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Abstract

A proxy re-encryption scheme can be executed by a semi-trusted proxy, so that
we can transform a ciphertext encrypted with a key to another ciphertext encrypted
with different key without allowing the proxy to access the plaintext. A method
to implement a secure proxy re-encryption is by first converting the plaintext to
an intermediate form by using an all or nothing transform (AONT). In this paper,
we describe an improved proxy re-encryption scheme for symmetric cipher by
advocating the usage of a variant of the AONT function in the proxy re-encryption
scheme. We show that the scheme secure under Chosen Plaintext Attack (CPA) for
all possible types of attackers.

1 Introduction
In [1], the authors proposed a symmetric encryption scheme that supports proxy re-
encryption by first transforming the plaintext into a random sequence using an all
or nothing transform (AONT). However, the original security proof assumes that the
AONT always produces random sequence of blocks, which is not applicable if the users
who have access to the previous encryption keys (i.e. the previous users) are allowed to
choose the plaintexts. In this paper, we propose an improved version by introducing the
usage of a variant of Rivest’ AONT. With this improvement we show that the scheme is
secure under Chosen Plaintext Attack (CPA) for all types of attackers.

Some applications of the proxy re-encryption schemes are as follows:

1.1 Fast Key Update in an Encrypted Local Database
To protect his/her data, a user encrypts his/her local files or databases. When the key
is unintentionally leaked, the user needs to update the encryption key. The simple
method is by decrypting the data with the old key and then encrypting with the new
key. The simple method is costly, especially for large data, because we need to execute
decryption and encryption function. It is desirable to have a re-encryption function that
is comparable to one or less encryption/decryption function.
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1.2 Key Update in an Encrypted Data in Cloud
The user may store the data in a cloud for better accessibility and maintenance. To
protect the stored data, the user encrypts the data and keeps the encryption keys in a
secure storage. Because the data is accesible online, the user can also share the data
by sharing the encryption key to another users. However, the problem is when the user
needs to revoke the access, the user needs to update the key, which is by using the simple
solution (decrypt and then encrypt), the user needs to download the data, decrypt with
the old key, encrypt with the new key, and then upload the data to the cloud. A better
solution is by securely delegating the re-encryption mechanism to a semi-trusted proxy
in the cloud.

2 Related Work
All or nothing transform (AONT) was first proposed by Rivest [2] to convert = blocks
message " = < [1], ..., < [=] into a pseudo message " ′ = < [1] ′, ..., < [B] ′ for B > =

so that the original message cannot be recovered if any block of the pseudo message
is missing. Rivest proposed a concrete AONT’s scheme by encrypting the blocks and
hiding the encryption key in a block that is produced by xor-ing all encrypted blocks
with the encryption key.

The Rivest scheme is similar to the Optimal Asymmetric Encryption Padding
(OAEP) proposed by Bellare et.al. [3]. Boyko proved that OAEP is secure in sev-
eral forms of security definition including adaptive semantic security [4]. Canetti et
al. proposed some All-or-Nothing Transform schemes [5] while Dodis el al. proposed
exposure resilient cryptography [6]. Desai proposed CTRT, that is a construction of
AONT similar to Rivest’s scheme based on CTR mode of encryption [7]. Stinson
provided an AONT scheme in the context of unconditional security [8]. More recently,
Boneh et al. proposed key homomorphic Pseudorandom Function (PRF) that is secure
in the standard model [9].

There are some schemes proposed for direct transformation and proxy re-encryption
in the asymmetric key encryption setting [10, 11, 12, 13, 14]. A paper by Blaze et al.
[14] proposes a bidirectional proxy re-encryption based on ElGamal’s encryption. The
scheme in [10, 11, 12, 13] improve the Blaze et al.’s scheme. An example is the work
of Atenise et al. [10] that uses pairing.

Cook et al. proposed a solution for proxy re-encryption for symmetric ciphers
by using double encryption [15]. Another related work is the conversion method for
Galois Counter Mode (GCM) mode [16]. It is not intended for proxy re-encryption
but rather for fast re-encryption. In this method, the re-encryption needs to execute
two encryptions, so that this mechanism is not much more efficient than decrypt-then-
encrypt approach.

In [1], the authors proposed a symmetric encryption scheme that supports proxy
re-encryption by first transforming the plaintext into the pseudomessage using an all or
nothing transform (AONT).However, the authors proved the scheme secure by assuming
the AONT has some special characteristics which is not applicable in all attack models.
In this paper, we show a security proof which only needs the assumption about the
security of encryption and hash functions used by AONT.
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3 Preliminaries
Let< [1], < [2], ..., < [=] be a sequence of = blocks message where the size of each< [8]
is ; bits.The encryption algorithm PR is a quintiple algorithms = (G, E,D,RG,RE)
where [1]:

• G is a key generation algorithm that produces the keys to be used by E and D

• E is the encryption algorithm that transforms = input blocks< [1], < [2], ..., < [=]
to B output ciphertext blocks 2[1], 2[2], ..., 2[B] for B ≥ =

• D is the decryption algorithm that transforms the ciphertext 2[1], 2[2], ..., 2[B]
into the plaintext < [1], < [2], ..., < [=]

• RG is an algorithm to generate keys to be used by the re-encryption algorithm
RE

• RE is the re-encryption algorithm that transforms the ciphertext 2[1]�, 2[2]�, ..., 2[B]�
encrypted with private key  � into ciphertext 2[1]�, 2[2]�, ..., 2[B]� encrypted
with private key  �

Notion of Security. Security of the symmetric encryption scheme is defined in
term of Left-or-Right Indistinguishability [17] as follows .

Definition 1 (LOR-CPA [17]) Let SE = K, E,D be a symmetric encryption scheme.
Let 1 ∈ {0, 1} and : ∈ N. Let �2?0 be an adversary that has access to the oracle
E (· ). We consider the following experiment:

Experiment Exp;>A−2?0−1SE,�2?0 (:):

 
'←− K(:)

3 ← �
E ( ·)
2?0 (:)

return 3
We define the advantage of the adversaries as:

Adv;>A−2?0−1SE (�) = Pr
[
Exp;>A−2?0−1

SE,�2?0 (:) = 1
]

− Pr
[
Exp;>A−2?0−0

SE,�2?0 (:) = 1
]

Definition 2 (Pseudorandom function family) Let � be a pseudorandom function,
the advantage of an adversary � to distinguish the outputs of � to a random function '
is defined as follows:

Adv?A 5
�
(�) = Pr[ 8

$←−  : �� 8 ( ·) = 1]

− Pr[' $←− F ;,! : �' ( ·) = 1]

Definition 3 (Pseudorandom permutation family) Let � be a pseudorandom permu-
tation, the advantage of an adversary � to distinguish the outputs of � to a random
permutation % is defined in the following formula:
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Adv?A ?
�
(�) = Pr[ 8

$←−  : �� 8 ( ·) = 1]

− Pr[% $←− P; : �% ( ·) = 1]

Lemma 1 (Difference Lemma [18, 19]) Let �, �, � be events defined in some proba-
bility distribution, and if � ∧ ¬� ⇐⇒ � ∧ ¬�, then |%A [�] − %A [�] ≤ %A [�]

Proof :

%A [�] − %A [�] | = |%A [� ∧ �] + %A [� ∧ ¬�]
−%A [� ∧ �] − %A [� ∧ ¬�]

= |%A [� ∧ �] − %A [� ∧ �] |
≤ %A [�]

4 The Primitives
4.1 All or Nothing Transform (AONT)
We propose a variant of Rivest’s AONT as shown in the following algorithm (E-
AONTH and D-AONTH). The main difference to the original Rivest scheme is: we
include another "pass" so that the attacker cannot control the outputs of AONT even if
he/she knows the key  ′. We also use a hash function in the second "pass" rather than
an encryption with a "fixed key". The differences are highlighted by boxes.

Algorithm E-AONTH�,�−1 ,� (2CA, < [1] ...< [=])

 ′
$←− {0, 1};

for 8 = 1 to = do
G [8] ← < [8] ⊕ � ′ (2CA + 8)

end for
<′[= + 1] =  ′ ⊕ � (G [1] ...G [=])
for 8 = 1 to = do

<′[8] ← G [8] ⊕ � (<′[= + 1] ⊕ (2CA + 8))
end for
return <′[1] ...<′[= + 1]

AlgorithmD-AONTH�,�−1 ,� (2CA, <′[1] ...<′[=+1])
for 8 = 1 to = do

G [8] ← <′[8] ⊕ � (<′[= + 1] ⊕ (2CA + 8))
end for
 ′ = <′[= + 1] ⊕ � (G [1] ...G [=])
for 8 = 1 to = do
< [8] ← G [8] ⊕ � ′ (2CA + 8)

end for
return < [1] ...< [=]

4.2 The functions PE,DP, FC, and PG
The functions PE,DP, FC are exactly the same as in [1]. The permutation PE
transforms the second input permuting the sequence according to the first input sequence
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(permutation key). The inverse of permutationDP converts the sequence that has been
permuted using the PE to the original form. PG finds a conversion key between two
permutations.

Algorithm PE ? [1]...? [=] (G [1] ...G [=])
for 8 = 1 to = do
G ′[8] ← G [? [8]]

end for
return G ′[1] ...G ′[=]

Algorithm DP ? [1]...? [=] (G [1] ...G [=])
for 8 = 1 to = do
G ′[? [8]] = G [8]

end for
return G ′[1] ...G ′[=]

Algorithm FC(?�[1] ...?�[=], ?� [1] ...?�[=])
for 8 = 1 to = do
for 9 = 1 to = do
if ?�[8] = ?� [ 9] then
?� [ 9] ← 8

break
end if

end for
end for
return ?� [1] ...?� [=]

The permutation key generator PG generates a permutation key that consists of a
sequence of distinct numbers from 1 to =. Our scheme uses an algorithm that takes an
input a key : and a number =. The algorithm generates the random sequence by sorting
output of an encryption function � ().
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Algorithm PG (=)
for 8 = 1 to = do
? [8] = 8
C<? [8] = � (8)

end for
QuickSort(?, C<?, 1, =)
return ?

Function QuickSort(?, C<?, ;>, ℎ8)
if ;> < ℎ8 then
@ ←Partition(?, C<?, ;>, ℎ8)
QuickSort(?, C<?, ;>, @ − 1)
QuickSort(?, C<?, @ + 1, ℎ8)

end if
EndFunction
Function Partition(?, C<?, ;>, ℎ8)
?8{>C ← C<? [ℎ8]
8 ← ;>

for 9 = ;> to ℎ8 − 1 do
if C<? [ 9] ≤ ?8{>C then
swap C<? [8] with C<? [ 9]
swap ? [8] with ? [ 9]
8 ← 8 + 1

end if
end for
swap C<? [8] with C<? [ℎ8]
swap ? [8] with ? [ℎ8]
return 8

EndFunction

5 The Proposed Scheme
We describe the improved scheme in the algorithm PR = (G, E,D,RG,RE) that
works on ; × = bits message < [1] ...< [=] where the message is divided into = blocks
with size ;. The key generator G produces three random permutation keys %1, %2, %3
that are later used by either E and D for encryption and decryption. Encryption
algorithm E works by first converting the plaintext into AONT’s pseudomessage, and
then uses three permutation keys %1, %2, %3 to produce the ciphertext with a random
initialization vector (8{). The decryption algorithm D is the inverse of the E. The
reencryption key generator RG produces the reencryption keys that are later used by
the rencryption function RE to update the encryption key.
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Algorithm G(�,  1,  2,  3, ;, =)
if � then
 1

$←− {0, 1};

 2
$←− {0, 1};

 3
$←− {0, 1};

end if
%1 ← PG 1 (;)
%2 ← PG 2 (;)
%3 ← PG 3 (=)
return %1, %2, %3

Algorithm E( 1,  2,  3, 2CA, < [1] ...< [=], ;, =)
(%1, %2, %3) ← G(0,  1,  2,  3, ;, =)
8{

$←− {0, 1};
<′[1] ...<′[= + 1] ← E-AONTH(2CA, < [1] ...< [=])
<′′[1] ...<′′[=] ← PE%3 (<′[1] ...<′[=])
2[0] ← PE%1 (<′[= + 1] [1...;]) ⊕ PE%2 (8{[1...;])
for 8 = 1 to = do
2[8] ← (PE%1 (<′′[8] [1...;])

⊕ PE%2 (2[8 − 1] [1...;]))
end for
return 8{, 2[0] ...2[=]

AlgorithmD( 1,  2,  3, 2CA, 8{, 2[0] ..., 2[=], ;, =)
(%1, %2, %3) ← G(0,  1,  2,  3, ;, =)
for 8 = = to 1 do
< [8] ′′← DP%1 (2[8] ⊕ PE%2 (2[8 − 1] [1...;]))

end for
<′[= + 1] = DP%1 (2[0] [1...;] ⊕ PE%2 (8{[1...;]))
<′[1] ...<′[=] ← DP%3 (<′′[1] ...<′′[=])
< [1] ...< [=] ← D-AONTH(2CA, <′[1] ...<′[= + 1])
return < [1] ...< [=]

Algorithm RG( 1,  2,  3)
(%1, %2, %3) ← G(0,  1,  2,  3, ;, =)
(%′1, %

′
2, %

′
3) ← G(1, 0, 0, 0, ;, =)

� 1 ← FC(%1, %
′
1)

� 3 ← FC(%3, %
′
3)

return � 1,  2,  
′
2, � 3
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AlgorithmRE(� 1,  2,  
′
2, � 3, 8{, 2[0] ...2[=], ;, =)

%2 ← PG 2 (;), %′2 ← PG ′2 (;)
for 8 = = to 1 do
2′[8] ← PE� 1 (2[8] ⊕ PE%2 (2[8 − 1] [1...;]))

end for
2′′[1] ...2′′[=] ← PE� 3 (2′[1] ...2′[=])
2′′[0] = PE� 1 (2[0] ⊕ PE%2 (8{[1...;])))

⊕ PE%′2 (8{[1...;]))
for 8 = 1 to = do
2[8] ← 2[8] ′′ ⊕ PE%′2 (2

′′[8 − 1] [1...;])
end for
return 8{, 2[0] ...2[=]

Correctness of the Decryption and Re-encryption Functions. It is easy to check
that the decryption D is the inverse of the encryption function E. As shown in [1],
the re-encryption algorithm RE correctly converts a ciphertext encrypted with keys
%1, %2, %3 to new keys %′1, %

′
2, %

′
3.

6 Security Analysis
As described in [1], there are three types of attackers: the outsiders, the previous users
and the proxy. The authors in [1] argued about the security of the scheme by assuming
that the AONT always produces random sequence, which can be false under some
circumstances, for example when the previous users is allowed to choose the plaintexts
(which is in the original proof [1] is not allowed).

6.1 Security of Encryption
First, we analyze the security of the encryption scheme against the attackers who have
no access to any keys (outputs of G and RG). In the Left-or-Right Indistinguishability,
the adversary chooses two message blocks " [0], " [1]. The encryption oracle encrypt
these blocks, and the adversary should distinguish whether the encrypted blocks belong
to the left or right world.

Theorem 1 Let � in AONT defined in Section 4.1 be a pseudorandom function and
Let PR be the symmetric encryption that support proxy re-encryption defined in Section
5. The advantages of an adversary � attacking PR in LOR-CPA as defined in Section
3 is at most:

Advlor−cpa
PR (�) ≤ 2 · Adv?A 5

�
(�)

Proof 1 Game based proof.

G0. This game represents the original game. In each query @8 , the adversary �
chooses two = blocks plaintexts ("8 [0], "8 [1]) and given access to the encryption
oracle. The oracle encrypts the plaintexts and return the ciphertext, the adversary
should guess whether the ciphertexts belong to the left (0) or right (1).
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%1
$←− %, %2

$←− %, %3
$←− %

A
$←− {0, 1}, 1 $←− {0, 1},  ′ $←− {0, 1}; , 8{ $←− {0, 1}

for 8 ← 1...@ do
("8 [0], "8 [1]) ← �(A , �1 , ..., �8−1)
<8 [1]...<8 [=] ← "8 [1]
for 9 = 1 to = do

G [ 9 ] ← <[ 9 ] ⊕ � ′ (8 · = + 9)
end for
<′ [= + 1] ←  ′ ⊕ � (G [1]...G [=])

for 9 = 1 to = do
<′ [ 9 ] ← G [ 9 ] ⊕ � (<′ [= + 1] ⊕ (8 · = + 9))

end for
28 [0] ← PE%1 (<

′
8 [= + 1]) ⊕ PE%2 (8{ [1...; ])

for 9 = 1 to = do
28 [ 9 ] ← PE%1 (<

′
8 [%3 [ 9 ] ]) ⊕ PE%2 (28 [ 9 − 1])

end for
�8 ← 28 [0]...28 [=]

end for
3 ← �(A , �1 , ..., �@)
return (1 = 3)

G1. In this game, we assume � is pseudorandom function with a PRF advantage
Adv?A 5

�8
(�). Because the input to � is random, the outputs of � are also

random.

%1
$←− %, %2

$←− %, %3
$←− %

A
$←− {0, 1}, 1 $←− {0, 1},  ′ $←− {0, 1}; , 8{ $←− {0, 1}

for 8 ← 1...@ do
("8 [0], "8 [1]) ← �(A , �1 , ..., �8−1)
<8 [1]...<8 [=] ← "8 [1]
for 9 = 1 to = do

G [ 9 ] $←− {0, 1};

end for

<′ [= + 1] $←− {0, 1};

for 9 = 1 to = do

<′ [ 9 ] $←− {0, 1};

end for
28 [0] ← PE%1 (<

′
8 [= + 1]) ⊕ PE%2 (8{ [1...; ])

for 9 = 1 to = do
28 [ 9 ] ← PE%1 (<

′
8 [%3 [ 9 ] ]) ⊕ PE%2 (28 [ 9 − 1])

end for
�8 ← 28 [0]...28 [=]

end for
3 ← �(A , �1 , ..., �@)
return (1 = 3)

Let Pr[��
0 ⇒ 1] be the probability that the adversary correctly guess the left or

right oracle, then:

Adv;>A−2?0−1PR (�) = 2 · Pr[��
0 ⇒ 1] − 1

Proof:
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Pr[��0 ⇒ 1]

= Pr[��0 ⇒ 1|1 = 1] · 1
2
+ Pr[��0 ⇒ 1|1 = 0] · 1

2

= Pr[��0 ⇒ 1|1 = 1] · 1
2
+

(
1 − Pr[��0 ⇒ 0|1 = 0] · 1

2

)
=

1
2
+ 1

2
· (Pr[��0 ⇒ 1|1 = 1] − Pr[��0 ⇒ 0|1 = 0])

=
1
2
+ 1

2
·
(
Adv;>A−2?0−1SE (�)

)
Because in game G1 the ciphertext is produced randomly, then

Pr[��
1 ⇒ 1] = 1

2

and

Adv;>A−2?0PR (�) = 2 · Pr[��0 ⇒ 1] − 1

≤ 2 ·
(
Pr[��1 ⇒ 1] + Adv?A 5

�
(�)

)
− 1

≤ 2 · Adv?A 5
�
(�) + 2 · 1

2
− 1 ≤ 2 · Adv?A 5

�
(�)

6.2 Security Against Previous Users
The previous users, that is the attacker who have access to previous outputs of key
generation G before re-encryption. The difference of the previous user to the normal
attacker is he/she may also have access to all plaintext "8 (from previous accesses),
intermediate values represented by AONT("8), and the key ( ′) used by AONT. How-
ever, the previous user cannot access any outputs of RG (which can only be accessed
by the proxy).

Theorem 2 Let � in AONT defined in Section 4.1 be a pseudorandom function and
Let PR be the symmetric encryption that support proxy re-encryption defined in Section
5. The advantages of an adversary �, who have access to previous encryption keys,
attacking PR in LOR-CPA as defined in Section 3 is at most:

Advlor−cpa
PR (�) ≤ Adv?A 5

�
(�)

(
2 + @(@ − 1)

2;

)
+@(@ − 1)

2;

(
1
2;
+ 3(= + 1)

)
where @ is the number of queries, = is the number of blocks in each query, and ; is the
size of each block.
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Proof 2 Game based proof.

G0/G1. In this game, the adversary can choose G [ 9] because it know the encryption
key  ′, but the adversary cannot choose <′[ 9]. To attack the scheme, first that
adversary try to distinguish the ciphertext by checking 2[0]. The adversary
needs to find three plaintexts G8 [1] ...G8 [=], G: [1] ...G: [=], G:′ [1] ...G:′ [=] so that
<′
8
[=+1] = <′

:
[=+1] ⊕<′

:′ [=+1] ⊕ ′ AND 8{8 = 8{: ⊕ 8{:′ for a fixed  ′, : < 8,
and : ′ < 8. The probability of such condition is @ (@−1)

2;+1 ·
(
Adv?A 5

�
(�) + 1

2;

)
.

%1
$←− %,  2

$←− {0, 1}; , %2
$←− %, %3

$←− %
A

$←− {0, 1}, 1 $←− {0, 1}, 8{ $←− {0, 1},  ′ $←− {0, 1};
for 8 ← 1...@ do
("8 [0], "8 [1]) ← �(A , �1 , ..., �8−1)
<8 [1]...<8 [=] ← "8 [1]
for 9 = 1 to = do
G [ 9 ] ← {0, 1}; // the adversary can choose G [ 9 ], and
<[ 9 ] ← G [ 9 ] ⊕ � ′ (8 · = + 9) // compute the associated <[ 9 ]

end for
<′ [= + 1] ←  ′ ⊕ � (G [1]...G [=])

for 9 = 1 to = do
<′ [ 9 ] ← G [ 9 ] ⊕ � (<′ [= + 1] ⊕ (2CA + 8))

end for
28 [0] ← PE%1 (<

′
8 [= + 1]) ⊕ PE%2 (8{ [1...; ])

for 9 = 1 to = do
28 [ 9 ] ← PE%1 (<

′
8 [%3 [ 9 ] ]) ⊕ PE%2 (28 [ 9 − 1])

end for
�8 ← 28 [0]...28 [=]

end for
3 ← �(A , �1 , ..., �@)
return (1 = 3)

In game G1, we assume the probability of the above conditions is 0, so that

Pr[��0 ⇒ 1] − Pr[��1 ⇒ 1] ≤ @(@ − 1)
2;+1

(
Adv?A 5

�
(�) + 1

2;

)

G2. Because 28 [ 9] ← PE%1 (<′8 [%3 [ 9]]) ⊕ PE%2 (28 [ 9 − 1]), in each query @8 , the
adversary needs to find the collision 2: [ 9] = 28 [ 9 ′] (0 ≤ 9 ≤ =), so that he/she
can deduce PE%1 (<′: [%3 [ 9 + 1]] ⊕ <′

8
[%3 [ 9 ′ + 1]]). This information can be

used to deduce %1 by checking the number of 1s or 0s bits of <′
:
[%3 [ 9 + 1]] ⊕

<′
8
[%3 [ 9 ′ + 1]]. The possibility of collision is defined in the event "bad".
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%1
$←− %,  2

$←− {0, 1}; , %2
$←− %, %3

$←− %
A

$←− {0, 1}, 1 $←− {0, 1}, 8{ $←− {0, 1}; ,  ′ $←− {0, 1};
for 8 ← 1...@ do
("8 [0], "8 [1]) ← �(A , �1 , ..., �8−1)
<8 [1]...<8 [=] ← "8 [1]
for 9 = 1 to = do
G [ 9 ] ← {0, 1}; // the adversary can choose G [ 9 ], and
<[ 9 ] ← G [ 9 ] ⊕ � ′ (8 · = + 9) // compute the associated <[ 9 ]

end for
�8,0

$←− {0, 1};

<′ [= + 1] ←  ′ ⊕ �8,0
for 9 = 1 to = do

�8, 9
$←− {0, 1};

<′ [ 9 ] ← G [ 9 ] ⊕ �8, 9
end for
28 [0] ← PE%1 (<

′
8 [= + 1]) ⊕ PE%2 (8{ [1...; ])

if 28 [0] ∈ ( then
bad← true

end if
( ← ( ∪ {28 [0] }
for 9 = 1 to = do

28 [ 9 ] ← PE%1 (<
′
8 [%3 [ 9 ] ]) ⊕ PE%2 (28 [ 9 − 1])

if 28 [ 9 ] ∈ ( then
bad← true

end if
( ← ( ∪ {28 [ 9 ] }

end for
�8 ← 28 [0]...28 [=]

end for
3 ← �(A , �1 , ..., �@)
return (1 = 3)

In game G2, we change the output of � to random output so that

Pr[��2 ⇒ 1] = 1
2

and

Pr[��1 ⇒ 1] − Pr[��2 ⇒ 1] ≤ Adv?A 5
�
(�) + Pr[��2 sets bad]

Because each <′
8
[ 9] is produced randomly and PE is a permutation, the prob-

ability of collision is the total probability of bad events, that is the collision of
<′
8
[=+ 1], 8{8 , <′8 [=+ 1] ⊕ 8{8 , <′8 [ 9], 2 9 and <′8 [ 9] ⊕ 2 9 . Because for each query,

the algorithm produces three blocks <′
8
[= + 1], 8{8 , <′8 [= + 1] ⊕ 8{8 and 3= blocks

<′
8
[ 9], 2 9 , <′8 [ 9] ⊕ 2 9 totaling 3(= + 1) blocks, the probability of collision is:

Pr[��2 sets bad]

≤ 3(= + 1) + 2 · 3(= + 1) + ... + (@ − 1) · 3(= + 1)
2;

≤ 3(= + 1) @(@ − 1)
2;+1
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So, that

Pr[��1 ⇒ 1] − Pr[��2 ⇒ 1] ≤ Adv?A 5
�
(�) + 3(= + 1) @(@ − 1)

2;+1

And,

Adv;>A−2?0PR (�) = 2 · Pr[��0 ⇒ 1] − 1

≤ 2 ·
(
Pr[��1 ⇒ 1] + @(@ − 1)

2;+1

(
Adv?A 5

�
(�) + 1

2;

))
− 1

≤ 2 · @(@ − 1)
2;+1

(
Adv?A 5

�
(�) + 1

2;

)
+ 2 ·

(
Adv?A 5

�
(�) + 3(= + 1) @(@ − 1)

2;+1
+ Pr[��2 ⇒ 1]

)
− 1

≤ 2 · @(@ − 1)
2;+1

(
Adv?A 5

�
(�) + 1

2;

)
+ 2 ·

(
Adv?A 5

�
(�) + 3(= + 1) @(@ − 1)

2;+1

)
+ 2 · 1

2
− 1

≤ Adv?A 5
�
(�)

(
2 + @(@ − 1)

2;

)
+ @(@ − 1)

2;

(
1
2;
+ 3(= + 1)

)

6.3 Security Against Proxy
The proxy, that is the attacker who have access to the outputs of RG, but he/she has
no access to any outputs of G and the intermediate values AONT("8). The data owner
can delegate the re-encryption process to the proxy by providing the re-encryption keys
(output of RG) without the need to provide any access to the plaintext and encryption
keys.

Theorem 3 Let � in AONT defined in Section 4.1 be a pseudorandom function and
let PR be the symmetric encryption that support proxy re-encryption defined in Section
5. The advantages of an adversary �, who have access the re-encryption keys (output
of RG), attacking PR in LOR-CPA as defined in Section 3 is at most:

Advlor−cpa
PR (�) ≤ 2 · Adv?A 5

�
(�)

Proof 3 Game based proof.

G0. In G0 is similar with the proof in Theorem 1.

G1. InG1, � produces random outputs, and we remove PE%2 because the proxy know
the keys %2 and %′2.

13



%1
$←− %, %2

$←− %, %3
$←− %

A
$←− {0, 1}, 1 $←− {0, 1},  ′ $←− {0, 1}; , 8{ $←− {0, 1}

for 8 ← 1...@ do
("8 [0], "8 [1]) ← �(A , �1 , ..., �8−1)
<8 [1]...<8 [=] ← "8 [1]
for 9 = 1 to = do

G [ 9 ] $←− {0, 1};

end for

<′ [= + 1] $←− {0, 1};

for 9 = 1 to = do

<′ [ 9 ] $←− {0, 1};

end for
28 [0] ← PE%1 (<

′
8 [= + 1])

for 9 = 1 to = do
28 [ 9 ] ← PE%1 (<

′
8 [%3 [ 9 ] ])

end for
�8 ← 28 [0]...28 [=]

end for
3 ← �(A , �1 , ..., �@)
return (1 = 3)

Because now the ciphertext is produced randomly, then

Pr[��1 ⇒ 1] = 1
2

and

Adv;>A−2?0PR (�) = 2 · Pr[��0 ⇒ 1] − 1

≤ 2 ·
(
Pr[��1 ⇒ 1] + Adv?A 5

�
(�)

)
− 1

≤ 2 · Adv?A 5
�
(�) + 2 · 1

2
− 1

≤ 2 · Adv?A 5
�
(�)

7 Conclusion
In this paper, we have showed an improved proxy re-encryption scheme for the symmet-
ric cipher. The main improvement is the usage of a new variant of AONT, so that the
scheme can be proved secure by only assuming the security of the underlying encryption
and hash functions used by the AONT function. We show security proofs under Chosen
Plaintext Attack (CPA) for all possible type of attackers.
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