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Abstract. Updatable encryption (UE; CRYPTO 2013) is a symmetric encryption primitive
that allows to periodically rotate encryption keys without the need to decrypt and re-encrypt
already encrypted data. This is achieved by means of an update token that allows to perform
the ciphertext update. In existing UE constructions, the update token thereby allows bi-
directional updates of keys and ciphertexts, which leads to undesired information leakage
and rather involved security models. A recent work by Jiang (ASIACRYPT 2020) shows
that in the currently strongest UE model due to Boyd et al. (CRYPTO 2020), UE with
bi-directional key and ciphertext updates implies schemes with uni-directional ones. While
this might suggests that uni-directionality does not add security, we show that this rather
stems from a defective security model and in an adequate model uni-directionality is indeed
stronger. Irrespective of this fact, even uni-directional UE schemes still do not capture the
intuitive security requirements expected from UE. To overcome this leakage problem and
obtain natural security guarantees, UE schemes with so-called no-directional key updates
are necessary, i.e., where tokens can solely update ciphertexts and only in one direction.
However, it stayed unclear whether such UE schemes can be constructed and this tasks is
presented as a challenging open problem in both aforementioned works.
In this work, we resolve these issues and present the first UE constructions with uni- and
even no-directional key updates. We show that such UE schemes can be constructed in the
standard model via the notion of dual system groups from the standard d-Lin assumption
in prime-order bilinear groups. Our approach of constructing UE significantly departs from
previous ones and in particular views UE from the perspective of puncturable encryption
(Green and Miers, S&P 2015). Towards constructing UE, as an stepping stone, we introduce
a variant of puncturable encryption that additionally support puncturing of ciphertexts. This
turns out to be a useful abstraction on our way to construct UE and may be of independent
interest.
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1 Introduction

When outsourcing the storage of data, the primary measure to protect its confidentiality is en-
cryption. However, a compromise of the respective encryption key(s) will potentially expose the
entire data to unauthorized parties and may cause severe damage. Consequently, it is widely con-
sidered a good practice to periodically rotate encryption keys. Major providers of cloud storage
services such as Google1, Microsoft2 or Amazon3 recommend this practice and some industries
even require it [PCI16]. This raises the immediate question of how to efficiently update already
outsourced encrypted data to new keys. An obvious solution for key-rotation is to download the
data, decrypt it locally under the old key, re-encrypt it under a new key, and upload it again.
Unfortunately, this imposes a significant overhead and soon becomes impractical, especially if the
amount of outsourced data is huge.

As a remedy, Boneh et. al [BLMR13] proposed the concept of updatable encryption (UE). UE is
a symmetric encryption primitive that addresses this problem by allowing to update ciphertexts to
new keys without the requirement for decryption. It consists of the usual algorithms (Gen,Enc,Dec)
for key-generation, encryption, and decryption. Time is discretized in so-called epochs and Gen pro-
duces an initial secret key K1 (for epoch 1). Additionally, there is an algorithm Next which takes

1 https://cloud.google.com/kms/docs/key-rotation
2 https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
3 https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html

https://cloud.google.com/kms/docs/ key-rotation
https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html


a key Ki and outputs a fresh next-epoch key Ki+1 along with a so-called update token ∆i+1.
This update token can be be used by a semi-trusted party to update ciphertexts under key Ki

for epoch i to ciphertexts for epoch i + 1 under key Ki+1 via an algorithm Update. UE schemes
can be ciphertext-dependent [BLMR13, EPRS17, BEKS20, CLT20] where the update token de-
pends on the specific ciphertext to be updated and, thus, to compute the update token a part of
every ciphertext needs to be downloaded. Or, and arguably more desirable, UE schemes can be
ciphertext-independent [LT18, KLR19, BDGJ20, Jia20] such that a single compact update token
∆i+1 can update any ciphertext from epoch i to i + 1. In the remainder of this work, we focus
on UE schemes with ciphertext-independent update and will simply call them UE schemes. Secu-
rity for UE essentially guarantees that the updated ciphertexts are indistinguishable from fresh
encryptions, with Boyd et al. [BDGJ20] representing the state-of-the-art model.

Determinism in UE. UE schemes might use deterministic or randomized updates. While encryp-
tion clearly needs to be randomized, the situation is less clear for updates. Deterministic updates
avoid the use of randomness on the server side and enable an easier design of CCA secure UE
schemes (cf. [KLR19] and [BDGJ20]). However, as a consequence of being deterministic, they re-
quire a rather severe weakening of the security model and in particular prevent the adversary from
seeing the update token before the challenge epoch. While omitting this single token may sound
like a minor difference, this excludes attacks that track ciphertexts or determine the existence of
ciphertexts at a certain point in time already via the model. As this additional leakage can only
increase the number of potential attacks, the use of randomized updates is advisable.

Directionality in UE. Intuitively, one would expect that in UE the only functionality of an
update token is to update ciphertexts from one to the next epoch. Interestingly, however, in all
known UE schemes update tokens can also be used to downgrade ciphertexts and, more impor-
tantly, they also allow to upgrade and downgrade keys. To see why key upgrades are a problem,
for instance assume that all ciphertexts have been updated to epoch i + 1. In UE, one assumes
that when this happens all old ciphertexts from epoch i are then deleted. Now, if an adversary
manages to compromise some (old) key Ki and update token ∆i+1, this should intuitively not
endanger confidentiality of ciphertexts in epoch i + 1. Unfortunately, existing UE schemes allow
key upgrades, e.g., to use ∆i+1 to upgrade the key Ki to Ki+1 and decrypt all the future data.
Moreover, they also allow key downgrades. Those are are more subtle, but as we discuss soon,
they also have unwanted side-effects. Besides being counterintuitive, these issues result in security
models that have to deal with these inferred information, have to explicitly exclude such cases from
constituting an attack, and, hence, are quite involved and unnatural.

The discussion of directionality in UE was raised by Lehmann and Tackmann [LT18]. In par-
ticular, they introduced the notions of so-called uni-directional and bi-directional updates, which
capture whether tokens can be used to update ciphertexts and keys in either both directions or
only into the “future” respectively. While uni-directional UE schemes intuitively seem preferable,
Jiang [Jia20] recently showed that UE with bi-directional key and ciphertext updates implies UE
with uni-directional key and ciphertext updates in the current state-of-the-art UE model of Boyd
et al. [BDGJ20]. At first, this result seems surprising, but as we will discuss this rather stems
from a defective model of UE. To prevent attacks like the one mentioned above and to capture
the “right intuition” of the security of UE, one requires even stronger UE schemes with so-called
no-directional key updates. In such schemes, update tokens are not helpful to up- or downgrade
keys. Indeed, as also discussed by Jiang [Jia20], such hypothetical UE schemes with no-directional
key updates are strictly stronger than UE with uni-directional key and ciphertext updates already
in the model due to Boyd et al. [BDGJ20]. However, as we will argue, in the state-of-the-art UE
model, no-directional schemes only benefit from preventing key upgrades and it requires a strength-
ened UE model (that additionally considers expiry epochs for ciphertexts) such that preventing
key downgrades, i.e., already the use of uni-directional UE schemes, indeed provides stronger and
more natural security guarantees for the practical use of UE schemes.

Since existing models do not seem to capture the right intuition regarding uni-directional or
even no-directional key updates, in this work we ask:

What is a suitable notion of security for UE schemes?
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Apart from yielding the right intuition of security and providing stronger guarantees in practice,
the construction of UE schemes with strong properties has so far been elusive and in this work we
further ask:

Is it possible to construct practical and provably secure UE schemes with uni- or even
no-directional key updates (in such stronger model)?

1.1 Our Results

We observe that all the previous models and, thus, in particular the state-of-the-art UE model of
Boyd et al. [BDGJ20] are too weak as they cannot take advantage of uni-directional key updates.
This means that the achieved forward-security as well as post-compromise security guarantees are
weak and enable attacks that seem relevant in practice. Consequently, we revisit the security of
UE schemes and present a stronger model that is capable of capturing the guarantees provided by
UE with uni- and also no-directional key updates, yielding progress towards answering the first
question. (We want to mention again that Jiang [Jia20] showed that UE with no-directional key
updates is already strictly stronger in the model of Boyd et al.) As our main contribution, we
then answer the second question affirmatively and provide the first provably secure constructions
of UE with uni- and even no-directional key updates. We therefore introduce a primitive dubbed
Ciphertext Puncturable Encryption (CPE) which we believe provides an easier intuition towards
our UE constructions and then construct UE from CPE. We show how to construct CPE from the
powerful dual system paradigm [Wat09, LW10, LW11, OT12, CW13, HKS15, CGKW18, GW20],
yielding an instantiation under the well known d-Lin assumption in prime-order bilinear groups
adapting the work of Chen and Wee [CW13]. While CPE is more powerful than what is required
for UE (mainly as CPE is a public-key primitive), interestingly, we were not able to construct
such UE schemes from tools that are weaker than those required to instantiate CPE. Moreover, we
believe that the ciphertext puncturing in CPE will further increase the applicability of the already
very useful PE primitive and might be of independent interest. In Figure 1, we provide a brief
comparison of our UE constructions with other IND-UE-CPA-secure UE schemes that are only
secure in weaker models.4

key-size ct-size tok-size IND-UE-CPA model dir. (key) dir. (ct) Assumption

SHINE [BDGJ20] O(1) O(1) O(1) det † IC bi bi DDH

RISE [LT18] O(1) O(1) O(1) rand † SM bi bi DDH

Jiang [Jia20] O(1) O(1) O(1) rand † SM bi bi DLWE

Ours (uni) O(log2 n) O(log2 n) O(1) rand SM uni uni SXDH

Ours (no) O(n) O(n logn) O(1) rand SM no uni SXDH

Fig. 1. Overview of (weakly) IND-UE-CPA-secure ciphertext-independent UE schemes. With n we denote
the maximum number of updates. (See that for our uni-directional UE, we can allow an unbounded number
of updates by setting n = 2λ with security parameter λ.) † denotes IND-UE-CPA security in a weaker
model. With det and rand, we define deterministic and randomized ciphertext updates, respectively. IC
and SM stand for Ideal Cipher and Standard Model, respectively.

On limitations of existing UE models. We will now use Figure 2 to illustrate the most
important aspects of the IND-UE-CPA notion of Boyd et al. [BDGJ20] (which strengthens and
simplifies previous models [LT18, KLR19, Jia20]) by means of the maximum information available
to an adversary. Let Ki and ∆i+1 be the key and the token for epoch i, respectively. The task of an
adversary is to distinguish an encryption under a key Ke∗ in a challenge epoch e∗ from one that is
updated from some epoch ẽ < e∗. The key concept is that of a firewall which prevents trivial wins
and there is a firewall estart before and eend after the challenge epoch e∗ (indicated by red boxes in
Figure 2). In between, all update tokens are revealed and prior to estart and after eend the adversary
can obtain all keys and update tokens. (Jiang and Boyd et al. capture trivial wins via so-called

4 We note that while our uni-directional construction is reasonably practical, our no-directional construc-
tion is rather a feasibility result. But we hope that this work serves as an inspiration for future work on
UE in a strong and realistic model particularly towards constructions with better practical efficiency.
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leakage profiles where such firewalls have to exist for their bi- and uni-directional UE schemes,
also to prove security.) Now the critical restrictions are that in estart only the key is revealed, as
otherwise in bi- or uni-directional UE schemes the adversary could trivially compute a key for the
target epoch e∗, and in eend neither the key nor the update token are revealed. Otherwise, due to
correctness, the adversary could update the challenge ciphertext into one epoch where it holds a
key and could trivially win.

Fig. 2. Information an adversary is allowed to obtain in the IND-UE-CPA experiment of Boyd et al.
[BDGJ20]. Strengthening of the model allows to remove the left firewall (blue box) and expiry dates allow
to hand out all keys and tokens after the challenge epoch e∗ (green box) for no-directional UE schemes
(for uni-directional schemes only the green box applies).

Let us now look at no-directionality and in particular the case where tokens do not allow
upgrading of keys (for the time being let us ignore the uni-directional feature, i.e., downgrading
may be possible). Here, we have to look at the epochs before the challenge epoch e∗, as tokens
should not even allow upgrades of keys. We observe for such schemes we can remove the firewall
at estart entirely and hand out all keys and tokens up to e∗ to the adversary, which is indicated by
the blue box in Figure 2. This change makes the IND-UE-CPA stronger and more natural and is
our first change to the model by Boyd et al. [BDGJ20]. (Jiang [Jia20] already provided a detailed
discussion for uni- and no-directional UE and its leakage profiles with winning conditions in such
a model, but we want to make the model even more compact and intuitive.) Note that this gives
post-compromise guarantees without relying on artificial model restrictions (i.e., the left firewall),
as now a leaked key, i.e, Ki, even when everything is available to the adversary does not endanger
ciphertexts that have been produced in epochs j > i.

Now we turn our attention to downgrading of keys. Here we have to look at the epochs after
the challenge epoch e∗. Therefore, let us recall that the correctness of UE requires that ciphertexts
can be updated ad-infinitum, i.e., the update capability never expires. This in particular means
that if old ciphertexts and update tokens are not properly deleted or kept stored intentionally
by a server, even if after many updates (key-rotations) a newer key leaks, it will still be possible
to decrypt an old ciphertext by simply updating it to the respective epoch. Note that due to
correctness, even UE schemes that do not allow downgrades of keys do not help to protect against
this threat. To prevent these types of attacks and provide strong forward-security guarantees,
we introduce an enhancement yielding a generalization of the model by Boyd et al. [BDGJ20].
Namely, we introduce the concept of “expiry epochs” such that for every ciphertext one can decide
how long updates should yield decryptable ciphertexts, i.e., encryption in epoch i is performed as
Ci,eexp ← Enc(Ki,M, eexp) and when epoch eexp is reached a ciphertext cannot longer be updated
into a decryptable ciphertext. Note that an update token should still work for all ciphertext that
have an expiry date in the future. Also, by setting no expiry date for ciphertexts, i.e., eexp = ∞,
we are back in the model of Jiang [Jia20] or Boyd et al. [BDGJ20] (or our strengthening).

Now the above mentioned attack is mitigated for all keys that are leaked after the expiry date of
a ciphertext as long as the UE scheme is at least uni-directional, i.e., prevents key downgrades. To
see this, note that in bi-directional schemes even with expiry date, the attack is not prevented as one
could simply downgrade the leaked key back into the respective epoch of the ciphertext. But this
is not possible with uni-directional UE schemes and, thus, particularly in no-directional schemes.
Latter, as discussed above, in addition also provide the stronger post-compromise guarantees,
making no-directional UE schemes with expiry epochs the most desirable goal.

Towards stronger constructions of UE. A primitive that seems closely related to UE is uni-
directional proxy re-encryption (PRE) formalized by Ateniese et al. [AFGH05] and in particular
multi-hop variants thereof [Gen09, CCL+14, PRSV17, DN18] (henceforth UM-PREs). We recall
that a UM-PRE scheme is a public-key encryption scheme, where given secret key skA and public
key pkB one can compute a re-key rkA→B that translates ciphertexts under pkA to ones under pkB
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and this process can be applied multiple times. While this intuitively seems to match UE when
converted to it in the obvious way, there are subtleties that need to be discussed when aiming for
uni- or no-directional UE schemes.

UM-PRE schemes and their established CPA security notions [AFGH05, Coh19, FKKP19] do
not require that original and re-encrypted ciphertexts are of the same form and thus indistinguish-
able. And indeed, lattice-based constructions [PRSV17] or generic constructions from any PKE and
garbled circuits [DN18] do trivially yield distinguishable ciphertexts due to the growing noise and
the linear growth of ciphertexts respectively. What remains from known constructions is UM-PRE
constructed from fully homomorphic encryption (FHE) using bootstrapping [Gen09], obfuscators
for re-encryption (realized via FHE with bootstrapping) [CCL+14] and constructions from any
PKE and probabilistic indistinguishability obfuscation [DN18]. Consequently, the state-of-the-art
in UM-PRE, even when ignoring that the security notions do not support the required features,
i.e., indistinguishability of ciphertexts or expiry epochs in a black-box way, seems no fruitful avenue
towards reasonably practical UE solutions and at that point it seems more promising to take a
different path.

On chosen-ciphertext security for uni- and no-directional UE. Klooß et al. in [KLR19] ini-
tiated the study of (replayable) chosen ciphertext security for UE schemes and since then (R)CCA
security has been treated in subsequent works in the ciphertext-dependent [BDGJ20, BEKS20,
CLT20] and ciphertext-independent [BDGJ20] setting. There is only one approach to CCA secu-
rity for ciphertext-independent UE schemes which does not rely on schemes with deterministic
updates. Namely, Klooß et al. [KLR19] present a construction of an RCCA secure bi-directional
UE scheme that relies on a Naor-Yung (NY) like transform together with suitable signature scheme
and a malleable NIZK proof system [CKLM12]. We currently do not see a suitable approach to
provide (R)CCA security for stronger uni- and no-directional UE schemes and in particular our
concrete instantiations, but consider this is important future research question.

1.2 Our Techniques

For our UE constructions, we significantly depart from previous work and view UE from the per-
spective of Puncturable Encryption (PE) [GM15]. We recall that PE, introduced by Green and
Miers in [GM15], is a tag-based public-key encryption primitive with an additional puncturing
algorithm that takes a secret key and a tag t as input, and produces an updated secret key. This
updated (punctured) secret key is able to decrypt all ciphertexts except those tagged with t and
(updated) secret keys can be iteratively punctured on distinct tags. PE has found numerous ap-
plications [GM15, CHN+16, CRRV17, BMO17, DKL+18, GHJL17, DJSS18], has been extended
in several ways [WCW+19, DKL+18, DRSS19] and the design of novel PE schemes is still ongo-
ing [SSS+20, SDLP20]. Despite being slightly different in their concrete formulation (e.g., allowing
single or multiple tags per ciphertext), existing PE schemes all provide the same puncturing func-
tionality as discussed above.

From puncturing to UE. Roughly, the core guarantee in a UE scheme is that newer (as well
as updated) ciphertexts can no longer be decrypted by older keys. This is abstractly reminiscent
of puncturing, when we view tags as epochs, i.e., associate ciphertexts to all epochs and puncture
keys on epochs such they no longer can be used for decryption. As in UE, one however has to
update ciphertexts and keys, puncturing needs to happen on both in a synchronized way and in
particular one needs to guarantee that old (non-updated) ciphertexts are no longer decryptable,
while one should be able to include old ciphertexts that are still decryptable (by updating them).
Consequently, when puncturing keys, one needs some information which can be used to parametrize
ciphertext puncturing, i.e., to update ciphertexts. The challenging issue from a UE perspective is
now that one needs to prevent “unpuncturing,” i.e., even if secret keys and update information
leak it should not be possible to remove tags from newer ciphertexts (downgrade ciphertexts in
the language of UE) as well as use the update information to synchronize old secret keys to new
secret keys and thus ciphertexts (no-directionality of key updates in the language of UE).

Intuition behind CPE. We now extend the functionality of puncturing from secret keys only to
also allow puncturing of ciphertexts via the notion of ciphertext puncturable encryption (CPE). A
CPE scheme can abstractly be viewed as a PE scheme (Gen,KPunc,Enc,Dec) with an additional
algorithm CPunc to puncture ciphertexts. However, there are some significant differences compared
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to conventional PE: keys as in PE are initially associated to the entire tag space T (which is here
considered to be an ordered set of potentially exponential size). Ciphertexts in PE are computed
w.r.t. a set of tags explicitly provided to the Enc algorithm, whereas in CPE we can create them
w.r.t a potentially exponentially sized tag set T ′ ⊆ T . This happens via Enc by either taking no tag
at all, which means that ciphertexts carry all tags in T . Or one provides an “expiry-tag” texp which
means that a ciphertext carries all tags t ∈ T with t ≤ texp. When it comes to puncturing, keys
can be incrementally punctured on tags, whereas in contrast to conventional PE, this puncturing
results in an updated secret and public key (somewhat akin to key-updatable PKE [JS18, JMM19]
or KEMs [PR18]). In addition, the key puncturing on tag t produces a puncturing token ∆t.
Ciphertext puncturing is no fully public and stand-alone operation, but requires the puncturing
token ∆t, to keep ciphertexts and public keys in synchronization. The idea is that a ciphertext
produced under a public key (punctured on set of tags ~t) using this token can be punctured on tag
t and results in a new ciphertext under the new public key punctured on tags ~t∪{t}. Thereby, key
puncturings can happen on any not necessarily ordered sequence of tags iteratively and ciphertexts
can be punctured using the corresponding tokens in an arbitrary order. The semantics of CPE is
now that a secret key punctured on ~t can decrypt any ciphertext w.r.t. the corresponding public
key as long as the ciphertext still caries some non-punctured tag t ≥ ti for all ti ∈ ~t. Observe
that this allows to put an expiry-tag on ciphertexts by creating a ciphertext with respect to some
tag texp; as soon as the key and the ciphertext are completely punctured on all tags ti ≤ texp, a
ciphertext puncturing fails and decryption is no longer possible.

How to instantiate CPE. From the work of Günther et al. [GHJL17], we know that we can
instantiate puncturable encryption (PE) in bilinear groups and in particular using hierarchical
identity-based encryption (HIBE) [HL02, GS02, BBG05]. Since CPE is a strictly stronger primitive
and, particularly, allows delegation of ciphertexts, basing it on plain HIBE techniques does not
work. The reason is that in a HIBE it is not foreseen to delegate ciphertexts after encryption,
which we however need for CPE. Nevertheless, we can utilize underlying building blocks used to
prove adaptive security of HIBEs, namely dual system groups [CW13, CW14b]. We want to note
that adaptive security, i.e., where the adversary can adaptively submit tags to puncture keys and
ciphertexts, is inherently backed into our security model for CPE.

Indeed, the dual system paradigm originally developed by Waters [Wat09] provides a rich
foundation when one wants to prove adaptive security under simple assumptions in the standard
model. In general, the dual system paradigm proved to be a versatile tool to achieve adaptive
security in advanced encryption schemes not only for HIBEs [LW10, LW11, CW14b], but also for
attribute-based encryption (ABE) [OT12, CGKW18, GWW19, GW20], tightly secure IBEs [CW13,
HKS15], and more. We will use Dual System Groups (DSGs) due to Chen and Wee [CW13,
CW14b] as a dual system abstraction which can be instantiated from the standard d-Lin assumption
in prime-order bilinear groups in the standard model. Interestingly, the DSG approach provides
us with elements we need for delegating ciphertext elements (a feature not needed before but
available in DSG). This observations extends the use of DSGs to further application domains such
as puncturable and updatable encryption.

Recall that a HIBE organizes identities in a tree, where identities at some level can delegate
secret keys to its descendant entities, but cannot decrypt ciphertexts intended for other (hier-
archical) identities. Now, let us consider a complete binary tree (labeled ε at the root) and the
usual labeling of left and right child with 0 and 1 respectively, yielding leaf nodes labeled by the
concatenation of the labels of all nodes from the root to the leaf. Consequently, for a height-λ
tree, we have an ordered tag space T of 2λ elements. The natural approach followed in [GHJL17]
is that puncturing of a prefix pt ∈ {0, 1}`, ` ≤ λ, in the tree results in deriving HIBE keys for
identities which are not ancestors or descendants of the corresponding node and deleting all other
keys, i.e., truncating the tree accordingly. Note that this allows to derive keys for all non-punctured
leaves (tags). To construct a CPE scheme, we implicitly arrange tags of the CPE scheme associated
to the public and secret keys or ciphertexts in a complete binary tree as above and the root of
the tree is associated with keys (pkε, skε) or ciphertext Cpkε,texp of the CPE, respectively. Now,

in a naive construction encrypting to a public key punctured on ~t would yield a ciphertext that
represents the collection of independent HIBE ciphertexts to all the shortest prefixes allowing to
derive secret keys for all unpunctured tags, i.e., tags in T \ ~t. If encryption takes an additional
expiry-tag texp, then the tree is pruned in a way that no ciphertext element for any tag t′ > texp
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can be derived anymore (and, hence, decryption fails). So far, however, leaking old keys would
immediately “undo” the puncturing operations as secret keys could simply be delegated (in terms
of the HIBE functionality) to allow decryption of punctured ciphertexts.

To now showcase our techniques to avoid such problems, we find it illustrative to consider a
concrete example and start from the basic Chen-Wee HIBE [CW14b] (which closely mirrors the
Boneh-Boyen-Goh HIBE [BBG05]) for simplicity in a symmetric bilinear group setting with pairing
e : G × G → GT . This helps to show on the way where intuitive approaches fail. In such a HIBE
(leaving out details for ease of understanding), one has a main public mpk, main secret key msk,
hierarchical secret keys sk~t=(t1,t2,...,t`)

, and ciphertexts C~t=(t1,t2,...,t`)
as follows:

mpk = (g, g1, . . . , gλ, e(g, g
α)) msk = gα

sk~t = (gs, gα ·
∏̀
i=1

gti·si , gs`+1, . . . , g
s
λ), C~t = (gr,

∏̀
i=1

gti·ri , e(g, gα)r ·M),

for uniformly random exponents α, r, s and group elements g, g1, . . . , gλ. A HIBE ciphertext can
be decrypted if the secret key is associated to an ancestor of the tag-hierarchy in the ciphertext
where randomness cancels out and the blinding term e(g, gα)r is retrieved. Using the HIBE key
delegation, one can restrict the secret keys further for any new tag t`+1, i.e.,

skt1,...,t`+1
= (gs, gα ·

∏̀
i=1

gti·si · gt`+1·s
`+1 , gs`+2, . . . , g

s
λ),

where the delegated key is not able to decrypt the above ciphertext Ct1,...,t` anymore. In the CPE
sense, we will use this feature to provide puncturing of the key (and preventing key unpuncturing).

However, we now face the issue that the ciphertext cannot be delegated or punctured. One
way to mitigate this is to add further elements (gr`+1, . . . , g

r
λ) to the HIBE ciphertext that allows

delegation of ciphertexts similar to the ones for HIBE keys, i.e.,

Ct1,...,t` = (gr,
∏̀
i=1

gti·ri , gr`+1, . . . , g
r
λ , e(g, g

α)r ·M).

See that the delegated secret key can now decrypt the ciphertext again; a functionality we want
to achieve for CPE. (We can simply “delegate” the ciphertext such that it matches the delegated
secret key again.) Now, we have delegation capabilities for keys and ciphertexts.

However, although the delegation or puncturing cannot be undone, old secret keys can still
decrypt the newly delegated ciphertext, a problematic issue for CPE. Hence, we have to introduce
an additional mechanism that “shifts” the msk = gα and the ciphertext to a new msk′ = gα · gα′ .
This can be done by sampling a uniform exponent α′ and “add” this to the α-component of the
secret key, i.e.,

skt1,...,t`+1
= (gs, gα · gα

′
·
∏̀
i=1

gti·si · gt`+1·s
i , gs`+2, . . . , g

s
λ).

Now, we have to introduce this shift as well to the ciphertext which can be done by having an
“update token” gα

′
which can be paired with the randomness part of the ciphertext which, together

with ciphertext delegation, yields

Ct1,...,t`+1
= (gr,

∏̀
i=1

gti·ri · gt`+1·r
`+1 , gr`+2, . . . , g

r
λ, e(g, g

α)r · e(gr, gα
′
) ·M),

which yields consistently updated-and-delegated secret keys and ciphertexts. See that now an old
secret key cannot decrypt the updated and delegated ciphertext since the α-components do not
match (and, in particular, α′ is sampled uniformly at random). This will be the basis for preventing
unpuncturing in CPE and particular for our uni-directional UE later on.

Now, we want to consider an even stronger notion. The reader might have noticed that if
someone has access to the “update token” gα

′
, old keys can decrypt the updated-and-delegated

ciphertext again (by shifting the secret key with such an update token). To mitigate this, we need
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to blind the token such that updates work for ciphertexts but not for keys. We will add specific
uniform elements (h1, . . . , hλ), which we call shadow elements, to the public key. They will be used
for the update tokens and the ciphertexts only. The main public key mpk and token ∆ now have
the form

mpk = (g, g1, . . . , gλ, e(g, g
α), h1, . . . , hλ ) and ∆ = ( gs

′
, gα

′
·
∏̀
i=1

hs
′

i )

for fresh randomness s′ independent of the randomness of the secret key and only dependent on
the number of already done updates ` ≤ λ. To make the ciphertext update work, we need to add
further elements to the ciphertext that share the ciphertext random coins r to “unblind” the token
during ciphertext update and delegation. A ciphertext has now the form

Ct1,...,t` = (gr,
∏̀
i=1

gti·ri , gr`+1, . . . , g
r
λ,
∏̀
i=1

hri , h
r
`+1, . . . , h

r
λ , e(g, g

α)r ·M).

The delegate-and-update mechanism for ciphertexts will work as follows. First, “unblind” the term
e(g, gα

′
)r using the token ∆ and the added ciphertext components which can be done by

e(g, gα
′
)r =

e(gr, gα
′ ·
∏`
i=1 h

s′

i )

e(
∏`
i=1 h

r
i , g

s′)
.

This blinding term can be used to shift the main public key in the ciphertext (and we also delegate
to prevent unpuncturing as before), i.e.,

Ct1,...,t`+1
= (gr,

`+1∏
i=1

gti·ri , gr`+2, . . . , g
r
λ,
∏̀
i=1

hri · hr`+1 , h
r
`+2, . . . , h

r
λ, e(g, g

α)r · e(g, gα
′
)r ) ·M).

Such a delegated-and-updated ciphertext can now be decrypted with associated delegated-and-
updated secret key but preventing that an old key is able to use the update token to gain any
information about the new ciphertext. The critical feature here is that the puncture token and
the updated ciphertext do not share the h`+1-element and, hence, the token cannot be mix-and-
matched with the key in a way that would be useful for decryption. (Intuitively, this can be seen
analogously to a secret key in a HIBE that cannot decrypt higher-level ciphertexts, but with
switched functionality here.) We will use this feature to prevent puncturing keys via update tokens
in CPE and particular for our no-directional UE.

We left out some important operation in our showcase example above, firstly, re-randomization.
This can be carried out straightforwardly (as also done in the Chen-Wee HIBE for keys) and
we extend this to re-randomizing ciphertexts accordingly. Secondly, our HIBE-extension is quite
inefficient due to parameter sizes linear in the number of puncturing/updates. To mitigate this
problem, we will use established techniques (cf. [CHK03, GHJL17]) to reduce the parameter sizes
to logarithmic in the number of puncturing for our weak form of UE later on (see also example
below). However, for our fully secure CPE scheme (and no-directional UE scheme later on), we are
bound to the number of puncturing and parameters have linear size. We leave it as one main open
problem to reduce parameter sizes for no-directional UE schemes.

Showcasing CPE using the tree approach. We will now use a showcase example for our CPE
scheme using the tree approach to support exponentially many puncturable tags. In our scheme,
the secret key skt1and the ciphertext Ct1 have several components as depicted in Figure 3. Our
initial public key pkε will be a HIBE public key consisting of group elements and particularly
e(g, gαε). (The punctured public key pkt0 holds e(g, gαt0 ).) The secret keys at the nodes sk01t1 are
HIBE secret keys specific for that node, as outlined above. The ciphertext components (C01

t1 , SC
01
t1 )

are delegatable and updateable HIBE ciphertexts as above, where the shadow component SC
explicitly holds the update-related elements h1, . . . , hλ. We now discuss what happens if such keys

and ciphertexts will be punctured on a different tag t3. We will box the relevant elements only

available for our strongest CPE notion, yielding no-directional UE. Omitting the boxed elements,
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Fig. 3. Example of a CPE secret key and ciphertext that have been punctured on t0. The secret key skt0
has the boxed elements (sk001t0 , sk01t0 , sk

1
t0). The ciphertext Ct0,t7 with expiry tag t7 also has the respective

boxed elements ((C001
t0 , SC001), (C01

t0 , SC
01), (C1

t0 , SC
1)) where SC-component denote the shadow cipher-

text parts that have to be updated for each puncturing. As given in the running text, we circle t3 as the
tag to be punctured on next. SC are the corresponding shadow components in the ciphertext to maintain
the overall puncturing status.

we can use our CPE to construct uni-directional UE. To puncture t3, compute punctured secret
key and a puncture token as:

sk010t0,t3 = (gs, gαt0 · gαt3 · (g(0)1 g
(01)
2 g

(010)
3 )s)

pkt0,t3 = e(g, gαt0 ) · e(g, gαt3 ) ∆t3 = ( gs
′
, gαt3 ·(h1h2)s

′
)

Now, using ∆t3 , puncturing the ciphertext works as described above in the HIBE example where
we touch each shadow component:

C010
t0,t3 = (gr, (g

(0)
1 g

(01)
2 g

(010)
3 )r, e(gr, gαt0 ) · e(gr, gαt3 ) ·M)

SC010
t0,t3 = ((h1h2h3)r, hr4, . . . , h

s
λ) SC001

t0,t3 = ((h1h2h3)r
′
, (h4)r

′
, . . . , (hλ)r

′
)

SC1
t0,t3 = ((h1h2h3)r

′′
, (h4)r

′′
, . . . , (hλ)r

′′
),

where e(gr, gαt3 ) can be computed via SC01
t0 and ∆t3 as shown in the HIBE example above.

Furthermore, re-randomization is done afterwards. Again, this can be carried out straightforwardly
(since we only use adapted HIBE operations).

We want to mention that our CPE construction (i.e., leaving out the boxed elements above)
in a weaker CPE model has linear keys and ciphertexts in the number of punctures yielding uni-
directional UE with logarithmic sizes in the weaker UE model due to that epochs are punctured
sequentially. Furthermore, incorporating the boxed elements, our CPE construction has linear-size
public-keys, secret keys, and ciphertexts. Such CPE construction is also secure in our (standard)
CPE model which yields no-directional UE also in our (stronger) UE model.

UE from CPE. To construct UE, let CPE = (Gen,Enc,KPunc,CPunc,Dec) be a CPE scheme and
we view the tag space T = {1, 2, . . .} of CPE as a polynomially bounded ordered set of epochs.
Now, the CPE scheme is used as a symmetric encryption scheme (the respective public key is
kept secret and included into the secret key) and we compute all ciphertexts with respect to the
entire tag space T (or expiry-tag texp in Enc when provided). The intuition of the construction is
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as follows: our initial secret key K1 is derived from the public-secret key pair (pkε, skε) of the CPE
scheme and every update of the key from epoch e to e + 1 represents a puncturing of the secret
key on the respective epoch number e+ 1 (viewed as tag), setting the key Ke+1 to (pk~t, sk~t) with
~t = (1, . . . , e + 1). The update token ∆e+1 for ciphertexts from period e to e + 1 represents the
CPE-token ∆e+1 and updating ciphertexts from e to e+ 1 corresponds to puncturing ciphertexts
on tag e + 1. Encrypting then amounts to using the encryption algorithm of the CPE using the
respective public key pk~t (with ~t = (1, . . . , e+ 1)) of the CPE (which is part of the key Ke+1).

Outline of the paper. Section 2 recalls some preliminaries. In Section 3, we present our strength-
ened and simplified security model starting from the UE framework of Boyd et al. [BDGJ20] to
reflect uni- and no-directional key updates. In Section 4, we introduce Ciphertext Puncturable
Encryption (CPE) along with our security model. Then, in Section 5, we proceed to show how
to instantiate UE with no-directional key updates from any CPE scheme satisfying our security
notion. Finally, in Section 6, we present our construction of CPE from the dual system paradigm
along with a discussion for our rationale of this choice. Moreover, we discuss a concrete instantiation
of CPE under the d-Lin assumption in prime-order bilinear groups.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter. For a finite
set S, we denote by s ← S the process of sampling s uniformly from S. For an algorithm A, let
y ← A(λ, x) be the process of running A on input (λ, x) with access to uniformly random coins
and assigning the result to y. (We may omit to mention the λ-input explicitly and assume that all
algorithms take λ as input.) To make the random coins r explicit, we write A(λ, x; r). We say an
algorithm A is probabilistic polynomial time (PPT) if the running time of A is polynomial in λ.
A function f is negligible if its absolute value is smaller than the inverse of any polynomial (i.e.,
if ∀c∃k0∀λ ≥ k0 : |f(λ)| < 1/λc). We may write q = q(λ) if we mean that the value q depends
polynomially on λ. We write sets in bold font, e.g., v = {v1, . . . , vn} for a set of size n ∈ N and
with components v1, . . . , vn. (We may also write v = (vi)i∈[n] or even v = (vi)i in this case.) We
may also write vectors in bold fonts which depends on the context, i.e., we use a component-wise
multiplication of vectors, i.e., v · v′ = (v1, . . . , vn) · (v′1, . . . , v′n) = (v1 · v′1, . . . , vn · v′n).

Pairings. Let G,H, GT be cyclic groups of order n′. A pairing e : G × H → GT is a map that is
bilinear (i.e., for all g, g′ ∈ G and h, h′ ∈ H, we have e(g · g′, h) = e(g, h) · e(g′, h) and e(g, h · h′) =
e(g, h) · e(g, h′)), non-degenerate (i.e., for generators g ∈ G, h ∈ H, we have that e(g, h) ∈ GT is a
generator), and efficiently computable.

Group generator. Let G(λ, n′) be a group generator that, given security parameter λ and integer
n′, generates the tuple (G,H, GT , N, g, h, (gpi)i∈[n′], e), for a pairing e : G×H→ GT , for composite-
order groups G,H, GT , all of known group order N = p1 · · · pn′ , generators gG, hH, (gpi)i∈[n′], and
for Θ(λ)-bit primes (pi)i. As a special case, let SG(λ, n′) be a group generator similar to G except
that it outputs (G, GT , N, g, (gpi)i∈[n′], e), for symmetric pairing e : G×G→ GT .

d-LIN assumption. For any PPT adversary D, we have that the function

Advd−LING,D (λ) :=|Pr
[
D(pars, gad+1(s1+···+sd)) = 1

]
− Pr

[
D(pars, gad+1(s1+···+sd)+sd+1) = 1

]
|

is negligible in λ, where (G,H, GT , p, e) ← G(λ, 1), s1, . . . , sd+1, a1, . . . , ad ← Zp, for pars :=
(G,H, GT , p, e, g, h, ga1 , . . . , gad+1 , ga1s1 , . . . , gadsd), for generators g and h of G and H, respec-
tively.5

3 Updatable Encryption

In this section, we recap updatable encryption (UE) with the enhancement of expiring ciphertexts
and give a stronger as well as simpler UE security model. We build on the UE security model given

5 The original definition of d-LIN requires a1, . . . , ad, sd+1 ← Zp; however, as in [CW14b, Remark 12], we
allow for a negligible difference of (d+ 1)/p in the Advd−LIN

G,D function.
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by Boyd et al. [BDGJ20] and enhance its security guarantees while providing simplicity.6 Notably,
dealing with uni- and no-directional key updates for our UE definition allows to simplify the UE
security model significantly by avoiding the use of the rather complicated leakage-profile paradigm
present in all prior UE models (which comes into play when considering weaker UE schemes that
do not provide uni-/no-directionality).

The main idea of UE with expiring ciphertexts is the following. On the very high level, all
operations are bound to discrete epochs 1, 2, . . . where keys and ciphertexts as well as so-called
update tokens are associated to. System setup Gen creates a first-epoch symmetric secret key
K1. With this secret key, one can create a first-epoch ciphertext C1,eexp ← Enc(K1,M, eexp), for
some message M and expiry epoch eexp, and, e.g., outsource C1,eexp to some semi-trusted third-
party. Note that in the Boyd et al. [BDGJ20] model, we would simply have no expiration and
eexp = ∞. With probabilistic Next, K1 can be updated to K2 while also an update token ∆2 is
generated. With ∆2, a semi-trusted third-party, e.g., an outsourced service provider, can update C1

to C2,eexp ← Update(∆2, C1,eexp) such that C1,eexp is “consistent” with K2. Correctness guarantees
that decryption of C1,eexp yields M = Dec(K2, C2,eexp) as intended if the ciphertext is not expired
already. More formally, we will now define UE and its correctness property.

Definition 1. An UE scheme UE with message space M consist of the PPT algorithms (Gen,
Next, Enc, Update, Dec):
Gen(λ): on input security parameter λ, the key generation algorithm outputs a (secret) key K1.
Next(Ke): on input key Ke, the key update algorithm outputs an updated key Ke+1 for next epoch

together with an update token ∆e+1.
Enc(Ke,M, eexp): on input key Ke, a message M ∈ M, and expiry epoch eexp, encryption outputs

a ciphertext Ce,eexp .
Update(∆e+1, Ce,eexp): on input an update token ∆e+1 and a ciphertext Ce,eexp , decryption outputs

an updated ciphertext Ce+1 or ⊥.
Dec(Ke, Ce,eexp): on input key Ke and a ciphertext Ce,eexp , decryption outputs M ∈M∪ {⊥}.
Correctness. Correctness ensures that an update of a valid ciphertext Ce,eexp (via ∆e+1) from
epoch e to e+ 1 yields a valid ciphertext Ce+1,eexp that can be decrypted under the epoch key Ke+1

which is derived from via Next(Ke) if the ciphertext is not already expired, i.e., eexp ≥ e+ 1 must
hold for correct decryption in epoch e+ 1.

More formally, for all λ ∈ N, for all K1 ← Gen(λ), for all e ∈ [be(λ)c]7, for all (ke+1, ∆e+1)←
Next(Ke), for all M ∈ M, for all expiry epochs eexp ≥ e, for all Ce,eexp ← Enc(Ke,M, eexp), for
all Ce+1,eexp ← Update(∆e+1, Ce), we have that M = Dec(ke′ , Ce′,eexp) holds, for all e′ ≤ e+ 1 and
e′ ≤ eexp.

3.1 Strengthening the Security Model

For no-directional and also already for our form of uni-directional UE, we need to enhance the
currently standard notion of UE security. Namely, to allow expiring ciphertexts, we need to deal
with problem that keys can be downgrade using the previous update token. This is cannot be
captured by the current IND-UE-CPA model due to Boyd et al. [BDGJ20].

Our adapted IND-UE-CPA notion enhances the model due to Boyd et al. [BDGJ20]. We want
to stress that our notion does neither need the concept of leakage profiles or any bookkeeping
except for honestly generated ciphertexts and can be seen as one step closer to a more natural
UE indistinguishability notion. We further constitute that maintaining leakage profiles to check
adversarial winning conditions yields an overhead for UE security models and all prior UE solutions
have to deal with it.8

We particularly consider the attack that an adversary can downgrade keys using tokens which is
not reflected in known UE security models. This is because one could build an UE scheme that has
no forwards-directional key updates but can have backwards-directional key downgrades and this

6 The Boyd et al. model generalizes and strengthens the UE model due to Lehmann and Tackmann [LT18]
while Jiang [Jia20] also incorporates UE schemes with no- and uni-directionality for that model.

7 For any polynomial integer e in the security parameter λ.
8 We stress that all known UE schemes have bi-directional key and ciphertext updates and no UE scheme

with no-directional key updates was proposed yet.
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would still be IND-UE-CPA secure in the model of Boyd et al. Since we want ciphertexts that can
expire, token in the expiring epoch should not be of help to downgrade a key from the next epoch.
Indeed, this extra feature of expiring ciphertexts separates bi- and uni-directional UE schemes in
our model. Note that although a no-directional UE scheme would already yield stronger security
in the Boyd et al. model (by having stronger guarantees before the challenge epoch), which was
shown by Jiang [Jia20], uni- and bi-directional UE schemes are equivalent in such a model. We
enhance the security model of Boyd et al. in the discussed direction also capturing UE schemes
with no-directional key updates.

Security against chosen-plaintext attacks. This security notion ensures that fresh and up-
dated ciphertexts are indistinghuishable, even if the adversary has access to keys and update tokens.
We say that an UE scheme is weakly UE-IND-CPA-secure if any PPT adversary A succeeds in the

following experiment only with probability negligibly larger than 1/2. This weakly secure exper-
iment closely mirrors the model due to Boyd etc al. [BDGJ20] where we discuss relations below.
We want to mention that the weakly secure notion prevents the adversary from gaining access to
the update token or the secret key prior to the challenge epoch.9

The experiment starts by computing the initial secret key K1 ← Gen(λ) and computes all secret
keys and update tokens by iteratively invoking (Ke+1, ∆e+1)← Next(Ke), for e ∈ [be(λ)c−1]. The
adversary first outputs the target epoch e∗, the “firewall” epochs estart, eend, as well as a ciphertext
expiry epoch eexp. Furthermore, the experiment tosses a coin b ← {0, 1} and returns b if the the
target is not within the firewall boundaries, i.e., estart ≥ e∗ or eend ≤ e∗, or if the challenge ciphertext
expires before the target epoch, i.e., eexp < e∗.

During the experiments, the adversary receives all keys except for the epochs estart + 1, . . . ,
min(eend, eexp) where the adversary has access to the challenge ciphertext from e∗ onwards. More-
over, it receives all update tokens except for the epochs estart and eend (the latter only if eexp ≥ eend).
That is if eexp < eend, then receiving all update tokens can be allowed for UE schemes with uni-/no-
directional key updates, but not for weaker bi-directional UE schemes. Furthermore, the adversary
has access to an Enc′-oracle which is defined in Figure 4.

Enc′(e,M, eexp) : on input message epoch e ∈ [be(λ)c], message M ∈ M, and expiry epoch eexp,
returns ciphertext Ce,eexp ← Enc(Ke,M, eexp) and sets L := L∪ (e, Ce,eexp), where L is an initially
empty set of queried ciphertexts.a

a We assume that all messages in M have the same length which can be enforced by padding the
original messages up to a fixed length.

Fig. 4. Encryption oracle in the IND-UE-CPA experiment.

At some point, the adversary outputs a target message and a target ciphertext for any prior-
challenge epoch ẽ < e∗ with associated expiry epoch. If the target ciphertext was not queried in
any epoch prior to the challenge epoch, then the experiment outputs bit b.10 If the bit b = 0,
then the experiment encrypts the message which yields a fresh challenge ciphertext with expiry
tag eexp for target epoch e∗; otherwise, the experiments updates the adversarial target ciphertext
to the current target epoch e∗. The resulting challenge ciphertext is send to the adversary and it
eventually outputs a guess b′ and succeeds if b = b′.

Remark. The adversary is allowed to be able to update the challenge ciphertext until epoch eend
without being able to trivially decrypting it. (See that if the challenge ciphertext expires before
eend, then update will not work anymore.) This particularly also mirrors the firewalling technique
due to [BDGJ20] where the adversary is only allowed to receive updates tokens but no keys for such
epochs. Particularly, unlike in the previously known UE security models, we can safely hand over
the keys and tokens as discussed due to our selective flavor we discuss below. Hence, no leakage-
profile tracking is necessary. Furthermore, see that if eexp ≥ eend, then our weak IND-UE-CPA
model is asymptotically equivalent to the Boyd et al. model (cf. paragraph below).

Figure 5 depicts the experiment and we define weak IND-UE-CPA security.

9 This artificial restriction on the adversary is also the case for all known UE models in the literature.
10 This enforces that we only deal with honestly generated ciphertexts that can be tracked as in previous

UE models, particularly as in [BDGJ20].
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Definition 2 (Weak IND-UE-CPA security). An UE scheme UE is weakly IND-UE-CPA-
secure iff for any PPT adversary A, the advantage functions

Advind-ue-cpaUE,A (λ) :=
∣∣∣Pr

[
Expind-ue-cpaUE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expind-ue-cpaUE,A is defined as in Figure 5.

Experiment Expind-ue-cpaUE,A (λ)
K1 ← Gen(λ), (Ke+1,∆e+1)← Next(Ke), for all e ∈ [be(λ)c − 1],L := ∅
(e∗, estart, eend, eexp, st)← A(λ), b← {0, 1}
if estart ≥ e∗ or eend ≤ e∗ or eexp < e∗ then return b
if eexp ≥ eend then

( ~Ke, ~∆e+1) :=(Ke)e∈[be(λ)c]\{estart, . . . , e∗ − 1,e∗,...,eend}, (∆e+1)e∈[be(λ)c−1]\{estart,eend})
else

( ~Ke, ~∆e+1) :=(Ke)e∈[be(λ)c]\{estart, . . . , e∗ − 1,e∗,...,eexp}, (∆e+1)e∈[be(λ)c−1]\{estart})

(M∗, C∗ẽ,eexp , st)← AEnc′( ~Ke, ~∆e+1, st)
if (ẽ, C∗ẽ,eexp) 6∈ L then return b
C∗e,eexp ← Update(∆e, C

∗
e−1,eexp), for all e = ẽ+ 1, . . . , e∗

C∗0 ← Enc(Ke∗ ,M
∗, eexp), C

∗
1 := C∗e∗,eexp

b′ ← AEnc′(C∗b , st)
if b = b′ then return 1 else return 0

Fig. 5. The weak IND-UE-CPA security notion for UE.

On the selectively chosen target epoch and firewall epochs. In Figure 5, we let the adversary
selectively output the target epoch e∗, the firewall start and end epochs estart and eend, respectively,
before seeing any keys, tokens, or ciphertexts of the UE scheme. This is done to ease the description
of the IND-UE-CPA model and is asymptotically equivalent to the common adaptive notions in
[LT18, BDGJ20, Jia20].

It is important to note that in these notions, corruptions of tokens and keys can only be done
in the current epoch, i.e,. the adversary has already moved to this epoch via Next. We argue that
any successful adversary in adaptive model can be transformed in a successful selective adversary
with a reduction loss polynomial in the security parameter. Such simple reduction would guess the
target epoch e∗, the firewall epochs estart, eend, and the expiry-epoch eexp for the adaptive adversary
while outputting e∗, estart, estart, eexp to its selective IND-UE-CPA experiment. The challenger would
generate all keys and tokens and send the respective values to the reduction which are used to
answer the oracle queries by the adaptive adversary. If the adaptive adversary decides to query
a challenge in e∗, we forward the challenge ciphertext to the adaptive adversary. Note that the
reduction is also capable of answering requested update tokens until eend for IND-UE-CPA as well
as requests for further keys and updates until be(λ)c. If the adaptive adversary outputs its guess,
then the reduction returns this guess to the selective challenger. In any other cases, the reduction
outputs a random bit b′ ← {0, 1}. Now, if the adaptive adversary is successful with probability ε,
then the reduction yields a successful adversary in the selective IND-UE-CPA sense and is runs in
PPT. Since be(λ)c is polynomially bounded, we have that the success probability of the selective
adversary is bounded by ε/e(λ)4 which is significant.

4 Ciphertext Puncturable Encryption

Ciphertext Puncturable Encryption (CPE) augments plain Puncturable Encryption (PE) [GM15,
GHJL17, DJSS18, DKL+18, SSS+20, SDLP20] to also support “puncturing” of ciphertexts instead
of puncturing secret keys only. The distinguishing feature of CPE is that puncturing on secret keys
is now synchronized with ciphertext puncturings. Despite being slightly different in their concrete
formulation (e.g., allowing single or multiple tags per ciphertext), existing PE schemes all provide
the same basic idea in their functionality, i.e., that they allow to puncture secret keys in a way
that they can no longer decrypt certain ciphertexts.

A CPE scheme has the syntax of a PE scheme, i.e., consisting of the PPT algorithms Gen, Enc,
Dec, KPunc, but has an additional ciphertext-puncturing algorithm CPunc and puncturing now
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works differently. Ciphertexts can be punctured on any sequence of tags and a key can decrypt
a ciphertext as long as there are still tags (from an ordered tagspace {t1, t2, t3, . . .}) on which
neither the key sk nor the ciphertext C have been punctured, e.g., if sk is punctured on t1 and
C is punctured on t1, t2, then decryption succeeds since neither sk nor C was punctured on t3 for
example. This may sound counterintuitive, but ciphertext puncturing is not a fully public operation
and requires some puncture token which is obtained from the respective secret key puncturing.
Hence, we have a “coupled” synchronization between key-puncturing and ciphertext puncturing
via a puncture token, e.g., ∆t3 that is used for ciphertext puncturing on tag t3 to make it consistent
with puncturings on secret keys. Furthermore, in plain PE, where ciphertexts can be tagged with
multiple tags, even if the secret key is punctured on a single one of these tags, decryption must not
work anymore which is also different for CPE.

A simple translation of key puncturing of PE to ciphertext puncturing in CPE as described
above introduces the problem that ciphertexts can be decrypted at any time, particularly, if the
tag space is of exponential size. Essentially, in PE one starts with an unpunctured secret key and
is able to add tags from an exponentially large tag space to that secret key which translate to
ciphertext puncturing in the sense that the ciphertext is now valid for exponentially many secret
keys when crafted. To mitigate this, we introduce an “expiry tag” for ciphertexts where after
puncturing with tags larger than this tag, the corresponding secret key cannot decrypt this tagged
ciphertext anymore. Note that below we use the convention that if no expiry tag texp < max(T ) is
desired for Enc, we simply treat the supplied tag as texp = max(T ). We now define CPE with its
correctness and security notions.

Definition 3 (Ciphertext Puncturable Encryption). A Ciphertext Puncturable Encryption
(CPE) scheme CPE with ordered tag space T and message spaceM consists of the PPT algorithms
(Gen,KPunc,Enc,CPunc,Dec):

Gen(λ) : key generation, on input security parameter λ, outputs public and secret key pair (pkε, skε).
(We assume that M and T is implicitly given in pkε and that ε denotes the empty set.)

KPunc(pkt, skt, t) : key puncturing, on input (pkt, skt) and tag t ∈ T , outputs an updated public
key pkt∪{t}, an updated secret key skt∪{t}, and a puncture token ∆t or error ⊥.

Enc(pkt,M, texp) : encryption, on input pkt, M ∈ M, and end tag texp ∈ T , outputs a ciphertext
Cpkt,texp .

CPunc(Cpkt,texp , ∆t) : ciphertext puncturing, on input Cpkt,texp and puncture token ∆t, outputs a
punctured ciphertext Cpkt∪{t},texp or error ⊥.

Dec(skt, Cpkt,texp) : decryption, on input secret key skt and ciphertext Cpkt,texp , outputs M or error
⊥.

Correctness. Correctness ensures that for all updated punctured key pairs, the ciphertexts under
the corresponding public key are successfully decryptable as long as not all tags smaller or equal
than the end tag of those ciphertexts are punctured from the secret key. More concretely, for all λ ∈
N, for all (pkε, skε)← Gen(λ), for all t ∈ (T )O(λ)∪{ε}, for all t ∈ T , for all (pkt∪{t}, skt∪{t}, ∆t)←
KPunc(pkt, skt, t), for all M ∈M, for all texp ∈ T with texp ≥ t, for all Cpkt,texp ← Enc(pkt,M, texp),
for all Cpkt∪{t},texp ← CPunc(Cpkt,ttexp , ∆t), we require that Dec(skt∪{t}, Cpkt∪{t},texp) = M holds.

Intuition of our security notions for CPE. Compared to plain PE, we now use puncture
tokens not present in PE which introduces higher burdens on the security guarantees. See that
tokens can potentially be used to also puncture keys or even unpuncture keys/ciphertexts. In that
vein, we define an indistinguishability-based notion, dubbed IND-CPE-CPA, which guarantees
that freshly generated ciphertexts cannot be distinguished from punctured ones for the same set
of public keys. In particular, we have to make sure that update tokens cannot be used to puncture
keys or unpuncture ciphertexts. Hence, we only want to allow puncturing of ciphertexts, but keys
should not be eligible to being punctured/unpunctured via tokens. Furthermore, since we are in
the public-key setting, we have to deal with the problem that the adversary can potentially submit
a (malformed) ciphertext of its choice it wants to be challenge upon. To mitigate this problem (and
proceed with a sound proof), we introduce a ciphertext verification algorithm (see Definition 5) to
test valid ciphertexts in the domain of Enc using only publicly available parameters.

IND-CPE-CPA security. The notion ensures that fresh ciphertexts from Enc and punctured
ciphertexts from CPunc are indistinguishable given that the have the same expiry tag. We say that
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a CPE scheme is IND-CPE-CPA-secure if any PPT adversary succeeds in the following experiment
only with probability negligibly larger that 1/2.

The experiment starts by computing the initial public and secret key pair (pkε, skε)← Gen(λ).
Those keys are not punctured as indicated by ε and will be punctured on tags via KPunc′ during
the experiment. Let (pkt, skt) be the public and secret keys associated to the (currently largest)
punctured-tag set t. As in previous PE schemes, we define the notion in a tag-selective setting,
i.e., the adversary has to first commit to a target tag t∗, expiry tag t∗exp, and a “window” tag
t∗win (see discussion below). With this window tag, we want allow the adversary to puncture the
challenge ciphertext without being able to trivially decrypting it while t∗exp denotes the expiry tag
of the target ciphertext. During the experiment, the adversary then has fully adaptive access to a
KPunc′(pkt, skt, ·)-oracle as given in Figure 6.

KPunc′(pkt, skt, t) : on input t, if (·, ·, ·,∆t) ∈ L, return ⊥. Otherwise, compute
(pkt∪{t}, skt∪{t},∆t) ← KPunc(pkt, skt, t), set L := L ∪ {(t ∪ {t}, pkt∪{t}, skt∪{t},∆t)}
and (pkt, skt) := (pkt∪{t}, skt∪{t}).
– If t ∈ {t∗, . . . ,min(t∗win, t

∗
exp)}, return (pkt,∆t),

– else return (pkt, skt,∆t).

Fig. 6. Key puncture oracle in the IND-CPE-CPA experiment.

At some point, the adversary outputs a target message M∗, a target ciphertext C∗pkt\{t∗},t∗exp .

The experiment checks that target ciphertext C∗pkt\{t},t∗exp is a valid ciphertext using the public

verifiability algorithm Ver (in the sense of Definition 5). If so and the KPunc oracle was not yet
called on t∗, it proceeds with puncturing the current key pair on the target tag t∗. Furthermore,
the experiment tosses a coin b. If b = 0, then compute a fresh encryption C0 of the target message
M under the update key pair using Enc and expiry tag t∗exp; otherwise, if b = 1, then compute
punctured ciphertext C1 using CPunc. The adversary eventually outputs a guess b′ where the
experiment returns 1 if b′ = b. Figure 7 depicts the experiment.

Remark. We require that the adversary outputs a target tag t∗, expiry tag t∗exp, and a window

tag t∗win before it has access to the KPunc′-oracle. See that the adversary still is able to adaptively
puncture keys and the challenge tag set t \ {t∗} still contains adaptively chosen tags. This small
restriction helps us to keep the description of the oracle clear and concise. For a fully adaptive
CPE model, we can let the adversary adaptively output t∗, t∗exp, and t∗win, and check the winning

condition in the end if it did not receive keys for t∗, . . . ,min(t∗exp, t
∗
win) after querying KPunc′.

Moreover, choosing target tag(s) non-adaptively is also the case for other prior PE schemes (cf.
[GHJL17]).

Definition 4 (IND-CPE-CPA security). A CPE scheme CPE is IND-CPE-CPA-secure iff for
any valid PPT adversary A the advantage functions

Advind-cpe-cpaCPE,A (λ) := |Pr
[
Expind-cpe-cpaCPE,A (λ) = 1

]
− 1/2 |

is negligible in λ, where Expind-cpe-cpaCPE,A is defined as follows:

Experiment Expind-cpe-cpaCPE,A (λ)
(pkε, skε)← Gen(λ), b← {0, 1}, L := ∅
(t∗, t∗win, t

∗
exp, st)← A(λ)

if t∗win ≤ t∗ or t∗exp ≤ t∗, then return b

(M∗, C∗pkt\{t∗},t∗exp , st)← AKPunc′(pkt,skt,·)(λ, st)

if Ver(pkt\{t∗}, C
∗
pkt\{t∗},t

∗
exp

) = 0 or (pkt\{t∗}, ·, ·, ·) 6∈ L, then return b

if (·, ·, ·,∆t∗) 6∈ L, then
(pkt, skt,∆t∗)← KPunc(pkt\{t∗}, skt\{t∗}, t

∗)
C0 ← Enc(pkt,M

∗, t∗exp), C1 ← CPunc(C∗pkt\{t∗},t∗exp ,∆t∗)

b′ ← AKPunc′(pkt,skt,·)(Cb, pkt,∆t∗ , st)
if b = b′ then return 1 else return 0

Fig. 7. The IND-CPE-CPA security notion for CPE.

15



Furthermore, we introduce a ciphertext verification algorithm for CPE to test valid ciphertexts
in the domain of Enc using only publicly available parameters. Intuitively, this allows us to check
which tags have been punctured in the ciphertext and if the ciphertext is encrypted under the
corresponding public key.

Definition 5 (Public verifiability of CPE ciphertexts). We define a verification algorithm
Ver(pkt, Cpkt,texp), which on input a public key pkt and the ciphertext Cpkt,texp , outputs 1 if and only
if Cpkt,texp is a valid ciphertext in the image of Enc(pkt, ·, texp).

We also provide a weakened security notion of CPE (called restricted IND-CPE-CPA), which is
useful to construct uni-directional (i.e., weak IND-UE-CPA secure) UE schemes. We defer this
definition to Appendix A.1.

5 UE with No-Directional Key Updates from CPE

In this section, we construct updatable encryption (UE) with no-directional key updates from
ciphertext puncturable encryption (CPE). The transformation is rather straightforward since UE
is essentially a sequenced version of CPE, i.e., in the speak of CPE, we only have polynomially many
tags which we map to epochs. Particularly, we use key puncturing for generating the next UE key
(i.e., puncturing the old-epoch key) and use ciphertext puncturing for updating ciphertexts (i.e.,
puncturing old-epoch ciphertexts). Encryption and decryption directly map to UE’s encryption and
decryption, respectively. More concretely, let CPE = (CPE.Gen,CPE.KPunc,CPE.Enc,CPE.CPunc,
CPE.Dec) with message space MCPE and tag space T = {1, 2, . . . , be(λ)c} be a CPE scheme. We
present our UE scheme UE = (Gen,Next,Enc,Dec) with message space M := MCPE in Figure 8
and further show correctness as well as IND-UE-CPA security.

Gen(λ) : compute (pkε, skε)← CPE.Gen(λ) and (pk1, sk1,∆1)← CPE.KPunc(pkε, skε, 1), and return
K1 := (pk1, sk1).

Next(Ke) : for Ke =: (pke, ske), return (Ke+1 := (pke+1, ske+1),∆e+1) ← CPE.KPunc(pke, ske, e +
1).

Enc(Ke,M, eexp) : for Ke =: (pke, ske), return Ce,eexp ← CPE.Enc(pke,M, eexp).
Update(∆e+1, Ce,eexp): return CPE.CPunc(Ce,eexp ,∆e+1).
Dec(Ke, Ce) : for Ke =: (pke, ske), return CPE.Dec(ske, Ce,eexp).

Fig. 8. Construction of UE from CPE.

For correctness, see that this directly translates from the CPE scheme, i.e., the ciphertext that
was computed by Enc and updated via Update can be decrypted by Dec if the keys match and the
ciphertext is not expired. We now turn to IND-UE-CPA security.

Theorem 1. If CPE is IND-CPE-CPA secure, then UE is IND-UE-CPA secure. Concretely, for
any PPT adversary A there is a distinguisher D in the IND-CPE-CPA security experiment, such
that Advind-cpe-cpaCPE,D (λ) ≥ Advind-ue-cpaUE,A (λ).

Proof. We show the Theorem by constructing a PPT distinguisherD in the IND-CPE-CPA security
experiment with CPE as defined in Figure 7 from any successful PPT adversary A in the IND-
UE-CPA security with UE as defined in Figure 5. The distinguisher D starts A and receives
e∗, estart, eend, eexp. (If the A-input does not have the right distribution as defined in Figure 5, then
output b ← {0, 1}.) It then outputs (t∗ := e∗, t∗win := eend, t

∗
exp := eexp) to its IND-CPE-CPA

challenger. Then, D queries (pke, (ske), ∆e) ← KPunc(pke−1, ske−1, e) (with ε := e − 1), for all
e ∈ [be(λ)c], from its IND-CPE-CPA challenger (while D does not receive secret keys ske for e =
e∗, . . . ,min(eend, e

∗
exp). D sets ∆1 := ⊥. If eexp ≥ eend, then D sends (pke, ske)e∈[be(λ)c]\{e∗,...,eend} and

(∆e+1)e∈[be(λ)c]\{eend} to A. Otherwise, i.e., if eexp < eend, then D sends (pke, ske)e∈[be(λ)c]\{e∗,...,eexp}
and (∆e+1)e∈[be(λ)c] to A. Encryption queries in epoch e ∈ [be(λ)c] to Enc′(M) for expiry tag e′exp are
answered as follows: return Ce,e′exp ← CPE.Enc(pke,M, e′exp) and set L := L∪{(e, Ce,e′exp)}.D receives
(M∗, C∗ẽ,eexp) from A and checks if (ẽ, C∗ẽ,eexp) ∈ L and returns b if not. If ẽ < e∗−1, then iteratively

run C∗e,eexp ← Update(C∗e−1,eexp , ∆e), for e = ẽ + 1, . . . , e∗. D forwards (M∗, C∗e∗−1,eexp , e
∗) to its

IND-CPE-CPA challenger. D receives (Cb, pke∗ , ∆e∗). D forwards Cb to A. Encryption queries with
expiry epoch e′exp in all epochs e ∈ [e(λ)] to Enc′(M) are answered as Ce ← CPE.Enc(pke,M, e′exp).
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Eventually, A outputs a guess b′ which is forwarded to D’s challenger. D is able to provide a
consistent view for A for keys (Ke)e = (pke, ske)e. Enc

′-answers also yield a consistent view for A,
for all e ∈ [be(λ)c]. Now, if A is a successful PPT adversary in the IND-UE-CPA security experiment
with UE, then D is a successful PPT adversary in the IND-CPE-CPA security experiment with
CPE which shows the Theorem. ut

Uni-Directional UE from CPE. Analogously to the above result, a CPE scheme satisfying a
weakened notion of security (so called restricted IND-CPE-CPA, cf. Appendix A.1) yields a uni-
directional UE scheme (i.e., a UE scheme that satisfies weak IND-UE-CPA security). As already
mentioned in Section 1.2, the concrete construction is obtained by a simplification of our main
construction in the next section. For completeness, we present the construction and the proof of
security in Appendix A.2.

6 CPE from d-Lin in the Standard Model

We recall that due to Günther et al. [GHJL17], we know that we can obtain PE in bilinear groups
and in particular using hierarchical any identity-based encryption (HIBE) scheme [HL02, GS02,
BBG05]. However, for CPE which also allows “delegation” of ciphertexts, basing it on plain HIBE
techniques does not work. But as we have discussed in Section 1.2, we can utilize underlying
building blocks used to prove adaptive security of HIBEs, namely the dual system group (DSG)
abstraction due to Chen and Wee [CW13, CW14b] which can be instantiated from the standard
d-Lin assumption in prime-order bilinear groups in the standard model. Interestingly, the dual
system approach provides us with elements we need for delegating ciphertext elements, a feature
not needed before but available in DSG. This particularly broadens the use of DSGs to further
application domains such as puncturable and updatable encryption.

6.1 Dual system groups

The concept of Dual system groups (DSGs) [CW13, CW14b] is a rich abstraction of Waters’ dual
system paradigm [Wat09] and particularly useful to prove HIBEs adaptively secure. The main
observation for our intentions is that plain DSG also provides delegation elements for ciphertexts.
In their HIBEs-from-DSG work [CW14b], Chen and Wee simply did not need such elements (as
HIBEs do not provide such a feature), but as it turns out, those elements are of central interest for
us to allow delegation of ciphertexts. To look ahead, a token will be a fresh HIBE key (determined
by the number of prior updates) under a uniform main secret key with no delegation elements and
will only work for updating the intended ciphertext which yields the desired functionality (since
such tokens cannot update keys).

We will now recap DSGs. In our DSG variant, we additionally need to introduces a G-subgroup
property for re-randomizing ciphertexts. Our DSG DSG consists of the five PPT algorithms (SampP,

SampG,SampH, ŜampG, ŜampH) (where differences to the Chen-Wee DSG are given by underlining):
SampP(λ, n): parameter sampling, given security parameter λ and parameter n ∈ N, samples

(G,H, GT , N, (gpi)i∈[n′], e)← G(λ, n′), for n′ determined in SampP, and outputs public param-

eters pp = (G,H, GT , N, e,m, pars) and secret parameters sp = (ĥ, p̂ars), where m : H → GT
is a linear map, ĥ 6= 1 is an element of the group generated by ĥ0 (see ŜampH), and pars, p̂ars
may contain arbitrary information.

SampG(pp): given pp, outputs g = (g0, . . . , gn) ∈ Gn+1.
SampH(pp): given pp, outputs h = (h0, . . . , hn) ∈ Hn+1.

ŜampG(pp, sp): given pp and sp, outputs ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1.

ŜampH(pp, sp): given pp and sp, outputs ĥ = (ĥ0, . . . , ĥn) ∈ Hn+1.

Correctness of DSG. For correctness, for all λ ∈ N, for all integers n = n(λ) > 1, for all pp, where
pp is the first output of SampP(λ, n), we require:
Projective. For all s← Z∗N , for all g0 which is the first output of SampG(pp; s), for all h ∈ H, we

have m(h)s = e(g0, h).
G- and H-subgroups. The outputs of SampG and SampH are uniformly distributed over the

generators of a non-trivial subgroup of G and Hn+1, respectively (that only depend on pp).
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Associativity. For all (g0, . . . , gn)← SampG(pp) and for all (h0, . . . , hn)← SampH(pp), we have

e(g0, hj) = e(gj , h0),

for all j ∈ [n].

Security of DSG. For security, for all λ ∈ N, for all integers n = n(λ) > 1, for all (pp, sp) ←
SampP(λ, n), we require:

Orthogonality. For m specified in pp, for ĥ specified in sp, we require m(ĥ) = 1. (Note that by

the projective property, for g0 as the first output of SampG(pp), we have e(g0, ĥ) = 1.)

Non-degeneracy. For all ĝ0 which is the first output of ŜampG(pp, sp) and for ĥ0 which is the

first output of ŜampH(pp, sp) where ĥ lies in the group of ĥ0, it holds that e(ĝ0, ĥ)α is uniformly
distributed over the generators of a non-trivial subgroup of GT , for α← ZN .

Left-subgroup indistinguishability (LS). For any PPT adversary D, we have that the func-
tion

AdvlsDSG,G,D(λ, n) := |Pr [D(pp,g) = 1]− Pr [D(pp,gĝ) = 1] |

is negligible in λ, where g← SampG(pp) and ĝ← ŜampG(pp, sp).
Right-subgroup indistinguishability (RS). For any PPT adversary D, we have that the func-

tion

AdvrsDSG,G,D(λ, n) := |Pr
[
D(pp, ĥ,gĝ,h) = 1

]
− Pr

[
D(pp, ĥ,gĝ,hĥ) = 1

]
|

is negligible in λ, where g ← SampG(pp), ĝ ← ŜampG(pp, sp), (h, ·) ← SampH(pp), and

ĥ← ŜampH(pp, sp), for ĥ specified in sp.

Parameter-hiding. The distributions {pp, ĥ, ĝ, ĥ} and {pp, ĥ, ĝĝ′, ĥĥ′} are identically distributed,

where ĝ = (ĝ0, . . . , ĝn) ← ŜampG(pp, sp), ĥ = (ĥ0, . . . , ĥn) ← ŜampH(pp, sp), ĝ′ = (1, ĝγ10 , . . . ,

ĝγn0 ), and ĥ′ = (1, ĥγ10 , . . . , ĥ
γn
0 ), for γ1, . . . , γn ← ZN and ĥ specified in sp.

DSG in prime-order groups. In comparison to the Chen-Wee DSG, for correctness, we change
the G-subgroup property. Concerning security, nothing is changed. As we will argue in Subsection
6.4, their prime-order instantiation already allows such simple modification. For completeness, we
provide the concrete prime-order instantiation in Subsection 6.4. We conclude:

Corollary 1. DSG in Subsection 6.4 is a DSG under the d-Lin assumption in the standard model.

6.2 Constructing CPE from DSG

To construct a CPE scheme from DSGs, we implicitly arrange tags of the CPE scheme associated
to the public and secret keys or ciphertexts in a complete binary tree, i.e., the nodes represent a
prefix bit representation of the tag and, hence, the root of the tree is associated with keys (pkε, skε)
or ciphertext Cpkε,texp of the CPE (as also discussed in the introduction with Figure 3), respectively.
We define additional PPT helper algorithms KTrunc and CTrunc within a CPE scheme to prune
the tree to output punctured public and secret keys, puncture tokens, and punctured ciphertexts
that corresponds to a given set of tags. This is reminiscent of prior works, e.g., [CHK03, GHJL17,
DJSS18, DKL+18], but we need to add ciphertext puncturing and enhance it to incorporate tokens.

The main algorithms we use for the tree pruning are KTrunc for keys and CTrunc for ciphertexts
that correspond to the KPunc and CPunc algorithms, respectively. Encryption is done according
to an associated already punctured tag set where the ciphertext parts are built according to the
pruned tree. Furthermore, and this is the important part, an entire shadow components will also
be associated to each ciphertext part during encryption.

KTrunc, CTrunc and further helper algorithms. We define the two tree-pruning algorithms
KTrunc and CTrunc. Moreover, we need further helper PPT algorithms to make the description more
modular, i.e., key delegation KDel and re-randomization KRerand as well as ciphertext delegation
CDel and re-randomization CRerand.

18



Intuition of KTrunc. Essentially, KTrunc takes the current tree configuration as provided in the
public and secret keys (i.e., which tags are already punctured and, hence, how the tree is pruned for
such tags). It further receives an input-tag t that will be punctured. KTrunc first finds all elements
from the root to the associated leaf of tag t. (Since those elements can be used to derive a secret
key for tag t.) It delegates the key elements on that path such that no ancestor elements for t are
available anymore and keeps the other key elements.

Furthermore, a puncture token is generated according to the number of already happened
punctures, i.e., |t|. Such puncture token incorporates a shift in the current public and secret keys.
The result is a pruned tree that excludes secret-key material for t for the new set of punctured
tags t ∪ {t}. The concrete PPT algorithms works as follows:

KTrunc(pkt, skt, t) : on input keys (pp,m(mskt)) := pkt and (skt,1, . . . , skt,m) := skt, for some
integer m ∈ O(λ), output punctured public key, punctured secret key, and token according to
t = (t1, . . . , tλ) as follows:
1a. let skt,i be the secret key part associated to the unique node which is associated to a

prefix of t. (Such unique element always exists, otherwise t would have been punctured
already.) Derive delegated secret keys hanging from the path to t by iteratively call-
ing KDel on all prefixes of t starting from the node associated to skt,i and set sk′t :=
(sk′t,≤m, sk

′
t,m+1, sk

′
t,m+2, . . . ), where sk′t,≤m is the same as skt, but without skt,i, and

sk′t,m+1, sk
′
t,m+2, . . . are those derived delegated keys via KDel hanging from the path to t;

else,
1b. if there exist a leaf associated to a t-secret key skt,i, for i ∈ [m], then set sk′t := sk′t,≤m,

where sk′t,≤m is the same as skt, but without the leaf-associated secret key skt,i.
2. Sample δ ← H, for all sk′t-elements sk′t,i =: (h,mskt · h0 · · · , . . .), compute sk′t∪{t},i :=

(h,mskt · δ · h0 · · · , . . .).
3. For each node prefix tag pti = (pti,1, . . . , pti,m′) for prefix length m′ ≤ λ associated to
sk′t∪{t},i, re-randomize all elements sk′t∪{t},i via sk′′t∪{t},i ← KRerand(sk′t∪{t},i, pti) and set

sk′t∪{t} := (sk′′t∪{t},i)i.

4. Sample (h0, . . . , hλ+1, . . . , h2λ) ← SampH(pp), and compute ∆t∪{t} := (h0, δ ·
∏`
i=1 hλ+i),

for ` = |t|.
5. Output (pkt∪{t}, sk

′
t∪{t}, ∆t∪{t}), for pkt∪{t} := (pp,m(mskt) ·m(δ)) = (pp,m(mskt · δ)).

Intuition of CTrunc. Essentially, CTrunc works similarly to KPunc and takes the current tree
configuration as provided in the public keys (i.e., which tags are already punctured and, hence, how
the tree is pruned for such tags). It further receives an input-tag t that will be punctured with the
help of a puncture token ∆t∪{t}. CTrunc first finds all elements from the root to the associated leaf
of tag t. (Since those elements can be used to derive a potentially decryptable ciphertext element
for tag t.) It delegates the ciphertext elements on that path such that no ancestor elements for t
are available anymore and keeps the other ciphertext elements. The result is a pruned tree that
excludes ciphertext material for t for the new set of punctured tags t ∪ {t}. The PPT algorithm
works as follows:

CTrunc(Cpkt,texp , ∆t∪{t}) : on input ciphertext Cpkt,texp =: ((Cpkt,1, SCpkt,1), . . . , (Cpkt,m, SCpkt,m)),

for some integer m ∈ O(λ), and ∆t =: (h0, δ ·
∏`
i=1 hλ+i) with ` := |t| − 1 < λ, output a punc-

tured ciphertext as follows:
1. For all Cpkt,i = (g0, . . . , e(g0,mskt)·M) and SCpkt,i with SCpkt,i = (

∏`
j=1 gλ+j , gλ+`+1, . . . ,

g2λ), compute

e(g0, δ) :=
e(g0, δ ·

∏`
j=1 hλ+j)

e(
∏`
j=1 gλ+j , h0)

(1)

and set C ′pkt,i := (g0, . . . , e(g0,mskt) · e(g0, δ) ·M) = (g0, . . . , e(g0,mskt · δ) ·M). (See that
(1) holds due to the associativity properties of DSG.)

2a. For all C ′pkt,i, derive delegated ciphertexts hanging from the path to t by iteratively calling
CDel on all prefixes of t starting from the node associated to C ′pkt,i and set C ′pkt,t′ :=
(C ′pkt,≤m, C

′
pkt,m+1, C

′
pkt,m+2, . . . ), where C ′pkt,≤m is the same as C ′pkt,t′ , but without Cpkt,i,

and C ′pkt,m+1, C
′
pkt,m+2, . . . are those derived delegated keys via CDel hanging from the path
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to t; furthermore, for all SCpkt,i, proceed similarly, i.e., derive delegated shadow ciphertext
parts hanging from the path to t by iteratively calling SCDel on all prefixes of t starting from
the node associated to SCpkt,i,j and set SC ′pkt,i := (SC ′pkt,i,≤m′ , SC

′
pkt,i,m′+1, SC

′
pkt,i,m′+2,

. . . ), where SC ′pkt,i,≤m′ is the same as SCpkt,i, but without SCpkt,i,j , and SC ′pkt,i,m′+1,
SC ′′pkt,i,m′+2, . . . are those derived delegated shadow ciphertext parts via SCDel hanging
from the path to t. Else,

2b. if there exist a leaf associated to a t-ciphertext C ′pkt,i and SC ′pkt,i, for i ∈ [m], then set
C ′′pkt := C ′pkt,≤m and SC ′′pkt,i := SC ′pkt,i,≤m, where C ′pkt,≤m and SC ′pkt,i,≤m are the same as
Cpkt and SCpkt , but without the leaf associated ciphertext Cpkt,i and SCpkt,i,j , respectively.

3. For each node prefix tag pti = (pti,1, . . . , pti,m′) with prefix length m′ ≤ λ associated to
C ′pkt∪{t},i, re-randomize all elements C ′pkt∪{t},i by computing C ′′pkt∪{t},i ← CRerand(C ′pkt∪{t},i,

pti) and set C ′pkt∪{t},texp := (C ′′pkt∪{t},i)i.

4. Output C ′′pkt,texp .

Intuition of KDel, KRerand, CDel, SCDel and CRerand. Essentially, KDel delegates secret key
material as done in HIBE key delegation where KRerand re-randomizes the key material. CDel and
SCDel delegate ciphertext material as done in HIBE ciphertext delegation for normal ciphertext and
shadow components (as discussed in the introduction) where CRerand re-randomizes the ciphertext
material. The concrete PPT algorithms work as follows:

KDel(skt,i, pt) : on input secret key skt,i =: (h0,mskt · · · , h`) for prefix pt′ = (pt1, . . . , pt`−1) and
(prefix) tag pt = (pt′, pt`), output

sk′t,i := (h0,mskt · hε ·
`−1∏
j=1

h
ptj
j hpt`` , h`+1, . . . , hλ).

KRerand(skt,i, pt) : on input secret key skt,i =: (h0,mskt · · · , h`, . . . , hλ) for prefix tag pt′ =
(pt1, . . . , pt`), for (h′0, h

′
ε, h
′
1, . . . , h

′
2λ)← SampH(pp), output

sk′t,i := (h0 · h′0,mskt · hεh′ε ·
∏̀
j=1

h
ptj
j ·

∏̀
j=1

(h′j)
ptj , h`+1 · h′`+1, . . . , hλ · h′λ).

CDel(Cpkt,i, pt) : on input ciphertext

Cpkt,i =: (g0, gε · · · , g`, . . . , gλ, e(g,mskt) ·M)

for prefix pt = (pt1, . . . , pt`−1), and (prefix) tag pt = (pt′, pt`), output

C ′pkt,i := (g0, gε ·
`−1∏
j=1

g
ptj
j gpt`` , g`+1, . . . , e(g,mskt) ·M).

SCDel(SCpkt,i, pt) : on input SCpkt,i =: (
∏`−1
j=1 gλ+j , gλ+`, . . . , g2λ) output

SC ′pkt,i := (
∏̀
j=1

gλ+j , gλ+`+1, . . . , g2λ).

CRerand((Cpkt,i, SCpkt,i), pt) : on input ciphertext Cpkt,i =: (g0, gε · · · , g`, . . . , gλ, e(g0,mskt) ·M)

and shadow ciphertext part SCpkt,i =: (
∏`
j=1 gλ+j , gλ+`+1, . . . , , g2λ), for prefix tag pt =

(pt1, . . . , pt`) and `′ := |t| − 1, for (g′0, g
′
ε, g
′
1, . . . , g

′
2λ)← SampG(pp), output

C ′pkt,i := (g′0g0, gεg
′
ε ·
∏̀
j=1

g
ptj
j ·

∏̀
j=1

(g′j)
ptj , g`+1g

′
`+1, . . . , gλg

′
λ,

e(g0,mskt) · e(g′0,mskt) ·M)

SC ′pkt,i := (

`′∏
j=1

(gλ+j) ·
`′∏
j=1

(g′λ+j), gλ+`+1g
′
λ+`+1, . . . , g2λg

′
2λ).
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6.3 CPE construction

Let DSG = (SampP,SampG,SampH, ŜampG, ŜampH) be a DSG scheme. We will construct a CPE
scheme CPE = (Gen,KPunc,CPunc,Enc,Dec) with message spaceM := GT and tag space T := ZN
(determined in pkε after running SampP in Gen). The construction of our CPE scheme CPE is given
in Figure 9.

Gen(λ) : compute (pp, sp) ← SampP(λ, 2λ + 1), secret key skε := (h0, hε · mskε, h1, . . . , hλ), for
mskε ← H, for (h0, hε, . . . , h2λ) ← SampH(pp), and public key pkε := (pp,m(mskε)), and return
(pkε, skε).

a

KPunc(pkt, skt, t) : on input (pkt, skt) and tag t ∈ T , outputs a public key, punctured secret key,
and update token (pkt∪{t}, skt∪{t},∆t∪{t})← KTrunc(pkt, skt, t).

Enc(pkt,M, texp) : on input public key pkt =: (pp,m(mskt)), message M ∈ M, and expiry tag

texp ≤ 2λ
′
, λ′ ∈ [λ], for (gi, gi,ε, gi,1, . . . , gi,2λ) ← SampG(pp; s), for s ← ZN , find all tag prefixes

pti = (pti,1, . . . , pti,m), m ∈ O(λ), according to the binary tree that exclude (t, . . . , texp), for ` := |t|,
and compute

Cpkt,texp,i := (gi,0, gi,ε

m∏
j=1

g
pti,j
i,j , gi,m+1 . . . , gi,λ′ ,m(mskt)

s ·M,SCpkt,i),

with SCpkt,i := (
∏`
j=1 gi,λ+j , gi,λ+`+1, . . . , gi,2λ). Output Cpkt,texp := (Cpkt,texp,i)i.

CPunc(Cpkt,texp ,∆t∪{t}) : on input ciphertext Cpkt,texp , puncture token ∆t∪{t}, outputs
Cpkt∪{t},texp ← CTrunc(Cpkt,texp ,∆t∪{t}).

Dec(skt, Cpkt,texp) : on input secret key skt =: (skt,1, . . . ) and ciphertext Cpkt,texp =: (Cpkt,texp,1, . . . )
find the smallest tag t ∈ T that has not been punctures in either skt and Cpkt,texp . (Such tag must
exists.) Find the corresponding secret-key element skt,i and the ciphertext element Cpkt,t,i that are
associated to a prefix of t = (t1, . . . , tλ). (This is either a leaf-tag itself or a prefix with length λ−1.)

Compute (h0,mskt ·hε ·
∏λ
j=1 h

tj
j , . . .)← KDel(skt,i, t) and (g0, gε ·

∏λ
j=1 g

tj
j , . . . , e(g,mskt) ·M)←

CDel(Ct,texp,i, t), and output

M :=
e(h0, gε ·

∏λ
j=1 g

tj
j )

e(g0,mskt · hε ·
∏λ
j=1 h

tj
j )
· e(g,mskt) ·M.

a Note that sp will only be used in the security proof.

Fig. 9. CPE from DSG.

Public verifiability of ciphertexts. Intuitively, we check which tags have already been punc-
tured in the ciphertext and if the ciphertext encrypts under the corresponding public key. This can
be done with public parameters only utilizing the pairing such that ciphertext components (contain-
ing backed-in tag and shadow information) and public parameters can be paired to see if the result
matches under the correct public key. More concretely, For each prefix tag pt = (pt1, . . . , ptm′), for
each ciphertext part

Cpkt,i = (g0, gε ·
m′∏
j=1

g
ptj
j , gm′+1, . . . , gλ′ , e(g0,mskt) ·M,SCpkt,i),

in Cpkt,texp , with SC ′pkt,i =: (gλ+1 · · · , . . . , g2λ) see that if

e(g0, h0

m′∏
j=1

h
ptj
j

λ′∏
j=m′+1

hj

2λ∏
j′=λ+1

hj) = e(gε

m′∏
j=1

g
ptj
j

λ′∏
j=m′+1

gj

2λ∏
j=λ+1

gj , h0),

for (h0, . . . , h2λ)← SampH(pp), holds for some texp ≤ 2λ
′
, for λ′ ∈ [λ], C ′t,i is valid ciphertext part

and, hence, Cpkt,texp is a valid ciphertext under pkt. This due to the DSG’s associativity property.

Correctness of CPE. Correctness holds due to DSG’s associativity and projective properties (cf.
Dec in Figure 9).

IND-CPE-CPA security of CPE. Our proof strategy is very similar to the proof strategy frame-
work of [CW14a]. We define auxiliary PPT algorithms:
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A pseudo-normal ciphertext Ĉpkε,texp is generated via

Ênc(mskε,M, texp := 2λ
′
; gĝ) = (g0ĝ0, gεĝε, . . . , gλ′ ĝλ′ ,

gλ+1, . . . , g2λ, e(g0ĝ0,mskε) ·M),

for (g0, gε, . . . , gλ)← SampG(pp) and ĝ = (ĝ0, ĝε, . . . , ĝ2λ)← ŜampG(pp, sp).

A pseudo-normal secret key ŝkε is generated via

Ext(mskε; hĥ) = (h0ĥ0,mskε · hεĥε, . . . , hλĥλ),

for uniform h = (h0, hε, . . . , h2λ)← SampH(pp) and ĥ = (ĥ0, ĥε, . . . , ĥ2λ)← ŜampH(pp, sp).

A semi-functional (pseudo-normal) secret key ŝkε is generated via

Ext((ĥ)α ·mskε; hĥ) = (h0ĥ0, (ĥ)α ·mskε · hεĥε, . . . , hλĥλ),

for α ← ZN , h = (h0, hε, . . . , h2λ) ← SampH(pp) and ĥ = (ĥ0, ĥε, . . . , ĥ2λ) ← ŜampH(pp, sp).

If ĥ is not present, the secret key is called semi-functional.

Theorem 2. If DSG is a DSG scheme, then CPE is IND-CPE-CPA-secure. Concretely, for any
PPT adversary A there are distinguishers D1 on LS and D2, D3 on RS, respectively,

Advind-cpe-cpaCPE,A (λ) ≤ AdvlsDSG,G,D1
(λ, 2λ+ 1)

+ AdvrsDSG,G,D2
(λ, 2λ+ 1) + AdvrsDSG,G,D3

(λ, 2λ+ 1). (2)

Proof. We show the IND-CPE-CPA security of CPE for any PPT adversary A in a sequence of
games where we successively change the games until we arrive at a game where A has only negligible
advantage (i.e., success probability of 1/2). Let SA,j be the event that A succeeds in Game j. We
want to explicitly mention that the key puncturing oracle KPunc′ works as defined in the security
experiment for CPE. We give an overview how the challenge ciphertexts and the secret keys are
derived in Table 1.

Game 0. The IND-CPE-CPA experiment.
Game 1 Instead of directly using the ciphertext input by A, D decrypts and re-encrypts again

starting from a ciphertext for mpkε. The change is conceptional. Also we re-write how the first
secret key is derived.

Game 2. The challenge ciphertext is pseudo-normal.
Game 3. The secret keys are pseudo-normal.
Game 4. The secret keys are semi-functional pseudo-normal.
Game 5. The secret keys are semi-functional.
Game 6. The challenge ciphertext message is a uniform GT -element.

Lemma 1 (Game 0 to Game 1). For Game 0 and Game 1 are perfectly indistinguishable, i.e.,

|Pr [SA,0]− Pr [SA,1] | = 0. (3)

Proof. The is a conceptional change in the security experiment and, hence, does not change the view
of A. Instead of using the A-provided ciphertext C∗pkt\{t∗},t∗exp (after positive verification via Ver)

as input to CPunc to compute the challenge ciphertext, D decrypts M ← Dec(skt, C
∗
pkt\{t∗},t∗exp

), re-

encrypts again by computing Cpkti+1
← CPunc(Cpkti , ∆ti), for t0 := ε and Cpkε ← Enc(pkε,M, texp),

for all ti ∈ t, for t the largest set in L (after inserting the target tag t∗).
This change cannot be noticed by A since the distributions of Cpkt\{t∗} and C∗t\{t∗},t∗exp

are

perfectly indistinguishable due to the re-randomization properties of G-elements as output by
SampG(pp) and the public verifiability of C∗t\{t∗},t∗exp

using Ver. See that if Ver outputs 1, the GT -

element that blinds the message is fixed under the respective public key pkt\{t∗}. Furthermore, we

write Ext(mskε; h) to derive the first secret key which is only a re-write in different form to make
the input of SampH explicit.
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Ênc-output for challenge ciphertext Ext-output for secret keys Assumption

Game 0 Not used Not used -

Game 1 Ênc(mskε,M
∗
b ;g) Ext(mskε;h) -

Game 2 Ênc(mskε,M
∗
b ;gĝ) As in Game 1 LS

Game 3 As in Game 2 Ext(mskε;hĥ) RS

Game 4 As in Game 2 Ext((ĥ)α ·mskε;hĥ) Parameter hiding

Game 5 As in Game 2 Ext((ĥ)α ·mskε;h) RS

Game 6 Ênc(ĥ ·msk′ε, R;gĝ), for R← GT As in Game 5 Non-degeneracy

Table 1. Output of Ênc and Ext to generate (challenge) ciphertexts and secret keys, for α ← ZN , for

g← SampG(pp), for ĝ← ŜampG(pp, sp), and for h← SampH(pp) and ĥ← SampH(pp, sp). The differences
between games are given by underlining.

Lemma 2 (Game 1 to Game 2). Under LS of DSG, Game 1 and Game 2 are computationally
indistinguishable. Concretely, for any PPT adversary A in the IND-CPE-CPA security experiment
with CPE there is a distinguisher D on LS such that

|Pr [SA,1]− Pr [SA,2] | ≤ AdvlsDSG,G,D(λ, 2λ+ 1). (4)

Proof. In Game 1, the challenge ciphertext is normal in the sense of CPE while in Game 2, the
challenge ciphertext is pseudo-normal.

Description. The challenge input is provided as (pp,T), where T is either g or gĝ, for pp =

(G,H, GT , N, e, pars), g← SampG(pp), and ĝ← ŜampG(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on t∗, . . . ,min(t∗win, texp∗)). During the experiment, let t the currently largest set in L.
D samples mskε ← H and sets pkε := (pp,m(mskε)), skε := Ext(mskε; h), for h← SampH(pp),

and sets L := L∪{({ε}, pkε, skε,⊥)}. D starts A with λ and, during the entire experiment, answers
KPunc′(pkt, skt, t)-queries, for t the currently largest set in L, A-chosen t ∈ T , and depending on
A-provided tags t∗, . . . ,min(t∗win, t

∗
exp).

When A outputs the target message and ciphertext (M∗0 , C
∗
pkt\{t∗},t∗exp

), D outputs b← {0, 1} if

verification Ver(pkt\{t∗}, C
∗
pkt\{t∗},t∗exp

) = 0 holds; otherwise,D decrypts messageM∗1 := Dec(skt\{t∗},

C∗pkt\{t∗},texp). Furthermore, if not already done via KPunc′, D punctures keys via (pkt∪{t∗}, skt∪{t∗},

∆t∗)← KPunc(pkt, skt, t
∗) and updates the list L := L ∪ {(t ∪ {t∗}, pkt∪{t∗}, skt∪{t∗}, ∆t∗).

D computes Cε ← Ênc(mskε,M
∗
b , t
∗
exp; T) and Cti+1

← CPunc(Cti , ∆ti∪{ti}), for t0 := ε, for all
ti ∈ t ∪ {t∗}. D sends to A:

(Ct∪{t∗}, pkt∪{t∗}, ∆t∗).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = g, then the challenge ciphertext is distributed identically as in Game 1. Oth-
erwise, i.e., if T = gĝ, then the challenge ciphertext is distributed identically as in Game 2.
Hence, (4) follows. We want to mention that A only receives tokens to puncture ciphertexts up to
min(t∗win, t

∗
exp). Since A does not receive corresponding secret keys, also the further puncturings of

the challenge ciphertext stay unnoticed in the view of A due to LS.

Lemma 3 (Game 2 to Game 3). Under RS of DSG, Game 2 and Game 3 are computationally
indistinguishable. Concretely, for any PPT adversary A in the IND-CPE-CPA security experiment
with CPE, there is a distinguisher D on RS such that

|Pr [S2]− Pr [S3] | ≤ AdvrsDSG,G,D(λ, 2λ+ 1). (5)

Proof. In Game 2, we have normal secret keys while in Game 3 we have pseudo-normal secret keys.

Description. The challenge input is provided as (pp, ĥ,gĝ,T), where T is either h or hĥ, for pp

as before, for ĥ specified in sp, for g ← SampG(pp), ĝ ← ŜampG(pp, sp), and h ← SampH(pp),

ĥ← ŜampH(pp, sp).
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Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L
(depending on A-provided tags t∗, . . . ,min(t∗win, texp∗)). During the experiment, let t the currently
largest set in L.

First, D samples msk′ε ← H, sets mskε := msk′ε · ĥ, sets pkε := (pp,m(mskε)), sets

skε := Ext(mskε; T),

and sets L := L ∪ {({ε}, pkε, skε,⊥)}. D starts A with λ and, during the entire experiment,
answers KPunc′-queries (depending on t∗, . . . ,min(t∗win, texp∗)), for t the currently largest set in L
and A-chosen t ∈ T .

When A outputs the target message and ciphertext (M∗0 , C
∗
pkt\{t∗},t∗exp

), D outputs b← {0, 1} if

verification Ver(pkt\{t∗}, C
∗
pkt\{t∗},t∗exp

) = 0 holds; otherwise,D decrypts messageM∗1 := Dec(skt\{t∗},

C∗pkt\{t∗},texp). Furthermore, if not already done via KPunc′, D punctures keys via (pkt∪{t∗}, skt∪{t∗},

∆t∗)← KPunc(pkt, skt, t
∗) and updates the list L := L ∪ {(t ∪ {t∗}, pkt∪{t∗}, skt∪{t∗}, ∆t∗).

D computes Cε ← Ênc(mskε,M
∗
b ; gĝ) and Cti+1 ← CPunc(Cti , ∆ti), for t0 := ε, for all ti ∈

t ∪ {t∗}. D sends to A:

(Ct∪{t∗}, pkt∪{t∗}, ∆t∗).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = h, then the secret keys are distributed identically as in Game 2. Otherwise, i.e.,
if T = hĥ, then the secret keys are distributed identically as in Game 3. Particular, see that A
only receives puncture tokens for t∗, . . . ,min(t∗win, texp∗). Furthermore, see that msk and msk′ are
identically distributed and we have that m(msk) = m(msk′) holds due to orthogonality of DSG.
Hence, (5) follows.

Lemma 4 (Game 3 to Game 4). We have

|Pr [S3]− Pr [S4] | = 0. (6)

Proof. In Game 3, we have pseudo-normal secret keys while in Game 3 we have pseudo-normal semi-
functional secret keys. We set skε := Ext((ĥ)α ·mskε; hĥ), for uniform α← ZN , h← SampH(pp),

and ĥ ← ŜampH(pp, sp). This is reminiscent of Lemma 4 in [CW14b]. Essentially, we use the

parameter-hiding property of DSG to information-theoretically embed (ĥ)α. The results in pseudo-
normal semi-functional keys. This even holds after the adversary sees the (punctured) challenge

ciphertext for all α as shown in [CW14b] since due to non-degeneracy, we have that (ĥ)α can be

replaced by some suitable (ĥ0)α
′
, for ĥ = (ĥ0, . . . )← SampH(pp, sp) and suitable α′ ∈ ZN . Hence,

(6) follows. In particular, see that m(mskε) = m(ĥ · mskε) and, hence, the adversary does not

receive any further information on ĥ through the public keys.

Lemma 5 (Game 4 to Game 5). Under RS of DSG hold, Game 4 and Game 5 are compu-
tationally indistinguishable. Concretely, for any PPT adversary A in the IND-CPE-CPA security
experiment with CPE, there is a distinguisher D on RS such that

|Pr [S4]− Pr [S5] | ≤ AdvrsDSG,G,D(λ, 2λ+ 1). (7)

Proof. In Game 4 we have pseudo-normal semi-functional secret keys while in Game 5 we have
semi-functional secret keys.

Description. The challenge input is provided as (pp, ĥ,gĝ,T), where T is either h or hĥ, for pp

as before, for ĥ specified in sp, for g ← SampG(pp), ĝ ← ŜampG(pp, sp), and (h) ← SampH(pp),

ĥ← ŜampH(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set

L (depending on the A-provided tags t∗, . . . ,min(t∗win, texp∗)). During the experiment, let t the
currently largest set in L.

First, D samples msk′ε ← H, sets mskε := msk′ε · ĥ, sets pkε := (pp,m(mskε)), sets

skε := Ext((ĥ)α ·mskε; T),
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for uniform α← Z∗ord(H), and sets L := L∪ {({ε}, pkε, skε,⊥)}. D starts A with λ and, during the

entire experiment, answers KPunc′-queries (depending on A-provided tags t∗, . . . ,min(t∗win, texp∗)),
for t the currently largest set in L and A-chosen t ∈ T .

When A outputs the target message and ciphertext (M∗0 , C
∗
pkt\{t∗},t∗exp

), D outputs b← {0, 1} if

verification Ver(pkt\{t∗}, C
∗
pkt\{t∗},t∗exp

) = 0 holds; otherwise,D decrypts messageM∗1 := Dec(skt\{t∗},

C∗pkt\{t∗},texp). Furthermore, if not already done via KPunc′, D punctures keys via (pkt∪{t∗}, skt∪{t∗},

∆t∗)← KPunc(pkt, skt, t
∗) and updates the list L := L ∪ {(t ∪ {t∗}, pkt∪{t∗}, skt∪{t∗}, ∆t∗).

D computes Cε ← Ênc(mskε,M
∗
b ; gĝ) and Cti+1

← CPunc(Cti , ∆ti), for t0 := ε, for all ti ∈
t ∪ {t∗}. D sends to A:

(Ct∪{t∗}, pkt∪{t∗}, ∆t∗).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = hĥ, then the secret keys are distributed identically as in Game 4. Otherwise,
i.e., if T = h, then the secret keys are distributed identically as in Game 5. Particular, see that A
only receives puncture tokens for t∗, . . . ,min(t∗win, texp∗). Hence, (7) follows.

Lemma 6 (Game 5 to Game 6). Game 5 and Game 6 are perfectly indistinguishable due
to DSG’s non-degeneracy property. Concretely, for any PPT adversary A on the IND-CPE-CPA
security of CPE, it holds that

|Pr [SA,5]− Pr [SA,6] | = 0. (8)

Proof. In Game 6, we replace the challenge message M∗b , for b ∈ {0, 1}, with a (fresh) uniformly
random GT -element. We argue with DSG’s non-degeneracy property for this change. Concretely,
for Game-5 challenge ciphertext

Ênc(ĥ ·msk′ε,M∗b , texp; gĝ) := (g0ĝ0, . . . , e(g0ĝ0, ĥ ·msk′ε) ·M∗b )

for g ← SampG(pp), for ĝ ← ŜampG(pp, sp), note that e(ĝ0, ĥ), is uniformly distributed in a
nontrivial subgroup G′T ⊂ GT due to the non-degeneracy property of DSG.

Lemma 7 (Game 6). For any PPT adversary A in the IND-CPE-CPA security experiment with
CPE, it holds that

Pr [SA,6] = 1/2. (9)

Proof. In Game 6, for (uniform) b ∈ {0, 1}, we provide A with a challenge ciphertext that include
a uniform GT -element instead of a A-chosen b-dependent message. Hence, b is completely hidden
from A’s view and (9) follows.

Taking (3), (4), (5), (6), (7), (8), and (9) together, shows (2). ut

6.4 Concrete Instantiation under the d-Lin Assumption

For completeness, we provide the concrete DSG instantiation of Chen and Wee [CW14b] and argue
that our slight change can be instantiated straightforwardly in prime-order groups under the d-Lin
assumptions.

We use the matrix-in-the-exponent notation [CW14b]; namely, for matrices A = (ai,j)i,j ←
(Zk×kp ) and B = (bi,j)i,j ← (Zk×kp ), we have e(gA, gB) = e(g, g)A

>B. The DSG construction
(adapted mostly verbatim from [CW14b]) is as follows (we omit the algorithm SampGT since we
directly use the respective values:

(pp, sp)← SampP(λ, n): sample (G1,G2, G
′
T , p, g1, g2, gT , g

′
1, g
′
2, e
′)← G(λ, 1) and set G := Gd+1

1 ,H :=
Gd+1

2 , GT := G′T , e := e′, g := g1, h := g2. Furthermore, sample matrices B ← GLd+1(Zp) and
A1, . . . ,An ← Zd+1×d+1

p , set B∗ := (B−1)>, and sample random full-rank diagonal matrix

R ∈ Z(d+1)×(d+1)
p whose bottom-right entry is 1. Then, set

D := πL(B),Di := πL(BAi),D
∗ := πL(B∗R),D∗i := πL(B∗A>i R)

f := πR(B), fi := πR(BAi), f
∗ := πR(B∗R), f∗i := πR(B∗A>i R),
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for all i ∈ [n], and function m(hv) := e(gD, hv) (= e(g, h)D
>v), for all v ∈ Zd+1

p . Define

ĥ := hf
∗

2 and output

pp := (G,H, GT , p, g, h, gT , e,m, gD, gD1 , . . . , gDn , hD
∗
, hD

∗
1 , . . . , hD

∗
n)

sp := (gf , gf1 , . . . , gfn , hf
∗
, hf

∗
1 , . . . , hf

∗
n).

g← SampG(pp): sample s← Zdp and output g := (gDs, gD1s, . . . , gDns) ∈ Gn+1.

ĝ← ŜampG(pp, sp): sample ŝ← Z∗p and output ĝ := (gŝf , gŝf1 , . . . , gŝfn) ∈ Gn+1.

h← SampH(pp): sample r← Zdp and output h := (hD
∗r, hD

∗
1r, . . . , hD

∗
nr) ∈ Hn+1.

ĥ← ŜampH(pp): sample r̂← Z∗p and output ĥ := (hr̂f
∗
, hr̂f

∗
1 , . . . , hr̂f

∗
n) ∈ Hn+1.

Correctness. See that the output of SampG is uniformly distributed in Gn+1 which follows from
the fact that Zdp is a additive group, and hence, also the G-subgroup property holds straightfor-
wardly.

Security. All security claims carry over from [CW14b] since no changes in the assumptions or
distributions were made for our slight DSG adaptation.
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A UE with Uni-Directional Key Updates in the Weak IND-UE-CPA
Model

In this section, we give UE with uni-directional key updates in our weak IND-UE-CPA model
by slightly adapting the IND-CPE-CPA notion such that this notion implies weak IND-UE-CPA
security. Furthermore, we give a construction of such a CPE RCPE and sketch the differences to
the stronger CPE construction. Interestingly, we only have to change the way puncture tokens
are constructed. This has the effect that we achieve a much more efficient UE construction with
O(log2 n) keys and ciphertexts as well as constant token-size with unbounded number of updates
(for maximum number n of possible puncturings).

A.1 Restricted IND-CPE-CPA Model

We have to restrict the IND-CPE-CPA model only in one aspect, namely, that the adversary is
restricted to output a tag t∗start from the ordered tag space such that the adversary now does not
get keys for tags t∗start, . . . , t

∗, . . . ,min(t∗exp, t
∗
win) instead of t∗, . . . , t∗win as in the full IND-CPE-CPA

model. This is done by restricting the KPunc′-oracle to tags not in t∗start, . . . , t
∗, . . . ,min(t∗exp, t

∗
win)

and only outputting public-keys and tokens but no keys for such tags. The restricted IND-CPE-
CPA model is as follows. The CPE correctness definition and the public-verifiability property stay
the same.

Restricted IND-CPE-CPA security. The notion ensures that fresh ciphertexts from Enc and
punctured ciphertexts from CPunc are indistinguishable. We say that a CPE scheme is restricted
IND-CPE-CPA-secure if any PPT adversary succeeds in the following experiment only with prob-
ability negligibly larger that 1/2.

The experiment starts by computing the initial public and secret key pair (pkε, skε)← Gen(λ).
Those keys are not punctured as indicated by ε and will be punctured on tags via our restricted
KPunc′ during the experiment as given in Figure 10. Let (pkt, skt) be the public and secret keys
associated to the (currently largest) punctured-tag set t. During the experiment, the adversary
then has fully adaptive access to a KPunc′(pkt, skt, ·)-oracle as given

KPunc′(pkt, skt, t) : on input t, if (·, ·, ·,∆t) ∈ L, return ⊥. Otherwise, compute
(pkt∪{t}, skt∪{t},∆t) ← KPunc(pkt, skt, t), set L := L ∪ {(t ∪ {t}, pkt∪{t}, skt∪{t},∆t)}
and (pkt, skt) := (pkt∪{t}, skt∪{t}).
– If t ∈ {t∗start, . . . ,t∗, . . . ,min(t∗win, t

∗
exp)}, return (pkt,∆t),

– else return (pkt, skt,∆t).

Fig. 10. Key puncture oracle in the restricted IND-CPE-CPA experiment.

At some point, the adversary outputs a target message M∗, a target ciphertext C∗t∗exp . The

experiment checks that target ciphertext C∗t∗exp is a valid ciphertext using the public verifiability

algorithm Ver. If so and the KPunc′ oracle was not yet called on t∗, it proceeds with puncturing
the current key pair on the target tag t∗. Furthermore, the experiment tosses a coin b. If b = 0,
then compute a fresh encryption C0 of the target message M under the update key pair using
Enc and expiry tag t∗exp; otherwise, if b = 1 compute punctured ciphertext C1 using CPunc. The
adversary eventually outputs a guess b′ where the experiment returns 1 if b′ = b. Figure 11 depicts
the experiment.

Definition 6 (Restricted IND-CPE-CPA security). A CPE scheme CPE is restricted IND-
CPE-CPA-secure iff for any valid PPT adversary A the advantage functions

Advind-cpe-cpaRCPE,A (λ) := |Pr
[
Expind-cpe-cpaRCPE,A (λ) = 1

]
− 1/2 |

is negligible in λ, where Expind-cpe-cpaRCPE,A is defined as follows:

A.2 Constructing CPE in the Restricted IND-CPE-CPA Security Model

The CPE construction under the restricted IND-CPE-CPA security model will be almost the same
except that the puncture token will simpler. Hence, also public keys and ciphertexts will contain
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Experiment Expind-cpe-cpaRCPE,A (λ)
(pkε, skε)← Gen(λ), b← {0, 1}
(t∗, t∗win, t

∗
exp, , t

∗
startst)← A(λ)

if t∗win ≤ t∗ or t∗exp ≤ t∗ or t∗start > t∗, then return b

(M∗, C∗pkt\{t∗},t∗exp , st)← AKPunc′(pkt,skt,·)(λ, st)

if Ver(pkt\{t∗}, C
∗
pkt\{t∗},t

∗
exp

) = 0 or pkt\{t∗} 6∈ K, then return b

if (·, ·, ·,∆t∗) 6∈ L, then
(pkt, skt,∆t∗)← KPunc(pkt\{t∗}, skt\{t∗}, t

∗)
C0 ← Enc(pkt,M

∗, t∗exp), C1 ← CPunc(C∗pkt\{t∗},t∗exp ,∆t∗)

b′ ← AKPunc′(pkt,skt,·)(Cb, pkt,∆t∗ , st)
if b = b′ then return 1 else return 0

Fig. 11. The restricted IND-CPE-CPA security notion for RCPE.

less group elements as in our stronger CPE construction (i.e., less elements from the DSG will be
needed). In particular, we do not need the concept of shadow components anymore since we do
not have to blind the puncture token. KPunc will the same as before, but will not blind the δt
with elements from SampH and directly output δt. For completeness, we recap the construction
now and argue that the security proof will proceed with almost the same strategy. Furthermore,
correctness and public verifiability is also achieved.

KTrunc, CTrunc and further helper algorithms for RCPE. As for CPE, we define the two
tree-pruning algorithms KTrunc and CTrunc. Furthermore, we need two helper PPT algorithms,
i.e., key delegation KDel and re-randomization KRerand as well as ciphertext delegation CDel and
re-randomization CRerand.

Intuition of KTrunc. Essentially, KTrunc takes the current tree configuration as provided in the
public and secret keys (i.e., which tags are already punctured and, hence, how the tree is pruned for
such tags). It further receives an input-tag t that will be punctured. KTrunc first finds all elements
from the root to the associated leaf of tag t. (Since those elements can be used to derive a secret
key for tag t.) It delegates the key elements on that path such that no ancestor elements for t
are available anymore and keeps the other key elements. The result is a pruned tree that excludes
secret-key material for t for the new set of punctured tags t ∪ {t}. The concrete PPT algorithms
works as follows:

KTrunc(pkt, skt, t) : on input keys (pp,m(mskt)) := pkt and (skt,1, . . . , skt,m) := skt, for some
integer m ∈ O(λ), output punctured public key, punctured secret key, and token according to
t = (t1, . . . , tλ) as follows:
1a. let skt,i be the secret key part associated to the unique node which is associated to a

prefix of t. (Such unique element always exists, otherwise t would have been punctured
already.) Derive delegated secret keys hanging from the path to t by iteratively call-
ing KDel on all prefixes of t starting from the node associated to skt,i and set sk′t :=
(sk′t,≤m, sk

′
t,m+1, sk

′
t,m+2, . . . ), where sk′t,≤m is the same as skt, but without skt,i, and

sk′t,m+1, sk
′
t,m+2, . . . are those derived delegated keys via KDel hanging from the path to t;

else,
1b. if there exist a leaf associated to a t-secret key skt,i, for i ∈ [m], then set sk′t := sk′t,≤m,

where sk′t,≤m is the same as skt, but without the leaf-associated secret key skt,i.
2. Sample δ ← H, for all sk′t-elements sk′t,i =: (h,mskt · h0 · · · , . . .), compute sk′t∪{t},i :=

(h,mskt · δ · h0 · · · , . . .).
3. For each node prefix tag pti = (pti,1, . . . , pti,m′) for prefix length m′ ≤ λ associated to
sk′t∪{t},i, re-randomize all elements sk′t∪{t},i via sk′′t∪{t},i ← KRerand(sk′t∪{t},i, pti) and set

sk′t∪{t} := (sk′′t∪{t},i)i.

4. Set ∆t∪{t} := δ.
5. Output (pkt∪{t}, sk

′
t∪{t}, ∆t∪{t}), for pkt∪{t} := (pp,m(mskt) ·m(δ)) = (pp,m(mskt · δ)).

Intuition of CTrunc. Essentially, CTrunc (works similarly to KPunc) and takes the current tree
configuration as provided in the public keys (i.e., which tags are already punctured and, hence,
how the tree is pruned for such tags). It further receives an input-tag t that will be punctured with
the help of a puncture token ∆t∪{t}. CTrunc first finds all elements from the root to the associated
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leaf of tag t. (Since those elements can be used to derive a decryptable ciphertext elements for
tag t.) It delegates the ciphertext elements on that path such that no ancestor elements for t
are available anymore and keeps the other ciphertext elements. The result is a pruned tree that
excludes ciphertext material for t for the new set of punctured tags t ∪ {t}. The concrete PPT
algorithms works as follows:

CTrunc(Cpkt,texp , ∆t∪{t}) : on input ciphertext

Cpkt,texp =: ((Cpkt,1, SCpkt,1), . . . , (Cpkt,m),

for some integer m ∈ O(λ), and ∆t =: δ with ` := |t| − 1 < λ, output a punctured ciphertext
as follows:
1. Set C ′pkt,i := (g0, . . . , e(g0,mskt) · e(g0, δ) ·M) = (g0, . . . , e(g0,mskt · δ) ·M).

2a. For all C ′pkt,i, derive delegated ciphertexts hanging from the path to t by iteratively calling
CDel on all prefixes of t starting from the node associated to C ′pkt,i and set C ′pkt,t′ :=
(C ′pkt,≤m, C

′
pkt,m+1, C

′
pkt,m+2, . . . ), where C ′pkt,≤m is the same as C ′pkt,t′ , but without Cpkt,i,

and C ′pkt,m+1, C
′
pkt,m+2, . . . are those derived delegated keys via CDel hanging from the path

to t.
2b. if there exist a leaf associated to a t-ciphertext C ′pkt,i, for i ∈ [m], then set C ′′pkt := C ′pkt,≤m,

where C ′pkt,≤m is the same as Cpkt , but without the leaf associated ciphertext Cpkt,i.
3. For each node prefix tag pti = (pti,1, . . . , pti,m′) with prefix length m′ ≤ λ associated to
C ′pkt∪{t},i, re-randomize all elements C ′pkt∪{t},i by computing C ′′pkt∪{t},i ← CRerand(C ′pkt∪{t},i,

pti) and set C ′pkt∪{t},texp := (C ′′pkt∪{t},i)i.

4. Output C ′′pkt,texp .

Intuition of KDel, KRerand, CDel, and CRerand. Essentially, KDel delegates secret key material
as done in HIBE key delegation where KRerand re-randomizes the key material. CDel delegates
ciphertext material as done in HIBE ciphertext delegation (as discussed in the introduction) where
CRerand re-randomizes the ciphertext material. The concrete PPT algorithms works as follows:

KDel(skt,i, pt) : on input secret key skt,i =: (h0,mskt · · · , h`) for prefix pt′ = (pt1, . . . , pt`−1) and
(prefix) tag pt = (pt′, pt`), output

sk′t,i := (h0,mskt · hε ·
`−1∏
j=1

h
ptj
j hpt`` , h`+1, . . . , hλ).

KRerand(skt,i, pt) : on input secret key skt,i =: (h0,mskt · · · , h`, . . . , hλ) for prefix tag pt′ =
(pt1, . . . , pt`), for (h′0, h

′
ε, h
′
1, . . . , h

′
2λ)← SampH(pp), output

sk′t,i := (h0 · h′0,mskt · hεh′ε ·
∏̀
j=1

h
ptj
j ·

∏̀
j=1

(h′j)
ptj , h`+1 · h′`+1, . . . , hλ · h′λ).

CDel(Cpkt,i, pt) : on input ciphertext

Cpkt,i =: (g0, gε · · · , g`, . . . , gλ, e(g,mskt) ·M)

for prefix pt = (pt1, . . . , pt`−1), and (prefix) tag pt = (pt′, pt`), output

C ′pkt,i := (g0, gε ·
`−1∏
j=1

g
ptj
j gpt`` , g`+1, . . . , e(g,mskt) ·M).

CRerand((Cpkt,i, pt) : on input ciphertext

Cpkt,i =: (g0, gε · · · , g`, . . . , gλ, e(g0,mskt) ·M),

for prefix tag pt = (pt1, . . . , pt`) and `′ := |t| − 1, for (g′0, g
′
ε, g
′
1, . . . , g

′
λ)← SampG(pp), output

C ′pkt,i := (g′0g0, gεg
′
ε ·
∏̀
j=1

g
ptj
j ·

∏̀
j=1

(g′j)
ptj , g`+1g

′
`+1, . . . , gλg

′
λ,

e(g0,mskt) · e(g′0,mskt) ·M).
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Let DSG = (SampP,SampG,SampH, ŜampG, ŜampH) be a DSG scheme. We will construct a
CPE scheme RCPE = (Gen,KPunc,CPunc,Enc,Dec) with message space M := GT and tag space
T := ZN (determined in pkε after running SampP in Gen). The construction of our CPE scheme
RCPE from DSG is given in Figure 12.

Gen(λ) : compute (pp, sp)← SampP(λ, λ+1), secret key skε := (h0, hε·mskε, h1, . . . , hλ), formskε ←
H, for (h0, hε, . . . , hλ)← SampH(pp), and public key pkε := (pp,m(mskε)), and return (pkε, skε).

a

KPunc(pkt, skt, t) : on input (pkt, skt) and tag t ∈ T , outputs a public key, punctured secret key,
and update token (pkt∪{t}, skt∪{t},∆t∪{t})← KTrunc(pkt, skt, t).

Enc(pkt,M, texp) : on input public key pkt =: (pp,m(mskt)), message M ∈ M, and expiry tag

texp ≤ 2λ
′
, λ′ ∈ [λ], for (gi, gi,ε, gi,1, . . . , gi,λ) ← SampG(pp; s), for s ← ZN , find all tag prefixes

pti = (pti,1, . . . , pti,m), m ∈ O(λ), according to the binary tree that exclude (t, . . . , texp), for ` := |t|,
and compute

Cpkt,texp,i := (gi,0, gi,ε

m∏
j=1

g
pti,j
i,j , gi,m+1 . . . , gi,λ′ ,m(mskt)

s ·M),

Output Cpkt,texp := (Cpkt,texp,i)i.

CPunc(Cpkt,texp ,∆t∪{t}) : on input ciphertext Cpkt,texp , puncture token ∆t∪{t}, outputs
Cpkt∪{t},texp ← CTrunc(Cpkt,texp ,∆t∪{t}).

Dec(skt, Cpkt,texp) : on input secret key skt =: (skt,1, . . . ) and ciphertext Cpkt,texp =: (Cpkt,texp,1, . . . )
find the smallest tag t ∈ T that has not been punctures in either skt and Cpkt,texp . (Such tag must
exists.) Find the corresponding secret-key element skt,i and the ciphertext element Cpkt,t,i that are
associated to a prefix of t = (t1, . . . , tλ). (This is either a leaf-tag itself or a prefix with length λ−1.)

Compute (h0,mskt ·hε ·
∏λ
j=1 h

tj
j , . . .)← KDel(skt,i, t) and (g0, gε ·

∏λ
j=1 g

tj
j , . . . , e(g,mskt) ·M)←

CDel(Ct,texp,i, t), and output

M :=
e(h0, gε ·

∏λ
j=1 g

tj
j )

e(g0,mskt · hε ·
∏λ
j=1 h

tj
j )
· e(g,mskt) ·M.

a Note that sp will only be used in the security proof.

Fig. 12. RCPE from DSG.

Public verifiability of ciphertexts. As done for CPE, this holde due to the DSG’s associativity
property.

Correctness of RCPE. Correctness holds similarly to correctness of CPE, this due to DSG’s
associativity and projective properties (cf. Dec in Figure 12).

IND-CPE-CPA security of RCPE. Our proof strategy is essentially the same as the proof
strategy for CPE adapted to the new t∗start and how puncture tokens are generated. For completeness,
we recap this here.

Theorem 3. If DSG is a DSG scheme, then RCPE is restricted IND-CPE-CPA-secure. Concretely,
for any PPT adversary A there are distinguishers D1 on LS and D2, D3 on RS, respectively,

Advind-cpe-cpaRCPE,A (λ) ≤ AdvlsDSG,G,D1
(λ, 2λ+ 1)

+ AdvrsDSG,G,D2
(λ, 2λ+ 1) + AdvrsDSG,G,D3

(λ, 2λ+ 1). (10)

Proof. We show the restricted IND-CPE-CPA security of RCPE for any PPT adversary A in a
sequence of games where we successively change the games until we arrive at a game where A has
only negligible advantage (i.e., success probability of 1/2). Let SA,j be the event that A succeeds
in Game j. We give an overview how the challenge ciphertexts and the secret keys are derived in
Table 2.

Game 0. The restricted IND-CPE-CPA experiment.
Game 1 Instead of directly using the ciphertext input by A, D decrypts and re-encrypts again

starting from a ciphertext for mpkε. The change is conceptional. Also we re-write how the first
secret key is derived.

Game 2. The challenge ciphertext is pseudo-normal.
Game 3. The secret keys are pseudo-normal.
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Game 4. The secret keys are semi-functional pseudo-normal.
Game 5. The secret keys are semi-functional.
Game 6. The challenge ciphertext message is a uniform GT -element.

Ênc-output for challenge ciphertext Ext-output for secret keys Assumption

Game 0 Not used Not used -

Game 1 Ênc(mskε,M
∗
b ;g) Ext(mskε;h) -

Game 2 Ênc(mskε,M
∗
b ;gĝ) As in Game 1 LS

Game 3 As in Game 2 Ext(mskε;hĥ) RS

Game 4 As in Game 2 Ext((ĥ)α ·mskε;hĥ) Parameter hiding

Game 5 As in Game 2 Ext((ĥ)α ·mskε;h) RS

Game 6 Ênc(ĥ ·msk′ε, R;gĝ), for R← GT As in Game 5 Non-degeneracy

Table 2. Output of Ênc and Ext to generate (challenge) ciphertexts and secret keys, for α ← ZN , for

g← SampG(pp), for ĝ← ŜampG(pp, sp), and for h← SampH(pp) and ĥ← SampH(pp, sp). The differences
between games are given by underlining.

Lemma 8 (Game 0 to Game 1). Game 0 and Game 1 are perfectly indistinguishable, i.e.,

|Pr [SA,0]− Pr [SA,1] | = 0. (11)

Proof. The is a conceptional change in the security experiment and, hence, does not change the view
of A. Instead of using the A-provided ciphertext C∗pkt\{t∗},t∗exp (after positive verification via Ver) as

input to CPunc to compute the challenge ciphertext, D decrypts M ← Dec(skt\{t∗}, C
∗
pkt\{t∗},t∗exp

),

re-encrypts again by computing Cpkti+1
← CPunc(Cpkti , ∆ti), for t0 := ε and Cpkε ← Enc(pkε,M,

t∗exp), for all ti ∈ t, for t the largest set in L (after inserting the target tag t∗).
This change cannot be noticed by A since the distributions of Cpkt\{t∗} and C∗t\{t∗},t∗exp

are

perfectly indistinguishable due to the re-randomization properties of G-elements as output by
SampG(pp) and the public verifiability of C∗t\{t∗},t∗exp

using Ver. See that if Ver outputs 1, the GT -

element that blinds the message is fixed under the respective public key pkt\{t∗}. Furthermore, we

write Ext(mskε; h) to derive the first secret key which is only a re-write in different form to make
the input of SampH explicit.

Lemma 9 (Game 1 to Game 2). Under LS of DSG, Game 1 and Game 2 are computationally
indistinguishable. Concretely, for any PPT adversary A in the restricted IND-CPE-CPA security
experiment with RCPE there is a distinguisher D on LS such that

|Pr [SA,1]− Pr [SA,2] | ≤ AdvlsDSG,G,D(λ, 2λ+ 1). (12)

Proof. In Game 1, the challenge ciphertext is normal in the sense of RCPE while in Game 2, the
challenge ciphertext is pseudo-normal.

Description. The challenge input is provided as (pp,T), where T is either g or gĝ, for pp =

(G,H, GT , N, e, pars), g← SampG(pp), and ĝ← ŜampG(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on the A-provided tags (t∗start, . . . ,min(t∗win, texp∗)). During the experiment, let t the
currently largest set in L.

D samples mskε ← H and sets pkε := (pp,m(mskε)), skε := Ext(mskε; h), for h← SampH(pp),
and sets L := L∪{({ε}, pkε, skε,⊥)}. D starts A with λ and, during the entire experiment, answers
KPunc′(pkt, skt, t)-queries, for t the currently largest set in L, A-chosen t ∈ T , and depending on
t∗start, . . . ,min(t∗win, t

∗
exp).

WhenA outputs (M∗0 , C
∗
pkt\{t∗},t∗exp

),D outputs b← {0, 1} if verification Ver(pkt\{t∗}, C
∗
pkt\{t∗},t∗

)

= 0 holds; otherwise, D decrypts message M∗1 := Dec(skt\{t∗}, C
∗
pkt\{t∗},t∗exp

). Furthermore, if not
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already done via KPunc′, D punctures keys via (pkt∪{t∗}, skt∪{t∗}, ∆t∗)← KPunc(pkt, skt, t
∗) and

updates the list L := L ∪ {(t ∪ {t∗}, pkt∪{t∗}, skt∪{t∗}, ∆t∗).

D computes Cε ← Ênc(mskε,M
∗
b , t
∗
exp; T) and Cti+1

← CPunc(Cti , ∆ti∪{ti}), for t0 := ε, for all
ti ∈ t ∪ {t∗}. D sends to A:

(Ct∪{t∗}, pkt∪{t∗}, ∆t∗).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = g, then the challenge ciphertext is distributed identically as in Game 1. Oth-
erwise, i.e., if T = gĝ, then the challenge ciphertext is distributed identically as in Game 2.
Hence, (12) follows. We want to mention that A only receives tokens to puncture ciphertexts up
to min(twin, texp). Since A does not receive corresponding secret keys, also the further puncturings
of the challenge ciphertext stay unnoticed in the view of A due to LS.

Lemma 10 (Game 2 to Game 3). Under RS of DSG, Game 2 and Game 3 are computationally
indistinguishable. Concretely, for any PPT adversary A in the restricted IND-CPE-CPA security
experiment with RCPE, there is a distinguisher D on RS such that

|Pr [S2]− Pr [S3] | ≤ AdvrsDSG,G,D(λ, 2λ+ 1). (13)

Proof. In Game 2, we have normal secret keys while in Game 3 we have pseudo-normal secret keys.

Description. The challenge input is provided as (pp, ĥ,gĝ,T), where T is either h or hĥ, for pp

as before, for ĥ specified in sp, for g ← SampG(pp), ĝ ← ŜampG(pp, sp), and h ← SampH(pp),

ĥ← ŜampH(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on the A-provided tags (t∗start, . . . ,min(t∗win, texp∗)). During the experiment, let t the
currently largest set in L.

First, D samples msk′ε ← H, sets mskε := ĥ ·msk′ε, sets pkε := (pp,m(mskε)), sets

skε := Ext(mskε; T),

and sets L := L ∪ {({ε}, pkε, skε,⊥)}. D starts A with λ and, during the entire experiment,
answers KPunc′-queries (depending on t∗start, . . . ,min(t∗win, texp∗)), for t the currently largest set in
L and A-chosen t ∈ T .

WhenA outputs (M∗0 , C
∗
pkt\{t∗},t∗exp

),D outputs b← {0, 1} if verification Ver(pkt\{t∗}, C
∗
pkt\{t∗},t∗

)

= 0 holds; otherwise, D decrypts message M∗1 := Dec(skt\{t∗}, C
∗
pkt\{t∗},t∗exp

). Furthermore, if not

already done via KPunc′, D punctures keys via (pkt∪{t∗}, skt∪{t∗}, ∆t∗)← KPunc(pkt, skt, t
∗) and

updates the list L := L ∪ {(t ∪ {t∗}, pkt∪{t∗}, skt∪{t∗}, ∆t∗).

D computes Cε ← Ênc(mskε,M
∗
b ; gĝ) and Cti+1

← CPunc(Cti , ∆ti), for t0 := ε, for all ti ∈
t ∪ {t∗}. D sends to A:

(Ct∪{t∗}, pkt∪{t∗}, ∆t∗).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = h, then the secret keys are distributed identically as in Game 2. Otherwise, i.e.,
if T = hĥ, then the secret keys are distributed identically as in Game 3. Particular, see that A
only receives puncture tokens for t∗start, . . . ,min(t∗win, texp∗). furthermore, see that msk and msk′ are
identically distributed and, in particular, m(mskε) = m(msk′ε) holds due to DSG’s orthogonality
property. Hence, (13) follows.

Lemma 11 (Game 3 to Game 4). We have

|Pr [S3]− Pr [S4] | = 0. (14)

Proof. In Game 3, we have pseudo-normal secret keys while in Game 3 we have pseudo-normal semi-
functional secret keys. We set skε := Ext((ĥ)α ·mskε; hĥ), for uniform α← ZN , h← SampH(pp),

and ĥ ← ŜampH(pp, sp). This is reminiscent of Lemma 4 in [CW14b]. Essentially, we use the

parameter-hiding property of DSG to information-theoretically embed (ĥ)α. The results in pseudo-
normal semi-functional keys. This even holds after the adversary sees the (punctured) challenge
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ciphertext for all α as shown in [CW14b] since due to non-degeneracy, we have that (ĥ)α can be

replaced by some suitable (ĥ0)α
′
, for ĥ = (ĥ0, . . . )← SampH(pp, sp) and suitable α′ ∈ ZN . Hence,

(14) follows. In particular, see that m(mskε) = m(ĥ ·mskε) and, hence, the adversary does not

receive any further information on ĥ through the public keys.

Lemma 12 (Game 4 to Game 5). Under RS of DSG hold, Game 4 and Game 5 are computa-
tionally indistinguishable. Concretely, for any PPT adversary A in the restricted IND-CPE-CPA
security experiment with RCPE, there is a distinguisher D on RS such that

|Pr [S4]− Pr [S5] | ≤ AdvrsDSG,G,D(λ, 2λ+ 1). (15)

Proof. In Game 4 we have pseudo-normal semi-functional secret keys while in Game 5 we have
semi-functional secret keys.

Description. The challenge input is provided as (pp, ĥ,gĝ,T), where T is either h or hĥ, for pp

as before, for ĥ specified in sp, for g ← SampG(pp), ĝ ← ŜampG(pp, sp), and (h) ← SampH(pp),

ĥ← ŜampH(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on the A-provided tags (t∗start, . . . ,min(t∗win, texp∗)). During the experiment, let t the
currently largest set in L.

First, D samples msk′ε ← H, sets mskε := ĥ ·msk′ε, sets pkε := (pp,m(mskε)), sets

skε := Ext((ĥ)α ·msk′ε; T),

for uniform α ← Zord(H), and sets L := L ∪ {({ε}, pkε, skε,⊥)}. D starts A with λ and, during
the entire experiment, answers KPunc′-queries (depending on t∗start, . . . ,min(t∗win, texp∗)), for t the
currently largest set in L and A-chosen t ∈ T .

WhenA outputs (M∗0 , C
∗
pkt\{t∗},t∗exp

),D outputs b← {0, 1} if verification Ver(pkt\{t∗}, C
∗
pkt\{t∗},t∗

)

= 0 holds; otherwise, D decrypts message M∗1 := Dec(skt\{t∗}, C
∗
pkt\{t∗},t∗exp

). Furthermore, if not

already done via KPunc′, D punctures keys via (pkt∪{t∗}, skt∪{t∗}, ∆t∗)← KPunc(pkt, skt, t
∗) and

updates the list L := L ∪ {(t ∪ {t∗}, pkt∪{t∗}, skt∪{t∗}, ∆t∗).

D computes Cε ← Ênc(mskε,M
∗
b ; gĝ) and Cti+1 ← CPunc(Cti , ∆ti), for t0 := ε, for all ti ∈

t ∪ {t∗}. D sends to A:
(Ct∪{t∗}, pkt∪{t∗}, ∆t∗).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = hĥ, then the secret keys are distributed identically as in Game 4. Otherwise,
i.e., if T = h, then the secret keys are distributed identically as in Game 5. Particular, see that A
only receives puncture tokens for t∗, . . . ,min(t∗win, texp∗). Hence, (15) follows.

Lemma 13 (Game 5 to Game 6). Game 5 and Game 6 are statistically indistinguishable.
Concretely, for any PPT adversary A on the IND-CPE-CPA security of CPE, it holds that

|Pr [SA,5]− Pr [SA,6] | = 0. (16)

Proof. In Game 6, we replace the challenge message M∗b , for b ∈ {0, 1}, with a (fresh) uniformly
random GT -element. We argue with DSG’s non-degeneracy property for this change. Concretely,
for Game-5 challenge ciphertext

Ênc(ĥ ·msk′ε,M∗b , texp; gĝ) := (g0ĝ0, . . . , e(g0ĝ0, ĥ ·mskε) ·M∗b )

for g ← SampG(pp), for ĝ ← ŜampG(pp, sp), note that e(ĝ0, ĥ), is uniformly distributed in a
nontrivial subgroup G′T ⊂ GT due to the non-degeneracy property of DSG.

Lemma 14 (Game 6). For any PPT adversary A in the restricted IND-CPE-CPA security ex-
periment with RCPE, it holds that

Pr [SA,6] = 1/2. (17)

Proof. In Game 6, for (uniform) b ∈ {0, 1}, we provide A with a challenge ciphertext that include
a uniform GT -element instead of a A-chosen b-dependent message. Hence, b is completely hidden
from A’s view and (17) follows.

Taking (11), (12), (13), (14), (15), (16), and (17) together, shows (10). ut
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A.3 Weakly secure UE from restrictedly secure CPE

In this section, we construct updatable encryption (UE) with uni-directional key updates from
restrictedly secure ciphertext-puncturing encryption (CPE). The transformation is rather straight-
forward and the same as given in given in Section 5. More concretely, let RCPE = (RCPE.Gen,
RCPE.KPunc,RCPE.Enc, ,RCPE.CPunc,RCPE.Dec) with message spaceMRCPE and tag space T =
{1, 2, . . . , be(λ)c} be a restrictedly secure CPE scheme. We present our weakly secure UE scheme
UE = (Gen,Next,Enc,Dec) with message space M := MRCPE in Figure 13 for completeness and
further show correctness as well as weak IND-UE-CPA security.

Gen(λ) : compute (pkε, skε)← CPE.Gen(λ) and (pk1, sk1,∆1)← CPE.KPunc(pkε, skε, 1), and return
K1 := (pk1, sk1).

Next(Ke) : for Ke =: (pke, ske), return (Ke+1 := (pke+1, ske+1),∆e+1) ← CPE.KPunc(pke, ske, e +
1).

Enc(Ke,M, eexp) : for Ke =: (pke, ske), compute Ce,eexp ← CPE.Enc(pke,M, eexp).
Update(∆e+1, Ce,eexp): return CPE.CPunc(Ce,eexp ,∆e+1).
Dec(Ke, Ce) : for Ke =: (pke, ske), return CPE.Dec(ske, Ce,eexp).

Fig. 13. Construction of weakly IND-UE-CPA secure UE from restrictedly IND-CPE-CPA secure CPE.

For correctness, see that this directly translates from the CPE scheme, i.e., the ciphertext that
was computed by Enc and updated via Update can be decrypted by Dec if the keys match and the
ciphertext is not expired. We now turn to weak IND-UE-CPA security.

Theorem 4. If RCPE is restrictedly IND-CPE-CPA secure, then UE is weakly IND-UE-CPA se-
cure. Concretely, for any PPT adversary A there is a distinguisher D in the restricted IND-CPE-
CPA security experiment, such that Advind-cpe-cpaRCPE,D (λ) ≥ Advind-ue-cpaUE,A (λ).

Proof. The difference in this proof compared to Theorem 1 is that utilize the starting epoch e∗start
which we will map to the starting tag t∗start of the RCPE. Anything else stays the same, we highlight
the changes, and recap the proof here for completeness.

We show the Theorem by constructing a PPT distinguisher D in the restricted IND-CPE-CPA
security experiment with RCPE as defined in Figure 11 from any successful PPT adversary A in the
weak IND-UE-CPA security experiment with UE as defined in Figure 5. The distinguisher D starts
A and receives e∗, estart, eend, e

∗
exp. (If the A-input does not have the right distribution as defined in

Figure 5, then output b← {0, 1}.) It then outputs (t∗ := e∗, t∗win := eend, t
∗
exp := eexp, t

∗
start := estart)

to its IND-CPE-CPA challenger. Then, D queries (pke, (ske), ∆e)← KPunc(pke−1, ske−1, e) (with
ε := e − 1), for all e ∈ [be(λ)c], from its restricted IND-CPE-CPA challenger (while D does not

receive secret keys ske for e = estart, . . . ,e
∗, . . . ,min(eend, e

∗
exp)). D sets ∆1 := ⊥. If eexp ≥ eend, then

D sends (pke, ske)
e∈[be(λ)c]\{estart, . . . ,e∗,...,eend}

and (∆e+1)
e∈[be(λ)c]\{estart,eend}

to A. Otherwise, i.e.,

if eexp < eend, then D sends (pke, ske)
e∈[be(λ)c]\{estart, . . . ,e∗,...,eexp}

and (∆e+1)
e∈[be(λ)c]\{estart}

to A.

Encryption queries in epoch e ∈ [be(λ)c] to Enc′(M) for expiry tag e′exp are answered as follows:
return Ce,e′exp ← CPE.Enc(pke,M, e′exp) and set L := L ∪ {(e, Ce,e′exp)}. D receives (M∗, C∗ẽ,eexp)

from A and checks if (ẽ, C∗ẽ,eexp) ∈ L and returns b if not. If ẽ < e∗ − 1, then iteratively run

C∗e,eexp ← Update(C∗e−1,eexp , ∆e), for e = ẽ+1, . . . , e∗. D forwards (M∗, C∗e∗−1,eexp , e
∗) to its restricted

IND-CPE-CPA challenger. D receives (Cb, pke∗ , ∆e∗). D forwards Cb to A. Encryption queries with
expiry epoch e′exp in all epochs e ∈ [e(λ)] to Enc′(M) are answered as Ce ← CPE.Enc(pke,M, e′exp).
Eventually, A outputs a guess b′ which is forwarded to D’s challenger. D is able to provide a
consistent view for A for keys (Ke)e = (pke, ske)e. Enc

′-answers also yield a consistent view for A,
for all e ∈ [be(λ)c]. Now, if A is a successful PPT adversary in the weak IND-UE-CPA security

experiment with UE, then D is a successful PPT adversary in the restricted IND-CPE-CPA security
experiment with RCPE which shows the Theorem. ut
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