
On the (In)Security of the Diffie-Hellman
Oblivious PRF with Multiplicative Blinding?

Stanis law Jarecki1, Hugo Krawczyk2, and Jiayu Xu3

1 University of California, Irvine, stasio@ics.uci.edu
2 Algorand Foundation, hugokraw@gmail.com
3 George Mason University, jiayux@uci.edu

Abstract. Oblivious Pseudorandom Function (OPRF) is a protocol
between a client holding input x and a server holding key k for a PRF
F . At the end, the client learns Fk(x) and nothing else while the server
learns nothing. OPRF’s have found diverse applications as components
of larger protocols, and the currently most efficient instantiation, with
security proven in the UC model, is Fk(x) = H2(x, (H1(x))k) computed
using so-called exponential blinding, i.e. the client sends a = (H1(x))r

for random r, the server responds b = ak, which the client unblinds as
v = b1/r to compute Fk(x) = H2(x, v).
However, this protocol requires two variable-base exponentiations on the
client, while a more efficient multiplicative blinding scheme replaces one
or both client exponentiations with fixed-base exponentiation, leading to
the decrease of the client’s computational cost by a factor between two
to six, depending on pre-computation.
We analyze the security of the above OPRF with multiplicative
blinding, showing surprising weaknesses that offer attack avenues which
are not present using exponential blinding. We characterize the security
of this OPRF implementation as a “Correlated OPRF” functionality, a
relaxation of UC OPRF functionality used in prior work.
On the positive side, we show that the Correlated OPRF suffices for the
security of OPAQUE, the asymmetric PAKE protocol, hence allowing
OPAQUE the computational advantages of multiplicative blinding.
Unfortunately, we also show examples of other OPRF applications
which become insecure when using such blinding. The conclusion is
that usage of multiplicative blinding for Fk(x) defined as above, in
settings where correct value gk (needed for multiplicative blinding) is
not authenticated, and OPRF inputs are of low entropy, must be
carefully analyzed, or avoided all together. We complete the picture by
showing a simple and safe alternative definition of function Fk(x) which
offers (full) UC OPRF security using either form of blinding.

1 Introduction

An Oblivious Pseudorandom Function (OPRF) scheme consists of a
Pseudorandom Function (PRF) F for which there exists a two-party protocol

? An abridged version of this paper appears in PKC’2021.

between a server S holding a PRF key k and a client C holding an input x
through which C learns Fk(x) and S learns nothing (in particular, nothing
about the input x or the output Fk(x)). More generally, the security properties
of the PRF, namely indistinguishability from a random function under
polynomially many queries, must be preserved by the protocol. The OPRF
notion was introduced explicitly in [10] but constructions, particularly those
based on blinded DH, were studied earlier (e.g., [6, 25, 9]). OPRF has been
formally defined under different models [10, 20, 12, 13] with the last two works
framing them in the Universally Composable (UC) framework [5]. The OPRF
notion has found many applications, and recently such applications have been
proposed for actual deployment in practice, including the Privacy Pass
protocol [7] and the OPAQUE password-authenticated key exchange protocol
[17]. This gave rise to standardization proposals for OPRFs [27] and the
OPAQUE protocol [24, 23, 28], which further motivates understanding the
costs and benefits of possible OPRF implementations.

Exponential vs. multiplicative blinding in Hashed Diffie-Hellman
PRF.4 In several of the above mentioned applications, the underlying PRF is
instantiated with a (Double) Hashed Diffie-Hellman construction (2HashDH)
[13], namely:

Fk(x) = H2(x, (H1(x))k) (1)

where hash functions H1, H2 are defined respectively as H1 : {0, 1}∗ → G\{1}
and H2 : {0, 1}∗ × G → {0, 1}τ for a multiplicative group G of prime order q,
and the PRF key k is a random element in Zq, while τ is a security parameter.
The protocol for the oblivious computation of 2HashDH used e.g. in [9, 3, 12, 13]
employs the so-called exponential blinding method, i.e. protocol Exp-2HashDH
shown in Fig. 1: Client C sends to server S its input x blinded as a = (H1(x))r,
for r ←R Zq, and then unblinds the server’s response b = ak as v = b1/r [=
(ak)1/r = (((H1(x))r)k)1/r = (H1(x))k] and outputs H2(x, v). It is easy to see
that the client’s input is perfectly hidden from the server because if H1(x) 6= 1
then a is a random element in G independent from x.

An alternative multiplicative blinding technique, denoted Mult-2HashDH, is
shown in Fig. 2. The protocol is an equivalent of Chaum’s technique for blinding
RSA signatures: Given generator g of group G, the client blinds its input as
a = H1(x) · gr, and using the server’s public key z = gk corresponding to the
PRF key k, the client unblinds the server’s response b = ak as v = b · z−r [=
ak · (gk)−r = (H1(x) · gr)k · g−kr = (H1(x))k]. It is easy to see that this blinding
hides x with perfect security, as in the case of Exp-2HashDH.

Comparing the computational cost of the two techniques, we see that both
require a single variable-base exponentiation for the server. However, for the
client, Exp-2HashDH requires two variable-base exponentiations (for blinding
and unblinding) while Mult-2HashDH involves a single fixed-base exponentiation

4 In the context of additive groups, “multiplicative” would be replaced with “additive”
and “exponential” with “scalar-multiplicative”. A less confusing terminology could
refer to these as fixed-base and var-base blindings, respectively.

2

Parameters: group G of order q, functions H1, H2 onto resp. G \ {1} and {0, 1}`

Client C(x) Server S(k)

Pick r ←R Zq, set a← (H1(x))r -a

If b ∈ G output y = H2(x, v) for
v = b1/r (otherwise abort)

� b If a ∈ G set b← ak

(otherwise abort)

Fig. 1. Exp-2HashDH: Oblivious PRF using Exponential Blinding [13]

Parameters: as in Fig. 1, plus generator g of group G

Client C(x) Server S(k, z= gk)

Pick r ←R Zq, set a← H1(x) · gr -a

If b, z ∈ G output y = H2(x, v) for
v = b · z−r (otherwise abort)

�(b, z) If a ∈ G set b← ak

(otherwise abort)

Fig. 2. Mult-2HashDH: Oblivious PRF using Multiplicative Blinding

for blinding and a variable-base exponentiation (to the base z) for unblinding.
In applications where the client stores z,5 the latter exponentiation can use
fixed-base optimization, reducing the client’s total computation to two-fixed base
exponentiations. Given that exponentiation with a fixed base is about 6-7 times
faster than with a variable base (cf. [4, 15]), Mult-2HashDH becomes at least
1.7 faster than Exp-2HashDH and 6x faster if z is stored at the client and
treated as a fixed base. On the other hand, in cases where the client does not
hold z, Mult-2HashDH requires the server to store z and send it with each
execution of the OPRF protocol. This cost may not be significant in some cases
but in constrained environments where bandwidth and/or storage is a costly
resource (e.g., mobile and IoT scenarios) [11], Exp-2HashDH may be preferred.
Fortunately, 2HashDH allows an application to choose the blinding mechanism
that best fits its needs, possibly choosing one technique or the other depending
on the network setting and client configuration.

These are good news for performance and implementation flexibility, but
regarding security, things are not as straightforward, as we explain next.

Is multiplicative blinding secure? On the face of it, it would seem that
exponential and multiplicative blindings are equivalent, functionally and
security-wise, thus allowing for performance optimization and flexibility as

5 For example, in a password protocol such as OPAQUE [17], a user can cache values
z corresponding to servers it accesses frequently, e.g., Google, Facebook, etc.

3

discussed above. However, determining the security of Mult-2HashDH turns
out to be non-trivial, showing unexpected attack avenues which are not present
in Exp-2HashDH. In particular, while Exp-2HashDH has been proven to satisfy
the UC OPRF notion from [13], protocol Mult-2HashDH is not secure under
this same definition. The problem is, broadly speaking, that the dependency of
the protocol on z implies that multiplicative blinding does not ensure full
independence between OPRF instances indexed by different public keys.6

Let us elaborate. In protocol Exp-2HashDH, server’s response b to the client’s
message a 6= 1 defines a unique key k = DL(a, b) for which C computes y =
Fk(x). (Since client’s output is y = H2(x, v) for v = b1/r and a = (H1(x))r, it
follows that v = ak/r = (H1(x))k and therefore y = Fk(x) for k = DL(a, b).) In
other words, server’s response b commits the server to a single value k, hence
to a unique function Fk(x). This commitment to a unique function is central
to the OPRF UC modeling from [13]. The same, however, does not hold for
Mult-2HashDH where the server’s response (b, z) to the client’s message a gives
the attacker an additional degree of freedom in manipulating C’s output y =
H(x, b · z−r). Specifically, response (b, z) given a determines pair (δ, z) where
δ = b/ak for k = DL(g, z), thus leading to the following function:

F(δ,z)(x) , H2(x, δ · (hx)k) for z = gk and hx = H1(x) (2)

which an honest C computes on its input x given S’s response (b, z) in the
Mult-2HashDH protocol. Indeed, if a = hx · gr, z = gk and δ = b/ak then

v = b · z−r = b · (gk)−r = b · (gr)−k = b · (a/hx)−k = (b/ak) · (hx)k = δ · (hx)k

The important point is that value δ = b/ak for k = DL(g, z) introduces a
multiplicative shift in the value v computed by C. Moreover, an adversarial S
can exploit this shift to create correlated responses that leak information on
the client’s input. In particular, for any choice of client input x̄, an attacker S
can find values δ1, δ2, k1, k2 such that

δ1 · (hx̄)k1 = δ2 · (hx̄)k2 for z1 = gk1 , z2 = gk2 and hx̄ = H1(x̄) (3)

Using these values the attacker can respond to the first client’s query a1 with
(b1, z1) = (δ1a1

k1 , gk1), and to a second query a2 with (δ2a2
k2 , gk2), leading C

to compute values v1, v2 that coincide if C’s input is x = x̄ and do not coincide
if x 6= x̄. In other words, F(δ1,z1)(x̄) = F(δ2,z2)(x̄), showing that in contrast to
the family {Fk} defined by equation (1), the function family {F(δ,z)} defined by
equation (2) is not a family of independent random functions in ROM.7

Potential vulnerabilities. The core advantage a corrupt server may gain by
exploiting the above correlations is the ability to test whether a given value of

6 The potential insecurity of multiplicative blinding as UC OPRF was pointed out in
[17], which left its security analysis as an open question.

7 Note that an honest server’s response (b, z) = (ak, gk) corresponds to δ = 1 and the
evaluated function F(1,z) is identical to the intended function Fk.

4

x has been input by the client in a previous interaction with the server. Our
analysis of Mult-2HashDH shows that the server can test at most one such
input per interaction. For OPAQUE, this property suffices to prove the
security of the protocol with Mult-2HashDH. The intuitive reason is that in
OPAQUE, a malicious server already has the ability to test guesses for the
client’s inputs (a password in the case of OPAQUE) with each interaction with
the client, thus the above attack based on correlation does not add to the
attacker’s power. In contrast, in Section 7 we show examples of applications
where the correlated nature of Mult-2HashDH opens attack avenues not
available with exponential blinding. This demonstrates that the two OPRF
implementations, Exp-2HashDH and Mult-2HashDH, are not equivalent
vis-à-vis security, and replacing one with another within some application
needs to be analyzed on a per-case basis, as we do here for OPAQUE.

Modeling Mult-2HashDH as Correlated OPRF. To analyze the security
of applications that use Mult-2HashDH, we show that there are limits on the
correlations which an adversary can create among the functions effectively
evaluated in the Mult-2HashDH protocol. Specifically, each pair of functions
can be correlated only as in equation (3) and only on one argument x. We
prove this formally by introducing a relaxation of the UC OPRF functionality
of [13] which we call Correlated OPRF. The purpose of this relaxation is to
model the exact nature of function correlations which multiplicative blinding
gives to a malicious server. We show that Mult-2HashDH realizes the
Correlated OPRF functionality under the Gap+-OMDH assumption in ROM,
a mild strengthening of the Gap-OMDH assumption which sufficed for
Exp-2HashDH to satisfy the UC OPRF functionality [13].

Security of OPAQUE under both blindings. Based on the UC modeling
of Mult-2HashDH as a Correlated OPRF, we prove the OPAQUE strong
asymmetric PAKE protocol [17] secure using 2HashDH with multiplicative
blinding. (Strong asymmetric PAKE is secure against pre-computation of
password hashes before server compromise.) Specifically, we show that
OPAQUE remains secure if the OPRF building block it uses is relaxed from
the UC OPRF notion of [13] to the Correlated OPRF defined here. This means
that the asymmetric PAKE standard being defined by the IETF on the basis of
OPAQUE [24, 23, 28] can use the 2HashDH function and leave the choice of
exponential or multiplicative blinding to individual implementations.

We believe that the same holds for another construction from [17], which
shows that a composition of UC OPRF and any asymmetric PAKE results in
a strong asymmetric PAKE. This transformation was proven secure using UC
OPRF, implemented by Exp-2HashDH and we believe that this result can also
be “upgraded” to the case of UC Correlated OPRF, i.e. using Mult-2HashDH,
but we leave the formal verification of that claim to future work.

When is it safe to use Mult-2HashDH? In cases where the client has access
to the value gk in some authenticated/certified form, such as in applications
requiring a Verifiable OPRF [12], e.g., Privacy Pass [7], one can use (1) with

5

either blinding. For multiplicative blinding, one just uses the authenticated z in
the unblinding. However, when z is received from the server in unauthenticated
way, much care is needed, and security under multiplicative blinding needs to
be proven on a per-application basis. Even then, small changes in applications
and implementations may turn this mechanism insecure as evidenced by the case
of using OPAQUE with a threshold OPRF which we show in Section 7 to be
insecure if used with Mult-2HashDH. As a rule of thumb, it seems prudent to
advise not to use Mult-2HashDH in setting with unauthenticated gk and where
the input to the OPRF is taken from a low-entropy space.

An alternative OPRF specification. Another fix is to replace function
2HashDH defined in eq. (1) with the following simple modification, where
z = gk is included under the hash, which is secure using either blinding:

F ′k(x) = H2(x, z,H1(x)k) where z = gk (4)

It can be shown that this scheme avoids the correlation attacks8, and therefore
can be proven secure with either blinding method as a realization of the UC
OPRF functionality from [13]. The security holds even when the value z input
into the hash by the client is the (unauthenticated) z received from the server.

However, while this scheme allows an implementation to choose (even at
execution time) the blinding mechanism it prefers, it forces the transmission of
z from server to client even in the case of exponential blinding, a drawback in
constrained settings discussed above, e.g. [11]. In the case of OPAQUE, one can
still use the simpler 2HashDH without transmitting z but with the subtleties
and warnings surrounding security as demonstrated in this paper.9

2 Preliminaries

The Gap One-More Diffie-Hellman assumptions. The security of protocol
Mult-2HashDH as UC Correlated OPRF relies on the interactive Gap+ One-
More Diffie-Hellman (Gap+-OMDH) assumption, a mild strengthening of the
Gap-OMDH assumption used to realize UC OPRF [13] or verifiable UC OPRF
[12]. Let G be a group of prime order q, and let g be an arbitrary generator of G.
Let (·)k for k ∈ Zq denote an oracle which returns y = xk on input x ∈ G. Let
CDHg denote a CDH oracle which returns gxy on input (gx, gy). Let DDHg denote
a DDH oracle which returns 1 on input (A,B,C) s.t. C = CDHg(A,B), and 0
otherwise. Let DDH+

g denote an oracle which returns 1 on input (A,B,A′, B′, C)
s.t. C = CDHg(A,B) ·CDHg(A

′, B′), and 0 otherwise. The (N,Q)-Gap+-OMDH
assumption on group G states that for any polynomial-time algorithm A,

Pr
k←RZq, h1,...,hN←RG

[
A(·)k,DDH+

g (g, gk, h1, . . . , hN) = (J, S)
]

8 The correlation between functions F(δ1,z1) and F(δ2,z2) would now require that z1=z2,
hence k1=k2, in which case eq. (3) holds only if δ1=δ2, hence (δ1, z1) = (δ2, z2).

9 Another way for 2HashDH to realize UC OPRF with multiplicative blinding, is to
add to Mult-2HashDH a zero-knowledge proof that (g, z, a, b) is a DDH tuple, but
this would void the performance benefit of Mult-2HashDH.

6

is negligible, where J = (j1, . . . , jQ+1), S = ((hj1)k, . . . , (hjQ+1
)k), Q is the

number of A’s (·)k queries, and j1, . . . , jQ+1 are distinct elements in {1, . . . , N}.
In other words, Gap+-OMDH models the following experiment: Let A have

access to a DDH+ oracle and an “exponentiation to k-th power” oracle for
random k in Zq, and the number of queries to the latter is limited by Q. A is
given N random elements in G as the challenge values, and since A is allowed
to query the exponentiation oracle Q times, it is able to compute the k-th
power of any Q of the N elements, but the assumption postulates that it is
infeasible that A computes the k-th power of any Q+ 1 of the N group
elements, i.e. that it computes the k-th power of “one more” element.

The Gap-OMDH assumption is defined in the exact same way as Gap+-
OMDH, except A has access to oracle DDHg instead of DDH+

g . We believe that
Gap+-OMDH is a mild strengthening of Gap-OMDH because assuming OMDH
in a group with a bilinear map implies both assumptions: Given an efficiently
computable map e : G × G → GT s.t. e(ga, gb) = e(g, g)ab, one can implement
DDHg oracle, by checking if e(A,B) = e(g, C), as well as DDH+

g oracle, by
checking if e(A,B) · e(A′, B′) = e(g, C). In Appendix B we show that the Gap+-
OMDH assumption holds in the generic group model, which extends similar
argument given for Gap-OMDH in [14].

Random-key robust and equivocable authenticated encryption. As
shown in [17], protocol OPAQUE needs to use a random-key robust and
equivocable authenticated encryption scheme as a building block. An
authenticated encryption scheme AE = (AuthEnc,AuthDec) is random-key
robust if for any efficient algorithm A, the following probability is negligible in
τ :

Pr
k1,k2←R{0,1}τ

[c← A(k1, k2) s.t. AuthDeck1(c) 6=⊥,AuthDeck2(c) 6=⊥]

In other words, random-key robustness states that given two random keys, it
is infeasible to find a ciphertext which is valid under both of them. Similar
notions were introduced in [1] in the public-key setting, and [8] in the private-
key setting. In the random oracle model (ROM), the following authenticated
encryption scheme AE achieves random-key robustness. Let (Enc,Dec) be any
symmetric-key encryption scheme. Define AuthEnck(m) to set c′ ← Enck(m)
and return c← (c′, H(k, c′)), where H is a hash function modeled as a random
oracle. AuthDeck(c) parses c = (c′, h) and checks if h = H(k, c′); if so it outputs
Deck(c), otherwise it outputs ⊥.

An authenticated encryption AE is equivocable if for any efficient algorithm
A, there is an efficient stateful simulator SIMEQV such that the distinguishing
advantage of A’s views in the following two games is negligible in τ :

– The real game: A interacts with oracles AuthEnc(·, ·) and Reveal(·), where
AuthEnc(i,mi) picks ki ←R {0, 1}τ and returns ci ← AuthEncki(mi), and
Reveal(i) returns ki;

– The ideal game: A interacts with SIMEQV, such that when A queries
AuthEnc(i,mi), SIMEQV(i, |mi|) returns ci, and when A queries Reveal(i),
SIMEQV(i,mi) returns ki.

7

In other words, there must exist an efficient simulator which first generates
a ciphertext without any knowledge about the plaintext, except for its length,
and then once the plaintext is known it can reveal a key which explains that
ciphertext as an encryption of the provided plaintext.

Common encryption modes including CTR and CBC satisfy equivocability
in the Ideal Cipher model. Let E be a block cipher model as an ideal cipher
and let |m| be equal to n times E’s block length. SIMEQV chooses random IV
and sets ciphertext c = (IV, c1, ..., cn) where ci’s are all random blocks, and
when SIMEQV gets m = (m1, ...,mn) it sets n input/output points of E(k, ·) as
follows. For CTR, SIMEQV sets E(k, IV + i) = mi ⊕ ci for all i; and for CBC, it
sets E(k,mi ⊕ ci−1) = ci for all i and c0 = IV . Either way by randomness of
ci’s this sets E(k, ·) outputs on n points to random values, it creates collisions
in E(k, ·) with negligible probability, and by randomness of k there is negligible
probability that any points of E(k, ·) were queried before. This can be
extended to an Authenticated Encryption scheme by computing a MAC on the
ciphertext with SIMEQV acting as follows. SIMEQV responds to an AE query by
choosing a random MAC key k and outputting (c,MACk(c)) where c is
computed as above. To output the MAC key upon a Reveal query with message
m, SIMEQV outputs k (which is independent of the message hence it works with
any message). Implementing the MAC function with a random oracle hash
provides simultaneously equivocability and random-key robustness.

3 The Correlated OPRF Functionality FcorOPRF

As we explain in Section 1, we will model the type of PRF-correlations which
protocol Mult-2HashDH allows with a correlated OPRF functionality, and here
we define it as functionality FcorOPRF shown in Fig. 3. In Section 4 we will argue
that protocol Mult-2HashDH, i.e. the multiplicative blinding protocol together
with the PRF defined in equation (1), realizes functionality FcorOPRF under Gap-
OMDH assumption in ROM.

Functionality FcorOPRF is a relaxation of the OPRF functionality FOPRF of
[17], which is an adaptive extension of the UC OPRF defined in [13]. To make
this relation easier to see we mark in Fig. 3 all the code fragments which are
novel with respect to functionality FOPRF of [17]. Below we will first explain
the basic properties which FcorOPRF shares with FOPRF, and then we explain the
crucial differences which make FcorOPRF a relaxation of FOPRF.

Correlated OPRF model: basic logic. Functionality FcorOPRF models OPRF
in a similar way as FOPRF of [13, 17]. First, when an honest server S initializes
a PRF by picking a random key, this is modeled in the ideal world via call
Init from S, which initializes a random function FS : {0, 1}∗ → {0, 1}`. Second,
the real-world S can evaluate FS off-line on any argument, which is modeled
in the ideal world by call (OfflineEval, sid, i, x, L) from S with i = S and
L =⊥, which gives FS(x) to S. (The role of list L, which a malicious server can
make non-empty, is discussed further below.) Third, in addition to the off-line
evaluation, any client C can start an on-line OPRF protocol instance with S

8

Public Parameters: PRF output-length `, polynomial in security parameter τ .
Conventions: ∀ i, x value Fi(x) is initially undefined, and if undefined Fi(x) is
referenced then FcorOPRF sets Fi(x) ←R {0, 1}`. Variable P ranges over all honest
network entities and A∗, and we assume all corrupt entities are operated by A∗.

Initialization

– On (Init, sid) from S, set tx← 0, N ← [S], E ← {}, G ← (N , E) .

Ignore all subsequent Init messages.
Below “S” stands for the entity which sent the Init message.

Server Compromise

– On (Compromise, sid) from A∗, declare server S as compromised.
(If S is corrupted then it is declared compromised as well.)

Offline Evaluation

– On (OfflineEval, sid, i, x, L) from P do:

(1) If P = A∗ and i 6∈ N then append i to N and run Correlate(i, L);

(2) Ignore this message if P = A∗, S is not compromised, and (i,S, x) ∈ E ;

(3) Send (OfflineEval, sid, Fi(x)) to P if (i) P = S and i= S or (ii) P = A∗
and either i 6= S or S is compromised.

Online Evaluation

– On (Eval, sid, ssid,S′, x) from P, send (Eval, sid, ssid,P,S′) to A∗. On prfx
from A∗, reject it if prfx was used before. Else record 〈ssid,P, x, prfx, 0〉 and
send (Prefix, ssid, prfx) to P.

– On (SndrComplete, sid, ssid′) from S, send (SndrComplete, sid, ssid′, S) to
A∗. On prfx′ from A∗ send (Prefix, ssid′, prfx′) to S. If there is a record
〈ssid,P, x, prfx, 0〉 s.t. prfx=prfx′, change it to 〈ssid,P, x, prfx, 1〉, else set tx++.

– On (RcvComplete, sid, ssid,P, i, L) from A∗, retrieve 〈ssid,P, x, prfx, ok?〉
(ignore the message if there is no such record) and do:

(1) If i 6∈ N then append i to N and run Correlate(i, L);

(2) If S is not compromised and ok? = 0 do:

If i= S or [(i,S, x) ∈ E and P = A∗] do:

If tx = 0 then ignore this message, else set tx−−;
(3) Send (Eval, sid, ssid, Fi(x)) to P.

Correlate(i, L):

– Reject if list L contains elements (j, x), (j′, x′) s.t. j = j′ and x 6= x′.

Else, for all (j, x) ∈ L s.t. j ∈ N , add (i, j, x) to E and set Fi(x)← Fj(x).

Fig. 3. The Correlated OPRF functionality FcorOPRF. The (adaptive) OPRF

functionality FOPRF of [18] is formed by omitting all text in gray boxes .

9

on local input x, which is modeled by call (Eval, sid, ssid,S′, x) from P = C
with S′ = S, where ssid stands for sub-session ID, a fresh identifier of this
OPRF instance. If S honestly engages in this protocol, which is modeled by
call (SndrComplete, sid, ssid) from S, functionality FcorOPRF increments the
server-specific ticket-counter tx, initially set to 0. If the real-world adversary
allows an uninterrupted interaction between C and S, which is modeled by a
call (RcvComplete, sid, ssid,C, i, L) with i = S and L =⊥ from the ideal-world
adversary A∗, then FcorOPRF decrements counter tx and sends FS(x) to C.10

The man-in-the-middle adversary (our OPRF model does not rely on
authenticated links) who interacts with client C, can make C output Fi(x) for a
different function Fi 6=FS, using a call (RcvComplete, ssid,C, i, L) for i 6= S,
which models a real-world adversary acting like the server but on a wrong key
ki 6= k in this interaction. To model a real-world adversary choosing different
PRF keys in either offline or online evaluations, functionality FcorOPRF keeps a
list of indexes N of independent random functions, and effectively associates
each real-world key with a distinct index in N , whereas the key of the honest
server S is associated with a special symbol S.

Practical implications. Note that RcvComplete computes function FS on
P’s input x only if tx> 0, i.e. if the number of instances completed by S is
greater than the number of instances completed by any client. This implies that
if S engages in n OPRF instances this allows function FS to be computed, by all
other parties combined, on at most n arguments. However, the functionality does
not establish strict binding between these server and client instances. Indeed,
this ticket-based enforcement allows an OPRF functionality to be realized using
homomorphic blinding without zero-knowledge proofs. Note that in protocol
Exp-2HashDH of Fig. 1 the interaction between C and S can be “double blinded”
by the network adversary, who can modify P’s original message a as a′ = as,
and then modify S’s response b = ak as b′ = b1/s. Such interaction produces the
correct output on the client, but a′ which S sees is a random group element,
independent of a sent by C, which makes it impossible to identify the pair of C
and S instances which the network adversary effectively pairs up.

Another feature which enables efficient FcorOPRF realization is that the
argument x of client C engaging in an OPRF instance can be defined only after
server S completes this instance. Note that in the ideal world C outputs FS(x)
even if S completes an OPRF instance first, by sending message
(SvrComplete, sid, ssid), and C only afterwards sends (Eval, sid, ssid,S, x),
followed by RcvComplete from A∗. Indeed, this “delayed input extraction”
feature of FcorOPRF enables protocol Exp-2HashDH to realize it in ROM, where
the ideal-world adversary can extract argument x from the local computation
of the real-world client, namely from H2 query (x, v) for v = (H1(x))k, but that
computation (and input-extraction) happens after S completes the protocol.

10 As in the adaptive version of UC OPRF FOPRF [17], we allow server S to be adaptively
compromised, via call Compromise from A∗, which models a leakage of the private
state of S, including its PRF key and all its authentication tokens. One consequence
of server compromise is that RcvComplete will no longer check that tx > 0.

10

In some applications, notably OPAQUE [17], see Section 5, it is useful for
OPRF to output a transcript, or its prefix, as a handle on OPRF instance in
a higher-level protocol. Functionality FcorOPRF allows each party to output a
transcript prefix prfx, and if prfx output by S and C match then FcorOPRF allows
C session to compute the PRF output without using the tx counter. This does not
affect the logic of tx-checking: Each run of SndrComplete either increments tx
or ok’s some particular client OPRF instance, so either way the number of on-line
OPRF evaluations is limited by the number of SndrComplete instances.

Relaxation of the UC OPRF model. The crucial difference between the
Correlated OPRF functionality FcorOPRF and the OPRF functionality FOPRF of
[13] is that when any party evaluates function Fi for a new index i 6∈ N , which
corresponds to a real-world adversary evaluating the (O)PRF either offline or
online on a new key, the adversary can supply a list L of correlations which
the new function Fi will have with previously initialized functions Fj , j ∈ N ,
potentially including the honest server function FS. Such correlations were not
allowed in FOPRF, and indeed FcorOPRF reduces to FOPRF if A∗ sets L as an empty
list in OfflineEval and RcvComplete messages. Argument L can specify a
sequence of pairs (j, x) where j ∈ N is an index of a previously initialized
function Fj , and the correlation consists of setting the value of the new function
Fi on x as Fj(x). After setting Fi(x) ← Fj(x) for all (j, x) ∈ L, the values of
Fi on all other arguments are set at random by FcorOPRF. Functionality FcorOPRF

keeps track of these correlations in a graph G = (N , E), where (i, j, x) ∈ E if
Fi(x) is set to Fj(x) in the above manner, i.e., an edge between i and j, labeled
x, represents a correlation between functions Fi and Fj on argument x.

A crucial constraint on the correlation list L is that for each j ∈ N list L
can contain only one entry of the form (j, ·), i.e. two functions Fi, Fj can be
correlated on at most one argument.(This allows Correlated OPRF to be
secure in applications where an on-line attack that chooses a single correlation
point is equivalent to an attack which guesses the counterparty’s input.)Note
that if the adversary correlates Fi with the honest server function FS on
argument x, and then evaluates Fi(x) via the online OPRF instance, i.e. Eval
and RcvComplete where P = A∗, functionality FcorOPRF treats this as an
evaluation of FS and decrements the ticket-counter tx. This restriction is
necessary because otherwise the adversary could effectively compute FS on
more than n arguments even if an honest server S engages in only n OPRF
instances: It could first correlate n′ > n adversarial functions F1, ..., Fn′ with
FS, each function Fi on a different argument xi, and each evaluation of Fi(xi)
would reveal the value of FS on all these arguments as well. However, our
FcorOPRF model allows A∗ to let any honest party P compute Fi(x) for Fi
correlated with FS without decrementing the ticket-counter tx. This is a
weakness, e.g. if the higher-level application reveals these OPRF outputs to the
attacker. A stronger version of FcorOPRF would decrement tx even if
Fi(x) = FS(x) is computed by honest parties, but we used a weaker version for
two reasons: First, it suffices for OPAQUE security. Second, we can show that
Mult-2HashDH realizes this weaker version under Gap+-OMDH, and it is an

11

open problem whether the same can shown for the stronger version of the
functionality.

Necessity of the relaxation. As noted in Section 1, Exp-2HashDH satisfies
the UC OPRF notion of [13] because S’s response b to C’s message a defines key
k = DL(a, b) s.t. C outputs y = Fk(x) for function Fk defined in eq. (1). However,
in Mult-2HashDH, S’s response (b, z) defines the function which C effectively
computes as F(δ,z) defined in eq. (2). Moreover, different choices of (δ, z) do not
define independent random functions. Indeed, an efficient attacker can easily
pick (δ1, z1) and (δ2, z2) which satisfy equation (3) for any x, which implies that
the two functions will be correlated by constraint F(δ1,z1)(x) = F(δ2,z2)(x).

The consequences of such correlations can be illustrated by the following
example. Assume that the higher-level application allows a malicious server to
detect whether in two OPRF instances the client outputs the same two values or
not. Let x1 and x2 be two client input candidates. If the server picks two indexes
(δ1, z1) and (δ2, z2) s.t. F(δ1,z1)(x1) =F(δ2,z2)(x1) and F(δ1,z1)(x2) 6=F(δ2,z2)(x2)
and inputs (δ1, z1) into the first OPRF instance and (δ2, z2) into the second one,
then the client’s outputs in these two executions will be the same if its input is x1

and different if its input is x2, and by the assumption on the application context
the server will learn which one is the case. (In Section 7 we show examples of
applications where this knowledge creates an attack avenue.)

The UC OPRF notion of [13] does not allow for this attack avenue because
in that model each choice of a function index which server S can input into
an OPRF instance defines an independent (pseudo)random function. However,
no choice of two functions Fi, Fj for these two instances allows S to distinguish
between C’s input x1 and x2: If Fi = Fj then C’s output in the two instances will
be the same for any x, and if Fi 6= Fj then C’s output in the two instances will
be different, also for any x, except for a negligible probability that S finds two
functions Fi, Fj among the polynomially-many random functions it can query
offline s.t. Fi(x) = Fj(x) for x ∈ {x1, x2}.

The above correlation example can be extended, and indeed if an adversarial
server S executes n instances of Mult-2HashDH it can effectively input into them
indexes (δ1, z1), . . . , (δn, zn) s.t. for example, for any arguments x1, . . . , xn−1 it
holds that F(δi,zi)(xi) = F(δi+1,zi+1)(xi). This holds if S chooses any δ1 and

any k1, . . . , kn and sets δi+1 = δi · (H1(xi))
ki−ki+1 for i = 1, . . . , n−1. Note

that this pattern forms an acyclic graph of correlations between these functions,
and we do not know how an efficient S can create correlations which involve
cycles, e.g. by adding to the above a constraint F(δn,zn)(xn) = F(δ1,z1)(xn) for
some xn. We do not know of an OPRF application for which it would matter
whether the number of correlations among n adversarial functions is bounded
by O(n) instead of O(n2), but the treatment of Mult-2HashDH as Correlated
OPRF can probably be extended to show that under a reasonable computational
assumptions the protocol realizes a restricted variant of functionality FcorOPRF

which prevents the adversary from forming cycles in the correlation graph.

12

4 Security Analysis of Multiplicative DH-OPRF

Fig. 2 in Section 1 shows the OPRF protocol Mult-2HashDH, which uses
multiplicative blinding for oblivious evaluation of the (Double) Hashed
Diffie-Hellman function defined in eq. (1), i.e. Fk(x) = H2(x, (H1(x))k). Here,
in Fig. 4, we render the same protocol as a realization of the Correlated OPRF
functionality FcorOPRF defined in Fig. 3. As we explain in Section 3,
functionality FcorOPRF reflects the correlations which a real-world adversary can
introduce in the PRF functions the honest users compute in this protocol.
Indeed, as we show in Theorem 1 below, under the Gap One-More
Diffie-Hellman assumption protocol Mult-2HashDH securely realizes this
functionality in ROM.

Setting: − Group G of prime order q with generator g.

− Hash functions H2, H1 with ranges {0, 1}` and G, respectively.

Functions H2, H1 are specific to the OPRF instance initialized for a unique session
id sid, and in practice they should be implemented by folding sid into their inputs.

Initialization: On input (Init, sid), S picks k ←R Zq and records (sid, k, z = gk).

Server Compromise: On (Compromise, sid, S) from A, reveal k to A.

Offline Evaluation:
On (OfflineEval, sid, S, x, ·), S outputs (OfflineEval, sid, F (k, x)) where

F (k, x) , H2(x, (H1(x))k))

Evaluation:

– On input (Eval, sid, ssid, S, x), C picks r ←R Zq, records (sid, ssid, r), sends
(ssid, a) to S for a = H1(x) · gr, and locally outputs (Prefix, ssid, a).

– On input (SndrComplete, sid, ssid′) and message (ssid, a) from C s.t. a ∈ G,
server S retrieves (sid, k, z), sends (ssid, b, z) to C for b = ak, and locally
outputs (Prefix, ssid′, a). (Note that ssid and ssid′ can be different.)

– On S’s message (ssid, b, z) from S s.t. b, z ∈ G and C holds tuple (sid, ssid, r)
for some r, party C outputs (Eval, sid, ssid, y) for y = H2(x, b · z−r).

Fig. 4. Protocol Mult-2HashDH of Fig. 2 as a realization of FcorOPRF.

Theorem 1. Protocol Mult-2HashDH realizes correlated OPRF functionality
FcorOPRF in the FRO-hybrid world under the Gap-OMDH assumption.

Proof: We show that for any efficient environment Z and the real-world
adversary A (more precisely, for A in the FRO-hybrid world, i.e. the real world

13

amended by random oracle hash functions), there exists an efficient simulator
SIM, a.k.a. an “ideal-world adversary”, s.t. the environment’s view in the real
world, where the honest parties implement the Mult-2HashDH protocol
interacting with adversary A, is indistinguishable from its view in the ideal
world, where the honest parties are “dummy” entities which pass their inputs
to (and outputs from) the ideal functionality FcorOPRF, and where the
real-world adversary A is replaced by the simulator SIM (who locally interacts
with A). The construction of SIM is shown in Fig. 5. While the real-world
adversary A works in a hybrid world with the random oracle modeled by
functionality FRO, for notation simplicity in Fig. 5 we short-circuit the FRO

syntax and we assume that SIM implements oracles H1, H2. Without loss of
generality, we assume that A is a “dummy” adversary who merely passes all
messages between Z and SIM, hence we will treat A as just an interface of Z.
For brevity we also denote FcorOPRF as F , and we omit the (fixed) session
identifier sid from all messages. Also, the simulator assumes that a unique
party S for which this F instance is initialized is honest, and that its identity
“S” encoded as a bitstring is different from any pair (δ, z) ∈ G2.

For a fixed environment Z, let qH1 , qH2 be the number of A’s queries to resp.
H1 and H2 hash functions, and let qC, qS be the number of Z’s invocations of
resp. client and server OPRF instances, via resp. queries Eval sent to some C
and query SndrComplete sent to S.

The simulator. The simulator SIM, shown in Fig. 5, follows a similar simulation
strategy to the one used to show that exponential blinding protocol realizes UC
OPRF notions of [12, 13, 17]. At initialization, the simulator picks a random key
k on behalf of server S. If SIM receives SndrComplete from F , i.e. server S
wants to complete an OPRF instance, and SIM receives message a with matching
ssid from adversary A playing a client, SIM replies as the real-world S would,
i.e. with (b, z) = (ak, gk). Responding to A playing a server is more complex.
The simulator prepares for this by embeding discrete-logarithm trapdoors in H1

outputs and in messages a formed on behalf of honest clients. Namely, for each
x, SIM defines H1(x) as hx = gu for random u, and it forms each message a on
behalf of some honest client as a = gw for random w. The discrete-logarithm
trapdoor u = DL(g, a) enables SIM to compute, given response (b, z) sent by A
on behalf of some server, the function index i = (δ, z) for which a real-life honest
client would effectively compute its output as y = F(δ,z)(x) for F(δ,z) defined as in

eq. (2). This is done by setting δ = b/zw because then δ = b/ak for k = DL(g, z).
(See Is multiplicative blinding secure? in Section 1 for why the client effectively
evaluates F(δ,z) for δ = b/ak.) If A responds as the honest server S (or forwards
S’s response), SIM detects it because then δ = 1, in which case SIM sets the
function index to the “honest S function”, i← S.

Finally, SIM checks if i = (δ, z) is in NSIM, a sequence of function indices
which SIM has previously identified, and if i 6∈ NSIM, i.e. if it is a new function,
SIM uses the trapdoors it embedded in H1 outputs to detect if Fi(x) = Fj(x)
for any x queried to H1 (without such query A cannot establish a correlation
on x except for negligible probability) and any previously seen function index

14

Initialization: Pick k ←R Z∗q //SIM picks S’s key//, set TH1 as an empty table,
set functions H1, H2 as undefined on all arguments, and set NSIM ← [S] //NSIM is
the list of identified function indices//.

Server Compromise: On (Compromise, S) from A, send (Compromise, S) to F
and reveal k to A.

Hash query to H1: On A’s fresh query x to H1, pick u ←R Zq \ {0}, define

hx , gu, set H1(x)← hx, and add (x, u, hx) to table TH1 .
//TH1 records hx = H1(x) and the discrete-logarithm trapdoor u = DL(g, hx)//

Online Evaluation:

1. On (Eval, ssid,C, S′) from F , pick w ←R Zq, record (C, ssid, w), send (ssid, a)
for a← gw to A, and send prfx = a to FcorOPRF. (Abort if FcorOPRF rejects it.)

2. On (SndrComplete, ssid′, S) from F and message (ssid, a′) fromA s.t. a′ ∈ G,
send ssid and (b′, z∗) = ((a′)k, gk) to A and prfx′ = a′ to FcorOPRF.

3. On message (ssid, b, z) to C from A s.t. b, z ∈ G, retrieve record (C, ssid, w)
(ignore the message if there is no such record) and do:
//C should output F(δ,z)(x) for δ = b/aDL(g,z) = b/zw//
(1) Set δ ← b/zw, i← (δ, z), L← [];
(2) If i= (1, gk) //A lets C evaluate on FS// then (re)set i← S;
(3) If i 6∈ NSIM then for each (x′, u, hx′) ∈ TH1 and (δ′, z′) ∈ NSIM do:

If δ′ · (z′)u = δ · zu then add (j, x′) for j= (δ′, z′) to L;
//correlation on x′ between Fi and Fj for j = (δ′, z′)//
If (hx′)

k = δ · zu then add (S, x′) to L; //correlation on x′ with FS//
(4) Send (RcvComplete, ssid,C, i, L) to F , and append i to NSIM if i 6∈ NSIM.

Hash query to H2: On A’s fresh query (x, v) to H2, do:

1. If (x, u, hx) ∈ TH1 and v= (hx)k //A evaluates FS(x)// then do:

– If S is compromised, send (OfflineEval, S, x,⊥) to F ; on F ’s response
(OfflineEval, y), set H2(x, v)← y;

– Otherwise send (Eval, ssid, S, x) and then (RcvComplete, ssid, SIM, S,⊥) to
F for a fresh ssid; if F replies (Eval, ssid, y) then set H2(x, v)← y, otherwise
output halt and abort.

2. If (x, u, hx) ∈ TH1 and v 6= (hx)k then for the first (δ, z) ∈ NSIM s.t. v = δ · zu
//A evaluates F(δ,z)(x)// send (OfflineEval, i= (δ, z), x,⊥) to F ; on F ’s
response (OfflineEval, y), set H2(x, v)← y.

3. If H2(x, v) remains undefined set i= (v, 1) and: //A evaluates F(v,1)(x)//
(1) If i 6∈ NSIM then for each (x′, u, hx′) ∈ TH1 and (δ′, z′) ∈ NSIM do:

If δ′ · (z′)u = v then add (j, x′) for j= (δ′, z′) to L;
If (hx′)

k = v then add (S, x′) to L;
(2) Send (OfflineEval, i, x, L) to F ; on F ’s response (OfflineEval, y), set
H2(x, v)← y, and append i to NSIM if i 6∈ NSIM.

Fig. 5. Simulator SIM for Protocol Mult-2HashDH //with comments inline//

15

j ∈ NSIM or j = S. The first condition holds if δ′ · (hx)DL(g,z′) = δ · (hx)DL(g,z)

for i = (δ, z) and j = (δ′, z′) while the second one holds if (hx)k = δ · (hx)DL(g,z).
The simulator cannot compute DL(g, z) for an adversarial public key z, but the
trapdoor in the hash function output H1(x) = hx = gu allows for computing
(hx)DL(g,z) as zu.

There is a further complication in the simulator’s code, in responding to
A’s local H2 queries (x, v). Such calls can represent either (I) an offline PRF
evaluation on argument x of function F(δ,z) s.t. v = δ · (hx)DL(g,z), where

(δ, z) ∈ NSIM, or, if S is compromised (or corrupted), for (δ, z) = (1, gk); or (II)
in case v = (hx)k and S is not compromised, they can represent a finalization
of the computation of FS(x) by a malicious client in the online OPRF instance.
Case (I) is treated similarly as the detection of the correlations explained
above: SIM searches for index i = (δ, z) in NSIM s.t. v = δ · (hx)DL(g,z) = δ · zu
where H1(x) = hx = gu, in which case this is interpreted as evaluation of Fi
and SIM sets H2(x, v) to the value of Fi(x) which the functionality defines in
response to the offline evaluation call (OfflineEval, i, x, ·). If S is
compromised then the simulator does this also for i = S if v = (hx)k. However,
in Case (II), i.e. if v = (hx)k but S is not compromised, such query could come
from A’s post-processing of an online OPRF evaluation, hence SIM in this case
sends (Eval, ssid,S, x) and (RcvComplete, ssid,SIM,S,⊥) to F . If F allows
this call to evaluate successfully, i.e. if tx> 0, then F return y = FS(x) and SIM
defines H2(x, v) ← y. Otherwise F will ignore this RcvComplete call, in
which case SIM outputs halt and aborts, which the environment will detect as
a simulation failure. Indeed, this case corresponds to A evaluating function FS

on more arguments than the number of OPRF instances performed by S, i.e.
the number of SndrComplete calls from an ideal-world S to F .

Finally, SIM must carefully handle H2(x, v) queries which are not recognized
as evaluations of Fi(x) for any i ∈ NSIM ∪ {S}, because they can correspond
to evaluating F(δ,z)(x) for index (δ, z) which A will reveal in the future. SIM

picks the simplest pair (δ, z) s.t. δ · (hx)DL(g,z) = v, namely (δ, z) = (v, 1). If any
future index (δ, z) 6= (v, 1) defined in a subsequent OPRF evaluation satisfies
δ · (hx)DL(g,z) = v, this will be detected by SIM as a correlation between F(δ,z)

and F(v,1). Note that SIM must process H2(x, v) query as evaluation of F(v,1)(x)
even if H1(x) is undefined, because regardless of the value of hx = H1(x) it will
hold that F(v,1)(x) = H2(x, v), because v · (hx)DL(g,1) = v · (hx)0 = v. Indeed, an
adversary can first query H2(x, v) for some (x, v), then compute hx = H1(x), and
then input (δ, z) into an OPRF instance for δ = v/(hx)DL(g,z), which corresponds
to oblivious evaluation of F(δ,z), which is correlated with F(v,1) on argument x.

Sequence of games. Our proof uses the standard sequence of games method,
starting from the interaction of Z (and “dummy” adversary A) with the
real-world protocol, and ending with the ideal world, in which Z instead
interacts with the simulator SIM and functionality F . We fix an arbitrary
efficient environment Z which without loss of generality outputs a single bit,
we use Gi to denote the event that Z outputs 1 when interacting with Game i,
and for each two adjacent games, Game i and Game i+ 1, we argue that these

16

games are indistinguishable to Z, i.e. that there is a negligible difference
between the probabilities of events Gi and Gi+1, which implies that Z’s
advantage in distinguishing between the real world and the ideal world is also
negligible. Let qH1 , qH2 be the total number of resp. H1, H2 queries made in the
security game with A and Z. Let qC and qS and q′S be the number of resp. C
and S sessions and S offline PRF evaluations started by Z via resp. the Eval,
SndrComplete, and (OfflineEval,S, ·, ·) commands. Let εOMDH(G, N,Q)
be the maximum advantage of any algorithm with computational resources
comparable to Z against the (N,Q)-Gap+-OMDH problem in G.

Game 1: (Real world, except for discrete-logarithm trapdoors in H1

outputs) This is the real-world interaction, shown in Fig. 6, i.e. the interaction
of environment Z and its subroutine A with honest entities C and S executing
protocol Mult-2HashDH of Fig. 4. We assume that the interaction starts with
server initialization, triggered by Init command from Z to S. We denote the
public key of server S as z∗ = gk. For visual clarity we omit the fixed sid tag
and the variable ssid tags from all messages in Fig. 6. We assume that when
functions H1, H2 are executed by C1, C2, and S2, these hash function calls are
serviced as described in the lower-half of Fig. 6. Queries H2(x, v) are
implemented as in the real world except that the game records tuples
(x, v,H2(x, v)) in table TH2

. However, queries H1(x) are implemented with
trapdoors embedded in values hx = H1(x) by setting hx = gux for random
ux ←R Zq and recording (x, ux, hx) in table TH1

.

C1: �(Eval, S′, x) Z Server Initialization:

r ←R Zq;
a← H1(x) · gr

-a A k ←R Zq; z∗ ← gk

Z -SndrComplete S1:

A -a
b← ak

A � (b, z∗)

C2: � (b, z) A
y ←
H2(x, b · z−r)

-y Z

Z -(OfflineEval, S, x, ·)
S2:

Z � y
y ← H2(x, (H1(x))k)

H1: On query x, pick ux ←R Zq, set hx ← gux and H1(x)← hx, add (x, ux, hx) to TH1 ;

H2: On query (x, v), pick y ←R {0, 1}`, set H2(x, v)← y, add (x, v, y) to TH2 ;
S-compromise: On A’s message Compromise, send k to A.

Fig. 6. Game 1: Interaction of Z/A with Mult-2HashDH protocol.

17

Game 2: (Abort on hash H1 collisions) Abort if the security game ever
encounters a collision in H1, i.e. if for some argument x queried either by A or
by the security game in oracles C1 and S2 (see Fig. 6), oracle H1 picks u s.t.
tuple (x′, u, gu) for some x′ 6= x is already in TH1 . Clearly

|Pr[G2]− Pr[G1]| ≤ (qH1
)2

q

Game 3: (Making C’s message input-oblivious) We change how oracle C1
generates message a so that it is generated obliviously of input x. Namely, instead
of computing a = H1(x) · gr = gux+r for r ←R Zq, oracle C1 will now generate
a = gw for w ←R Zq. The input x for this session ssid will be then passed to
oracle C2, which (1) queries H1 on x to retrieve (or create) tuple (x, ux, g

ux)
from TH1 , and (2) outputs y = H2(x, v) for v = b · zux−w. Note that for every x,
and hence every ux, value w = (ux + r) mod q is random in Zq if r random in
Zq, hence this modification does not change the distribution of values a output
by C1. Moreover, if w = (ux + r) mod q then z−r = zux−w, thus C2’s output is
the same as in Game 2, hence Game 3 and Game 2 are externally identical.

Game 4: (Defining adversarial functions) We make a notational change in
oracle C2, so that it outputs y = H2(x, v) for v = δ · zux where δ = b/zw. Since
this is a merely notational difference, Game 4 and Game 3 are identical.

Note that this change makes oracles C1/C2 implement the following process:
C1’s message a = gw together with A’s response (b, z) define (δ, z) s.t. δ = b/zw,
which defines a function which C2 evaluates on Z’s input x as F(δ,z) for

F(δ,z)(x) , H2(x, δ · zux) where ux , DL(g,H1(x)) (5)

Note that equation (5) is equivalent to equation (2) where F(δ,z)(x) = H2(x, δ ·
(H1(x))k) for k s.t. z = gk. For notational convenience we define also a “helper”
function family fi : {0, 1}∗ → G for i ∈ G2 s.t.

f(δ,z)(x) = δ · zux where ux , DL(g,H1(x)) (6)

Note that F(δ,z)(x) = H2(x, f(δ,z)(x)).

We will argue that pairs (δ, z) encountered in the security game can be
thought of as indexes of random functions, including pair (δ, z) = (1, z∗) for
z∗ = gk which defines the “honest” random function of S, except that the
adversary can “program” a limited number of correlations in these functions,
by setting i = (δ, gk) and j = (δ′, gk

′
) s.t. δ′/δ = (hx)k−k

′
, which implies that

Fi(x) = Fj(x). In the next few game changes we will show that these
correlations are constrained as prescribed by functionality FcorOPRF, i.e. that
(1) each two functions can be “programmed” to have equal output only for a
single argument, (2) that if an adversarial function Fi is correlated on some x
with function FS of the honest server S then evaluating Fi(x) is treated the
same as FS(x), and in particular requires that tx> 0, and (3) that otherwise all

18

adversarial functions are indistinguishable from independent random functions.

Game 5: (Building correlation graph) The security game will build a graph
of correlations between functions F(δ,z) occurring in the game. In particular the
game will maintain sequence NSIM and sets XH1

, E , all initially empty:

1. Set XH1
contains all inputs x queried to H1, by either A, C2, or S2.

2. Set NSIM contains all (δ, z) function indexes, including (1) the honest server
function index (1, z∗), (2) each (δ, z) defined by A’s interaction with oracles
C1/C2, as described in Game 4, and (3) (δ, z) = (v, 1) for every direct query
(x, v) of A to H2.

3. Set E contains labeled edges between indexes in NSIM, maintained as follows:

(1) When function index i = (β, z) 6∈ NSIM is specified in C1/C2 then for
each j = (δ′, z′) in NSIM and x′ ∈ XH1 , test if fj(x

′) = fi(x
′), and if so then

add (i, j, x′), i.e. an edge (i, j) with label x′, to E .

(2) If H2 is queried on new (x, v) by A or by oracles C2 or S2 for (v, 1) 6∈ NSIM

then do step (1) above for i = (v, 1). (Note that f(v,1)(x
′) = v for all x′.)

Since these are only notational changes Game 5 and Game 4 are identical.

Game 6: (Discarding double links) We add an abort if there are two distinct
values x, x′ in XH1

and two distinct function indexes i = (δ, z) and j = (δ′, z′) in
NSIM s.t. fi(x) = fj(x) and fi(x

′) = fj(x
′). These conditions imply respectively

that δ′/δ = (z/z′)ux and δ′/δ = (z/z′)ux′ . Since H1 collisions are discarded
beginning in Game 2, it follows that ux′ 6= ux, which implies that (δ, z) = (δ′, z′),
i.e. this abort cannot happen. Consequently, Game 6 and Game 5 are identical.

Game 7: (Discarding future correlations) We add an abort in H1

processing if new query x 6∈ XH1
samples hx = H1(x) s.t. there exists two

distinct function indexes i, j ∈ NSIM s.t. fi(x) = fj(x). Note that in this case
there would be no edge (i, j, x) in E , and that this is the only case in which
fi(x) = fj(x) but (i, j, x) 6∈ E . However if query x to H1 is made after defining
i, j then hx = H1(x) is independent of i, j, in which case
Pr[fi(x) = fj(x)] = 1/q, because this equation holds only for a single value hx
s.t. ux = DL(g, hx) = DL((zi/zj), (δj/δi)). If there are qC instances of C2 and
qH2

queries to H2 then there can be at most qC indexes (δ, z) in NSIM s.t. z 6= 1
and at most qH2 indexes (δ, z) s.t. z = 1. Since condition fi(x) = fj(x) cannot
be met if i = (v, 1) and j = (v′, 1) for v 6= v′, each new query x to H1 causes an
abort only if ux falls in the solution set of at most qC · (qH2

+ qC) equations,
which implies that

|Pr[G7]− Pr[G6]| ≤ qH1 · qC · (qH2 + qC)

q

Game 8: (Implementing H2 using correlated random functions) We replace
hash function H2 using an oracle R that maintains a random function family, in
which the adversary can “program” correlations as follows:

19

– When R starts it initializes a random function R : {0, 1}∗×{0, 1}∗ → {0, 1}`
and an index sequence I ← [(1, z∗)];

– On query Correlate(i, L), R rejects if i 6∈ I or list L contains (j, x) and
(j′, x′) s.t. j = j′ and x 6=x′. Otherwise it appends i to I, and for each
(j, x) ∈ L it re-defines R(i, x)← R(j, x);

– On query Eval(i, x), R replies R(i, x) if i ∈ I, else ignores this query.

We use oracle R to change the implementation of H2 function called by oracles
S2, C2, or the direct calls to H2:

1. When A calls S2 on x: Assign H2(x, fi(x))← R.Eval(i, x) for i = (1, z∗).
2. When oracle C2 calls H2 on (x, fi(x)) for some i= (δ, z):

(a) if i 6∈ NSIM then send Correlate(i, L) to R where L consists of all
tuples (j, x′) s.t. fi(x

′) = fj(x
′) for some j ∈ NSIM and x′ ∈ XH1

;
(b) set H2(x, fi(x))← R.Eval(i, x).

3. When A calls H2 on (x, v): Service it as in Step 2 but use i = (v, 1).

To see the correspondence between Game 8 and Game 7, observe that starting
from Game 5 function H2 is evaluated only on pairs of the form (x, fi(x)) for
some i ∈ NSIM. Define R(i, x) as H2(x, fi(x)). Function R is not random even
if H2 is, because we have that R(i, x) = R(j, x) for any i, j, x s.t. fi(x) = fj(x).
However, from Game 7 this equation can hold, for any i, x s.t. H2 is queried on
(x, fi(x)), only if i is a new index, i = (δ, z) or i = (v, 1), appended to NSIM in a
query to oracles resp. C1/C2 and H2, for values j, x s.t. j ∈ NSIM and x ∈ XH1

at the time this query is made. Note that list L sent for a new function fi to
R in Game 8 by oracles C1/C2 and H2 consists exactly of all such pairs (j, x),
hence it follows that Game 8 and Game 7 are identical.

Game 9: (Walking back aborts in H1) We remove the aborts in H1 introduced
in Game 2 and Game 7, i.e. we no longer abort if (1) the same uX was chosen
before on some previous query to H1, or (2) if there are two function indices
i = (z, δ) and j = (z′, δ′) in NSIM s.t. fi(x) = fj(x), i.e. δ ·zux = δ′ ·(z′)ux . By the
same arguments used above where these games are introduced, these two changes
can be observed with probability at most (q2

H1
)/q and (qH1

· qC · (qH2
+ qC))/q,

respectively, which implies that

|Pr[G9]− Pr[G8]| ≤
q2
H1

+ qH1
· qC · (qH2

+ qC)

q

Security game review. In Fig. 7 we put together all the changes made so far
and review how the game oracles operate in Game 9.

Game 10: (Identifying existing functions in H2 processing) In Game 9 a
fresh query (x, v) to H2 is answered as R(i, x) for i = (v, 1), and if (v, 1) 6∈ NSIM

then function R((v, 1), ·) is created and correlated with all previous functions
{R(i, ·)}i∈NSIM

by the rule that R((v, 1), x′) ← R(i, x′) for each x′ ∈ XH1
and

i ∈ NSIM s.t. fi(x
′) = v. In Game 10 we modify the code of oracle H2 so that

when it gets a fresh query (x, v) s.t. x ∈ XH1
it first checks if

v = fi(x) for any index i ∈ NSIM (7)

20

– Init: Initialize RF R, pick k ←R Zq, set NSIM ← [(1, gk)] and XH1 ← {}.
– H1: On input x 6∈ XH1 , pick ux ←R Zq, add x to XH1 , output gux to A.
– S1: On input a ∈ G, send (b, z) = (ak, gk) to A.
– S2: On input x, set i← (1, gk) and send R(i, x) to A.
– C1: On input x, pick w ←R Zq, store (x,w), send a = gw to A.
– C2: On input (b, z) ∈ G2, recover (x,w) stored by C1 and set δ ← b/zw.

Assign i← (δ, z). If i 6∈ NSIM then run Process(i). Send R(i, x) to A.
– H2: On new input (x, v) from A for v ∈ G, set i ← (v, 1). If i 6∈ NSIM then

run Process(i). Send R(i, x) to A.
– S-Compromise: On message (Compromise, S) from A, send k to A.

– Subprocedure Process(i): Parse i as (δ, z)← i. Define list L s.t.

L = { (j, x) ∈ NSIM ×XH1 s.t. j = (δ′, z′) and δ · zux = δ′ · (z′)ux }

Abort it L contains (j, x), (j, x′) s.t. x 6= x′.
Otherwise append i to NSIM, and for each (j, x) in L, reset R(i, x)← R(j, x).

Fig. 7. Interaction defined by Game 9.

(Note that if x ∈ XH1 the game can evaluate f(δ,z)(x) = δ · zux for any δ, z.) If
v = fi(x) for some i ∈ NSIM then Game 10 takes the first index i in NSIM s.t.
v = fi(x) holds, replies R(i, x), and does not create a new function R((v, 1), ·)
even if (v, 1) 6∈ NSIM. (Note that this condition can hold for several indexes i in
NSIM, and indeed it will hold for all indexes of functions which are correlated on
argument x. Note also that the index i = (1, z∗) of the “honest server function”
occurs as the first in NSIM.) If x 6∈ XH1 or for all i ∈ NSIM v 6= fi(x) then the
processing is as before, i.e. the game processes this query as a call to R((v, 1), x).
We show the modification done by Game 10 in Figure 8.

– H2: On new input (x, v) from A for v ∈ G:
1. If x ∈ XH1 and v = (gk)ux : Set i← (1, gk), send R(i, x) to A
2. If x ∈ XH1 and v 6= (gk)ux , but ∃ (δ, z) ∈ NSIM s.t. v = δ · zux then set i

to the first (δ, z) ∈ NSIM for which it holds and send R(i, x) to A
3. Else set i← (v, 1). If i 6∈ NSIM then run Process(i). Send R(i, x) to A.

Fig. 8. Game 10: modification in Fig. 7

Note that this modification doesn’t change the value returned by H2(x, v):
If condition (7) holds then either way H2(x, v) = R(i, x). The only other
change this modification causes is that if (7) holds then function R((v, 1), ·) is
not created. However, this does not affect any future interactions with the
random function R. Let XH1

and NSIM are the values of these variables at the
time R((v, 1), ·) is created in Game 9. Consider that at some subsequent step

21

an evaluation call, either C2 or H2, creates a new function R(i, ·) s.t.
fi(x) = f(v,1)(x) for some x ∈ X ′H1

where X ′H1
and N ′SIM denote the new values

of these variables. Assume also that until this point there was no other
opportunity to create R((v, 1), ·) in Game 10, i.e. i = (v, 1) was not used in
oracle C2, and H2(x′, v) was not queried on any x′ s.t. fi(x

′) 6= v for some
i ∈ N ′SIM. (This is the case when the modification of Game 10 can affect the
security experiment.) There are two cases to consider: (1) If x ∈ XH1

and
f(v,1)(x) = fj(x) for some j ∈ NSIM, then whether or not R((v, 1), ·) is created
in both games it holds that R(i, x) = R(j, c); (2) If x 6∈ XH1 , or x ∈ XH1 but
f(v,1)(x) 6= fj(x) for any j ∈ NSIM, then R((v, 1), x) is uncorrelated with
previous functions, but since R((v, 1), x) is not used before, it does not matter
if R(i, x) is chosen at random or assigned as R(i, x) ← R((v, 1), x). It follows
that Game 10 and Game 9 are identical. [[[Stas: Check later: I added
condition x ∈ XH1 to equation (7), and this might affect the
argument]]]

Game 11: (Ideal-world interaction) In Figure 9 we show the ideal-world
game, denoted Game 11, defined by the interaction of simulator SIM of Figure
5 and functionality FcorOPRF of Figure 3. We use the same notation used for
Game 9 for the correlated random functions, i.e. we define FS(x) = R((1, z∗), x)
and for all i 6= S we define Fi(x) = R(i, x). Also, we rename oracles which the
game implements as in Game 9: S1 implements Z’s query SndrComplete to
S, S2 implements Z’s query OfflineEval to S, C1 implements Z’s query Eval
to C, and C2 responds to A’s message (b, z) to C.

Figure 9 simplifies the ideal-world game by not accounting for function
correlations using edge set E , as done by FcorOPRF, and ignoring some of the
conditional clauses in the code of simulator SIM. However, we argue that these
overlooked clauses are never triggered. Assume that whenever sub-procedure
Process(i) programs a correlation R(i, x)← R(j, x) the game adds set (i, j, x)
to E . The conditional clauses missing from Game 11 figure are in clauses (2)
and (3) in H2 processing. In clause (2), SIM ignores this call, and the game
does not send R(i, x) to A, if S was not compromised and either i = (1, gk) or
(i, (1, gk), x) ∈ E . However, condition i = (1, gk) implies that v = (gk)ux , which
is excluded by case (2). Likewise, condition (i, (1, gk), x) ∈ E implies that
fi(x) = f(1,gk)(x) = (gk)ux , which would trigger case (1) and is excluded in
case (2). In clause (3) SIM would ignore this call and not send R(i, x) to A
under the same conditions, i.e. if S was not compromised and either i = (1, gk)
or (i, (1, gk), x) ∈ E . Case i = (v, 1) = (1, gk) implies k = 0, which is excluded
by sampling k in Z∗q = Zq \ {0}, and case (i, (1, gk), x) ∈ E implies that
x ∈ XH1 and fi(x) = f(1,gk)(x), which would trigger clause (1).

Finally, in Figure 9 in two clauses when tx = 0, in C2 and H2 case (1), we
wrote that the game aborts. In the actual ideal-world game, the first case
corresponds to functionality FcorOPRF dropping the (RcvComplete, ...,C, ...)
call from SIM, and not sending R(i, x) to C, and thus to Z. The second case
corresponds to FcorOPRF not responding with R(i, x) to SIM’s call
(RcvComplete, ...,SIM, ...), in which case SIM aborts. The difference is in the

22

– Init: Initialize RF R, k ←R Z∗q , NSIM ← [(1, gk)], XH1 ← {}, tx← 0.
– H1: On input x 6∈ XH1 , pick ux ←R Zq, add x to XH1 , output gux to A.
– S1: On input a ∈ G, send (b, z) = (ak, gk) to A.

If ∃ record (x,w, a, 0) change it to (x,w, a, 1), else tx++.
– S2: On input x, set i← (1, gk) and send R(i, x) to A.
– C1: On input x, pick w ←R Zq, store (x,w, a, 0), send a = gw to A.
– C2: On input (b, z) ∈ G2, recover (x,w, a, ok?) stored by C1 and set δ ← b/zw.

Assign i← (δ, z). If i 6∈ NSIM then run Process(i). Send R(i, x) to A.
If S not compromised, ok? = 0, and i = (1, gk) then do:

If tx = 0 then abort the game, else set tx−−
– H2: On new input (x, v) from A for v ∈ G:

1. If x ∈ XH1 and v = (gk)ux : Set i← (1, gk), send R(i, x) to A, and do:
If S not compromised and tx = 0 then abort the game
If S not compromised and tx > 0 then set tx−−

2. If x ∈ XH1 and v 6= (gk)ux , but ∃ (δ, z) ∈ NSIM s.t. v = δ · zux then set i
to the first (δ, z) ∈ NSIM for which it holds and send R(i, x) to A

3. Else set i← (v, 1). If i 6∈ NSIM then run Process(i). Send R(i, x) to A.
– S-Compromise: On message (Compromise, S) from A, send k to A.

– Subprocedure Process(i): Parse i as (δ, z)← i. Define list L s.t.

L = { (j, x) ∈ NSIM ×XH1 s.t. j = (δ′, z′) and δ · zux = δ′ · (z′)ux }

Abort it L contains (j, x), (j, x′) s.t. x 6= x′.
Otherwise append i to NSIM, and for each (j, x) in L, reset R(i, x)← R(j, x).

Fig. 9. Game 11: Interaction of Z/A with the ideal-world execution

first case, but it is a syntactical difference because we can equate Z’s not
receiving any output from C in response to (RcvComplete, ...,C, ...), or any
output from H2 call, with the game returning an abort symbol.

The differences between Game 10 and Game 11, apart of the trivial difference
of constraining key k s.t. k 6= 0 in Game 11, consist of the following:

1. S1 either increments tx or changes ok? in some C1-record from 0 to 1.
2. C2 decrements tx if S not compromised, ok? = 0, i = (1, gk), and tx > 0.
3. C2 aborts the game if S not compromised, ok? = 0, i = (1, gk), and tx = 0.
4. H2, clause 1, decrements tx if S not compromised, i = (1, gk), and tx > 0
5. H2, clause 1, aborts the game if S not compromised, i = (1, gk), and tx = 0.

Let E be the event that game aborts either in C2 or H2, denoted resp.
EC2 and EH2

. Note that unless event E happens Game 10 and Game 11 are
identical (except for 1/q probability that k = 0 in Game 10), and that event E
can happen only if S is not compromised, thus the two games diverge only before
S compromise. Note that EC2 requires that i = (1, gk), i.e. that A sends (b, z) to
C2 s.t. z = gk and b = zw = gkw = ak. Call such C2 query k-computed. Note that
EH2

requires that i = (1, gk), i.e. that A queries H2 on (x, v) for v = (hx)k. Call

23

such H2 query k-computed as well. Since counter tx is decremented, or C-record
(x,w, a, 1) is “processed” only on such k-computed C2 and H2 queries, and tx
is incremented or record (x,w, a, 1) is created with each query to S1, hence E
happens only if A triggers more k-computed C2/H2 queries than S1 queries.

Correlations monitored only at evaluation. Before we show that event E can
happen with at most negligible probability, we need to change the way Game 10
and Game 11 build correlations in function R. Instead of setting them at the
time a new function is added, in the modified games the correlations are checked
only when a function is evaluated, i.e. the game keeps track of each referenced
value of function R, i.e. each triple (δ′, z′, x′) s.t. R((δ′, z′), x′) was queried eiter
in S2, C2, or H2. When the game queries a new point, R(i, x) for i = (δ, z),
the game looks for the first record (δ, z′, x′) on the list of queries s.t. x′ = x
and f(δ′,z′)(x) = f(δ,z)(x), i.e. δ′(z′)ux = δ(z)ux . If so, the game first assigns
R(i, x)← R(i′, x) for i = (δ, z) and i′ = (δ′, z′) and only then replies R(i, x). It
is easy to see that this is an equivalent process of keeping correlations because
indeed the only information about these functions R(i, ·) which the game reveals
is through evaluated points, so it makes no difference if we postpone correlating
values of R(i, x) with R(i′, x) until R(i, x) is actually queried.

We show a reduction to the Gap+-OMDH assumption in the case E happens
in Game 10. Reduction R takes the Gap+-OMDH challenge (g, z∗, h1, . . . , hN)
where N = (qH1

+ qC), and responds to A’s queries as follows:

1. Initialize NSIM ← [(1, z∗)] and S ← [].
2. Embed OMDH challenges into H1 and C1 outputs, i.e. assign each H1(x)

output, and each value a sent by C1, to a unique OMDH challenge hi.
3. On message a to S1, use oracle (·)k to send back b = ak and z = z∗.
4. On query x to S2, set (a, b, z)← (1, 1, z∗), run Correlate((a, b, z), x), and

output R((a, b, z), x)
5. On message (b, z) to C2, recovers C1 input x and output a, run

Correlate((a, b, z), x), and output R((a, b, z), x).
6. On query (x, v) to H2, set (a, b, z) ← (1, v, 1), run Correlate((a, b, z), x),

and output R((a, b, z), x).
7. If A queries S-Compromise, R aborts.
8. Correlate((a, b, z), x): Return if (a, b, z, x) ∈ S. Otherwise, set
hx ← H1(x), and if ∃ (a′, b′, z′, x) in S s.t.

b · CDHg(z, hx/a) = b′ · CDHg(z
′, hx/a

′) (8)

then set R((a, b, z), x)← R((a′, b′, z′), x). Otherwise add (a, b, z, x) to S.

Observe that R can verify equation (8) using oracle DDH+
g . Secondly, observe

that b ·CDHg(z, hx/a) correctly evaluates fi(x) for the corresponding index i: In
S2 we set (a, b, z) = (1, 1, z∗), so b·CDHg(z, hx/a) = CDHg(z

∗, hx) = (hx)k where
z∗ = gk, as in Game 10; In C2, in Game 10 we compute fi(x) = f(δ,z)(x) =
δ · (z)ux = δ ·CDH(z, hx), but since δ = b/zw = b ·CDH(z, a−1) this implies that
fi(x) = δ ·CDH(z, hx/a); In H2 we set (a, b, z) = (1, v, 1), so b ·CDHg(z, hx/a) =
v · CDHg(1, hx) = v, also as in Game 10.

24

Therefore R presents a view which is ideantical to Game 10 as long as S-
Compromise is not queried. Therefore event E occurs in the interaction with
R with the same probability as in Game 10. Let Q = qS be the number of S1
queries, hence the number of (·)k oracle accesses by R. Event E implies that the
number of k-computed C2 queries and k-computed H2 queries is larger than Q,
i.e. at least Q+1. Note that a k-computed H2 query is a pair (x, v) s.t. v = (hx)k,
so each such query computes (hi)

k = CDH(hi, z
∗) on a unique OMDH challenge

hi. Likewise, a k-computed C2 query is a response (b, z) = (ak, gk) to C1’s
message a, and since R embeds a unique OMDH challenge hi into each a, such
query also computes ak = CDH(hi, z

∗) on a unique OMDH challenge hi. Since R
can use DDH+

g oracle to implement DDH, and test whether any H2 or C2 query
is k-computed, R will solve Q+ 1 OMDH challenges if event E happens, which
implies

|Pr[G11]− Pr[G10]| ≤ εOMDH(G, qH1 , qS)

Summing up we conclude that the real-world and the ideal-world interactions
are indistinguishable under the Gap-OMDH assumption.

5 Strong aPAKE Protocol Based on FcorOPRF

We show that the OPAQUE protocol of [17] remains secure as UC Strong aPAKE
even if it is instantiated with the UC Correlated OPRF of Section 3 instead of
UC OPRF of [13]. This implies that one can safely modify the OPAQUE protocol
by replacing the exponential blinding in the Hashed Diffie-Hellman OPRF with
the multiplicative blinding (as done in [24]), thus shaving off either 1 variable-
base exponentiation from the client, or 2 such exponentiations if the protocol is
routinely performed with the same server.

Technically, we show that the OPAQUE compiler construction of [17],
which shows that OPRF + AKE → saPAKE, can be used to construct UC
saPAKE from any UC Correlated OPRF and any UC AKE which is adaptively
secure and resilient to Key-Compromise Impersonation attack (AKE-KCI). We
call this compiler OPAQUE+ and show it in Fig. 10. It is exactly the same as
the OPAQUE compiler except that the OPRF functionality FOPRF used in [18]
is replaced with the Correlated OPRF functionality FcorOPRF. We show that
protocol OPAQUE+ realizes the UC saPAKE functionality.

The saPAKE and AKE-KCI functionalities. Protocol OPAQUE+ and its
analysis build on two functionalities from of [18]: The (strong) aPAKE
functionality FsaPAKE and the adaptively-secure UC AKE-KCI functionality
FAKE−KCI. We refer to that paper for their detailed description and rationale.
For completeness we present these functionalities in Appendix C. We note that
AKE-KCI protocol can be instantiated, for example, by the 3-message version
of the HMQV protocol, called HMQV-C in [22], or the 3-message SIGMA
protocol [21] underlying the design of TLS 1.3.

Security of OPAQUE+. We now state the security of OPAQUE+ in
Theorem 2. As in [17], we assume that the adversary A always sends

25

Public Components:

– KCI-secure AKE protocol Π with private/public keys denoted ps, Ps, pu, Pu;
– Random-key robust and equivocable authenticated encryption

(AuthEnc,AuthDec);
– Functionality FcorOPRF with output length parameter τ ;

Password Registration

1. On input (StorePwdFile, sid,C, pw), S generates keys (ps, Ps) and
(pc, Pc) and sends (Init, sid) and (OfflineEval, sid, S, pw,⊥) to
FcorOPRF. On FcorOPRF’s response (OfflineEval, sid, rw), S computes
c← AuthEncrw(pc, Pc, Ps) and records file[sid]← (ps, Ps, Pc, c).

Server Compromise

1. On (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to A.

Login

1. On (UsrSession, sid, ssid, S, pw′), C sends (Eval, sid, ssid, S, pw′) to FcorOPRF

and records FcorOPRF’s response (Prefix, ssid, prfx).
2. On (SvrSession, sid, ssid), S retrieves file[sid] = (ps, Ps, Pc, c), sends c to C,

sends (SndrComplete, sid, ssid) to FcorOPRF, and given FcorOPRF’s response
(Prefix, ssid, prfx′) it runs Π on input (ps, Ps, Pc) and ssidΠ = [ssid||prfx′].

3. On (Eval, sid, ssid, rw′) from FcorOPRF and c from S, C computes m ←
AuthDecrw′(c). If m = (p′c, P

′
c, P

′
s) then C retrieves (Prefix, ssid, prfx) and runs

Π on input (p′c, P
′
c, P

′
s) and ssidΠ = [ssid||prfx]; else C outputs (abort, sid, ssid)

and halts.
4. Given Π’s local output SK, each party outputs (sid, ssid, SK).

Fig. 10. OPAQUE+: Strong aPAKE in the (FcorOPRF,FRO)-Hybrid World

(Compromise, sid) aimed at FcorOPRF and (StealPwdFile, sid) aimed at S
simultaneously, since in the real world when the attacker compromises the
server, the corresponding OPRF session is always compromised simultaneously.

Theorem 2. If protocol Π realizes functionality FAKE−KCI, then protocol
OPAQUE+ in Fig. 10 realizes the strong aPAKE functionality FsaPAKE in the
(FcorOPRF,FRO)-hybrid model.

The security argument is very similar to that of OPAQUE in [17]; we briefly
explain the differences. First of all, note that when the adversary acts as the client
in Correlated OPRF, its power is exactly the same as the client in OPRF, hence
for that case the security argument is the same in OPAQUE+ as in OPAQUE.

Secondly, an additional power which Correlated OPRF gives to the adversary
is to make correlations between OPRF functions while acting as the server. Yet,
this does not change the fact that for every function index i (no matter if i = S
or i is an index created by the adversary) and every value y ∈ {0, 1}`, with

26

overwhelming probability there is at most one argument x s.t. y = Fi(x). In
Correlated OPRF the adversary can find Fi with two arguments that form a
collision in Fi if it finds (i1, x1) and (i2, x2) s.t. Fi1(x1) = Fi2(x2) and then sets
Fi to be correlated with Fi1 on x1 and with Fi2 on x2. In OPRF the adversary
must look for such collisions within each function separately, but in either case
the probability of a collision is upper-bounded by q2/2` where q is the number
of F evaluations on all indices. Hence the ciphertext c∗ sent from the adversary
to an honest client together with index i∗ of the random function Fi∗ which the
adversary makes that honest client compute on its password, together commit to
a unique password guess pw∗ such that AuthDecrw∗(c

∗) 6=⊥ for rw∗ = Fi∗(pw∗).
Lastly, in the Correlated OPRF an adversarial function Fi∗ is not guaranteed

to be completely independent from the honest server’s function Fk for every
i∗ 6= S. Instead, the adversary can correlate Fi∗ with Fk, although on only a
single point x. This allows the adversary a potentially damaging behavior in
which it forwards ciphertext c∗ = c from the honest server to the honest client
and lets the honest client evaluate Fi∗ on its password. In case both parties’
passwords are equal to x the client will compute Fi∗(x) = Fk(x), and thus the
two parties will establish a key if their shared passwords are equal to x, and
fail to establish a key otherwise. This “conditional password test” could not be
done in protocol OPAQUE, and yet it is not an attack on saPAKE, because it
requires the adversary to guess the password; therefore, the simulator can (1)
use a TestAbort command to check if the client and server’s passwords match,
and if so, it can then (2) use a TestPwd command to check if the adversary’s
password guess is correct. If both checks pass, the simulator can compromise
both client’s and server’s sessions, and make these two sessions connect with the
same session key; if either check fails, the simulator can force the client to abort.

We present the full proof of Theorem 2 in Appendix D.

6 Concrete OPAQUE+ Instantiation Using HMQV

Figure 11 shows a concrete instantiation of protocol OPAQUE+ of Figure 10,
where the UC Correlated OPRF is instantiated with protocol Mult-2HashDH,
and UC AKE is instantiated with HMQV [22]. Note that the protocol takes 3
flows (τs can be piggybacked with S’s earlier message), and 2 fixed-base (fb) and
2 variable-base (vb) (multi-base) exp’s for C and resp. 1fb and 2vb exp’s for S.

7 Insecure Applications of Multiplicative Blinding

As we noted in the introduction, the correlations allowed by Mult-2HashDH can
be exploited in some applications for the benefit of a corrupt server. We illustrate
this ability with several examples.

Consider a setting where a client C with input x interacts using
Mult-2HashDH with a server S with key k to compute
y = Fk(x) = H2(x, (hx)k) where hx denotes H1(x). C then uses y for some
task; for concreteness, think of x as a password and y as a key that allows C to

27

authenticate to some application. At some point S becomes corrupted and
wants to check whether a given value x′ equals the user’s input x. Using
correlations as described in the introduction, e.g., equation (3), S mounts the
following attack: When C sends its blinded value a = hxg

r, S chooses random
k′, sets z = gk

′
and b = (hx′)

k−k′ak
′
, and sends (b, z) to C, who computes the

unblinded value v = b(z)−r and outputs y′ = H2(x, v). It can be checked that
v = (hx)k if and only if x′ = x.11 If S can observe whether C recovered the
correct value y′ = y, e.g. whether it successfully authenticated using the
recoverd y′, then S learns whether C’s secret x equals S’s guess x′.

Public Parameters and Components
Group G of prime order q with generator g;
Random-key robust and equivocable authenticated encryption
(AuthEnc,AuthDec);
Hash functions H1, H3, H5 : {0, 1}∗→{0, 1}τ , H2 : {0, 1}∗→G, H4 : {0, 1}∗→ Zq
Pseudorandom function (PRF) f : {0, 1}∗ → {0, 1}τ

S on (StorePwdFile, sid, pw)

Pick k, ps, pc ←R Zq, set (z, Ps, Pc) ← (gk, gps , gpc), rw ← Fk(pw), c ←
AuthEncrw(pc, Ps); record file[sid]← 〈k, z, c, ps, Pc〉 and erase everything else

C on (UsrSession, sid, ssid, S, pw) S on (SvrSession, sid, ssid)

retrieve 〈k, z, c, ps, Pc〉 ← file[sid]
r, xc ←R Zq xs ←R Zq
a← H2(pw) · gr, Xc ← gxc -a, Xc

rw← H1(pw, b · z−r) �b, z, Xs, c b← ak, Xs ← gxs

parse (pc, Ps)← AuthDecrw(c)
(if this parsing fails C outputs abort)

C and S set ssid′ ← H5(sid, ssid, a), ec ← H4(Xc, S, ssid′), es ← H4(Xs,C, ssid′)

K ← H3

(
(XsP

es
s)xc+ecpc

)
K ← H3

(
(XcP

ec
c)xs+esps

)
� τs τs ← fK(1, ssid′)

if τs 6= fK(1, ssid′): (SK, τc)← (⊥,⊥)
else: SK ← fK(0, ssid′) and τc ← fK(2, ssid′)

-τc if τc 6= fK(2, ssid′): SK ← ⊥
else: SK ← fK(0, ssid′)

output (sid, ssid, SK) output (sid, ssid, SK)

Fig. 11. Protocol OPAQUE+ (Fig. 10) with Mult-2HashDH and HMQV

11 Observe that v = bz−r = (hx′)
k−k′(hxg

r)k
′
(gk
′
)−r = hkx′(hx′/hx)k

′
, hence v = (hx)k

iff hx = hx′ . Using the terminology of equation (2), C computes y′ = F(δ,z)(x) for
F(δ,z) which is correlated with Fk on x′, hence y′ = Fk(x) iff x = x′.

28

The Correlated OPRF functionality, which Mult-2HashDH realizes, assures
that server S cannot test more than one guess x′ per interaction, and while in
some applications, like the PAKE protocol OPAQUE, this ability doesn’t affect
the application, e.g. because the application itself allows the attacker such
on-line guess-and-test avenue, in other cases this suffices to break the
application. Below we show a few application examples which are all secure
with Exp-2HashDH, but not with Mult-2HashDH. In all examples the
application doesn’t expose the client to on-line attacks, and using
Exp-2HashDH ensures that the implementation does not either, but using
Mult-2HashDH adds this exposure and breaks the application.

OPAQUE with outsourced envelope. Recall that OPAQUE [17] combines
an OPRF with an authenticated key-exchange (AKE) protocol as follows: At
registration, the server and the user choose private-public AKE key pairs. The
user then runs an OPRF with the server where the user’s input is a password pw
and the server’s input is an OPRF key k. The output of the OPRF, learned only
by the user, is a random key rw = Fk(pw), and the user uses rw to authenticate-
encrypt her AKE private key and the server’s public key. The ciphertext c that
results from this encryption is stored by the server, together with the OPRF
key k, the user’s public AKE key, and the server’s AKE key pair. At login, the
user runs the OPRF with the server on input pw, learns rw, uses rw to decrypt
its own private key and the server’s public key encrypted in c, and uses these
keys to run the AKE with the server. Only a user in possession of the registered
password can successfully run the AKE.

However, consider a modification where the user stores ciphertext c at some
other location than server S, e.g. a laptop or another server. In this case a
malicious S, who holds only OPRF key k and the AKE keys, cannot stage either
online or offline attacks on the user’s password: Without ciphertext c, S cannot
test candidate values rw = Fk(pw). However, this property is not ensured if
OPRF is implemented with Mult-2HashDH. Indeed, using the strategy described
above, a malicious S can test whether the user’s password is equal to a chosen
pw∗, by running login using function Fk∗ which is correlated on argument pw∗

with function Fk used in registration. If the user recovers its credentials and
authenticates in that login, S learns that pw = pw∗. Crucially, this online attack
opportunity for server S is not available using Exp-2HashDH.

Device-enhanced PAKE. [16, 26] presents a password protocol that uses an
auxiliary device (typically a smartphone but can also be an online server) in the
role of a password manager. When the user wishes to password-authenticate to a
server S, it communicates with the device who holds key k for 2HashDH OPRF.
The user’s input to the OPRF is her password, and the OPRF result rw = Fk(pw)
is used as the “randomized” password with service S. Using Exp-2HashDH, a
corrupt device learns nothing about the user’s password, but it can test a guess
for the user’s password at the cost of one online interaction with S per guess.
However, using Mult-2HashDH, the corrupt device can validate a guess without
interacting with S, by watching if the user’s interaction with S succeeded, thus
resulting in weaker security guarantees.

29

Threshold OPRF (including Threshold OPAQUE). A multi-server
threshold implementation of Exp-2HashDH is presented in [14]. It ensures the
security of the OPRF as long as no more than a threshold of servers are
compromised. Such threshold OPRF can be used e.g. to construct
Password-Protected Secret Sharing (PPSS) [2, 13], which in turn can
implement Threshold PAKE. It is straightforward to see that the above
correlation attacks apply to these constructions if Exp-2HashDH is replaced
with Mult-2HashDH. They allow a single corrupted server to choose correlated
values with which it can verify guesses for the client’s inputs. As an
illustration, consider a 2-out-of-2 Threshold OPRF that computes hkx as hk1+k2

x

using two servers S1, S2 with respective keys k1, k2. Such a scheme should
ensure that nothing can be learned about the input x without compromising
both servers. However, a corrupted S2 can check whether C’s input x equals
any guess x′ by mounting the above attack using ony key k2. If C reconstructs
the correct y, then x = x′. This attack also applies to OPAQUE with a
multi-server threshold implementation of Mult-2HashDH.

All these examples show that in order to use Mult-2HashDH in an application
where an authenticated gk is not available to the client, a dedicated proof of
security (as the one we develop here for OPAQUE) is essential. Even in that
case, one can consider this as “fragile evidence”, as eventual changes to the
application may void the security proof. Thus a safer alternative is to use the
scheme (4) presented in the introduction, which implements UC OPRF using
both forms of blinding, and would be secure in all the above applications.

References

1. M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In Theory of
Cryptography – TCC 2010, pages 480–497. Springer, 2010.

2. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret
sharing. In ACM Conference on Computer and Communications Security — CCS
2011. ACM, 2011.

3. X. Boyen. HPAKE: Password authentication secure against cross-site user
impersonation. In Cryptology and Network Security – CANS 2009, pages 279–
298. Springer, 2009.

4. E. F. Brickell, D. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentiation
with precomputation. In Advances in Cryptology – EUROCRYPT 1992, pages
200–207. Springer, 1992.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In IEEE Symposium on Foundations of Computer Science – FOCS 2001,
pages 136–145. IEEE, 2001.

6. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology – CRYPTO 1992, pages 89–105. Springer, 1992.

7. A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda. Privacy
pass: Bypassing internet challenges anonymously. In Privacy Enhancing
Technologies Symposium – PETS 2018, pages 164–180. Sciendo, 2019.

8. P. Farshim, C. Orlandi, and R. Rosie. Security of symmetric primitives under
incorrect usage of keys. IACR Transactions on Symmetric Cryptology, 2017(1):449–
473, 2017.

30

9. W. Ford and B. S. Kaliski. Server-assisted generation of a strong secret from
a password. In IEEE 9th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises – WET ICE 2000, pages 176–180.
IEEE, 2000.

10. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and
oblivious pseudorandom functions. In Theory of Cryptography – TCC 2005, pages
303–324. Springer, 2005.

11. B. Haase and B. Labrique. AuCPace: Efficient verifier-based PAKE protocol
tailored for the IIoT. In CHES, 2019.

12. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In Advances in Cryptology –
ASIACRYPT 2014, pages 233–253. Springer, 2014.

13. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable
password-protected secret sharing (Or: how to protect your bitcoin wallet online).
In IEEE European Symposium on Security and Privacy – EuroS&P 2016, pages
276–291. IEEE, 2016.

14. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In Applied Cryptography and
Network Security – ACNS 2017, pages 39–58. Springer, 2017.

15. S. Jarecki, H. Krawczyk, and J. Resch. Updatable oblivious key management for
storage systems. In ACM Conference on Computer and Communications Security
— CCS 2019. ACM, 2019.

16. S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Device-enhanced password
protocols with optimal online-offline protection. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pages 177–188.
ACM, 2016.

17. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In Advance in Cryptology – EUROCRYPT
2018, pages 456–486. Springer, 2018.

18. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. IACR Cryptology ePrint Archive,
2018:163, 2018.

19. S. Jarecki, H. Krawczyk, and J. Xu. On the (In)Security of the Diffie-Hellman
Oblivious PRF with Multiplicative Blinding Attacks. IACR Cryptology ePrint
Archive, 2021.

20. S. Jarecki and X. Liu. Fast secure computation of set intersection. In Security and
Cryptography for Networks – SCN 2010, pages 418–435. Springer, 2010.

21. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In Advances in Cryptology – CRYPTO
2003, pages 400–425. Springer, 2003.

22. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol
(extended abstract). In Advances in Cryptology – CRYPTO 2005, pages 546–566.
Springer, 2005.

23. H. Krawczyk. The OPAQUE asymmetric PAKE protocol, https://tools.ietf.
org/html/draft-krawczyk-cfrg-opaque, May 2020.

24. H. Krawczyk, K. Lewi, and C. A. Wood. The OPAQUE asymmetric PAKE
protocol, https://tools.ietf.org/html/draft-irtf-cfrg-opaque, November
2020.

25. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. In Advances in Cryptology – EUROCRYPT 1999, pages 327–346. Springer,
1999.

31

https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque
https://tools.ietf.org/html/draft-irtf-cfrg-opaque

26. M. Shirvanian, N. Saxena, S. Jarecki, and H. Krawczyk. Building and studying a
password store that perfectly hides passwords from itself. IEEE Transactions on
Dependable and Secure Computing, 16:5, 2019.

27. N. Sullivan. Exported authenticators in TLS, https://tools.ietf.org/html/

draft-ietf-tls-exported-authenticator, May 2020.
28. N. Sullivan, H. Krawczyk, O. Friel, and R. Barnes. Usage of OPAQUE with TLS

1.3, https://tools.ietf.org/html/draft-sullivan-tls-opaque, Mar 2019.

A OPRF Implementation and Modeling Variants

This paper shows the subtle differences in the security properties between the
exponential blinding and the multiplicative blinding in Hashed Diffie-Hellman
OPRF implementations, and how these differences pertain to one particular
application, a strong asymmetric PAKE protocol of [17]. However, it is
instructive to see how OPRF applications can be influenced by other possible
changes in the implementation of Hashed Diffie-Hellman OPRF, including
changes in the underlying trust assumptions. In the introduction we discussed
the specification of the OPRF as in equation (4). Here we examine other
variants.

Other OPRF Implementations. We discuss some pros and cons of including
the function argument x along the Hashed Diffie-Hellman value v = (H1(x))k in
the PRF output computation via the outer hash function H2. Namely, we ask
whether either the exponential or multiplicative blinding could be safely used
with the PRF defined as either of the following two variants:

Fk(x) = H2(H1(x)k) (9)

Fk(x) = H2(z,H1(x)k) where z = gk (10)

One application for using either of these (O)PRF proposals is an efficient 3-party
protocol for secure computation of functionality Π : [k, x,⊥]→ [⊥,⊥, Fk(x)], i.e.
where party A inputs a PRF key k, party B inputs an argument x, and party C
outputs y = Fk(x) without learning either k or x. Using Fk defined as in eq. (9)
this could be implemented with exponential blinding: B picks r ←R Zq and
sends a = (H1(x))r to A and r to C, party A sends b = ak to C, and C outputs
y = H2(b1/r). If party C was allowed to learn the PRF public key z = gk, then
Fk could be defined also as in eq. (10), and the protocol could also use the less
expensive multiplicative blinding.

Regarding the security of either of these implementations, we note that if
the PRF is implemented as in eq. (9) then the resulting OPRF does not seem
to realize either the OPRF functionality of [13] or the Correlated OPRF
functionality defined here. The reason is that when the adversary queries the
outer hash H2 on some v, this is an evaluation of Fk(x) for some (k, x), but
every query x to H1 defines key k s.t. v = (H1(x))k and thus H2(v) = Fk(x).
Therefore, even though the simulator could compute the public key z = gk

corresponding to each such k, e.g. by embedding trapdoors in H1 outputs, it is

32

https://tools.ietf.org/html/draft-ietf-tls-exported-authenticator
https://tools.ietf.org/html/draft-ietf-tls-exported-authenticator
https://tools.ietf.org/html/draft-sullivan-tls-opaque

not clear how it can decide on the argument x and a function index i s.t.
H2(v) = Fi(x).12 On the other hand, if the PRF was defined as in equation
(10) then exponential blinding would implement the UC OPRF notion of [13]
under the Gap-OMDH assumption in ROM, while multiplicative blinding
would under the same assumptions implement a different variant of correlated
OPRF: In that variant, a malicious server can correlate any two PRF instances
Fi, Fj by specifying a pair of arguments x, x′, x 6= x′, s.t. Fi(x) = Fj(x

′). Note
that it is a different correlation pattern than the one enforced by the
Correlated OPRF model which is realized by multiplicative blinding for PRF
defined as in equation (1), where for any (i, j) the adversary specifies a single
argument x s.t. Fi(x) = Fj(x). We do not study such alternative OPRF
relaxations and their possible applications in this paper, but the example that
we do study, i.e. the Correlated OPRF and its use within OPAQUE, shows the
general guidelines one would use if the above OPRF applications were of
interest.

Stronger Models and Infrastructural Assumptions. One can consider a
strengthened OPRF model which combines the benefits of the verifiable OPRF
of [12] and the random-to-the-key-holder OPRF of [13]. Such “best of both
worlds” notion can be realized if either protocol Exp-2HashDH or protocol
Mult-2HashDH are augmented by a zero-knowledge proof that (g, z, a, b) is a
DDH tuple, and by the client C outputting the PRF public key z in addition to
the PRF output y. This ZK proof is non-interactive in ROM and can take only
one variable-base multi-exponentiation to create and to verify, but as we show
in this work, some important OPRF applications, like the OPAQUE password
authentication protocol [17], do not need this extra cost.

Alternatively, if the client can trust that it holds server’s authenticated public
key, i.e., if the PRF public key z is fixed on the client-side, then Mult-2HashDH
realizes the UC OPRF functionality of [13], i.e., it does not need the relaxation
of UC Correlated OPRF. This holds because for a fixed z a malicious server can
only vary the δ part of the PRF index (δ, z), and functions F(δ1,z) and F(δ1,z)

defined in eq. (2) are independent (in ROM) for any δ1, δ2, z s.t. δ1 6= δ2. The
authenticated PRF key assumption would suffice for some applications, e.g.,
Privacy Pass [7] can be implemented with the multiplicative blinding OPRF
because it already assumes that the client holds the server’s certified public key.
However, this assumption would restrict other OPRF applications, e.g., it would
imply security only in the PKI model for OPAQUE [17].

12 However, it still seems computationally hard to link any v with more than one pair
(k, x): If H1 is an RO and the simulator forms honest clients’ messages as ai = gri

then v = (hx)k = (hx′)
k′ , b1 = (a1)k, b2 = (a2)k

′
implies that on random (g, hx, hx′)

one can find (v, z1, z2) s.t. (g, hx, z1, v) and (g, hx′ , z2, v) are both DDH tuples, which
is hard in a generic group. Thus OPRF with F defined as in eq. (9) probably realizes
some variant of OPRF notion under some reasonable assumptions.

33

B Proof of the Gap+-OMDH Assumption in the Generic
Group Model

In this section we prove that the Gap+ One More Diffie-Hellman (Gap+-OMDH)
assumption (see Section 2) holds in the generic group model. The proof closely
follows the proof of the OMDH assumption in [14]; we assume familiarity of that
proof and only highlight the difference here.

Theorem 3. Let A be an algorithm solving the Gap+ One More Diffie-Hellman
problem in a generic group G with prime order q and random encoding function
ξ. Let u1, . . . , uQ+1 (the challenge values) and k be random integers in Zq. A is
given q, ξ(1), ξ(u1), . . . , ξ(uQ+1) as inputs, and is allowed to query the following
three oracles:

– The group operation oracle. A can query this oracle n times.
– The DDH+ oracle, which on inputs ξ(a), ξ(b), ξ(a′), ξ(b′), ξ(c) outputs

whether ab+ a′b′ = c. A can query this oracle d times.
– The “k-th power” oracle (·)k, which on input ξ(v) outputs ξ(v · k). A can

query this oracle Q times.

Then the probability that A outputs ξ(u1 ·k), . . . , ξ(uQ+1 ·k) is upper-bounded by
(n+2Q+2)2+4d

q . I.e.

Pr
u1,...,uQ+1,k←RZq

[(ξ(u1 · k), . . . , ξ(uQ+1 · k))← AG,DDH+,(·)k(q, ξ(1), ξ(u1), . . . , ξ(uQ+1))]

≤ (n+ 2Q+ 2)2 + 4d

q
,

where A queries G n times, DDH+ d times, and (·)k Q times.

Proof (sketch): We first provide an overview of the proof of OMDH assumption
in the generic group model (that is, A does not have access to the DDH+ oracle),
as in [14]. That proof consists of two steps:

– In the first step, we construct an algorithm B, which simulates the generic
group game challenger by keeping record of polynomials corresponding to
group elements. Specifically, B maintains a list T = {Ft, ξt}t=1,...,τ , where τ
is the number of group elements that appear in the OMDH game,
Ft(U1, . . . , UQ+1, X)’s are polynomials of degree at most 2, and ξt’s are
distinct elements in G. B initializes T by setting τ ← Q + 2,
F1 ← 1, F2 ← u1, . . . , FQ+2 ← uQ+1, and ξ1, . . . , ξQ+2 as random distinct
elements in G. B answers A’s queries as follows:
• Group operation queries: A inputs two indices t1, t2 and an operation

(multiplication “·” or division “/”). B computes Fτ+1 ← Ft1 + Ft2 (if
the operation is “·”) or Fτ+1 ← Ft1 − Ft2 (if the operation is “/”). If
Fτ+1 has appeared before, i.e. if there exists t ≤ τ such that Fτ+1 = Ft,
B sends ξt to A; otherwise B picks a random ξτ+1 ∈ G which is different
from ξ1, . . . , ξτ , sends ξτ+1 to A, and sets τ++.

34

• (·)x queries: A inputs an index t. B computes Fτ+1 ← Ft · k, picks a
random ξτ+1 ∈ G which is different from ξ1, . . . , ξτ , sends ξτ+1 to A,
and sets τ++.

Finally, A outputs Ft1 , . . . , FtQ+1
; it wins if Ft1 = u1 ·k, . . . , FtQ+1

= uQ+1 ·k.
The proof shows that the probability thatA wins this game is upper-bounded
by 2/q.

– In the second step, we consider A’s distinguishing advantage between the
real game and the game interacting with B. A’s views in the two games are
identical unless there exists t1 and t2 such that Ft1 6= Ft2 but
Ft1(u1, . . . , uQ+1, k) = Ft2(u1, . . . , uQ+1, k). This happens with probability(
τ
2

)
· 2/q, where τ = (Q+ 2) + n+Q = n+ 2Q+ 2.

We now proceed to the proof of Theorem 3. The proof is identical to the
above, except that we have to take into account the DDH+ oracle:

– In the first step, B additionally answers A’s following oracle queries:
• DDH+ oracle queries: A inputs five indices t1, t2, t3, t4 and t5, and B

outputs whether Ft1Ft2 + Ft3Ft4 = Ft5 .
Note that adding this oracle does not change the fact that all Ft’s have
degree at most 2. Therefore, the analysis in this step is the same, and we
refer the readers to [14] for details: A’s winning probability while interacting
with B is 2/q.

– In the second step, the difference of A’s views in the interaction with B and
in the interaction with the real challenger appears in addition when there
exist five different t1, t2, t3, t4 and t5 such that Ft1Ft2 + Ft3Ft4 6= Ft5 but

Ft1(u1, . . . , uQ+1, k)Ft2(u1, . . . , uQ+1, k) + Ft3(u1, . . . , uQ+1, k)Ft4(u1, . . . , uQ+1, k)

=Ft5(u1, . . . , uQ+1, k).

Note that deg(Ft1Ft2 + Ft3Ft4 − Ft5) ≤ 4, and there are at most d such
polynomials evaluated. Therefore, the probability of the event above is at
most d · 4/q.

In sum, we conclude that A’s probability of winning the game is upper-
bounded by

2

q
+

(
n+ 2Q+ 2

2

)
· 2

q
+ d · 4

q
≤ (n+ 2Q+ 2)2 + 4d

q
,

which completes the proof.

C UC Functionalities for saPAKE and AKE

In Fig. 13 we include the (strong) aPAKE functionality FsaPAKE defined in [18].
Since protocol OPAQUE+ relies on the adaptively secure UC AKE-KCI
protocol, we include in Fig. 12 the adaptively secure AKE-KCI functionality
FAKE−KCI defined in [17].

35

In the description below, we assume P,P′ ∈ {C, S}.

– On (UsrSession, sid, ssid,S) from C, send (UsrSession, sid, ssid,C, S) to A∗.
If ssid was not used before by C, record (ssid,C, S) and mark it fresh.

– On (SvrSession, sid, ssid,C) from S, send (SvrSession, sid, ssid,C, S) to A∗.
If ssid was not used before by S, record (ssid, S,C) and mark it fresh.

– On (Compromise, sid,P) from A∗, mark P compromised.
– On (Impersonate, sid, ssid,P) from A∗, if P is compromised and there is a

record (ssid,P′,P) marked fresh, mark this record compromised.
– On (NewKey, sid, ssid,P, SK∗) from A∗ where |SK∗| = τ , if there is a record

(ssid,P,P′) not marked completed, do:
• If the record is compromised, or P or P′ is corrupted, set SK ← SK∗.
• If the record is fresh, a (sid, ssid, SK′) tuple was sent to P′, and at that

time record (ssid,P′,P) was marked fresh, set SK ← SK′.
• Otherwise pick SK ←R {0, 1}τ .

Finally, mark (ssid,P,P′) completed and send (sid, ssid, SK) to P.

Fig. 12. Adaptively Secure Functionalities FAKE−KCI

D Proof of Theorem 2

Proof: We first show the simulator SIM in Fig. 14, Fig. 15 and Fig. 16. Since
protocol Π realizes functionality FAKE−KCI−EA, there is a UC simulator SIMAKE

which creates an environmental view indistinguishable from the real-world view
in protocol Π; our simulator SIM invokes SIMAKE as a “black box.” As in the
proof of Theorem 1, the proof of this theorem goes by a sequence of games.
Whenever applicable, we reuse the notations in previous proof (e.g., the notion
regarding games). Similar to the previous proof, we denote FsaPAKE as F .

Below we use i∗ to denote the function pointer used by A in
(RcvComplete, sid, ssid,C, i∗, ·) for C’s rOPRF session, and c∗ to denote the
ciphertext in the message which A passes to C after rOPRF evaluation; also
recall that we use pw to denote S’s password, and pw′ to denote C’s password.

For concrete security parameters we let qC and qS be the number of resp. C
and S sub-sessions started by Z via the UsrSession and SvrSession
commands; we let εSEC, εAUTH and εRBST be the maximum advantages of an
adversary, with computational resources comparable to that of A, in the
security games of the semantic security, authenticity, and random-key
robustness of AE, respectively; we let εAKE be the maximum distinguishing
advantage of an environment, with computational resources comparable to that
of Z, between the real interaction of Π and the simulation of SIMAKE; and we
let qF be the number of Eval and OfflineEval messages aimed at FcorOPRF

from A.

36

Password Registration

– On (StorePwdFile, sid,C, pw) from S, if this is the first such message, record
〈file,C, S, pw〉, mark it uncompromised, set flag← uncompromised.

Stealing Password Data

– On (StealPwdFile, sid) from A∗, if there is no record 〈file,C, S, pw〉, return
“no password file” to A∗. Otherwise, if the record is marked uncompromised,
mark it compromised; regardless, return “password file stolen” to A∗.

– On (OfflineTestPwd, sid, pw∗) from A∗, if there is a record 〈file,C, S, pw〉
marked compromised, do: if pw∗ = pw, return “correct guess” to A∗;
otherwise return “wrong guess.”

Password Authentication

– On (UsrSession, sid, ssid,S, pw′) from C, send (UsrSession, sid, ssid,C, S) to
A∗. Also, if this is the first UsrSession message for ssid, record 〈ssid,C, S, pw′〉
and mark it fresh.

– On (SvrSession, sid, ssid) from S, retrieve 〈file,C, S, pw〉, and send
(SvrSession, sid, ssid,C, S) to A∗. Also, if this is the first SvrSession message
for ssid, record 〈ssid, S,C, pw〉 and mark it fresh.

Active Session Attacks

– On (Interrupt, sid, ssid,S) from A∗, if there is a record 〈ssid,S,C, pw〉 marked
fresh, mark it interrupted and set PTtx(ssid)← 1.

– On (TestPwd, sid, ssid,P, pw∗) from A∗, retrieve record 〈ssid,P,P′, pw′〉 and:
• If the record is fresh then do the following: If pw∗= pw′ return “correct

guess” to A∗ and mark 〈ssid,P,P′, pw′〉 compromised, otherwise return
“wrong guess” and mark 〈ssid,P,P′, pw′〉 interrupted.

• If P = S and PTtx(ssid) = 1 then set PTtx(ssid) ← 0 and if pw∗ = pw′

then return “correct guess” to A∗ else return “wrong guess.”
In either case, if P = S and pw∗ = pw′ then set flag← compromised.

– On (Impersonate, sid, ssid) from A∗, if there is a record 〈ssid,C, S, pw′〉
marked fresh, do: If there is a record 〈file,C, S, pw〉 marked compromised
and pw′ = pw, mark 〈ssid,C, S, pw′〉 compromised and return “correct guess”
to A∗; otherwise mark it interrupted and return “wrong guess.”

Key Generation and Authentication

– On (NewKey, sid, ssid,P, SK∗) from A∗ where |SK∗| = `, if there is a record
〈ssid,P,P′, pw′〉 not marked completed, do:
• If the record is compromised, or (P = S, the record is interrupted and

flag = compromised), or either P or P′ is corrupted, set SK ← SK∗.
• Else, if the record is fresh and (sid, ssid, SK′) was sent to P′ at the time

there was a record 〈ssid,P′,P, pw′〉 marked fresh, set SK ← SK′.
• Else pick SK ←R {0, 1}`.

Finally, mark 〈ssid,P,P′, pw′〉 completed and send (sid, ssid, SK) to P.
– On (TestAbort, sid, ssid,P) from A∗, if there is a record 〈ssid,P,P′, pw′〉 not

marked completed, do:
• If it is fresh and there is a record 〈ssid,P′,P, pw′〉, send Succ to A∗.
• Otherwise send Fail to A∗ and (abort, sid, ssid) to P, and mark
〈ssid,P,P′, pw′〉 completed.

Fig. 13. Functionality FSaPAKE

37

Initialization
Set tx ← 0, N ← [S], E ← {}, G ← (N , E). Initialize simulator SIMAKE and
function family {Fi} s.t. for every (i, x), including i = S, value Fi(x) is undefined.
Whenever SIM references undefined value Fi(x) below, set Fi(x) ←R {0, 1}`. Set
c ← SIMEQV(sid, (kpr+2kp)), and record file[sid] ← (⊥,⊥,⊥, c), where kpr, kpb are
the lengths of resp. private and public AKE keys.

Stealing Password Data and Offline Queries

1. If A sends (Compromise, sid) aimed at FcorOPRF and (StealPwdFile, sid)
aimed at S (we assume A sends these commands together), send
(StealPwdFile, sid) to F .
If F returns “no password file,” pass this message to A on behalf of S.
If F returns “password file stolen,” declare S compromised, send
(Compromise, sid,S) to SIMAKE, and on response (ps, Ps, Pu) reset file[sid]
from (·, ·, ·, c) to (ps, Ps, Pc, c) and send it to A on behalf of S.

2. On (OfflineEval, sid, i∗, x, L) from A aimed at FcorOPRF, do:
– If i∗ 6∈ N , then add i∗ to N and run Correlate(i∗, L).
– If S is not compromised and (i∗,S, x) ∈ E , ignore this message.
– If i∗ = S and S is compromised, send (OfflineTestPwd, sid, x) to F .

If F returns “correct guess,” send (Compromise, sid,C) to SIMAKE, and on
response (pu, Pu, Ps) set rw ← SIMEQV(sid, (pu, Pu, Ps)) and FS(x) ← rw,
record 〈file,C,S, x〉, and declare C compromised.

Finally, send (OfflineEval, sid, Fi∗(x)) to A on behalf of FcorOPRF.

Fig. 14. Simulator SIM for Protocol OPAQUE+: Initialization and Offline Attack

38

rOPRF Evaluation

1. On (UsrSession, sid, ssid,C, S) from F , send (Eval, sid, ssid,C, S) to A on
behalf of FOPRF. On prfx from A, record 〈ssid,C, prfx〉 if prfx is new, else reject.

2. On (SvrSession, sid, ssid′,C,S) from F , retrieve file[sid] = (·, ·, ·, c), send
(SndrComplete, sid, ssid′, S) and c to A on behalf of, respectively FOPRF and
S, and given A’s response prfx′ do the following in order:
(a) If there is a record 〈ssid,C, prfx〉 for prfx = prfx′ then record
〈ssid,C, ssid′, S,OK〉; Else record 〈ssid′, S,ACT〉, set tx++, and send
(Interrupt, sid, ssid′, S) to F .

(b) Record 〈ssidΠ , ssid′, S,C〉 marked fresh for ssidΠ = [ssid′||prfx′] and send
(SvrSession, sid, ssidΠ ,C, S) to SIMAKE.

3. On (RcvComplete, sid, ssid,C, i∗, L) from A aimed at FOPRF, retrieve
〈ssid,C, prfx〉 (ignore the message if such record not found) and do in order:
(a) If i∗ 6∈ N , then add i∗ to N and run Correlate(i∗, L).
(b) If S is not compromised, there is no record 〈ssid,C, ssid′, S,OK〉 for some

ssid′, and i∗ = S, then do: Ignore this message (and do not do (c) below)
if tx = 0, else set tx−− and add x to X .

(c) Augment record 〈ssid,C, prfx〉 to 〈ssid,C, prfx, i∗〉.
4. On (Eval, sid, ssid, S, x) followed by (RcvComplete, sid, ssid,A, i∗, L) from
A to FOPRF (string prfx chosen by A for this Eval can be ignored), send
(Eval, sid, ssid,A,S) to A on behalf of FOPRF and do in order:
(a) If i∗ 6∈ N , then add i∗ to N and run Correlate(i∗, L).
(b) If i∗ 6= S and (i∗, S, x) 6∈ E , then send (Eval, sid, ssid, Fi∗(x)) to A.
(c) If i∗ = S or (i∗, S, x) ∈ E , and there is no record 〈ssid′, S,ACT〉, then

output halt and abort.
(d) If i∗ = S or (i∗,S, x) ∈ E , and there is a record 〈ssid′, S,ACT〉 then do in

order:
i. If there exists record 〈ssid′, S,ACT〉 not marked completed then

choose ssid′ of any such reord. If all records 〈ssid′, S,ACT〉 are
completed then choose ssid′ of any of those.

ii. If i∗ = S, then ignore the message (and do not do the steps below) if
tx = 0; else set tx−−.

iii. Send (TestPwd, sid, ssid′, S, x) to F . If F returns “correct guess,”
send (Compromise, sid,C) to SIMAKE, and on response (pu, Pu, Ps) set
rw← SIMEQV(sid, (pu, Pu, Ps)) and FS(x)← rw, record 〈file,C, S, x〉,
and declare C compromised.

iv. Send (Eval, sid, ssid, FS(x)) to A, and modify the chosen record
〈ssid′, S,ACT〉 into 〈ssid′,S,USED〉.

Fig. 15. Simulator SIM for Protocol OPAQUE+: OPRF Evaluation

39

AKE Simulation

1. For any ssid, as soon as 〈ssid,C, prfx〉 is augmented to 〈ssid,C, prfx, i∗〉 and A
sends (ssid, c∗) to C, retrieve file[sid] = (·, ·, ·, c) and do one of the following:
(a) If c∗ = c and i∗ = S, send (TestAbort, sid, ssid,C) to F . If
F replies Succ, record 〈ssidΠ , ssid,C, S〉 marked fresh, and send
(UsrSession, sid, ssidΠ ,C, S) to SIMAKE for ssidΠ = [ssid||prfx]. Mark this
case (∗).

(b) If c∗= c, i∗ 6= S, and there exists x s.t. (i∗,S, x) ∈ E , then send
(TestAbort, sid, ssid,C) to F , and if F returns Succ then send
(TestPwd, sid, ssid,C, x) to F and:
– If F returns “correct guess,” send (TestPwd, sid, ssid, S, x) to F (who

returns “correct guess”), record 〈ssidΠ , ssid,C, S〉 marked fresh for
ssidΠ = [ssid||prfx], send (UsrSession, sid, ssidΠ ,C,S) to SIMAKE, and
record 〈file,C, S, x〉. Also mark this case (∗).

– If F returns “wrong guess,” send (TestAbort, sid, ssid,C) to F .
(c) Otherwise, for every x s.t. y = Fi∗(x) is defined, check if AuthDecy(c∗)

output parses as (p∗c , P
∗
c , P

∗
s), and do one of the following:

– If there is no such x, send (TestPwd, sid, ssid,C,⊥) followed by
(TestAbort, sid, ssid,C) to F .

– If there are more than one such x’s, output halt and abort.
– If there is a unique such x, send (TestPwd, sid, ssid,C, x) to F . If F

replies “wrong guess,” send (TestAbort, sid, ssid,C) to F , else do:
(1) set (p∗c , P

∗
c , P

∗
s)← AuthDecy(c∗),

(2) run Πc on (p∗c , P
∗
c , P

∗
s) and ssidΠ = [ssid||prfx],

(3) when Πc outputs SK∗, send (NewKey, sid, ssid,C, SK∗) to F .
Mark this case (∗∗).

2. On all AKE-related interactions of A with all AKE sessions started in case
(∗) above (note that there are two places marked case (∗)), pass all messages
between A and SIMAKE, and react to messages sent by SIMAKE’s interface with
FAKE−KCI+ as follows:
– On (Impersonate, sid, ssidΠ , S), if S is declared compromised and there

is record 〈ssidΠ , ssid,C, S〉 marked fresh, then mark it compromised and
send (Impersonate, sid, ssid) to F .

– On (Impersonate, sid, ssidΠ ,C), if C is declared compromised and there
is record 〈ssidΠ , ssid,S,C〉 marked fresh, then mark it compromised,
retrieve 〈file,C, S, pw〉 and send (TestPwd, sid, ssid,S, pw) to F .

– On (NewKey, sid, ssidΠ ,P, SK
∗), if there is a record 〈ssidΠ , ssid,P,P′〉

not marked completed, do:
• If the record is compromised, or P or P′ is corrupted, set SK ← SK∗.
• If the record is fresh, and SIM sent (NewKey, sid, ssid,P′, SK′) to
F while record 〈ssidΠ , ssid,P′,P〉 was marked fresh, set SK ← SK′.

• Otherwise pick SK ←R {0, 1}τ .
Finally, mark 〈ssidΠ , ssid,P,P′〉 completed and send (NewKey, sid,
ssid,P, SK) to F .

Fig. 16. Simulator SIM for Protocol OPAQUE+: AKE Simulation

40

Game 1: (Real world) This is the real-world interaction, i.e., the interaction
of environment Z and its subroutine A with honest entities C and S executing
protocol OPAQUE+.

Note that in Game 1, C outputs (abort, sid, ssid) if and only if
AuthDecrw′(c

∗) = ⊥ (where rw′ = Fi∗(pw′)). In the following six games we
gradually change this condition.

Game 2: (Client aborts if A is passive before Π starts but passwords do not
match) In the case that c∗ = c∧i∗ = S and pw′ 6= pw, C outputs (abort, sid, ssid).
Z’s views in Game 2 and Game 1 are identical unless on some C sub-session

c∗ = c ∧ i∗ = S ∧ pw′ 6= pw but AuthDecrw′(c) 6= ⊥: In this case C outputs
(sid, ssid, SK) in Game 1 and (abort, sid, ssid) in Game 2).

Since c ← AuthEncrw(pu, Pu, Ps), we have that AuthDecrw(c) 6= ⊥. But rw′

and rw are independent random strings in {0, 1}2τ ; therefore, we can construct
a reduction RRBST1 to the random-key robustness of AE where rw′ and rw are
the challenge AE keys: RRBST1 runs the code of Game 1 except that it uses its
input as rw′ and rw. In every sub-session RRBST1 checks if AuthDecrw(c) 6= ⊥
and AuthDecrw′(c) 6= ⊥, and if so, it outputs c (and breaks the game). We have
that

|Pr[G2]− Pr[G1]| ≤ qC · εRBST

Game 3: (Client aborts if A passes c but changes the function index on which
C evaluates rOPRF, passwords do not match or A does not correlate to FS) In
the case that c∗ = c ∧ i∗ 6= S, and either (i) pw′ 6= pw or (ii) (i∗,S, pw′) /∈ E , C
outputs (abort, sid, ssid).
Z’s views in Game 2 and Game 3 are identical unless on some C sub-session

c∗ = c ∧ i∗ 6= S ∧ (pw′ 6= pw ∨ (i∗,S, pw′) /∈ E) but AuthDecrw′(c) 6= ⊥: In which
case C outputs (sid, ssid, SK) in Game 2 and (abort, sid, ssid) in Game 3).

Since c ← AuthEncrw(pc, Pc, Ps), we have that AuthDecrw(c) 6= ⊥. But since
either (i) pw′ 6= pw or (ii) Fi∗ and FS are different random functions which are
also not correlated on pw′, rw′ = Fi∗(pw′) and rw = FS(pw) are independent
random strings in {0, 1}2τ ; therefore, we can construct a reduction RRBST2 to
the random-key robustness, which works exactly as RRBST1 (except that it runs
the code of Game 2 instead of Game 1). We have that

|Pr[G3]− Pr[G2]| ≤ qC · εRBST

Game 4: (Abort the entire game if c∗ is valid under two different keys) In the
case that c∗ 6= c, the game outputs halt and aborts if there are x1 6= x2 such
that A queries both y1 = Fi∗(x1) and y2 = Fi∗(x2), and AuthDecy1(c∗) 6= ⊥ and
AuthDecy2(c∗) 6= ⊥.

Here and throughout the proof below we say that “A queries Fi∗(x),”
where index i∗ may or may not be S, if (i) A sends (Eval, sid, ssid, x) and then
(RcvComplete, sid, ssid,A, i∗, L) to FcorOPRF and if FcorOPRF replies to this
query with Fi∗(x) (note that if i∗ = S then FcorOPRF replies with FS(x) if and
only if tx > 0, because FcorOPRF’s record 〈ssid,A, x, prfx〉 corresponding to A’s

41

evaluation query can never satisfy prfx = OK), or (ii) if A sends
(OfflineEval, sid, i∗, x, L) to FcorOPRF and if FcorOPRF replies to this query
with Fi∗(x) (note that if i∗ = S then FcorOPRF replies with FS(x) if and only if
S is corrupted or compromised). Note that A may “force a correlation,” i.e.,
choose another function index j∗ and set Fi∗(x) ← Fj∗(x) if (j∗, x) ∈ L, as
Correlate(i∗, L) specifies; but this can be done only if i∗ 6= S. These are the
only cases in which Z learn any information about Fi∗(x); in other words, if A
does not query Fi∗(x), then Fi∗(x) is a random string in {0, 1}2τ in Z’s view.
Moreover, we refer to case (i) as “A queries Fi∗(x) online,” and to case (ii) as
“A queries Fi∗(x) offline.”

Note that y1 and y2 are independent random strings in {0, 1}2τ (while
querying Fi∗(x1) and Fi∗(x2), A may set y1 = Fi∗(x1) ← Fj∗1 (x1) and
y2 = Fi∗(x2) ← Fj∗2 (x2) for any other j∗1 , j∗2 , but since Fj∗1 and Fj∗2 are also
random functions and x1 6= x2, y1 and y2 must still be independently random).
Therefore, we can construct a reduction RRBST3 to the random-key robustness
of AE where y1 and y2 are the challenge AE keys: RRBST3 picks a uniformly
random pair (j1, j2) where j1, j2 ∈ {1, . . . , qF} and j1 < j2

13 (a guess that y1

and y2 are the results of A’s j1-th and j2-th queries), and runs the code of
Game 3 except that it uses its input as the results of A’s j1-th and j2-th
queries. In every sub-session RRBST1 checks if AuthDecrw(c∗) 6= ⊥ and
AuthDecrw′(c

∗) 6= ⊥, and if so, it outputs c∗ (and breaks the game). We have
that

|Pr[G4]− Pr[G3]| ≤ Pr[halt] ≤
(
qF

2

)
· εRBST

Game 5: (Client aborts if A does not compute rw′, password match, and A
does not change the rOPRF index but changes c) In the case that c∗ 6= c∧ i∗ = S
and pw′ = pw, C outputs (abort, sid, ssid) if A does not query Fi∗(pw).

Z’s views in Game 4 and Game 5 are identical unless A does not query rw =
FS(pw) but on some C sub-session c∗ 6= c∧i∗ = S∧pw′ = pw but AuthDecrw(c∗) 6=
⊥: In this case C outputs (sid, ssid, SK) in Game 4 and (abort, sid, ssid) in
Game 5.

Since A does not query FS(pw), rw is a random string in {0, 1}2τ in Z’s view.
Z additionally learns c← AuthEncrw(pc, Pc, Ps), but A’s message is restricted to
c∗ 6= c. Therefore, we can construct a reduction RAUTH1 to the authenticity of
AE where rw is the challenge AE key: RAUTH1 runs the code of Game 4, except
that it uses its encryption oracle to compute c← AuthEncrw(pu, Pu, Ps), and its
decryption oracle to compute AuthDecrw(c∗) in every C sub-session (1) which
runs on input pw′ = pw and (2) where i∗ = S. In each such sub-session RAUTH1

checks if c∗ 6= c and AuthDecrw′(c
∗) 6= ⊥, and if so, it outputs c∗ (and breaks the

game). We have that

|Pr[G5]− Pr[G4]| ≤ εAUTH

13 To be precise, RRBST3 picks j′1 ←R {1, . . . , qF}, j′2 ←R {1, . . . , qF} \ {j′1}, and sets
j1 ← min{j′1, j′2} and j2 ← max{j′1, j′2}.

42

Game 6: (Client aborts if A does not compute rw′, and either passwords do
not match or A changes the rOPRF index) In the case that c∗ 6= c and pw′ 6= pw,
C outputs (abort, sid, ssid) if A does not query Fi∗(pw′).
Z’s views in Game 5 and Game 6 are identical unless on some C sub-session

c∗ 6= c∧pw′ 6= pw, and A does not query rw′ = Fi∗(pw′) but AuthDecrw′(c
∗) 6= ⊥:

In this case C outputs (sid, ssid, SK) in Game 5 and (abort, sid, ssid) in Game 6.
Call the event that such C sub-session exists E. For each i ∈ {1, . . . , qC}

define Ej as the event that on the j-th C sub-session, in the order determined
by the initialization calls from Z, it holds that (1) (c∗ 6= c∧ pw′ 6= pw)∨ i∗ 6= S,
(2) A does not query Fi∗(pw′), (3) this is the first occurrence of pair (i∗, pw′)
on any C sub-session, and (4) AuthDecrw′(c

∗) 6= ⊥. Note that E is the union
of events Ej for j = 1, . . . , qC. Since for (i∗, pw′) in the j-th C sub-session A
does not query Fi∗(pw′), rw′ is not used anywhere else (in particular, Z learns
c← AuthEncrw(pc, Pc, Ps), but rw is independent of rw′) and hence is a random
string in {0, 1}2τ in Z’s view. Therefore, for each Ej we can construct a reduction
RAUTH2,j to the authenticity of AE where rw′ in the j-th C sub-session is the
challenge AE key: RAUTH2,j runs the code of Game 5. In the j-th C sub-session,
RAUTH2,j uses the decryption oracle to check if Ej occurs, and if so, it outputs
c∗ (and breaks the game). We have that

|Pr[G6]− Pr[G5]| ≤ Pr[E] ≤
qC∑
j=1

Pr[Ej] ≤ qC · εAUTH

Note that the combined conditions introduced in Game 5 and Game 6 are
equivalent to the following: In the case that ¬(c∗ = c ∧ i∗ = S), C outputs
(abort, sid, ssid) if A does not query Fi∗(pw′).

Game 7: (extract A’s password guess on C interactions) In Game 6, after
C computes rw′ = Fi∗(pw′) and receives (ssid, c∗) and (Prefix, ssid, prfx), it tests
if AuthDecrw(c∗) can be parsed as (p∗c , P

∗
c , P

∗
s), and either runs Πc on these

decrypted AKE keys and ssidΠ ← [ssid||prfx], or outputs (abort, sid, ssid) if the
parsing fails. Here we replace the above with the following (ssidΠ does not change
from Game 6 to Game 7, so we omit it in the description of Game 7 below):

1. If c∗ = c ∧ i∗ = S, then do: (I) if pw′ = pw (which is case (∗)), then C runs
Πc on inputs (pc, Pc, Ps); (II) otherwise C outputs (abort, sid, ssid).

2. If c∗ = c∧ i∗ 6= S, then do: (I) if pw′ = pw and (i∗,S, pw′) ∈ E , C runs Πc on
inputs (pc, Pc, Ps); (II) otherwise C outputs (abort, sid, ssid).

3. If c∗ 6= c, and there are x1 6= x2 such that A queries both y1 = Fi∗(x1) and
y2 = Fi∗(x2), and AuthDecy1(c∗) 6= ⊥ and AuthDecy2(c∗) 6= ⊥, output halt
and abort the entire game.

4. If c∗ 6= c and A queries rw′ = Fi∗(x) for a unique x such that AuthDecrw′(c
∗)

can be parsed as (p∗c , P
∗
c , P

∗
s), then do: (I) if x = pw′ (which is case (∗∗)), then

C runs Πu on inputs (p∗c , P
∗
c , P

∗
s); (II) otherwise C outputs (abort, sid, ssid).

5. Otherwise, i.e., c∗ 6= c but A makes no Fi∗(x) query as in case 3 or 4 above,
C outputs (abort, sid, ssid).

43

We argue that this modification does not change Z’s view. There are three
cases:

– c∗ = c∧i∗ = S: In Game 6, if pw′ = pw, then rw′ = Fi∗(pw′) = FS(pw) = rw,
so C runs Πc on AuthDecrw′(c

∗) = AuthDecrw(c) = (pc, Pc, Ps), which is
replicated in case 1(I) of Game 7; otherwise C outputs (abort, sid, ssid) by
the condition introduced in Game 2, which is replicated in case 1(II) of
Game 7.

– c∗ = c ∧ i∗ 6= S: In Game 6, if pw′ = pw and (i∗,S, pw′) ∈ E , then rw′ =
Fi∗(pw′) = FS(pw′) = FS(pw) = rw, so C runs Πc on AuthDecrw′(c

∗) =
AuthDecrw(c) = (pc, Pc, Ps) = (pc, Pc, Ps), which is replicated in case 2(I) of
Game 7; otherwise C outputs (abort, sid, ssid) by the condition introduced
in Game 3, which is replicated in case 2(II) of Game 7.

– c∗ 6= c: In Game 6, if A queries two distinct Fi∗ outputs which both decrypt
c∗, then Game 6 outputs halt by the condition introduced in Game 4,
which is replicated in case 3 of Game 7. If A makes no Fi∗(pw′) query,
then C outputs (abort, sid, ssid) by the conditions introduced in Game 5
and Game 6, which is replicated in cases 4(II) and 5 of Game 7. The only
remaining case is that A queries Fi∗(pw′) and this is the unique query such
that AuthDec′rw(c∗) can be parsed as (p∗c , P

∗
c , P

∗
s), in which case in Game 6

C runs Πc on (p∗c , P
∗
c , P

∗
s), which is replicated in case 4(I) in Game 7.

It follows that

Pr[G7] = Pr[G6]

Comparison of Game 7 and the Ideal World. We argue that in Game 7,
when A sends (ssid, c∗) aimed at C and decides on the index i∗ for which C
computes Fi∗ , the way that the game emulates C’s response to (c∗, i∗) is the
same as in the ideal world, except that Game 7 runs the AKE protocol Πc on
behalf of C in case this user instance encounters either case (∗) or (∗∗), while
the simulator SIM executes Πc only in case (∗∗), while in case (∗) the execution
of Πc is replaced by a simulation by SIMAKE.

Disregarding the differences due to Πc execution vs. Πc simulation, the
simulation of C instances acts based on the following three cases:

(i) c∗ = c ∧ i∗ = S: SIM sends (TestAbort, sid, ssid,C) to F .

• If F returns Succ, i.e., pw′ = pw, then SIM proceeds to simulate Πc.
This is case (∗), and it corresponds to case 1(I) in Game 7.

• If F returns Fail, i.e., pw′ 6= pw, then F sends (abort, sid, ssid) to C
(who outputs this message). This corresponds to case 1(II) in Game 7.

(ii) c∗ = c∧ i∗ 6= S: If there is an x such that (i∗,S, x) ∈ E , i.e., A sets Fi∗(x)←
FS(x), then SIM first sends (TestAbort, sid, ssid,C) to F , and if F returns
Succ, SIM then sends (TestPwd, sid, ssid,C, x) to F .

• If F returns Succ and then “correct guess,” i.e., x = pw′ = pw, then
SIM proceeds to simulate Πc. This is case (∗), and it corresponds to case
2(I) in Game 7.

44

• If F returns Succ and then “wrong guess,” i.e., x 6= pw′ = pw, then
SIM sends (another) (TestAbort, sid, ssid,C) to F , and F sends
(abort, sid, ssid) to C (who outputs this message). (Note that when
SIM sends the second TestAbort message, C’s saPAKE-layer
sub-session record is already interrupted, so this TestAbort must
result in aborting.) This corresponds to case 2(II) in Game 7.

• If F returns Fail on SIM’s first message, then F sends (abort, sid, ssid)
to C (who outputs this message). This also corresponds to case 2(II) in
Game 7.

(iii) c∗ 6= c: for every x such that y = Fi∗(x) was queried by A, SIM checks if
AuthDecy(c∗) can be parsed as (p∗u, P

∗
u , P

∗
s).

• If there are two or more such x’s, i.e., x1 6= x2 s.t. A queries both y1 =
Fi∗(x1) and y2 = Fi∗(x2), and AuthDecy1(c∗) 6= ⊥ and AuthDecy2(c∗) 6=
⊥, then SIM outputs halt and aborts. This corresponds to case 3 in
Game 7.

• If there is a unique such x, then SIM sends (TestPwd, sid, ssid,C, x) to
F .
If F returns “correct guess,” i.e., x = pw′, SIM runs Π on the
decrypted values (p∗c , P

∗
c , P

∗
s) ← AuthDecy(c∗). This is case (∗∗), and

corresponds to case 4(I) in Game 7.
If F returns “wrong guess,” i.e., x 6= pw′, then SIM sends
(TestAbort, sid, ssid,C) to F , and F sends (abort, sid, ssid) to C
(who outputs this message). This corresponds to case 4(II) in Game 7,
and SIM handles it in the same step as above.

• If there is no such x, then SIM sends (TestPwd, sid, ssid,C,⊥) and then
(TestAbort, sid, ssid,C) to F , and F sends (abort, sid, ssid) to C (who
outputs this message). This corresponds to case 5 in Game 7.

We can see that if we omit the interaction between SIM and F above, and
view SIM and F combined as the game challenger who interacts with Z and A,
then the behavior of this game challenger when A sends (ssid, c∗) aimed at C is
exactly the same with the behavior of Game 7, except for Πc execution replaced
by Πc simulation in case (∗).

In the next four games we replace AKE credential generation and login
protocol execution with the simulation by SIMAKE.

Game 8: (Outsourcing the generation of c and rw to SIMEQV) At the
beginning of the game, let SIMEQV simulate c and leave rw undefined, and let
SIMEQV “open” rw when A computes it. Concretely,

(1) At the beginning of the game, set c← SIMEQV(kpr + 2kpb);
(2) When A queries FS(pw), set rw← SIMEQV(pu, Pu, Ps).
Observe that in Game 7, Z sees c ← AuthEncrw(pu, Pu, Ps), and unless and

until A queries FS(pw) (and thus learns rw), rw is not used by any party except
in generating c, hence is a random string in {0, 1}2τ independent of everything
else (except for c) in Z’s view. In particular, in Game 7 C does not evaluate F

45

on any input, and all processing is based on whether c∗ = c, whether i∗ = S,
whether pw′ = pw, and on A’s queries to Fi∗ , which in the case i∗ = S are A’s
queries to FS. Therefore, in Game 7 c followed by rw in case A queries FS(pw),
are formed as in the “real game” in the encryption equivocability experiment
for AE, where A sees the encryption c of (pu, Pu, Ps) under key rw followed by
the key rw (in case of A’s query to FS(pw)). On the other hand, in Game 8
ciphertext c followed by key rw are formed as in the “ideal game” in the
encryption equivocability experiment for AE. Therefore, we can construct a
reduction REQV to the equivocability of AE: REQV runs the code of Game 7
except that it uses its input as c and rw, and copies Z’s output. We have that

|Pr[G8]− Pr[G7]| ≤ εEQV

Game 9: (Outsourcing the generation of pc, Pc, ps, Ps to SIMAKE) Let
SIMAKE generate the two parties’ key pairs in the AKE protocol Π, pc, Pc, ps,
Ps, instead of generating them on its own. Concretely, at the beginning of the
game, send (Compromise, sid,S) and (Compromise, sid,C) to SIMAKE and
obtain pc, Pc, ps, Ps; ignore all subsequent messages from SIMAKE.

Clearly, an environment distinguishing between Game 8 and Game 9 can be
turned into an environment ZAKE1 distinguishing between the real execution of
Π and the simulation of Π by SIMAKE. Therefore,

|Pr[G9]− Pr[G8]| ≤ εAKE

Game 10: (Leaving pc, Pc, ps, Ps undefined until they are used) At the
beginning of the game, do not send (Compromise, sid,S) or
(Compromise, sid,C) to SIMAKE, and leave pu, Pu, ps, Ps undefined. However,

(1) When A sends (StealPwdFile, sid) to S, send (Compromise, sid,S) to
SIMAKE to obtain (ps, Ps, Pc);

(2) When A queries FS(pw), send (Compromise, sid,C) to SIMAKE to obtain
(pc, Pc, Ps).

Observe that in Game 9, ps is not used unless and until A sends
(StealPwdFile, sid) to S (at which time the game challenger must send ps at
part of its response file[sid]); therefore, postponing generating ps to the time
when A sends (StealPwdFile, sid) to S does not change the game. Similarly,
pc is not used unless and until A queries FS(pw) (at which time the game
challenger must invoke SIMEQV(pc, Pc, Ps) to generate rw as the response to A);
therefore, postponing generating pc to the time when A queries FS(pw) does
not change the game. We have that

Pr[G10] = Pr[G9]

Comparison of Game 10 and the Ideal World. We argue that in Game 10,
pc, Pc, ps, Ps, rw and c are generated in the same way as in the ideal world.

In the ideal world SIM sets c ← SIMEQV(kpr + 2kpb) and pc, Pc, ps, Ps and
rw are undefined until one of the following two cases happens:

46

– When the adversary compromises the server, i.e., when A sends
(StealPwdFile, sid) to S (step 1 of “Stealing Password Data and Offline
Queries”), SIM sends (Compromise, sid,S) to SIMAKE to obtain
(ps, Ps, Pc).

– When the adversary makes either a successful password test attack. This can
happen in one of the following two ways:

• IfA queries FS(pw) offline (step 2 of “Stealing Password Data and Offline
Queries”; note that A can query FS(pw) offline only after compromising
S), SIM sends (OfflineTestPwd, sid, pw) to F , which replies “correct
guess.”

• If A queries FS(pw) online (step 4 of “rOPRF Evaluation”), SIM checks
if the FcorOPRF ticket counter tx is non-zero (recall that SIM emulates
FcorOPRF), and if so then SIM sends (TestPwd, sid, ssid′, pw) to F where
ssid′ is a sub-session ID of some S session for which SIM holds record〈
ssid′,ACT

〉
, and F will reply “correct guess” if F holds a server session

record
〈
ssid′,S,C, pw

〉
s.t. PTtx(ssid) = 1.

In either case, given F ’s response “correct guess”, SIM declares C
compromised, sends (Compromise, sid,C) to SIMAKE, and on SIMAKE’s
response (pc, Pc, Ps), SIM gets rw ← SIMEQV(pc, Pc, Ps) and sets
FS(pw)← rw.

Observe that this interaction creates the same view to Z and A as Game 10
does, at least with regards to A’s view in case A evaluates FS(pw), assuming that
in the online query case SIM never encounters the case that A queries FS(pw)
online but either (1) tx = 0 or (2) tx > 0 but SIM holds no record

〈
ssid′,ACT

〉
or

(3) SIM holds a record
〈
ssid′,ACT

〉
but F does not hold a record

〈
ssid′,S,C, pw

〉
s.t. PTtx(ssid′) = 1. Below we argue that none of these three events can happen,
and consequently the simulator SIM interacting with functionality F creates
exactly the view that Game 10 does in the case A evaluates FS(pw).

Note that SIM emulates FcorOPRF, and in particular it increments tx at each
SndrComplete with prfx′ that does not match any C’s evaluation record
〈ssid,C, x, prfx〉, and it decrements it whenever tx > 0 and A sends
(RcvComplete, sid, ssid,C,S) where 〈ssid,C, x, prfx〉 is one of such unmatched
C records, or A sends (RcvComplete, sid, ssid,A,S) corresponding to some
A’s record 〈ssid,A, x, prfx〉. This is the same as FcorOPRF does, so tx in SIM’s
emulation of FcorOPRF has always the same value as in FcorOPRF, and if FcorOPRF

replies to A’s online query FS(x) then event (1) cannot happen in the
simulation. Next, note that when SIM increments tx at some
(SndrComplete, sid, ssid′,S) query, it marks this S session as actively
attacked by recording

〈
ssid′,ACT

〉
, and the only way SIM can change this

record to
〈
ssid′,USED

〉
, is when it sends FS(x) and decrements tx. Therefore if

tx > 0 then there must be some S sessions whose status is ACT, thus event (2)
cannot happen in the simulation. Finally, note that when SIM records〈
ssid′,ACT

〉
it sends (Interrupt, sid, ssid′,S) to F , at which point F sets

PTtx(ssid′) ← 1, and the only way F sets PTtx(ssid′) ← 0 is if SIM sends

47

(TestPwd, sid, ssid′,S, ·) to F . Since SIM sends such TestPwd query only if
it holds record

〈
ssid′,ACT

〉
, event (3) also cannot happen.

Game 11: (Outsourcing to SIMAKE the simulation of all Πc instances of case
(∗) and all Πs instances) Replace each execution of Πs with their simulation by
SIMAKE, and replace the executions of Πc with their simulation by SIMAKE for
each all C sub-sessions which fall into case (∗). Specifically, modify the game in
case (∗) as follows:

1. When C’s rOPRF sub-session is completed and A sends c∗(= c) to C, send
(UsrSession, sid, ssidΠ ,C,S) to SIMAKE for ssidΠ = [ssid||prfx] where prfx
was determined by A in the Eval handling of this C sub-session, and record
〈ssidΠ , ssid,C,S〉 marked fresh;

2. When Z inputs (SvrSession, sid, ssid) to S, send (SvrSession, sid,
ssidΠ ,C,S) to SIMAKE for ssidΠ = [ssid||prfx] where prfx was determined by
A in the SndrComplete handling of this S sub-session, and record
〈ssidΠ , ssid,S,C〉 marked fresh;

3. On (Impersonate, sid, ssidΠ ,P) from SIMAKE, if there is a record
〈ssidΠ , ssid,P′,P〉 marked fresh and Game 11 sent (Compromise, sid,P)
to SIMAKE before, mark this record compromised;

4. While SIMAKE simulates Π instances, pass messages between SIMAKE and A;
5. On (NewKey, sid, ssidΠ ,P, SK

∗) from SIMAKE, if there is a record
〈ssidΠ , ssid,P,P′〉 not marked completed, do:
– If the record is compromised, or P or P′ is corrupted, set SK ← SK∗.
– Else if the record is marked fresh, a (sid, ssid, SK ′) tuple was sent to P′

while record 〈ssidΠ , ssid,P′,P〉 was fresh, set SK ← SK ′.
– Else pick SK ←R {0, 1}τ .

Finally, mark 〈ssidΠ , ssid,P,P′〉 completed and send (sid, ssid, SK) to P.

Clearly, an environment distinguishing between Game 10 and Game 11 can
be turned into an environment ZAKE2 distinguishing between the real execution
of Π and the simulation of Π by SIMAKE. Therefore,

|Pr[G11]− Pr[G10]| ≤ εAKE

Comparison of Game 11 and the Ideal World. We argue that Game 11 is
identical to the ideal world, i.e., to the ideal world interaction where the game
challenger is split into the simulator SIM and the saPAKE functionality F .

Note that Game 11 decides in the same way as Game 7 whether a C sub-
session results in C outputting (abort, sid, ssid) or falls into cases (∗) and (∗∗),
and it generates the AKE keys pc, Pc, ps, Ps and the AE ciphertext c in the same
way as in Game 10, and we argued above that Game 7 and Game 10 execute
these parts in the same way as the ideal world. Therefore, the only remaining
part is to argue that Game 11 is also identical to the ideal world with respect
to the session keys SK output by C and S.14

14 Recall that S’s output is always of the form (sid, ssid, SK), while C’s output is
(sid, ssid, SK) in cases (∗) and (∗∗), and (abort, sid, ssid) otherwise; but we argued
that these cases are handled in the ideal world in the same way as in game Game 7.

48

The case that either C or S is corrupted is the easiest to see, because in that
case F passes the key received by SIM to the corresponding party. Below we
assume that neither C nor S is corrupted. We split the argument into two parts:

C’s output in case (∗∗): In Game 11, SK is determined by the output of
protocol Πc executed on behalf of C on inputs (p∗c , P

∗
c , P

∗
s), which are in turn

determined by (c∗, i∗) and A’s queries to Fi∗ , as described in Game 7. In the
ideal world, as we argued in Game 7, SIM runs Πc on the same inputs, hence
SK computed by SIM is identically distributed. At the end of Πc, SIM sends
(NewKey, sid, ssid,C, SK) to F , who will pass SK in message (sid, ssid, SK)
to C because case (∗∗) happens only if SIM sends (TestPwd, sid, ssid,C, x) to
F and F replies “correct guess,” at which point F marked this saPAKE-layer
sub-session record 〈ssid,S,C, pw〉 compromised.

C’s output in case (∗), and S’s output in all cases: In Game 11, SK
output by party P ∈ {C,S} is determined by (1) the status of record
〈ssidΠ , ssid,P,P′〉 kept for this sub-session, (2) SIMAKE’s message
(NewKey, sid, ssidΠ ,P, SK

∗), and (3) whether (sid, ssid, SK ′) was sent to P′ at
the time there was a fresh record 〈ssidΠ , ssid,P′,P〉. Game 11 uses the same
factors to decide on P’s output by emulating functionality FAKE−KCI. In the
ideal world, SK determined by SIM is identically distributed, because SIM also
emulates FAKE−KCI and uses the same rules to determine the status of each
AKE-layer session, hence factors (1)-(3) play exactly the same role in the ideal
world. However, similarly to case (∗∗) discussed above, SIM does not output
message (sid, ssid, SK) directly to P, but sends (NewKey, sid, ssid,P, SK) to
F , who then “post-processes” these keys, using its own records for these
sub-sessions, resp. 〈ssid,P,P′, pw◦〉 and 〈ssid,P′,P, pw◦◦〉.

We argue that this post-processing by F always implements the same logic
for determining SK on a given sub-session as SIM does. Specifically, we argue
that the following three invariants hold:

1. If SIM passes SIMAKE’s key SK∗ to F , i.e., if the AKE-layer sub-session
record 〈ssidΠ , ssid,P,P′〉 is compromised, then the saPAKE-layer
sub-session record 〈ssid,P,P′, pw◦〉 is either compromised, or, if P = S, it
is interrupted but flag = compromised.

2. If there are two AKE-layer sub-session records with matching AKE-layer
sub-session ID’s, i.e., 〈ssidΠ , ssid,P,P′〉 and

〈
ssid′Π , ssid′,P′,P

〉
such that

ssidΠ = ssid′Π , then it holds that (a) their saPAKE-layer sub-session ID’s
match as well, i.e., ssid = ssid′, and (b) the passwords in the corresponding
saPAKE-layer sessions also match, i.e., F records for these sub-sessions,
〈ssid,P,P′, pw◦〉 and

〈
ssid′,P′,P, pw◦◦

〉
, satisfy pw◦ = pw◦◦.

3. If two AKE-layer sub-sessions 〈ssidΠ , ssid,P,P′〉 and
〈
ssid′Π , ssid′,P′,P

〉
are

“connected” by the FAKE−KCI emulated by Game 11 (and by SIM), in the
sense that step 5 in FAKE−KCI emulation in Game 11 output the same key
SK to both sessions, then the corresponding saPAKE-layer sub-sessions
〈ssid,P,P′, pw◦〉 and 〈ssid,P,P′, pw◦〉 are fresh.

49

Invariant (1) implies that if AKE-layer sub-session record 〈ssidΠ , ssid,P,P′〉
is compromised then F will pass SK∗ output by SIMAKE to P, hence key SK
output by P in the ideal world is the same as in Game 11. Invariants (2) and
(3) together imply that if AKE-layer sub-session records 〈ssidΠ , ssid,P,P′〉 and〈
ssidΠ , ssid′,P′,P

〉
(assume w.l.o.g. that the latter sub-session completes first)

output the same key SK, chosen at random either by Game 11 or by SIM in
the FAKE−KCI emulation, then F will replicate this behavior: First, when
〈ssid,P′,P, pw◦◦〉 completes, F picks a random key SK ′ ←R {0, 1}τ as SK
because, by invariant (3) this saPAKE-layer sub-sessions is fresh. Second,
when 〈ssid,P,P′, pw◦〉 completes, F will assign to it the same key SK ′ because,
by invariant (3) that session will also be fresh, and by invariant (2) since
these two sub-sessions have the same AKE-layer ID’s ssidΠ (otherwise they
wouldn’t be connected on the AKE-layer), then their saPAKE-layer ID’s match
too, i.e., ssid = ssid′, and so do their passwords, i.e., pw◦ = pw◦◦. In all other
cases both Game 11 and SIM pick a random key SK for session
〈ssidΠ , ssid,P,P′〉, therefore in the ideal world regardless if F passes that key to
P, or it replaces it with a new choice SK ′ of a random key, party P outputs
(sid, ssid, SK ′) for a random key SK ′, which matches the distribution of its
outputs in Game 11.

We argue that the three invariants indeed hold. We start from invariant (1).
Note that a fresh AKE-layer session 〈ssidΠ , ssid,P,P′〉 turns compromised if
SIMAKE sends (Impersonate, sid, ssidΠ ,P

′) and P′ is declared compromised.
Consider case P′ = S first. S is declared compromised by SIM (and Game 11)
only if A sends (StealPwdFile, sid), in which case F marks the password
file compromised. If SIMAKE then sends (Impersonate, sid, ssidΠ ,S) then SIM
sends (Impersonate, sid, ssid) to F , at which point F marks the saPAKE-layer
session 〈ssid,C,S, pw′〉 as compromised if this saPAKE-layer session is fresh.
However, note that C session in case (∗) does not start unless F replies Succ
to SIM’s query (TestAbort, sid, ssid,C), which means that the saPAKE-layer
C session remained fresh after SIM’s TestAbort query, and hence it became
compromised after SIM’s Impersonate query.

Consider now the case when P′ = C. If C is declared compromised then A
queried FS(pw), either offline or online, so SIM holds a record 〈file,C,S, pw〉,
hence if SIMAKE sends (Impersonate, sid, ssidΠ ,C) then SIM sends
(TestPwd, sid, ssid,S, pw) to F , and since the tested password is correct, F
will process the saPAKE-layer session 〈ssid,S,C, pw〉 as follows: If this
saPAKE-layer session was fresh then it will become compromised, and if it
was interrupted then it will remain interrupted. However, note that if A
queries FS(pw) either offline or online, this means that either some
OfflineTestPwd query to F or some TestPwd query to F received F ’s
response “correct guess”, but at this point F sets flag ← compromised. This
means that saPAKE-layer S session is either compromised or it is
interrupted but flag = compromised, as claimed.

As for invariant (2), part (a) is immediate because ssidΠ is formed as
[ssid||prfx] on each session, so equality of ssidΠ ’s implies equality of ssid’s. As

50

for part (b), note that C session in case (∗) runs only if TestAbort does not
make it abort, which means that pw′ = pw.

We turn to invariant (3). Note that FAKE−KCI emulation, by either
Game 11 or SIM, connects these two AKE-layer session only if their AKE-layer
ssid’s match, i.e., ssidΠ = ssid′Π . Note also that ssidΠ = [ssid||prfx] and
ssidΠ = [ssid′||prfx′], which implies that ssid = ssid′ and that the OPRF
transcript prefixes of this C and S sessions matched as well, i.e., prfx = prfx′.
Note that C’s AKE-layer session 〈ssidΠ , ssid,C,S〉 starts fresh in case (∗), and
if that session remains fresh until NewKey message for it (as must be the
case for FAKE−KCI to “connect” it to the S session), then SIM does not send to
F any queries which would change the status of the saPAKE-layer session, i.e.
the corresponding saPAKE-layer session stays fresh. Regarding S’s AKE-layer
session

〈
ssid′Π , ssid′,S,C

〉
, note that when this session starts, if prfx = prfx′ then

SIM does not write record 〈ssid,ACT〉. Consequently SIM does not send
Interrupt for that session to F , and also SIM will never choose that session,
and hence will not send TestPwd for that session to F . (These are all
consequences of the fact that if OPRF transcript prefixes match then SIM
cannot, and does not, use this S session to evaluate S’s random function FS.)
Consequently, the corresponding saPAKE-layer session stays fresh as well, as
we claimed.

Summing up all results above, we conclude that Z’s distinguishing advantage
between the real world and the ideal world is a negligible function of the security
parameter τ , which completes the proof.

51

	On the (In)Security of the Diffie-Hellman Oblivious PRF with Multiplicative Blinding

