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Abstract

We present the first homomorphic secret sharing (HSS) construction that simultaneously (1)
has negligible correctness error, (2) supports integers from an exponentially large range, and
(3) relies on an assumption not known to imply FHE — specifically, the Decisional Composite
Residuosity (DCR) assumption. This resolves an open question posed by Boyle, Gilboa, and
Ishai (Crypto 2016). Homomorphic secret sharing is analogous to fully-homomorphic encryption,
except the ciphertexts are shared across two non-colluding evaluators. Previous constructions
of HSS either had non-negligible correctness error and polynomial-size plaintext space or were
based on the stronger LWE assumption. We also present two applications of our technique: a
multi-server ORAM with constant bandwidth overhead, and a rate-1 trapdoor hash function
with negligible error rate.

1 Introduction

Homomorphic secret sharing is a relaxation of fully-homomorphic encryption (FHE) where the
ciphertexts are shared across two non-colluding evaluators, who may homomorphically evaluate
functions on their shares. In FHE, if c← Enc(x) then Hom(f, c) is an encryption of f(x). In HSS,
if s0, s1 ← Share(x) then Hom(f, s1) and Hom(f, s0) (computed independently) are a sharing of
f(x).

Boyle, Gilboa, and Ishai [BGI16] initiated the line of work on secure computation from HSS
with a construction based on the Decisional Diffie–Hellman (DDH) assumption. They used their
scheme to achieve the first secure two-party computation protocol with sublinear communication,
from an assumption not known to imply FHE. Though their HSS only supports restricted multipli-
cation straight-line (RMS) programs, this is enough at least to evaluate polynomial-size branching
programs. All known HSS constructions (including ours) have this same limitation, other than the
trivial scheme based on FHE where both parties use identical FHE ciphertexts as their shares.

The HSS of [BGI16] has two main limitations. First, it achieves correctness with probability
only 1− p (for p = 1/poly). Second, it can only support a message space of polynomial size M , as
they require O(M/p) time for a step they call “share conversion”. [FGJS17] constructed a similar
HSS scheme based on Paillier encryption (from the DCR assumption), with the same limitations
and O(M/p)-time share conversion technique. The cost of share conversion was later improved
to O(

√
M/p) by [DKK18], which they proved is optimal for these schemes unless faster interval

discrete logarithm algorithms are found.
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These limitations were eventually removed by [BKS19], using lattice-based cryptography. Their
scheme is based the Learning With Errors (LWE) assumption, and achieves homomorphic secret
sharing with exponentially small correctness error and exponentially large plaintext space. The
LWE assumption is strong enough to construct FHE [BV11], although their HSS scheme uses
simpler techniques and can be more efficient than FHE.

Why is correctness error important? Besides the theoretical distinction, it increases the over-
head for secure computation: the 2PC protocol of [BGI16] needs to repeat homomorphic evaluation
polynomially many times and take a majority vote (using another MPC protocol) of the outcome.
Errors also get harder to deal with the longer the program, because each operation has an indepen-
dent chance of producing an error that will make the whole computation fail. Consequently, they
require O(Mn2) time to get a constant error rate (or O(Mn2t) time after repeating for O(t) tries
to get a negligible error rate of 2−t), when evaluating an n-step program on plaintexts bounded by
M . The reduced error rate from [DKK18] allows this to be improved to O(M1/2n3/2). Ideally, we
would want the computation cost of a 2PC protocol to be linear in n.

Supporting exponentially large plaintext space can also improve the 2PC protocol’s computa-
tional complexity, because it is necessary to represent the HSS scheme’s key inside of its messages.
[BGI16] manage this by taking the bit-decomposition of the key, though this multiplies the compu-
tational cost by the key size. When M can be exponentially large, however, the key can directly fit
inside the plaintext space. Additionally, computations can be performed on large chunks of data
at a time, further improving efficiency. Finally, there may be some computations that can only be
performed with the larger message space bound. Specifically, RMS programs with a polynomial
bound on memory values are sufficient to evaluate branching programs [BGI16], while with a large
enough message space algebraic branching programs over Z can be evaluated.

The question of whether negligible correctness error could be achieved from an assumption not
known to imply FHE was left as an open problem by [BGI16].

Concurrent result. After we had prepared our manuscript and submitted it for publication, we
became aware of concurrent and independent work that also resolves this open problem. See more
details in Section 1.4.

1.1 Our Results

We give an affirmative answer this open question. We construct an HSS scheme based on Damg̊ard–
Jurik encryption (under the DCR assumption) that achieves negligible correctness error and ex-
ponentially large message space. When our HSS is used for 2PC, there is no need for repeated
HSS evaluation to amplify correctness. We can therefore securely evaluate n-step RMS programs
in O(n) time. Previous constructions required a polynomial bound on the size of the values in
the RMS computation, while our construction natively supports arithmetic operations with over
exponentially large values.

The main insight in our construction is to define a new “distance function”, the key step used
for share conversion in HSS schemes. Our construction is based on the algebraic properties of
the ciphertext group (Z/N s+1Z)×, while existing constructions are based on the generic technique
of searching for a randomly chosen subset of the ciphertext space. This allows us to extract an
exponentially large result from our distance function, and achieve share conversion with a negligible
error rate.

We also present several other applications of our new result and techniques:

2



ORAM. We propose a novel 2 server malicious secure Oblivious RAM (ORAM) protocol that
achieves constant bandwidth. An ORAM protocol allows the client to hide its access pattern on
a database outsourced to untrusted server(s). Our protocol is closely based on the single server
Onion ORAM protocol [DvDF+16], which leverages server side computation to achieve constant
bandwidth blowup. We replace this server side computation with a number of RMS programs,
which can be evaluated by the two servers using our HSS scheme.

While there already exist multi-server ORAM constructions with constant client-server band-
width overhead (e.g., [DvDF+16, FNR+15, HOY+17]), they all either require server-server super
constant communication, or they require the minimum block size to be Ω(log6N), where N is
the number of blocks in the ORAM. Whereas, our HSS based 2 server ORAM achieves constant
bandwidth for block of size ω(log4N) and with no server-server computation.

Trapdoor hash functions. Beyond HSS, another construction based on the notion of a distance
function is trapdoor hash functions (TDH) [DGI+19]. Rate-1 TDHs are a kind of hash function
that have additional properties useful for two-party computation. Specifically, if Alice has some
f in a limited class of predicates and Bob has a message x, if Bob sends the hash of x and Alice
sends a key generated based on f , they can each compute a single-bit share of f(x). [DGI+19]
use rate-1 TDHs to build rate-1 string oblivious transfer (OT), from which they construct efficient
private information retrieval and semi-compact homomorphic encryption. They also presented
several other constructions based on TDHs.

Prior work [DGI+19] constructed rate-1 TDHs from a variety of assumptions (DDH, QR, DCR,
and LWE), but only their QR and LWE instantiations achieve negligible correctness error. For
DDH and DCR, they had to compensate by using error correcting codes in their construction of
rate-1 string OT. We show how to directly construct a rate-1 trapdoor hash function from DCR
using our distance function, achieving negligible correctness error. Our construction also generalizes
beyond TDHs, in that it can handle functions f outputting more than a single bit.

HSS definition. We also extend the definition for HSS, to allow (generalized, to represent RMS
operations) circuits to be evaluated one gate at a time. One benefit of this approach are that
this allows secure evaluation of online algorithms, which may take input and produce output many
times while maintaining some secret state. This is directly useful for our application to ORAM.
It also let us have subsequent gates for evaluation be chosen adaptively based on past outputs or
shares, so if the adversary gets to see one set of shares and then influence the rest of function being
evaluated, our scheme will still be correct.

1.2 Technical Overview

Introduction to HSS. HSS schemes take work through the interaction of two different homo-
morphic schemes: additively homomorphic encryption and additive secret sharing. Following the
notation of [BGI16], let [[x]] denote an encryption of x. Let 〈y〉 denote additive shares of y, meaning
that party 0 has 〈y〉0 and party 1 has 〈y〉1 such that 〈y〉1 − 〈y〉0 = y. Then 〈x〉 + 〈y〉 ≡ 〈x + y〉,
where ≡ means shares that decode to the same value, or ciphertexts that decrypt to the same
plaintext. We will write the group operation on the homomorphic encryption multiplicatively, so
[[x]][[y]] ≡ [[x+ y]]. Any additive encryption scheme supports multiplication by constants, so we can
take [[x]]c ≡ [[cx]].

We have two different additively homomorphic schemes; what happens if we let them interact?
If we take [[x]]〈y〉 then they get ⟪[[xy]]⟫, where ⟪z⟫ denotes multiplicative shares of z. More precisely,
party i has ⟪[[x]]y⟫i = [[x]]〈y〉i , and so ⟪[[x]]y⟫1/⟪[[x]]y⟫0 = [[x]]〈y〉1−〈y〉0 ≡ [[xy]]. The interesting thing
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here is that by combining the two encryption schemes we get a representation of the product. That
is, we have a bilinear map. However, we would really like to be able to perform multiple operations
in sequence. Is there anyway we could make the result instead be 〈xy〉?

Luckily, many additively homomorphic encryption schemes perform decryption through expo-
nentiation, the same operation as was used for homomorphically multiplying by a constant. For
Paillier, φ−1([[z]]ϕ) = z, where φ(z) = 1 +Nϕz is a homomorphism from the plaintext space to the
ciphertext space, and N and ϕ are the public and private keys. Therefore, if we have shares 〈ϕy〉
then we can compute [[x]]〈ϕy〉 ≡ ⟪φ(xy)⟫. In ElGamal we have [[z]] = (A,B), and decryption works
by finding φ−1(A−kB), where φ(z) = gz for a public generator g, which is also a homomorphism
from the plaintext space. This is slightly more complicated in that it’s taking a dot product “in
the exponent” with the private key vector ~k =

[
−k 1

]
, but taking the secret shares to be vectors

〈~ky〉 then we have [[x]]〈
~ky〉 ≡ ⟪φ(xy)⟫.

The last step of public key decryption for these schemes is to compute φ−1. For HSS we need to
do the same, but on the multiplicative shares ⟪φ(z)⟫ split across the two parties performing HSS.
This is done with a distance function, with the property that Dist(aφ(z)) − Dist(a) = z, ideally
for any ciphertext a and plaintext z. Then Dist(⟪φ(xy)⟫i) ≡ 〈xy〉i gives additive shares of the
multiplication result. The idea for constructing Dist is that both parties agree on a common set
of “special points”, which [BGI16] choose randomly, then iteratively compute aφ(−1)j , starting at
j = 0 and continuing until c = aφ(−1)j is special, then setting Dist(a) to be the distance j. If they
find the same special point c,

Dist(aφ(z))−Dist(a) = Dist(cφ(j + z))−Dist(cφ(j)) = j + z − j = z,

so their distances are additive shares of z. When the special points are chosen randomly and z is
small, Dist(aφ(z)) and Dist(a) will usually pick the same c.

Putting this all together, HSS consists of a way of homomorphically multiplying a ciphertext
[[x]] by a share 〈y〉, or rather 〈ky〉 for some private key k, to get ⟪φ(xy)⟫, then finally using the
distance function to find 〈xy〉. A circularly secure encryption scheme allows ky to be encrypted, so
then Dist

(
[[ky]]kx

)
≡ 〈kxy〉, which can feed the input to another multiplication operation, and so

on.

Paillier distance function. We now switch to using a variant of Paillier encryption, where
instead of encrypting messages as rN (1 +Nz) mod N2 for public key N and uniformly random r,
we encrypt them as rN

3
(1 + N2z) mod N4. This is to allow the plaintext size to be bigger than

the private key, which simplifies our construction. We have
(
rN

3
(1 +N2z)

)ϕ
= 1 +N2ϕz = φ(z).

Computing φ−1(a) is then as easy as finding (a − 1)/N2, as a must be a multiple of N2, then
multiplying by ϕ−1 mod N2.

It turns out that we can design a distance function that based on this φ−1. The prior con-
struction of HSS from Paillier encryption, [FGJS17], noticed that ⟪φ(z)⟫1 = ⟪φ(z)⟫0 mod N2

and used this for a minor optimization. The reason is that φ(z) = 1 + N2ϕz = 1 mod N2, so
⟪φ(z)⟫1/⟪φ(z)⟫0 = φ(z) = 1 mod N2. This means that the both parties will have something in
common, and they can use it as their common ciphertext c = ⟪φ(z)⟫0 mod N2 = ⟪φ(z)⟫1 mod N2.

On input a, let the distance function pick a canonical representative c of a + N2Z, satisfying
c ∈ [−N−1

2 , N−1
2 ]. Then a/c = 1 + N2w, and we let Dist(a) = w. This means that our “special

points” are [−N−1
2 , N−1

2 ], instead of using a random set like [BGI16]. We then have Dist(aφ(z))−
Dist(a) = ϕz, because aφ(z)/c = (1 + N2ϕz)(1 + N2w) = 1 + N2(ϕz + w). This is a slightly
different property than what we specified for distance functions, but it is actually even better as
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we don’t need to use circularly secure encryption to get 〈ϕxy〉 as the result of multiplication — ϕ
will already be multiplied in the output.

However, there’s one last step before we have an HSS. The result from Dist will be in the form
of additive shares modulo N2, and we need them to be additive shares in Z so that we can use
them as an exponent in the next operation. Exponentiating to a power that is modulo N2 would
not make sense, as the multiplicative order of almost any ciphertext does not divide N2. We use
a trick from the LWE HSS construction: additive shares modulo N2 of a value z much smaller
than N2 (so |z|/N2 is negligible) have overwhelming probability of being additive shares over Z,
without any modulus. Therefore we can make a distance function that has only negligible failure
probability and supports an exponentially large bound on the messages.

1.3 Other Related Work

We compare our proposed ORAM construction to Onion ORAM [DvDF+16], which is also based
on the Damg̊ard–Jurik public-key encryption. To ensure malicious security and to achieve con-
stant bandwidth overhead, the scheme allows for blocks of size ω̃(log6N), with Õ(B log4N) client
computation and with ω̃(B log4N) server computation. Comparatively, our proposed ORAM con-
struction allows for blocks of size ω̃(log4N), with Õ(B log4N) client computation and Õ(B log5N)
server computation. To ensure the integrity of server side storage, Onion ORAM uses a verification
algorithm that relies on probabilistic checking and error correcting codes. This integrity check adds
an overhead on the communication and the computation. In our protocol we get this verification
check “for free”, as the HSS shares held by the two servers satisfy the authenticated property -
which ensures that a single corrupt server cannot modify its share without it being detected by the
client during the decoding process. This gives major saving in our protocol’s communication and
client side computation compared to Onion ORAM.

Bucket ORAM proposed by Fletcher et al. [FNR+15] proposes a single server ORAM with
constant bandwidth overhead for blocks of size Ω̃(log6N). Its a constant round protocol, but
asymptotically its client and server computation match that of Onion ORAM. S3ORAM [HOY+17]
proposes a multi-server ORAM construction with constant client-server bandwidth overhead. It
avoid the evaluation of homomorphic operations on the server side and is based on Shamir Secret
Sharing. However, this protocol incurs O(logN) overhead in server-server communication, which
makes the overall communication overhead logarithmic.

1.4 Concurrent Result

A concurrent and independent work was posted on ePrint on March 3, 2021 that also resolves the
open problem of creating an HSS scheme with negligible correctness error without using LWE, after
we had prepared a version of this manuscript and submitted it for publication. In [OSY21], Orlandi,
Scholl, and Yakoubov (OSY) construct HSS with negligible correctness error and exponentially large
plaintext space, based on the Paillier encryption scheme. Qualitatively, their distance function
matches ours (Section 4.1), which is the main construction we base our results on. We briefly
compare and contrast their results with ours:

• Both our construction and theirs have significant similarities; specifically, when the ciphertexts
are modulo N2 as in Paillier we have identical distance functions.

• OSY use Paillier encryption, while we use the Damg̊ard–Jurik generalization, allowing the
ciphertext space to be significantly larger than the private key. At the expense of our smallest
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possible ciphertexts being in (Z/N3Z)× rather than (Z/N2Z)×, we have no need for circular
security assumptions related to Paillier encryption, nor for the overhead from the BG provably
circular secure encryption scheme [BG10]. Consequently, we do not need multiple ciphertexts
to encrypt a single input to the HSS scheme, while OSY needs around 6, assuming circular
security, or Θ(`(κ)) with the BG encryption scheme, where `(κ) is the bit length of the primes
used to generate the public key. Splitting the ciphertexts into chunks is costly in terms
of both communication and computation, as each ciphertext chunk must be exponentiated
separately during an HSS multiplication. We therefore achieve either a constant factor or a
factor of Θ(`(κ)) improvement in both computation and communication relative to OSY’s
HSS schemes, depending on the assumption.

• Additive decoding (Definition 18) is naturally satisfied by their scheme, while we need to add
an additional complication to achieve it (see Appendix A.2), which more than doubles our
ciphertext size. Overall our communication is still cheaper, as we need a single ciphertext
in (Z/N7Z)×, instead of 6 ciphertexts in (Z/N2Z)× for OSY’s scheme based on circularly
secure Paillier.

• We prove malicious security of our HSS by showing that its shares are authenticated (Theo-
rem 23).

• We give novel HSS definitions (Section 3) and proofs (Section 4) that support online algo-
rithms and adaptively chosen circuits.

• We explore completely different applications: we construct 2-server oblivious RAM (ORAM)
with constant overhead and rate-1 trapdoor hash functions (TDH), while OSY instead build
pseudorandom correlation generators/functions (PCG/PCF). A key feature of their PCGs
and PCFs is “public-key setup”, which allows two parties who know each other’s public
keys to non-interactively compute the setup for HSS. They build this using Paillier–ElGamal
encryption; we use a similar technique to construct our TDH, though we avoid the need for
picking N to be the product of safe primes, making key generation faster.

2 Preliminaries

2.1 Notation

Modular arithmetic. Let Z/NZ be the ring of integers modulo N (Z/0Z = Z), and (Z/NZ)× be
its group of units. There are a few useful maps between Z/NZ and Z/MZ if N |M . Multiplication
by M

N gives a injective homomorphism from Z/NZ to Z/MZ, and we let division by the same be
the inverse map, where it exists. We will notate the quotient map from Z/MZ to Z/NZ as ·+NZ,
or omit it when it is clear from context. To say that two values a and b are the same modulo N , i.e.,
that a+NZ = b+NZ, we write a ≡N b. We also need to pick a representative in Z/MZ for each
element of Z/NZ. We do this with a symmetric modulus operation · mod N : Z/NZ → Z/MZ,
where (x+NZ) mod N = x+MZ when x ∈ [−N

2 ,
N
2 ).

We will often be working with Z/NuZ for a positive integer u and odd N , which can be thought
of as a sort of finite power series in N .1 By abuse of notation, we define extend the functions exp

1Specifically, it is a finite approximation to the N -adic numbers. Note that if N is not prime then the N -adics
have zero-divisors, so N is usually assumed to be prime, but we do not need to work in an integral domain.
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and log to Z/NuZ via their Taylor series:

exp(x) =
∞∑
k=0

xk

k!
log(1− x) = −

∞∑
k=1

xk

k
.

These functions are only well defined in special cases, since there is not any meaningful definition
of the convergence of an infinite sum in Z/NuZ other than only finitely many terms being nonzero
modulo Nu. For odd N , the series for exp(Nx) and log(1+Nx) converge because the power of any
prime factor p > 2 of N in the numerator grows faster than in the denominator. But in general these
series do not converge. The usual properties of these functions follow from their series definition
and remain true in Z/NuZ when they converge. See a p-adic numbers textbook for details, such
as [Gou20, Sec. 5.7].

Algorithm notation. We will write constructions in pseudocode. While the notation should
be mostly self-explanatory, there are a few things to take note of. The boolean AND and OR
operations are ∧ and ∨, and the compliment of a bit x is x = 1 − x. We give equality testing

its own symbol,
?
=, so x

?
= y is 1 if x = y, and 0 otherwise. Assignment statements are written

as x := 1, while sampling is written as x ← {0, 1}, to indicate that x is uniformly random in the
set {0, 1}. We use ρ ← $ to represent sampling uniformly random bit stream ρ. This notation
also applies to subroutine calls, so if f is deterministic then the notation is y := f(x), but if f is
randomized then it is y ← f(x).

We will also write our definitions in pseudocode, expressing our security properties as indistin-
guishability of two randomized algorithms. Often the adversary A gets to choose some x← A(1κ)
in the middle of the definition, so to preserve the adversary’s state to give to the distinguisher we
instead use (view, x)← A, then return view from the distribution along with everything else. This
way A can put its state in view and the distinguisher will see it.

2.2 Damg̊ard–Jurik Encryption

Our construction is based on the Damg̊ard–Jurik public-key encryption scheme [DJ01], a gener-
alization of Paillier encryption [Pai99]. It makes use of the fact that Z/N s+1Z allows an efficient
discrete logarithm for any number of the form 1 +Nx.

Definition 1. Given a security parameter κ and a message size s, define Damg̊ard–Jurik encryption
to be the following operations.2

(N,ϕ)← DJ.KeyGen(1κ) Generate an RSA modulus N = pq where 2`(κ)−1 < p, q < 2`(κ). ` is a
polynomial chosen to make the scheme achieve the κ-bit security level. N will be the public
key and ϕ = ϕ(N) will be the public key, where ϕ(N) = (p − 1)(q − 1) is Euler’s totient
function.

c← DJ.EncN,s(x) Given x ∈ Z/N sZ, choose a uniformly random r ∈ (Z/N s+1Z)× and output
c = rN

s
exp(Nx).

x← DJ.DecN,s,ϕ(c) Given c ∈ Z/N s+1Z, output x = log(cϕ)
Nϕ ∈ Z/N sZ.

2Damg̊ard–Jurik was originally defined using (1+N)x instead of exp(Nx). We chose the latter because its inverse
can be represented simply and efficiently with the power series for log. In particular, evaluating log with Horner’s
rule uses O(s) arithmetic operations on O(s log2 N)-bit numbers, while the original algorithm used Hensel lifting and
took O(s2) operations.
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Encryption is clearly additively homomorphic, since exp(Nx) exp(Ny) = exp(N(x + y)). The
order of (Z/N s+1Z)× is ϕ(N s+1) = ps(p− 1)qs(q − 1) = ϕN s, since (Z/N s+1Z)× ' (Z/ps+1Z)× ×
(Z/qs+1Z)× by the Chinese remainder theorem and |(Z/ps+1Z)×| = ps(p− 1). Therefore log(cϕ) =
log(rϕN

s
exp(Nx)ϕ) = log(exp(Nϕx)) = Nϕx. Notice that since p and q have the same bit length,

p− 1 and q − 1 are each coprime to N , and so ϕ has a multiplicative inverse in Z/N sZ. Therefore
decryption is correct.

We also want to show that every ciphertext is valid, i.e. that DecN,s,ϕ is always well defined.
For this, we need the Taylor series for log to converge in the expression log(cϕ). By Euler’s theorem
cϕ ≡N 1, so cϕ = 1 + Nu for some u ∈ Z/N sZ and decryption is always well defined. Next we
show that c could have come from EncN,s. Let x = DecN,s,ϕ(c) and v = c exp(−Nx), so that

vϕ = cϕ exp(− log(cϕ)) = 1. Because ϕ and N are coprime, we can compute r = vN
−s mod ϕ and

see that rN
s

= v. This shows that every element c ∈ (Z/N s+1Z)× can be written as rN
s

exp(Nx)
for some x ∈ Z/N sZ and r ∈ (Z/N sZ)×. This is a surjective group homomorphism (Z/N s+1Z)××
Z/N sZ → (Z/N s+1Z)×, so every c has exactly the same number of preimages r, x. Therefore the
encryption of a uniformly random plaintext is a uniformly random ciphertext.

The security of this encryption scheme is based on the decisional composition residuosity as-
sumption (DCR).

Definition 2. The decisional composition residuosity (DCR) assumption is that the uniform dis-
tribution on (Z/N2Z)× is indistinguishable from the uniform distribution on the subgroup of perfect
powers of N in (Z/N2Z)×.

We will not use the assumption directly, as it will be more convenient use the CPA security of
Damg̊ard–Jurik encryption as the basis for our security proofs.

Theorem 3 (Damg̊ard and Jurik [DJ01, Thm. 1]). Damg̊ard–Jurik encryption is CPA secure if
and only if the DCR assumption holds.

Because encrypting a uniformly random plaintexts gives a uniformly random ciphertext, CPA$
security is equivalent to CPA security for Damg̊ard–Jurik.

Uniform Difference Property In our ORAM construction we will assume a family of hash
function H = {h : U → [m]}, which satisfied the uniform difference property, which states: for
any two unequal x, y ∈ U , the number (h(x) − h(y)) mod m is uniformly random over all hash
functions h ∈ H.

3 Circuit Homomorphic Secret Sharing

In this section we present a definition of homomorphic secret sharing (HSS) based on evaluating
(generalized) circuits. We first present a notion of circuit that is general enough to capture the
operations that our HSS scheme can perform, Restricted Multiplication Straight-line program.
Then we define a notion of HSS based on replacing the gates in a circuit with operations on the
shares, which only needs to specify properties of a single gate at a time. These properties compose
to allow secure evaluation of a whole circuit.

The benefits of this approach are threefold. The piecewise definition allows the evaluation of
online algorithms, where some output may need to be produced before the rest of the inputs can
be taken, while maintaining state. This also allows the circuit to be chosen adaptively, based on
previous outputs or even shares. Finally, it simplifies the proof of our HSS construction to be able
to prove properties of individual gates and have them compose.
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select(b, x0, x1):

v := b(x1 − x0)
w := v + x0

return w

(a) As an RMS program

+ × +×−1

x1
xb

x0

b

(b) As an RM circuit

Figure 1: The selection function xb represented as an RMS program (left, Definition 4) and a RM
circuit (right, Definition 9). In the RM circuit, dashed wires (wire type IN) correspond to inputs
in an RMS program, while solid wires (wire type REG) correspond to registers. Notice that x0 and
x1 don’t have input wire type in the RM circuit, allowing us to compose the RM circuit with some
other circuit that would produce x0 and x1.

3.1 Restricted Multiplication Circuits

First, we give a definition for restricted multiplication straight-line programs, which were first
defined in [Cle90]. We give a slight generalization however, allowing inputs to be added together
before multiplication with a register. Polynomially sized RMS programs under the new definition
could still be written in polynomial size in the traditional definition by applying the distributive
property, but this would possibly incur a linear blowup.

Definition 4. A Restricted Multiplication Straight-line (RMS) program over a ring K is a sequen-
tial program taking with inputs x1, . . . , xn ∈ K and registers z1, . . ., where the outputs are a subset
of the registers. Each instruction must take the form

zk := (A0 +
∑
i≤n

Aixi)(B0 +
∑
i<k

Bizi),

for some constants A0, . . . , AN , B0, · · ·Bk−1.

For convenience we take the first n registers to be the inputs, to avoid explicitly writing out a
conversion like z1 := 1; zi+1 := xiz1. An example of an RMS program is shown in Figure 1a.

We want to define a kind of circuit that captions the allowed operations in RMS programs. We
have drawn an example in Figure 1b. In Definition 4 there are two types of values: inputs and
registers. In the corresponding circuit there are two types of wire. Inputs are drawn with a dashed
line, while registers are drawn with a solid line. Gates representing linear operations (addition and
multiplication-by-constant) are allowed for either type of wire, and both allow sources for the value
1. However, multiplication is only allowed between a dashed input type wire and a solid register
type wire, and must always produce a solid wire. A dashed input type wire may be converted to a
solid register type wire, and for convenience this will be shown implicitly, rather than showing the
equivalent circuit: a register type wire value 1 source that gets multiplied by the input type wire.

Typed circuits. To make this formal, we need to define what a circuit with multiple types of
wire is. First we define circuit prototypes, which specify what types of wires and gates are allowed,
then we define a circuit for a given prototype.

Definition 5. A circuit prototype (types, gates, in, out) is a set types ⊆ {0, 1}∗ of wire types, a set
gates ⊆ {0, 1}∗ of gate types, and maps in : gates→ types∗ and out : gates→ types assigning to each
gate type the wire types of its inputs and output.
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Definition 6. A typed circuit (nodes,wires, inputs, outputs, type, gate) for a circuit prototype (types,
gates, in, out) is a directed acyclic graph (nodes,wires), a total order on wires, subsets inputs, outputs ⊆
nodes, a node labeling type : nodes → types, and a non-input node labeling gate : nodes \ inputs →
gates. We require the circuit to be well-formed: for any non-input node v, type(v) = out

(
gate(v)

)
,

and for every v ∈ V \ inputs, if (v1, v), (v2, v), . . . , (vn, v) are its incoming edges in sorted order then
type(v1) type(v2) · · · type(vn) = in

(
gate(v)

)
.

An edge in a circuit is called a wire, and a non-input node is called a gate.
Note that in the above definition we followed the more common practice of only using single

output gates and letting fan-out be an implicit operation represented by a gate having multiple
outgoing edges. A more general definition would allow gates with multiple outputs and disallow
implicit fanout, so that fanout can be controlled by what gates are allowed. We made this simplifi-
cation because it is enough for our application, but there are other sorts of circuits best represented
by the more general definition.

We would like to evaluate typed circuits one gate at a time, just like any other kind of circuit.
To do this, we to need a semantics to define what each gate operation does.

Definition 7. A semantics (values, eval) for a circuit prototype (types, gates, in, out) assigns each
wire type w ∈ types a set of values values(w), and assigns each gate type g ∈ gates a function
eval(g) : values(w1)× values(w2)× · · ·× values(wn)→ values

(
out(g)

)
, where w1w2 · · ·wn = in(g) are

the input wire types of the gate.

We can evaluate a typed circuit using a semantics. Given inputs xv ∈ values(type(v)) for every
v ∈ inputs, the evaluation proceeds in topological order. The inputs of each gate are its incoming
edges, and the input order is given by the total order on the edges. Every gate g ∈ nodes \ inputs,
gets evaluated as xg = eval(gate(g))(xv1 , xv2 , . . . , xvn) where (v1, g), (v2, g), . . . , (vn, g) ∈ wires are
the incoming wires of g in sorted order. The outputs are then xv for v ∈ outputs. See below for the
formal algorithm.

Definition 8. A typed circuit (nodes,wires, inputs, outputs, type, gate) can be evaluated with a se-
mantics (values, eval) if they are for the same circuit prototype. The evaluation is described by the
algorithm Run below.

Run(f, s, x):

(nodes,wires, inputs, outputs, type, gate) := f
(values, eval) := s
for v ∈ nodes \ inputs in topological order:
u := empty list
for e ∈ wires in sorted order:

if (w, v) = e: append w to u
xv := eval(gate(g))(xu[1], xu[2], . . . , xu[|u|])

return {xv}v∈outputs

Restricted multiplication circuits. We can now define restricted multiplication circuits by
applying the above formal definitions.

Definition 9. The Restricted Multiplication (RM) circuit prototype over a ring K has wire types
types = {IN,REG}, gate types for constants and linear operations {1IN, 1REG,+IN,+REG,×INc,×REGc},
for c ∈ K, and a single nonlinear multiplication operation × : IN× REG→ REG. An RM circuit is
a circuit for this signature.
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y1

y2

~x · ~y

Figure 2: A bounded RM circuit for computing the dot product of a pair of two element vectors.
The new wire type MUL is drawn with a line, and the new conversion operation φ with a triangle.

An RM circuit can be evaluated just like an RMS program.

Definition 10. The evaluation semantics for RM circuits over K sets values(IN) = values(REG) =
K and assigns each operation to the corresponding one in the ring K.

However, this will not be the only semantics assigned to RM programs. In fact, our HSS
definition is based on the idea of giving multiple different semantics to the same circuits: one for
the plaintexts and one for the shares. The semantics for the shares is what defines the homomorphic
operations that a HSS scheme supports.

Bounded RM circuits. Unfortunately, our construction will not be capable of evaluating all
RM circuits. Similarly to [BGI16], we have a share conversion step that only works for values of
bounded size. This conversion step is on the output of every multiplication gate. However, this
conversion step can be delayed until after further linear operations, so we generalize RM circuits
to add another wire type to allow these operations.

Definition 11. The bounded RM circuit prototype over a ring R has wire types types = {IN,REG,MUL}
and gate types for constants and linear operations for each wire type, a multiplication operation
× : IN × REG → MUL, and a conversion operation φ : MUL → REG. A bounded RM circuit is a
circuit for this signature.

An example of this new kind of circuit is illustrated in Figure 2.

Definition 12. The evaluation semantics for bounded RM circuits over K bounded in a subset
M ⊆ K sets values(IN) = values(REG) = values(MUL) = K ∪ {⊥}, and assigns the usual operations
in K for the linear operations and multiplication. eval(φ)(x) is x if x ∈ M , or ⊥ otherwise. ⊥ is
an absorbing element for all operations: if any input is ⊥ then the output is ⊥.

The value ⊥ is to allow the circuit evaluation to fail if the input to the conversion operation
isn’t properly bounded. This idea is captured by the following definition.

Definition 13. A semantics (values, eval) is called a failure semantics if there is a special value
⊥ ∈ values(w) called failure, for all wire types w ∈ types, which is absorbing for any function in
eval(gates). That is, for any g ∈ gates, eval(g)(. . . ,⊥, . . .) = ⊥, no matter what the other arguments
are.

The evaluation semantics of bounded RM circuits is a failure semantics.

3.2 Homomorphic Secret Sharing

Instead of taking a whole circuit to evaluate at once, our two-server HSS definition works piecemeal,
by assigning three different semantics to the same circuit prototype. The first semantics is the usual
one that works over the plaintexts, while the other two define the types of shares and operations
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of them, for each of the two servers. In a sense, these share semantics define compilers that turn
the circuit into something that can be evaluated on shares, one gate at a time. The idea is that
if we require that the plaintext semantics and share semantics be compatible with each other in a
certain way, it implies that the homomorphic operations correctly evaluate the circuit to the sames
result as if it were evaluated on the plaintext.

It turns out that the ring K that we can support homomorphic operations over will depend on
the public key. Since we are using Damg̊ard–Jurik encryption, the group will be Z/N sZ for some
public key N , which cannot be fixed in advance. This means that the operations we can perform
have to be sampled randomly, at the same time as the public key, even though it is more usual to
define homomorphic secret sharing in terms of some fixed operations (see e.g. [BGI+17]). Therefore,
the plaintext evaluation will depend on the public key. We give the homomorphic operations access
to shares of the secret key as well, as some of our operations (such as getting shares of 1) will
depend on them.

Definition 14. A (1 − p)-correct two-server Homomorphic Secret Sharing (HSS) scheme with
public-key setup consists of the following PPT algorithms:

• (pk, sk0, sk1) ← Setup(1κ) outputs the keys and the circuit prototype, where κ is the security
parameter.

• ((types, gates, in, out), (values, eval)) := Eval(pk) gives the circuit prototype and the plaintext
evaluation semantics. This must be a failure semantics.

• (valuesj , evalj) := Hom(j, pk, skj) outputs the homomorphic evaluation semantics for server j,
except that evalj takes an extra argument r, which is a stream of random coins.

• (s0, s1) ← Share(pk, sk0, sk1, w, x), given a wire type w ∈ types and a value x ∈ values(w),
outputs shares sj ∈ valuesj(w).

• y ← Decode(pk, sk0, sk1, w, s0, s1) decodes an output y ∈ values(w) from shares sj ∈ valuesj(w),
where w ∈ types.

such that the following conditions hold:

• Correctness: Running Decode on the shares from Share must output the original input x when
x is not failure. More precisely, the following distribution outputs true with probability at
least 1− p, for any PPT adversary A.

(pk, sk0, sk1)← Setup(1κ)
(w, x)← A(pk, sk0, sk1)
(s0, s1)← Share(pk, sk0, sk1, w, x)
y ← Decode(pk, sk0, sk1, w, s0, s1)

return x
?
= y ∨ x ?

= ⊥

• Homomorphism: The semantics commute with Decode. That is, the following distributions
are indistinguishable except with advantage p, for any PPT adversary A such that the first
distribution never returns ⊥.
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(pk, sk0, sk1)← Setup(1κ)
(proto, (values, eval)) := Eval(pk)
(view, g, {(si0, si1)}i)← A(pk, sk0, sk1)
r ← $
for i := 1 to n:
xi ← Decode(pk, sk0, sk1, in(g)i, si0, si1)

y := eval(g)(x1, . . . , xn)
return view, r, y

(pk, sk0, sk1)← Setup(1κ)
(proto, (values, eval)) := Eval(pk)
(valuesj , evalj) := Hom(j, pk, skj),∀j ∈ {0, 1}
(view, g, {(si0, si1)}i)← A(pk, sk0, sk1)
r ← $
s′j := evalj(g, r)(s1, . . . , sn),∀j ∈ {0, 1}
y ← Decode(pk, sk0, sk1, out(g), s′0, s

′
1)

return view, r, y

• Privacy: Share must give each server no information about x. More precisely, we need the
oracles O0,pk,sk0,sk1 and O1,pk,sk0,sk1 to be indistinguishable, for any PPT adversary A and any
compromised server j ∈ {0, 1}.

Oi,pk,sk0,sk1(w, x0, x1):

(s0, s1)← Share(pk, sk0, sk1, w, xi)
return sj

Formally, the following probability must be negligibly different between i = 0 and i = 1.

Pr[(pk, sk0, sk1)← Setup(1κ); AOi,pk,sk0,sk1 (pk, skj) = 1]

Note that Hom is given a access to a shared stream of randomness. This is to stop an adversary
from choosing a circuit that will make the scheme deterministically fail. This could be instantiated
with a shared PRG, reseeded whenever the circuit is chosen adaptively in a way that might depend
on the seed, or with a random oracle evaluated on a description of the current gate and how
the input shares were produced if it is necessary to somehow adaptively change the computation
without using any communication at all.

We include an error probability p in our definition for comparison with existing methods of
HSS evaluation, even though our scheme has negligible p. The DDH-based construction of [BGI16]
satisfies our definition with p = 1

poly(κ) . We do not prove this, but it should become clear that the
same techniques we use to prove that our HSS scheme satisfies the definition would also work when
applied to theirs. The LWE-based construction of [BKS19] should also work — this time with p a
negligible function of κ.

The homomorphism property requires that decoding then performing a plaintext operation must
work the same as doing the operation homomorphically, then decoding. However, this structure
raises a question: why not do the same with Share and Hom, and require that the output of
the homomorphic operation be indistinguishable from sharing the plaintext value? It turns out
that this property is harder to achieve, as it is actually a form of circuit privacy. It asserts that
the real distribution, where the shares are produced from a homomorphically evaluated circuit,
is indistinguishable from an ideal distribution where the shares are simulated just using Share.
Unfortunately, we cannot achieve this property because our construction involves holding shares of
integers that may grow in size as they pass through the circuit, and there is no way for Share to
always produce shares of the right size to be indistinguishable from every kind of circuit.

Since our correctness and homomorphism definitions are in terms of just performing a single
operation, we need to prove that they can be composed into correctly evaluating a whole circuit.
The idea is that we can chain the homomorphism property over and over again, replacing the
homomorphic operations one at a time and gradually moving the Decode operation sooner, until
the Decode operation is at the start of the circuit. Then if the inputs were from Share the correctness
property guarantees that Decode will cancel with Share, and the only thing left is honest evaluation.
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Lemma 15. In any (1 − p)-correct two-server HSS scheme, evaluating an arbitrary circuit on
shares and then decoding the result vs. decoding the inputs and evaluating the circuit has distin-
guisher advantage at most np if the circuit has n gates. More precisely, following distributions are
distinguishable with advantage at most np if the PPT A outputs a circuit f of at most n gates.

(pk, sk0, sk1)← Setup(1κ)
(proto, sempt) := Eval(pk)
(view, f, {(s0v, s1v)}v)← A(pk, sk0, sk1)
(nodes,wires, inputs, outputs, type, gate) := f
r ← $
for v ∈ inputs:
xv ← Decode(pk, sk0, sk1, type(v), s0v, s1v)

return view, r,Run(f, sempt, x)

(pk, sk0, sk1)← Setup(1κ)
(proto, sempt) := Eval(pk)
(view, f, {(s0v, s1v)}v)← A(pk, sk0, sk1)
(nodes,wires, inputs, outputs, type, gate) := f
r ← $
for j ∈ {0, 1}:
s′j := Run(f,Hom(j, pk, skj), sj , r)

for v ∈ outputs:
yv ← Decode(pk, sk0, sk1, type(v), s′0v, s

′
1v)

return view, r, y

In the second distribution, the extra parameter r to Run represents giving each homomorphic gate
evaluating its own piece of the random stream r.

Proof. We give a hybrid proof starting from the right distribution and going to the left. We
partition the circuit f into two parts g and h, where everything in g comes before everything in
h in topological order. The circuit g will be evaluated using Hom, then its outputs will fed into
Decode and used to evaluate h in plaintext. Initially g is the whole circuit and h is nothing, but
in each hybrid we shift a gate from g into h, picking one that comes last in topological order. The
difference caused the by the switch is that before the gate got evaluated homomorphically, then
decoded, while afterwards its inputs get decoded and then it is evaluated in plaintext. Since r is
a freshly random string for each gate, the Homomorphism property shows that this change has
advantage at most p.

After all gates have been moved from g to h, we are at the left distribution. Since there are n
gates to shift over, the total advantage is bounded by np.

An important property of our HSS scheme is that Decode authenticates its shares, for some wire
types. What this means is that we setup an experiment where shares are provided honestly to both
the adversary and an honest server, the honest server performs some homomorphic operations on
its shares, then they run a decode operation. The adversary wins if it manages to obtain a different
result than would be obtained with two honest servers.

Definition 16. An HSS scheme is authenticated for wire types A ⊆ types if it is impossible for
a single party to find a share of a wire type in A that decodes to a different result than would be
obtained if they were honest. Formally, no PPT A given oracle access to the interface of the honest
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party H can cause guess to return true with non-negligible probability.

H
init(j ∈ {0, 1}):

(pk, sk0, sk1)← Setup(1κ)
((types, gates, in, out), (values, eval)) := Eval(pk)
(valuesk, evalk) := Hom(k, pk, skk),∀k ∈ {0, 1}
U,W := empty list
return pk, skj

share(w ∈ types, x ∈ values(w)):

(s0, s1)← Share(pk, sk0, sk1, w, x)
append (s0, s1) to U and w to W
return sj

eval(g ∈ gates, i1, . . . , in):

assert W [i1]W [i2] · · ·W [in] = in(g)
r ← $
sk := evalk(g, r)(U [i1]k, . . . , U [in]k),∀k ∈ {0, 1}
append (s0, s1) to U and out(g) to W
return r

guess(i, sj ∈ valuesj(W [i])):

assert W [i] ∈ A
s j := U [i]j
y ← Decode(pk, sk0, sk1,W [i], U [i]0, U [i]1)
z ← Decode(pk, sk0, sk1,W [i], s0, s1)

return y 6 ?= z ∧ y 6 ?= ⊥ ∧ z 6 ?= ⊥

Here, A is required to call init exactly once, before calling anything else in H.

Some applications have a single trusted client, who can run the Share and Decode operations
themselves. Others might not trust the client, or have numerous mutually distrusting clients, and
so need to implement these algorithms with MPC. We define a couple special cases where these
operations can be implemented more easily, without the need for generic MPC.

Definition 17. A two-server HSS scheme has public-key sharing if there is a UC secure 3-party
protocol to compute (s0, s1)← Share(pk, sk0, sk1, w, x), where x is provided by the client, skj is input
by server j, all parties know pk, w, and sj is output to server j. All messages in the protocol must
come from the client.

Definition 18. A two-server HSS scheme has additive decoding for wire type w if there are PPT
algorithms f0, f1 such that

Decode(pk, sk0, sk1, w, s0, s1) = f1(pk, sk1, s1)− f0(pk, sk0, s0)

with all but negligible probability whenever the left side is not ⊥, where values(w) is an abelian
group.

4 Main Construction

4.1 Distance Function

Similarly to [BGI16], share conversion for our HSS scheme works by picking a subset of ciphertexts
to be “special”, and measuring the distance from the nearest special point. We pick the subset
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of values in
[
−N

2 ,
N
2

)
to be special, i.e. those c ∈ Z/N s+1Z where c = c mod N . Because c mod

N mod N = c mod N , the closest special value is c mod N . The distance can then be computed
efficiently using log.

DistN,s : (Z/N s+1Z)× → Z/N sZ

c 7→ 1

N
log
( c

c mod N

)
This is justified by the following theorem, which shows that DistN,s preserves the distance

between two ciphertexts as long as they are the same modulo N .

Theorem 19. For any c ∈ (Z/N s+1Z)× and x ∈ Z/N sZ,

DistN,s(c exp(Nx))−DistN,s(c) = x.

Proof. First, we need to show that DistN,s(c) is always well defined. We have c
c mod N ≡N

c
c ≡N 1,

which implies that the Taylor series for log converges in this function. Then,

DistN,s(c exp(Nx))−DistN,s(c)

=
1

N

(
log

(
c exp(Nx)

c exp(Nx) mod N

)
− log

( c

c mod N

))
=

1

N

(
log

(
c exp(Nx)

c mod N

)
− log

( c

c mod N

))
=

1

N

(
log
( c

c mod N

)
+Nx− log

( c

c mod N

))
= x.

Corollary 20. The distribution DistN,s(DJ.EncN,s(x)) for uniformly random x ∈ Z/N s+1Z is
identical to the uniform distribution on Z/N sZ.

Note that we have only shown the correctness of the distance function modulo N s. Our con-
struction will in fact need to convert its outputs to be in Z, as there is no consistent way to
exponentiate to a power that is in Z/N sZ when the multiplicative order of the base does not divide
N s. The following lemma will be used to show that using · mod N s to convert shares to Z works
with all but negligible probability.

Lemma 21. For any N ∈ Z+, x ∈ Z, and uniformly random r ∈ Z/NZ, we have

Pr
[
x = (r + x) mod N − r mod N

]
= max

(
1− |x|

N
, 0

)
.

Proof. The condition may equivalently be written as

r mod N + x =
(
r mod N + x

)
mod N.

This clearly holds if and only if −N
2 ≤ r mod N + x < N

2 , i.e. if it is already reduced so taking the
modulus will not change it. If x ≥ 0 then this is equivalent to r ∈ [−N

2 ,
N
2 − x), which contains

N − x (or none, if x > N) of the N possible integer values for r mod N . The case of negative x is

symmetric, so the probability is either N−|x|
N = 1− |x|N , or 0 if it would otherwise be negative.
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Setup(1κ):

(N,ϕ)← DJ.KeyGen(1κ)
ϕ0 ← [0, N)
ϕ1 := ϕ0 + ϕ
return N,ϕ0, ϕ1

valuesj(IN) = (Z/N s+1Z)×

valuesj(REG) = Z
valuesj(MUL) = Z/N sZ

evalj(×, r)(c, sj) = DistN,s(c
sj )

evalj(φ, r)(sj) = (sj + r) mod N s

Share(N,ϕ0, ϕ1, IN, x):

c← DJ.EncN,s(xj)
return c, c

Share(N,ϕ0, ϕ1,REG, x):

s0 ← [0, N s+12κ)
x′ := x mod N s

return s0, s0 + (ϕ1 − ϕ0)x′

Share(N,ϕ0, ϕ1,MUL, x):

s0 ← Z/N sZ
return s0, s0 + (ϕ1 − ϕ0)x

Decode(N,ϕ0, ϕ1, IN, s0, s1):

if s0 6= s1: return ⊥
return DJ.DecN,s,ϕ1−ϕ0(s0)

Decode(N,ϕ0, ϕ1,REG, s0, s1):

y := (s1 − s0)/(ϕ1 − ϕ0)
if y /∈ Z: return ⊥
return y +N sZ

Decode(N,ϕ0, ϕ1,MUL, s0, s1):

return (s1 − s0)/(ϕ1 − ϕ0)

Figure 3: Our HSS scheme for bounded RM circuits. In the top left the encryption is setup and
the secret key shared between the two parties. The secret share sets are in the top right, along
with the non-trivial homomorphic that may be performed on them. The linear operations are just
the abelian group structure of the shares are in, and we omit them. Share and Decode for the three
types of shares are shown in the bottom right.

4.2 HSS Construction

Now we have everything required to define our main HSS scheme, which will be parameterized by
a ciphertext size s and a bound M on the values. To start, we generate a random Damg̊ard–Jurik
key pair (N,ϕ) and share ϕ among the two parties in Setup (Figure 3). The plaintext evaluation
semantics Eval(N) are then the evaluation semantics (Definition 12) for bounded RM circuits over
Z/N sZ bounded in [−M,M ] +N sZ.

Our three types of shares of a value x will be ciphertexts in (Z/N s+1Z)×, additive shares of ϕx
in Z, and additive shares of ϕx in Z/N sZ (see values in Figure 3). We let Share encrypt or generate
these shares and Decode decrypt or decode them, while checking for consistency between the two
parties’ shares. The share types are all abelian groups, allowing the circuit’s linear operations to
be defined on the shares easily. We omit these, other than noting that constructing 1REG and 1MUL

requires secret shares of the private key ϕ. In fact, additive secret shares of ϕ are exactly the same
as our shares of 1.

The homomorphic multiplication function evalj(×, r) in Figure 3 is based on cϕx essential de-
crypting x times the plaintext, so when performed on additive shares s0, s1 of ϕx this gives multi-
plicative shares of the decryption. We then use the distance function to convert them to additive
shares. As these shares are only in Z/N sZ, we define evalj(φ, r) to pick a representative in Z,
allowing the result to be converted to shares in Z.

We now prove the HSS scheme’s correctness and privacy. Note that its error rate is a negligible
function of κ and s.

Theorem 22. Figure 3 describes a (1−MN1−s)-correct HSS scheme (Definition 14) under DCR.
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Proof. There are three properties to be proved.

Correctness For the IN wire type, this is just the correctness of Damg̊ard–Jurik encryption. For
REG and MUL we have s1 − s0 = (ϕ1 − ϕ0)x, so dividing out ϕ1 − ϕ0 in Decode gives the
correct decoding.

Homomorphism We omit the trivial proofs for the linear operations allowed in bounded RM
circuits. For multiplication, we have

cs1

cs0
= rN

s(s1−s0) exp(Nx(s1 − s0))

= rN
sϕy exp(Nxϕy)

= exp(Nϕxy),

for some r ∈ (Z/N s+1Z)×, where x = DJ.DecN,s,ϕ(c) and y = s1−s0
ϕ are the decodings of the

two input shares. Then Theorem 19 shows that eval1(×, r)(c, s1)− eval0(×, r)(c, s0) = ϕxy.

The correctness of share conversion evalj(×, r)(φ) with probability 1− ϕM
Ns follows directly

from Lemma 21. Adding r to both shares before taking the modulus guarantees that s0 is
uniformly random, as is required by the lemma, and does not change s1 − s0 ≡Ns ϕx. This
is the only step with imperfect correctness, so because ϕ < N we get that the overall scheme
is (1−MN1−s)-correct.

Privacy We must show that Share leaks nothing about the value being shared to any individual
server. We present a hybrid proof, starting with the adversary A having access to O0,pk,sk0,sk1 .

1. Use dummy shares of 0 in Share for wire types REG and MUL. For MUL, s0 and s1

individually are uniformly random, independent of x, so this is indistinguishable to the
adversary, who only gets to see sj . Similarly, the distribution for s0 when sharing a
REG value does not depend on x, while s1 is uniform in the range [ϕx′, ϕx′ +N s+12κ),
which is statistically indistinguishable from being uniform in [0, N s+12κ) because the

distributions are identical in all but a negligible fraction |ϕx′|
Ns+12κ

< 2−κ of the possibilities.
After this change, ϕ is unused by Share.

2. Instead of setting ϕ1 = ϕ0 +ϕ, sample ϕ1 ← [N, 2N). This is indistinguishable because
ϕ0 is uniform in [0, N), the adversary only gets to see ϕj , and [N, 2N) and [ϕ,ϕ + N)
overlap in all but N −ϕ = p+ q− 1 out of N possibilities. Therefore, the adversary has

advantage at most p+q−1
N ≤ 2`(κ)+1

22(`(κ)−1) = 2−`(κ)+3, which is negligible.

3. Notice that the private key ϕ is now totally unused. We can then apply Theorem 3 to
show that Share for wire type IN can return a dummy encryption of 0 and be indistin-
guishable.

We have reached the halfway point, where the adversary’s view does not depend on their
inputs to Share. Going through almost the same hybrids in reverse then takes us to the
distribution where A is given oracle access to O1,pk,sk0,sk1 .

Shares of type IN are trivially authenticated, as both parties always have the same share. REG
authentication comes from the shares always being of a multiple of ϕ, so to create a fake share the
adversary would have to guess a multiple of ϕ to offset their share by.

Theorem 23. The HSS scheme in Figure 3 is authenticated for wire types {IN,REG}.
Proof. We defer this proof to the appendix. See Appendix A.1.
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Public-key sharing. Our construction also satisfies public-key sharing (Definition 17). This is
easiest to see for IN shares, because they are just encryptions under the public key N . We can
build public-key sharing for the other share types from this. To share out a MUL share of x, just
give out IN shares of x, then run the RM circuit to compute x × 1REG, which produces MUL wire
type shares. Finally, REG shares of x can be given out by splitting x into pieces small enough to
guarantee that φ will succeed (so x =

∑
i xiM

i), then doing public key sharing on every xi. Then
they are converted back to REG type with φ, and x =

∑
i xiM

i is then computed inside an RM
circuit. Note that in all cases the client only needs to send a message to both parties, and then
they do some local computation to find the shares.

Additive decoding. A variant of our scheme also satisfies additive decoding. The idea is to
send an encryption of ϕ−1 under a second encryption key, and use it to remove the division step
from Decode (on wire type REG) so that it only does subtraction. See Appendix A.2 for details.

5 Distributed Oblivious RAM

An oblivious RAM (ORAM) allows a client to outsource its data (a sequence of N blocks) to an
untrusted server, such that it can access any data blocks on the server while hiding the access pattern
[Ost92, Gol87]. While traditionally ORAM protocols were designed assuming single server which
stores data passively, recent works have considered more general settings, allowing for multiple
non-colluding servers with computational capabilities [DvDF+16, HOY+17, FNR+15]. Given the
result in [Gol87], all passive server ORAM protocols incur at least Ω(logN) bandwidth overhead.
Allowing for computation on the server side one can break this bandwidth lower bound, and even
constant bandwidth blowup can be achieved for large block sizes [DvDF+16]. In this section we
propose a new malicious secure ORAM construction based on 2 party HSS. Our construction
achieves constant bandwidth blowup for blocks of size at least Ω(log4N) bits.

5.1 Definition: Distributed ORAM

We consider a 3 party distributed ORAM model with a single client and 2 non-colluding servers. All
the parties maintain a state, which is updated after each ORAM operation. We use the following
syntax to represent each ORAM operation:

(out, st′c, , st
′
s1, st

′
s2)← f(in, stc, sts1, sts2) (1)

When performing the f ORAM function, the client receives as input in and its output is
out. After this function execution, the states of the client and the two servers are updated from
stc, sts0, sts1 to st′c, st

′
s0, st

′
s1 respectively.

Definition 24. A distributed 2 server ORAM construction with security parameter λ consists of
the following two interactive protocols:

• (⊥, st′c, , st′s1, st′s2) ← Setup(D,⊥,⊥,⊥): The client inputs an N sized array D of blocks,
where each block is of length B bits. This function initializes the ORAM with the array D.

• (data, st′c, , st
′
s1, st

′
s2) ← Access(op, stc, sts1, sts2): The client receives as input an ORAM op-

eration (op, idx, data), where op = {read,write}, idx ∈ [1 . . . N ] and data ∈ {0, 1}B ∪{⊥}. If
op = read then the client should return the block D[idx]. If op = write, then this protocol
should update the content of block D[idx] in the ORAM with data.

19



We use the simulation based definition for a malicious secure ORAM as was considered in
[DvDF+16] (See Appendix B.1.).

5.2 An Overview of Onion ORAM

Our protocol is based on the Onion ORAM protocol proposed in [DvDF+16], which in turn is based
on the passive server Bounded Feedback ORAM protocol from the same paper. In this subsection
we describe the Bounded Feedback ORAM and how it can be modified to give the original single
server Onion ORAM construction.

Bounded Feedback ORAM Similar to other tree-based ORAMs, its single server memory is
organized in the form of an L depth binary tree T , where each node of the tree (also referred to as
a bucket) contains Z blocks. The leaves of the tree are numbered from 0 to 2L − 1. P(l) represent
the blocks on the path to leaf l on this tree and P(l, k) represents the kth bucket from the root
node on this same path respectively.

As is the case for all tree based ORAMs, each block is mapped to a unique random leaf node
in this tree. And this mapping is stored in a position map (PosMap) by the client. The key
invariant that’s maintained is that each block (with index addr) is present in some bucket on the
path P(PosMap[addr]).

For each block in the tree, the server also stores the corresponding meta-data (addr, label), where
addr is the logical address of the block and label = PosMap[addr]. The corresponding metadata
tree is referred to as md. We use the shorthand md[l] to represent the list of all metadata present
on the path l in md.

ORAM Access To read/write a block addr the client looks up the corresponding leaf label
PosMap[addr] from the position map. It further downloads all the blocks on the path PosMap[addr]
in tree T from the server. The client can now locally read and update the block addr. The block
addr is remaped to a new random leaf label and is inserted in the root bucket. All the downloaded
blocks on path l are re-encrypted and stored back on the server. To ensure that no bucket overflows
except with negligible probability, after every A (a parameter) Access operation the blocks are
percolated towards the leaves in the tree while maintaining the key invariant. This process is also
called the eviction algorithm. Most tree based ORAMs often differ in their eviction procedures.

Triplet Eviction Algorithm As is the case for other tree based ORAMs, eviction is performed
along a specific path (let say l). For k = 0 to L, the algorithm pushes all the blocks in bucket
P(l, k) into one of its two children buckets. This process can be carried out without violating
the key invariant. After every A ORAM accesses, the next eviction path is chosen in the reverse
lexicographic order of G (a variable), which is initialized to 0 and incremented by 1 after each
eviction procedure. Given the analysis in [DvDF+16], the parameters Z = A = Θ(λ) ensure
negligible overflow probability for each bucket.

Recursion The position map stored on the client is super-linear in the size of the database. To
avoid the large client memory, we can recursively stores the position map in a smaller ORAM on
the server. This recursive approach used in all tree based ORAMs does not incur any additional
asymptotic cost for blocks of size Ω(log2N), where N is the size of the database. For all the ORAM
protocols we describe ahead, we will ignore the cost of recursion for larger block sizes.
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How Onion ORAM Differs The Onion ORAM protocol allows for server-side computation,
and at a high level it differs from Bounded Feedback ORAM in the following ways:

1. The server side storage is encrypted using an aditively homomorphic encryption (AHE)
scheme, where blocks at depth l in the tree at encrypted using l layers of the AHE scheme.

2. Downloading only meta-data: Rather than downloading all blocks on a path during the
access operations, it downloads only the meta-data of all the blocks on this path. It locally
computes the location of the block that it wants to read/write. The client and the server
run a homomorphic select operation to just fetch the needed data-block from this path. We
describe this selection operation below in greater detail. Similarly the selection operation is
also used in the eviction algorithm.

3. To ensure integrity of data, the protocol uses memory checking to ensure integrity of the read
only meta-data blocks. To ensure the integrity of the data blocks the protocol uses a new
verification algorithm that relies on probabilistic checking and error correcting codes.

The key building block for their protocol is the homomorphic selection operation, where the
client has an index idx and the server has ciphertexts ct1, . . . ctm (under l layers of AHE El). The
client sends an l + 1 layer encrypted m length bit vector b to the server, which is 1 at location
idx. The server can compute ct = ⊕iEl+1(bi).cti = El+1(ctidx). This allows the server to obliviously
select the “correct” ciphertext with an additional layer of encryption. This operation can be used
to ensure O(B) bandwidth for the access and the eviction protocols for blocks of size at least
Ω̃(log4N).

5.3 Our HSS based ORAM construction

Our construction largely has the same structure as the single server Onion ORAM construction
[DvDF+16], with the server side computation in Onion ORAM divided across the 2 servers in our
scheme using our HSS construction.

In our construction the two servers store two ORAM binary trees (T0, T1) similar to that
in Onion ORAM, and they also have additive shares of authenticated meta-data (md, H(md))
corresponding to each block in the tree. Each block b in our scheme is a sequence of chunks
(b1, b2, . . . , bC), where each chunk can be secret shared as wires of type REG using HSS.

The server side computation in Onion ORAM can be replaced with homomorphic computation
on the HSS shares by the two servers, where the client sends encrypted index as a wire type IN. For
the eviction procedure, we conceptually use the same technique as used in Onion ORAM, which
uses Θ(ZL) select operations. We next describe the selection and evict algorithms in a little more
detail.

Selection. An advantage of using HSS is being able to evaluate a limited kind of arithmetic
circuit, so we can encode more than just a single bit in a ciphertext. In fact, we can do a 1-of-m
select operation by sending just a single ciphertext to the servers. Suppose we want to select the ith
element of a sequence y0, . . . , ym−1, for some i ∈ [0,m−1]. Then if we interpolate a polynomial p(X)
through the points p(0) = y0, . . . , p(m − 1)ym−1, then we can evaluate p(i) to find yi. Polynomial
interpolation is a linear operation, and so can be performed separately by each server, on its own
share of {yi}i.

However, there’s one small issue that we’ve skipped over. We can only evaluate bounded RM
circuit, and representing a fraction in the ring is very likely to produce a large number that is
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Notation Meaning

N number of ORAM blocks

B size of each block in bits

C number of share chunks of each block

T0, T1 ORAM trees stored on Servers S0 and S1 respectively

L depth of the ORAM trees

Z number of blocks per bucket in the ORAM tree

P(l) path from root to lead l
also a shorthand for the array of blocks on the same path

md0,md1 shares of meta-data stored on Servers S0 and S1

md[l] the array of meta-data for root to leaf blocks on P(l)

h([a1, . . . , ak]) same as the list (h(a1), h(a2), . . . , h(ak)), where h is a hash function

G eviction counter

M ′ bound on value of secret shares

M bound on share conversion in RM circuit

Table 1: ORAM Notation and shorthand used in the protocol description

outside of the bound. We instead use the Newton polynomial interpolation, representing p as

p(X) =
m−1∑
j=0

∆j [y]

j!
(X)j where ∆j [y] =

j∑
k=0

(
j

k

)
(−1)j−kyk,

where (X)j = X(X − 1) · · · (X − j + 1) is the falling factorial. Although we only show the direct
formula for computing the differences ∆j [y], faster FFT-based methods would also work. Notice
that the finite differences ∆j [y] are all integers, so only need to evaluate (m− 1)! p(i) to remove all
of the fractions, and then divide by (m− 1)! at the last step, which works since p(i) is an integer.
We can evaluate this polynomial using a variant of Horner’s rule, which is efficient inside an RM
circuit (Figure 4).

p(X) =

((
∆m−1[y]

(m− 1)!
(X −m+ 2) +

∆m−2[y]

(m− 2)!

)
(X −m+ 3) + · · ·

)
X +

∆0[y]

0!

We need to compute a size bound M on the values in this computation, given the known bound
M ′ on every yi. We have

∣∣∆j [y]
∣∣ ≤M ′∑k

(
j
k

)
= 2jM ′. Let S be a subexpression in the evaluation

of (m − 1)! p(X). Then |S| ≤
∑m−1

j=0

∣∣∣ (m−1)!
j! ∆j [y]mj

∣∣∣, because every (x − j + 1) ≤ m, and going

from S to this we only add more nonnegative terms and multiply more factors of m ≥ 1. This can
be turned into an upper bound, which we will use to set M .

|S| ≤
m−1∑
j=0

(m− 1)!

j!
2jmjM ′ ≤ (m− 1)!M ′

∞∑
j=0

(2m)j

j!

= (m− 1)!M ′e2m ≤M

(2)

Eviction. We need to move up to Z blocks in a parent node in the tree into a child node, which
has locations for Z blocks. We do this by performing Z instances of 1-of-(Z + 1) Select, allowing
each block location in a child node to select any of its parent node’s blocks, or its existing value if
it was already filled. This algorithm is shown in Figure 5.
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select(i ∈ IN, y0 ∈ REG, . . . , ym−1 ∈ REG):

D[j] := (m−1)!
j!

∑j
k=0

(
j
k

)
(−1)j−k ×REG yk

z := 0REG
for j := m− 1 to 0:
z := z +REG D[j]
z := φ(z × (i+IN (1− j))

z := 1
(m−1)! ×REG z

return z

SelectShare(pk, sk0, sk1, i, {y0k}k, {y1k}k):

in[“i”] := Share(pk, sk0, sk1, IN, i)
for j ∈ {0, 1}:

for each chunk index c:
for k := 0 to m− 1:
in[“y” ‖ k] := yjk[c]

sj [c] := Run(select,Hom(j, pk, skj), in)
return s0, s1

Select(pk, sk0, sk1, i, {y0k}k, {y1k}k):

(s0, s1)← SelectShare(pk, sk0, sk1,
i, {y0k}k, {y1k}k)

for j ∈ {0, 1}:
s′j :=

∑
cM
′csj [c]

z′ := Decode′(pk, sk0, sk1,REG, s′0, s
′
1)

for each chunk index c:

z[c] := b z′

M′c c mod M ′

return z

Figure 4: Left: Selection operation pseudocode. The pseudocode follows the wire-type rules of
a bounded RM circuit, and could easily be unrolled into a circuit. Right: The distributed Select
algorithm, which runs the select RM circuit on the given shares, then decodes the result to find yi.
Client computation is colored red and server computation is colored blue. Because in our HSS the
REG secret shares do not depending at all on the ciphertext size parameter s, we can pack together
several shares (by treating them as a base M ′ number) and decode them all at once, which reduces
the overhead of the secret sharing step. However, we need Decode from Figure 3 to be modified
slightly, to not take its output modulo N s, and we call this modification Decode′.

Using these two algorithms, we describe our Setup and Access function for our proposed ORAM
scheme in Figure 6 and Figure 7 respectively.

Secure 2-party computation. The main technique for secure computation of RAM programs
is to start with a circuit MPC protocol and use a multi-server ORAM protocol for every RAM
access [GKK+12]. The client of the ORAM protocol must be run inside the MPC protocol, which
puts a premium on reducing its computational complexity. The bottlenecks of client computation
for the Access protocol are in Select, which must encrypt Damg̊ard–Jurik ciphertexts as part of
Share, and divide by ϕ as part of Decode. We can alleviate the former with the public-key sharing
property (Definition 17): use generic MPC to give out shares i1 − i0 = i of the plaintext, then use
the public-key sharing protocol to compute Share(pk, sk0, sk1, IN, ij) without using the secret key.
The shares can then be combined as the first step of the RMS circuit being evaluated. Additive
decoding (Definition 18) avoids the second problem by directly giving additive shares of the result,
without any division.

These optimizations put the malicious security of the scheme in jeopardy, however. One server
could encrypt an incorrect value instead of their share of i, or they could exploit the fact that
the additive decoding algorithm does not authenticate its input. The solutions to these problems
are very similar to how we authenticate the meta-data. The generic MPC protocol can provide
an information theoretic MAC of the shares (e.g. shares of H(i) where H satisfies the uniform
difference property), which can then be checked inside the RMS circuit. The RMS circuit can
produce an information theoretic MAC of its output as well, which then after decoding can be
checked inside of MPC.
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Evict(pk, sk0, sk1, le,md, {x0k}k, {x1k}k, {y0k}k, {y1k}k):
remap := array of zeros

for each block b of parent node b le2 c.
if md says b is present and needs to move to le:

find next empty location b′ in le
remap[b′] := b

for each block b of node le:
inj := (yjb, xj0, . . . , xj(Z−1))∀j ∈ {0, 1}
y0b, y1b ← SelectShare(pk, sk0, sk1, remap[b], in0, in1)

return {y0k}k, {y1k}k

Figure 5: The distributed Evict algorithm. Inputs are le, the location of the node to evict into, the
shares {x0k}k, {x1k}k of the blocks in the parent node of le, and shares {y0k}k, {y1k}k of node le.

5.4 Proof of Security

Intuitively, the adversary learns nothing looking at one servers binary tree’s data - which consists
of one share of each corresponding plaintext block chunks. Hence the view of the adversary in this
case can be simulated given the privacy guarantee of our HSS scheme. Our scheme satisfies the
authenticated shares property, hence any tampering of the shares by the adversary would make
the protocol abort. The meta data is authenticated using a universal hash function that satisfies
uniform difference property.

Theorem 25. The distributed ORAM construction described in Figure 6 and Figure 7 satisfy the
security Definition 23.

Proof. See Appendix B.2.

5.5 Complexity Analysis

First, we must determine the dependence between the parameters. Each share stores a number
in [0,M ′ − 1), and since there are C share chunks per block this gives B = C log2M

′. For the
HSS parameters, we choose the smallest possible ciphertext size (s = 2) as this will decrease
the communication bandwidth of data sent to the servers. Therefore, we should set MN−1 = 2−λ,
whereN = 2Θ(`(κ)) is the Damg̊ard–Jurik public key, to have a statistical correctness error negligible
in λ. We set M ′ to be as large as possible (as determined by Equation (2)) in order to reduce the
number of chunks (which take extra computation) while keeping the same block size and ciphertext
size. So we set M ′ = 1

(m−1)!e
−2mM , where m = Z(L + 1) is the largest number of options in a

select operation, and get log2M
′ = Θ(`(κ) − λ − ZL log(ZL)) = Θ(`(κ) − λ logN log(λ)), where

we have assumed that λ = Ω(log(N)).
Next, we analyze the complexity of each part.

Communication complexity The communication complexity from client to the servers consists
of Θ(ZL) ciphertexts sent on every eviction (once every A accesses), plus 1 sent for every access.
From the server to the client, we get B + Θ(`(κ)) bits sent from each server, for the shares we
decode plus the extra Θ(`(κ)) coming from the fact that the shares were already multiplied by the
private key before they were sent back. This comes to a total of 2B + Θ(`(κ) logN) amortized
communication for each access.
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Let (Setup, Share,Eval,Run,Decode) be a 2 party HSS scheme as defined in 14
H is a universal family that satisfies uniform difference property

Protocol parameters: B, λ, κ

Setup(D,⊥,⊥,⊥):

Run Setup protocol of Bounded Feedback ORAM to generate
tree T and metadata md for the input database D
h←$ H
hash← h(md)
Picks random shares md0 and hash0
md1 ← md+md0 and hash1 ← hash + hash0
G, cnt← 0
(pk, sk0, sk1)← Setup(1κ)
For each block b ∈ T , for each chunk index c:

(b0[c], b1[c])← Share(pk, sk0, sk1,REG, b[c])
For i = 0, 1 and for each block b in T , set the corresponding block in Ti to bi
stc = (G, cnt,PosMap, pk, sk0, sk1)
For i = 0, 1, stsi = (Ti,mdi, hashi, ski)

Figure 6: The 2-server distributed ORAM Setup function.
Client computation is colored red and server computation is colored blue

Client Computation The client computation is dominated by the Share function calls in the
Select operations in the protocol. This is dominated by eviction, where it invokes Z(L+1) instances
of Share, each taking time Õ(`2(κ)) because they are dominated by exponentiation. This takes a
total of Õ(logN`2(κ)) amortized time per access.

Server Computation For the server the most computationally intensive step is the computation
in the Select operations. We require evaluation of a O(m) gate RM circuit for a m-way select. This
is dominated by the Evict step, which requires CZ(L + 1) evaluations of a Z + 1-way selection.
The cost of evaluating a gate is dominated by exponentiation, so we get an amortized cost of
Õ(Cλ logN`2(κ)) time.

We use a similarly parameter regime to Onion ORAM, where we set the statistical secu-
rity parameter λ = ω(logN) and computational security parameter κ = ω(logN), and based
on the best known attacks on Damg̊ard–Jurik encryption (from factoring), set `(κ) = Θ(κ3).
The communication complexity is then 2B + O(log4N), so we set the minimum block size to
be B = ω(O(log4N)) to get constant communication overhead. Then the number of chunks is

determined to be C = B
log2M

′ = Θ( log4N
log3N

) = Θ(logN). Finally, we find the client side compu-

tation Õ(log7N) = Õ(B log4N), and the server-side computation Õ(log3N`2(κ)) = Õ(log9N) =
Õ(B log5N).

6 Trapdoor Hash Functions

The idea of using a distance function to compute a distributed discrete logarithm has been applied
to more than just HSS. One such application is to trapdoor hash functions, which have applications
to rate-1 OT, PIR, and private matrix-vector products, among others [DGI+19]. In this section
we present a new trapdoor hash function based on DCR and our distance function, and show
that it has negligible error probability. We then talk about possible generalizations allowed by our
construction.

We present our trapdoor hash in Figure 8. See also Appendix C.1, where we review the definition
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Access(in = (op, addr, data), stc, sts0, sts1)):

l′ ←$ [0, 2L − 1]
l← PosMap[addr]
PosMap[addr]← l′

Compute arrays mdi[l], hashi[l]
For j = 0 to Z(L+ 1)

if H(md1[l, j]−md0[l, j]) 6= hash1[l, j]− hash0[l, j] then abort
md← md1[l]−md0[1] // Element wise subtraction
Find i 3 md[i, 0] = addr
data← Select (i,P0(l),P1(l))
if data = ⊥ then abort
if op = write then data = data′ else output data
Set md[l, j]← (addr, l′) for the least index j 3 md[l, j] 6= ⊥
md[l, i]← ⊥
For each chunk index c:

(b0[c], b1[c])← Share(pk, sk0, sk1,REG, data[c])
Sample random Z(L+ 1) meta-data shares md0 and meta-data hash shares hash0
md1 ← md + md0 and hash1 ← H(md) + hash0
Update meta-data and its hash for path l in Ti with mdi and hashi
Set (cnt+ 1)th block in bucket Pi(l, 1) as bi
// Eviction
cnt← cnt+ 1 mod A

if cnt
?
= 0:

le ← reverse bit string of G // Picking paths in reverse lexicographic order
G← G+ 1 mod 2L

For k ← 0 to L− 1:
For each child bucket C of P(le):

Prepare bit-vector b ∈ {0, 1}2Z corresponding to which blocks
in P(le)||C should be moved into C using the triple evict algorithm
Evict (b, (P0(le)||C0), (P1(le)||C1))

Figure 7: The 2-server distributed ORAM Access function.
Client computation is colored red and server computation is colored blue

Setup(1κ, 1n):

(N,ϕ)← DJ.KeyGen(1κ)
(g0, g1, . . . , gn)← (Z/N2Z)×

return N, g

Hash((N, g), x, ρ):

r ← [0, N) from random bits ρ
return gr0

∏
i g
xi
i

Decode((N, g), k, h):

e0 := DistN,1(hk) mod N mod 2
return e0, e0

KeyGen((N, g), f):

write f(x) =
⊕

i fixi
k ← [0, N)
K0 := gk0
Ki := gki exp(Nfi),∀i ∈ [1, n]
return K, k

Eval((N, g),K, x, ρ):

r ← [0, N) from random bits ρ
d := DistN,1(Kr

0

∏
iK

xi
i )

return d mod N mod 2

Figure 8: Trapdoor hash function for linear predicates from DCR based on based on our distance
function, which achieves a negligible error rate.
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of a trapdoor hash function, with some notational changes. We support linear predicates, Fn :=
{f(x) =

⊕
i fixi | fi ∈ {0, 1}}. [DGI+19] also gave a DCR-based construction that was in many

ways similar, but since they used the distance function of [BGI16] they had an inverse polynomial
error rate. We instead achieve a negligible error probability.

Theorem 26. The construction in Figure 8 is a (1 − nN−1)-correct trapdoor hash function with
rate 1.

Proof. See Appendix C.2.

6.1 Generalizations

Trapdoor hash functions are only defined to output a single bit, but our construction is really
suited to producing a longer output. A possible generalization would be to allow output in any
abelian group G, so the correctness property would be that if e ← Eval(crs, pk, x; ρ) and e0 ←
Decode(crs, sk, h) then e − e0 = f(x). Then we could achieve G = Z (as long as we have a bound
on |f(x)|) by simply removing the last mod 2 step from Eval and Decode. And G = Z/N sZ would
work with perfect correctness if the mod N were removed as well.

This is useful for constructing rate-1 string OT efficiently. [DGI+19] build 1-out-of-k OT in
batches of n elements, then having the receiver send n public keys selecting the n bits they are
interested in. The same hash h is shared among these n evaluations of the TDH, so if n� |h| (the
bit length of h) then the scheme is rate 1. However, this requires sending many public keys. The
above generalization of TDH would instead allow TDH to output large chunks of data, with nearly
|h| bits of output per evaluation.
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A HSS Proofs and Extras

A.1 Proofs for HSS Construction

Theorem 23. The HSS scheme in Figure 3 is authenticated for wire types {IN,REG}.

Proof. Let A be an adversary that makes calls to H from Definition 16 that has a non-negligible
probability of making guess return true. Clearly any call to guess that returns true must use
a dishonest share, i.e. sj 6= U [i]j . This immediately rules out guessing a share of type IN since
Decode checks that the two shares are identical.

With REG shares, for neither call to Decode to return ⊥ we must have U [i]1 − U [i]0 ≡ϕ 0 ≡ϕ
s1 − s0. Since s j = U [i]j , this implies that sj ≡ϕ U [i]j . We will use this fact to build an adversary
A′ against the privacy of the HSS scheme. A′ runs A while simulating its access to share using the
Share oracle Oi,pk,sk0,sk1 . It keeps track of the half of the honest shares U [i]j that it can compute,
saving them in share and updating them in eval, the same as H does. It always returns false
from guess, which is indistinguishable until A succeeds in causing sj ≡ϕ U [i]j .

A′ checks for this case by computing the difference µ = sj − U [i]j , and if it is nonzero seeing
whether it is a multiple of ϕ by checking if cµ ≡N 1. If so, it computes the largest k such that
Nk | µ, and finds µ′ = N−kµ. µ′ is sufficient to decrypt Damg̊ard–Jurik ciphertexts:

log(cµ
′
)

Nµ′
=
µ′

ϕ

log(cϕ)

Nµ′
=

log(cϕ)

Nϕ
= DJ.DecN,s,ϕ(c).

Then a single query to Oi,pk,sk0,sk1(IN, 0, 1) can be decrypted to find i, successfully attacking the
privacy of the HSS scheme.

A.2 Additive Decoding

Notice how in the previous HSS scheme decoding REG shares is almost additive. The only flaw is
that we need to divide by ϕ. With circular security we could simply encrypt ϕ−1 and multiply it
as the last step. It’s a little trickier without.

Instead, we generate a second key (N ′, ϕ′) and use it to encrypt ϕ−1 mod N ′s
′
, avoiding the

need for a circular security assumption. But then how do we decrypt this ciphertext? We would
need the all of the REG shares to be of multiplies of ϕϕ′ so that ciphertexts encrypted with either
key can be decrypted. This would still leave the output as a multiple of ϕ′ at the end, after the
ϕϕ−1 factor cancels, and it seems like we are back where we started. However, there is a fix: make
N s be much larger than N ′s

′
, and every REG share be a multiple of ϕϕ′(ϕ′−1 mod N ′s

′
), while still

keeping them within the bound. Then this last decryption step will output modulo N ′s
′
, so ϕ′ and

ϕ′−1 mod N ′s
′

will cancel.
We show the modifications to the HSS scheme in Figure 9. The biggest change is to Setup,

which now computes the second key pair (N ′, ϕ′) and gives out an encryption c′ of µ = ϕ−1 under
the second key. Because the only time we have an upper bound on the size of a plaintext value x
is during evalj(φ, r), we take that opportunity to compute additive shares of x, using c′ and shares
of ϕx. We change valuesj(REG) Z× Z to store both additive shares. Finally, we change Share and
Decode to match, so that they encode and decode shares in Z× Z.

Lemma 23. Assuming DCR, the modified scheme in Figure 9 is a (1 − p)-correct HSS scheme
that is authenticated for wire types {IN,REG} and has additive decoding for REG, where p =
M
(
N1−sN ′s

′+1 +N ′ −s
′)

.
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Setup(1κ):

(N,ϕ)← DJ.KeyGen(1κ)

(N ′, ϕ′)← DJ.KeyGen(1κ)

µ := (ϕ+N ′s
′Z)−1

µ′ := (ϕ′ +N ′s
′Z)−1

c′ ← DJ.EncN ′,s′(µ)

ϕ0 ← [0, N N ′s
′+12κ )

ϕ1 := ϕ0 + ϕ ϕ′µ′

return (N,N ′, c′), ϕ0, ϕ1

Share((N,N ′, c′), ϕ0, ϕ1,REG, x):

s0 ← [0, N s+1 N ′s
′+1 2κ)

s′0 ← [0, N s2κ)

x′ := x mod N s

s1 := s0 + (ϕ1 − ϕ0)x′

s′1 := s′0 + x′

return (s0, s
′
0), (s1, s

′
1)

valuesj(REG) = Z× Z
evalj(×, r)(c, (sj , s′j)):

return DistN,s(c
sj )

evalj(φ, r ‖ r′)(tj):
sj = (tj + r) mod N s

s′j = DistN ′,s′(c
′sj ) + r′ mod N ′s

′

return (sj , s
′
j)

Decode((N,N ′, c′), ϕ0, ϕ1,REG, (s0, s
′
0), (s1, s

′
1)):

if (s1 − s0) 6= (ϕ1 − ϕ0)(s′1 − s′0) :

return ⊥
return s′1 − s′0 +N sZ

Figure 9: Modifications to the HSS scheme in Figure 3 needed to support additive decoding. The
changes are boxed , and only those functions that have been modified are shown.

Proof. The proof is very similar to Theorem 22, so we will only give the differences. For correctness,
we have that s1 − s0 = (ϕ1 − ϕ0)x′ = (ϕ1 − ϕ0)(s′1 − s′0), so Decode will output x′ +N sZ = x. For
homomorphism we need to prove that the new evalj(φ, r) is correct. The same analysis as before

gives that the probability of failure when finding sj is at most (ϕ1−ϕ0)M
Ns , which this time is upper

bounded by MN1−sN ′s
′+1, because ϕ′ < N ′ and µ′ < N ′s

′
.

Calculating s′j gives a second source of error. While the it will be correct modulo N ′s
′

because
of a similar distance function argument to before, based on s1 − s0 always being a multiple of ϕ′,
there is still the modulo operation at the end. Because s′1 − s′0 ≡N ′s′ ϕϕ

′µ′xµ ≡N ′s′ x, where x is
the decoded value of the share, Lemma 21 implies that s′1 − s′0 = x other than with probability at
most x

N ′s′
≤MN ′ −s

′
. Adding these two error probabilities gives the correctness bound.

We show privacy using a sequence of hybrids.

1. Replace ϕ1 with a uniformly random integer in [0, NN ′s+12κ). If j = 0 this makes no
difference from the adversaries perspective. If j = 1 then ϕ1 was uniformly random in
[ϕϕ′µ′, ϕϕ′µ′ + NN ′s+12κ). This is only distinguishable with advantage ϕϕ′µ′

NN ′s+12κ
< 2−κ

because the distributions are identical in all but that fraction of the possibilities.

2. Do the same to the share (s1, s
′
1) produced by Share on REG wire type, and to the share s1

from MUL. A similar argument gives a distinguisher advantage bound of 2−κ per Share call.

3. Sample c′ ← DJ.EncN ′,s′(0) instead of encrypting µ. This is indistinguishable by the CPA
security of Damg̊ard–Jurik encryption as ϕ′ and µ′ are unused.

4. In Share, generate c as DJ.EncN ′,s′(0). Again, this is indistinguishable by the CPA security of
Damg̊ard–Jurik encryption, because ϕ and µ are now unused.
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In this final hybrid the input x to Share is unused, so Oi can be swapped for O i in the privacy
distinguisher game.

Authentication follows a very similar argument to before. It’s impossible to fake a IN share
because the two parties have identical shares, and any adversary that can fake a REG share can
find ϕϕ′µ′, then use it to decrypt the ciphertexts and break privacy.

Finally, we have additive decoding for wire type REG because when Decode does not error it
must return s′1 − s′0 +N sZ.

Choosing appropriate parameters is a bit trickier than the previous construction, but since
N and N ′ are of approximately the same size we can roughly minimize the error probability by
choosing s = 2s′ + 2. Then p ≈ 2MN−s

′
, which is clearly negligible as a function of N and s′.

Public key sharing works for this new protocol in exactly the same way as before, since we did
not change the sharing process for IN shares, and everything else was based on that one share type.

B ORAM Details

B.1 Security Definition

We define the ideal and real worlds as follows:

Ideal World The ideal functionality FORAM maintains the updated vector D and it correctly
answers each of client’s queries.

• Setup The environment Z sends the initial database D to the client. The client forwards this
database D to FORAM , which sends N = |D| to the simulator S and the fact that the Setup
function was being invoked. The simulator returns ok or abort to FORAM , and for both these
cases FORAM forwards to the client ok or ⊥ respectively.

• Access The environment Z sends the operation op = (read, idx) or op = (write, idx, data) to
the client, which it forwards to the ideal functionality FORAM . FORAM notifies S that the
Access function is being invoked without leaking the operation op. If S says ok, the FORAM
outputs D[idx] to the client if it was the read operation, and for a write operation it updates
D[idx]← data. If S returns abort, FORAM returns ⊥. The client forwards the message from
FORAM to Z.

Real World The environment Z sends the initial database D to the client. The client runs the
Setup protocol with the two servers S0 and S1. The adversary A controls the behavior of only
one of these two servers. Whenever the environment Z sends the operation op = (read, idx) or
op = (write, idx, data) to the client, it runs the Access protocol with the two servers. The client
forwards its output of the Access protocol to Z and the adversary outputs its view to Z after each
operation.

Definition 23. (Simulation based security definition for privacy+verifiability) A protocol
∏
ORAM

securely realizes the ideal functional FORAM if for any probabilistic polynomial-time real-world
adversary A there exist a simulator S, such that for all non-uniform, polynomial-time environment
Z we have that:

|Pr[REAL∏
ORAM ,A,Z = 1]− Pr[IDEALFORAM ,S,Z = 1]| ≤ negl(λ)

For some negligible function negl and security parameter λ.
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B.2 ORAM Proof

Theorem 25. The distributed ORAM construction described in Figure 6 and Figure 7 satisfy the
security Definition 23.

Proof. We describe the simulator and the sequence of hybrids to show that the real world and the
ideal world simulation are indistinguishable.

Simulator S: The simulator runs the Setup protocol on behalf of the honest client and the honest
server on a dummy database D′ of size N containing all zero blocks. For each Access operation the
simulator runs the honest Access protocol using a dummy index idx′ = 0 for both the honest client
and server. If the simulated client ever aborts during the protocol, then the simulator sends abort
to FORAM and stops responding to future Access operations, else it sends ok to FORAM .

Sequence of hybrids. Next we show a sequence of hybrids which prove that the real and the
ideal simulation are indistinguishable.

Game 0 This is the real game REAL∏
ORAM ,A,Z .

Game 1 The client simulates both servers honestly, and uses the shares and shared meta-data
returned from these honest servers instead of from the real servers. The real shares are only
used to determine if the protocol should abort, with the same condition as before.

Game 0 and Game 1 can only differ if the honest shares and real shares (of either the data
or the meta-data) decode to distinct non-aborting results. For the data, this would violate
the authentication property Definition 16. Similarly, the meta-data is authenticated using
the universal hash function.

Let md0,md1 be the honest meta-data shares, and let md′0,md′1 be the real meta-data
shares. Similarly, letHmd0 , Hmd1 andH ′md0

, H ′md1
be the honest and real shares of the universal

hash of the meta-data. Because at most one party has been corrupted, we have mdi = md′i and
Hmdi = H ′mdi

for some i ∈ {0, 1}. We have H(md1−md0) = Hmd1−Hmd0 and H(md′1−md′0) =
H ′md1

−H ′md0
because the honest shares always authenticate correctly and because the protocol

must not abort for a difference to occur between the two games. Subtracting these two
equations, we get

H(md′1 −md′0)−H(md1 −md0) = H ′md1 −H
′
md0 −Hmd1 +Hmd0 = (−1)i(H ′mdi

−Hmdi
)

Notice that the right-hand side of the equation is known to the corrupted party i, as one
is the share they provided and the other is the share that they would have given had they
been honest. Given only the honest plaintexts md1 −md0 and a single party’s shares, which
contains no information about the chosen hash H from the universal family, it must have
been possible to find the difference between two hashes. Therefore, this event has negligible
probability by the uniform differences property of the universal hash family.

Game 2 Instead of simulating two honest servers and decoding the results of their shares, the
client will now instead stores the data and meta-data plaintexts and operate on them instead.
For the meta-data, this is equivalent by the correctness of secret sharing. For the data, this
follows from the HSS scheme’s correctness, as applied to a whole circuit in Lemma 15.
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Game 3 Introduce an ideal functionality FORAM which stores the correct database D and the
client sends it the Access query whenever it doesn’t abort. The equivalence of this computation
comes from the correctness of the select and eviction operations, and the correctness of Onion
ORAM.

Game 4 Make the client run the setup procedure with the real servers using the dummy database
D′, as used by the simulator, instead of the one used by the environment. Additionally,
only share dummy information in SelectShare, so i is always set to 0. These changes are
indistinguishable by the privacy property of the HSS scheme, which implies that changing
the input to Share is indistinguishable from the point of view of a single server.

Game 5 For each Access function call, the client just runs a dummy read operation on index idx′ =
0 instead of using the operation input by the environment. Game 4 and 5 are indistinguishable
given that the physical memory access pattern on the server is indistinguishable for any
polynomial sequence of operations. This follows directly from the privacy of Onion ORAM.

After these hybrids, we are now at the simulator.

C Trapdoor Hash Function Details

C.1 Definition

We adapt the following definition from [DGI+19]. The only changes are to the notation, and that
we allow the challenge parameters for the security properties to be chosen adaptively depending
on the common reference string. The main notational differences are that what they call the hash
key we call the common reference string, their encoding key is our public key, and their trapdoor is
our private key. We believe that these changes make the resemblance between trapdoor hashes and
homomorphic encryption more clear. We also write the properties as being algorithms producing
indistinguishable distributions.

Definition 25. A (1 − p)-correct trapdoor hash function H for a class of predicates {Fn}n for
each input size n (Fn : {0, 1}n → {0, 1}) consists of the algorithms

• crs← Setup(1κ, 1n) samples the common reference string.

• (pk, sk) ← KeyGen(crs, f) creates a key pair that can be used to evaluate f ∈ Fn and decode
the result, respectively.

• h := Hash(crs, x; ρ) hashes an input x ∈ {0, 1}n using random bit stream ρ.

• e := Eval(crs, pk, x; ρ) evaluates the predicate represented by pk on x, returning the encoded
result.

• (e0, e1) ← Decode(crs, sk, h) takes a hash h and outputs the encodings corresponding to the
possible predicate outputs, 0 and 1.

such that the following conditions hold.

34



Correctness For any x ∈ {0, 1}n, Eval(crs, pk, x; ρ) must output ef(x), where pk was chosen using
f . That is, for any efficient adversary A and any n, the distribution

crs← Setup(1κ, 1n)
(x, f)← A(crs)
ρ← $
h := Hash(crs, x, ρ)
(pk, sk)← KeyGen(crs, f)
e := Eval(crs, pk, x, ρ)
e0, e1 ← Decode(crs, sk, h)
return e, e0, e1

has only negligible probability of giving e 6= ef(x), and Pr
[
e = e

f(x)

]
≤ p. Here, ρ← $ denotes

generating a uniformly random bit stream.

Function Privacy f cannot be determined from pk. More precisely, the distributions

crs← Setup(1κ, 1n)
(view, f0, f1)← A(crs)
(pk, sk)← KeyGen(crs, f0)
return view, pk

crs← Setup(1κ, 1n)
(view, f0, f1)← A(crs)
(pk, sk)← KeyGen(crs, f1)
return view, pk

must be indistinguishable, for any n and PPT adversary A.

Input Privacy Hash leaks nothing about its input x. Formally, for any efficient adversary A the
following distributions must be indistinguishable.

crs← Setup(1κ, 1n)
(view, x0, x1)← A(crs)
ρ← $
h := Hash(crs, x0, ρ)
return view, h

crs← Setup(1κ, 1n)
(view, x0, x1)← A(crs)
ρ← $
h := Hash(crs, x1, ρ)
return view, h

Compactness The output of Hash must have size bounded by a polynomial in κ, independent of
n.

The rate of H is |e|, the length in bits of Eval’s output.

C.2 Proof

The proof of function privacy for our scheme hinges on the following statement.

Lemma 25. For any PPT adversary A and any positive integers n, s the following distributions
are indistinguishable.

(N,ϕ)← DJ.KeyGen(1κ)
(g1, . . . , gn)← (Z/N s+1Z)×

view, (a1, . . . , an)← A(N, g1, . . . , gn)
r ← [0, N)
return view, a1g

r
1, . . . , ang

r
n

(N,ϕ)← DJ.KeyGen(1κ)
(g1, . . . , gn)← (Z/N s+1Z)×

view, (a1, . . . , an)← A(N, g1, . . . , gn)
r ← [0, N)
return view, gr1, . . . , g

r
n
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Proof. This is almost exactly [BG10, Lem. B.1]. The only differences are that here each gi is
sampled in (Z/N s+1Z)× instead of in the subgroup of perfect powers of N s, and r is sampled in
[0, N) instead of [1, N2(s+1)]. But the perfect powers of N s have multiplicative order dividing ϕ,
and modulo ϕ the uniform distributions on both [0, N) and [1, N2(s+1)] have negligible statistical
distance to uniform. After applying this change in a hybrid, we then use that choosing gi to be a
random perfect power of N s is equivalent to sampling gi ← DJ.EncN,s(0), so the CPA$ security of
Damg̊ard–Jurik implies that it is indistinguishable to sample gi ← (Z/N s+1Z)×.

Theorem 26. The construction in Figure 8 is a (1 − nN−1)-correct trapdoor hash function with
rate 1.

Proof. There are four conditions that must be met.

Correctness Let d0 = DistN,1(hk) and d1 = DistN,1(Kr
0

∏
iK

xi
i ). Then by Theorem 19, we have

d1 − d0 = DistN,1

(
gkr0

∏
i

gkxii exp(Nfixi)

)
−DistN,1(gkr0

∏
i

gkxii )

=
∑
i

fixi.

Lemma 25 shows that gr0 is indistinguishable from a uniformly random element of (Z/N2Z)×,
so Corollary 20 implies that d0 is uniformly random. Then by Lemma 21, d1 mod N −
d0 mod N =

∑
i fixi with probability at least 1 − n

N . Assuming that this holds, e − e0 ≡2∑
i fixi ≡2 f(x), and so e = ef(x) and e 6= e

f(x)
. Therefore the correctness properties fail

with probability at most n
N .

Function Privacy By Lemma 25, it would be indistinguishable to sample every Ki as gki , i.e. to
set every fi to be zero. Now the distribution of pk does not depend on f , so privacy follows.

Input Privacy By Lemma 25, gr0 is indistinguishable from uniformly random in (Z/N2Z)×, so it
completely hides every xi.

Compactness The output of Hash is in (Z/N2Z)×, which has size bounded by 4`(κ), a polynomial
in κ.
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