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Abstract. Sealed bid auctions are a common way of allocating an asset
among a set of parties but require trusting an auctioneer who analyzes
the bids and determines the winner. Many privacy preserving computa-
tion protocols for auctions have been proposed, aiming at eliminating the
need for a trusted third party. However, they lack fairness, meaning that
the adversary learns the outcome of the auction before honest parties and
may choose to make the protocol fail without suffering any consequences.
In this work, we propose efficient protocols for both first and second price
sealed bid auctions with fairness against rational adversaries, leveraging
secret cryptocurrency transactions and public smart contracts. In our
approach, the bidders jointly compute the winner of the auction while
preserving the privacy of losing bids and ensuring that cheaters are finan-
cially punished by losing a secret collateral deposit. We guarantee that it
is never profitable for rational adversaries to cheat by making the deposit
equal to the bid plus the cost of running the protocol, i.e., once a party
commits to a bid it is guaranteed that it has the funds and it cannot
walk away from the protocol without forfeiting the bid. Moreover, our
protocols guarantee that the winner is determined and the auction pay-
ments are completed even if the adversary misbehaves, so that it cannot
force the protocol to fail and then rejoin the auction with an adjusted
bid. Our constructions are more efficient than the state-of-the-art even
though they achieve stronger security guarantees, i.e., fairness. Interest-
ingly, we show how the second price can be computed with a minimal
increase of the complexity of the simpler first price case. Moreover, in
case there is no cheating, only collateral deposit and refund transactions
must be sent to the smart contract, significantly saving on-chain storage.

1 Introduction

Auctions are a common way of allocating goods or services among a set of
parties based on their bids, e.g., bandwidth spectrum, antiques, paintings, and
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slots for advertisements in the context of web search engines or social networks
[29]. In the simplest form there is a single indivisible object and each bidder
has a private valuation for the object. One of the main desirable properties
in designing an auction is incentive compatibility, that is the auction must be
designed in a way that the participating parties can maximize their expected
utilities by bidding their true valuations of the object. According to design the
auction can be categorized into open auctions and sealed bid auctions [46].

We focus on the case of sealed bid auctions, constructing protocols where
parties holding a private bid do not have to rely on trusted third parties to
ensure bid privacy. In a sealed bid auction, each bidder communicates her bid to
the auctioneer privately. Then, the auctioneer is expected to declare the highest
bidder as the winner and not to disclose the losing bids. In particular, in the
sealed bid first price auction the bidder submitting the highest bid wins the
auction and pays what she bids, while in the sealed bid second price auction
(i.e., the Vickrey auction [61]) the bidder submitting the highest bid wins the
object but pays the amount of the second highest bid [45]. It is well-known that
in the second price auctions bidding truthfully is a dominant strategy, but no
dominant strategy exists in the case of first price auctions. Moreover, while in
both first price and second price auctions a dishonest auctioneer may disclose the
losing bids, the second price auction, in particular, highly depends on trusting
the auctioneer. Indeed, a dishonest auctioneer may substitute the second highest
bid with a bid that is slightly smaller than the first bid, to increase her revenue.
Therefore, it may not be possible or expensive to apply it in certain scenarios. As
a result, constructing cryptographic protocols for auctioneer free and transparent
auction solutions is of great interest.

1.1 Our Contributions

In this paper, we propose Fair Auctions via Secret Transactions (FAST), in
which there is no trusted auctioneer and where rational adversaries are always
incentivized to complete protocol execution through a secret collateral deposit.
The proposed protocol is such that each party can make sure the winning bid
is the actual bid submitted by the winning party, and malicious parties can be
identified, financially punished and removed from the execution (guaranteeing a
winner is always determined). Our contributions are summarized as follows:

– We propose using secret collateral deposits dependent on private bids inputs
to ensure that the optimal strategy is for parties to complete the protocol.

– (Section 3) We propose methods for implementing a financial punishment
mechanism based on secret deposits and standard public smart contracts,
which can be used to ensure fair execution of our protocols.

– (Sections 4 and 5) We propose a cheater identifiable and publicly verifiable
sealed bid auction protocols compatible with our secret deposit approach and
more efficient than the state-of-the-art [4]. Our protocols are guaranteed to
terminate, finding the winner and paying the seller even if cheating occurs.
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To achieve fairness in an auction setting, we require each party to provide a
secret deposit of an amount of cryptocurrency equal to the party’s private bid
plus the cost of executing the protocol. In case a party is found to be cheating, a
smart contract automatically redistributes cheaters’ deposits among the honest
parties, the cheater is eliminated and the remaining parties re-execute the proto-
col using their initial bids/deposits. Having a bid dependent deposit guarantees
that it is always more profitable to execute the protocol honestly than to cheat
(as analyzed in Appendix F). However, in previous works that considered the
use of cryptocurrency deposits for achieving fairness (e.g. [11, 3, 48, 47, 49, 12, 9,
30, 7, 44, 27], parameterizing the deposit in such a way would reveal information
about the bid, since these works crucially rely on deposits being public. To over-
come this, we propose using secret deposits that keep the value of the deposit
secret until cheating is detected. Moreover, this ensures that the parties have
sufficient funds to bid for the object (e.g., in a second price auction, a party
could bid very high just to figure out what is the second highest price is and
then claim her submitted bid was just a mistake). Our protocols are constructed
in such a way that it is possible to prove to the smart contract that a party has
cheated.

1.2 Our Techniques

We start with a first price sealed bid auction protocol that builds on a simple
passively secure protocol similar to that of SEAL [4] and compile it to achieve
active security. However, we not only obtain an actively secure protocol but
also add cheater identification and public verifiability properties. We use these
properties to add our financial punishment mechanism with secret deposits to
this protocol. Even though our protocol achieves stronger security guarantees
than SEAL (i.e. sequential composability and fairness guarantees), it is more
efficient than the SEAL protocol as shown in Section 6. Later on, we extend this
protocol to the second price case with a very low performance overhead.

A Toy Example: Our protocol uses a modified version of the Anonymous Veto
Protocol from [39] as a building block. The anonymous veto protocol allows a set
of n parties P1, . . . ,Pn to anonymously indicate whether they want to veto or not
on a particular subject by essentially securely computing the logical-OR function
of their inputs. In this protocol, each party Pi has an input bit di ∈ {0, 1} with 0
indicating no veto and 1 indicating veto, and they wish to compute

∨n
i=1 di. As

proposed in [4], this simple anonymous veto protocol can be used for auctions by
having parties evaluate their bids bit-by-bit, starting from the most significant
bit and proceeding to execute the veto protocol for each bit in the following way:
1. Until there is no veto, all parties only veto (input di = 1 in the veto protocol)
if and only if the current bit of their bid is 1; 2. After the first veto, a party
only vetoes if the bit of her bid in the last time a veto happened was 1 and the
current bit is also 1. In other words, in this toy protocol, parties stop vetoing
once they realize that there is another party with a higher bid (i.e., there was
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a veto in a round when their own bit were 0) and the party with the highest
bid continues vetoing according to their bid until the last bit. Therefore, the
veto protocol output represents the highest bid. However, a malicious party can
choose not to follow the protocol, altering the output.

Achieving Active Security with Cheater Identification and Public Ver-
ifiability: In order to achieve active security with cheater identification and pub-
lic verifiability we depart from a simple passively secure protocol and compile it
into an active secure protocol using NIZKs following an approach similar to that
of [37, 41, 44]. This ensures that at every round of the protocol all parties’ inputs
are computed according to the protocol rules, including previous rounds’ inputs
and outputs. However, since the generic techniques from [37, 41, 44] yield highly
inefficient protocols, we carefully construct tailor made efficient non-interactive
zero knowledge proofs for our specific protocol, obtaining an efficient protocol.

Incentivizing Correct Behavior with Secret Deposits: In order to create
incentive for parties to behave honestly, a deposit based on their bids is required.
However, a public deposit would leak information about the parties’ bids, which
have to be kept secret. Hence, we do secret deposits as discussed below and keep
the amount secret unless a party is identified as a cheater, in which case the
cheater’s deposit is distributed among the honest parties. The cheater is then
eliminated and the protocol is re-executed with the remaining parties using their
initial bids/deposits so that a winner is determined. This makes it rational not
to cheat both in the case of first and second price auctions, i.e., cheating always
implies a lower utility than behaving honestly (see Appendix F).

Achieving On-Chain Efficiency: In order to minimize the amount of on-
chain communication, an approach based on techniques from [6] is adopted.
Every time a message is sent from a given party to the other parties, all of them
sign the message received and send the signature to each other. Communication
is only done on-chain (through the smart contract) in case of suspected cheating.

Secret Deposits to Public Smart Contracts: Since we use secret deposits
based on confidential transactions [53], we need a mechanism to reveal the value
of cheating parties’ deposits to the smart contract so it can punish cheaters.
We do that by secret sharing trapdoor information used to reveal this value
using a publicly verifiable secret sharing (PVSS) scheme [24] that allows us to
prove in zero knowledge both that the shares are valid and that they contain the
trapdoor for a given deposit. These shares are held by a committee that does
not act unless cheating is detected, in which case the committee members are
reimbursed for reconstructing the trapdoor with funds from the cheater’s deposit
itself. We discuss this approach in Section 3. Providing alternative methods for
holding these deposits is an important open problem.
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1.3 Related Work

Research on secure auctions started by the work of Nurmi and Salomaa [56]
and Franklin and Reiter [34] in the late 1900s. However, in these first construc-
tions, the auctioneers open all bids at the end of the protocol, which reveals the
losing bids to all parties. Since then, many sealed bid auction protocols have
been proposed to protect the privacy of the losing bids, e.g., [1, 5, 40, 42, 51, 50].
However, in most of these protocols the privacy is obtained by distributing the
computation of the final outcome to a group of auctioneers.

A lot of work has been done in order to remove the role of the trusted parties,
including the proposed protocols by Brandt [19, 17, 18], Brandt and Sandholm
[20] and Bag et al. [4]. In these protocols the bidders must compute the winning
bid in a joint effort through emulating the role of the auctioneer. Moreover,
the seller plays a role in the auction and it is assumed that the seller has no
incentive to collude with other bidding parties. However, later by Dreier et al.
[32] it was pointed out that if the seller and a group of bidding parties collude
with each other, then they can learn the bids of other parties. Besides weak
security guarantees, a main drawback of the protocol proposed by Brandt [18] is
that it has exponential computational and communication complexities. There
has been practical implementations of auctions in practice including [15, 14],
which have been deployed in practice for the annual sugar beets auction in
Denmark. Other works [54] have considered the use of rational cryptography in
enhancing privacy. Finally, the current state-of-the-art in protocols for secure
First Price Sealed Bid Auctions was achieved in SEAL [4], which we compare
with our protocols in detail in Section 6. However, to the best of our knowledge,
none of these works consider incentives for the parties to complete the protocol
or punishment for cheaters.

An often desired feature of secure Multiparty Computation (MPC) is that
if a cheating party obtains the output, then all the honest parties should do so
as well. Protocols which guarantee this are also called fair and are known to be
impossible to achieve with dishonest majorities [28]. Recently, Andrychowicz et
al. [3] (and independently Bentov & Kumaresan [11]) initiated a line of research
that aims at incentivizing fairness in MPC by imposing cryptocurrency based
financial penalties on misbehaving parties. A line of work [48, 47, 49, 12, 9, 30]
culminating in [7] improved the performance of this approach with respect to
the amount of on-chain storage and size of the collateral deposits from each
party, while others obtained stronger notions of fairness [44, 27]. However, all of
these works focus on using public collateral deposits for incentivizing fairness,
which is not possible for our application. Moreover, they rely on general purpose
MPC, while we provide a highly optimized specific purpose protocol for auctions
with financial incentives. The closest work to ours is [35], in the sense that it
also leverages cryptocurrencies to ensure fairness. However, the protocol of [35]
relies on SGX trusted execution enclaves, which are known to be broken [60].
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2 Preliminaries

Let y
$← F (x) denote running the randomized algorithm F with input x and

implicit randomness, obtaining the output y. When the randomness r is specified,
we use y ← F (x; r). For a set X , let x $← X denote x chosen uniformly at random
from X ; and for a distribution Y, let y

$← Y denote y sampled according to the
distribution Y. We denote concatenation of two values x and y by x|y. A function
f(x) is negligible in x if f(x) is positive and for every positive polynomial p(x) ∈
poly(x) there exists a x′ ∈ N such that ∀x ≥ x′ : f(x) < 1/p(x), we denote
such functions as negl(x). Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and Y =
{Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are said to be computationally
indistinguishable, denoted by X ≈c Y , if for all z it holds that | Pr[D(Xκ,z) =
1] − Pr[D(Yκ,z) = 1] | is negligible in the security parameter κ for every non-
uniform probabilistic polynomial-time (PPT) distinguisher D. For a field F we
denote by F[X]≤m the vector space of polynomials in F[X] of degree at most m.

2.1 Security Model and Setup Assumptions:

We prove our protocol secure in the real/ideal simulation paradigm with se-
quential composition. This paradigm is commonly used to analyse cryptographic
protocol security and provides strong security guarantees, namely that several
instance of the protocol can be executed in sequence while preserving their se-
curity. In order to prove security, a real world and an ideal world are defined
and compared. In the real world, the protocol π is executed with the parties,
some of which are corrupted and controlled by the adversary A. On the other
hand, in the ideal world the protocol is replaced by an ideal functionality F and
a simulator S interacts with it. The ideal functionality F describes the behavior
that is expected from the protocol and acts as a trusted entity. A protocol π is
said to securely realize the ideal functionality F , if for every polynomial time
adversary A in the real world, there is a polynomial time simulator S for the
ideal world, such that the two worlds cannot be distinguished. In more detail, no
probabilistic polynomial time distinguisher D can have non-negligible advantage
in distinguishing the concatenation of the output of the honest parties and of
the adversary A in the real world from the concatenation of the output of the
honest parties (which come directly from F) and of the simulator S in the ideal
world. More details about this model can be found in [23, 36]. Our protocol uses
the Random Oracle Model (ROM) [8].

Adversarial Model: We consider malicious adversaries that may deviate from
the protocol in any arbitrary way. Moreover we consider the static case, where
the adversary is only allowed to corrupt parties before protocol execution starts
and parties remain corrupted (or not) throughout the execution.

Decisional Diffie Hellman (DDH) Assumption: The DDH problem con-
sists in deciding whether c = ab or c

$← Zp in a tuple (g, ga, gb, gc) where g is a
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generator of a group G of order p, and a, b
$← Zp. The DDH assumption states

that the DDH problem is hard for every PPT distinguisher. It is well known
that the DDH assumption implies the Discrete Logarithm assumption.

2.2 Building Blocks

Pedersen commitments: Let p and q be large primes such that q divides
p− 1 and let G be the unique subgroup of Z∗p of order q. All the computations
in G are operations modulo p, however we omit the mod p to simplify the no-
tation. Let g, h denote random generators of G such that nobody knows the
discrete logarithm of h base g, i.e., a value w such that gw = h. The Pedersen
commitment scheme [58] to an s ∈ Zq is obtained by sampling t

$← Zq and com-
puting com(s, t) = gsht. Hence, the commitment com(s, t) is a value uniformly
distributed in G and opening the commitment requires to reveal the values of
s and t. The Pedersen commitments are additively homomorphic, i.e., starting
from the commitment to s1 ∈ Zq and s2 ∈ Zq, it is possible to compute a
commitment to s1+s2 ∈ Zq, i.e., com(s1, t2) ·com(s2, t2) = com(s1+s2, t1+ t2).

Digital Signatures: Let k be a security parameter and M ⊆ {0, 1}+ be a
message space, i.e., the set of messages to which the signature may be applied.
A signature scheme SIG [38] is a tuple of three polynomial-time algorithms:

– A key generation algorithm Gen(κ) that outputs a pair sk and pk of matching
secret and public keys;

– A signature algorithm Sig(sk,msg) that takes the secret key sk and the
message msg and outputs the signature σ = Sigsk(msg);

– A verification algorithm Ver(pk,msg, σ) that returns True if and only if
σ = Sigsk(msg), i.e., σ is a signature of message msg computed with the
secret key paired with the public key pk.

A signature is correct if Ver(pk,msg, sigsk(msg)) = True for any security
parameter k, any pair sk and pk of matching secret and public keys and any
message msg ∈M.

Non-interactive Zero Knowledge Proofs of Knowledge: Let L be a lan-
guage in NP and RL be a relationship such that L = {x | ∃w : (x,w) ∈ RL}. A
zero-knowledge proof of knowledge protocol Σ = (P, V ) for a language L allows
a prover P to demonstrate to a verifier V that x ∈ L provided that the prover
knows a witness w such that (x,w) ∈ RL and with the following properties:

– Completeness: if (x,w) ∈ RL then the proof generated by P is accepted by the
verifier V with overwhelming probability;

– Soundness: it is computationally hard for the prover P to prove to the verifier
V that (x,w) ∈ RL when (x,w) /∈ RL;

– Zero knowledge: there exists a PPT simulator S that, by using rewinding, takes
as input x but not w and generates a proof that (x, .) ∈ RL for some w, i.e.,
the verifier V does not learn w but can check if (x, .) ∈ RL for some w;
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– Proof of knowledge: there exists a PPT simulator S that interacts with a copy
of the prover P and extracts, by using rewinding, the witness w, i.e., the verifier
V can check if the prover P knows a witness w such that (x,w) ∈ RL;

In our work we follow the approach of Camenisch and Stadler [22] based on
the Fiat-Shamir heuristc [33] in order to obtain non interactive zero knowledge
(NIZK) proofs of knowledge for discrete logarithm relations. We will use these
NIZKs in forcing parties to execute our protocols correctly using the GMW
methodology [37]. Notice that parties must provide such NIZKs proving they
have executed each round of the protocol correctly, and an invalid NIZK is also
a publicly verifiable proof that the party has misbehaved. We will be using two
relations for two main stages of the protocol, which we describe below.

NIZK for Stage 2 - Before First Veto: In Stage 2 of the protocol, we need a
NIZK proving knowledge of either bir, rir, xir such that cir

gbir
= cir = hrir ∧ vir =

Y xir
ir ∧Xir = gxir or of bir, rir, r̄ir such that cir

gbir
= cir

g = hrir ∧ vir = gr̄ir , where
vir, cir, Xir, g, Yir are public. We denote this NIZK by,

BV {bir, rir, xir, r̄ir |(
cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir )∨

(
cir
gbir

=
cir
g

= hrir ∧ vir = gr̄ir )}.

A detailed construction of this NIZK is discussed in Appendix A.1.

NIZK for Stage 3 - After First Veto: In Stage 3 of the protocol, we require a
NIZK proving knowledge of either bir, rir, xir such that cir

gbir
= cir = hrir ∧ vir =

Y xir
ir ∧ Xir = gxir , or of bir, rir, r̄ir̂, r̄ir such that cir

gbir
= cir

g = hrir ∧ dir̂ =

gr̄ir̂ ∧ vir = gr̄ir , or of bir, rir, xir̂, xir such that cir
gbir

= cir
g = hrir ∧ dir̂ =

Y xir̂

ir̂ ∧Xir̂ = gxir̂ ∧ vir = Y xir
ir ∧Xir = gxir . We denote this NIZK by,

AV {bir, rir, xir, r̄ir̂, r̄ir, xir̂ |(
cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir )∨

(
cir
gbir

=
cir
g

= hrir ∧ dir̂ = gr̄ir̂ ∧ vir = gr̄ir )∨

(
cir
gbir

=
cir
g

= hrir ∧ dir̂ = Y xir̂

ir̂ ∧Xir̂ = gxir̂∧

vir = Y xir
ir ∧Xir = gxir )}.

A detailed construction of this NIZK is discussed in Appendix A.2.

NIZK for Recovery - Proof of Not Winning: In case the winning bid bw
is determined but the winner Pw does not reveal herself, the honest parties in
our auction protocol will prove in zero knowledge that they are not the winner.
In order to do so, they use a NIZK NWi ← NW{xi1, . . . , xil | (V1 = 1 ∧ vi1 =
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Y xi1
i1 )∨ . . .∨ (Vl = 1∧ vi1 = Y xi1

i1 )} that can be constructed using the techniques
from [22]. We do not describe this NIZK construction nor estimate its complexity
because it is used only in a corner case of cheating where the honest parties are
reimbursed for generating and verifying such proofs.

Simplified UTXO model: In order to focus on the novel aspects of our pro-
tocol, we represent cryptocurrency transactions under a simplified version of the
Bitcoin UTXO model [55]. For the sake of simplicity we only consider operations
of the “Pay to Public Key” (P2PK) output type, which we later show how to
realize while keeping the values of transactions private. The formal description
of the adopted simplified UTXO model is discussed in Appendix B.

Confidential transactions: In the case of confidential transactions [53] the in-
put and output amounts are kept secret using Pedersen commitments. However,
in order to achieve public verifiability, the transactions contain a zero knowl-
edge proof that the sum of the inputs is equal to the sum of the outputs, and
that all the outputs are between [0, 2l − 1] (which can be computed with Bullet
Proofs [21]). In particular, confidential transactions can be formally defined by
modifying the simplified UTXO model described above as follows:

– Representing inputs and outputs: Set In is defined as In = {(id1,
com(in1, rin1)), . . . , (idm, com(inm, rinm))} and set Out is defined as Out =
{(com(out1, rout1), Addr1), . . . , (com(outn, routn), Addrn)}.

– Generate Transaction with In,Out: Compute
∏n

j=1 com(outj ,routj )∏m
i=1 com(ini,rini )

= com

(0,
∑n

j=1 routj −
∑m

i=1 rini) with rini , routj
$← Zq, include in the transaction

the randomness
∑n

j=1 routj −
∑m

i=1 rini and the range proofs π guaranteeing
that out1, · · · , outn are between [0, 2l−1]. The resulting transaction is then
represented by tx = (id, In,Out,Sig,

∑n
j=1 routj −

∑m
i=1 rini , π).

– Validate a Transaction tx: Compute
∏n

j=1 com(outj ,routj )∏m
i=1 com(ini,rini )

= com(s, t) and
check if the obtained commitments is equal to com(0,

∑n
j=1 routj−

∑m
i=1 rini),

guaranteeing that
∑m

i=1 ini =
∑n

j=1 outj , then check the validity of the
range proofs π.

– Spend a transaction output Out: Parse Out = (com(outi, routi), Addri).
In order to spend Out, the commitment com(outi, routi) = goutihrouti has to
be opened by revealing outi and routi . Values outi and routi are included in
a regular UTXO transaction generated as described in Appendix B. Later
on, this UTXO transaction can be validated by checking that outi, routi is a
valid opening of com(outi, routi) and following the steps of a regular UTXO
transaction validation.

– Spend a transaction output Out with a NIZKPoK of routi : Alterna-
tively, an output Out = (com(outi, routi), Addri) for which only outi and
ĥ = hrouti (but not routi) are known can be spent if a NIZK π′ proving
knowledge of routi is also available. Notice that knowing outi is sufficient



10 Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh

for validating the regular UTXO transaction created using Out as an input.
Moreover, it can be checked that goutihrouti = com(outi, routi) given outi and
ĥ = hrouti , while the proof π′ guarantees that ĥ = hrouti is well formed3. Val-
ues outi, hr

outi
and the proof π′ are included in a regular UTXO transaction

generated as described in Appendix B. Later on, this UTXO transaction can
be validated by checking that goutihrouti = com(outi, routi), checking that π′
is valid and following the steps of a regular UTXO transaction validation.

Note that the input set In in confidential transactions can also be public, (i.e.
In = {(id1, in1), . . . , (idm, inm)}), as long as the outputs are kept private.

Publicly Verifiable Secret Sharing (PVSS): In our work, we use the PVSS
protocol πPV SS from [24], which is described in detail in Appendix C. A PVSS
protocol allows for a dealer to distribute encrypted shares to a set of parties in
such a way that only one specific party can decrypt a share but any third party
verifier can check that all shares are valid. Later on, each party can decrypt
its correpsonding share to allow for reconstruction while showing to any third
party verifier that the decrypted share corresponds to one of the initial encrypted
shares. A deposit committee C = {C1, . . . , Cm} will execute this protocol verifying
and decrypting shares provided as part of our secret deposit mechanism (further
discussed in Section 3). Since the parties in C executing πPV SS must have public
keys registered as part of a setup phase, we capture this requirement in FSC as
presented in Section 2.3.

NIZK for PVSS share consistency CC: As part of our secret deposit mech-
anism (further discussed in Section 3), we will use a NIZK showing that shares
computed with the PVSS protocol πPV SS from [24] encode secrets gm and hr

that are terms of a Pedersen commitment c = gmhr. Formally, given generators
g1, . . . , gn, g, h of a cyclic group Gq of prime order q, pairwise distinct elements
α1, . . . , αn in Zq and a Pedersen commitment c = gmhr known by prover and
verifier, for p(x) and m, r known by the prover, this NIZK is used to prove
that (σ̂1, . . . , σ̂n) ∈

{(
g
p(α1)
1 , . . . , g

p(αn)
n

)
: p ∈ Zq[X], p(−1) = gm, p(−2) = hr

}
.

We denote this NIZK by CC((gi)i∈[n], (αi)i∈[n], g, h, c, (σ̂i)i∈[n]). Notice that this
NIZK can be constructed using the techniques from [22] and integrated with the
NIZK LDEI already used in πPV SS (presented in Appendix C).

2.3 Modeling a Stateful Smart Contract

We employ a stateful smart contract functionality FSC similar to that of [30]
in order to model the smart contract that implements the financial punishment
3 In fact, showing such a proof of knowledge π′ of routi together with hr

outi
and outi

makes it easy to adapt reduction of the binding property of the Pedersen commitment
scheme to the Discrete Logarithm assumption. Instead of obtaining routi from the
adversary, the reduction simply extracts it from π′.
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Functionality FSC (Stages 1,2,3 and 4)

FSC is executed with parties P = {P1, . . . ,Pn}, a deposit committee members C =
{C1, . . . , Cm} and parameterized by committee public keys pkC1 , . . . , pkCm used to run
πPV SS and pk′

C1
, . . . , pk′

Cm
used for signatures. FSC is also parameterized by its own

address Addrs, the address of the Auctioneer Addrauc, timeout limit τ , a protocol
verification algorithm pv that given a protocol transcript outputs 1 if it is valid
and replies 0 otherwise, and values workP and workC for the costs of executing the
protocol for the parties in P and C, respectively. Once execution starts FSC samples
random generators g, h

$← G for a group G.
– Stage 1 - Setup:
• Upon receiving (param, sid) from Pi, FSC returns (param,

sid, g, h, pkC1 , . . . , pkCm).
• Upon receiving the message (setup, sid,Pi, txi, pki, SH1i|SH2i,

SigC1,i, . . . , SigCm,i) from Pi, FSC checks that this message is valid ac-
cording to pv. If all checks pass, FSC continues the execution. Otherwise, it
proceeds to the Recovery Stage otherwise. After receiving this message from
all Pi ∈ P, FSC proceeds to the next steps.

– Stages 2 and 3: During these Stages, FSC only expects messages in case of
suspected cheating, eventually proceeding to the Recovery Stage.

– Stage 4 - Output:
• First Price Auction: Upon receiving (output,

sid,Pw, bw, rbw , {sigskk (bw)}k∈[n]) from Pw, FSC verifies that bw, rbw is
a valid opening to the commitment cw in txw and that all signatures
{sigskk (bw)}k∈[n] are valid. If all checks pass, FSC performs a transaction
towards the Auctioneer paying bw tokens to Addrauc, refunds Pw with workP
tokens and refunds all the other parties Pi ∈ P \ Pw with their full txi
transaction. Otherwise, proceed to the Recovery Stage.

• Second Price Auction: Upon receiving (output,
sid,Pw, txpay, {sigskk (Pw|bw2)}k∈[n]) from Pw, FSC verifies that that the
range proof πpay is valid and that com(bw, rbw )/com(change′w, rchange′w ) =
com(bw2 , rbw − rchange′w ). If the checks pass, then FSC refunds all the other
parties Pi ∈ P \ Pw with their full txi transaction and performs transaction
txw paying bw2 to the Auctioneer and refunding Pw with workP tokens. If
the check does not pass, then proceed to the Recovery Stage.

Fig. 1: Functionality FSC (Stages 1,2,3 and 4).

mechanism for our protocol. For the sake of simplicity, we assume that each
instance of FSC is already parameterized by the address of the Auctioneer party
who will receive the payment for the auctioned good, as well as by the identities
(and public keys) of the parties in a secret deposit committee C that will help
the smart contract to open secret deposits given by parties in case cheating is
detected. We also assume that FSC has a protocol verification mechanism pv for
verifying the validity of protocol messages. FSC is described in Figure 1.
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Functionality FSC (Recovery)

– Recovery: Upon receiving one of the following messages FSC from a party Pi ∈ P
acts as described:
• (recovery-missing, sid,msg, {sigskk (msg)}k∈[n]): FSC sends (request, sid)

to each Pi ∈ P. If Pi does not send the missing message msgri or
sigski(msgr−1,i′) before a timeout τ or sends an invalid message according
to pv, it is considered a cheater.

• (recovery-cheat, sid,Pj , πc): in case Pj has been accused to cheat by sending
conflicting messages msgrj 6= msg′rj then πc = (msgrj , sigskj (msgrj),msg′rj ,
sigskj (msg′rj)), while in case Pj has been accused to cheat by sending an invalid
message msgrj according to pv then πc = (msgrj , sigskj (msgrj)). If πc is a valid
proof of cheating, then Pj is identified as a cheater, otherwise the sender Pi

identified as a cheater.
• (recovery-payment, sid,NWi): FSC verifies that the proof of not winning

NWi is valid, i.e., the sender Pi is not the winner. After a timeout τ counted
from the moment the first message is received, all parties Pk who did not send
a valid message (recovery-payment, sid,NWi) are considered cheaters (i.e.
either the corrupted Pw in case all other parties sent a valid NWi or all parties
who did not collaborate).

• (recovery-dishonest-winner, sid,NWi): (second price case only) FSC ver-
ifies that the proof of not winning NWi is valid, i.e., the sender Pi is not
the winner. Then, FSC all parties Pk who did not send a valid message
(recovery-dishonest-winner, sid,NWi) are considered cheaters.

If a party Pi is a cheater, FSC collaborates with C to open Pi’s deposit txi by
sending (open, sid,Pi) to each Cj ∈ C, takes its full deposit, reimburses each Ci ∈ C
with workC tokens and reimburses each party P \ Pi with an equal share of the
remaining tokens. In particular, FSC proceeds as follows:
• Upon receiving (share-decryption, sid, (σ̂i1, . . . , σ̂im), LDEIi, CCi, σ̃ij ,

DLEQij)) from Cj , FSC verifies that SH2i = H((σ̂i1, . . . , σ̂im), LDEIi, CCi)
where SH2i is the one sent from Pi in Stage 1 - Setup.

• Use the share decryption verification procedure from πPV SS to identify 2+n/2
valid shares σ̃ij (by verifying DLEQij) and then uses the secret reconstruction
algorithm from πPV SS to reconstruct gbi and grbi . Next, FSC recovers bi from
gbi (since the length l of the bid is limited).

• The deposit of the cheating party Pi is distributed among the honest parties
P \ Pi and C by spending the confidential transaction output (ci, Addrs) of
txi. Indeed, in order to spend (ci, Addrs) it is sufficient to reveal bi, hrbi and
providing (σ̂i1, . . . , σ̂im), LDEIi, CCi, σ̃ij , DLEQij to prove that hrbi contains
the same rbi of the initial commitment ci.

FSC now expects the execution to restart with parties P \ Pi only.

Fig. 2: Functionality FSC (Recovery).

3 Secret Deposits in Public Smart Contracts

When using secret deposits as in our application, it is implied that there exists
a secret trapdoor that can be used to reveal the value of such deposits (and
transfer them). However, since we base our financial punishment mechanism on
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a standard public smart contract, we cannot expose the trapdoor to the smart
contract. Instead, we propose that a committee C = {C1, . . . , Cm} with m/2 + 2
honest members4 holds this trapdoor in a secret shared form. This committee
does not act unless a cheating party needs to be punished and the trapdoor needs
to be reconstructed in order to allow the smart contract to transfer her collateral
deposit. In this case, the committee itself can be reimbursed from the collateral
funds. We present a practical construction following this approach. Proposing
more methods for keeping custody of such secret deposits is left as an important
open problem.

A possible solution: A feasible but not practical approach to do this would be
storing the trapdoor with the mechanism proposed in [10], where a secret is kept
by obliviously and randomly chosen committees by means of a proactive secret
sharing scheme where each current committee “encrypts the secret to the future”
in such a way that the next committee can open it. However, it is also necessary
to ensure that the secrets actually corresponds to the trapdoor for the parties’
deposits. Providing such proofs with the scheme of [10] would require expensive
generic zero knowledge techniques (or a trusted setup for a zk-SNARK).

Protocol ΠC

Let C = {C1, . . . , Cm} be the deposit committee members and pkC1 , . . . , pkCm and
skC1 , . . . , skCm be their public keys and private keys, used to run πPV SS , respectively.
Moreover, let pk′

C1
, . . . , pk′

Cm
and sk′

C1
, . . . , sk′

Cm
be their public keys and private

keys, used for signatures, respectively. The following steps are executed by Cj ∈ C:

– Setup verification: Upon receiving (setup, sid,Pi, txi, pki, (σ̂i1, . . . , σ̂im),
LDEIi, CCi) from Pi, Cj checks that txi is valid, verifies the shares (σ̂i1, . . . , σ̂im)
correctness with respect to the committee public keys pkC1 , . . . , pkCm using
the verification procedure of πPV SS through LDEIi and verifies NIZK CCi.
If all the checks pass, compute the hashes SH1i = H(txi, pki) and SH2i =
H((σ̂i1, . . . , σ̂im), LDEIi, CCi) and the signature SigCj ,i = sigsk′

Cj
(SH1i|SH2i),

then send (setup-verification, sid, SigCj ,i) to Pi.
– Share decryption: Upon receiving (open, sid,Pi) from FSC, Cj uses the share

decryption procedure from πPV SS on σ̂ij , obtaining σ̃ij , DLEQij . and sending
(share-decryption, sid, (σ̂i1, . . . , σ̂im), LDEIi, CCi, σ̃ij , DLEQij)) to FSC.

Fig. 3: Protocol ΠC .

A protocol based on PVSS: As an alternative, we propose leveraging the
structure of our confidential transaction based deposits to secret share their
4 We need m/2+2 honest members to instantiate our packed publicly verifiable secret

sharing based solution where two group elements are secret shared with a single
share vector.
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openings with a recent efficient publicly verifiable secret sharing (PVSS) scheme
called Albatross [24]. Notice that the secret amount information bi in these
deposits is represented as a Pedersen commitment gbihri and that the Albatross
PVSS scheme also allows for sharing a group element gs, while proving in zero
knowledge discrete logarithm relations involving gs in such a way that they can
be verified by any third party with access to the public encrypted share. Hence,
we propose limiting the bid bi bit length in such a way that we can employ
the same trick as in lifted ElGamal and have each party Pi share both gbi and
hri with the Albatross PVSS while proving that their public encrypted shares
correspond to a secret deposit gbihri . The validity of this claim can be verified
by the committee C itself or the smart contract during Stage 1 - Setup. Later on,
if bi needs to be recovered, C can reconstruct gbi , brute force bi (because it has
a restricted bit-length) and deliver it to the smart contract while proving it has
been correctly computed from the encrypted shares. As we explain in Section 2,
recovering bi and gri along with the proofs of share validity is sufficient for
transferring the secret deposit.

In Figure 3, we present Protocol ΠC followed by the committee C = {C1, . . . , Cm}
and executed as part of Protocols ΠFPA (resp. ΠSPA) described in Section 4
(resp. Section 5). The interaction of the other parties P = {P1, . . . ,Pn} execut-
ing Protocols ΠFPA and ΠSPA with the committee C is described as part of
Stage 1 - Setup of these protocols.

Selecting Committees: In order to focus on the novel aspects of our con-
structions, we assume that the smart contract captured by FSC described in
Section 2.3 is parameterized by a description of the committee C = {C1, . . . , Cm}
and the public keys corresponding to each committee member. Notice that in
practice this committee can be selected by the smart contract from the set of
parties executing the underlying blockchain consensus protocol. The problem of
selecting committees in a permissionless blockchain scenario has been extensively
addressed in both Proof-of-Stake [43, 31, 26] and Proof-of-Work [57] settings.

4 Main Protocol for First Price Auctions
In this section, we introduce our main protocol focusing on the case of first price
auctions (while the case of second price auctions is addressed in Section 5). We
consider a setting with n parties P1, . . . ,Pn, where each party Pi has a l-bit bid
bi = bi1| . . . |bil, where bir denotes the r-th bit of party Pi’s bid.

Modelling Fair Auctions: First, we introduce an ideal model for fair auctions
that we will use to prove security of our protocol. For the sake of simplicity,
when discussing this model, we use coins(n) to indicate n currency tokens being
transferred where n is represented in binary, instead of describing a full UTXO
transaction. Our ideal functionality FFPA is described in Figure 4. This func-
tionality models the fact that the adversary may choose to abort but all it may
learn is that it was the winner and the most significant bit where its bid differs
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Functionality FFPA

FFPA operates with an auctioneer PAUC , a set of parties P = {P1, . . . ,Pn} who
have bids b1, . . . , bn as input and where bi = bi1| . . . |bil is the bit representation of
bi, as well as an adversary SFPA. FFPA is parameterized by a bid bit-length l and
keeps an initially empty list bids.

– Setup (Bid Registration): Upon receiving (bid, sid, coins(bi + work)) from
Pi where bi ∈ {0, 1}l and work is the amount required to compensate the cost
of running the protocol for all the other parties, FFPA appends bi to bids.

– First Price Auction: After receiving (bid, sid, coins(bi+work)) from all parties
in P, for r = 1, . . . , l FFPA proceeds as follows:
1. Select bwr, i.e., the r-th bit of the highest bid bw in the list bids.
2. Send (round-winner, sid, bwr) to all parties and SFPA.
3. Check if bwr = 1 and bir = 0 for i = 1, . . . , n 6= w. If so, let rw = r, that

is the first position where bw has a bit 1 and bw2 has a bit 0, and send
(leak-to-winner, sid, rw) to Pw.

4. Send (abort?, sid) to SFPA. If SFPA answers with (abort, sid,Pi) where
Pi is corrupted, remove bi from bids, remove Pi from P, send (abort,
sid,Pi, coins(

bi+work
|P| )) where |P| is the number of remaining parties to all

other parties in P, set again r = 1 and go to Step 1. If SFPA answers with
(proceed, sid), if r = l go to Payout, else increment r by 1 and go to Step 1.

– Payout: Send (refund, sid,Pw, coins(bi + work)) to all parties Pi 6= Pw, send
(refund, sid, coins(work)) to Pw, send coins(bw) to PAUC , and halt.

Fig. 4: Functionality FFPA.

from the second highest bid. Regardless of adversarial actions, an auction result
is always obtained and the Auctioneer (i.e., the party selling the asset) is always
paid. The second price case is presented in Section 5.

The Protocol: In Figures 5, 6, 7 and 8, we construct a Protocol ΠFPA that
realizes FFPA. This protocol is executed by n parties P1, . . . ,Pn, where each
party Pi has a l-bit bid bi = bi1| . . . |bil and a deposit committee C = {C1, . . . , Cm}
that helps open secret deposits from corrupted parties in the Recovery Stage. The
protocol consists of 4 main stages plus a recovery stage, which is only executed in
case of suspected (or detected) cheating. In the first stage, every party i sends to
the smart contract a secret deposit, whose structure will be explained in details
later. In the second and third stage, all parties jointly compute the maximum
bid (bit-by-bit) by using an anonymous veto protocol that computes a logical
OR on private inputs. To this aim the parties start from the most significant bit
position. Then, they apply the anonymous veto protocol according to their bits
bir, with 0 representing a no veto and 1 representing a veto. If the outcome of
the veto protocol (i.e., the logical-OR of the the inputs) is 1, then each party Pi

with input bir = 0 figures out that there is at least another party Pk whose bid
bk is higher than bi and Pi discovers that she cannot win the auction. Therefore,
from this point on, Pi stops vetoing, disregarding her actual bit bir in the next
rounds. Otherwise, Pi is expected to keep vetoing or not according to her bit bir.
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Finally, in Stage 4 the winning party Pw executes the payment to the auctioneer
(i.e., the party selling the asset). Throughout all stages, the parties must provide
proofs that they have correctly computed all protocol messages (using the NIZKs
described in Section 2.2). If a party is identified as dishonest at any point, the
Recovery Stage has to be executed.

Security Analysis: It is clear that this protocol correctly computes the highest
bid. The ideal smart contract enforces payment once a winner is determined and
punishments otherwise. The security of this protocol is formally stated in the
following theorem, which is proven in Appendix D. A game theoretical analysis
is presented in Appendix F, where it is shown that the best strategy for any
rational party is to follow the protocol.

Theorem 1. Under the DDH Assumption, Protocol ΠFPA securely computes
FFPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.

Protocol ΠFPA (Off-chain messages exchange)

Protocol ΠFPA is executed with n parties P = {P1, . . . ,Pn}, where each party Pi

has a l-bit bid bi = bi1| . . . |bil and a deposit committee C = {C1, . . . , Cm}. Parties
P, C interact among themselves and with a smart contract FSC.

Off-chain messages exchange: In order to minimize the amount of communication
with the smart contract, an approach based on techniques from [6] is adopted. Every
time we write a message is sent from party Pi to the other parties, we actually
execute the procedure bellow. Let r be a generic round of the protocol, then each
party proceeds as follows when sending her messages:

– Roundr: each Pi sends msgr,i, sigski(msgr,i) to all the other parties;
– Roundr+1: all the other parties Pk for k ∈ {1, . . . , n} \ i sign the message

received from party i and send msgr,i, sigskk (msgr,i) to all the other parties,
allowing them to check if party i sent no conflicting messages. Then, each party
repeats from the instructions described in the previous round;

– Conflicting messages: in case Pi sends conflicting messages msgr,i 6= msg′r,i
to parties Pk 6= P ′

k, Pi sends to the smart contract msgr,i, sigski(msgr,i) and
msg′r,i, sigski(msg′r,i) as a proof that Pi was dishonest;

– Evidence of a message: in case it has to be proven that a message msgr,i has
been sent by party Pi in round r, the other parties send to the smart contract
the signatures sigsk1(msgr,i), . . . , sigskn(msgr,i) along with the message msgr,i.

Fig. 5: Protocol ΠFPA (Off-chain messages exchange).
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Protocol ΠFPA (Stage 1 )

Stage 1 - Setup: Deposit committee parties Ck ∈ C first execute the Setup Verifi-
cation step of ΠC from Figure 3. All parties Pi proceed as follows:

1. Pi sends a secret deposit containing their bid bi, change change and a fee work
to the smart contract through a confidential transaction (as described in Sec-
tion 2.2). Let Addri be the address associated to party i and Addrs be the
address associated to the smart contract, Pi proceeds as follows:
(a) Pi sends (param, sid) to FSC, receiving (param, sid, g, h, pkC1 , . . . , pkCm).
(b) Pi computes the bit commitments as cir = gbirhrir , with rir

$← Zq, to each
bit bir of bi, and the bid commitment as ci =

∏l
r=1 c

2l−r

ir = gbih
∑l

r=1 2l−rrir .
Let rbi be equal to

∑l
r=1 2

l−rrir. Then, ci can be rewritten as ci = gbihrbi =
com(bi, rbi).

(c) Define sets In = {(idi, ini)} and Out = {(ci, Addrs), (work,Addrs),
(com(changei, rchangei), Addri)}, where ci = com(bi, rbi) is the commitment
to the bid bi previously computed at Step 1, work is the amount required
to compensate the cost of running the protocol for all the other parties in
P and in C, change = ini − bi − work and rchange

$← Zq. Note that, in this
case case, ini and work are public, while bi and work are private.

(d) Compute rout = rbi + rchangei , so as to allow the other parties later to
verify that the sum of the inputs is equal to the sum of the outputs, i.e.
ci · com(change, rchange)

?
= com(ini − work, rout).

(e) Compute proofs (πbi , πchange) showing that bi, change ∈ [0, 2l−1], set txi =
(id, In,Out, Sig, rbi + rchangei , π).

(f) Compute the shares (σ̂i1, . . . , σ̂im, LDEIi) of gbi and hrbi using the distri-
bution procedure from πPV SS with pkC1 , . . . , pkCm received in step (a).

(g) Compute CCi ← CC((pkCj )j∈[m], (j)j∈[m], g, h, ci, (σ̂j)j∈[m]) to prove con-
sistency among the shares (σ̂i1, . . . , σ̂im) and the commitment terms gbi and
hrbi from ci = gbihrbi .

(h) Send (setup, sid,Pi, txi, pki, (σ̂i1, . . . , σ̂im), LDEIi, CCi) to each Cj ∈ C.
(i) Upon receiving (setup-verification, sid, SigCj ,i) from all Cj ∈ C, compute

SH1i = H(txi, pki) and SH2i = H((σ̂i1, . . . , σ̂im), LDEIi, CCi) and send
(setup, sid,Pi, txi, pki, SH1i, SH2i, SigC1,i, . . . , SigCm,i)) to FSC. If a party
Ca ∈ C does not send this message, proceed to the Recovery Stage.

2. Pi samples xir
$← Zq and computes Xir = gxir for r = 1, . . . , l, sending

ci1, · · · , cil, Xi1, · · · , Xil to all other parties.
3. Upon receiving all messages cj1, · · · , cjl, Xj1, · · · , Xjl from other parties Pj , Pi

computes Yjk =
∏j−1

m=1 Xmk/
∏n

m=j+1 Xmk for j = 1, . . . , n,k = 1, . . . , l, and
verifies for each other party Pj that cj =

∏l
k=1 c

2l−k

jk for j ∈ {1, . . . , n}\ i. If this
verification fails or a message is not received, proceed to the Recovery Stage.

Fig. 6: Protocol ΠFPA (Stage 1).
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Protocol ΠFPA (Stages 2 and 3)

Stage 2 - Before First Veto: All parties Pi, starting from the most significant bit
bi1 and moving bit-by-bit to the least significant bit bil of their bid bi = bi1| . . . |bil,
run in each round r the anonymous veto protocol until the outcome is a veto (i.e.,
Vr 6= 1) for the first time. Therefore each party Pi proceeds as follows:

1. Compute vir as follows:

vir =

{
Y xir
ir , if bir = 0

r̄ir
$← Zq, g

r̄ir , if bir = 1

and generate NIZK proving that vir has been correctly computed BVir ←
BV {bir, rir, xir, r̄ir | ( cir

gbir
= cir = hrir ∧ vir = Y xir

ir ∧ Xir = gxir ) ∨
( cir
gbir

= cir
g

= hrir ∧ vir = gr̄ir )}, sending a message (vir, BVir) to all parties.

2. Upon receiving all messages (vkr, BVkr) from other parties Pk, Pi checks the
proofs BVkr for k ∈ {1, . . . , n}\i and, if all checks pass, computes Vr =

∏n
k=1 vkr

and then goes to Stage 3 if Vr 6= 1 (at least one veto), otherwise follows the steps
in Stage 2 again until the round r = l. Note that, unless all the bids are equal
to 0, at some point the condition Vr 6= 1 is satisfied. If a message is not received
from party Pk or if BVkr is invalid, proceed to the Recovery Stage.

Stage 3 - After First Veto: Let r̂ denote the last round at which there was a veto
(i.e., Vr̂ 6= 1). All parties Pi, starting from bir̂+1 and moving bit-by-bit to the least
significant bit bil of their bid bi = bi1| . . . |bil, run in each round r > r̂ the anonymous
veto protocol taking into account both the input bit bir and the declared input bit
dir, defined as the value that satisfies the logical condition (bir = 0∧dir = 0)∨(bir =
1∧dir̂ = 1∧dir = 1)∨(bir = 1∧dir̂ = 0∧dir = 0), i.e., each party Pi vetoes at round
r iff she also vetoed at round r̂ (i.e., dir̂ = 1), and her current input bit bir = 1.
Therefore, each Pi proceeds as follows:

1. Compute vir as follows:

vir =


Y xir
ir , if bir = 0

r̄ir
$← Zq, g

r̄ir , if dir̂ = 1 ∧ bir = 1

Y xir
ir , if dir̂ = 0 ∧ bir = 1

and generate NIZK proving that vir has been correctly computed AVir ←
AV {bir, rir, xir, r̄ir̂, r̄ir, xir̂ | ( cir

gbir
= cir = hrir ∧ vir = Y xir

ir ∧ Xir = gxir ) ∨
( cir
gbir

= cir
g

= hrir ∧ dir̂ = gr̄ir̂ ∧ vir = gr̄ir ) ∨ ( cir
gbir

= cir
g

= hrir ∧ dir̂ =

Y
xir̂
ir̂ ∧Xir̂ = gxir̂ ∧ vir = Y xir

ir ∧Xir = gxir )}, sending a message (vir, AVir) to
all parties.

2. Upon receiving all messages (vkr, AVkr) from other parties Pk, Pi checks the
proofs AVkr for k ∈ {1, . . . , n}\i and, if all checks pass, computes Vr =

∏n
k=1 vkr,

following the steps in Stage 3 again until round r = l. If a message is not received
from party Pk or if AVkr is invalid, proceed to the Recovery Stage.

Fig. 7: Protocol ΠFPA (Stages 2 and 3).
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Protocol ΠFPA (Stages 4 and Recovery)
Stage 4 - Output: At this point, each party Pi knows the value of Vr for each
round r = 1, · · · , l and the protocol proceeds as follows:
1. Pi computes the winning bid as bw = bw1| · · · |bwl, such that bwr = 1 if Vr 6= 1

and bwr = 0 if Vr = 1, and sends bw to all other parties (causing all parties Pk

to sign bw and send sigskk (bw) to each other). We denote by Pw the winning
party (i.e. the party whose bid is bw).

2. Pw opens the commitment to her bid com(bw, rbw ) towards the smart contract
by sending (output, sid,Pw, bw, rbw , {sigskk (bw)}k∈[n]) to FSC.

3. If Pw does not open her commitment or if multiple parties open their commit-
ments, Pi proceeds to the Recovery Stage.

4. Finally, all parties who honestly completed the execution of the protocol receive
a refund of their deposit from the smart contract, apart from the winning party,
who only receives a refund equivalent to the work funds.

Recovery Stage: Parties Ci ∈ C listen to FSC and execute the Share Decryption
step of ΠC from Figure 3 if requested. In case a party Pi ∈ P is suspected of cheating,
the Recovery stage is executed as follows to identify the cheater depending on the
exact suspected cheating:

– Missing message or signatures: a message msgri or a signature
sigski(msgr−1,i′), on a message msgr−1,i′ by P ′

i, expected to be sent in round r by
Pi is not received by Pk. Then, Pk sends to FSC the message (recovery-missing,
sid,msg, {sigskk (msg)}k∈[n]), where msg is the last message signed by all parties
and waits for FSC to request the missing message. In that way, Pi is expected to
send msgri or sigski(msgr−1,i′) to FSC. If no action is taken, Pi is identified as a
cheater.

– Conflicting messages or Invalid message: In round r, Pi sends conflicting
messages msgri, sigski(msgri) and msg′ri, sigski(msg′ri) to different parties Pk and
P ′

k. In this case, Pk and P ′
k set the conflicting messages as a proof of cheating

πc = (msgri, sigski(msgri),msg′ri, sigski(msg′ri)). Otherwise, Pi sends an invalid
message msgri, sigski(msgri) to Pk (i.e. the message does not follow the structure
described in the protocol for messages in round r), Pk uses this message as a proof
of cheating πc = (msgri, sigski(msgri)). Pk sends (recovery-cheat, sid,Pi, πc) to
the smart contract and Pi is identified as a cheater.

Every party Pi identified as a cheater loses her whole deposit (bi + work), which is
distributed to the other parties by FSC, and the protocol continues as follows:

– Re-execution (unknown bw): in case bw has not been computed, the protocol is
re-executed from Stage 2 excluding the parties identified as cheaters.

– Complete payment (known bw but unknown Pw): in case bw has been
computed but Pw does not send (output, sid,Pw, bw, rbw , {sigskk (bw)}k∈[n]) to
FSC, all Pi ∈ P compute a NIZK NWi ← NW{xi1, . . . , xil | (V1 = 1 ∧ vi1 =
Y xi1
i1 ) ∨ . . . ∨ (Vl = 1 ∧ vi1 = Y xi1

i1 )} showing that they are not the winner. Then
they send to FSC (recovery-payment, sid,NWi). The winner Pw (in case it is
identified) or all parties Pi who do not act (in case Pw is not identified) are iden-
tified as dishonest and lose their deposits, which are distributed among the honest
parties.

Fig. 8: Protocol ΠFPA (Stages 4 and Recovery).
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Functionality FSPA

FSPA operates with an auctioneer PAUC , a set of parties P = {P1, . . . ,Pn} who
have bids b1, . . . , bn as input, as well as an adversary SSPA. FSPA is parameterized
by a bid bit-length l and keeps an initially empty list bids.

– Setup (Bid Registration): Upon receiving (bid, sid, coins(bi+work)) from Pi

where bi ∈ {0, 1}l and work is the amount required to compensate the cost of
running the protocol for all the other parties, FSPA appends bi to bids.

– Winner Selection: After receiving (bid, sid, coins(bi + work)) from all parties
in P, for r = 1, . . . , rw, where rw is initialized to l, FSPA proceeds as follows:
1. Select bwr, i.e., the r-th bit of the highest bid bw in the list bids.
2. Send (round-winner, sid, bwr) to all parties.
3. Check if bwr = 1 and bir = 0 for i = 1, . . . , n 6= w. If so, set rw = r, that

is the first position where bw has a bit 1 and bw2 has a bit 0, and send
(leak-to-winner, sid, rw) to Pw.

4. If Pw is honest, announce her identity by sending (announce-winner,
sid,Pw) to all Pi ∈ P and SSPA. If Pw is corrupted, send (announce?,
sid,Pw) to SSPA. If SSPA answers with (announce, sid) then send
(announce-winner, sid,Pw) to all Pi ∈ P. If SSPA answers with
(not-announce, sid), do nothing.

5. Send (abort?, sid) to SSPA. If SSPA answers with (abort, sid,Pi) where
Pi is corrupted, remove bi from bids, remove Pi from P, send (abort,
sid,Pi, coins(

bi+work
|P| + work)) where |P| is the number of remaining par-

ties to all other parties in P to SSPA, set again r = 1 and go to Step 1. If
SSPA answers with (proceed, sid), if Pw has been determined, i.e., bwr = 1
and bir = 0 for i = 1, . . . , n 6= w, go to Second Price Selection, otherwise
increment r by 1 and go to Step 1.

– Second Price Selection: remove Pw from P and for r = rw, . . . , l FSPA pro-
ceeds as follows:
1. Select bw2r, i.e., the r-th bit of the second highest bid bw2 in the list bids.
2. Send (round-winner, sid, bw2r) to all parties.
3. Check if bw2r = 1 and bir = 0 for i = 1, . . . , n 6= w2. If so, set rw2 = r,

that is the first position where bw2 has a bit 1 and bw3 has a bit 0, and send
(leak-to-second, sid, rw2) to Pw2 .

4. Send (abort?, sid) to SSPA. If SSPA answers with (abort, sid,Pi) where
Pi is corrupted, remove bi from bids, remove Pi from P, send (abort,
sid,Pi, coins(

bi+work
|P| )) where |P| is the number of remaining parties to all

other parties in P, set again r = rw and go to Step 1 to start recomputing
the second price. If SSPA answers with (proceed, sid), if Pw2 has been de-
termined, i.e., bw2r = 1 and bir = 0 for i = 1, . . . , n 6= w2, go to Payout,
otherwise increment r by 1 and go to Step 1.

– Payout: Send (refund, sid, coins(bi + work)) to all parties Pi 6= Pw, send
(refund, sid, coins(work)) to Pw, send coins(bw2) to PAUC , and halt.

Fig. 9: Functionality FSPA.
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5 Extension to Second price Auctions

The second price sealed bid auction is a type of auction in which the parties first
submit their bids to the auctioneer and then the winner is the party with the
highest bid, however the price she pays is the second highest bid. The importance
of the second price auction is that it is strategy proof, i.e., the best strategy for
rational parties is to bid their true valuation of the auctioned good. Despite
this, the sealed second price auctions may not be applied in certain scenarios
due to the trust that has to be put in the auctioneer. In particular, a dishonest
auctioneer may manipulate the bids and substitute the second highest bid with
a bid that is slightly smaller than the first bid, so as to increase her revenue,
or disclose the losing bids of the other parties to have a financial gain. In fact,
in a recent study [2] it is shown that the only auction in which the auctioneer
has no incentive to deviate from the rules is the first price auction. Hence, when
considering the second price we must overcome these problems. We propose an
efficient solution to adapt our protocol in the case of second price auctions. Note
that a trivial solution is to run the protocol for first price twice, but the second
time from Stage 2 using the same setup from Stage 1 and without the winning
party Pw. However, this discloses both the highest bid bw and the second highest
bid bw2 (i.e., the price paid by the winning party), and suffers of unnecessary
computational and communication complexity.

Modelling Second Price Fair Auctions: First we describe an ideal func-
tionality FSPA for the second price auctions we realize in Figure 9.

The Protocol: Protocol ΠSPA for Second Price Auctions is described in Fig-
ures 10 and 11. In this protocol, each party Pi checks if she is the only one
veto-ing in every round r where bir = 1 and Vr 6= 1 (i.e., in which there was
a veto), which means that Pi is the winning party. Each party Pi can do that
by checking whether she obtains an alternative value V ′r = 1 (no veto) by using
v′ir = Y xir

ir (no veto) as her message and keeping the other parties’ messages
unchanged. If this condition is satisfied, then Pi proves it to all the other par-
ties by revealing xir. The first party who proves this condition to be true is the
winning party Pw. In order to compute the second highest bid bw2

, the other
parties conclude the protocol excluding Pw, which reduces drastically both com-
putational and communication complexity with respect to the trivial solution
of re-executing the protocol for first price from scratch without Pw. In fact, the
complexity of the protocol for second price is almost the same as the one for
the first price case, i.e., when Pw sends xir to all the other parties, so as to
prove she is the winning party, the communication complexity increases by |Zq|
only. We present a detailed efficiency estimate in Section 6. Finally, by using
this approach the winning bid is just partially disclosed, i.e., the knowledge of
the round r in which Pw declared herself as the winner of the auctions provides
a lower bound only over her actual bid bw.

Security Analysis: The security of Protocol ΠSPA is stated in Theorem 2 and
proven in Appendix E. A game theoretical analysis is presented in Appendix F.
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Theorem 2. Under the DDH Assumption, Protocol ΠSPA securely computes
FSPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.
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Protocol ΠSPA (Stages 1, 2, 3a and 3b)
Protocol ΠSPA is executed by parties P = {P1, . . . ,Pn}, where each party Pi has
a l-bit bid bi = bi1| . . . |bil, and a deposit committee C = {C1, . . . , Cm} interacting
among themselves and with a smart contract FSC.

Off-chain messages exchange and Stage 1 - Setup: Same as in Protocol ΠFPA.

Stage 2 - Before First Veto and Stage 3a - After First Veto: In this stage,
all parties Pi follow all the steps of Stage 2 and Stage 3 of ΠFPA respectively and
execute the following extra steps:

1. If Pi sent vir = gr̄ir (i.e., she has bir = 1 and issued a veto), Pi computes V ′
r =( n∏

k=1,k 6=i

vkr
)
Y xir
ir and checks whether Vr 6= 1 and V ′

r = 1. If this is true, it means

that Pi is the only one who has vetoed (i.e., she is the only party with bkr = 1
for k = 1, . . . , n, implying she has the highest bid). In this case, Pi sends (winner,
sid,Pw, xir) to all other parties.

2. Upon receiving (winner, sid,Pw, xir) from Pw, Pi it checks whether Pw indeed has

the highest bid by checking that Xwr = gxwr , computing V ′
r =

( n∏
k=1,k 6=w

vwr

)
Y xwr
wr

and checking whether Vr 6= 1 and V ′
r = 1. If any of these checks fail, proceed to the

Recovery Stage.
3. If a valid message (winner, sid,Pw, xir) was Pw, all parties Pi ∈ P \Pw recompute

Y ′
kr =

k−1∏
m=1

Xmr/
n∏

m=k+1

Xmr for k ∈ {1, . . . , n} \ w, k = j + 1, . . . , l (i.e., excluding

Pw from the remaining rounds from j + 1 to l), then continue to Stage 3b by
executing the protocol using the new Y ′

ir with a set of parties P \Pw excluding Pw.
4. If no party has sent a message (winner, sid,Pw, xir) by round r = l, then the

winner is dishonest (assuming a tie is not possible) and Pi proceeds to the Recovery
Stage.

Stage 3b - After First Unique Veto: In this stage, all parties Pi ∈ {P1, . . . ,Pn}\

Pw considers Vr = V ′
r =

( n∏
k=1,k 6=w

vwr

)
Y xwr
wr = 1 (i.e., Vr with the input vwr of Pw

not representing a veto instead). Then:
– If there does not exist another previous round z with z = 1, . . . , r − 1 such that

Vz 6= 1, i.e., the first veto was also the first unique veto, then the parties Pi ∈
{P1, . . . ,Pn}\Pw continue the protocol following all the steps is Stage 2 and Stage
3 described in Section 4 but using the values Y ′

ir recomputed after the first unique
veto was detected. When Stage 2 and eventually Stage 3 are completed, return and
go to the output stage described in this section.

– If there does exist another previous round z with z = 1, . . . , r− 1 such that Vz 6= 1,
i.e., the first unique veto was not the first veto, then set r̂ = z (i.e., the index of the
last veto is changed from r to z) and the parties Pi ∈ {P1, . . . ,Pn} \ Pw continue
the protocol following all the steps from Stage 3 as described in Section 4 but using
r̂ = z when computing their next input vi(r+1) and the values Y ′

ir recomputed after
the first unique veto was detected. When Stage 3 is completed, return and go to
the output stage described in this section.

Fig. 10: Protocol ΠSPA (Stages 1, 2, 3a and 3b).
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Protocol ΠSPA (Stage 4 and Recovery Stage)
Stage 4 - Output: At this point, all parties know the winner party Pw and the
second price bw2 . The protocol proceeds as follows:
1. Pi computes the second highest bid as bw2 = bw21| · · · |bw2l, such that bw2r = 1

if Vr 6= 1 and bw2r = 0 if Vr = 1, and sends Pw, bw2 to all other parties (causing
all parties Pk to sign bw2 and send sigskk (Pw|bw2) to each other).

2. In the Setup Stage, Pw sent to the smart contract a confidential transaction
txw = (id, In,Out, Sig, rbw + rchangew , π) where Out = {(com(bw, rbw ),
Addrs), (work,Addrs), (com(changew, rchangew ), Addrw)}. Pw creates a
new confidential transaction txpay = (idpay, Inpay,Outpay,Sigpay, rbw −
rchange′w , πpay) where In = {(id, com(bw, rbw ))}, Out = {(bw2 , Addrauc),
(com(change′w, rchange′w ), Addrw)}, Sigpay is left empty, Addrauc is the
address of the auctioneer, Addrw is the address of Pw and πpay is a
NIZK showing that change′w is between [0, 2l − 1]. Pw sends (output,
sid,Pw, txpay, {sigskk (Pw|bw2)}k∈[n]) to FSC, which performs txpay after check-
ing the validity of the message so that the auctioneer receives the payment bw2

and Pw gets back bw − bw2 .
3. Finally, all honest parties receive a refund of their deposit from the smart con-

tract, apart from the winning party, who only receives a refund of the fee work
plus the transaction (bw − bw2) computed in the previous step.

Recovery Stage: Parties Ci ∈ C listen to FSC and execute the Share Decryption
step of ΠC from Figure 3 if requested. In case a party Pi ∈ P is suspected of cheating,
the Recovery stage is executed depending on the exact suspected cheating as defined
in Protocol ΠFPA, which allows to eventually identify the cheater. If a cheater Pi is
identified, the Recovery Stage proceeds as follows:

– Re-execution (unknown Pw): in this scenario the winning the party Pw is
still unknown, then the parties {P1, . . . ,Pn} \ Pi re-execute the protocol from
Stage 2 without the cheating party Pi.

– Re-execution (known Pw but unknown bw2): in this scenario the winning
party Pw is known but the second highest bid bw2 is unknown, then the parties
{P1, . . . ,Pn}\{Pi,Pw} re-execute the protocol from Stage 2 without the cheating
party Pi and the winning party Pw.

– Complete payment (known Pw and bw2 but missing payment): in this
scenario both the winning party Pw and the second highest bid bw2 are known,
but Pw is has not completed the payment to the auctioneer. Then, Pw’s deposit
bw + work is distributed by the smart contract as follows: bw2 is sent to the
auctioneer and the remaining amount, that is equal to (bw + work − bw2), is
distributed to the other parties.

– Dishonest winner identification: If no party has sent a message (winner,
sid,Pw, xir) by round r = l, each Pi ∈ P computes a NIZK NWi ←
NW{xi1, . . . , xil | (V1 = 1 ∧ vi1 = Y xi1

i1 ) ∨ . . . ∨ (Vl = 1 ∧ vi1 = Y xi1
i1 )} showing

that they are not the winner and sends to FSC (recovery-dishonest-winner,
sid,NWi). All parties Pi who do not send a valid NWi are identified as dishonest
and have their deposits distributed among the honest parties.

Fig. 11: Protocol ΠSPA (Stage 4 and Recovery Stage).
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6 Complexity analysis and comparison to other protocols

In this section we present concrete estimates for the computational and commu-
nication complexity of our first and second price auction protocols, i.e., ΠFPA

and ΠSPA, respectively. We show that, in the first price case, ΠFPA is more
efficient than the state-of-the-art protocol SEAL [4]. In the second price case,
we show that ΠSPA only incurs a small overhead (dominated by re-executing
one round) over ΠFPA.

Stage 1 Stage 2 Stage 3 Total
FAST nl+ l+ 8 log l+ 2 τ(8 + 10n) (l − τ)(19 + 22n) 23nl + 20l + 8 log l −

11τ − 12nτ + 2

SEAL [4] 11l + 12nl τ(17 + 20n) (l − τ)(33 + 36n) 48nl + 44l − 16τ −
16nτ

Table 1: First price auction computational complexity comparison in terms of
exponentiations performed by a party Pi ∈ P: n is the number of parties, l is
the total number of rounds in Stages 2 and 3 (i.e., bit-length of bids), τ is the
number of rounds in Stage 2.

Stage 1 Stage 2 Stage 3 Total
FAST n((2l + 10)|G|+

3κ+ 4 log l)
nτ(|G|+ 6|Zq|) n(l − τ)(|G|+

11|Zq|)
n
(
|G|(3l + 10) +

|Zq|(11l− 5τ) + 3κ+
4 log l

)
SEAL [4] 17nl|G| 23nτ |G| 36n(l − τ)|G| (53nl − 13nτ)|G|
Table 2: First price auction communication complexity comparison in terms of
transmitted bits by a party Pi ∈ P: n is the number of parties, l is the total
number of rounds in Stages 2 and 3 (i.e., the bit-length of bids), τ is the number
of rounds of Stage 2, |G| and |Zq| indicate the bit-length of elements g ∈ G and
z ∈ Zq respectively, κ id the security parameter, as defined in Section 2.

The First Price Case: A concrete estimate of computational complexity is
shown in Table 1 and one for communication complexity is shown in Table 2. We
estimate these concrete complexities in terms of the number of exponentiations
performed by a party Pi and of the number of bits transmitted by a party Pi in an
execution of protocol ΠFPA, respectively. Moreover, we compare the complexity
of our protocol with SEAL [4], which is the current state-of-the-art protocol for
first price sealed bid auctions. In a similar way to our protocol, SEAL requires
all parties to jointly compute the maximum bid bit-by-bit and is subdivided into
a Stage 1 devoted to the setup, a Stage 2 identifying the rounds of the protocol
before the first veto and a Stage 3 identifying the rounds of the protocol after
the first veto. Hence, we highlight the differences in terms of complexity stage
by stage. Note that, in order to make the communication complexities of the
two protocols comparable, both of them have been expressed in terms of |G|.
Finally, FAST has an additional Stage 4 guaranteeing that the payment from the
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winning party Pw to the auctioneer is executed. On the other hand, SEAL does
not guarantee this property. In particular, Stage 4 requires 1 exponentiation per
party and has a communication complexity equal to 2(n− 1)|G|.

The Second Price Case: The computational and the communication com-
plexities of the proposed second price auction is still linear in the number of
agents. That is, assuming that at round r, there is a party who is the only one
that is veto-ing, then the parties have to re-run the rth round with one less
party. More precisely, by following the notation of Table 1 and 2, let τ be the
number of rounds in Stage 2, then the computational complexity of Stage 1
and Stage 2 is similar to the first price auction, that is nl + l + 8 log l + 2 for
Stage 1, and 8τ + 10nτ for Stage 2. Let r, be the number of rounds until there
is only a single party who is veto-ing. Therefore the computational complexity
of Stage 3 is 19r + 22nr until there is only a single veto. After this the par-
ties have to run the protocol with one less party, i.e., n − 1 parties. Depending
on the bid structure of the remaining n − 1 parties, the protocol is either in
Stage 2 or Stage 3. Let τ ′ denote the number of rounds until the remaining
n− 1 parties get a veto. Then the computational complexity for these τ ′ rounds
would be 8τ ′ + 10(n − 1)τ ′, and for the remaining l − (τ + τ ′ + r) it would be
19
(
l−(τ+τ ′+r)

)
+22(n−1)

(
l−(τ+τ ′+r)

)
. Using the same notation, a similar

argument follows for the communication complexity per party in the case of the
second price auction.
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Appendix

A Non-interactive Zero Knowledge Proofs of Knowledge
for Stages 2 and 3

We employ the approach of Camenisch and Stadler [22] based on the Fiat-Shamir
heuristc [33] in order to obtain non interactive zero knowledge (NIZK) proofs
of knowledge for discrete logarithm relations. In such NIZK proof systems, no
interaction is required between the prover and the verifier. This property is
crucial for obtaining public verifiability in our protocol, which we need in order
to implement our punishment mechanism.

In particular, we are interested in proving knowledge of the discrete logarithm
of h base g (denoted by DL{w | h = gw}), proving knowledge of discrete loga-
rithms of h1 base g1 and h2 base g2 that satisfy a linear equation a1w1+a2w2 = b
(denoted by DLEQ{w1, w2 | h1 = gw1

1 ∧h2 = gw2
2 ∧a1w1+a2w2 = b}) and prov-

ing knowledge of either the discrete logarithm of h1 base g1 or h2 base g2, without
disclosing which one (denoted by DLOR{w1, w2 | (h1 = gw1

1 )∨(h2 = gw2
2 )}). We

combine such simple statements using the approach of [22] in order to prove more
complicated relations that are used in forcing parties to execute our protocols
correctly using the GMW methodology [37].

A.1 NIZK for Stage 2 - Before First Veto

In this section we show the structure of proofs for the required NIZKs of Stage
2. The NIZKs prove knowledge of either bir, rir, xir such that cir

gbir
= cir = hrir ∧

vir = Y xir
ir ∧Xir = gxir or of bir, rir, r̄ir such that cir

gbir
= cir

g = hrir ∧ vir = gr̄ir ,
where vir, cir, Xir, g, Yir are public. We denote this NIZK by
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BV {bir, rir, xir, r̄ir |(
cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir )∨

(
cir
gbir

=
cir
g

= hrir ∧ vir = gr̄ir )}

Following the approach proposed by Camenisch and Stadler [22] we construct
this NIZK as follows:

F̃1 = DL(h, cir)⊗
[
DL(Yir, vir) ∩DL(g,Xir)

]
F̃2 = DL(h, cir/g)⊗DL(g, vir)

Therefore we need to show

F̃ = F̃1 ∪ F̃2

To prove the knowledge of either F̃1 or F̃2, assuming that F̃α is known, party
i proceeds as follows:

1. Choose V̄ = (v̄1, v̄2, v̄3, v̄4) with v̄i
$← Zq and w̄ = (w̄1, w̄2) with w̄α = 0 and

w̄i
$← Zq for i 6= α, and compute t1 = cw̄1

ir hv̄1 , t2 = vw̄1
ir Y v̄2

ir , t3 = Xw̄1
ir gv̄2 ,

t4 = ( cirg )w̄2hv̄3 , and t5 = vw̄2
ir gv̄4

2. H = H(h, cir, Yir, vir, g,Xir,
cir
g , t1, t2, t3, t4, t5) (mod q).

3. Γ = (γ1, γ2) where

γi =

{
H − (w̄1 + w̄2) (mod q), if i = α
w̄i, otherwise

4. R = (r1, r2, r3, r4, r5) where r1 = v̄1− γαx1, r2 = v̄2− γαx2, r3 = v̄2− γαx2,
r4 = v̄3 − γαx3, and r5 = v̄4 − γαx4 (all equations are modulo q), in which
(x1, x2, x3, x4) = (rir, xir, 0, 0) if α = 1, and (x1, x2, x3, x4) = (0, 0, rir, r̄ir)
if α = 2.

The resulting proof is (γ1, γ2, r1, r2, r3, r4, r5). The validity of the proof can be
checked by first re-constructing the commitments. That is,

t′1 = cγ1

ir h
r1 t′2 = vγ1

ir Y
r2 t′3 = Xγ1

ir g
r3

t′4 = (
cir
g
)γ2hr4 t′5 = vγ2

ir g
r5

and then checks the following condition

γ1 + γ2 = H(h, cir, Yir, vir, g,Xir,
cir
g
, t′1, t

′
2, t
′
3, t
′
4, t
′
5)
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A.2 NIZK Stage 3 - After First Veto

In this section we show the structure of proofs for the required NIZKs of Stage
3. The NIZKs prove knowledge of either bir, rir, xir such that cir

gbir
= cir =

hrir ∧ vir = Y xir
ir ∧ Xir = gxir , or of bir, rir, r̄ir̂, r̄ir such that cir

gbir
= cir

g =

hrir ∧ dir̂ = gr̄ir̂ ∧ vir = gr̄ir , or of bir, rir, xir̂, xir such that cir
gbir

= cir
g =

hrir ∧ dir̂ = Y xir̂

ir̂ ∧Xir̂ = gxir̂ ∧ vir = Y xir
ir ∧Xir = gxir . We denote this NIZK

by

AV {bir, rir, xir, r̄ir̂, r̄ir, xir̂ |(
cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir )∨

(
cir
gbir

=
cir
g

= hrir ∧ dir̂ = gr̄ir̂ ∧ vir = gr̄ir )∨

(
cir
gbir

=
cir
g

= hrir ∧ dir̂ = Y xir̂

ir̂ ∧Xir̂ = gxir̂∧

vir = Y xir
ir ∧Xir = gxir )}

Following the approach proposed by Camenisch and Stadler [22] we construct
this NIZK as follows:

F̃1 = DL(h, cir)⊗
[
DL(Yir, vir) ∩DL(g,Xir)

]
F̃2 = DL(h, cir/g)⊗DL(g, dir̂)⊗DL(g, vir)

F̃3 = DL(h, cir/g)⊗
[
DL(Yir̂, dir̂) ∩DL(g,Xir̂)

]
⊗
[
DL(Yir, vir) ∩DL(g,Xir)

]
Therefore we need to show

F̃ = F̃1 ∪ F̃2 ∪ F̃3

To prove the knowledge of either F̃1 or F̃2 or F̃3, assuming that F̃α is known,
party i proceeds as follows:

1. Choose V̄ = (v̄1, v̄2, v̄3, v̄4, v̄5, v̄6, v̄7, v̄8) with v̄i
$← Zq and w̄ = (w̄1, w̄2, w̄3)

with w̄α = 0 and w̄i
$← Zq for i 6= α, and compute t1 = cw̄1

ir hv̄1 , t2 = vw̄1
ir Y v̄2

ir ,
t3 = Xw̄1

ir gv̄2 , t4 = ( cirg )w̄2hv̄3 , t5 = dw̄2

ir̂ gv̄4 , t6 = vw̄2
ir gv̄5 , t7 = ( cirg )w̄3hv̄6 ,

t8 = dw̄3

ir̂ Y v̄7
ir̂ , t9 = Xw̄3

ir̂ gv̄7 , t10 = vw̄3
ir Y v̄8

ir and t11 = Xw̄3
ir gv̄8 .

2. H = H(h, cir, Yir, vir, g,Xir,
cir
g , dir̂, Yir̂, Xir̂, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) .

3. Γ = (γ1, γ2, γ3) where

γi =

{
H − (w̄1 + w̄2 + w̄3) (mod q), if i = α
w̄i, otherwise
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4. R = (r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11) where r1 = v̄1 − γαx1, r2 = v̄2 −
γαx2, r3 = v̄2 − γαx2, r4 = v̄3 − γαx3, r5 = v̄4 − γαx4, r6 = v̄5 − γαx5,
r7 = v̄6−γαx6, r8 = v̄7−γαx7, r9 = v̄7−γαx7, r10 = v̄8−γαx8 and r11 = v̄8−
γαx8 (all equations are modulo q), in which (x1, x2, x3, x4, x5, x6, x7, x8) =
(rir, xir, 0, 0, 0, 0, 0, 0) if α = 1, and (x1, x2, x3, x4, x5, x6, x7, x8) = (0, 0, rir,
r̄ir̂, r̄ir, 0, 0, 0) if α = 2, and (x1, x2, x3, x4, x5, x6, x7, x8) = (0, 0, 0, 0, 0, rir,
xir̂, xir) if α = 3.

The resulting proof is (γ1, γ2, γ3, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11). The valid-
ity of the proof can be checked by first re-constructing the commitments. That
is,

t′1 = cγ1

ir h
r1 t′2 = vγ1

ir Y
r2 t′3 = Xγ1

ir g
r3

t′4 = (
cir
g
)γ2hr4 t′5 = dγ2

ir̂ g
r5 t6 = vγ2

ir g
r6

t′7 = (
cir
g
)γ3hr7 t′8 = dγ3

ir̂ Y
r8
ir̂ t′9 = Xγ3

ir̂ g
r9

t′10 = vγ3

ir Y
r10
ir t′11 = Xγ3

ir g
r11

and then checks the following condition

γ1+γ2+γ3 = H(h, cir, Yir, vir, g,Xir,
cir
g
, dir̂, Yir̂, Xir̂, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11)

B Simplified UTXO model

Bitcoin [55] and other similar cryptocurrencies use the concept of unspent trans-
action output, or UTXO, that represents an indivisible amount of currency
locked to an owner [16]. Each transaction contains a certain number of consumed
UTXO, named transactions inputs, and created UTXO, named transaction out-
puts. In particular, a UTXO defines a number representing a certain amount of
currency and a locking script specifying the conditions that has to be satisfied
to use the UTXO as a transaction input (i.e. spend the UTXO). Note that each
created UTXO can have a different recipient and that, in case the amount of
currency that has to be transferred is smaller than the sum of the inputs, a
change UTXO is created, i.e., an UTXO that is still owned by the sender of
the transaction. Miners have the role of checking if the unlocking conditions are
satisfied and if the sum of the inputs is greater than the sum of the outputs.

In order to focus on the novel aspects of our protocol, we represent cryptocur-
rency transactions under a simplified version of the Bitcoin UTXO model and
we only consider operations of the “Pay to Public Key” (P2PK) output type.

Representing Addresses: An address Addr = pk is simply a signature verifica-
tion key associated to a certain secret key sk, where pk and sk are generated by
the key generation algorithm Gen(k) and subsequent signatures σ are generated
by the signature algorithm Sig(sk, .) = sigsk(.);

Representing Transactions: We represent a transaction in our simplified UTXO
model by the tuple tx = (id, In,Out,Sig), where id ∈ {0, 1}κ is a unique
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transaction identification, In = {(id1, in1), . . . , (idm, inm)} is a set of pairs
of previous transaction id’s id ∈ {0, 1}κ and their values in ∈ N, Out =
{(out1, Addr1), . . . , (outn, Addrn)} is a set of pairs of values out ∈ N and ad-
dresses Addr and Sig = {σ1, . . . , σm} is a set of signatures σ.

Transaction Validity: A transaction tx = (id, In,Out,Sig) is considered valid
if, for all (idi, ini) ∈ In and (outj , Addrj) ∈ Out, the following conditions hold:

1. There exists a valid transaction txi = (idi, Ini,Outi,Sigi) in the public ledger
such that (ini, Addri) ∈ Outi.

2. There exists σi ∈ Sig such that σi is a valid signature of id|In|Out under
Addri, i.e., V er(pki, id|In|Out, σi) = True.

3. It holds that
∑m

i=1 ini =
∑n

j=1 outj .

Generating Transactions: A party controlling the corresponding signing keys
sk1, . . . , skm for valid UTXO addresses Addr1, . . . , Addrm containing values in1,
. . . , inm can generate a transaction that transfers the funds in these addresses
to output addresses Addrout,1, . . . , Addrout,n by proceeding as follows:

1. Choose a unique id ∈ {0, 1}κ.
2. Choose values out1, . . . , outn such that

∑m
i=1 ini =

∑n
j=1 outj .

3. Generate sets in and Out as described above and sign id|In|Out with the
signing keys corresponding to Addr1, . . . , Addrm, i.e., σi = sigski

(id|In|Out)
for i = 1, · · · ,m , obtaining Sig = {σ1, . . . , σm}.

4. Output tx = (id, In,Out,Sig).

C Publicly Verifiable Secret Sharing (PVSS)

In this section, we present the PVSS protocol πPV SS from [24] described in
Figure 12. In order to instantiate this protocol, the NIZKs described below are
also necessary.

NIZK for Discrete Logarithm Equality (DLEQ): This NIZK from [25]
is used to prove that, given g1, ..., gm and x1, ..., xm, the discrete logarithms of
every xi with base gi are equal, i.e., xi = gαi for all i = 1, . . . ,m for some
α ∈ Zq (the same α for all i). It is denoted as DLEQ((gi, xi)I , (hi, yi)i). In this
NIZK, the prover computes e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am), for H(·)
a random oracle (that will be instantiated by a cryptographic hash function)
and z as above. The proof is (a1, . . . , am, e, z). The verifier checks that e =
H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am) and that ai = gzi x

e
i for all i.

NIZK for Low-Degree Exponent Interpolation (LDEI): This NIZK
from [24] is used to prove that, given generators g1, g2, . . . , gm of a cyclic group
Gq of prime order q, pairwise distinct elements α1, α2, . . . , αm in Zq and an in-
teger 1 ≤ k < m known by a prover and a verifier, for p(x) known by the prover, it
holds that (x1, x2, . . . , xm) ∈

{(
g
p(α1)
1 , g

p(α2)
2 , . . . , g

p(αm)
m

)
: p ∈ Zq[X],deg p ≤ k

}
.
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We denote this NIZK by LDEI((gi)i∈[m], (αi)i∈[m], k, (xi)i∈[m]). In this NIZK,
the sender chooses r ∈ Zq[X]≤k uniformly at random and computes ai = g

r(αi)
i

for all i = 1, . . . ,m, e = H(x1, x2, . . . , xm, a1, a2, . . . , am) and z = e · p+ r. The
proof is then (a1, a2, . . . , am, e, z). The verifier checks that z ∈ Zq[X]≤k, that xe

i ·
ai = g

z(αi)
i holds for all i = 1, . . . ,m and that e = H(x1, x2, . . . , xm, a1, a2, . . . , am).

Protocol πPV SS from [24]

Let h be a generator of a group Gq of order q. Let H(·) be a random oracle. Protocol
πPV SS is run between n parties P1, . . . ,Pn, a dealer D and an external verifier V
(in fact any number of external verifiers) who have access to a public ledger where
they can post information for later verification.

1. Setup: Party Pi generates a secret key ski ← Zq, a public key pki = hski and
registers the public key pki by posting it to the public ledger, for 1 ≤ i ≤ n.

2. Distribution: The dealer D samples a polynomial p(X)← Zq[X]≤t+`−1 (where
t = dn

2
e − 1 and ` is the number of secrets) and sets s0 = p(0), s1 =

p(−1), . . . , s`−1 = p(−(` − 1)). The secrets are defined to be S0 = hs0 , S1 =
hs1 , . . . , S`−1 = hs`−1 . D computes Shamir shares σi = p(i) for 1 ≤ i ≤ n. D
encrypts the shares as σ̂i = pkσi

i and publishes (σ̂1, . . . , σ̂n) in the public ledger
along with the proof LDEI that σ̂i = pk

p(i)
i for some p of degree at most t+`−1.

3. Verification: The verifier checks the proof LDEI.

4. Share decryptiona (for Pi): On input σ̂i, pki, decrypt share σ̃i = σ̂
1

ski
i = hσi

and publish it in the ledger together with PROOFi = DLEQ((h, σ̃i), (pki, σ̂i))
(showing that the decrypted share σ̃i corresponds to σ̂i).

5. Share decryption verification: Apply the verification algorithm of the DLEQ
proof PROOFi and complain if this is not correct.

6. Secret reconstruction algorithm RecQ: On input {σ̃i}i∈Q for a set Q of
exactly n− t indices, for j ∈ [`− 1], Set λ

(j)
i =

∏
m:m∈Q,m 6=i

−j−m
i−m

for all i ∈ Q

and compute Sj =
∏

i∈Q(σ̃i)
λ
(j)
i =

∏
i∈Q hp(i)λ

(j)
i = hp(−j) = hsj , and publish

the values Sj .
a Amortized share decryption (for Pi): If the PVSS has been used several times

where Pi has received in each case a share σ̂a
i , Pi can decrypt shares as above but

publish one single proof PROOFi = DLEQ((h, (σ̃a
i )a), (pki, (σ̂

a
i )a)).

Fig. 12: Protocol πPV SS from [24]

Definition 1 (Definition 4 from [24]). Indistinguishability of secrets
(IND1-secrecy) We say that the PVSS is IND1-secret if for any polynomial
time adversary A corrupting at most t− 1 parties, A has negligible advantage in
the following game played against a challenger.

1. The challenger runs the Setup phase of the PVSS as the dealer and sends
all public information to A. Moreover, it creates secret and public keys for
all honest parties, and sends the corresponding public keys to A.
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2. A creates secret keys for the corrupted parties and sends the corresponding
public keys to the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets.
Furthermore it chooses b← {0, 1} uniformly at random. It runs the Distribu-
tion phase of the protocol with x0 as secret. It sends A all public information
generated in that phase, together with xb.

4. A outputs a guess b′ ∈ {0, 1}.

The advantage of A is defined as |Pr[b = b′]− 1/2|.

Proposition 1 (Proposition 3 from [24]). Protocol πPV SS is IND1-secret
under the DDH assumption.

D Proof of Theorem 1

In this section, we provide a full proof of security for Protocol ΠFPA. In order
to prove Theorem 1, we first the following auxiliary Lemmas:

Lemma 1. Under the DDH Assumption, the Pedersen commitment scheme [58]
is computationally binding and unconditionally hiding:

– Computationally binding: under the DL assumption, for any PPT algo-
rithm the probability ε(q) of finding s1, t1, s2, t2 ∈ Zq such that s1 6= s2
and com(s1, t2) = com(s2, t2) is negl(q).

– Unconditionally hiding: for any s1, s2 ∈ Zq and t1, t2
$← Zq, it holds that

| Pr[D(com(s1, t1)) = 1] − Pr[D(com(s2, t2)) = 1] | = negl(q) for any dis-
tiguisher D, i.e., {com(s1, t2)}

s1∈Zq,t1
$←Zq

and {com(s1, t2)}
s2∈Zq,t2

$←Zq

are
statistically indistiguishable.

Proof. It is proven in [58] that the Pedersen commitment scheme is computation-
ally binding and unconditionally hiding under the assumption that the Discrete
Logarithm problem is hard, which is implied by the DDH assumption.

Lemma 2. Under the DDH Assumption and in the random oracle model, there
exists a EUF-CMA [38] secure digital signature scheme.

Proof. There exist a number of digital signature schemes whose security is im-
plied by the DDH assumption in the random oracle model, e.g., [59] and [13].

Lemma 3 (Theorem 5 from [21]). Under the DDH Assumption and in the
random oracle model, the range proofs computed in Stage 1 of ΠFPA guarantee
the zero knowledge, the proof of knowledge and the soundness properties.

Lemma 4 (From [22]). Under the DDH Assumption and in the random oracle
model, the NIZKs BV , AV , NW and CC computed respectively in Stage 2,
Stage 3 and the Recovery Stage of ΠFPA have the zero knowledge, the proof of
knowledge and the soundness properties.
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Lemma 5 (Lemma 2 from [4]). Under the DDH Assumption, given Xir =

gxir with xir
$← Zq and i ∈ [1, n], Yir =

∏i−1
k=1 g

xkr/
∏n

k=i+1 g
xkr = g(

∑i−1
k=1 xkr−

∑n
k=i+1 xkr)

and yir =
∑i−1

k=1 xkr −
∑n

k=i+1 xkr with i ∈ [1, n], i ∈ [1, n], i′, i′′ ∈ [1, n]

such that i′ 6= i′′, gr̄ir with r̄ir
$← Zq and i ∈ [1, n] \ {i′, i′′}, gr̄i′r , gr̄i′′r ,

Φ ⊆ {xir : i ∈ [1, n] \ {i′, i′′}} and a challenge Ω ∈ {A,B}, it is computationally
hard to find if Ω = A or Ω = B, where:

A = (g, Φ, gx1rz1r , gx2rz2r , . . . , gxi′−1rzi′−1r , gxi′r r̄i′r , gxi′+1rzi′+1r , . . . , gxi′′ryi′′r , . . . , gxnrznr )

B = (g, Φ, gx1rz1r , gx2rz2r , . . . , gxi′−1rzi′−1r , gxi′r r̄i′r , gxi′+1rzi′+1r , . . . , gxi′′r r̄i′′r , . . . , gxnrznr )

where zir is either yir (note that when zir = yir the value gxirzir is equal to
the message vir = Y xir

ir = gxiryir of ΠFPA representing a no veto) or r̄ir (note
that when zir = r̄ir, where r̄ir

$← Zq, the value gxirzir is indistinguishable from
the message vir = gr̄ir of ΠFPA representing a veto) for i ∈ [1, n] \ {i′, i′′}, and
Φ is chosen by an adversary A. Intuitively, it is not possible to distinguish two
executions in which there is at least one veto but the number of parties vetoing
is different and it is not possible to learn if a party vetoed or not by checking vir.

Lemma 6 (Lemma 3 from [4]). Under the DDH Assumption, let H be a set
of honest parties and C be a set of parties corrupted by an adversary A. For each
Ph ∈ H, let vhr be her message in Stages 2 or 3 during a round r of ΠFPA,
corresponding to an input bit bhr. Then, A learns no more than

∨
Ph∈H bhr. In

particular, in case
∨
Ph∈H bhr = 0, A learns that bhr = 0 for each Ph ∈ H. On

the other hand, in case
∨
Ph∈H bhr = 1:

– A is not able to distinguish two executions in which the number of honest
parties Ph ∈ H with bhr = 1 is different.

– Let Ph1
,Ph2

∈ H be honest parties with input bits bh1r, bh2r such that bh1r 6=
bh2r and messages vh1r, vh2r respectively. Then, A is not able to distinguish
vh1r and vh2r.

Based on the above Lemmas, we prove Theorem 1, which we reproduce below
for the sake of clarity.

Theorem 1 Under the DDH Assumption, Protocol ΠFPA securely computes
FFPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.

Proof. In order to prove this theorem, we construct a simulator SFPA (Figures
13, 14, 15 and 16) that performs an ideal execution with FFPA and interacts
with an internal copy of the adversary A, simulates honest parties, FSC and the
random oracle in an execution of Protocol ΠFPA with A in such a way that
this execution is indistinguishable from an execution between A and an honest
party in the real world. Throughout this execution, SFPA perfectly emulates
FSC and the random oracle unless stated otherwise. In order to show that an
ideal execution with SFPA and FFPA is indistinguishable from a real execution
of ΠFPA with A and honest parties, we argue that the view of A in the real
world and of SFPA’s internal copy of A is indistinguishable. In particular:
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Simulator SFPA (Stage 1)
Let H be the set of simulated honest parties, C be the set of parties corrupted by
the adversary A, CH be the set of simulated members of the committee and CC be
the set of members of the committee corrupted by the adversary A.
Stage 1 - Setup.

– Generating Parameters with Trapdoor: SFPA samples g
$← G, t

$← Zq

and computes h = gt. Trapdoor t will allow SFPA to equivocate commitments
later. When A queries FSC with (param, sid), SFPA returns these values (param,
sid, g, h).

– Simulating Honest Parties: SFPA simulates each honest party Ph ∈ H using
dummy input bids b′h = b′h1| . . . |b′hl such that b′hr

$← {0, 1} for r = 1, . . . , l. SFPA

follows the steps of an honest party with input b′h in ΠFPA to do the following:
1. Generate pkh, transaction txh, shares (σ̂h1, . . . , σ̂hm, LDEIh) of gb

′
h and h

rb′
h ,

proof of consistency CCh ← CC((pkCj )j∈[m], (j)j∈[m], g, h, ch, (σ̂j)j∈[m]) , then
send (setup, sid,Ph, txh, pkh, (σ̂h1, . . . , σ̂hm), LDEIh, CCh) to each Cj ∈ CC.

2. Upon receiving (setup-verification, sid, SigCj ,h) from all Cj ∈ CC, compute
SH1h = H(txh, pkh) and SH2h = H((σ̂h1, . . . , σ̂hm), LDEIh, CCh) and send
(setup, sid,Pi, txh, pkh, SH1h, SH2h, SigC1,h, . . . , SigCm,h)) to FSC.

3. Generate values ch1, · · · , chl, Xh1, · · · , Xhl (sample xhr
$← Zq, then Xhr = gxhr )

and send them to all other parties.
4. Upon receiving Xc1, · · · , Xcl fromA for all Pc ∈ C, computes Yhk for each Ph ∈ H

and k = 1, . . . , l.
– Handling messages from A:

1. Upon receiving (setup, sid,Pa, txa, pka, (σ̂a1, . . . , σ̂am), LDEIa, CCa) from A
trough Pa ∈ C to Cj ∈ CH, SFPA follows the steps of ΠC to verify
txa, (σ̂a1, . . . , σ̂am), LDEIa, CCa. If all the checks pass, computes the hashes
SH1a = H(txa, pka) and SH2a = H((σ̂a1, . . . , σ̂am), LDEIa, CCa) and the
signature SigCj ,a = sigsk′

Cj
(SH1a|SH2a), then sends (setup-verification,

sid, SigCj ,a) to Pa.
2. Upon receiving the message (setup, sid,Pa, txa, pka, SH1a|SH2a,

SigC1,a, . . . , SigCm,a) from A trough Pa ∈ C to FSC, SFPA follows the steps
of FSC to verify that SH1a = H(txa, pka) and SigCj ,a for each Cj ∈ CH ∪ CC,
continuing the execution if the checks pass and simulating the recovery procedure
otherwise.

3. If the checks pass, SFPA uses the knowledge extractor for the NIZKs in order to
extract the bids ba for each party Pa ∈ C from their range proofs (πba , πchange)
included in the transactions txa. Then, SFPA sends (bid, sid, coins(ba + work))
for each extracted bid ba to FFPA on behalf of Pa.

Fig. 13: Simulator SFPA (Stage 1).

– Stage 1 - Setup: SFPA simulates each honest party Ph ∈ H using a dummy
input bid bh = bh1| . . . |bhl with bhr

$← {0, 1} for r = 1, . . . , l and computes
the bit commitments chr = gbhrhrhr for r = 1, . . . , l, the bid commitment
ch =

∏l
r=1 c

2l−r

hr = gbhh
∑l

r=1 2l−rrhr , the range proofs (πbh , πchange), shares
(σ̂h1, . . . , σ̂hm, LDEIh) of gb′h and h

rb′
h and the proof of consistency CCh.

However, by Lemma 1, due to the hiding property of the commitments, chr
for r = 1, . . . , l and ch are indistinguishable from the commitments of the
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Simulator SFPA (Stage 1 - Continuation)

Simulating an honest party vetoing or not vetoing. considering Ph ∈ H, in a
round r during Stage 2 or Stage 3 requires SFPA to compute vhr as follows:

vhr =

{
Y

xhr
hr , if SFPA simulates a no veto

r̄hr
$← Zq, g

r̄hr , if SFPA simulates a veto
and generate NIZKs showing that vhr has been computed according to both the first
r bits of the dummy input bid b′h (i.e. b′h1, . . . , b′hr) and the outputs of the protocol
in the previous rounds (i.e. V1, . . . , Vr−1) by using the NIZKs simulators. Whether a
simulated honest party vetoes or not is decided by SFPA according to rules, defined
in Stage 2 and Stage 3 of SFPA, meaning that the behavior of simulated honest
parties is completely independent of the dummy input bid b′h. In Stage 2, SFPA

uses the simulator of NIZK BV {b′hr, rhr, xhr, r̄hr | ( chr

g
b′
hr

= chr = hrhr ∧ vhr =

Y
xhr
hr ∧ Xhr = gxhr ) ∨ ( chr

g
b′
hr

= chr
g

= hrhr ∧ vhr = gr̄hr )} to generate a proof
BVhr and sends (vhr, BVhr) to all parties. In Stage 3, uses the generator of NIZK
AV {b′hr, rhr, xhr, r̄hr̂, r̄hr, xhr̂ | ( chr

g
b′
hr

= chr = hrhr ∧ vhr = Y
xhr
hr ∧ Xhr = gxhr ) ∨

( chr

g
b′
hr

= chr
g

= hrhr ∧ dhr̂ = gr̄hr̂ ∧ vhr = gr̄hr ) ∨ ( chr

g
b′
hr

= chr
g

= hrhr ∧ dhr̂ =

Y
xhr̂
hr̂ ∧Xhr̂ = gxhr̂ ∧ vhr = Y

xhr
hr ∧Xhr = gxhr )} to generate a proof AVhr and sends

(vhr, AVhr) to all parties.

Fig. 14: Simulator SFPA (Stage 1 - Continuation).

corresponding parties in the real world. Moreover, by Lemma 3, due to the
zero knowledge property of NIZKs, (πbh , πchange) are indistinguishable from
the range proofs of the corresponding parties in the real world.
Similarly, by Lemma 4, due to the zero knowledge property of NIZKs, CCh

is indistinguishable from the NIZK of the corresponding party in the real
world.
On the other hand, by Lemma 1, due to the binding property of the commit-
ment, the bids bc of each corrupted party Pa ∈ C, extracted by SFPA using
the NIZKs knowledge extractor (given the proof of knowledge property of
NIZKs by Lemma 3), from the range proofs (πba , πchange), cannot be changed
later. Then, by Lemma 3, due to the soundness property of the NIZKs, it is
computationally hard for the adversary A controlling each Pa ∈ C to com-
pute the range proofs while the bids are not in the expected range. Moreover,
by Lemma 4, due to the soundness property of the NIZKs, it is ensured that
at every round the inputs of all Pa ∈ C are computed according to the initial
bid bc and the protocol rules.
Moreover, by Proposition 1, (σ̂h1, . . . , σ̂hm, LDEIh) does not leak any infor-
mation about the bids and it is guaranteed that the shares distribution is
valid.
Finally, by adopting a EUF-CMA secure digital signature, whose existence
is given by Lemma 2, in each round r no Pc ∈ C has the chance to forge
a signature sigski

(msgr,c) for a certain message msgr,c pretending to be
an honest party Pi in the real world, i.e., no transaction txi nor a proof
of cheating πc = (msgri, sigski

(msgri),msg′ri), indicating that Pi sent con-
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Simulator SFPA (Stages 2 and 3)

– Stage 2 - Before First Veto. Let rv be the first round in which a veto occurs,
i.e., Vrv 6= 1. Then, for r = 1, . . . , rv SFPA waits for (round-winner, sid, bwr)
and proceeds as follows:
1. (honest winner) If bwr = 1 and bar = 0 for each Pa ∈ C (note that SFPA has

previously extracted the bids of the corrupted parties), then Pw /∈ C, i.e., the
winner is known to be honest by SFPA but its identity will be known during
Stage 4 only. In this case, SFPA simulates one honest party Phw ∈ H picked
at random vetoing and simulates all the other honest parties not vetoing
again, then goes to Stage 3.

2. (corrupted winner) If bwr = 1 and SFPA receives (leak-to-winner, sid, rw)
from FFPA, then Pw ∈ C and its identity is known by SFPA. In this case,
SFPA simulates all honest parties Ph ∈ H not vetoing and goes to Stage 3.

3. (know nothing) If neither condition 1 nor 2 occurs, then nothing is known yet
regarding Pw (neither its identity nor if Pw is corrupted or not). If bwr = 1
then SFPA simulates all honest parties Ph ∈ H vetoing and goes to Stage 3.
If bwr = 0 then SFPA simulates all honest parties Ph ∈ H not vetoing and
continues to simulate Stage 2.

4. If an honest party Ph executing ΠFPA would initiate the Recovery Stage,
SFPA simulates Ph ∈ H initiate it with the simulated FSC. Then, at the end
of each round r, SFPA receives (abort?, sid) from FFPA. If any Pa ∈ C
has been identified as a cheater in the Recovery Stage, SFPA sends (abort,
sid,Pa) to FFPA, otherwise SFPA sends (proceed, sid) to FFPA.

– Stage 3 - After First Veto. For r = rv, . . . , l SFPA waits for (round-winner,
sid, bwr) and proceeds as follows:
1. (honest winner) If condition 1 of Stage 2 occurred or occurs during Stage

3, SFPA eventually picks at random one simulated honest party Phw ∈ H
(in case it has not been already picked during Stage 2) and simulates her
vetoing if bwr = 1 and not vetoing if bwr = 0 until r = l and simulates all
the other honest parties not vetoing again

2. (corrupted winner) If condition 2 of Stage 2 occurred or occurs during Stage
3, SFPA simulates all honest parties Ph ∈ H not vetoing until r = l.

3. (know nothing) If neither condition 1 nor 2 occurs, then nothing is known
yet regarding Pw (neither its identity nor if Pw is corrupted or not).
If bwr = 1 then SFPA simulates all honest parties Ph ∈ H vetoing. If bwr = 0
then SFPA simulates all honest parties Ph ∈ H not vetoing.

4. If an honest party Ph executing protocol ΠFPA would initiate the Recovery
Stage, SFPA simulates Ph ∈ H initiating it with the simulated FSC. Then,
at the end of each round r, SFPA receives (abort?, sid) from FFPA. If any
Pa ∈ C has been identified as a cheater in the Recovery Stage, SFPA sends
(abort, sid,Pa) to FFPA, otherwise SFPA sends (proceed, sid) to FFPA.

Fig. 15: Simulator SFPA (Stages 2 and 3).

flicting messages, or πc = (msgri, sigski(msgri), indicating that Pi sent an
invalid message, can be forged. Additionally, A cannot deny having sent a
message that it has signed in the past. Hence, proofs of cheating cannot be
repudiated.
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Simulator SFPA (Stages 4 and Recovery)

– Stage 4 - Output. Once SFPA receives (announce-winner-and-refund,
sid,Pw, bw, coins(bi + work)) from FFPA:
• If Pw ∈ C and Pw deviates from the protocol during Stage 4, then SFPA

simulates the recovery procedure with the simulated FSC. After Pw halts,
SFPA outputs whatever Pw outputs.

• If Pw ∈ C but Pw does not deviate from the protocol, then the execution is
is concluded as in the real world.

• If Pw /∈ C then the winning party Pw in the real world is one of the honest
parties. In this case, SFPA simulates Pw ∈ H winning and opening her
commitment cw not to her dummy input bid b′w but to the actual bid bw
received from SFPA. Note that Pw ∈ H is, in general, different from the
simulated winning honest party Phw ∈ H that was picked at random during
the simulation of Stage 2 or 3. SFPA uses trapdoor t from Stage 1 - Setup
to find a randomness r′ such that cw = com(bw, r

′) by solving b′w + t · rw =
bw + t · r′ for r′.

– Recovery Stage. SFPA perfectly emulates FSC. In particular, in case Pw

is corrupted and did not send (output, sid,Pw, bw, rbw , {sigskk (bw)}k∈[n]) to
FSC, SFPA identifies Pw anyway by observing the extracted inputs bids ba
from each Pa ∈ C. Then, SFPA simulates all honest parties Ph ∈ H sending
(recovery-payment, sid,NWh) to FSC where NWh ← NW{(V1 = 1 ∧ vh1 =
Y

xh1
h1 ) ∨ . . . ∨ (Vl = 1 ∧ vh1 = Y

xh1
k1 )} is generated using the simulator for NW .

Moreover, SFPA simulates each committee member Cj ∈ CH by follow-
ing ΠC. Indeed, upon receiving (open, sid,Pa), where Pa ∈ C, from FSC,
SFPA simulates Cj using the share decryption procedure from πPV SS on σ̂aj ,
obtaining σ̃aj , DLEQaj . and sending (share-decryption, sid, (σ̂a1, . . . , σ̂am),
LDEIa, CCa, σ̃aj , DLEQaj)) to FSC.

Fig. 16: Simulator SFPA (Stages 4 and Recovery).

– Stage 2 - Before First Veto and Stage 3 - After First Veto: SFPA

simulates each honest party Ph ∈ H vetoing or not vetoing in each round r,
by using the NIZKs simulator, in a way that is decided arbitrarily by SFPA

and that is completely independent of the dummy input bid bh.

In particular, SFPA simulates each honest party Ph ∈ H vetoing or not
vetoing coherently with the extracted input bids bc from each party Pa ∈ C
corrupted by the adversaryA and the bit bwr learnt from FFPA in each round
r, i.e., in case a corrupted party is known to be the winner, SFPA simulates
each honest party Ph ∈ H not vetoing until r = l. On the other hand, in case
an honest party is known to be the winner, SFPA simulates one honest party
Phw

∈ H picked at random vetoing or not vetoing according if bwr = 1 or
bwr = 0 respectively and simulates all the other honest parties not vetoing
again. Similarly, if nothing is known about the winner, SFPA simulates all
honest parties Ph ∈ H vetoing or not vetoing according if bwr = 1 or bwr = 0
respectively. We will argue why the view of the adversary A in the simulation
by SFPA is indistinguishable from the real world execution.
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By Lemma 4, due to the zero knowledge property of NIZKs, BVhr and AVhr

are indistinguishable from the NIZKs of the corresponding parties in the real
world. Moreover, by Lemma 5 and Lemma 6, it is proven that the inputs vhr
of the veto protocol and the output Vr of each round r are indistinguishable
from the inputs of the corresponding parties and the output in the real world.
On the other hand, SFPA can compare the extracted bids ba of each Pa ∈ C
with the output of each round Vr to discover if one of the honest parties
in the real world in the winner of the auction. In that case, as described in
the simulator, SFPA simulates one honest party Phw ∈ H picked at random
behaving as winner. However, by Lemma 5 and Lemma 6, the adversary A
cannot distinguish which honest party is the winner.

– Stage 4 - Output: in case one of the honest parties in the real world is the
winner of the auction, in the output stage she will reveal her identity and
open the commitment to her bid com(bw, rbw) towards the smart contract
by sending (output, sid,Pw, bw, rbw , {sigskk

(bw)}k∈[n]) to FSC. In the ideal
world, as described in the simulator, SFPA has to simulate Pw ∈ H winning
and opening her commitment cw not to her dummy input bid b′w but to the
bid bw of Pw in the real world, i.e., equivocate the commitment. Note that
Pw ∈ H is, in general, different from the simulated winning honest party
Phw

∈ H that was picked at random during the simulation of Stage 2 or 3.
However, by Lemma 5 and Lemma 6, the adversary A cannot distinguish if
Pw is different from Phw .
Moreover, by Lemma 1, due to the unconditionally hiding property of the
commitment, the adversary cannot learn that cw initially was a commitment
to b′w instead of bw.

– Recovery: SFPA simulates aborts and corresponding recovery stages if A
deviates from the protocol as in an actual execution of ΠFPA, i.e., when an
honest party would have triggered the Recovery Stage. Moreover, by Lemma
4, due to the zero knowledge property of NIZKs, NWh for each Ph ∈ H
are indistinguishable corresponding NIZKs in the real world. Finally, by
Proposition 1, it is guaranteed that the shares reconstruction is valid.

Hence, the view of A in the real world and of SFPA’s internal copy of A is
indistinguishable, which concludes our proof.

E Proof of Theorem 2

In this section, we prove Theorem 2, which we reproduce below for the sake of
clarity.

Theorem 2 Under the DDH Assumption, Protocol ΠSPA securely computes
FSPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.

Proof. In order to prove this theorem, we construct a simulator SSPA (Figure 17,
Figure 18, Figure 19) that performs an ideal execution with FSPA and interacts
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Simulator SSPA (Stages 1 and 2)
Let H be the set of simulated honest parties, C be the set of parties corrupted by
the adversary A, CH be the set of simulated members of the committee and CC be
the set of members of the committee corrupted by the adversary A.

– Stage 1 - Setup. Same as in SFPA.
Simulating an honest party vetoing or not vetoing. Same as SFPA.

– Stage 2 - Before First Veto. For every round r before the first veto, SSPA

waits for (round-winner, sid, bwr) and proceeds as follows:
1. (honest winner) If FSPA sends (announce-winner, sid,Pw) to SSPA, then

the winner is an honest party Pw. Thus, SSPA simulates Pw vetoing and
proving to be the winner by sending to all the other parties (winner,
sid,Pw, xwr) and simulates all the other honest parties not vetoing again,
then goes to Stage 3b.

2. (corrupted winner) Upon receiving (leak-to-winner, sid, rw) and subse-
quently (announce?, sid,Pw) from FSPA, SSPA learns the identity of
the winner Pw and that is corrupted. If A sends a message (winner,
sid,Pw, xwr) then SSPA replies (announce, sid) to FSPA, otherwise it
replies (not-announce, sid) to FSPA. Then SSPA simulates all honest par-
ties Ph ∈ H not vetoing and goes to Stage 3b.

3. (know nothing) If neither condition 2 nor 3 occurs, then nothing is known yet
regarding Pw (neither its identity nor if Pw is corrupted or not). If bwr = 1
then SSPA simulates all honest parties Ph ∈ H vetoing and goes to Stage
3a. If bwr = 0 then SSPA simulates all honest parties Ph ∈ H not vetoing
and continues to simulate Stage 2.

4. If an honest party Ph executing ΠSPA would initiate the Recovery Stage,
SSPA simulates Ph initiating it with the simulated FSC. Then, at the end
of each round r, SSPA receives (abort?, sid) from FSPA. If any Pa ∈ C
has been identified as a cheater in the Recovery Stage, SSPA sends (abort,
sid,Pa) to FSPA, otherwise SSPA sends (proceed, sid) to FSPA.

Fig. 17: Simulator SSPA (Stages 1 and 2).

with an internal copy of the adversary A, simulates honest parties, FSC and the
random oracle in an execution of Protocol ΠSPA with A in such a way that this
execution is indistinguishable from an execution between A and an honest party
in the real world.

Throughout this execution, SSPA perfectly emulates FSC and the random
oracle unless stated otherwise. In order to show that an ideal execution with
SSPA and FSPA is indistinguishable from a real execution of ΠSPA with A and
honest parties, we argue that the view of A in the real world and of SSPA’s
internal copy of A is indistinguishable. In particular:

– Stage 1 - Setup: Same as Theorem 1.
– Stage 2 - Before First Veto and Stage 3a - After First Veto: In terms

of differences with respect of SFPA, in case an honest party is known to be
the winner in a certain round r, SSPA immediately learns the identity of the
winning party by receiving the message (announce-winner, sid,Pw) from
FSPA. Then SSPA simulates Pw ∈ H vetoing and proving to be the winner



44 Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh

Simulator SSPA (Stage 3a and 3b)
– Stage 3a - After First Veto For every round r after the first veto, SSPA waits

for (round-winner, sid, bwr) and proceeds as follows:
1. (honest winner) If FSPA sends (announce-winner, sid,Pw) to SSPA, then

the winner is an honest party Pw. Thus, SSPA simulates Pw ∈ H vetoing and
proving to be the winner by sending to all the other parties xwr, simulates
all the other honest parties H \ Pw not vetoing, then goes to Stage 3b.

2. (corrupted winner) Upon receiving (leak-to-winner, sid, rw) and subse-
quently (announce?, sid,Pw) from FSPA, SSPA learns the identity of
the winner Pw and that is corrupted. If A sends a message (winner,
sid,Pw, xwr) then SSPA replies (announce, sid) to FSPA, otherwise it
replies (not-announce, sid) to FSPA. Then SSPA simulates all honest par-
ties Ph ∈ H not vetoing and goes to Stage 3b.

3. (know nothing) If neither condition 2 nor 3 occurs, then nothing is known yet
regarding Pw (neither its identity nor if Pw is corrupted or not). If bwr = 1
then SSPA simulates all honest parties Ph ∈ H vetoing. If bwr = 0 then
SSPA simulates all honest parties Ph ∈ H not vetoing.

4. If an honest party Ph executing ΠSPA would initiate the Recovery Stage,
SSPA simulates Ph initiating it with the simulated FSC. Then, at the end
of each round r, SSPA receives (abort?, sid) from FSPA. If any Pa ∈ C
has been identified as a cheater in the Recovery Stage, SSPA sends (abort,
sid,Pa) to FSPA, otherwise SSPA sends (proceed, sid) to FSPA.

– Stage 3b - After First Unique Veto. If Pw is honest, SSPA excludes it from
Stage 3b. For all other rounds r, SSPA waits for (round-winner, sid, bw2r) and:
1. (honest second) If bw2r = 1 and bar = 0 for each Pa ∈ C (note that SSPA

has previously extracted the bids of the corrupted parties), then SSPA learns
that the second price bid was done by an honest party Pw2 . In this case,
SSPA simulates one honest party Phw2

picked at random (excluding the
1st price winner Pw if it is honest) vetoing if bw2r = 1 and not vetoing if
bw2r = 0 until r = l and simulates all the other honest parties not vetoing
again.

2. (corrupted second) If bw2r = 1 and SSPA receives (leak-to-second,
sid, rw2) from FSPA, then SSPA learns that the second price bid belongs
to a corrupted party Pw2 ∈ C. In this case, SSPA simulates all honest par-
ties Ph not vetoing until r = l.

3. (know nothing) If neither condition 2 nor 3 occurs, then nothing is known
yet regarding Pw2 (neither its identity nor if Pw2 is corrupted or not). If
bw2r = 1 then SSPA simulates all honest parties Ph ∈ H vetoing. If bw2r = 0
then SSPA simulates all honest parties Ph ∈ H not vetoing. Then continues
to simulate Stage 3b until r = l.

4. If an honest party Ph executing ΠSPA would initiate the Recovery Stage,
SSPA simulates Ph ∈ H initiating it with the simulated FSC. Then, at the
end of each round r, SSPA receives (abort?, sid) from FSPA. If any Pa ∈ C
has been identified as a cheater in the Recovery Stage, SSPA sends (abort,
sid,Pa) to FSPA, otherwise SSPA sends (proceed, sid) to FSPA.

Fig. 18: Simulator SSPA (Stage 3a and 3b).
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Simulator SSPA (Stage 4 and Recovery)
– Stage 4 - Output. Once SSPA receives (refund, sid, bw2 , coins(bi + work))

from FSPA:
• If Pw is corrupted and deviates from the protocol during Stage 4, then SSPA

simulates the recovery procedure with the simulated FSC.
• If Pw is corrupted but does not deviate from the protocol, SSPA follows the

instructions of an honest party in ΠSPA to simulate honest parties.
• If Pw is honest, SSPA simulates Pw winning by creating a confidential

transaction txpay = (idpay, Inpay,Outpay, Sigpay, rbw − rchange′w , πpay)
where In = {(id, com(bw, rbw ))}, Out = {(bw2 , Addrauc),
(com(change′w, rchange′w ), Addrw)}, Sigpay is left empty, Addrauc is
the address of the auctioneer, Addrw is the address of Pw and πpay

is a NIZK showing that change′w is within [0, 2l − 1] (using the sim-
ulator for this NIZK). Finally, SSPA simulates Pw sending (output,
sid,Pw, txpay, {sigskk (Pw|bw2)}k∈[n]) to FSC.

• After Pw halts, SSPA outputs whatever Pw outputs.
– Recovery Stage. SSPA perfectly emulates FSC. In particular, in case Pw

is corrupted and did not send (winner, sid,Pw, xwr) to all the other par-
ties, SSPA knows her identity due to the message (announce?, sid,Pw)
from FSPA. Then, SSPA simulates all honest parties Ph ∈ H sending
(recovery-dishonest-winner, sid,NWh) to FSC where NWh ← NW{(V1 =
1 ∧ vh1 = Y

xh1
h1 ) ∨ . . . ∨ (Vl = 1 ∧ vh1 = Y

xh1
k1 )} is generated using the simu-

lator of NW . Moreover, SSPA simulates each committee member Cj ∈ CH by
following ΠC. Indeed, upon receiving (open, sid,Pa), where Pa ∈ C, from FSC,
SSPA simulates Cj using the share decryption procedure from πPV SS on σ̂aj ,
obtaining σ̃aj , DLEQaj . and sending (share-decryption, sid, (σ̂a1, . . . , σ̂am),
LDEIa, CCa, σ̃aj , DLEQaj)) to FSC.

Fig. 19: Simulator SSPA (Stage 4 and Recovery).

by sending to all the other parties (winner, sid,Pw, xwr) and simulates all
the other honest parties not vetoing again, then goes to Stage 3b. Notice
that, since xwr

$← Zq is sampled as in ΠSPA, this step is indistinguishable
from that as in real world execution of ΠSPA. On the other hand, upon re-
ceiving (leak-to-winner, sid, rw) and subsequently (announce?, sid,Pw)
from FSPA, SSPA learns the identity of the winner Pw and that is corrupted.
Then, in case Pw does not send (winner, sid,Pw, xwr) to all the other par-
ties, SSPA sends (not-announce, sid,) to FSPA and Pw will be identified
as a cheater when the recovery procedure is simulated. Analogous consider-
ation to the Theorem 1 case (Stages 2 and 3) and this approach make the
view of the adversary A in the simulation by SSPA indistinguishable from
the real world execution.

– 3b - After First Unique Veto: At this point, in case Pw ∈ C, she will not
participate in the next steps of Stage 3b. Similarly, in case Pw /∈ C, SSPA

simulates Pw ∈ H not participating in the next steps of Stage 3b. Then,
the second price bw2

has to be determined. Analogous consideration to the
Theorem 1 case (Stage 3) and this approach make the view of the adversary
A in the simulation by SSPA indistinguishable from the real world execution.
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– Stage 4 - Output: In case one of the honest parties in the real world is the
winner, SSPA simulates Pw ∈ H winning by creating a confidential trans-
action txpay and sending (output, sid,Pw, txpay, {sigskk

(Pw|bw2)}k∈[n]) to
FSC. However, by Lemma 1, due to the hiding property of the commitments,
the distributions of com(bw, rbw) and com(change′w, rchange′w) are indistin-
guishable from those in a real world execution of ΠSPA. Moreover, by Lemma
3, due to the zero knowledge property of range NIZKs, πpay is indistinguish-
able from the range proof of Pw in the real world.
On the other hand, in the case Pw ∈ C, by Lemma 1, due to the binding
property of the commitments, the committed values bw and change′w cannot
be changed later byA. Moreover, by Lemma 3, due to the soundness property
of the NIZKs, it is computationally hard for the adversary A controlling each
Pa ∈ C to compute the range proof πpay while the bid is not in the expected
range.

– Recovery: SSPA simulates aborts and corresponding recovery stages if A
deviates from the protocol following the instructions of an honest party exe-
cuting ΠSPA. Moreover, by Lemma 4, due to the zero knowledge property of
NIZKs, NWh for each Ph ∈ H are indistinguishable from the corresponding
NIZKs in the real world. Finally, by Proposition 1, it is guaranteed that the
shares reconstruction is valid.

Hence, the view of A in the real world and of SSPA’s internal copy of A is
indistinguishable, which concludes our proof.

F Rational strategies

In this section we consider the incentives of parties in our protocols. Note that,
the set of bidders is fixed through the execution, i.e., once the execution has
started, even if it is required to re-execute the protocol, no new bid can be
submitted and it is therefore not possible to gain from the leaked information.
Moreover, in case there is a cheating party, the protocols refund the honest
parties with her deposit.

We now consider the utility of each party from participating in the pro-
tocol. The utility function of a generic party Pi in the first price auction is
uFPA
i (b1, . . . , bn) = vi− bi if bi > maxj 6=i bj and 0 otherwise, while in the second

price auction is instead uSPA
i (b1, . . . , bn) = vi −maxj 6=i bj if bi > maxj 6=i bj and

0 otherwise, where vi represents the Pi’s private valuation of what is at stake in
the auction. It is known that in the first price auctions the optimal strategy for
each rational party depends on their beliefs regarding other party’s valuations,
while in the second price auction the optimal strategy for each party is to bid
an amount equal to her valuation regardless of the strategy of other parties [46,
52], i.e., bi = vi.

Note that, in case a party Pi is honest she always gets her deposit work back.
Then, if she is the winner she gets what is at stake in the auction and pays bi,
while if she is not the winner she gets her entire deposit bi+work back. Therefore,
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by following the protocol each rational party has a non-negative utility, i.e.,
ui(b1, . . . , bn) ≥ 0. However if a party cheats her deposit bi+work is distributed
among honest parties. Therefore, the utility of a cheating party, regardless of
whether her bid is the highest or not, is ui(b1, . . . , bn) = −(bi + work) < 0,
which is strictly negative. Therefore, cheating is a dominated strategy for each
party, i.e., regardless of what other players do it always results in a lower utility.

The above analysis shows that it is not rational for an adversaryA controlling
a single party to deviate from the protocol. Next we show that it is also the case
for an adversary A controlling more than one party. Let Pi,Pj be two parties
controlled by A and let vA be the valuation of the adversary for what it at stake
in the auction. Without loss of generality let bi > bj . If A does not deviate from
the protocol then her utility is either 0 (in case neither bi nor bj is the winning
bid) or vA − bi (in case bi is the winning bid). Instead, if A deviates from the
protocol by making Pi drop out, in case bj is not the second highest bid, then
her utility is −(work + bi). If bj is the second highest bid, A gets what is at
stake in the auction but her utility is vA− (bi +work+ bj). Therefore A always
prefers to behave honestly.

Note that it is necessary to have the deposit amount at least equal to the bid.
Indeed, let d be any deposit amount smaller than bi. Then the utility of A by
making Pi drop out the protocol is vA − (d+ work + bj), while it is vA − bi by
behaving honestly. Therefore, in case d + work + bj < bi, A prefers to deviate
from the protocol to increase her utility. A similar argument shows that in the
second price auction A always prefers to act honestly.


