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Abstract. Post-quantum cryptography (PQC) is a trend that has a deserved NIST 

status, and which aims to be resistant to quantum computer attacks like Shor and 

Grover algorithms [1]. We choose to follow a non-standard way to achieve PQC: 

taking any standard asymmetric protocol and replacing numeric field arithmetic 

with GF(28) field operations [2]. By doing so, it is easy to implement R-propped 

asymmetric systems as present and former papers show [3,4,5]. Here R stands 

for Rijndael as we work over the AES field. This approach yields secure post-

quantum protocols since the resulting multiplicative monoid resists known quantum 

algorithm and classical linearization attacks like Tsaban’s Algebraic Span [6] or 

Roman’kov linearization attacks [7]. Here we develop an original group-based digital 

signature protocol and R-propped it. The protocol security relies on the intractability 

of a generalized discrete log problem, combined with the power sets of algebraic ring 

extension tensors [2]. The semantic security and classical and quantum security 

levels are discussed. Finally, we present a numerical example of the proposed 

protocol.  
 

Keywords: Post-quantum cryptography, finite fields, combinatorial group 
theory, R-propping, public-key cryptography, non-commutative 

cryptography, digital signature, IND-CCA2, 
 

1. Introduction 
 

1.1. PQC Proposals Based on Combinatorial Group Theory 

Besides currently evaluated PQC solutions like code-based, hash-based, multi 

quadratic, or lattice-based cryptography, there remain overlooked solutions belonging to 

non-commutative (NCC) and non-associative (NAC) algebraic cryptography. The general 

structure of these solutions relies on one-way trapdoor functions (OWTF) extracted from 

the combinatorial group theory [8].  

 

1.2. Motivation of the present work 

In this paper, we develop an algebraic digital signature protocol The main target is to 

achieve quantum-attacks resistance. 

R-propping consists of replacing numerical field operations with algebraic operations 

using the AES field [2]. As a benefit, no big number libraries are needed, and eradicating the 

critical dependency on pseudo-random generators that affects protocols that security relies 

on big prime numbers.   

The R-propping solution is described below as an Algebraic Extension Ring (AER). For 

background knowledge about algebraic solutions, we refer to the Myasnikov et al NCC 

treatise [8]. 

 



 

 

2. Background 

2.1. Algebraic Extension Ring  (AER). The algebraic extension ring framework 
[2] includes the following structures: 

���� :  a.k.a. GF[28], the AES (advanced encryption standard) field [9] 

Primitive polynomial: 1+x+x3+x4+x8 with <1+x> as the multiplicative subgroup 

(����
∗ ) generator:  

M[���� d] d-dimensional square matrix of field elements. (bytes). Therefore, a d-

dimensional square matrix is equivalent to a rank-3 Boolean tensor.  

The AER platform has two substructures: 

(M[���� , d], ⨁, O)   Abelian group using field sum as operation and null matrix (tensor) 

as the identity element. 

 (M[����
∗ , d], ⨀, I)   Non-commutative monoid using field product as operation and 

identity matrix (tensor) as the identity element.  

From here on, when referring to field elements (bytes) we call them simply elements, and 

when we refer to any d-dimensional matrix of the AER we will use the term d-dim tensor. 

Detailed information on AER could be read at [2]. 

2.2. Generalized discrete logarithm problem (GDLP) in AER framework. 

Given t2=(t1)x, where t1 is an unknown tensor and x an unknown integer, compute 

exponent x for a given t2 tensor. 

 

 

3. R-Propped group-based digital signature protocol 

It is proposed an indirect signature procedure, so a suitable public hashing of a binary 
message msg of arbitrary length n should be defined. We choose a numeric output h(msg) 

=h( {0, 1}n) e [1, period]. A period is defined at 3.1. This function should be publicly available 

together with the tensor product and power functions. The protocol uses the AES 

framework [9]. The implementation takes the following steps: 

3.1. Define the desired security level from Table 2. , selecting the corresponding base 
generator g0 and period and using the numeric definition in Table 1. This g0 and 

period are both public data. 

3.2. Any signer defines his msg and compute h(msg). 

3.3. The signer generates a random secret exponent r in the range [2, period-2] and 

computes the r-power of g0. This will be the actual private generator g.  Then he 

computes a random session private key (a) in the range [2, period-2] and the 

corresponding public key and the first component of the digital signature s0=(g)a  

3.4. The signer computes the inverse tensor g-1 raising g to power period -1 and 

control that the product g.g-1 = identity tensor.  If not, returns to 3.3. 

3.5. The signer defines a secret session key k in the range [2, period-2] and computes 

the exponent kh = k . h, where h=h(msg). 

3.6. The signer compute the signatures s1= s0 (g-1)k.h and s2=(g)k . 

3.7. The signer publishes the digital signature (s0, s1, s2) together with the message 

msg. 



3.8. Any verifier should: 

3.8.1. Using the msg, recalculate h’=h(msg) 

3.8.2. compute the power s3=(s2)h’ 

3.8.3. Verify if the product s1.s3 = s0. If true, then the computed h’= h(msg) 

matches the original h=h(msg), so the signature is valid, else it would be 

rejected.  

3.9. If verified, the origin of the signature, the integrity of message, and non-

repudiation are assured. 

 

4. The cryptographic security of the R-Propped B-D protocol 

Using R-Propping we design private keys (exponents) of certain public tensors for 

which this approach is unfeasible. 

The proposed tensor generators are: 

 

Table 1. Predefined base tensors <G0> and corresponding multiplicative orders to be used for 

the R-Propped protocol: any base tensor raised to the corresponding period yields the Identity 

tensor. This table redefines Table 2. published in [5]. 



 

Classical and quantum security levels are as follows: 
 

 

Tensor 

dimension 

 

<G0>  

base 

generator 

 

cyclic period 

 |<G>| 

Classical 

Security 

(bits) 

[Grover] 

Quantum 

Security 

(bits) 

3 G3 224 - 1=16777215 24 12 

4 G4 232  - 1= 4294967295 32 16 

7 G7 296  - 1= 7.92 x 1028 96 48 

10 G10 2112  - 1= 5.19 x 1033 112 56 

12 G12 2160  - 1= 1.46 x 1048 160 80 

Table 2. Expected security of increasing size of private keys subject to classical and quantum 

attacks. Depending on the situation, it should be chosen base generators like G7 or above from 

Table 1. In any case, any random power of the base generator should be used as the actual 

generator of the protocol. This table redefines Table 3. published in [5]. 

The IND-CPA2 semantic security [10] is assured as members of the <g> set are 

indistinguishable from random tensors of the same size. More arguments and statistical 

evidence of tensor structures are provided [4].  

5 Step-By-Step Example 

To follow procedures, we show a dim=3 toy program written for Mathematica 12 

interpreted language. Detailed code with the newly defined functions is available upon 

request to the author. Running as-is on an Intel®Core™i5-5200U CPU 2.20 GHz the 
registered mean session time was 1.29 s.  

 

Table 3. Small example program of the defined protocol. In a real-world application, dim =7 or 

greater should be used to get reasonable security. 



 

 

Table 4. The output of the sample program that was described in Table3.  

 

6 Conclusions 

We present a PQC class of a new digital signature based on group theory. The protocol 

is somehow resemblant to ElGamal’s digital signature. Practical parameters are presented, 
and they solve the central question with different security levels.  

Other works of the author covering this field can be found at [11]. 
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