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Abstract. Updatable encryption (UE) allows a third party to periodically rotate encryption keys
from one epoch to another without the need to download, decrypt, re-encrypt and upload already
encrypted data by a client. Updating those outsourced ciphertexts is carried out via the use of
so-called update tokens which in turn are generated during key rotation and can be sent (publicly)
to the third party. The arguably most efficient variant of UE is ciphertext-independent UE as the
key rotation does not depend on the outsourced ciphertexts which makes it particularly interesting
in scenarios where access to (information of the) ciphertexts is not possible during key rotation.
Available security notions for UE cannot guarantee any form of forward security (i.e., old ci-
phertexts are in danger after key leakage). Counter-intuitively, forward security would violate
correctness, as ciphertexts should be updatable ad-infinitum given the update token. In this work,
we investigate if we can have at least some form of “controlled” forward security to mitigate the
following shortcoming: an adversary would record available information (i.e., some ciphertexts, all
update tokens) and simply would wait for a single key leakage to decrypt all data ever encrypted.
Our threefold contribution is as follows:
a) First, we introduce an epoch-based UE CPA security notion to allow fine-grained updatability.

It covers the concept of expiry epochs, i.e., ciphertexts can lose the ability of being updatable
via a token after a certain epoch has passed. This captures the above mentioned shortcoming
as the encrypting party can decide how long a ciphertext can be updatable (and, hence,
decryptable).

b) Second, we introduce a novel approach of constructing UE which significantly departs from
previous ones and in particular views UE from the perspective of puncturable encryption
(Green and Miers, S&P’15). We define tag-inverse puncturable encryption as a new variant
that generalizes UE and may be of independent interest.

c) Lastly, we present and prove secure the first UE scheme with the aforementioned proper-
ties. It is constructed via tag-inverse puncturable encryption and instantiated from standard
assumptions. As it turned out, constructing such puncturing schemes is not straightforward
and we require adapted proof techniques. Surprisingly, as a special case, this yields the first
backwards-leak UE scheme with sub-linear ciphertexts from standard assumptions (an open
problem posted in two recent works by Jiang Galteland and Pan & Miao et al., PKC’23).

Keywords: Updatable Encryption · Puncturable Encryption · Dual-System Groups.

1 Introduction

When outsourcing the storage of data, the primary measure to protect its confidentiality is encryp-
tion. However, a compromise of the respective encryption key(s) will potentially expose the entire
data to unauthorized parties and may cause severe damage. Consequently, it is widely considered a
good practice to periodically rotate encryption keys. Major providers of cloud-storage services such as

⋆ This is the extended version of [SS23] which appears in the Proceedings of the 21st Theory of Cryptography
Conference (TCC 2023), Taipei, Taiwan, November 29 - December 2, 2023.

https://orcid.org/0000-0002-4181-2561
https://orcid.org/0000-0003-4724-8022


2 Daniel Slamanig and Christoph Striecks

Google1, Microsoft2 or Amazon3 recommend this practice and sometimes it is even mandated by regula-
tions [Bar16, PCI22]. This raises the immediate question of how to efficiently update already outsourced
encrypted data to new keys. An obvious solution for key rotation is to download the data, decrypt it
locally under the old key, re-encrypt it under a new key and upload it again. Unfortunately, this imposes
a significant overhead and soon becomes impractical.

Updatable Encryption. At CRYPTO 2013, Boneh, Lewi, Montgomery, and Raghunathan [BLMR13]
proposed the concept of updatable encryption (UE). UE is a symmetric encryption primitive that ad-
dresses the above problem by allowing to update ciphertexts to new keys without the requirement for
decryption by means of a so-called update token. UE schemes can be ciphertext-dependent [BLMR13,
EPRS17, BEKS20, CLT20] where the key rotation depends on the specific ciphertext to be updated
and, thus, to compute the update token, a part of every ciphertext needs to be downloaded. Or, and
from an efficiency point more desirable, quite a number of recent works deal with UE schemes that
are ciphertext-independent [LT18, KLR19, BDGJ20, Jia20, Nis22, GP23, MPW23] such that the key
rotation is independent of any information of the ciphertexts in the system.

Particularly, we strive for scenarios where the key-rotating party may not have access to ciphertexts
directly.4 Hence, to be as generic as possible, in the remainder of this work, we focus on UE schemes with
ciphertext-independent updates and will simply call them UE schemes. Such a UE scheme consists of
the usual algorithms (Gen,Enc,Dec) for key generation, encryption and decryption. Time is discretized
in so-called epochs and Gen produces an initial secret key K1 (for epoch 1). Additionally, there is an
algorithm RotKey which takes a key Ke and outputs a next-epoch key Ke+1 along with a so-called up-
date token ∆e+1. This update token can be used by a (semi-trusted) third party to update ciphertexts
under key Ke for epoch e to ciphertexts for epoch e+ 1 under key Ke+1 via an algorithm Upd.

Motivating Stronger Guarantees. When looking at state-of-the-art UE security models5 [Nis22,
GP23, MPW23], it can be observed that they do not capture forward security due the following short-
coming. Namely, an adversary would record available information (i.e., ciphertexts (Ce)e, all update
tokens (∆e+1)e) in the lifetime of the system and simply would wait for a single key leakage Ke′ in
epoch e′ with e′ > e. Such single key leakage allows to completely break confidentiality of all ciphertexts
captured before.

While such a behavior is demanded by the correctness of current UE definitions (i.e., ciphertexts
should always be updatable by a token to the current epoch and decryptable), it is a natural question
if such a coarse-grained approach is necessary. Indeed, if we want to mitigate such type of shortcoming,
we must introduce a more fine-grained adjustment of the updatability of ciphertexts. However, since
we do not want to allow access to any (information of the) ciphertexts during key rotation, the token
cannot carry the information needed which ciphertext should be updated and which not. Hence, the
only possibility we see is via the encryption phase where information to limit the updatability can be
embedded.

Post-compromise security for UE (i.e., leaking the current key does not endanger new ciphertexts),
in contrast, is already well understood and constructions in the currently strongest security model are
available [Jia20, Nis22, GP23, MPW23]. Unfortunately, even having strong guarantees such as the ones

1 https://cloud.google.com/kms/docs/keyrotation
2 https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
3 https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
4 One can think of a user that holds encrypted sensitive data with a current key from some key management

system and gets offline for some time before the ciphertexts should be decrypted again. However, during the
user’s offline time, key rotations might be executed. This issue was also mentioned during a talk at RWC 2023
on Google’s crypto agility concerning key rotation [KPMS23].

5 Our focus is on the established game-based security models. However, we want to note that recent works also
study UE in composable frameworks and in particular the framework of constructive cryptography [LR21,
FMM21].

https://cloud.google.com/kms/docs/ key rotation
https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
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provided by Nishimaki [Nis22], the orthogonal security property of forward security (i.e., leaking the
current key does not endanger old ciphertexts) cannot be met by any of the known UE models and
constructions.

Extended UE Security with Expiry Epochs. As an important security feature, forward security
was already considered in many cryptographic contexts such as interactive key-exchange protocols (e.g.,
TLS 1.3, QUIC, hybrid KE, or ratcheting) [Gün90, DvOW92, DDG+20, BRS23, RSS23], public-key
encryption [CHK03, Gro21], digital signatures [BM99, DGNW20], search on encrypted data [BMO17],
mobile Cloud backups [DCM20], proxy cryptography [DKL+18], new approaches to Tor [LGM+20], and
distributed key management [DRSS21], among others.

We believe that forward security yields an important feature for UE in practice as well and should be
inherently considered in full in the UE regime.6 Google’s key management system for instance sets the
maximum age for key-wrapping ciphertexts to 90 days7, which shows that ciphertexts should not be made
available forever in real-world systems to mitigate the risk after key leakages. While forward security
can be achieved in ciphertext-dependent UE in a fine-grained way (as access to parts of the ciphertexts
is allowed during key rotation), we want to stress that the situation for ciphertext-independent UE is
precarious as the key rotation does not have access to any ciphertext information.

As we show in this work, restricting the update capabilities during the encryption phase yields
fine-grained updatability. In particular, we introduce the concept of expiry epochs such that for every
ciphertext, one can decide during encryption time how long updates should yield decryptable ciphertexts,
i.e., encryption in epoch e is performed as Ce,eexp ← Enc(Ke,M, eexp) and when epoch eexp is reached, a
ciphertext cannot longer be updated into a decryptable ciphertext. Note that an update token should
still work for all ciphertexts that have an expiry epoch in the future. Also, by virtually never letting
ciphertexts expire, i.e., using eexp = 2λ for all encryptions with λ ∈ N being the security parameter, we
are essentially back in the currently strongest models [Nis22, GP23, MPW23].

This conceptually simple modification has an interesting effect. Namely, to meet our proposed UE
security notion, we at least require the UE scheme to solely allow ciphertext updates via the token in the
forward direction. So far, such UE schemes are only known to exist by relying on indistinguishability
obfuscation [Nis22]. Our notion even requires more and is particularly not implied by [Nis22] which
makes the task of constructing such a UE scheme non-trivial (there exists no such UE scheme so far).
Moreover, since UE is inspired mainly by practice, we want constructions from standard assumptions
and where key, ciphertext and token sizes are as compact as possible, but certainly sub-linear in the
maximum number of possible epochs. While compactness can be achieved in weaker models or from
non-standard assumptions [BDGJ20, Jia20, Nis22], this important feature turned out to be non-trivial
in our model. Notably, the strongest UE schemes from standard assumptions [GP23, MPW23] have
linear-size ciphertexts and constructing schemes with sub-linear ciphertext expansion was posted as a
significant open problem in the aforementioned works.

UE From a Puncturable Perspective. We offer a novel view of UE from the perspective of
Puncturable Encryption (PE). We recall that PE, introduced by Green and Miers in [GM15], is a tag-
based public-key (or secret-key [SYL+18, AGJ21, BDdK+21]) encryption primitive with an additional
puncturing algorithm that takes a secret key and a tag t as input, and produces an updated (punctured)
secret key. This key is able to decrypt all ciphertexts except those tagged with t and (updated) secret
keys can be iteratively punctured on distinct tags. PE is a versatile primitive that has already found
numerous applications and in particular where forward security is required [GM15, CHN+16, CRRV17,
BMO17, DKL+18, GHJL17, DJSS18, DRSS21, DGJ+21].

6 Prior works offer only a very weak form of forward security by restricting access to tokens artificially.
7 https://cloud.google.com/docs/security/key-management-deep-dive/resources/
google-cloud-kms-deep-dive.pdf, Sec. 4.2

https://cloud.google.com/docs/security/key-management-deep-dive/resources/google-cloud-kms-deep-dive.pdf
https://cloud.google.com/docs/security/key-management-deep-dive/resources/google-cloud-kms-deep-dive.pdf
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In UE, rotating keys from one epoch to the next is abstractly reminiscent of puncturing when viewing
tags as epochs. Loosely speaking, puncturing a key on an epoch e would make all ciphertexts in epoch
e inaccessible (if all ciphertexts are “tagged” on e). However, this would not yield a useful UE scheme
and one needs a mechanism to transform ciphertexts to the next epoch e+ 1.

From a forward-security point of view, we want that for some ciphertexts, the punctured key should
not work while for some other ciphertexts, the punctured key should indeed work. Interestingly, we can
make the puncturing more fine-grained by tagging ciphertexts not only on the current epoch e but allow
also each ciphertext to be associated with a unique tag.

Such a view has an interesting effect. Namely, the crucial point is that puncturing would take the
current epoch key as input, but also tags for ciphertexts for which the key should not be punctured.
Notably, see that such a feature partly inverts the view of plain PE. The output of such a puncturing
algorithm would be the punctured key (as in plain PE), but also some information which ciphertext
should be excluded from puncturing (see that we do not want to allow access to any ciphertext during
puncturing).

To transport such information, the concept of update tokens for ciphertexts must be introduced.
Consequently, via such tokens, only ciphertexts that are not intended to be punctured in the key or are
not expired8 yet will be decryptable after key puncturing while for all other ciphertexts, the key will
be punctured and, hence, decryption will fail. Indeed, such a puncturable view abstractly yields a UE
scheme with “controlled” forward-security guarantees.

1.1 Our Contribution

Briefly summarized, our contribution is as follows:
a) First, we simplify and extend the state-of-the-art UE chosen-plaintext security models [Nis22, GP23,

MPW23] to capture the guarantees provided by UE schemes that restrict the function of update
tokens to ciphertext updates in the forward direction only. Importantly, we introduce expiry epochs
as a fine-grained updatability feature. By letting ciphertexts expire, we can mitigate the “record
now, leak later” attack discussed above. Moreover, we show that our notion implies the most recent
chosen-plaintext UE notion due to [Nis22, GP23].

b) Second, we introduce a novel primitive dubbed Tag-Inverse Puncturable Encryption (TIPE) which
we believe provides an easier intuition towards UE with “controlled” forward-security guarantees.
We prove that the TIPE notion implies our UE notion. In particular, we believe that the tag-inverse
puncturing in TIPE will further increase the applicability of the already very useful concept of
puncturable encryption [GM15] and might be of independent interest.

c) Lastly, we construct a TIPE scheme that is secure in our model and thus yields the first UE scheme
with such strong properties. Moreover, its security is based on the standard d-Lin assumption (where
for d = 1 we get SXDH) in prime-order bilinear groups using the well-known dual-system paradigm
[Wat09, Lew12, CW13, GCTC16]. Indeed, to overcome the hurdles towards TIPE with such strong
properties, we require novel construction and adapted proof techniques. Noteworthy, our UE scheme
enjoys sub-linear key and ciphertext sizes (yielding the first backward-leak UE scheme with such
properties as a special case and answering an open problem from [MPW23, GP23] in the affirmative).

Modelling Key Security Features with Expiry Epochs. Post-compromise security (PCS) is an
essential security guarantee in UE and the currently strongest schemes under standard assumptions are
known to achieve it [Nis22, GP23, MPW23]. PCS loosely speaking means: once an old key leaks, future
ciphertexts are not in danger even in the presence of tokens. This is due to the fact that tokens can
be neither used to update keys in the forward direction nor for updating ciphertexts in the backward

8 We introduce expiry epoch analogously to our UE model.
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direction. We achieve PCS as we are building on the strongest prior (game-based) chosen-plaintext-secure
model.

Moreover, the introduction of expiry epochs allows us to achieve forward security (FS) when keys are
leaked beyond that expiry epoch of a ciphertext — where by FS we mean, again loosely speaking: once
a key leaks, expired ciphertexts are not in danger even in presence of tokens. Recall that by correctness
of UE schemes without expiry epochs, such strong form of FS cannot be met and is indeed not foreseen
in any prior model (i.e., once a key leaks, old ciphertexts are immediately in danger when access to all
tokens is granted).

In contrast to prior models, we particularly consider the attack that an adversary can use a token
∆e to update a key Ke to Ke−1 in the backward direction (i.e., yielding a key that is consistent with
epoch-(e − 1) ciphertexts and which would break FS). Indeed, the currently strongest UE schemes
[Nis22, GP23, MPW23] allow for such an attack. In contrast, in our model, we aim for mitigating such
a leakage. Say, we have a ciphertext that expires in epoch e∗. The token in the expiry epoch ∆e∗+1

should not be of help to update a key Ke∗+1 to an expiry-epoch key Ke∗ in the backward direction and
we explicitly provide the adversary with capabilities to query such a token.

Noteworthy, when setting the expiry epoch of each ciphertext to 2λ (for security parameter λ), we
achieve the same security guarantees as [Nis22, GP23, MPW23] which we formally show. Moreover,
we can even show that our notion implies a simple and natural “ciphertext indistinguishability” notion
where challenge ciphertexts with different expiry epochs are indistinguishable in the same challenge
epoch.

Tag-Inverse Puncturable Encryption as an Abstraction of UE. In a nutshell, TIPE can
be viewed as a symmetric PE scheme (Gen,KPunc,Enc,Dec) with an additional algorithm ExPunc to
control which ciphertexts are excluded for key puncturing. Such a scheme is associated to a polynomial
sized set of epochs, i.e., (1, . . . , n), as well as an unbounded ciphertext-tag space T . KPunc sequentially
punctures keys on epochs, i.e., removes the ability to decrypt ciphertexts tagged under them step by
step. In addition, KPunc can take a set of tags S ⊆ T (or a special “for-all” tag ∀) and outputs an update
token, which can then be used to exclude ciphertexts carrying tags in S from puncturing (in case of ∀,
all ciphertext can be excluded). In TIPE, ciphertexts are not only computed w.r.t. a tag t ∈ T , but
additionally take an “expiry-tag” eexp ∈ [n]. If epoch eexp is reached, then for ciphertexts carrying such a
tag, the key is implicitly punctured and such a ciphertext cannot be excluded from puncturing anymore.

As a key feature, update tokens can also either be associated to such tags or not. Only ciphertexts
with tags in tokens can be excluded from being punctured. However, there is one exception, a token can
be constructed to be working for all ciphertexts denoted by the symbol ∀ in the token. Moreover, because
of tags, TIPE is stronger than our UE definition as it allows the adversary to even query more tokens
(since those can be crafted in a more fine-grained way via tags now). Noteworthy, keys are agnostic of
tags and, hence, the restriction of querying keys are the same in UE and TIPE. As a consequence, TIPE
yields an even more fine-grained primitive compared to what our UE notion offers.

Indeed, we can see that UE is essentially a special variant of TIPE. For UE, it is sufficient to set ∀
as input to key puncturing KPunc and fix the ciphertext-tag set of TIPE to a singleton T = {t} for any
arbitrary tag t. Particularly, we use key puncturing for rotating to the next UE key (i.e., “puncturing” on
the TIPE epoch e) and exclude puncturing for ciphertexts via a token, i.e., ciphertexts can be updated
to the next epoch (where ciphertexts with expired epochs are punctured implicitly). Encryption and
decryption directly map to UE’s encryption and decryption functionality, respectively. Moreover, we
believe that TIPE provides an interesting abstraction for protected outsourced file storage with forward
security and fine-grained secure shredding of files (in the vein of puncturable key wrapping [BGP22],
but augmented with efficient key rotation).

Idea of Instantiating TIPE. The main construction idea is the following. The first ingredient is
a special encoding mapping epochs to encoded binary epochs. See that such binary epochs have only
a length of λ while allowing 2λ epochs. One can think of it as a binary-tree encoding as discussed
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in detail in [DGNW20, Sec. 4.2] where nodes are labeled as epochs, e.g., epochs e0 = (0, 0, 0), e1 =
(0, 0, 1), . . . , e7 = (1, 1, 1) encoding 23 epochs. However, this is not sufficient and we need a second
ingredient, namely, group elements from the dual-system groups [LW10, LW11, CW13], to support such
an encoding in the final TIPE scheme.

We use a special variant of dual-system groups (DSGs) due to Gong et al. [GCTC16] (which is
based on [CW13]) and that was used to build an unbounded hierarchical identity-based encryption
(HIBE) scheme [Lew11]. Indeed, our scheme is closely related to unbounded HIBEs, but we need more
features which an HIBE cannot guarantee. (Particularly, ciphertext updates are not foreseen in HIBEs.)
Fortunately, we observe that the above DSG from [GCTC16] has more to offer than implying unbounded
HIBEs, which was not known before. Interestingly, we can even use a relaxed version of their DSG and
leave out unnecessary features whereby we did not add anything to their syntax, correctness or security.
As a consequence, we can safely assume that our relaxed DSG variant is implied by the full DSG variant
from [GCTC16] and we give a concrete prime-order instantiation from the standard d-Lin assumption
in the standard model in Appendix A.

Starting from the initial work by Waters [Wat09], the richness of the dual-system paradigm was
demonstrated in several prior works (e.g., [LW10, LW11, OT12, CW13, HKS15, AHY15, GCD+16,
GCTC16, GWW19, GW20, DKW23]). The abstraction concept of [GCTC16] is particularly useful
as it provides us with functionalities that are also essential in the TIPE (and, hence, UE) paradigm
where ciphertext updates only work in the forward direction. This connection is new and enriches the
applications of the dual-system paradigm. We will now use such a connection for our TIPE construction.

To construct a TIPE scheme from DSGs with the encoding from [DGNW20], we implicitly encode
epochs in keys in a complete binary tree, i.e., the nodes represent a prefix bit representation of the
epoch and, hence, the root of the tree is associated with key Kε (an initial key used to bootstrap all
epoch keys). In its basic form, this is not new and reminiscent of prior works, e.g., work on forward
secure public-key encryption [CHK03, GHJL17, DJSS18, DKL+18]. However, we need to add ciphertext
updates as well and enhance it to incorporate tokens.

Fortunately, the DSG approach allows us to also encode epochs in ciphertexts in a complete binary
tree similarly to keys, i.e., the nodes represent a prefix bit representation of epochs and, hence, the root
of the tree is associated with ciphertext Cε

t,eexp (an initial ciphertext). The more the epochs advance,
depending on the configuration of the tree, the more ciphertext elements are required. See Fig. 1 for an
illustrative example how keys and ciphertext are constructed on the intuitive level.

As a ciphertext can have many elements, the main hurdle is the common randomness that blinds
the message part where such a randomness has to be “associated” to all ciphertext parts (otherwise
decryption will not work). Surprisingly, we can use techniques from [GCTC16] where ciphertexts have
“local” randomnesses and one “global” randomness, where the latter is used to hide the message part
and the local randomness are required to mitigate mix-and-match attacks.

The correctness guarantees are now that a ciphertext for epoch e0 = (0, 0, 0) (encoded using
[DGNW20]) can be decrypted by a key in epoch e0, but not with keys in later epochs.9 When a key
is updated to e1 = (0, 0, 1), the node containing key elements from K000

e1 is discarded and all other key
elements will have a uniform “linear shift” in the exponents of their group elements. (Such a shift can
be seen as switching the master secret key in an HIBE and we use the same shift for all key elements.)

Moreover, an update token is generated and incorporates the linear shift (as we have to transport
this information to the ciphertexts). Such a token will not work on any key components, but can be used
to “lift” a ciphertext in epoch e0 to a valid ciphertext in epoch e1. The tokens work only on ciphertext
element C000

t,e0 which results in a “shifting” element that can be used to update all other ciphertext
elements. The shift operation ensures that the secret key and the ciphertext are in sync again. After the
shifting is done, C000

t,e0 is discarded. This results in a ciphertext that cannot be decrypted by prior-epoch
key elements as the token does not work on the updated ciphertexts to “undo” the shifting operation.

9 Also later-epochs keys cannot decrypt prior-epoch ciphertexts.
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Fig. 1. Example of a TIPE key Ke1 = (K1
e1 ,K

01
e1 ,K

001
e1 ) that has been punctured on epoch e0 = (0, 0, 0).

Moreover, a token tailored to t and epoch e0 is generated during puncturing and can be used to update the
ciphertext Ct,e0 to Ct,e1 = (C1

e1 , C
01
e1 , C

001
e1 ). Only the boxed elements have to be stored and the remaining

elements lower in the tree can be derived from those.

This is enforced by carefully tailoring the token to epoch e0 (i.e., only working when C000
t,e0 is present), as

well as to the tag t (which excludes that the token works on any other ciphertext in epoch e0 if the tags
are different to t). Particularly, since C000

t,e0 is not contained in Ct,e1 anymore, such a token cannot be
used to update the ciphertext from Ct,e1 to Ct,e0 . Together with expiry epochs (that can be integrated
straightforwardly thanks to using the binary tree and a simple pruning of the tree accordingly), this
yields the desired TIPE properties.

Concerning security, the proof methodology makes use of the dual-system paradigm where keys
and ciphertexts can be of two forms, i.e., normal or semi-functional. Any combination of both will
decrypt correctly as long as the ciphertext and the key are not both semi-functional. In a first step,
the challenge ciphertext is made semi-functional via introducing semi-functional components into such
a ciphertext. We stress that such a semi-functional ciphertext can be decrypted by key elements coming
from the normal distribution, but will fail with high probability for semi-functional key components.
This is exactly what we will use in the remainder of the proof where we carefully introduce uniform
randomness into each key and token components which have key or token elements associated to the
challenge ciphertext, respectively. This is done as in the usual dual-system paradigm but adapted to
our setting where we can embed uniform randomness into such components and their associated tags
or epochs encodings are not “prefixes” of the challenge ciphertext tag or epoch encoding.

1.2 Preliminaries and Outline

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter. For a finite set S,
we denote by s← S the process of sampling s uniformly from S. For an algorithm A, let y ← A(λ, x) be
the process of running A on input (λ, x) with access to uniformly random coins and assigning the result
to y. (We may omit to mention the λ-input explicitly and assume that all algorithms take λ as input.) To
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make the random coins r explicit, we write A(λ, x; r). We say an algorithm A is probabilistic polynomial
time (PPT) if the running time of A is polynomial in λ. A function f is negligible if its absolute value
is smaller than the inverse of any polynomial (i.e., if ∀c ∈ N ∃k0 ∀λ ≥ k0 : |f(λ)| < 1/λc). We write
v = (vi)i∈[n], for n ∈ N. We may also write vectors in bold fonts which depends on the context, i.e., we
use a component-wise multiplication of vectors, i.e., v·v′ = (v1, . . . , vn)·(v′1, . . . , v′n) = (v1·v′1, . . . , vn·v′n).
Pairings. Let G,H, GT be cyclic groups. A pairing e : G×H→ GT is a map that is bilinear (i.e., for
all g, g′ ∈ G and h, h′ ∈ H, we have e(g · g′, h) = e(g, h) · e(g′, h) and e(g, h · h′) = e(g, h) · e(g, h′)), non-
degenerate (i.e., for generators g ∈ G, h ∈ H, we have that e(g, h) ∈ GT is a generator), and efficiently
computable.

Group Generator. Let G(λ, n′) be a group generator that generates the tuple (G,H, GT , N, g, h,
(gpi)i∈[n′], e), for a pairing e : G × H → GT , for composite-order groups G,H, GT , all of known group
order N = p1 · · · pn′ , generators g, h, (gpi)i∈[n′], and for Θ(λ)-bit primes (pi)i.

Outline of the Paper. In Sec. 2, we present our security model with expiry epochs and discuss
relations to previous models. In Sec. 3, we introduce Tag-Inverse Puncturable Encryption (TIPE), show
how we can instantiate UE from TIPE and present a concrete TIPE construction. Moreover, we briefly
discuss other applications of TIPE.

2 Updatable Encryption with Expiry Epochs

We define UE with expiry epochs in ciphertexts which allow ciphertexts to being excluded from updates.
We build on the recent UE models [Nis22, GP23, MPW23]. The main idea of UE with expiry epochs
is the following. On the very high level, all operations are bound to discrete epochs 1, 2, . . . where
keys and ciphertexts as well as so-called update tokens are associated to. System setup Gen creates a
first-epoch symmetric key K1. As an illustration, with this key, one can create a first-epoch ciphertext
C1,eexp ← Enc(K1,M, eexp), for some message M and expiry epoch eexp > 1, and, e.g., outsource C1,eexp

to some semi-trusted third-party. With probabilistic algorithm RotKey, K1 can be updated (or, rotated)
to K2 while also an update token ∆2 is generated. With ∆2, a semi-trusted third-party can update
C1,eexp to C2,eexp ← Upd(∆2, C1,eexp) such that C2,eexp is “consistent” with K2. Correctness guarantees that
decryption of C2,eexp yields M = Dec(K2, C2,eexp) as intended (and so on, if the ciphertext is not expired
already). More formally:

Definition 1. A UE scheme UE with message space M consist of the PPT algorithms (Gen, RotKey,
Enc, Upd, Dec):
Gen(λ): on input security parameter λ, key generation outputs an initial (symmetric) key K1.
RotKey(Ke): on input key Ke, key rotation outputs an updated key Ke+1 for the next epoch together

with an update token ∆e+1.
Enc(Ke,M, eexp): on input key Ke, a message M ∈ M, and expiry epoch eexp, encryption outputs a

ciphertext Ce,eexp or ⊥.
Upd(∆e+1, Ce,eexp): on input an update token ∆e+1 and a ciphertext Ce,eexp , update outputs an updated

ciphertext Ce+1,eexp or ⊥.
Dec(Ke, Ce,eexp): on input key Ke and a ciphertext Ce,eexp , decryption outputs M ∈M∪ {⊥}.

Correctness. We require that an honestly generated epoch-j ciphertext Cj,eexp (obtained via Enc(Kj ,
M, eexp)) is decryptable to M if the expiry epoch is not reached yet. Moreover, an honest update of a
valid ciphertext Cj,eexp (via ∆j+1) from epoch j to j + 1 yields a valid ciphertext Cj+1,eexp that can be
decrypted under the epoch key Kj+1 (obtained via RotKey(Kj)) if the ciphertext is not already expired.
(See that we do not give any correctness guarantees beyond the expiry epochs.)

More formally, for all λ ∈ N, for all e ∈ [⌊poly(λ)⌋], for K1 ← Gen(λ), for all i ∈ {1, . . . , e}, for
all (Ki+1, ∆i+1) ← RotKey(Ki), for all M ∈ M, for all eexp ∈ N, for all j ∈ {1, . . . , e + 1}, for all



Revisiting Updatable Encryption 9

Cj,eexp ← Enc(Kj ,M, eexp), we require that M = Dec(Kj , Cj,eexp) holds if eexp ≥ j. Moreover, for all
j ∈ {1, . . . , e}, for all Cj,eexp ← Enc(Kj ,M, eexp), for all i ∈ {j, . . . , e}, for C ′

j,eexp
:= Cj,eexp , for all

C ′
i+1,eexp

← Upd(∆i+1, C
′
i,eexp

), we require that M = Dec(Ke+1, C
′
e+1,eexp) holds if eexp ≥ e+ 1.

Intuition of Our Security Notion. The notion is an extension of prior-work notions [Nis22, GP23]
which we augment with the introduction of expiry epochs. (We later show that our notion implies such
prior-work notions.) The distinguishing feature of our model is that we allow the adversary to query
the update token in an epoch which corresponds to the challenge-ciphertext expiry epoch eexp and allow
that the key in eexp+1 can be retrieved. In models without expiry epochs, leaking the epoch-e challenge
ciphertext and an epoch-e token together with a key in epoch e + 1 would yield a trivial win (per
definition of correctness).

More concretely, in each epoch, the adversary has access to several oracles as given in Fig. 2. Thereby,
we assume that any (expiry-)epoch information is explicitly retrievable from the keys, tokens, and ci-
phertexts. The adversary is allowed to query honestly generated ciphertexts (with chosen expiry epochs)
via Enc′. RotKey′ triggers rotation of the current key to the next epoch. Upd′ is an oracle that updates
chosen but honestly generated ciphertexts to the current epoch (depending on the expiry epoch). Corrupt
lets the adversary retrieve either the token or the key for a specific epoch. Chall takes a chosen message
and a chosen but honestly generated ciphertext, and outputs a challenge ciphertext (depending on a
uniform bit b). GetUpdC∗ returns the current challenge ciphertext. At the end of the experiment, we
require that the adversary did not retrieve keys to trivially decrypt the challenge ciphertext or retrieves
an update token to update the challenge ciphertext to an epoch where it has a key. If such validity
checks pass and the adversary guessed b correctly, then the adversary wins the experiment. Otherwise,
we say that a UE scheme is EE-IND-UE-CPA secure as such a notion essentially ensures that fresh and
updated ciphertexts are indistinguishable even if the adversary has access the aforementioned oracles
adaptively. We define:

Definition 2. A UE scheme UE is EE-IND-UE-CPA-secure iff for any PPT adversary A, the advantage
function

Advee-ind-ue-cpaUE,A (λ) :=
∣∣∣Pr [Expee-ind-ue-cpaUE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expee-ind-ue-cpaUE,A is defined as in Fig. 2.

2.1 Relation to Other UE Security Notions

Our security notions implies IND-UE-CPA security as defined in [GP23, Nis22]. Moreover, we can even
show that our notion implies a simple and natural ciphertext indistinguishability notion for chosen
messages and (public) expiry epochs where challenge ciphertexts with different expiry epochs are indis-
tinguishable with respect to chosen messages in the same challenge epoch.
EE-IND-UE-CPA Implies IND-UE-CPA for UE with eexp = 2λ. The security notions of IND-
UE-CPA as given in [GP23, Nis22] are closely related to ours with the exception that ours allows expiry
epochs. In the following, we show that our notions imply the prior CPA notion for an UE scheme with
eexp = 2λ for large enough λ ∈ N via a simple reduction. Before that, we recap the IND-UE-CPA notion.

We adapt the most recent IND-UE-CPA notion from [GP23] (which is also used in [Nis22]) and
left out unnecessary details such as deterministic updates, CCA, and some sets for the leakage profiles.
Indeed, to show our implication, we require that any successful IND-UE-CPA adversary yields a success-
ful EE-IND-UE-CPA adversary. The contrary does not hold. The reason is that in such a hypothetical
reduction, we cannot simulate encryption queries and a valid challenge with different expiry epochs,
and certainly cannot provide the token ∆e∗exp+1 to the EE-IND-UE-CPA adversary as this would yield a
trivial win via the non-validity of the adversary in the IND-UE-CPA security experiment. Notably, here
the currently strongest notion of IND-UE-CPA is presented, i.e., security for backward-directional key
updates.
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Experiment Expee-ind-ue-cpaUE,A (λ)
K1 ← Gen(λ), phase = 0, e = 1, c = 0,∆1 = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,RotKey′,Upd′,Corrupt,Chall,GetUpdC∗

(λ)
if A is not valid, then return b′′ ← {0, 1}
if b = b′, then return 1 else return 0

Oracles
Enc′(M, eexp) : run Ce,eexp ← Enc(Ke,M, eexp) and set L∗ := L∗ ∪ (c, e, Ce,eexp), c = c+ 1. Return Ce,eexp .
RotKey′ : run (Ke+1,∆e+1)← RotKey(Ke). If phase = 1, run C∗

e+1,b ← Upd(∆e+1, C
∗
e,b). Set e = e+ 1.

Upd′(Ce−1,eexp) : if (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. Run Ce,eexp ← Upd(∆e, Ce−1,eexp) and set L∗ :=
L∗ ∪ (c, e, Ce,eexp), c = c+ 1. Return Ce,eexp .

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′} and return ∆e′ .

Chall(M,Ce−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. If b = 0,
set C∗

e,0 ← Enc(Ke,M, eexp), else C∗
e,1 ← Upd(∆e, Ce−1,eexp). Set C∗ = C∗∪ (e, C∗

e,b), e
∗ = e, e∗exp = eexp,

and return C∗
e,b.

GetUpdC∗ : If phase = 0, return ⊥. Set C∗ := C∗ ∪ (e, C∗
e,b) and return C∗

e,b.

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,b) /∈ C∗ holds. (No trivial win via retrieved keys.)
2) For all e′ ∈ K∗ with e∗ < e′ ≤ e∗exp and (e′ − 1, C∗

e′−1,b) ∈ C∗, e′ − 1 /∈ D∗ holds. (No trivial win via
retrieved update token.)

Fig. 2. Our EE-IND-UE-CPA security notion for UE schemes with expiry epochs.

Definition 3 ([GP23]). A UE scheme UE is IND-UE-CPA-secure iff for any PPT adversary A, the
advantage function

Advind-ue-cpaUE,A (λ) :=
∣∣∣Pr [Expind-ue-cpaUE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expind-ue-cpaUE,A is defined as in Figure 3.

In [Nis22, GP23], efficient UE schemes were presented that fulfill the IND-UE-CPA notion. Those
schemes allow key updates in the backwards direction. We briefly want to mention that any potential
UE scheme that allows key updates in the backward direction cannot be EE-IND-UE-CPA-secure. The
reason is that our notion allows the adversary to query the update token ∆eexp+1 in the expiry epoch and
the key Keexp+1 right after the expiry epoch of the challenge ciphertext. In a backward-directional key
update setting, the adversary can take Keexp+1 and ∆eexp+1 to derive Keexp which results in a adversarial
win in our notion. Hence, this yields a trivial UE scheme separation between IND-UE-CPA and EE-
IND-UE-CPA security as we strictly have to rely on UE schemes where tokens cannot update secret
keys in any direction.

However, we can show that any EE-IND-UE-CPA-secure UE scheme with fixed eexp = 2λ is also IND-
UE-CPA secure relating the notions for large-enough expiry-epoch values. Let UE∞ be a UE scheme
with expiry epochs set always to eexp = 2λ for large-enough λ ∈ N.

Lemma 1. If UE∞ is EE-IND-UE-CPA-secure, then UE∞ is IND-UE-CPA-secure. Concretely, for any
PPT adversary A in the IND-UE-CPA security notion there is a PPT distinguisher D in the EE-IND-
UE-CPA security notion such that

Advind-ue-cpaUE∞,A (λ) ≤ Advee-ind-ue-cpaUE∞,D (λ).
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Experiment Expind-ue-cpaUE,A (λ)
K1 ← Gen(λ), phase = 0, e = 1, c = 0,∆1 = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,RotKey′,Upd′,Corrupt,Chall,GetUpdC∗

(λ)
if A is not valid, then return b′′ ← {0, 1}
if b = b′, then return 1 else return 0

Oracles
Enc′(M) : run Ce ← Enc(Ke,M) and set L∗ := L∗ ∪ (c, e, Ce), c = c+ 1. Return Ce.
RotKey′ : run (Ke+1,∆e+1)← RotKey(Ke). If phase = 1, run C∗

e+1,b ← Upd(∆e+1, C
∗
e,b). Set e = e+ 1.

Upd′(Ce−1) : if (·, e− 1, Ce−1) /∈ L∗, return ⊥. Run Ce ← Upd(∆e, Ce−1) and set L∗ := L∗∪ (c, e, Ce), c =
c+ 1. Return Ce.

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′} and return ∆e′ .

Chall(M,Ce−1) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1) /∈ L∗, return ⊥. If b = 0, set
C∗

e,0 ← Enc(Ke,M), else C∗
e,1 ← Upd(∆e, Ce−1). Set C∗ = C∗ ∪ (e, C∗

e,b), e
∗ = e, and return C∗

e,b.
GetUpdC∗ : If phase = 0, return ⊥. Set C∗ := C∗ ∪ (e, C∗

e,b) and return C∗
e,b.

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,b) /∈ C∗ holds. (No trivial win via retrieved keys.)
2) For all e′ ∈ K∗ with e∗ < e′ and (e′ − 1, C∗

e′−1,b) ∈ C∗, e′ − 1 /∈ D∗ holds. (No trivial win via updating
a retrieved challenge ciphertext via a token.)

Fig. 3. The IND-UE-CPA security notion for UE schemes.

Proof. D starts A with λ and has to present a consistent view for A. Therefore, D forwards oracles
queries for Enc′,RotKey′,Upd′,Corrupt,Chall and GetUpdC∗ directly to it’s EE-IND-UE-CPA challenger
(using eexp = 2λ).

Since we have e < eexp always in the reduction (as the current epoch e evolves only sequentially),
those queries are consistent. The only crucial point here is the validity of D. For D to be valid, we need
that A does not have queried 1) keys in challenge-equal epochs and 2) update tokens in epochs for which
A has queried a key in the next epoch (but depending on eexp in A’s view). However, since e < eexp
always in the reduction, those validity constraints for A are essentially D’s validity constraints. Hence,
if A is valid and successful in the sense of IND-UE-CPA on UE∞, D yields a successful PPT adversary
on UE∞ in the EE-IND-UE-CPA notion. ⊓⊔

Ciphertext Indistinguishability for Chosen Messages under (Public) Expiry Epochs. Next,
we introduce a simple and natural relaxation of our EE-IND-UE-CPA security notion, which we dub
EE-IND-UE-ENC, to show security of ciphertexts for chosen messages under different expiry epochs but
in the same challenge epoch. See that such a property is not immediately achieved in our stronger EE-
IND-UE-CPA notion since there we guarantee indistinguishability of fresh and updated ciphertexts that
have the same expiry epoch in the same challenge epoch. However, as we show, our EE-IND-UE-CPA
implies the EE-IND-UE-ENC notion.

Essentially, such a notion is strongly related to the common IND-UE-ENC notion [LT18], but adapted
to expiry epochs. Particularly, we allow the adversary to output different expiry epochs as a challenge
together with two chosen messages for a challenge epoch. The goal of the adversary is to distinguish
which of the challenge messages was encrypted for which expiry epoch depending on a uniform bit b.
Essentially, b determines if M0 is encrypted for eexp,0 or for eexp,1 while M1 is encrypted for the other
expiry epoch mimicking that no PPT adversary can distinguish two different messages for two different
(public) expiry epochs within a target epoch.

The intuition is that in our EE-IND-UE-CPA notion, the adversary is capable of querying encryptions
(through Enc′) for different expiry epochs in the challenge epoch. While this intuitively yields ciphertext
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indistinguishability for different expiry epochs, we want to make it more formal next. The key feature
is that the adversary queries the challenge oracle Chall with two messages and two expiry epochs of
its choice. In the challenge phase, it has to distinguish for which expiry epoch which message was
encrypted, where the choice in the challenge ciphertexts is determined by a uniformly random bit b
which the adversary has to guess to succeed in the notion.

Definition 4. A UE scheme UE is EE-IND-UE-ENC-secure iff for any PPT adversary A, the advantage
function

Advee-ind-ue-encUE,A (λ) :=
∣∣∣Pr [Expee-ind-ue-encUE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expee-ind-ue-encUE,A is defined as in Figure 4.

Experiment Expee-ind-ue-encUE,A (λ)
K1 ← Gen(λ), phase = 0, e = 1, c = 0,∆1 = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,RotKey′,Upd′,Corrupt,Chall,GetUpdC∗

(λ)
if A is not valid, then return b′′ ← {0, 1}
if b = b′, then return 1 else return 0

Oracles
Enc′(M) : run Ce ← Enc(Ke,M) and set L∗ := L∗ ∪ (c, e, Ce), c = c+ 1. Return Ce.
RotKey′ : run (Ke+1,∆e+1) ← RotKey(Ke). If phase = 1, run C∗

e+1,0 ← Upd(∆e+1, C
∗
e,0) and C∗

e+1,1 ←
Upd(∆e+1, C

∗
e,1). Set e = e+ 1.

Upd′(Ce−1) : if (·, e− 1, Ce−1) /∈ L∗, return ⊥. Run Ce ← Upd(∆e, Ce−1) and set L∗ := L∗∪ (c, e, Ce), c =
c+ 1. Return Ce.

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′} and return ∆e′ .

Chall(M∗
0 ,M

∗
1 , e

∗
exp,0, e

∗
exp,1) : if phase = 1, return ⊥. Set phase = 1. If b = 0, set C∗

e,0 ← Enc(Ke,Mb, e
∗
exp,0),

else C∗
e,1 ← Enc(Ke,M1−b, e

∗
exp,1). Set C∗ = C∗ ∪ (e, C∗

e,0, C
∗
e,1), e∗ = e, and return C∗

e,0, C
∗
e,1.

GetUpdC∗ : If phase = 0, return ⊥. Set C∗ := C∗ ∪ {(e, C∗
e,0, C

∗
e,1)} and return (C∗

e,0, C
∗
e,1).

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,0, C
∗
e′,1) /∈ C∗ holds. (No trivial win via retrieved keys.)

2) For all e′ ∈ K∗ with e∗ < e′ ≤ max(e∗exp,0, e
∗
exp,1) and (e′ − 1, C∗

e′−1,0, C
∗
e′−1,1) ∈ C∗, e′ − 1 /∈ D∗ holds.

(No trivial win via updating the retrieved challenge ciphertexts via a token.)

Fig. 4. The EE-IND-UE-ENC security notion for UE schemes with expiry epochs.

Lemma 2. If UE is an EE-IND-UE-CPA-secure UE scheme with expiry epochs, then UE is EE-IND-
UE-ENC-secure. Concretely, for any PPT adversary A there is a distinguisher D such that

Advee-ind-ue-encUE,A (λ) ≤ 2 · Advee-ind-ue-cpaUE,D (λ).

Proof. D starts A with λ and has to present a consistent view for A. Therefore, D forwards oracles
queries for Enc′,RotKey′,Upd′ and Corrupt directly to it’s EE-IND-UE-CPA challenger. The answers
of Enc′,Upd′, and Corrupt provide a consistent view for A as they are the same in both experiments.
RotKey′ switches the epochs in the pre-challenge epochs.

If A queries Chall with (M∗
0 ,M

∗
1 , e

∗
exp,0, e

∗
exp,1), D queries its Chall-oracle with M∗

0 ,M
∗
1 , e

∗
exp,0 and its

Enc′-oracle with (M∗
b , e

∗
exp,1), for uniform b ← {0, 1}. D retrieves C∗

e,0 from Chall and C∗
e,1 from Enc′

which D both forwards to A as the answer of A’s Chall-oracle. In half of the cases, this yields a consistent
contribution for A’s challenge ciphertexts.

In the challenge phase, RotKey′ switches the epochs and lets the EE-IND-UE-CPA challenger updates
the challenge ciphertext C∗

e,0 while C∗
e,1 is updated via the Upd′-oracle (which is possible since C∗

e,1 is a
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valid ciphertext queried from D’s Enc′-oracle). If A queries the updated challenge ciphertexts, D returns
those.

For D to be valid, we need that A does not have queried 1) keys in challenge-equal epochs and 2) up-
date tokens in epochs for which A has queried a key in the next epoch (depending on max(e∗exp,0, e

∗
exp,1)).

Those validity constraints for A directly transfer to D’s validity constraints. Hence, if A is valid and
successful in the sense of EE-IND-UE-ENC on UE, D yields a successful PPT adversary on UE in the
EE-IND-UE-CPA notion. ⊓⊔

3 UE from a Puncturable-Encryption Perspective

We introduce a novel primitive dubbed Tag-Inverse Puncturable Encryption (TIPE), provide a TIPE
security model and show how to construct UE with expiry epochs from TIPE. Finally, we give an
instantiation of TIPE under standard assumptions. TIPE essentially views UE from the perspective of
puncturable encryption [GM15] and generalizes UE. We believe that TIPE has application beyond UE.

3.1 Tag-Inverse Puncturable Encryption

The main intuition of TIPE is the following. On the very high level, all operations are bound to discrete
epochs 1, 2, . . . where keys and ciphertexts as well as update tokens are associated to. Moreover, as in
plain PE, ciphertexts are attached with a tag coming from an exponentially large tag space T . System
setup Gen creates a first-epoch symmetric key K1. To show the idea, with such a key, one can create a
first-epoch ciphertext C1,t,eexp ← Enc(K1, t,M, eexp), for some message M , tag t ∈ T , and expiry epoch
eexp > 1. With probabilistic algorithm KPunc, K1 can be updated to K2 depending on a tag set S ⊆ T
(i.e., for which ciphertexts the key should not be punctured) while also update tokens (∆2,t)t∈S∪{∀}
are generated. (We allow even a special symbol ∀ in the token ∆2,∀ which indicates that the key is not
punctured on any ciphertext.) With (∆2,t)t∈S∪{∀}, a semi-trusted third-party can update C1,t,eexp to
C2,t,eexp ← ExPunc(∆2,t′ , C1,t,eexp) if t ∈ {t′,∀} such that C2,t,eexp is “consistent” with K2. Correctness
guarantees that decryption of C2,t,eexp yields M = Dec(K2, C2,t,eexp) as intended (and so on, if the
ciphertext is not expired already). More formally:

Definition 5. A Tag-Inverse Puncturable Encryption (TIPE) scheme TIPE for epochs (1, . . . , poly(λ)),
ciphertext-tag space T , and message spaceM consists of the PPT algorithms (Gen,KPunc,Enc,ExPunc,
Dec):

Gen(λ) : on input security parameter λ, key generation outputs initial key K1.
KPunc(Ke,S) : on input key Ke for epoch e and ciphertext tags S ⊆ T or S = ∀, if S ⊆ T , key

puncturing outputs a punctured key Ke+1 and tag-specific tokens (∆e+1,t)t∈S ; otherwise, if S = ∀,
outputs a punctured key Ke+1 and (universal) token ∆e+1,∀.

Enc(Ke, t,M, eexp) : on input key Ke, ciphertext tag t ∈ T , message M ∈ M, and expiry epoch eexp,
encryption outputs a ciphertext Ce,t,eexp or ⊥.

ExPunc(∆e+1,t′ , Ce,t,eexp) : on input token ∆e+1,t′ and ciphertext Ce,t,eexp , the exclude-from-puncturing
algorithm outputs a ciphertext Ce+1,t,eexp if t′ ∈ {t,∀} and e < eexp; otherwise outputs ⊥.

Dec(Ke, Ce′,t,eexp) : on input key Ke and ciphertext Ce,t,eexp , decryption outputs message M ∈ M if
e = e′; otherwise outputs ⊥.

Correctness. We require that an honestly generated epoch-j ciphertext Cj,t,eexp (obtained via Enc(Kj , t,
M, eexp)) is decryptable to M if the expiry epoch is not reached yet. Moreover, an honest exclusion from
being punctured for a valid ciphertext Cj,t,eexp (via ∆j+1,S with t ∈ S or S = ∀) from epoch j to
j + 1 yields a valid ciphertext Cj+1,t,eexp that can be decrypted under the epoch key Kj+1 (obtained
via KPunc(Kj ,S)) if the ciphertext is not already expired. (See that we do not give any correctness
guarantees beyond the expiry epochs.)
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More formally, for all λ ∈ N, for all e ∈ [⌊poly(λ)⌋], for K1 ← Gen(λ), for all i ∈ {1, . . . , e}, for any
S ∈ T ∪ {∀}, for all (Ki+1, ∆i+1,S) ← KPunc(Ki,S), for all M ∈ M, for all expiry epochs eexp ∈ N,
for all t ∈ T , for all j ∈ {1, . . . , e + 1}, for all Cj,t,eexp ← Enc(Kj , t,M, eexp), we require that M =
Dec(Kj , Cj,t,eexp) holds if eexp ≥ j. Moreover, for all j ∈ {1, . . . , e}, for all Cj,t,eexp ← Enc(Kj , t,M, eexp),
for all i ∈ {j, . . . , e}, for C ′

j,t,eexp
:= Cj,t,eexp , for all C ′

i+1,t,eexp
← ExPunc(∆i+1,t′ , C

′
i,t,eexp

) with t′ ∈ {t,∀},
we require that M = Dec(Ke+1, C

′
e+1,t,eexp) holds if eexp ≥ e+ 1.

Intuition of Our Security Notion. We define IND-TIPE-CPA which guarantees that freshly generated
ciphertexts cannot be distinguished from ones that are excluded from puncturing similarly to UE, but
we give more power to the adversary as it is allowed to even query more tokens. Thereby, we assume that
any (expiry-)epoch information is explicitly retrievable from the keys, tokens, and ciphertexts. Similarly,
we assume that any tag information is explicitly retrievable from the tokens and ciphertexts.

To emphasize the main difference to our UE model, consider some epoch e′ after the challenge epoch
where the adversary queried a key Ke′ and the challenge ciphertext is not expired, i.e., e′ ≤ eexp. In our
UE definition, the adversary is not allowed to query a token ∆e′ while in TIPE, we allow querying tokens
(∆e′,t)t∈S that do not incorporate update capabilities for the challenge tag t∗, i.e., t∗ /∈ S. Moreover, a
token ∆e′,∀ is obviously not allowed to be queried in epoch e′. Those are the essential differences to our
UE notion.

Moreover, similarly to our UE notion, we assume that any (expiry-)epoch and tag information is
explicitly retrievable from the keys, tokens, and ciphertexts. We define:

Definition 6. A TIPE scheme TIPE is IND-TIPE-CPA-secure iff for any PPT adversary A, the advan-
tage function

Advind-tipe-cpaTIPE,A (λ) :=
∣∣∣Pr [Expind-tipe-cpaTIPE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expind-tipe-cpaTIPE,A is defined as in Fig. 5.

3.2 Generic UE Construction from TIPE

In the following, let TIPE = (TIPE.Gen,TIPE.KPunc,TIPE.Enc,TIPE.ExPunc,TIPE.Dec) be a TIPE with
tag space T = {t} and message spaceMTIPE. We construct a UE scheme UE = (Gen,RotKey,Enc,Upd,
Dec) with message space M :=MTIPE. The main intuition here is that we only need a single tag in T
and each ciphertext is generated with such a tag. Moreover, the key rotation in UE generates the next
UE key and a token that works for any tag, particularly for the single tag in T . We construct:
Gen(λ) : return K1 ← TIPE.Gen(λ).
RotKey(Ke) : return (Ke+1, ∆e+1)← TIPE.KPunc(Ke,∀).
Enc(Ke,M, eexp) : return Ce,eexp ← TIPE.Enc(Ke, t,M, eexp), for t ∈ T .
Upd(∆e+1, Ce,eexp) return Ce+1,eexp ← TIPE.ExPunc(Ce,eexp , ∆e+1).

Dec(Ke, Ce,eexp) : return M := TIPE.Dec(Ke, Ce,eexp).

Correctness. See that this directly translates from the TIPE scheme, i.e., the ciphertexts that were
computed by Enc and/or updated via Upd can be decrypted by Dec if the keys are in the same epoch
and the ciphertext is not expired.

Theorem 1. If TIPE is IND-TIPE-CPA secure, then UE is EE-IND-UE-CPA secure. Concretely, for any
PPT adversary A there is a distinguisher D in the IND-TIPE-CPA security experiment, such that

Advind-tipe-cpaTIPE,D (λ) ≥ Advind-ue-cpaUE,A (λ).

Proof. We show the theorem by constructing a PPT distinguisher D in the IND-TIPE-CPA security
experiment with TIPE from any successful PPT adversary A in the EE-IND-UE-CPA security with UE.
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Experiment Expind-tipe-cpaTIPE,A (λ)
K1 ← Gen(λ), phase = 0, e = 0,S = ∅, c = 0,∆1,∀ = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,KPunc′,ExPunc′,Corrupt,Chall,GetUnpuncC∗

(λ)
if A is not valid, then return b′′ ← {0, 1}
if b = b′, then return 1 else return 0

Oracles
Enc′(t,M, eexp) : run Ce,t,eexp ← Enc(Ke, t,M, eexp) and set L∗ := L∗ ∪ (c, e, Ce,t,eexp), c = c + 1. Return

Ce,t,eexp .
KPunc′(S ′) : run (Ke+1, (∆e+1,t)t∈S′) ← KPunc(Ke,S ′). If phase = 1 and t∗ ∈ S ′ or S ′ = ∀, run

C∗
e+1,t∗,b ← ExPunc(∆e+1,t∗ , C

∗
e,t∗,b) (if t∗ ∈ S ′) or C∗

e+1,t∗,b ← ExPunc(∆e+1,∀, C
∗
e,t∗,b) (if S ′ = ∀).

Set e = e+ 1 and S = S ′.
ExPunc′(Ce−1,t,eexp) : if (·, e− 1, Ce−1,t,eexp) /∈ L∗, or if t /∈ S and S ≠ ∀, return ⊥. Run Ce,t,eexp ←

ExPunc(∆e,t, Ce−1,t,eexp) (if t ∈ S) or Ce,t,eexp ← ExPunc(∆e,∀, Ce−1,t,eexp) (if S = ∀) and set L∗ :=
L∗ ∪ (c, e, Ce,t,eexp), c = c+ 1. Return Ce,t,eexp .

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′,S} and return (∆e′,t)t∈S .

Chall(M,Ce−1,t,eexp) : if phase = 1, or if t /∈ S and S ≠ ∀, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,t,eexp) /∈
L∗, return ⊥. If b = 0, set C∗

e,t,0 ← Enc(Ke, t,M, eexp), else C∗
e,t,1 ← ExPunc(∆e,t, Ce−1,t,eexp) (if t ∈ S)

or C∗
e,t,1 ← ExPunc(∆e,∀, Ce−1,t,eexp) (if S = ∀). Set C∗ = C∗ ∪ (e, C∗

e,t,b), e
∗ = e, t∗ = t, e∗exp = eexp,

and return C∗
e,t,b.

GetUnpuncC∗ : If phase = 0, return ⊥. Set C∗ := C∗ ∪ (e, C∗
e,t,b) and return C∗

e,t,b.

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,b) /∈ C∗ holds. (No trivial win via retrieved keys.)
2) For all e′ ∈ K∗ with e∗ < e′ ≤ e∗exp and (e′ − 1, C∗

e′−1,t∗,b) ∈ C∗, (e′ − 1,S ′) /∈ D∗ for S ′ = ∀ or t∗ ∈ S ′

holds. (No trivial win via retrieved update token.)

Fig. 5. Our IND-TIPE-CPA security notion for TIPE.

D runs A(λ). Let TIPE.Enc′,KPunc,ExPunc,TIPE.Corrupt,TIPE.Chall,TIPE.GetUnpuncC∗ be the TIPE
oracles. Let A’s oracles be as follows:
Enc′(M, eexp) : return Ce,eexp ← TIPE.Enc′(M, t, eexp), for t ∈ T .

RotKey′ : run KPunc(∀).
Upd′(Ce−1,eexp) : return Ce,eexp ← ExPunc(Ce−1,eexp).

Corrupt(inp, e′) : return the result of TIPE.Corrupt(inp, e′). (This is either a key or a token depending on
inp.)
Chall(M,Ce−1,eexp) : return C∗

e,b ← TIPE.Chall(M,Ce−1,eexp).
GetUpdC∗ : return C∗

e,b ← TIPE.GetUnpuncC∗.
We conclude that D provides a consistent view for A. If A is a successful PPT adversary in the

EE-IND-UE-CPA security experiment with UE (see that also the validity conditions of TIPE subsumes
the validity conditions of UE), then D is a successful PPT adversary in the IND-TIPE-CPA security
experiment with TIPE. ⊓⊔

3.3 TIPE from Standard Assumptions

We show how to construct TIPE from standard assumption. Before that, we introduce encoding of
epochs and the dual-system group paradigm. Both are important ingredients to our construction and
discussed in the introduction on the high-level. In the following, we formally provide such ingredients
and give a proof from standard assumptions.
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Encoding of Epochs. We use the encoding function of the recent work due to Drijvers, Gorbunov,
Neven, and Wee [DGNW20, Sec. 4.2]. They give a function e that maps tags t = (t1, . . .) ∈ {1, 2}≤λ−1,
for λ = ⌊log2 n⌋, to epochs [n]:

e(t) = 1 +

|t|∑
i=1

(1 + (2λ−i − 1)(ti − 1)).10

Moreover, t is the inverse function that maps epochs e ∈ [n] to tags {1, 2}≤λ−1:

t(e) =


ε if e = 1

t(e− 1)||1 if |t(e− 1)| < λ− 1

t||2 if |t(e− 1)| = λ− 1,

for longest string t such that t||1 is a prefix of t(e− 1). Furthermore, they define sets Γt ⊂ {1, 2}≤λ−1

for each t such that:
Γt = {t} ∪ {t||2 : t||1 prefix of t}.

The properties of Γt are: (1) t ⪯ t′ ⇔ ∃u ∈ Γt such that u is a prefix of t′, (2) ∀t, it holds Γt(e(t)+1) =
Γt\{t} if |t| = λ−1 or Γt(e(t)+1) = (Γt\{t})∪{t||1, t||2} otherwise, (3) ∀t′ ≻ t, it holds ∀u′ ∈ Γt′ ,∃u ∈ Γt

such that u is a prefix of u′.
Dual System Groups. Our (relaxed) DSG DSG based on [GCTC16] consists of the PPT algorithms
(SampP,SampG,SampH,SampS,SampK, ŜampG, ŜampH):
SampP(λ, n) : sample (G,H, GT , N, (gpi

)i∈[n′], e)← G(λ, n′), for fixed integer n′. Define m : H→ GT to
be linear map, let ĝ and ĥ be group elements generated by gs and hs, respectively (see below). Further,
pars, p̂ars may contain arbitrary information. Output public parameters pp = (G,H, GT , N, e,m, pars)

and secret parameters sp = (ĝ, ĥ, p̂ars)

SampG(pp) : output g = (g0, . . . , gn) ∈ Gn+1.
SampS(pp) : output S ∈ G.
SampH(pp) : output h = (h0, . . . , hn) ∈ Hn+1.
SampK(pp) : output K ∈ H.

ŜampG(pp, sp) : output ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1 and gs ∈ G.

ŜampH(pp, sp) : output ĥ = (ĥ0, . . . , ĥn) ∈ Hn+1 and hs, ha ∈ H.
SampG,SampS,SampH and SampK sample from a “normal” distribution (used for correctness) while

ŜampG and ŜampH sample from a “semi-functional” distribution (used in the security proof). When
proving UE security, we can switch UE ciphertexts and keys to semi-functional ones. The essence of
dual system is then carried out, namely, semi-functional ciphertexts and keys are incompatible meaning
that we can derive at a stage where the UE ciphertexts carry a uniformly random group element and
indistinguishability can be shown.
Correctness. For all λ, n ∈ N, for all pp (generated via SampP(λ, n)):
Projectiveness. m(h)s = e(SampS(pp; s), h), for all s ∈ Z∗

N and h ∈ H.
Orthogonality. e(S, hi) = 1 and e(g0,K) = 1, for all i ∈ [n], (h0, . . . , hn)← SampH(pp), S ← SampS(pp),

(g0, . . . )← SampH(pp), and K ← SampK(pp).
Associativity. e(g0, hi) = e(gi, h0), for all i ∈ [n], (g0, . . . , gn) ← SampG(pp) and (h0, . . . , hn) ←

SampH(pp).
10 In the introduction, we used the tag set {0, 1}λ for illustrating purposes; due to technical reasons, the tag set
{1, 2}λ is actually required.
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G-H-subgroups. The outputs of SampG(pp) and SampS(pp) are uniformly distributed over the generators
of non-trivial subgroups of Gn+1 and G, respectively. The outputs of SampH(pp) and SampK(pp)
are uniformly distributed over the generators of non-trivial subgroups of Hn+1 and H, respectively.

Security. For all λ, n ∈ N, for all (pp, sp)← SampP(λ, n):
Orthogonality. m(ĥ) = 1.
Non-degeneracy. ĥ lies in a subgroup of hs, gs lies in a subgroup of ĝ.
Left-subgroup indistinguishability (LS). For any PPT D, Advls

DSG,D(λ, n) :=

|Pr [D(pp,g) = 1]− Pr [D(pp,gĝ) = 1]|

is negligible in λ, for g← SampG(pp) and (ĝ, ·)← ŜampG(pp, sp).
Right-subgroup indistinguishability (RS). For any PPT D, Advrs

DSG,D(λ, n) :=∣∣∣Pr [D(pp, ĥ,gĝ,h) = 1
]
− Pr

[
D(pp, ĥ,gĝ,hĥ) = 1

]∣∣∣
is negligible in λ, for g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp), h ← SampH(pp), and (ĥ, ·, ·) ←
ŜampH(pp, sp).

Parameter-hiding. The distributions

{pp, ĝ, ĥ, ĝ, ĥ} and {pp, ĝ, ĥ, ĝĝ′, ĥĥ′}

are identically distributed, for (ĝ = (ĝ0, . . . , ĝn), gs) ← ŜampG(pp, sp), (ĥ = (ĥ0, . . . , ĥn), hs, ha)

← ŜampH(pp, sp), ĝ′ = (1, gγ1
s , . . . , gγn

s ), and ĥ′ = (1, hγ1
s , . . . , hγn

s ), for γ1, . . . , γn ← ZN .
Computational non-degeneracy (ND). For any PPT D, Advnd

DSG,D(λ, n) :=∣∣∣Pr [D(pp,S · gĝ,K · ĥα, e(S,K)) = 1
]
− Pr

[
D(pp,S · gĝ,K · ĥα, R = 1

]∣∣∣
is negligible in λ, for S = (S, 1, . . .), S ← SampS(pp), g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp),
K ← SampK(pp), α← ZN , and R← GT .

Remark. The properties have the following implications which we will need later on. From orthog-
onality and projectiveness, we retrieve e(S, ĥ) = 1. By projectiveness, it holds m(K)s · m(K ′)s =
e(SampS(pp; s),K) · e(SampS(pp; s),K ′) = m(K ·K ′)s, for s ∈ Z∗

N , and K,K ′ ∈ H. Moreover, by pro-
jectiveness and G-subgroups, we have m(K)s · m(K)s

′
= e(SampS(pp; s),K) · e(SampS(pp; s′),K) =

e(gs+s′ ,K) = m(K)s+s′ , for K ∈ H and suitable generator g ∈ G.
Intuition of Our Construction. Beyond what is already discussed in the introduction on the intuition
of our construction, we give some more technical details in the following. We assume that tags in the
tag set T are integers in Z∗

N for simplicity. During key generation, we use λ + 1 as input to the DSG
parameter-sampling algorithm SampP as this will give us one additional element for embedding the
ciphertext tag during encryption. The initial key K1 consists of DSG group elements (that are sampled
from the normal distribution) with a distinguished element k1 that can be seen as acting similarly to a
master secret key in an (unbounded) HIBE [GCTC16]. (K1 corresponds essentially to the root of the
binary tree for the key.)

Key puncturing KPunc prunes the tree as follows: if a node corresponding to the current epoch is
not a leaf node, then it computes the children of such a node. One child gets associated with 1 and the
other one with 2, which maps directly to the encoding. Then, the key material of the parent node is
discarded; otherwise, if such a node is a leaf node, then the key material for this node is discarded. A
re-randomization step for all elements forms the resulting key for epoch e+1. The corresponding token
is computed around a distinguished element δ (depending on S) which is blinded with epoch (and tag)
dependent group elements from the DSG’s normal distribution; it acts a linear shift for ke.
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Encryption Enc, depending on the current tree configuration and the expiry epoch, computes the
ciphertext material depending on such a configuration where each group element is similarly computed
to a simple form of an unbounded HIBE ciphertext in [GCTC16] but enhanced with further DSG group
elements. Those elements are crucial and used in ExPunc. The message M itself is blinded by m(ke)

s,
where the uniform s is also embedded as “global” randomness in ciphertext elements corresponding to
the tree configuration (see element S).

During ExPunc, the linear shift m(δ)s is computed only if ciphertext material corresponding to the
token is available (i.e., if such a token — potentially depending also on the tag — matches ciphertext
material in the current epoch). Such a shift can then be used to update the blinding group element for
the message to the next epoch. Moreover, the ciphertext tree is pruned analogously to how key material
is delegated and discarded in KPunc. Particularly, ciphertext material for the node associated to the
then-old epoch is discarded. Decryption recovers the message if the epochs of the key and unexpired
ciphertext match.

Our Construction. Let DSG = (SampP,SampG,SampH,SampS,SampK, ŜampG, ŜampH) be DSG. We
construct a TIPE scheme TIPE = (Gen,KPunc,Enc,ExPunc,Dec) with tag space T = Z∗

N (determined
during Gen) and message space M:
Gen(λ) : compute (pp, sp) ← SampP(λ + 1), set T = Z∗

N , sample (h0, . . . , hλ+1) ← SampH(pp), k1 ←
SampK(pp) and return K1 = ({K ′

1},m(k1), pp), with K ′
1 = (h0, k1 · h1, . . . , hλ).

KPunc(Ke,S) : for Ke = ({K ′
u : u ∈ Γt(e)},m(ke), pp), if |t(e)| < λ− 1, then find

K ′
t(e) = (T0, T1, T|t(e)|+1, . . . , Tλ),

compute
K ′

t(e+1) = (T0, T1 · T|t(e)|+1, T|t(e)|+2, . . . , Tλ),

K ′
t(e+2) = (T0, T1 · T 2

|t(e)|+1, T|t(e)|+2, . . . , Tλ).

Sample elements δ ← SampK(pp) and (h0, . . . , hλ+1), (hu,0, . . . , hu,λ+1)u∈[|Γt(e+1)|] ← SampH(pp), for
t(e+ 1) = (t(e+ 1)1, . . . , t(e+ 1)|t(e+1)|), compute

∆e+1 =

{
(∆e+1,t)t∈S = (h0, δ · ht

λ+1

∏|t(e+1)|
i=1 h

t(e+1)i
i ,m(ke · δ))t∈S (if S ≠ ∀)

(h0, δ ·
∏|t(e+1)|

i=1 h
t(e+1)i
i ,m(ke · δ)) (if S = ∀)

K ′′
u = (T ′

u,0hu,0, T
′
u,1 · δ ·

|u|∏
i=1

hui
u,i, T

′
u,|u|+1hu,|u|+1, . . . , T

′
u,λhu,λ),

for {K ′
u = (T ′

u,0, . . . , T
′
u,λ) : u = (u1, . . .) ∈ Γt(e+1)}. Set Ke+1 = ({K ′′

u : u ∈ Γt(e+1)},m(ke · δ), pp) and
return (∆e+1,Ke+1).
Enc(Ke, t,M, eexp) : if e > eexp, then return ⊥. For Ke = (. . . ,m(ke), pp), sample S ← SampS(pp; s), for
s ← Z∗

N , and (gu,0, . . . , gu,λ+1)u∈Γt(e)\Γt(eexp+1)} ← SampG(pp); for all u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1),
return

Ce,t,eexp = ({(Sgu,0,
|u|∏
i=1

gui
u,i, gu,|u|+1, . . . , gu,λ, g

t
u,λ+1)},m(ke)

s ·M).

ExPunc(∆e+1,t′ , Ce,t,eexp) : if e ≥ eexp or t′ /∈ {t,∀}, then return ⊥. For

∆e+1,t = (D0, D1,m(ke+1)) and Ce,t,eexp = ({C ′
u : u ∈ Γt(e)},m(ke)

s ·M),
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if |t(e)| < λ− 1, then find C ′
t(e) = (S0, S1, S|t(e)|+1, . . . , Sλ) and compute

C ′
t(e+1) = (S0, S1 · S|t(e)|+1, S|t(e)|+2, . . . , Sλ+1),

C ′
t(e+2) = (S0, S1 · S2

|t(e)|+1, S|t(e)|+2, . . . , Sλ+1).

Sample S ← SampS(pp; s′), for s′ ← Z∗
N , (gu,0, . . . , gu,λ+1)u∈Γt(e+1)

← SampG(pp), compute m(δ)s =
e(S0,D1)

e(D0,S1Sλ+1)
(where Sλ+1 is only present if t′ ̸= ∀) and

C ′′
u = (Su,0Sgu,0, Su,1

|u|∏
i=1

gui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λgu,λ, Su,λ+1g

t
u,λ+1),

for {C ′
u = (Su,0, . . . , Su,λ) : u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)}. Return Ce+1,t,eexp = ({C ′′

u : u ∈
Γt(e+1)},m(ke · δ)s+s′ ·M).
Dec(Ke, Ce,t,eexp) : if e > eexp, then return ⊥. For

Ke = ({K ′
u : u ∈ Γt(e)},m(ke), pp) and Ce,t,eexp = ({C ′

u : u ∈ Γt(e)}, ST ),

find K ′
t(e) = (T0, T1, . . .) and C ′

t(e) = (S0, S1, . . .), and return

M = ST ·
e(T0, S1)

e(S0, T1)
.

Correctness. We show:

1) Correct decryption of ciphertexts:

M = ST ·
e(T0, S1)

e(S0, T1)
= m(ke)

s ·M ·
e(h0,

∏e
i=1 gi)

e(Sg0, ke
∏e

i=1 hi)
=

m(ke)
s

e(S, ke)
·M = M,

where m(ke)
s = e(S, ke), for some s ∈ Z∗

N , e(S, hi) = 1, for all i ∈ [e], and e(g0, ke) = 1 due to
projectiveness, orthogonality, and associativity.

2) Correctness for excluding ciphertexts Ce+1,t,eexp = ({C ′′
u : u = (u1, . . .) ∈ Γt(e+1)},m(ke+1)

s+s′ ·M)
from puncturing:

C ′′
u = (Su,0Sgu,0, Su,1

|u|∏
i=1

gui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λg

t
u,λ+1),

where S ← SampS(pp; s′), for s′ ← Z∗
N , (gu,0, . . . , gu,λ)u∈Γt(e+1)

← SampG(pp), m(ke+1)
s+s′ =

m(ke)
s ·m(δ)s ·m(ke+1)

s′ , for m(δ)s =
e(St(e+1),0,D1)

e(D0,St(e+1),1)
, due to projectiveness, orthogonality, associa-

tivity, and G-H-subgroups.

Theorem 2. If DSG is a DSG scheme, then TIPE is IND-TIPE-CPA-secure. Concretely, for any PPT
adversary A, it holds:

Advind-tipe-cpaTIPE,A (λ) ≤ Advls
DSG,D1

(λ, λ+ 1) + 2 · (|Γt(e∗exp)
|+ q) · poly(λ)·

Advrs
DSG,D2

(λ, λ+ 1) + poly(λ) · Advnd
DSG,D3

(λ, λ+ 1),

with q number of tag-based token queries.
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Proof. As a brief proof outline, the sequence of games is as follows:

Game 0. The IND-TIPE-CPA experiment.
Game 1. Fresh encryption of C∗

e,t,1 in Chall-oracle by using Dec and Enc instead of Upd. This is a
conceptional change. Here, we use the fact that fresh ciphertexts and updated ciphertexts are indis-
tinguishable.

Game 2. The challenge ciphertext(s) are semi-functional (via left-subgroup indistinguishability (LS)).
This is a property that comes from the underlying DSG assumption and is a common hybrid step
in proving constructions secure in the dual-system paradigm.

Game 3.i.0. The i-th token or key query is pseudo-normal (via right-subgroup indistinguishability
(RS)). This is a common next step in many dual-system proofs to prepare the embedding of uniform
elements. All queries up to i− 1 carry a uniform element (ĥ)α.

Game 3.i.1. The i-th token or key query is pseudo-normal semi-functional (via parameter-hiding).
This is further common step in many dual-system proofs to prepare the embedding of a uniform
element. All queries up to i− 1 carry a uniform element (ĥ)α.

Game 3.i.2. The i-th token or key query now carries a uniform element (ĥ)α; all queries up to i − 1

carry a uniform element (ĥ)α.
Game 3.i.3. The i-th token or key query is semi-functional (via right-subgroup indistinguishability

(RS)). This is a common next step in many dual-system proofs to finalize the embedding of a
uniform element. All queries up to i carry a uniform element (ĥ)α.

Game 4. The message in the challenge ciphertext(s) is a uniform GT -element (via computational non-
degeneracy (ND)). In this game, the queried tokens and keys are independent of the challenge
ciphertext(s), the message is independent of the bit b, and security readily follows.

Let SA,j be the event that A succeeds in Game j. We map the symbol ∀ to the integer 0 for ease of
proof exposition. Let SA,j be the event that A succeeds in Game j. We highlight changes boxed.

Lemma 3 (Game 0 to Game 1). For any PPT adversary A, it holds:

|Pr [SA,0]− Pr [SA,1] | = 0.

Proof. We change the behavior of the challenge oracle such that we use a fresh encryption instead of
updating the ciphertext provided by A. The change is agnostic of the tag (and independent of the
tokens) and the Chall oracle in Game 1 is as follows:
Chall(M,Ce−1,t,eexp) : if phase = 1, or if t /∈ S and S ≠ ∀, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,t,eexp) /∈

L∗, return ⊥. If b = 0, set C∗
e,t,0 ← Enc(Ke, t,M, eexp), else compute M := Dec(Ke−1, Ce−1,t,eexp) and

C∗
e,t,1 ← Enc(Ke, t,M, eexp) . Set C∗ = C∗ ∪ (e, C∗

e,t,b), e
∗ = e, t∗ = t, e∗exp = eexp, and return C∗

e,t,b.

Due to correctness (i.e., via perfect re-randomization), the ciphertexts derived from Enc and ExPunc for
an epoch e and tag t yield the same distribution. Hence, such a change cannot be detected by A.

Lemma 4 (Game 1 to Game 2). For any PPT adversary A there is a distinguisher D on LS such
that

|Pr [SA,1]− Pr [SA,2] | ≤ Advls
DSG,D(λ, λ+ 1).

Proof. The input is provided as (pp,T), where T = (T0, . . . , Tλ+1) is either g or gĝ, for g = (g0, . . . ,

gλ+1) ← SampG(pp) and (ĝ = (ĝ0, . . . , ĝλ+1), ·) ← ŜampG(pp, sp). The Chall oracle in Game 2 is as
follows:
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Chall(M,Ce−1,t,eexp) : if phase = 1, or if t /∈ S and S ≠ ∀, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,t,eexp)

/∈ L∗, return ⊥. With u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1), set

C∗
e,t,0 = ({(ST0gu,0,

|u|∏
i=1

Tui
i gui

u,i, T|u|+1gu,|u|+1, . . . , T
t
λ+1g

t
u,λ+1)}u,m(ke)

s ·M)

C∗
e,t,1 = ({(ST0gu,0,

|u|∏
i=1

Tui
i gui

u,i, T|u|+1gu,|u|+1, . . . , T
t
λ+1g

t
u,λ+1)}u,m(ke)

s ·M ′),

for M ′ ← Dec(Ke∗−1, Ce∗−1,t,eexp), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(e)\Γt(eexp+1)
← SampG(pp), S ←

SampS(pp; s), for s ← Z∗
N . Set C∗ = C∗ ∪ (e, C∗

e,t,b), e∗ = e, t∗ = t, e∗exp = eexp, and return C∗
e,t,b.

If T = g, then the challenge ciphertext(s) are distributed as in Game 1. If T = gĝ, then the challenge
ciphertext(s) are distributed as in Game 2.

Lemma 5 (Game 2 to Game 3.1.0). For any PPT adversary A, it holds:

|Pr [SA,2]− Pr [SA,3.1.0] | = 0.

Proof. This is a conceptional change. Essentially we consistently re-randomize the token and key ele-
ments. The KPunc′-oracle in Game 3.0.0 is as follows (where we alter K ′

e+1 after calling KPunc):
KPunc′(S ′) : run (K ′

e+1, ∆
′
e+1) ← KPunc(Ke,S ′). For K ′

e+1 = ({(Tu,0, Tu,1, Tu,|u|+1, . . . , Tu,λ) : u ∈
Γt(e+1)},m(Ke), pp) and ∆′

e+1 = (Dt,0, Dt,1, Dt,2)t∈S′∪{∀}, sample (ht,0, . . . , ht,λ+1)t∈S′∪{∀}, (hu,0, . . . ,
hu,λ+1)u∈Γt(e+1)

← SampH(pp), and compute

∆e+1 = (Dt,0 ht,0 , Dt,1 · ht
t,λ+1 ·

|t(e+1)|∏
i=1

h
t(e+1)i
t,i , Dt,2)t∈S′ ,

K ′
u = (Tu,0 hu,0 , Tu,1

|u|∏
i=1

hui
u,i , Tu,|u|+1 hu,|u|+1 , . . . , Tu,λ hu,λ ),

for all u ∈ Γt(e+1). Set Ke+1 = ({K ′
u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1, and t∗ ∈ S ′ or S ′ = ∀, run

C∗
e+1,t∗,b ← ExPunc(∆e+1,t∗ , C

∗
e,t∗,b) or C∗

e+1,t∗,b ← ExPunc(∆e+1,∀, C
∗
e,t∗,b), respectively. Set e = e + 1

and S = S ′.

Lemma 6 (Game 3.i.0 to Game 3.i.1). For any PPT adversary A there is a distinguisher D on RS
such that

|Pr [SA,3.i.0]− Pr [SA,3.i.1] | ≤ poly(λ) · Advrs
DSG,D(λ, λ+ 1),

for i ∈ [|Γt(e∗exp)
|+ q] and q the number of tag-based tokens queried in epochs e∗ − 1 and ê′.

Proof. The input is provided as (pp, ĥ,gĝ,T), where T = (T0, . . . , Tλ+1) is either h or hĥ, for h =

(h0, . . . , hλ+1) ← SampH(pp), (ĥ = (ĥ0, . . . , ĥλ+1), ·, ·) ← ŜampH(pp, sp), and for gĝ = (g0ĝ0, . . . ,
gλ+1ĝλ+1). We guess the challenge, expiry, and “window” epoch elements ê∗, ê∗exp, ê

′ ← [⌊poly(λ)⌋] and
abort if e∗ ̸= ê∗ or e∗exp ̸= ê∗exp, ê′ ≤ ê∗ or ê′ > ê∗exp. The KPunc′ and Chall oracles are as follows:



22 Daniel Slamanig and Christoph Striecks

KPunc′(S ′) : run (K ′
e+1, ∆

′
e+1)← KPunc(Ke,S ′). For

K ′
e+1 = ({(Tu,j′′,0, Tu,j′′,1, Tu,j′′,|u|+1, . . . , Tu,j′′,λ) : u ∈ Γt(e+1), j

′′ ∈ [|Γt(e+1)]|],m(Ke), pp)

(we can assume a natural order in K ′
e+1) and

∆′
e+1 = (Dt,0, Dt,1, Dt,2)t∈S′∪{∀},

sample (ht,0, . . . , ht,λ+1)t∈S∪{∀}, (hu,0, . . . , hu,λ+1)u∈Γt(e+1)
← SampH(pp), and for the (j, j′)-th query

(j-th token with its j′-th tag-based part, (j, j′) ∈ [q′] × [qt] with q = q′ + qt) compute token ∆′
e+1 as

follows:

if j + j′ < i+ 1 ∧ (e = ê∗ − 1 ∨ e = ê′ − 1):

(Dtj′ ,0htj′ ,0, Dtj′ ,1 · h
tj′

tj′ ,λ+1 · (ĥ)
α ·

|t(e+1)|∏
i=1

h
t(e+1)i
tj′ ,i

, Dtj′ ,2)tj′∈S′∪{∀}

if j + j′ = i+ 1 ∧ (e = ê∗ − 1 ∨ e = ê′ − 1):

(Dtj′ ,0 T0 , Dtj′ ,1 · T
tj′

λ+1 ·
|t(e+1)|∏

i=1

T
t(e+1)i
i , Dtj′ ,2)tj′∈S′∪{∀}

else:

(Dtj′ ,0htj′ ,0, Dtj′ ,1 · h
tj′

tj′ ,λ+1 ·
|t(e+1)|∏

i=1

h
t(e+1)i
i , Dtj′ ,2)tj′∈S′∪{∀}.

Moreover, compute key K ′
u as follows:

if q + j′′ = i ∧ e = e∗exp:

(Tu,j′′,0 T0 , Tu,j′′,1 ·
|u|∏
i=1

Tui
i , Tu,j′′,|u|+1 T|u|+1 , . . . , Tu,j′′,λ Tλ )

else:

(Tu,j,0hu,0, Tu,j,1 ·
|u|∏
i=1

hui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ),

for all u ∈ Γt(e+1), and α← ZN . Set Ke+1 = ({K ′
u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1, and t∗ ∈ S ′

or S ′ = ∀, run C∗
e+1,t∗,b ← ExPunc(∆e+1,t∗ , C

∗
e,t∗,b) or C∗

e+1,t∗,b ← ExPunc(∆e+1,∀, C
∗
e,t∗,b), respectively.

Set e = e+ 1 and S = S ′.
Chall(M,Cê∗−1,t∗,ê∗exp

) : if phase = 1, or if t∗ /∈ S and S ≠ ∀, then return ⊥. Set phase = 1. If
(·, ê∗ − 1, Cê∗−1,t∗,ê∗exp

) /∈ L∗, then return ⊥. Set

C∗
ê∗,t∗,0 = ({(S g0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

(gλ+1ĝλ+1)
t∗ gt

∗

u,λ+1) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},m(kê∗)
s ·M),

C∗
ê∗,t∗,1 = ({(S g0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

(gλ+1ĝλ+1)
t∗ gt

∗

u,λ+1) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},m(kê∗)
s ·M ′),
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for M ′ ← Dec(Ke∗−1, Ce∗−1,t∗,eexp), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(ê∗)\Γt(ê∗exp+1)
← SampG(pp), S ←

SampS(pp; s), for s← Z∗
N . Set C∗ = C∗ ∪ (ê∗, C∗

ê∗,t∗,b), e
∗ = ê∗, e∗exp = ê∗exp, and return C∗

ê∗,t∗,b.

If T = h, then the token ∆e∗,t with t ∈ {t∗,∀}, the token ∆e′,t with t /∈ {t∗,∀}, and the key Ke′ (if Ke′

is queried) or the key Ke∗exp+1 (if Ke′ is not queried) are distributed as in Game 3.i.0. If T = hĥ, then
those are distributed as in Game 3.i.1. This reduction loses a polynomial factor.

Lemma 7 (Game 3.i.1 to Game 3.i.2). For any PPT adversary A, it holds:

|Pr [SA,3.i.1]− Pr [SA,3.i.2] | = 0,

for i ∈ [|Γt(e∗exp)
| + q] and a large-enough e(λ) polynomial in λ and q the number of tag-based token

queries.

Proof. This is reminiscent of Lemma 11 in [GCTC16] and results in a pseudo-normal semi-functional
token and keys. For all key elements in the set Γt(e′) (if Ke′ is queried) or in Γt(e∗exp)

(if Ke′ is not queried)
and for all tag-based token queries, we information-theoretically embed (ĥ)α in the i-th (key or token)
query step-by-step for each i. This can be only be done if the key or token queries have no epoch or tag
prefixes with the challenge ciphertext.

For the tokens (∆e∗,t)t∈S∪{∀} before the challenge epoch, see that such a token has no prefix with
the challenge ciphertexts (as the epochs do not match, i.e., such tokens have the epoch e∗ − 1 encoded
and the challenge ciphertext are in epochs ≥ e∗). We can use this fact to embed a (ĥ)α in (∆e∗,t)t∈S∪{∀}
due to [GCTC16]. Moreover, see that by validity condition 2), A is not allowed to query a token ∆e′,t

with e∗ < e′ ≤ e∗exp and t = t∗ or t = ∀ when it has queried a key Ke′ . Hence, we can use such a fact
here to embed an (ĥ)α-element in Ke′ as the tokens (∆e′,t)t do not share prefixes with the challenge
ciphertext. (Otherwise the token can be used to update the challenge ciphertext which would raise the
validity to fail.) Moreover, no information on ĥ is given out in any ∆e′,t due to orthogonality (i.e.,
m(ĥ) = 1). For the key Ke∗exp+1 see that it does not have any prefixes of the challenge ciphertext and
we can safely embed (ĥ)α (if Ke′ was not queried; otherwise, (ĥ)α has already been embedded in such
a key). As shown in [GCTC16], due to non-degeneracy, we have that (hs)

α′
can be replaced by some

suitable (ĥ)α, for suitable α, α′ ∈ ZN .

Lemma 8 (Game 3.i.2 to Game 3.i.3). For any PPT adversary A there is a distinguisher D on RS
such that

|Pr [SA,3.i.2]− Pr [SA,3.i.3] | ≤ poly(λ) · Advrs
DSG,D(λ, λ+ 1),

for i ∈ [|Γt(e∗exp)
|+ q] and q number of tag-based token queries.

Proof. In this step, we undo the game hop from Lemma 6. As a result, we now have a uniform element
(ĥ)α embedded in the key and in the token queries for Ke′ ,Ke∗exp+1 and ∆e∗ , ∆e′ . If T = hĥ, then the
tokens ∆e∗ , ∆e′ and the keys Ke′ ,Ke∗exp+1, are distributed as in Game 3.i.2. If T = h, then those are
distributed as in Game 3.i.3. This reduction loses a polynomial factor.

Lemma 9 (Game 3.|Γt(e∗exp)
| + q.3 to Game 4). For any PPT adversary A there is a distinguisher

D on ND such that

|Pr
[
SA,3.|Γt(e∗exp)|+q.3

]
− Pr [SA,4] | ≤ poly(λ) · Advnd

DSG,D(λ, λ+ 1),

for i ∈ [|Γt(e∗exp)
|+ 1] and q number of tag-based token queries.
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Proof. The input is provided as (pp,Sgĝ,K · (ĥ)α,T), where T is either e(S,K) or R ← GT , for
g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp), and h ← SampH(pp), S ← SampS(pp), S = (S, 1, 0, . . .),
K ← SampK(pp). We guess the challenge, expiry, and “window” epochs elements ê∗, ê∗exp, ê

′ ← [⌊e(λ)⌋]
and abort if e∗ ̸= ê∗ or e∗exp ̸= ê∗exp or ê∗ < ê′ ≤ ê∗exp. The RotKey′ and Chall oracles are as follows:
KPunc′(S ′) : run (K ′

e+1, ∆
′
e+1) ← KPunc(Ke,S ′). (We additionally assume that δ which is sampled in

KPunc is available in KPunc′ as well as k1 sampled in Gen in the beginning of the experiment.) For K ′
e+1 =

({(Tu,j′′,0, Tu,j′′,1, Tu,j′′,|u|+1, . . . , Tu,j′′,λ) : u ∈ Γt(e+1), j
′′ ∈ [|Γt(e+1)]|],m(Ke), pp) (we can assume a

natural order in K ′
e+1) and ∆′

e+1 = (Dt,0, Dt,1, Dt,2)t∈S′∪{∀}, store δe+1 = δ, ke+1 = δ ·ke (for e = ê∗−1,
we set K · k−1

ê∗−1 as “delta” and K as key in epoch e∗, implicitly), sample (ht,0, . . . , ht,λ+1)t∈S∪{∀},
(hu,0, . . . , hu,λ+1)u∈Γt(e+1)

← SampH(pp), and for the (j, j′)-th (j-th token with its j′-th tag-based part)
query compute token ∆′

e+1 as follows

if e = ê∗ − 1:

(Dt
j′ ,0

ht
j′ ,0

, Dt
j′ ,1

· h
t
j′

t
j′ ,λ+1 · K · (ĥ)α · k−1

e · δ−1
e+1 ·

|t(e+1)|∏
i=1

h
t(e+1)i
t
j′ ,i

,m( K · (ĥ)α ))t
j′∈S′∪{∀}

if e = ê′ − 1:

(Dt
j′ ,0

ht
j′ ,0

, Dt
j′ ,1

·h
t
j′

t
j′ ,λ+1 · (K · (ĥ)α ·

e′∏
e∗

δ
−1
i · ke′ ·

|t(e+1)|∏
i=1

h
t(e+1)i
t
j′ ,i

,

m( K · (ĥ)α ·
e′∏
e∗

δ
−1
i ))t

j′∈S′∪{∀}

else:

(Dtj′ ,0htj′ ,0, Dtj′ ,1 · h
tj′

tj′ ,λ+1 ·
|t(e+1)|∏

i=1

h
t(e+1)i
i , Dtj′ ,2)tj′∈S′∪{∀}.

Moreover, compute key K ′
u as follows:

if e = e∗exp:

(Tu,j′′,0hu,0, Tu,j′′,1 · K · (ĥ)α ·
e∗exp+1∏
i=e∗+1

δi ·
|u|∏
i=1

h
ui
u,i, Tu,j′′,|u|+1hu,|u|+1, . . . , Tu,j′′,λhu,λ)

else:

(Tu,j,0hu,0, Tu,j,1 ·
|u|∏
i=1

hui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ),

for all u ∈ Γt(e+1), and α ← ZN . Set Ke+1 = ({K ′
u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1, and

t∗ ∈ S ′ or S ′ = ∀, run C∗
e+1,t∗,b ← ExPunc(∆e+1,t∗ , C

∗
e,t∗,b) or C∗

e+1,t∗,b ← ExPunc(∆e+1,∀, C
∗
e,t∗,b),

respectively. Set e = e+ 1 and S = S ′.
Chall(M,Cê∗−1,t∗,ê∗exp

) : if phase = 1, or if t∗ /∈ S and S ≠ ∀, then return ⊥. Set phase = 1. If
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(·, ê∗ − 1, Cê∗−1,t∗,ê∗exp) /∈ L∗, then return ⊥. Set

C∗
ê∗,t∗,0 = ({( Sg0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

( gλĝλ+1 gu,λ+1)
t∗) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},T ·M)

C∗
ê∗,t∗,1 = ({( Sg0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

( gλ+1ĝλ+1 gu,λ+1)
t∗) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},T ·M ′),

for M ′ ← Dec(Kê∗−1, Cê∗−1,t∗,ê∗exp
), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(ê∗)\Γt(ê∗exp+1)

← SampG(pp), S ←
SampS(pp; s), for s← Z∗

N . Set C∗ = C∗ ∪ (ê∗, C∗
ê∗,t∗,b), e

∗ = ê∗, e∗exp = ê∗exp, and return C∗
ê∗,t∗,b.

See that m(K ·(ĥ)α) = m(K) holds. Hence, no information on (ĥ)α is given out via m in ∆e∗ . Moreover,
if the adversary queried Ke′ (by validity, it is not allowed to have queried ∆e′−1,t with t ∈ {t∗,∀}), then
(ĥ)α hides all key elements in Ke′ . Otherwise, if the adversary did not query Ke′ , then (ĥ)α blinds the
key elements in Ke∗exp

. Now, if T = e(S,K), then the challenge ciphertext(s) are distributed as in Game
3.|Γt(e∗exp)

|+ q.3. If T = R, then the challenge ciphertext(s) are distributed as in Game 4.

Lemma 10 (Game 4). For any PPT adversary A, Pr [SA,4] = 1/2 holds.

Proof. In Game 4, for (uniform) b ∈ {0, 1}, we provide A with challenge ciphertext(s) that include a
uniform GT -element instead of a A-chosen b-dependent message. Hence, b is completely hidden from
A’s view.

Taking Lemmata 3, 4, 5, 6, 7, 8, 9, and 10 together, shows Theorem 2. ⊓⊔

Applications of TIPE beyond UE. TIPE provides an interesting abstraction for outsourced file
storage with forward-security and fine-grained secure shredding of files. In a recent work, Backendal,
Günther and Paterson [BGP22] introduced such a so-called protected file storage setting and show how
this can be instantiated via puncturable key wrapping (introduced in the same work). Loosely speaking,
Backendal et al. achieve forward-security via key-rotation (but this requires to download, decrypt and
re-encrypt of all file encryption keys) and the shredding of files is achieved via key-puncturing.

We observe that the concept of epochs in TIPE (used as expiry epochs when instantiating UE from
TIPE) allows to implement the fine-grained forward-security aspect via efficient key-rotation (though
in contrast to [BGP22] via help of the server). Moreover, the ciphertext-tag space in TIPE provides an
additional dimension for granularity which allows to implement a secure fine-grained shredding of files,
i.e., via puncturing of the ciphertext (by excluding them from updates). We hope that TIPE will find
additional applications in this and beyond this context and leave a more detailed study to future work.
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A Concrete Instantiation Under the d-Lin Assumption

For completeness, we provide the concrete DSG instantiation of Gong et al. [GCTC16]. The pairing
operation is defined as ê((a1,a2), (b1,b2)) = e(a1,b1)/e(a2,b2). Let πL, πM , πR be function that map
the leftmost d columns, the d+ 1-th column, and rightmost column of a matrix. We require the d-LIN
assumption:
d-LIN assumption. For any PPT adversary D, we have that the function

Advd−LIN
G,D (λ) :=|Pr

[
D(pars, gad+1(s1+···+sd)) = 1

]
− Pr

[
D(pars, gad+1(s1+···+sd)+sd+1) = 1

]
|

is negligible in λ, where (G,H, GT , p, e)← G(λ, 1), s1, . . . , sd+1, a1, . . . , ad ← Zp, for pars := (G,H, GT ,
p, e, g, h, ga1 , . . . , gad+1 , ga1s1 , . . . , gadsd), for generators g and h of G and H, respectively.11

The DSG construction (adapted mostly verbatim from [GCTC16]) is as follows (we omit the algo-
rithm SampGT since we directly use the respective values):

(pp, sp)← SampP(λ, n): sample (G1,G2, G
′
T , p, g1, g2, gT , g

′
1, g

′
2, e

′) ← G(λ, 1) and set G := Gd+2
1 ×

Gd+2
1 ,H := Gd+2

2 × Gd+2
2 , GT := G′

T , e := e′, g := g1, h := g2. Furthermore, sample matrices
B,B∗ ← GLd+2(Zp) with B⊤B∗ = Id+2 and A0, . . . ,An ← Z(d+2)×(d+2)

p , and sample diagonal
matrix R ∈ GLd+2(Zp) with the right-most two diagonal entries being 1. Then, set

D := πL(B),Di := πL(BAi),D
∗ := πL(B

∗R),D∗
i := πL(B

∗A⊤
i R)

m := πM (B),mi := πM (BAi),m
∗ := πM (B∗R),m∗

i := πM (B∗A⊤
i R),

f := πR(B), fi := πR(BAi), f
∗ := πR(B

∗R), f∗i := πR(B
∗A⊤

i R),

for all i ∈ [n] ∪ {0}, and function m((gb1
2 , gb2

2 )) := e(g1, g2)
b1 , for all b1,b2 ∈ Zd+2

p . Define ĝ :=

(g0, gf ), ĥ := (h0, hf∗) and output

pp := (G,H, GT , p, g, h, gT , ê,m, gD, gD0 , . . . , gDn , hD∗
, hD∗

0 , . . . , hD∗
n)

sp := (ĝ, ĥ, gm, gm0 , . . . , gmn , gf , gf0 , . . . , gfn , hm∗
, hm∗

0 , . . . , hm∗
n , hf∗ , hf∗0 , . . . , hf∗n).

g← SampG(pp): sample s← Zd
p and output g := ((gD0s, gDs), (g0, gD1s), . . . , (g0, gDns)).

ĝ← ŜampG(pp, sp): sample ŝ ← Zp and output ĝ := ((gŝf0 , gŝf ), (g0, gŝf1), . . . , (g0, gŝfn)) and gs :=
(g0, gŝf ).

h← SampH(pp, sp): sample r← Zd
p and output h := ((h0, hD∗r), (h0, hD∗

1r), . . . , (h0, hD∗
nr)).

ĥ← ŜampH(pp): sample r̂ ← Zp and output ĥ := ((h0, hr̂f∗), (h0, hr̂f∗1 ), . . . , (h0, hr̂f∗n)) and hs :=
(h0, hr̂f∗), ha := (h0, hr̂m∗

).
S ← SampS(pp): sample s← Zd+2

p and output S := (gs, g0).
K ← SampK(pp): sample k← Zd+2

p and output K := (hD∗k, hD0k).

Correctness and security. All correctness and security claims carry over from [GCTC16] since no
changes in the assumptions or distributions were made.
11 The original definition of d-LIN requires a1, . . . , ad, sd+1 ← Zp; however, as in [CW14, Remark 12], we allow

for a negligible difference of (d+ 1)/p in the Advd−LIN
G,D function.
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