoust et al.

would choose another pre-image ũN such that T (ũN) = T (uN), then this would
change the sum so that ˜̂u 6= û. In this case, B′ simply invokes the General
Forking Lemma again. As there are only finitely many pre-images, after at most
finitely many rewinds, B′ gets the ’good’ forgery. ut

Remark 3. Using the General Forking Lemma introduces two disadvantages: On
the one hand, it causes an important loss in the reduction. On the other hand,
we currently don’t know how to extend it to the so-called quantum ROM, where
an adversary has quantum access to the random oracle (and classical access to
the signing oracle). Abdalla et al. [AFLT16] proposed a much tighter reduction
for lattice-based signature schemes following the FSwA paradigm by introducing
lossy identification schemes. Kiltz et al. [KLS18] used their techniques to con-
struct a generic framework for tightly secure signatures in the quantum ROM.
The key idea behind lossy identification schemes is that verification keys can be
replaced by random, so-called lossy, keys. Then, using a lossy key, for a fixed
commitment (in our scheme this is the vector u) with overwhelming probabil-
ity there exists at most one transcript that verifies. In our case, however, it is
not clear that lossiness holds due to the compression. More precisely, fixing the
commitments T (uj)j to the hash function Hc, does not fix the underlying vec-
tors (uj)j as one can easily generate other vectors (vj)j that are mapped to the
same values by T , i.e., T (uj) = T (vj) for all j. Hence, the sum û =

∑
j uj in

general doesn’t equal the sum v̂ =
∑
j vj and thus an adversary may find two

valid transcripts.

4.3 Rogue-Attack in the Aggregate Chosen-Key Model

The aggregate signature scheme ΠAS as presented in Section 3 is not secure
in the aggregate chosen-key model as introduced by Boneh et al. [BGLS03]. In
this security game, the adversary A is given a challenge key tN (representing
the verification key of one honest signing party) and has access to a signing
oracle with respect to this challenge key. Informally speaking, in order to win
the game, A has to output a set of messagesM , a set of verification keys VK and
a forgery σagg which is a valid aggregate signature on M using VK, where VK
contains vkN . In the following we describe a simple attack in this security model,
which was first observed by Zhao [Zha19] in the context of a Schnorr-based
aggregate signature scheme on elliptic curves.

1. Let tN be the challenge key given tot he adversary A.
2. A generates the remaining key pairs (sj , tj) ← KGen for j ∈ [N − 1] and

selects arbitrary messages mj for j ∈ [N].
3. They sample yN ← D`+k

s , set uN = [A|Ik] ·yN and query the random oracle
to obtain cN = Hc(T (uN), tN ,mN).

4. Now, A can prepare a rogue-commitment uN−1 by sampling yN−1 ← D`+k
s

and setting uN−1 = −tN · cN +[A|Ik] ·yN−1, depending on the challenge cN
for the challenge key tN .

5. They compute cN−1 = Hc(T (uN−1), tN−1,mN−1).

Compressed Linear Aggregate Signatures Based on Module Lattices 17

6. They set zN−1 = yN−1 + sN−1 · cN−1 and apply the rejection sampling in
order to make the distribution of zN−1 independent of sN−1.

7. For the remaining j ∈ [N − 2], they follow the honest signature procedure:
they sample yj ← D`+k

s , set uj = [A|Ik]·yj , compute cj = Hc(T (uj), tj ,mj)
and set zj = sj · cj +yj . Then they apply the rejection sampling in order to
make the distribution of zj independent of sj .

8. Finally, they output the forgery σagg = (û, T (uj)j , z), where û =
∑N
j=1 uj

and z = yN +
∑N−1
j=1 zj .

We claim that the forgery passes verification. As all zj ∼ Dk+`
s and y ∼ Dk+`

s ,
the sum z ∼ Dk+`√

Ns
. Thus, with overwhelming probability the norm of z is

bounded above by
√
N · B. Further, it yields T (û) =

∑
j T (uj), as the T (uj)

are computed by honestly compressing the corresponding uj . It remains to show
that [A|Ik] · z =

∑N
j=1(tj · cj) + û.

[A|Ik] · z = [A|Ik] · yN +

N−1∑
j=1

[A|Ik] · zj

= uN + [A|Ik] · yN−1 + tN−1 · cN−1 +
N−2∑
j=1

tj · cj + uj

= uN + uN−1 + tN · cN + tN−1 · cN−1 +
N−2∑
j=1

tj · cj + uj

=

N∑
j=1

tj · cj + û,

where we used that [A|Ik] ·yN−1 = uN−1+ tN · cN . In this attack the adversary
exploits the fact that they can define a rogue-commitment with respect to the
challenge cN . In our security model, this is prevented as the adversary has to fix
the signatures they are going to use in the forgery before receiving the challenge
key tN .

Note that Zhao proposed a modified protocol to prevent this type of attacks
at the expense of introducing a new (non-standard) problem. This modified
protocol was later attacked by Hanaoka et al. [HOS+20]. We leave it as an open
problem to provide an aggregate signature scheme which is provably secure in
the chosen-key model from Boneh et al. [BGLS03].

Acknowledgments

This work was supported by the European Union PROMETHEUS project (Hori-
zon 2020 Research and Innovation Program, grant 780701). It has also received
a French government support managed by the National Research Agency in the

18 K. Boudgoust et al.

”Investing for the Future” program, under the national project RISQ P141580-
2660001 / DOS0044216. Katharina Boudgoust is funded by the Direction Géné-
rale de l’Armement (Pôle de Recherche CYBER). We warmly thank Akira Taka-
hashi for making us aware of the attacks against Schnorr-based aggregate signa-
tures in the chosen-key model and discussions with him and Claudio Orlandi. We
also would like to thank Olivier Sanders for an interesting exchange regarding
the security proof.

References
AFLT16. M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly

secure signatures from lossy identification schemes. J. Cryptol., 29(3):597–
631, 2016.

BGLS03. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Advances in Cryptology - EU-
ROCRYPT 2003, International Conference on the Theory and Applications
of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings,
volume 2656 of Lecture Notes in Computer Science, pages 416–432. Springer,
2003.

BJRW20. K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen. Towards classical
hardness of module-lwe: The linear rank case. In Advances in Cryptology
- ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea,
December 7-11, 2020, Proceedings, Part II, volume 12492 of Lecture Notes
in Computer Science, pages 289–317. Springer, 2020.

BK20. D. Boneh and S. Kim. One-time and interactive aggregate signatures from
lattices, 2020. https://crypto.stanford.edu/~skim13/agg_ots.pdf.

BN06. M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, Ioctober 30 - November 3, 2006, pages 390–399. ACM, 2006.

BS16. R. El Bansarkhani and J. Sturm. An efficient lattice-based multisignature
scheme with applications to bitcoins. In Cryptology and Network Security
- 15th International Conference, CANS 2016, Milan, Italy, November 14-
16, 2016, Proceedings, volume 10052 of Lecture Notes in Computer Science,
pages 140–155, 2016.

DHSS20. Y. Doröz, J. Hoffstein, J. H. Silverman, and B. Sunar. MMSAT: A scheme
for multimessage multiuser signature aggregation. IACR Cryptol. ePrint
Arch., 2020:520, 2020.

DKL+18. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé. Crystals-dilithium: A lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238–268, 2018.

DOTT20. I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-
of-n and multi-signatures and trapdoor commitment from lattices. IACR
Cryptol. ePrint Arch. to appear at PKC 2021, 2020:1110, 2020.

GLP12. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based
cryptography: A signature scheme for embedded systems. In Cryptographic
Hardware and Embedded Systems - CHES 2012 - 14th International Work-
shop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of
Lecture Notes in Computer Science, pages 530–547. Springer, 2012.

https://crypto.stanford.edu/~skim13/agg_ots.pdf

Compressed Linear Aggregate Signatures Based on Module Lattices 19

HOS+20. G. Hanaoka, K. Ohta, Y. Sakai, B. Santoso, K. Takemure, and Y. Zhao.
Cryptanalysis of aggregate Γ -signature and practical countermeasures in
application to bitcoin. IACR Cryptol. ePrint Arch., 2020:1484, 2020.

HPS+14. J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte.
Practical signatures from the partial fourier recovery problem. In Applied
Cryptography and Network Security - 12th International Conference, ACNS
2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings, pages 476–493,
2014.

KLS18. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of fiat-
shamir signatures in the quantum random-oracle model. In Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29 - May 3, 2018 Proceedings, Part III, volume 10822 of Lecture Notes
in Computer Science, pages 552–586. Springer, 2018.

LS15. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

Lyu09. V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
volume 5912 of Lecture Notes in Computer Science, pages 598–616. Springer,
2009.

Lyu12. V. Lyubashevsky. Lattice signatures without trapdoors. In Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer
Science, pages 738–755. Springer, 2012.

MP13. D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parame-
ters. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, volume 8042 of Lecture Notes in Computer Science, pages 21–39.
Springer, 2013.

MR07. D. Micciancio and O. Regev. Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

Zha19. Y. Zhao. Practical aggregate signature from general elliptic curves, and
applications to blockchain. In Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security, AsiaCCS 2019, Auckland, New
Zealand, July 09-12, 2019, pages 529–538. ACM, 2019.

	Compressed Linear Aggregate Signatures Based on Module Lattices
	1 Introduction
	2 Preliminaries
	2.1 Module Lattice Problems
	2.2 Aggregate Signature Schemes
	2.3 General Forking Lemma

	3 Our Lattice-Based Aggregate Signature Scheme
	3.1 The Single Signature Scheme
	3.2 Linear Signature Aggregation With Compression

	4 Security of Our Aggregate Signature Scheme
	4.1 The Aggregate Independent-Chosen-Key Security Model
	4.2 Proof of Security
	4.3 Rogue-Attack in the Aggregate Chosen-Key Model

