
Isogeny-based key compression without pairings

Geovandro C. C. F. Pereira1 and Paulo S. L. M. Barreto2

1 Institute for Quantum Computing, University of Waterloo; evolutionQ Inc.
geovandro.pereira@uwaterloo.ca

2 University of Washington Tacoma
pbarreto@uw.edu

Abstract. SIDH/SIKE-style protocols benefit from key compression to
minimize their bandwidth requirements, but proposed key compression
mechanisms rely on computing bilinear pairings. Pairing computation is
a notoriously expensive operation, and, unsurprisingly, it is typically one
of the main efficiency bottlenecks in SIDH key compression, incurring
processing time penalties that are only mitigated at the cost of trade-
offs with precomputed tables. We address this issue by describing how to
compress isogeny-based keys without pairings. As a bonus, we also sub-
stantially reduce the storage requirements of other operations involved
in key compression.

1 Introduction

Supersingular Isogeny Diffie-Hellman (SIDH) public keys are, in an abstract
sense, triples (A, xP , xQ) ∈ F3

p2 where A specifies an elliptic curve in Montgomery

form E : y2 = x3 + Ax2 + x, and xP , xQ are the x-coordinates of points P,Q
on E (which in turn are the images of fixed points on a certain starting curve
through a private prime-power-degree isogeny).

Although such triples naively take 6 lg p bits of storage or bandwidth, bet-
ter representations are known. Since P,Q are chosen to be in torsion subgroups
of form E[`m] with m lg ` ≈ (1/2) lg p, they can be represented on some con-
ventional public `m-torsion basis (R,S) in E by four coefficients from Z/`mZ,
namely P = [a]R + [b]S and Q = [c]R + [d]S, so that the public key be-
comes (A, a, b, c, d) ∈ Fp2 × (Z/`mZ)4 and the key bandwidth decreases to about
2 lg p + 4 · (1/2) lg p = 4 lg p bits [2]. Besides, for SIDH-style protocols only the
subgroup 〈P,Q〉 is actually relevant, not the points P,Q themselves. This re-
dundancy can be exploited for further compression, since only three out of those
four point coefficients above are needed to specify that subgroup. Thus, each key
is essentially represented by a tuple (A, a, b, c) ∈ Fp2 × (Z/`mZ)3 (plus one bit
to identify which coefficient is omitted). This finally brings the key size down to
3.5 lg p bits, nearly halving the naive requirements above [5]. At the time of writ-
ing, this appears to be the minimum attainable (and hence optimal) bandwidth
per key.

This size reduction, however, incurs a high computational overhead. Existing
research works [2,5,11,17,18] have achieved substantial improvements, but they

all rely on the computation of bilinear pairings to project (non-cyclic) elliptic
discrete logarithm instances into the multiplicative group of units in F∗p2 , where

variants of the Pohlig-Hellman algorithm [13] are effectively applied. Precom-
puted tables can substantially speed up pairing computations [11], but at the
cost of increasing storage requirements, compounding with those incurred by
the computation of discrete logarithms. More recently a work on reducing the
storage component has been proposed [9].

Despite all improvements, pairing computation has consistently remained the
efficiency bottleneck in all of those works (specially the case ` = 2 per [11]).

Our contribution: We describe how to compute discrete logarithms as required
to obtain the four a, b, c, d coefficients (which can then be reduced down to three
in the usual fashion) via tailored ECDLP instances without resorting to pairings.
Our proposed method relies almost entirely on arithmetic for elliptic curve points
defined over Fp for the discrete logarithm computation itself. Arithmetic over Fp2
is only ever needed in evaluating very simple and efficient maps between curves
and groups, and to complete partially computed logarithms. Precomputation
trade-offs are possible in the same way as they are for discrete logarithms on
F∗p2 , and if adopted, only the tables for a single, fixed, public group generator
are needed for each value of `. Moreover, we show how to halve the storage
requirements of windowed computation of discrete logarithm when the index of
the prime-power group order is not a multiple of the window size.

The remainder of this paper is organized as follows. In Section 2 we define
the fundamental notions and notations our proposal is based upon. We recap the
basic Pohlig-Hellman algorithm in Section 3, and then we discuss the improve-
ments made possible by the adoption of strategy graphs and propose several
associated techniques in Section 4. We introduce our methods to compute ellip-
tic curve discrete logarithms efficiently as required for SIDH key compression in
Section 5, and assess its performance in Section 6. Finally, we discuss the results
and conclude in Section 7.

2 Preliminaries

Consider a prime p = 2e2 · qeq − 1 for some e2 ≥ 2, some eq > 0 and some
small odd prime q (typically q = 3). We will represent the finite field Fp2 '
Fp[i]/〈i2+1〉. Also, we will be mostly concerned with supersingular elliptic curves
in Montgomery form E : x3 +Ax2 + x with A ∈ Fp2 (or A ∈ Fp in a few cases).
When required for clarity, the curve defined by a particular value of A will be
denoted EA.

Let P,Q ∈ E[`e`] with ` ∈ {2, q}. We say that P is above Q if Q = [`j]P for
some 0 < j 6 e`.

The trace map on E/Fp is the linear map tr : E(Fp2) → E(Fp) defined as
tr(P) := P +Φ(P), where Φ : E(Fp2)→ E(Fp2) is the Frobenius endomorphism,
Φ(x, y) := (xp, yp). If P ∈ E(Fp), then tr(P) = [2]P . Conversely, if tr(P) = [2]P ,
then P ∈ E(Fp).

2

A distortion map is an endomorphism ψ : E → E such that ψ(P) 6∈ 〈P 〉.
Efficiently computable distortion maps are hard to come by for most curves [8],
but the special curve E0 is equipped with a simple one, namely, ψ : E0 →
E0 defined as ψ(x, y) := (−x, iy) in the Weierstrass and Montgomery models,
or ψ(x, y) := (ix, 1/y) in the Edwards model. Notice that ψ−1 = −ψ, since
ψ(ψ(x, y)) = (x,−y) = −(x, y). Besides, if P ∈ E(Fp) then tr(ψ(P)) = O,
as one can see by directly computing tr(ψ(x, y)) = tr(−x, iy) = (−x, iy) +
((−x)p, (iy)p) = (−x, iy)+(−x,−iy) = (−x, iy)−(−x, iy) = O. For convenience
we also define the isomorphism ψ̃ : EA → E−A that maps ψ̃(x, y) := (−x, iy)
in the Weierstrass and Montgomery models, and ψ̃(x, y) := (ix, 1/y) in the
Edwards model.

An isogeny between two elliptic curves E and E′ over a field K is a morphism
ϕ : E(K) → E′(K) specified by rational functions, ϕ(x, y) = (r(x), s(x)y) for
some r, s ∈ K[x], satisfying ϕ(OE) = OE′ . Writing r(x) = n(x)/d(x) for n, d ∈
K[x] with gcd(n, d) = 1, the degree of ϕ is degϕ := max{deg n,deg d}. For short,
if degϕ = g we say that ϕ is a g-isogeny. If r(x) is non-constant, ϕ is said to be
separable, in which case degϕ = # kerϕ = #{P ∈ E | ϕ(P) = O}. An isogeny
is said to be of prime power if degϕ = `m for some small prime `.

We will make extensive use of the 2-isogeny ϕ0 : E0 → E6 with kernel 〈(i, 0)〉
and its dual ϕ̂0 : E6 → E0 with kernel 〈(0, 0)〉.

Supersingular isogeny-based cryptosystems build prime-power isogenies
starting from a fixed curve. The starting curve originally adopted for SIDH
protocols is E0, but since all power-of-2 isogenies leaving E0 must necessarily
pass through the 2-isogenous curve E6, a recent trend pioneered by the SIKE
scheme [1] is to adopt E6 as the starting curve instead.

An SIDH-style private key will thus be an isogeny ϕ : E6 → E of degree
λeλ , and the corresponding public key is, formally, a triple (E,P := ϕ(P6), Q :=
ϕ(Q6)) where (P6, Q6) is a basis of E6[`e`], where λ ∈ {2, q} and ` ∈ {2, q}\{λ}.

The basic idea of compressing public keys is to unambiguously specify a
public basis (R,S) for E[`e`] and obtaining coefficients a, b, c, d ∈ Z/`e`Z such
that P = [a]R+ [b]S and Q = [c]R+ [d]S. Since the dual isogeny ϕ̂ : E → E6 is
readily available and efficiently applicable during key pair generation [11], this
process can be equivalently stated on curve E6 itself. Namely, defining R6 :=
ϕ̂(R) and S6 := ϕ̂(S), that decomposition is equivalent to ϕ̂(P) = [λeλ]P6 =
[a]ϕ̂(R) + [b]ϕ̂(S) = [a]R6 + [b]S6 and ϕ̂(Q) = [λeλ]Q6 = [c]ϕ̂(R) + [d]ϕ̂(S) =

[c]R6 + [d]S6. Thus, if one can find â, b̂, ĉ, d̂ ∈ Z/`e`Z such that

P6 = [â]R6 + [b̂]S6,

Q6 = [ĉ]R6 + [d̂]S6,
(1)

the desired coefficients for the compressed public key might be obtained from
these after multiplying them by the scale factor λeλ . Yet, this is actually un-
necessary, since those four coefficients would be further compressed into a triple
(b/a, c/a, d/a) or (a/b, c/b, d/b) modulo `e` anyway, eliminating the need for any
scale factor.

3

With this in mind, we henceforth assume that basis (R6, S6) has been pre-
pared as outlined above, and we focus our attention to the specific task of finding
â, b̂, ĉ, and d̂ without any further reference to the private isogeny ϕ or its dual.
Since we will also resort later to other curve models than Montgomery’s in our
algorithms, this assumption will also help keeping all computations contained in
separate, well-delimited realms.

Being able to efficiently compute discrete logarithms is thus at the core of
key compression methods. We next review the Pohlig-Hellman discrete logarithm
algorithm and ways of making it as close to optimal as currently viable.

3 The Pohlig-Hellman algorithm

The Pohlig-Hellman method (Algorithm 3.1) to compute the discrete logarithm
of P = [d]G ∈ 〈G〉, where 〈G〉 is a cyclic Abelian group of smooth order `m,
requires solving equations of form:

[`m−1−k]Pk = [dk]L

for k = 0, . . . ,m− 1, where L := [`m−1]G has order `, dk ∈ {0, . . . , `− 1} is the
`-ary digit of d, P0 := P , and Pk+1 depends on Pk and dk.

Algorithm 3.1 Pohlig-Hellman discrete logarithm algorithm

Input: cyclic Abelian group 〈G〉, challenge P ∈ 〈G〉.
Output: d: base-` digits of logG P , i.e. [d]G = P .

1: L← [`m−1]G . NB: [`]L = O
2: d← 0, P0 ← P
3: for k ← 0 to m− 1 do
4: Vk ← [`m−1−k]Pk
5: find dk ∈ {0, . . . , `− 1} such that Vk = [dk]L
6: d← d+ dk`

k, Pk+1 ← Pk − [dk`
k]G

7: end for . NB: [d]G = P
8: return d

A simple improvement for Algorithm 3.1 would be to precompute a table
T[k][c] := [c]([`k]G) for all 0 ≤ k < m and 0 ≤ c < `. This way, the condition
on line 5, which essentially solves a discrete logarithm instance in the subgroup
〈L〉 of small order `, would read Vk = T[m− 1][dk], and the second assignment
on line 6 would read Pk+1 ← Pk − T[k][dk] instead.

The running time of this algorithm is dominated by line 4 (and line 6 in
the naive approach without tables), leading to an overall O(m2) complexity
as measured in basic group operations. Shoup [14, Chapter 11] shows that this
approach is far from optimal, but although his RDL algorithm [14, Section 11.2.3]
provides a framework targeting optimality, it lacks an effective strategy to attain
it. A practical technique for that purpose has been proposed by Zanon et al. [18,
Section 6] that uses so-called strategy graphs. We next recap that technique in
Section 4, which was originally proposed in the context of finite field discrete

4

logarithms. We subsequently show (Sections 4.1 to 4.5) how to adapt it for the
ECDLP case.

4 Strategy graphs

Let ∆ be a graph with vertices {∆j,k | j ≥ 0, k ≥ 0, j + k ≤ m − 1} (that is,
a triangular grid). Each vertex has either two downward outgoing edges, or no
edges at all. Vertices ∆j,k with j+k < m−1 are called internal vertices and have
two weighted edges: a left-edge ∆j,k → ∆j+1,k, and a right-edge ∆j,k → ∆j,k+1.
All left-edges are assigned weight p > 0 and all right-edges are assigned weight
q > 0. Vertices ∆j,k with j + k = m− 1 are leaves since they have no outgoing
edges. Vertex ∆0,0 is called the root.

A subgraph of ∆ that contains a given vertex v, all leaves that can be reached
from v and no vertex that cannot be reached from v is called a strategy. A full
strategy is a strategy that contains the root.

Notice that a strategy is not required to contain all vertices reachable from v,
and is thus not necessarily unique. This establishes the optimal strategy problem,
that consists of finding a full strategy of minimum weight. This problem can
be solved with the De Feo et al. O(m2) dynamic programming algorithm [7,
Equation 5] or the Zanon et al. O(m lgm) method [18, Algorithm 6.2]. The
latter is quoted in Appendix A.1 for reference.

Strategy graphs lend themselves to efficient prime-power-degree isogeny cal-
culation [7], and can also model potential variants of the Pohlig-Hellman algo-
rithm in a prime-power-order Abelian group [17,18]. Namely, an in-order traver-
sal of a strategy spells out which operations are to be performed: left-edges
correspond to multiplication by `, and right-edges variously corresponds to ap-
plying `-isogenies in the former case, or to erasing one base-` digit from a discrete
logarithm in the latter. Specifically in the solution of a discrete logarithm in-
stance P = [d]G, these edge operations associate the value [`j](P − [d mod `k]G)
to vertex ∆j,k for all j, k.

The reason this works is that, for those tasks, the overall calculation result
(a prime-power-degree isogeny or a discrete logarithm) consists of a sequence of
values computed at the leaves, and the value at each leaf depends only on the
values computed at the leaves to its left. The original Pohlig-Hellman algorithm
corresponds to a simple (non-optimal) traversal strategy whereby all m(m+1)/2
left-edges (i.e. multiplications by `) are traversed top-down and left-to-right,
while the only right-edges traversed (corresponding to the elimination of the
least significant digits from the discrete logarithm being retrieved) are those on
the rightmost diagonal of the strategy as a whole.

This idea is expressed in Algorithm 4.1, which is adapted from [17,18,
Section 6]. Its complexity, measured by the number of edges traversed in a
balanced strategy whereby the left-edge and right-edge costs are equal (and
hence the number of leaves at each side of the strategy vertices is the same),
is defined by the recurrence T (m) = 2T (m/2) + m with T (1) = 0, yielding the
overall cost Θ(m lgm) which is very close to the minimal Θ(m lgm/ lg lgm)

5

complexity [15]. The cost of an optimal albeit unbalanced strategy can be shown
to lie asymptotically close to this [7, Equation 9].

Algorithm 4.1 Traverse(V, j, k, z, path,T)

Purpose: retrieve d such that [d]G = P for a cyclic Abelian group 〈G〉 of order `m.
Input: V := [`j](P − [d mod `k]G): value associated to vertex ∆j,k;

j, k: coordinates of vertex ∆j,k;
z: number of leaves in the subtree rooted at ∆j,k;
path: traversal path (output of Algorithm A.1);
T: lookup table such that T[u][c] := [c]([`u]G) for all 0 ≤ u < m and 0 ≤ c < `.

Output: base-` digits of d such that [d]G = P .
Remark: the initial call is Traverse(P, 0, 0,m, path,T).

1: if z > 1 then
2: t← path[z] . z leaves: t to the left exp, z − t to the right
3: V ′ ← [`z−t]V . go left (z − t) times
4: Traverse(V ′, j + (z − t), k, t, path,T)
5: V ′ ← V −

∑k+t−1
h=k T[j + h][dh] . go right t times

6: Traverse(V ′, j, k + t, z − t, path,T)
7: else . leaf
8: find dk ∈ {0, . . . , `− 1} such that V = T[m− 1][dk] . recover the k-th digit dk

of the discrete logarithm from V = [dk]([`m−1]G)
9: end if

4.1 Choosing the curve model

Algorithm 4.1 makes extensive use of point multiplications by (powers of) `
(line 3) and also point additions/subtractions (line 5). This makes the Mont-
gomery model less suited for this task.

For the most important practical cases of ` = 2 and ` = 3, the (twisted)
Edwards model [3] seems to be the most adequate, specifically inverted twisted
Edwards coordinates for ` = 2 and projective twisted Edwards coordinates for
` = 3.

In the former case, with the adoption of inverted twisted Edwards coordinates
point addition costs 9m+1s+6a (or 8m+1s+6a if one of the points is affine), and
point doubling costs 3m+4s+6a. In the latter case, projective twisted Edwards
coordinates enable point addition at the cost 10m + 1s + 6a (or 9m + 1s + 6a
if one of the points is affine), and point tripling [4], which is here more relevant
than point doubling, costs 9m + 3s + 9a.

4.2 Handling the leaves

In a generalized, windowed implementation of Algorithm 4.1, that is, when ex-
pressing discrete logarithms in base `w for some w > 1 instead of simply sticking
to base `, finding digits dk ∈ {0, . . . , `w−1} in line 8 depends on efficiently look-
ing up the point V in a table containing the whole subgroup 〈[`m−w]G〉 ⊂ E(Fp),

6

which consists of `w elements. Since point V is typically available in projective
coordinates as discussed in Section 4.1, lookup operations are not straightfor-
ward in the sense that hash table or binary search techniques are not available.
This will incur extra costs that must be carefully minimized.

First, we observe that, since the whole `w-torsion is searched, lookups can
be initially restricted to one of the coordinates, namely, the y-coordinate in the
Edwards models, since for each such value there are no more than two points of
form (x, y) and (−x, y) in the torsion. This reduces the table size in half.

Second, in either projective twisted or inverted twisted coordinates, the point
comparisons are made between points of form [X : Y : Z] against points of form
[x′ : y′ : 1], and in both cases equality holds iff Y = y′ ·Z and X = x′ ·Z, where
the second comparison is performed exactly once after identifying the correct
y′. Since there are d`w/2e distinct values of y′ and they are expected to occur
uniformly, the expected number of Fp multiplications is d`w/4e+ 1.

This cost limits the values of w that can be chosen in practice, but these co-
incide with the values that make table T itself too large for practical deployment
anyway [17,18].

4.3 Windowing and signed digits

In order to reduce processing time, Algorithm 4.1 can be optimized to use a
more general base `w to express the digits. This reduces the number of leaves of
∆ from m to m/w. In this case, although the total cost of left edge traversals is
unchanged (since each left traversal now involves computing w multiplications
by `), the cost of right traversals is greatly reduced as we can now remove
larger digits (i.e. digits modulo `w) at the same cost of removing a single digit
modulo `. This computation time reduction comes with an associated storage
overhead because although the number of rows in table T[k][c] is divided by w,
the number of columns grows exponentially in w, i.e., T[k][c] := [c]([`k]G) for all
0 ≤ k < dm/we and 0 ≤ c < `w.

A straightforward storage reduction by a factor of two can be achieved by us-
ing the technique of signed digits [10, Section 14.7.1], which requires storing only
elements 0 ≤ c ≤ b`w/2c and then merely deciding whether to add or subtract
the corresponding multiple of G. Note that storing the column corresponding
to c = 0 is not needed in practice because 1) removing such digit is equivalent
to subtracting the identity and no lookup is indeed required (remember that
the discrete logarithm computation is not required to be constant time), and 2)
testing if a leaf element corresponds to c = 0 reduces to a simple identity test.
In this case, the number of columns is reduced by half since removing a negative
digit is equivalent to subtracting the opposite of the table entry corresponding
to the positive digit. Such storage reduction first appeared in the SIKE Round 3
submission [1] and was introduced by [9] in the context of key compression and
was deployed in the official SIKE Round 3 implementation submitted to NIST.
The above set of optimizations (adapted to elliptic curve discrete logarithms) is
summarized by Algorithm 4.2.

7

Algorithm 4.2 TraverseWSign(V, j, k, z, path,T, w)

Purpose: retrieve d such that [d]G = P for a cyclic Abelian group 〈G〉 of order `m.
Input: V := [Lj](P − [d mod Lk]G): value associated to vertex ∆j,k;

j, k: coordinates of vertex ∆j,k;
z: number of leaves in the subtree rooted at ∆j,k;
path: traversal path (output of Algorithm A.1);
T: lookup table such that T[u][c] := [c]([`u]G) for all 0 ≤ u < M := m/w and

1 ≤ c ≤ bL/2c.
w : window size such that L := `w.

Output: base-L signed digits of d such that [d]G = P .
Remark: the initial call is TraverseWSign(P, 0, 0,M, path,T, w) and function sign(·) ∈
{−,+}.

1: if z > 1 then
2: t← path[z] . z leaves: t to the left exp, z − t to the right
3: V ′ ← [Lz−t]V . go left (z − t) times
4: TraverseWSign(V ′, j + (z − t), k, t, path,T, w)
5: V ′ ← V −

∑k+t−1
h=k s.t.dh 6=0 sign(dh)T[j + h][|dh|] . go right t times

6: TraverseWSign(V ′, j, k + t, z − t, path,T, w)
7: else . leaf
8: find dk ∈ {0,±1, . . . ,±bL/2c} such that V = {O, sign(dk)T[M − 1][|dk|]}. .

recover the k-th digit dk of the discrete logarithm from V = [dk]([`m−w]G)
9: end if

4.4 Halving storage requirements for windowed traversal

One can obtain the storage needed by Algorithm 4.2 by directly counting the
number of Fp elements in table T [u][c], i.e., #T = 2(m/w)b`w/2c elements.

Unfortunately, Algorithm 4.2 only works when w divides the exponent m,
which is not the case in multiple SIKE parameters. For instance, in the ternary
case (` = 3) of SIKEp434 and SIKEp751 we have m = 137 and m = 239,
respectively, which are prime exponents and no w works. To circumvent this
issue, authors in [18] suggested a modification to the traverse algorithm that
requires using a second table of the same size of T [u][c], imposing twice the
storage.

We suggest a different approach that does not require an extra table and
thus offers half of the storage of that proposed in [18] and adopted in subsequent
works [11,12] including the official SIKE submission to NIST [1]. In order to
achieve such reduction, assume that m ≡ t (mod w) for any t < w, and write
the discrete logarithm of P with respect to G as d = q`m−t + r with 0 ≤ q < `t.
Now, instead of invoking Algorithm 4.2 with the challenge P in the first argument
we pass [`t]P which is a point whose order has index m − t divisible by w.
In this case, instead of recovering the full digit d, we get r = d (mod `m−t).
Having r at hand, observe that the relation P − [r]G = [q]([`m−t]G) allows
us to compare the point P − [r]G (which can be efficiently computed using
the technique described later in Section 4.5) against a very small precomputed
table containing the points [q]([`m−t]G) for 0 ≤ q < `t in order to find the
correct q. The original logarithm d can then be reconstructed with simple integer

8

arithmetic. Also note that although this approach introduces an apparently extra
small table, it also reduces the number of rows in table T [u][d] due to the smaller
order of the discrete logarithm instance, i.e. `m−t instead of `m. The storage of
our method amounts to the following number of Fp elements:

#T =

{
2
(
m
w

)
b`w/2c, if t = 0

2
(

(m−t)
w b`w/2c+ `t

)
, otherwise

(2)

4.5 Shifted multiplications by scalar

Besides retrieving d such that [d]G = P , Algorithm 4.1 can be slightly modified to
yield more useful information. Specifically, we will need points of form [bd/`σc]G
for certain values of σ > 0, and although this could be carried out from the
recovered value of d via multiplication by a scalar (d right-shifted by σ positions
in base `), it would incur additional cost that can be mostly averted.

However, when traversing the rightmost diagonal of the strategy graph (char-
acterized by j = 0), chunks of `-ary digits dh from d are erased at line 5 (and
implicitly at line 8 as well) by subtracting [dh]([`h]G) from V . Since the sub-
tracted points overall sum up to the original point [d]G itself, for h > σ one
could add chunks of points of form [dh]([`h−σ]G) at the same locations along the
rightmost diagonal, preserve their sum H, and subtract [`σ]H at those locations
instead. Since the erasure takes place at the branching points of the strategy
graph and there are roughly lgm (or lg(m/w) in a windowed base-`w imple-
mentation) such locations along any path from the root to the leaves (including
the rightmost diagonal), the additional cost incurred by this is roughly σ lgm
multiplications by ` (in practice we will have ` = 2, meaning plain doublings)
and lgm additions, far less than the O(m) extra doublings and additions that
would be incurred by a plain scalar multiplication.

The result (adapted for base-`w) is summarized in Algorithm 4.3, which
performs the strategy graph traversal, and Algorithm 4.4, which computes the
actual discrete logarithms.

5 Projecting elliptic discrete logarithms

As set forth in Equation 1, we are given two bases of `m-torsion on E6, (R6, S6)
and (P6, Q6), the latter being fixed. Our task is to compute the coefficients

â, b̂, ĉ, d̂ ∈ Z/`mZ such that P6 = [â]R6 + [b̂]S6 and Q6 = [ĉ]R6 + [d̂]S6. We will
do this by projecting the elliptic curve discrete logarithms onto cyclic subgroups
of points defined over Fp, and to attain this goal, we will apply the trace map
on carefully crafted torsion bases.

We will discuss the cases of odd ` and ` = 2 separately, since the latter will
require a somewhat different and more involved approach.

9

Algorithm 4.3 TraversePlus(V,m, j, k, z, path,T, σ, w)

Purpose: retrieve d such that [d]G = P for a cyclic Abelian group 〈G〉 of order `m.
Input: V := [Lj](P − [d mod Lk]G): value associated to vertex ∆j,k;

m: exponent of group order `m;
j, k: coordinates of vertex ∆j,k;
z: number of leaves in the subtree rooted at ∆j,k;
path: traversal path (output of Algorithm A.1);
T: lookup table such that T[u][c] := [c]([Lu]G) for all 0 ≤ u < m/w and

1 ≤ c ≤ bL/2c;
σ: shift in the computation of [bd/Lσc]G.
w: window size such that L := `w.

Output: base-L digits of d such that [d]G = P , and point H := [bd/Lσc]G.

1: if z > 1 then
2: t← path[z] . z leaves: t to the left exp, z − t to the right
3: V ′ ← [Lz−t]V . go left (z − t) times
4: TraversePlus(V ′,m, j + (z − t), k, t, path,T, σ, w)
5: V ′ ← V
6: if j = 0 then . rightmost diagonal
7: V ′ ← V ′ −

∑min(σ−1,k+t−1)
h=k s.t.dh 6=0 sign(dh)T[h][|dh|] . σ least significant digits

8: VH ←
∑k+t−1
h=max(k,σ) s.t.dh 6=0 sign(dh)T[h− σ][|dh|] . all remaining digits

9: if VH 6= O then
10: V ′ ← V ′ − [Lσ]VH
11: H ← H + VH
12: end if
13: else . internal diagonal
14: V ′ ← V −

∑k+t−1
h=k s.t.dh 6=0 sign(dh)T[j + h][|dh|] . go right t times

15: end if
16: TraversePlus(V ′,m, j, k + t, z − t, path,T, σ, w)
17: else . leaf
18: find dk ∈ {0,±1, . . . ,±bL/2c} such that V = {O, sign(dk)T[m/w − 1][|dk|]}
19: if j = 0 and k > σ and dk 6= 0 then
20: H ← H + sign(dk)T[k − σ][|dk|]
21: end if
22: end if

10

Algorithm 4.4 Dlog(P,m, path,T, σ, w)

Purpose: retrieve d such that [d]G = P for a cyclic Abelian group 〈G〉 of order `m,
together with point H := [bd/Lσc]G.

Input: P : point in 〈G〉;
m: exponent of group order `m;
path: traversal path (output of Algorithm A.1);
T: lookup table such that T[u][c] := [c]([Lu]G) for all 0 ≤ u < m/w and

1 ≤ c ≤ bL/2c;
σ: shift in the computation of [bd/Lσc]G.
w: window size such that L := `w.

Output: base-L digits of d and point H.
Remark: A call of form d ← Dlog(P,m, path,T, 0, w) is meant to disregard/discard

H.

1: d← 0, H ← O
2: TraversePlus(P,m, 0, 0,m, path,T, σ, w) . NB: this modifies both d and H
3: return d, H

5.1 Handling odd `

Let R0 := ϕ̂0(R6), S0 := ϕ̂0(S6), P0 := ϕ̂0(P6), and Q0 := ϕ̂0(Q6).
Let G ∈ E0(Fp) be a point of order `m. Then G generates the whole `m-

torsion in E0(Fp). Since the trace of a point on E0 is always in E0(Fp), we can
write

tr(R0) = [ζR]G, tr(ψ(R0)) = [ξR]G,
tr(S0) = [ζS]G, tr(ψ(S0)) = [ξS]G,

for some ζR, ζS , ξR, ξS ∈ Z/`mZ. These four discrete logarithms can be retrieved
by applying Algorithm 4.4 (with σ = 0, since we do not need the point H) to
〈G〉.

Analogously, we can write

tr(P0) = [µP]G, tr(ψ(P0)) = [νP]G,
tr(Q0) = [µQ]G, tr(ψ(Q0)) = [νQ]G,

for some µP , µQ, νP , νQ ∈ Z/`mZ. Since points P0 andQ0 are fixed, these discrete
logarithms can be precomputed (in contrast with the previous four logarithms,
which must be computed on demand).

With the above notation, applying the dual isogeny ϕ̂0 to the decomposition
of (P6, Q6) in base (R6, S6) yields:{

P6 = [â]R6 + [b̂]S6

Q6 = [ĉ]R6 + [d̂]S6

ϕ̂0
==⇒

{
P0 = [â]R0 + [b̂]S0

Q0 = [ĉ]R0 + [d̂]S0

Applying the trace map to the system on the right and grouping scalar co-
efficients together yields:{

P0 = [â]R0 + [b̂]S0

Q0 = [ĉ]R0 + [d̂]S0

tr
=⇒

{
µP = âζR + b̂ζS
µQ = ĉζR + d̂ζS

(mod `m)

11

Correspondingly, applying the distortion map and then the trace map to that
system yields:{

P0 = [â]R0 + [b̂]S0

Q0 = [ĉ]R0 + [d̂]S0

tr ◦ψ
===⇒

{
νP = âξR + b̂ξS
νQ = ĉξR + d̂ξS

(mod `m)

Overall we are left with two similar linear systems, one for â and b̂, the other
for ĉ and d̂:

M

[
â

b̂

]
=

[
µP
νP

]
, M

[
ĉ

d̂

]
=

[
µQ
νQ

]
(mod `m)

where

M :=

[
ζR ζS
ξR ξS

]
(mod `m)

The formal solution of these systems is thus:[
â

b̂

]
= M−1

[
µP
νP

]
,

[
ĉ

d̂

]
= M−1

[
µQ
νQ

]
(mod `m) (3)

where

M−1 :=
1

ζRξS − ζSξR

[
ξS −ζS
−ξR ζR

]
(mod `m) (4)

This solution, of course, requires D := ζRξS − ζSξR to be invertible mod `m.
This is the case for odd `, for which Equations 3 and 4 completely solve the
problem.

However, the same approach would not be complete for ` = 2. For any
P4 ∈ E6[4], the composition of the 2-isogeny ϕ̂0 followed by the trace maps pairs
of points (R6, R6 + P4) on E6 to the same point on E0, and analogously for
(S6, S6 + P4).

Efficiently solving this ambiguity requires a slightly different approach, which
we will describe next. Indeed, we propose two solutions for this case: one that is
slightly simpler conceptually, but requires tables twice as large for Algorithm 4.4,
and another one that is considerably more involved in its one-time precomputa-
tion (in fact, it relies on the first method for that task), but minimizes the table
space.

5.2 Handling ` = 2, first solution

The ideal feature needed to use the trace map as a projection onto a cyclic sub-
group of 2m-torsion would be a basis (P̃6, Q̃6) where tr(Q̃6) = O. However, this
would require a point of form Q̃6 = (−xQ, iyQ) with xQ, yQ ∈ Fp, or equivalently
(xQ, yQ) ∈ E−6(Fp)[2m] of full order, and no such point exists (the maximum
order one can get over Fp is 2m−1 [6, Lemma 1]).

Hence the best possible scenario is a basis (P̃6, Q̃6) where tr([2]Q̃6) = O, since
this is compatible with the order restriction above. The fundamental constraint
on Q̃6 is thus [2]Q̃6 = (−xH , iyH) = ψ̃(H) where H := (xH , yH) ∈ E−6(Fp)[2m]

12

is any point of order 2m−1. In fact, the computation of discrete logarithms in
〈[2]Q̃6〉 or a subgroup thereof can actually be carried out in 〈H〉 instead, with
all arithmetic restricted to Fp.

Besides, we want to keep the arithmetic carried out in the computation of
discrete logarithms restricted as much as possible to Fp. This constrains P̃6 to

being not only of full order and satisfying tr([2]P̃6) 6= O, but also [2]P̃6 ∈ E6(Fp)
even though P̃6 ∈ E6(Fp2) \ E6(Fp). This is again compatible with the order
restriction above.

With these constraints in mind, selecting a suitable basis (P̃6, Q̃6) can be
carried out as follows. Assume w.l.o.g. that basis (P6, Q6) is such that3 Q6 is
above (0, 0), while P6 is above a different point of order 2. Since we seek any
point Q̃6 of full order with tr([2]Q̃6) = O, we are free to look for a point of form

Q̃6 = P6 − [α]Q6

for some α, since more general linear combinations of basis (P6, Q6) would merely
yield multiples of such a point or a similar one with the roles of P6 and Q6

reversed. This specific form also ensures that Q̃6 is a point of full order. Doubling
and then taking the trace from both sides of this equation yields the constraint
O = tr([2]Q̃6) = tr([2]P6)− [α]tr([2]Q6), that is:

tr([2]P6) = [α]tr([2]Q6)

from which α (mod 2m−2) can be uniquely determined, once and for all, by
applying Algorithm 4.4 (with σ = 0) to tr([2]P6) ∈ 〈tr([2]Q6)〉 ⊂ E6(Fp), and
the same value of α can be lifted to a valid solution mod 2m.

From the above discussion it must hold that [2]Q̃6 = ψ̃(H) for H ∈
E−6(Fp)[2m] of order 2m−1. Because the points from E−6 of order 4 above (0, 0)
are (1,±2i) [7, Section 4.3.2], which are clearly not in E−6(Fp), point H will

necessarily be above one of the other points of order 2, and hence Q̃6 will not
be above (0, 0) in E6(Fp). Since Q6 is chosen above (0, 0), the pair (Q6, Q̃6)
constitutes a basis of 2m-torsion.

We now seek P̃6 satisfying [2]P̃6 ∈ E6(Fp) and [2m−1]P̃6 = (0, 0). These

two conditions imply tr([2]P̃6) = [4]P̃6 6= O (for m > 2) and the pair (P̃6, Q̃6)
constitutes a basis for E6[2m]. Yet, finding P̃6 satisfying these constraints by
trial and error is unlikely to be viable.

To overcome this obstacle, we express P̃6 in basis (Q6, Q̃6) as

P̃6 = [β]Q6 + [γ]Q̃6

with the requirement that tr([2]P̃6) = [4]P̃6 = [β]tr([2]Q6) be a point of 2m−2-
torsion in E6(Fp). In other words, pick any point Q′6 ∈ E6(Fp) of order 2m−2

above (0, 0) such that Q′6 ∈ 〈tr([2]Q6)〉, then simply choose P̃6 so that [4]P̃6

coincides with Q′6. Now write

Q′6 = [β]tr([2]Q6)

3 The actual SIKE setting matches this convention.

13

and retrieve the discrete logarithm β (mod 2m−2) to the same base as for α,
again once and for all. Now observe that [4]P̃6 − [4β]Q6 = Q′6 − [4β]Q6 =
[γ]([4]Q̃6), and hence

ψ̃(Q′6 − [4β]Q6) = [γ]ψ̃([4]Q̃6)

which constitutes a discrete logarithm instance in 〈ψ̃([4]Q̃6)〉 ⊂ E−6(Fp). Solving
it reveals γ (mod 2m−2), once and for all as usual.

The last equation also shows that, although β is only determined mod 2m−2,
only the value 4β is required to satisfy the constraints above, so that same value
can be lifted and taken as representative mod 2m. The same observation holds
for γ. This yields our choice P̃6 and completes the basis (P̃6, Q̃6) we seek for
E6[2m]. This basis selection process is summarized in Algorithm 5.1.

Algorithm 5.1 Selecting a basis (P̃6, Q̃6)

Input: path: traversal path (output of Algorithm A.1);
(P6, Q6): arbitrary basis for E6[2m].

Output: basis (P̃6, Q̃6) for E6[2m] such that [2]P̃6 ∈ E6(Fp), [2m−1]P̃6 = (0, 0), and
[2]Q̃6 = ψ̃(H) for some H ∈ E−6(Fp) of order 2m−1.

1: prepare discrete logarithm table T for 〈tr([2]Q6)〉
2: α← Dlog(tr([2]P6),m− 2, path,T, 0, w) . via Algorithm 4.4
3: Q̃6 ← P6 − [α]Q6

4: prepare discrete logarithm table T̃ for 〈ψ̃([4]Q̃6)〉
5: pick Q′6 ∈ E6(Fp) of order 2m−2 above (0, 0) . hence Q′6 ∈ 〈tr([2]Q6)〉
6: β ← Dlog(tr(Q′6),m− 2, path,T, 0, w) . via Algorithm 4.4
7: γ ← Dlog(ψ̃([2]Q′6 − [4β]Q6),m− 2, path, T̃, 0, w) . via Algorithm 4.4
8: P̃6 ← [β]Q6 + [γ]Q̃6

9: return (P̃6, Q̃6)

Computing logarithms with basis (P̃6, Q̃6):

Having found that special fixed basis, we reverse-decompose (R6, S6) as:{
R6 = [a′]P̃6 + [b′]Q̃6

S6 = [c′]P̃6 + [d′]Q̃6

Doubling and taking the trace from both sides yields:{
R6 = [a′]P̃6 + [b′]Q̃6

S6 = [c′]P̃6 + [d′]Q̃6

tr ◦ [2]
====⇒

{
tr([2]R6) = [a′]tr([2]P̃6)

tr([2]S6) = [c′]tr([2]P̃6)

whereby a′, c′ (mod 2m−2) are retrieved, and once they are known:{
R6 = [a′]P̃6 + [b′]Q̃6

S6 = [c′]P̃6 + [d′]Q̃6

ψ̃ ◦ [4]
====⇒

{
ψ̃([4]R6 − [4a′]P̃6) = [b′]ψ̃([4]Q̃6)

ψ̃([4]S6 − [4c′]P̃6) = [d′]ψ̃([4]Q̃6)

whereby b′, d′ (mod 2m−2) are similarly retrieved.

14

The computation of a′ in 〈tr([2]P̃6)〉 by means of Algorithm 4.4 with σ =
2 yields, as a by-product, the point Pa := [ba′/4c]tr([2]P̃6) = [ba′/4c]([4]P̃6)
which is almost the point [4a′]P̃6 needed for the computation of b′, but not
quite due to the loss of precision in ba′/4c. To compensate for it, simply set
Pa ← Pa + [a′ mod 4]P̃6, thereby ensuring that [4]Pa = [4a′]P̃6 at the cost of a
single addition in E6(Fp2) if the points [u]P̃6 for 0 6 u < 4 are precomputed and
stored in a small table. The same observations hold for the computation of d′

from the by-product of c′.

So far we only recovered a′, b′, c′, d′ (mod 2m−2), while we need these values
mod 2m instead. The complete values only differ by the retrieved ones by some
amount in D := {k · 2m−2 | 0 6 k < 4}, that is, R6 − [a′]P̃6 − [b′]Q̃6 ∈ {[u]P̃6 +
[v]Q̃6 | u, v ∈ D}, and similarly for S6− [c′]P̃6− [d′]Q̃6. Notice that the multiples
of P̃6 and Q̃6 are essentially the by-products Pa, Pb, Pc, Pd of the computations
of a′, b′, c′, d′ (points Pb and Pd must of course be mapped from E−6 back to E6

via the ψ̃−1 = −ψ̃ map).

Thus, the missing terms u and v can be recovered from a lookup table L6,
incurring four point subtractions overall plus the search cost similar to that
discussed in Section 4.2. Here, however, the set of points being searched always
contains 16 points, so there are 9 distinct values of the y-coordinate in the twisted
Edwards model, and the search for y incurs between 1 and 8 Fp2 multiplications,
plus one more to determine the correct x for the retrieved y. In other words, the
average search cost is 5.5Fp2 multiplications, or about 16.5Fp multiplications,
and it never exceeds 27Fp multiplications. Also, table L6 only consists of 9 points,
since the other ones are just the opposite of these.

This completely recovers the a′, b′, c′, d′ scalar factors, and a plain change of
basis from (P̃6, Q̃6) to (P6, Q6) yields â, b̂, ĉ, d̂ as desired. This whole method is
summarized in Algorithm 5.2.

Algorithm 5.2 Dlog6(R6, P̃6, Q̃6,TP ,TQ, path, L6, w)

Purpose: retrieve a′, b′ (mod 2m) such that R6 = [a′]P̃6 + [b′]Q̃6.
Input: R6 ∈ E6(Fp2): point to express in basis (P̃6, Q̃6);

(P̃6, Q̃6): special basis for E6(Fp2)[2m] (output of Algorithm 5.1);

TP , TQ: lookup tables for tr([2]P̃6) and ψ̃([4]Q̃6), respectively;
path: traversal path (output of Algorithm A.1);
L6: lookup table for pairs (u := j · 2m−2, v := k · 2m−2) for j, k ∈ {0 . . . 3} with

search key [u]P̃6 + [v]Q̃6 (see Section 4.2).
w : the window size.

Output: a′, b′ (mod 2m) such that R6 = [a′]P̃6 + [b′]Q̃6.

1: a′, Pa ← Dlog(tr([2]R6),m− 2, path,TP , 2, w) . via Algorithm 4.4
2: P ′a ← Pa + [a′ mod 4]P̃6

3: b′, Pb ← Dlog(ψ̃([4](R6 − Pa)),m− 2, path,TQ, 2, w) . via Algorithm 4.4
4: P ′b ← −ψ̃(Pb) + [b′ mod 4]Q̃6

5: lookup δ6 := R6 − P ′a − P ′b in L6 to retrieve (u, v) such that [u]P̃6 + [v]Q̃6 = δ6.
6: return a′ + u (mod 2m), b′ + v (mod 2m)

15

This method requires computing logarithms in 〈tr([2]P̃6)〉 ⊂ E6(Fp) and

ψ̃([4]Q̃6) ⊂ E−6(Fp). Therefore, two distinct tables would be required for Al-
gorithm 4.4. We show next how to avoid this, thereby restricting all logarithm
computations to a single subgroup over Fp with a somewhat more sophisticated
method.

5.3 Handling ` = 2, second solution

Our second solution involves mapping the discrete logarithm instances to curve
E0, where an efficient distortion map is available and enables using a single table
for a subgroup of E0(Fp) for all of those instances. However, a few obstacles must
be overcome.

Namely, in this setting Algorithm 4.4 can only determine logarithms mod
2m−4 or mod 2m−3, since the composition of the 2-isogeny between E0 and E6

with its dual introduces an extra factor 2 where one has already been placed
by construction or indirectly by the trace map, thereby mapping to a point
of incomplete order. This is slightly worse than our first solution, but more
importantly, completing the values must still be done in E6 where a′, b′, c′, d′

are properly defined, and the strategy graph traversal will no longer yield scalar
multiples of points in E6. Besides, if a change of basis is required to test the
partial logarithms, it is likely to incur further point multiplications by scalars,
introducing even more computational overhead.

We address these issues, coping with the incompleteness of computed discrete
logarithms while avoiding multiplications by large scalars, by carefully picking
a basis (P0, Q0) for E0[2m] and a matching basis (P ∗6 , Q

∗
6) for E6[2m] satisfying

several constraints:

– P0 must be a point of full order above (i, 0), the generator of the kernel of
the 2-isogeny ϕ0, that is, [2m−1]P0 = (i, 0), so that ϕ0(P0) is a point of order
exactly 2m−1 (NB: P0 cannot be taken from E0(Fp) since the only point of
order 2 in E0(Fp) is (0, 0));

– Q0 := [2]P0 − tr(P0), which is a point of trace zero, must satisfy Q0 =
−ψ(tr(P0)) which lies above (0, 0) (NB: this specific choice is what enables
using a single table to compute logarithms);

– P ∗6 must be such that [2]P ∗6 = ϕ0(P0), so that ϕ0(〈P0〉) ⊂ 〈P ∗6 〉 (NB: it is
not possible for P ∗6 to be defined as ϕ0(P0) itself because P0 is chosen above
a point in the kernel of the isogeny, and hence its image will not be a point
of full order);

– Q∗6 := ϕ0(Q0) (NB: since Q0 is not above the generator of the kernel of ϕ0,
Q∗6 is a point of full order 2m).

While points Q0 and Q∗6 are trivially determined, finding suitable points P0

and P ∗6 is not trivial. We now show how to find these. Notice that the following
computations are only required once, that is, all of these points are fixed and
can be precomputed.

16

Finding P0: Pick any point P2 ∈ E0[2m] of full order above (i, 0). Then Q2 :=
ψ(tr(P2)) ∈ E0[2m] is a linearly independent point of full order and trace zero.
We can express tr(P2) itself in basis (P2, Q2) as tr(P2) = [u]P2 + [v]Q2 for
some u, v ∈ Z/2mZ. Taking the trace from both sides of this equation yields
[2]tr(P2) = [u]tr(P2), from which we retrieve u = 2 (mod 2m). Besides, applying
the distortion map to that same equation and regrouping terms yields ψ([2]P2−
tr(P2)) = [v]tr(P2), from which we retrieve the discrete logarithm v (mod 2m).
Notice that v must be odd, since ψ([2]P2 − tr(P2)) is a point of full order.

We now seek a point P0 such that [2]P0 − tr(P0) = −ψ(tr(P0)). Write P0 =
[α]P2 + [β]Q2 for some α, β, and notice that tr(P0) = [α]tr(P2) = [2α]P2 +
[vα]Q2. Then [2]P0 − tr(P0) = [2α]P2 + [2β]Q2 − [2α]P2 − [vα]Q2 = [2β −
vα]Q2, while −ψ(tr(P0)) = −ψ([α]tr(P2)) = −[α]Q2, and hence [2]P0− tr(P0) =
−ψ(tr(P0)) ⇒ [2β − vα]Q2 = −[α]Q2 ⇒ [2β − vα + α]Q2 = O, that is, 2β −
vα + α = 0 (mod 2m) or simply β = α(v − 1)/2 (mod 2m), where the division
(v− 1)/2 is exact because v is odd. Since any point P0 satisfying this constraint
is equally suitable, we simply take α = 1 and β = (v − 1)/2, that is, we choose
P0 := P2 + [(v − 1)/2]Q2. This process is summarized in Algorithm 5.3.

Algorithm 5.3 Selecting a basis (P0, Q0)

Input: path: traversal path (output of Algorithm A.1).
Output: basis (P0, Q0) for E0[2m] such that P0 ∈ E0[2m] is above (i, 0) and Q0 :=

[2]P0 − tr(P0) = −ψ(tr(P0)).
Remark: This algorithm is only used once, for precomputation.

1: pick P2 ∈ E0(Fp2) of order 2m above (i, 0)
2: prepare discrete logarithm table T2 for 〈tr(P2)〉
3: v ← Dlog(ψ([2]P2 − tr(P2)),T2,m, path, 0, w) . via Algorithm 4.4
4: P0 ← P2 + [b(v − 1)/2c]ψ(tr(P2))
5: Q0 ← −ψ(tr(P0))
6: return (P0, Q0)

Finding P ∗
6 : Find a basis (P̃6, Q̃6) as prescribed in Section 5.2 (Algorithm 5.1).

Since all that is required from P ∗6 is that [2]P ∗6 = ϕ0(P0), we can write ϕ0(P0) =
[u′]P̃6 + [v′]Q̃6, solve the discrete logarithms for u′ and v′ (which must be both
even since ϕ0(P0) is a point of order 2m−1), and then choose P ∗6 := [u′/2]P̃6 +
[v′/2]Q̃6. This process is summarized in Algorithm 5.4.

Computing logarithms with bases (P0, Q0) and (P ∗
6 , Q

∗
6):

Algorithm 5.5 computes the decomposition of a point on E0[2m] in the special
basis (P0, Q0) precomputed by Algorithm 5.3, and also points P ∗a = [ba∗/4c]P0,
P ∗b = [bb∗/4c]tr(P0).

Analogously, algorithm 5.6 computes the decomposition of a point on E6[2m]
in the special basis (P ∗6 , Q

∗
6) precomputed by Algorithm 5.4. It does so by map-

ping the given discrete logarithm instance R6 ∈ E6 to a related instance R0 ∈ E0

17

Algorithm 5.4 Selecting a basis (P ∗6 , Q
∗
6)

Input: (P0, Q0): special basis for E0[2m] (output of Algorithm 5.3);
(P̃6, Q̃6): special basis for E6(Fp2)[2m] (output of Algorithm 5.1);

TP , TQ: lookup tables for tr([2]P̃6) and ψ̃([4]Q̃6), respectively;
path: traversal path (output of Algorithm A.1);
L6: lookup table for pairs (u := j · 2m−2, v := k · 2m−2) for j, k ∈ {0 . . . 3} with

search key [u]P̃6 + [v]Q̃6.
Output: basis (P ∗6 , Q

∗
6) for E6[2m] such that [2]P ∗6 = ϕ0(P0) and Q∗6 = ϕ(Q0).

Remark: This algorithm is only used once, for precomputation.

1: T6 ← ϕ0(P0)
2: u, v ← Dlog6(T6, P̃6, Q̃6,TP ,TQ, path, L6, w) . via Algorithm 5.2
3: P ∗6 ← [bu/2c]P̃6 + [bv/2c]Q̃6

4: Q∗6 ← ϕ(Q0)
5: return (P ∗6 , Q

∗
6)

Algorithm 5.5 Dlog0(R0, P0,T0, path, w)

Purpose: retrieve a∗, b∗ (mod 2m) such that R0 = [a∗]P0 + [b∗]Q0.
Input: R0 ∈ E0(Fp2): point to express in basis (P0, Q0);

P0 ∈ E0[2m]: point of full order above (i, 0) with [2]P0 − tr(P0) = −ψ(tr(P0))
(output of Algorithm 5.3);

T0: discrete logarithm lookup table for 〈tr(P0)〉;
path: traversal path (output of Algorithm A.1);
w : the window size.

Output: a∗, b∗ (mod 2m) such that R0 = [a∗]P0 + [b∗]Q0 where Q0 = −ψ(tr(P0)).

1: a∗, Pa ← Dlog(tr(R0),T0,m, path, 3, w) . via Algorithm 4.4
2: P ′a ← [4]Pa + [(ba∗/2c) mod 4]T0[0][1]
3: P ′a ← P ′a − ψ(P ′a)
4: P ∗a ← Pa − ψ(Pa) + [(ba∗/4c) mod 2]P0

5: b∗, P ∗b ← Dlog(ψ(R0 − P ′a),T0,m, path, 2, w) . via Algorithm 4.4
6: return a∗, b∗, P ∗a , P ∗b

18

via the dual isogeny ϕ̂0, and then decomposing this instance in the special ba-
sis (P0, Q0), which is precomputed by Algorithm 5.3. The careful choice of this
basis enables restricting the computations to a single subgroup of E0(Fp) of full
order. The obtained decomposition is finally mapped back from E0 to E6 via
the isogeny ϕ0. The isogeny evaluations only allow for a partial recovery of the
desired logarithms, but the complete solution can now be retrieved at low cost
by a lookup in a small table L∗6 of 9 entries, analogous to the L6 table used in
the first solution. The search overhead is the same as for the first solution for
` = 2, namely, about 16.5Fp multiplications on average, and no more than 27Fp
multiplications in any case.

Algorithm 5.6 Dlog2(R6, P0,T0, path, L
∗
6)

Purpose: retrieve a∗, b∗ (mod 2m) such that R6 = [a∗]P ∗6 + [b∗]Q∗6.
Input: R6 ∈ E6(Fp2): point to express in basis (P ∗6 , Q

∗
6);

P0 ∈ E0[2m]: point of full order above (i, 0) with [2]P0 − tr(P0) = −ψ(tr(P0))
(output of Algorithm 5.3);

T0: discrete logarithm lookup table for 〈tr(P0)〉;
path: traversal path (output of Algorithm A.1);
L∗6: lookup table for pairs (u := h+ j · 2m−1, v := k · 2m−2) for h, j ∈ {0, 1} and

k ∈ {0 . . . 3} with search key [u]P ∗6 + [v]Q∗6.
Output: a∗, b∗ (mod 2m) such that R6 = [a∗]P ∗6 + [b∗]Q∗6.

1: R0 ← [2]ϕ̂0(R6)
2: a∗, b∗, P ∗a , P

∗
b ← Dlog0(R0, P0,T0, path, w) . via Algorithm 5.5

3: a∗ ← ba∗/4c, b∗ ← bb∗/4c
4: lookup δ0 := R6 − ϕ̂0(P ∗a) + ϕ̂0(ψ(P ∗b)) in L∗6 to retrieve (u, v) such that δ0 =

[u]P ∗6 + [v]Q∗6
5: return 2a∗ + u (mod 2m), b∗ + v (mod 2m)

6 Experimental results

Table 1 lists the average cost to decompose one point from E6(Fp2) in basis

(P̃6, Q̃6), when Algorithm 5.2 is set to retrieve discrete logarithm digits in base 2,
base 23, base 24 and base 26 (that is, with windows of size w = 1, w = 3, w = 4,
and w = 6, respectively) for the official SIKE parameters. Fluctuations occur
because, since a constant-time implementation is hardly needed for operations
involving purely public information, one can omit dummy operations like point
additions or multiplications by zero. Results are averaged over 1000 random
discrete logarithm instances.

Table 2 lists the corresponding costs for Algorithm 5.6. We see that the
greater complexity of this method has a detectable effect on its cost, but it is
quite modest compared to Algorithm 5.2: 0.8%–1.3% for w = 1, 2.3%–4.0% for
w = 3, and 4.7%–8.4% for w = 6.

Table 3 lists the costs for Algorithm 4.4 applied to ` = 3 for its practical
importance. Only values w = 1, w = 3, and w = 4 are listed; larger values
would increase the table size without substantially improving processing effi-

19

Table 1: Average cost of Algorithm 5.2 (in Fp multiplications) and (two) tables

size (in #Fp2 elements) to compute a′, b′ (mod 2m) such that R6 = [a′]P̃6+[b′]Q̃6

for a random R6 ∈ E6(Fp2)[2m].

setting
w = 1 w = 3 w = 4 w = 6

cost size cost size cost size cost size

SIKEp434 21148 428 13005 570 11420 852 10507 2256
SIKEp503 24901 496 15603 660 13792 992 12690 2628
SIKEp610 31464 606 19955 808 17530 1208 16003 3208
SIKEp751 39712 740 25051 986 21962 1476 20112 3920

Table 2: Average cost of Algorithm 5.6 (in Fp multiplications) and table size (in
#Fp2 elements) to compute a∗, b∗ (mod 2m) such that R6 = [a∗]P ∗6 + [b∗]Q∗ for
a random R6 ∈ E6(Fp2)[2m].

setting
w = 1 w = 3 w = 4 w = 6

cost size cost size cost size cost size

SIKEp434 21420 216 13528 288 12027 432 11393 1152
SIKEp503 25194 250 16173 334 14435 500 13559 1328
SIKEp610 31781 305 20514 408 18187 610 16861 1632
SIKEp751 40035 372 25639 496 22632 744 21057 1984

ciency (indeed, if w is too large we expect the overhead to exceed the gains
anyway). However, in this case the costs are reported to decompose the whole
basis (P6, Q6) in basis (R6, Q6), not just for one point, given the subtle difference
between the methods for even and odd `.

Table 3: Average cost of Algorithm 4.4 (in Fp multiplications) to compute â, b̂, ĉ, d̂

(mod 3n) such that P6 = [â]R6 + [b̂]S6 and Q6 = [ĉ]R6 + [d̂]S6 for P6, Q6 ∈
E6(Fp2)[3n].

setting
w = 1 w = 3 w = 4

cost size cost size cost size

SIKEp434 37073 137 21504 594 20702 1363
SIKEp503 43949 159 26333 689 24418 1587
SIKEp610 55003 192 33193 832 30489 1920
SIKEp751 71936 239 44191 1036 39888 2387

Direct comparisons with methods like [11] are hard, since we count basic op-
erations in the underlying field Fp and developed our implementation in Magma,
while that work only lists clock cycles for a C/assembly implementation.

Yet, one can make reasonably precise estimates of the joint cost of comput-
ing pairings and discrete logarithms with those techniques. When estimating
the multiplications incurred without precomputed pairing tables, we assume the
costs of the pairing algorithms from [18] which appear to be the most efficient
currently available.

20

Results are summarized on Table 4. In all cases we list the results adopting
w = 3 for the 2m-torsion discrete logarithms, and w = 4 for the 3n-torsion, to
match the implementation in [11] and ensure the discrete logarithm tables take
the same space4.

Table 4: Average Fp multiplication counts of joint pairing and discrete logarithm
computation from [11] and our pairingless method, for SIKEp751 (m = 372,
n = 239).

torsion [11] w/ precomp [11] no precomp ours

2m 33052 56253 45264
3n 33144 65180 44191

Finally, we compare the storage requirements of our proposals, as measured
equivalently either in E(Fp) points or in Fp2 elements, with prior techniques.

In general, Algorithm 4.1 and its variants (Algorithm 4.2 and 4.3) require
tables of sizes given by Equation 2. Thus, for instance, in the case of SIKEp751
this means 8 · d372/4e = 744 elements (points over E(Fp)) for the 2m-torsion
and w = 4, and 13 · (239 − 2)/3 + 32 = 1036 elements for the 3n-torsion with
w = 3.

By contrast, both [11] and [18], which do not use the techniques we describe
in Sections 4.3 and 4.4, need up to four times as much space: 2wdm/we (resp.
3wdn/we) elements if w | m (resp. w | n), and twice as much for two separate sets
of tables for each torsion if w - m (resp. w - n). Thus, at the time of writing the
official SIKEp751 implementation, which builds upon those two research works,
takes 16 · 372/4 = 1488 elements for the 2m-torsion and w = 4 (so w | m), and
2 · 27 · d239/3e = 4320 elements for the 3n-torsion with w = 3 (so w - m).

Besides, in general the TP2 and TQ2 precomputed pairing tables as defined
in [11, Section 5.3] require 6(m− 1) Fp elements altogether, while the TP table
as defined in [11, Section 5.4] requires space equivalent to that of 3(n − 1) + 2
Fp2 elements (albeit in the form of individual Fp elements). For instance, for
SIKEp751 this means (372−1) ·3 = 1113 Fp2 elements for TP2

and TQ2
together,

and (239 − 1) · 6 + 4 = 1432 Fp elements for table TP , equivalent to 716 Fp2
elements. Our techniques require none of that. This is summarized on Table 5.
The storage requirements of our technique are less than 29% of the state of the
art for the 2m-torsion, and about 21% for the 3n-torsion.

Table 5: Storage requirements, measured in E(Fp) points or equivalently in Fp2
elements for SIKEp751 (m = 372, n = 239).

torsion
[11] and [18] ours

ratio (%)
dlogT (Fp2) + pairingT (Fp2) dlogT (E(Fp))

2m 1488 + 1113 = 2601 744 28.6
3n 4320 + 716 = 5036 1036 20.6

4 For the binary torsion, our methods require an extra table, L6 or L∗6, containing just
9 points over Fp2 , a small fraction of the space required for the other tables.

21

7 Discussion and conclusion

Apart from initialization, both the method for odd ` in Section 5.1 and the
second method for ` = 2 in Section 5.3 require each a single table for all calls to
Algorithm 4.4, that is, they are carried out in the same torsion group over Fp.

As a consequence, those constructions require essentially the same table space
as needed for discrete logarithms in F∗p2 , but no tables as required to speedup the

computation of pairings as suggested in [11], since we avoid pairings altogether.
Trade-offs between table size and processing speed are possible, particularly the
windowed approach discussed in [18, Section 6.1].

We remark that solving two instances of the discrete logarithm in a subgroup
of E0(Fp) is computationally less expensive than solving a single instance in a
subgroup of E0(Fp2), given that the relative cost of the arithmetic over those
fields is essentially the only difference between the two scenarios. This shows
that adapting Teske’s algorithm [16] to a strategy graph-based approach, thereby
retrieving both u and v at once while keeping the number of group operations
potentially the same as that of Algorithm 4.4, would incur not only an already
larger computational cost due to the contrast between Fp and Fp2 arithmetic,
but the precomputed tables themselves would have to be quadratically larger to
cope with computing pairs of digits at once.

In this context, Sutherland’s algorithm [15] extends Teske’s approach and
promises to be asymptotically faster, but it is far more involved in the way it
retrieves the digits of a discrete logarithm. It is unclear how that method could
avoid the larger cost of Fp2 arithmetic, nor how large the underlying group would
have to be for the asymptotic speedup to overcome the corresponding overhead,
nor even whether precomputed tables could be made any smaller than what
Teske’s method would require. For these reasons, neither of these two approaches
seems practical for the task at hand.

We have thus described methods to compute discrete logarithms in the el-
liptic curve torsion groups of the starting curves in SIDH-style cryptosystems,
as required to compress the corresponding public keys. Our methods do not
rely on bilinear pairings, yet their efficiency is comparable to the best available
pairing-based methods while vastly reducing the storage space needed for pairing
computations. The table storage needed for discrete logarithm computation is
essentially the same required for discrete logarithms in the Fp2 finite field over
which the curves are defined, the excess space being constant and very small,
limited to just a few extra points.

Acknowledgements This work is supported in part by NSERC, Cryp-
toWorks21, Canada First Research Excellence Fund, Public Works and Gov-
ernment Services Canada.

References

1. R. Azarderakhsh, M. Campagna, C. Costello, L. DeFeo, B. Hess, A. Jalali, D. Jao,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev,

22

and D. Urbanik. Supersingular Isogeny Key Encapsulation. SIKE Team, https:
//sike.org/, 2020.

2. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi. Key compression
for isogeny-based cryptosystems. In Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, pages 1–10. ACM, 2016.

3. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In Progress in Cryptology – Africacrypt 2008, number 5023 in Lecture
Notes in Computer Science, pages 389–405, Casablanca, Morocco, 2008. Springer.

4. C. Chuengsatiansup. Optimizing curve-based cryptography. PhD thesis, Technische
Universiteit Eindhoven, March 2017.

5. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. Efficient
compression of SIDH public keys. In Advances in Cryptology – Eurocrypt 2017,
number 10210 in Lecture Notes in Computer Science, pages 679–706, Paris, France,
2017. Springer.

6. C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular
isogeny Diffie-Hellman. In Advances in Cryptology – Crypto 2016, number 9814
in Lecture Notes in Computer Science, pages 572–601, Santa Barbara (CA), USA,
2016. Springer.

7. L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–
247, 2014.

8. S. D. Galbraith and V. Rotger. Easy decision-Diffie-Hellman groups. LMS Journal
of Computation and Mathematics, 7:201–218, 2004.

9. A. Hutchinson, K. Karabina, and G. Pereira. Memory Optimization Techniques for
Computing Discrete Logarithms in Compressed SIKE. Cryptology ePrint Archive,
Report 2021/368, 2020. http://eprint.iacr.org/2021/368.

10. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, USA, 1999.

11. M. Naehrig and J. Renes. Dual isogenies and their application to public-key com-
pression for isogeny-based cryptography. In S. D. Galbraith and S. Moriai, editors,
Advances in Cryptology – Asiacrypt 2019, volume 11922 of Lecture Notes in Com-
puter Science, pages 243–272. Springer, 2019.

12. G. Pereira, J. Doliskani, and D. Jao. x-only point addition formula and faster
compressed SIKE. Journal of Cryptographic Engineering, pages 1–13, 2020.

13. S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance. IEEE Transactions on Information
Theory, 24(1):106–110, 1978.

14. V. Shoup. A computational introduction to number theory and algebra. Cambridge
University Press, 2005.

15. A. V. Sutherland. Structure computation and discrete logarithms in finite Abelian
p-groups. Mathematics of Computation, 80:477–500, 2011.

16. E. Teske. The Pohlig-Hellman method generalized for group structure computa-
tion. Journal of Symbolic Computation, 27(6):521–534, 1999.

17. G. H. M. Zanon, M. A. Simplicio Jr, G. C. C. F. Pereira, J. Doliskani, and P. S.
L. M. Barreto. Faster isogeny-based compressed key agreement. In International
Conference on Post-Quantum Cryptography – PQCrypto 2018, number 10786 in
Lecture Notes in Computer Science, pages 248–268, Fort Lauderdale, Florida, US,
2018. Springer.

18. G. H. M. Zanon, M. A. Simplicio Jr, G. C. C. F. Pereira, J. Doliskani, and P. S.
L. M. Barreto. Faster key compression for isogeny-based cryptosystems. IEEE
Transactions on Computers, 68(5):688–701, 2018.

23

https://sike.org/
https://sike.org/
http://eprint.iacr.org/2021/368

A The OptPath algorithm

Algorithm A.1 OptPath(p, q, e): optimal subtree traversal path

Input: p, q: left and right edge traversal cost; e: number of leaves of ∆.
Output: path[1 . . . e]: array of indices specifying an optimal traversal path.

. Define C[1 . . . e] as an array of costs.
C[1]← 0, path[1]← 0
for k ← 2 to e do

j ← 1, z ← k − 1
while j < z do

m← j + b(z − j)/2c, m← m+ 1
t1 ← C[m] + C[k −m] + (k −m) · p+m · q
t2 ← C[m] + C[k − m] + (k − m) · p+ m· q
if t1 ≤ t2 then

z ← m
else

j ← m

end if
end while
C[k]← C[j] + C[k − j] + (k − j) · p+ j · q, path[k]← j

end for
return path

24

	Isogeny-based key compression without pairings

