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Abstract. This paper studies how to incorporate small information
leakages (called “hints”) into information-set decoding (ISD) algorithms.
In particular, the influence of these hints on solving the (n, k, t)-syndrome-
decoding problem (SDP), i.e., generic syndrome decoding of a code of
length n, dimension k, and an error of weight t, is analyzed. We moti-
vate all hints by leakages obtainable through realistic side-channel at-
tacks on code-based post-quantum cryptosystems. One class of studied
hints consists of partial knowledge of the error or message, which allow
to reduce the length, dimension, or error weight using a suitable trans-
formation of the problem. As a second class of hints, we assume that
the Hamming weights of subblocks of the error are known, which can be
motivated by a template attack. We present adapted ISD algorithms for
this type of leakage. For each third-round code-based NIST submission
(Classic McEliece, BIKE, HQC), we show how many hints of each type
are needed to reduce the work factor below the claimed security level.
E.g., for Classic McEliece mceliece348864, the work factor is reduced
below 2128 for 175 known message entries, 9 known error locations, 650
known error-free positions, or known Hamming weights of 29 subblocks
of roughly equal size.

1 Introduction

Shortly after the proposal of the first public-key cryptosystem [12], Berlekamp
et al. proved that decisional decoding in a random linear code is an NP-complete
problem [6]. In the same year, McEliece designed the first encryption scheme that
relies on the difficulty of the aforementioned problem. However, due to practical
issues of the McEliece cryptosystem (i.e., relatively large key sizes), other sys-
tems were usually employed, e.g., schemes based on the hardness of factoring
large integers and computing discrete logarithms. However, Shor’s quantum al-
gorithm [30] will be capable of factoring large integers and computing discrete
logarithms efficiently as soon as capable quantum computer exist. Code-based
cryptography is believed to resist attacks by quantum computers and thus, the
Niederreiter-variant of the McEliece scheme is one of the four finalists in the
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third round of the National Institute of Standards and Technology (NIST) [23]
post-quantum security standardization process. In addition, there are two alter-
native code-based candidates in the third round, namely BIKE and HQC.

Since the schemes in the third round seem to be secure from a theoretical
point of view, more and more investigations with respect to their side-channel
secure implementation are conducted. With a so called side-channel attack an
attacker is able to exploit additional information obtained through observing the
execution of a cryptographic algorithm in order to retrieve secret information,
e.g., the private key. The two most prominent variants are timing attacks, where
an attacker exploits execution time differences dependent on the secret, and
power attacks, where the attacker measures the power consumption of the exe-
cuting device as it is data dependent for CMOS logic. For the original McEliece
proposal there are several attacks [36,32,14,21,35], including attacks against im-
plementations that use a non-constant time Patterson decoder. For the sub-
mission Classic McEliece, a reaction attack utilizing an EM side-channel that
leads to a full message recovery is shown in [16]. The submission BIKE is based
on a quasi-cyclic code that allows for an optimized multiplication routine for
the matrix vector multiplication during the syndrome computation. Published
attacks [37,28,33] target this multiplication, where [37] successfully attacks a
non-constant time variant and [28,33] target a constant time version of the mul-
tiplication proposed in [9]. The third code-based cryptosystem HQC has been
attacked in [38,25], where the authors exploit the non-constant time implemen-
tation of the used BCH decoder. In [29] a successful power side-channel attack
against a constant-time decoder (proposed as a countermeasure in [38]) is shown.

Most of these attacks are able to directly retrieve the entire secret key or
plaintext. In [28], a tailored approach for specific partial leakage is given. In
this paper, we provide a more general approach and show how arbitrary small
information leakage or partial attack results can be incorporated into algorithms
that solve the general decoding problem for linear codes and how this affects the
security level of code-based cryptosystems. For that, we adapt the theoretical
ideas of [11] from lattice-based systems to the code-based setting. More precisely,
the authors of [11] propose a framework that can handle four different types of
side information (called hints) to increase the efficiency of lattice reduction tech-
niques. We propose a similar framework for code-based cryptography, where we
translate concepts of these hints to the code-based scenario, introduce additional
hints, and show how to transform the decoding problem accordingly.

Some previous works consider partial leakage. In [16,29] it was shown how
partial information from attacks can be used to reduce the complexity of the
underlying hard mathematical problem (namely, the syndrome decoding problem
(SDP)). The reason for obtaining only partial information in these attacks is ei-
ther a limitation on the obtainable side-channel observations as in [16] or certain
private keys that can only partially be retrieved with the proposed attack as in
[29]. The knowledge of some plaintext bits or some error bits, and its impact on
the performance of information set decoding (ISD) was already considered, even
if only briefly, in [8]. In [31] and [17], side-channel measurements (or timing at-
tacks) are used to determine (some of) the error positions. In the former all error
positions are found by measurements, whereas in the latter partial knowledge
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of these positions is combined with an ISD algorithm. Furthermore, the latter
algorithm is generalized to work with the knowledge of a set of indices containing
some errors, or vice versa, the knowledge of error-free positions. In [24] two hints
are considered: the error values come from a subset or the entries of the error
vector are known, but their positions are not. They adapt an ISD algorithm to
incorporate these hints. The cryptosystem set up in [13] uses error vectors whose
sub-blocks are from a known set of short vectors. The corresponding generator
matrices of the used error-correcting codes have a prescribed triangular block
structure. Both these facts are used as partial knowledge in the ISD algorithm
for cryptanalyzing this system in [13] and [22]. In [4] a zero-knowledge identi-
fication scheme was set up, using errors which live in a subset of the generally
used finite field. For analyzing the strength of this scheme the authors set up
several ISD algorithms exploiting the fact that the error entries were restricted.

In this paper, we provide a general framework to incorporate partial infor-
mation leakage (hints) into ISD algorithms. The hints that we consider include
general considerations like knowing parts of the message or a measurement of
the message, some erroneous or error-free locations, or knowing the Hamming
weight of blocks of the error. For each hint, we provide a motivation from the
side-channel perspective in the respective chapter. As a general motivation, par-
tial knowledge of the error or message allows an attacker to cope with restrictions
on the maximum amount of side-channel observations or to simplify the attack
by only allowing the retrieval of partial results in certain special cases. The hint
of knowing the Hamming weight for certain error blocks is motivated by practical
template attacks [10]. To reduce the amount of required side-channel observa-
tions, an attacker might choose to use Hamming weight templates instead of
values templates. This might even be a necessity if more than 16-bit value tem-
plates have to be created for a successful attack. For each hint, we show how the
SDP is transformed into an SDP with smaller parameters which therefore can
be solved with smaller complexity. We apply these hints on Classic McEliece,
HQC and BIKE and show how much leakage of each type is required to reduce
the logarithmic work factor below the claimed security level.

2 Preliminaries
Let [n] := {1, 2, . . . , n} and let Fq denote the finite field of order q. Matrices
and vectors are denoted by A and a, respectively, and their entries are denoted
by Aij and ai, respectively, where i, j ≥ 1. To avoid confusion with the error
vectors, δi denotes the i-th unit vector. For a given set of indices I and a matrix
A, the matrix AI denotes the submatrix of A containing the rows indexed by I.
For a vector x, xI denotes the subvector containing the entries indexed by I.

The Hamming weight wtH of a vector x = (x1, . . . , xn) ∈ Fnq is defined by
wtH(x) = |{xi 6= 0 | i ∈ [n]}|. The parameters of a linear code C ⊆ Fnq of
length n, dimension k and minimum distance d are denoted by [n, k, d]q. Let

G ∈ Fk×nq and H ∈ F(n−k)×n
q be a generator matrix and a parity-check matrix,

respectively, of an [n, k, d]q-code C. If m ∈ Fkq denotes a message and e ∈ Fnq an
error vector, then c = mG ∈ C is the corresponding codeword and r = mG+ e
is the corresponding received word. The corresponding syndrome s ∈ Fn−kq with

respect to H is given by s = rH> = eH>. The goal of syndrome decoding is to
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find the lowest-weight error vector e that fulfills the above syndrome equation.
The generic (and decisional) version of this syndrome decoding problem is known
to be NP-complete [6] and is the basis of most code-based cryptosystem. The
computational version with prescribed weight t can be formulated as:

Definition 1 ((n, k, t)-Syndrome Decoding Problem (SDP)).

Given H ∈ F(n−k)×n
q , t ∈ N and s ∈ Fn−kq , find e ∈ Fnq such that wtH(e) = t

and eH> = s.

With the notation above, we can state the problem also in generator matrix
form: Given G and r, find e of weight t such that r − e ∈ C. We can switch
between generator and parity-check matrix via linear algebra, and can compute
s from r, and vice versa if we are only interested in e and not a specific codeword
r − e. We need to be careful about the latter restriction in Section 3, where we
assume that we have partial knowledge about r − e.

Throughout this paper, we exemplify our results with different parameter sets
of all code-based submissions to the third round of the NIST standardization:
Classic McEliece, BIKE, and HQC [2,3,1]. The security of Classic McEliece and
BIKE can be reduced to an (n, k, t)-SDP through a message attack. For HQC,
one can perform a key attack based on an algorithm that solves the (n, k, t)-
SDP with additional information: A solution of the (n, k, t)-SDP has Hamming

weights exactly t/2 in e1 and e2, respectively, where e1, e2 ∈ Fn/22 are two
equally-sized blocks of the error e = [e1, e2]. The parameters (n, k, t) of the
considered instances of SDP are as follows.

Parameter Set n k t Security Level Used for

mceliece348864 3488 2720 64 NIST Cat. 1 (128) Message attack
mceliece6688128 6688 5024 128 NIST Cat. 5 (256) Message attack
BIKE-Level-1 24646 12323 134 NIST Cat. 1 (128) Message attack
BIKE-Level-5 81946 40973 264 NIST Cat. 5 (256) Message attack.
hqc-128 35338 17669 132 NIST Cat. 1 (128) Key attack
hqc-256 115274 57637 262 NIST Cat. 5 (256) Key attack

The table also contains the claimed security levels. Note that the parameters
were designed with a security margin. E.g., Stern’s information-set decoder (see
below) has a work factor of ≈ 2146 for mceliece348864, which is ca. 18 bits
above the claimed security level.

The idea of information-set decoding (ISD) was first introduced by Prange [26].
In this algorithm, in each iteration one chooses a random information set, recon-
structs a message from the corresponding entries, then re-encodes this message
and checks if the resulting codeword has Hamming distance at most t to the re-
ceived word. The computational complexity is roughly

(
n
t

)
/
(
n−k
t

)
(n−k)2(n+ 1)

binary operations. A more advanced variant is the one by Lee and Brickell [18],
where some errors in the information set are possible. It partitions the errors
in the information set and the error vector into two parts of prescribed weight
each (moreover, one can also define a zero window in the error vector). Even
more advanced, based on the birthday paradox, is Stern’s ISD algorithm [34],
speed up with intermediate sums and early abort techniques, which we will use
to attack the various cryptosystems with the hints described in the following
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sections. We remark that other generic algorithms like MMT [19] of BJMM [5]
might be slightly faster than Stern, however, we will restrict ourselves to Stern.

3 Hint-Based Parameter Reduction in the SDP
We introduce a class of hints and present, for all hints, generic transformations
that reduce the SDP parameters. Hence, any ISD algorithm can be applied to
the transformed instance to reduce the work factor. We exemplify the impact of
these hints on the NIST proposals in Figure 1 below and determine the number of
hints needed to reduce the security levels below the claimed level. In Appendix B,
we show how different hints can be combined in any order, analogous to the hints
considered in the lattice setting in [11].

3.1 Known Error Locations or Error-free Locations

First, we treat the setting where we gain some knowledge about the error vector:
(i) either we know that a given position contains an error (and here we distinguish
again if we also know the error value or not), or (ii) that the position is error-
free. The case of knowing an error location in the binary case and its implication
on Classic McEliece was already studied in [17]; however, for comparison we
include it in this section. These types of hints can be obtained from attacks
that directly target the error. In [16], an attack on Classic McEliece is shown
for which an EM side-channel oracle is constructed in order to distinguish if
decoding is successful. Using this oracle the authors successively add an error
to each position of the ciphertext and observe the oracle for each decryption.
If the position was error-free, an additional error is induced, which results in
an error during decoding indicated by the oracle. The authors provide a trade-
off between required attack measurements and remaining attack complexity by
utilizing the partial information (only a part of the error-locations are known)
in an ISD algorithm. A similar attack against HQC is shown in [29], where the
authors retrieve the private key by observing the decoding result in the power
side-channel for specially crafted ciphertexts. In the case of a successful attack,
the exact error positions of the secret key are known, but the overall attack
success is dependent on the support of error. The authors therefore provide an
attack that is able to retrieve the exact error positions of only a large part of
possible keys. For the remaining keys, the error positions can only be partially
retrieved. Nevertheless, these error positions can again be interpreted as hints.

Hint Type 1 Consider an (n, k, t)-SDP with given parity check matrix H and

syndrome s, which has a solution e such that wtH(e) = t and eH> = s.
Given: An error entry ej ∈ Fq\{0}.
Theorem 1. Using Hint Type 1, any (n, k, t)-SDP can be transformed into an
(n−1, k−1, t−1)-SDP or an (n−1, k, t−1)-SDP. For a random code the former
happens with high probability.

Proof. If we know the error value ej , then we can shorten the code in the j-th

position and solve the new syndrome equation e[n]\j(H [n]\j)
> = s − ejH>j ,

where e[n]\j has Hamming weight t − 1. For a random code and large n, the
corresponding shortened code has dimension k − 1 with high probability, and
we hence have a (n − 1, k − 1, t − 1)-SDP; otherwise the shortened code has
dimension k, and we hence have a (n− 1, k, t− 1)-SDP. ut
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Hint Type 2 Consider an (n, k, t)-SDP with given parity check matrix H and

received word r, which has a solution e such that wtH(e) = t and eH> = rH>.
Given: An error location j with ej 6= 0.

Theorem 2. Using Hint Type 2, any (n, k, t)-SDP can be transformed into an
(n−1, k, t−1)-SDP or an (n−1, k−1, t−1)-SDP. For a random code the former
happens with high probability.

Proof. If we know an error location j, but not the corresponding error value,
then we can puncture the code in the j-th position, compute the corresponding

parity check matrix H ′ ∈ F(n−k−1)×(n−1)
q and solve the new syndrome equation

e[n]\j(H
′)> = r[n]\j(H

′)>, where e[n]\j has Hamming weight t − 1. As above,
this leads to an (n−1, k, t−1)-SDP or an (n−1, k−1, t−1)-SDP. Then, the value
ej can be found by simple erasure decoding, e.g., by Gaussian elimination. ut

If we know several, say ε many, error locations, indexed by the set I ⊂ [n],
we can extend the above ideas by shortening or puncturing the code in I.

Corollary 1. With 9 known error locations (i.e., about 14%) the security level of
mceliece348864 reduces to less than 128 bits. For mceliece6688128 the security
level reduces to less than 256 bits with 4 known error locations (i.e., about 3%).

Hint Type 3 Consider an (n, k, t)-SDP with given parity check matrix H and

syndrome s, which has a solution e such that wtH(e) = t and eH> = s>.
Given: An error-free location, i.e., an index j such that ej = 0.

Theorem 3. Using Hint Type 3, any (n, k, t)-SDP can be transformed into an
(n − 1, k − 1, t)-SDP or an (n − 1, k, t)-SDP. For a random code the former
happens with high probability.

Proof. The proof is analogous to the one of Theorem 1, with ej = 0. ut

Corollary 2. With 652 known error-free locations (i.e., about 19%) the secu-
rity level of mceliece348864 reduces to less than 128 bits security, using the
reduction from Theorem 3. For mceliece6688128 the security level reduces to
less than 256 bits with 249 known error-free locations (i.e., about 4%).

The reduction from Theorem 4 can also be applied to known error-free locations.
For Classic McEliece this provides a stronger reduction of the security level.

3.2 Measurement of the Error

Any linear operation on the error vector entries that can be observed exactly
(i.e., the exact result of the operation can be obtained), can be in principle used
for this hint. For instance, if we can obtain intermediate results of a chunk-based
syndrome computation in Niederreiter variants of the McEliece cryptosystem (as
in the reference implementation of Classic McEliece [2]), we obtain measurements
of the error directly. See Appendix D for more details.

Hint Type 4 Consider an (n, k, t)-SDP with given parity check matrix H and

syndrome s), which has a solution e such that wtH(e) = t and eH> = s>.
Given: A measurement vector v ∈ Fnq \{0}, s. t. v /∈ C⊥, and e · v>=σ ∈ Fq.
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Recall that the kernel of H is the code C. Hence, the condition v /∈ C⊥ is
equivalent to the condition that v and the rows of H are linearly independent.

Theorem 4. Using Hint Type 4, any (n, k, t)-SDP can be transformed into an
(n, k − 1, t)-SDP.

Proof. Assume a measurement vector v ∈ Fnq is given such that v /∈ C⊥ and

e · v> = σ, then we can extend the original syndrome equation to s̄ := [s σ] =

e[H> v] = eH̄
>

. Hence, we obtain a new parity-check matrix H̄
> ∈ F(n−k+1)×n

q

and a corresponding syndrome s̄ ∈ Fn−k+1
q . Since v /∈ C⊥, we have rank(H̄) =

n−k+1, so H̄ is a parity-check matrix of a subcode of C of dimension k−1. ut
When combining several measurements for the error, one needs to check that

all of them, together with the rows of H, are linearly independent. Otherwise,
not all of them will reduce the SDP to a smaller instance.

Corollary 3. With 175 known linearly independent error measurements, the
security level of mceliece348864 reduces to less than 128 bits security. For
mceliece6688128 the security level reduces to less than 256 bits with 64 lin-
early independent error measurements.

A special instance of an error measurement is the knowledge of an entry of
the error vector, by setting v as the unit vector with the only non-zero entry in
the error location, and σ as the error value. It depends on the code parameters
and the generic decoder used, which reduction is more useful, see also Figure 1.

3.3 Known Partial Message

This hint is only applicable for the SDP given in its generator matrix form,
where we consider G instead of H and r instead of s as, e.g., in the original
paper of the McEliece cryptosystem [20], where the ciphertext is of the form
r = mG + e. In this system an attacker may obtain information about the
message m by observing the encryption. A possible attack vector is a template
attack on the load operations of the different parts of the message. E.g., the
correct retrieval of an 8-bit part of the message gives a total of eight hints.

Hint Type 5 Consider an (n, k, t)-SDP in generator matrix form (given G and
r = mG+ e), which has a solution e with wtH(e) = t.
Given: A message entry mj ∈ Fq.
Theorem 5. Using Hint Type 5, any (n, k, t)-SDP can be transformed into an
(n, k − 1, t)-SDP.

Proof. If an entry mj of the message m is known, we can reduce the (n, k, t)-
SDP to an (n, k − 1, t)-SDP. This reduction can be done by taking the subcode
corresponding to the unknown message bits, computing the corresponding parity
check matrix of size (n−k+1)×n and syndrome-decoding the modified received
word r′ := r−mjGj with respect to the (n−k+1)×n parity-check matrix. ut

Note that, although coming from different types of hints, the reductions in
Theorem 4 and Theorem 5 are mathematically the same.

Corollary 4. With 175 known message entries (about 6.5%) the security level of
mceliece348864 reduces to less than 128 bits. For mceliece6688128 the security
level reduces to less than 256 bits with 64 known message entries (about 1%).
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3.4 Measurement of the Message

The motivation of this hint works analog to the measurement of the error mes-
sage described in Subsection 3.2. This means that the knowledge of every exact
result of a linear operation on the message vector entries can be used for this
hint. If the matrix vector operation mG is again implemented as a chunk-based
multiplication, a successful template attack on the final multiplication result of
one chunk can be used as this hint.

Hint Type 6 Consider an (n, k, t)-SDP in generator matrix form (given G and
r = mG+ e), which has a solution e with wtH(e) = t.
Given: A measurement vector v ∈ Fkq\{0} such that m · v> = σ ∈ Fq.

Theorem 6. Using Hint Type 6, any (n, k, t)-SDP can be transformed into an
(n, k − 1, t)-SDP.

Proof. If we have m · v> = σ, we can use the fact that there is some A ∈ GLk
such that Av> = δk, which gives mA−1 · Av> = m̄ · δ>k = m̄k = σ, where
m̄ := mA−1. Then, we get mG = m̄(AG) and m̄k = σ. We only need to
find m̄[k−1] in the code C̄ generated by Ḡ := (AG)[k−1] w.r.t. the transformed
received word r̄ := r − σ(AG)k. This gives an (n, k − 1, t)-SDP. ut

Note that the reduction from Theorem 6 is mathematically again the same
as the one in Theorem 4 and Theorem 5. When several measurement vectors are
given that span an ε-dimensional subspace, the (n, k, t)-SDP can be reduced to
an (n, k − ε, t)-SDP, with the same techniques as above.

Corollary 5. With 175 linearly independent message measurements, the secu-
rity level of mceliece348864 reduces to less than 128 bits security. For
mceliece6688128, the security level reduces to less than 256 bits with 64 linearly
independent message measurements.

Note that measurement of the message vector is a generalization of knowing
a message symbol. Here, the two hints lead to the same reduction, in contrast
to the analog measurement/known entry of the error.

Figure 1 exemplifies the work factor reduction of Stern’s algorithm (work
factor formula as in [15]) for all discussed hints, for Classic McEliece and BIKE.

4 Hamming Weights of Error Blocks Known

We mathematically model this type of leakage as follows: Partition the set W =
{1, . . . , n} into subsets (called blocks) Wi of cardinality ηi for i = 1, . . . , `, and
write η := [η1, . . . , η`]. We assume in the following that we know the exact weight
decomposition t of the errors into the sets Wi, i.e., the Hamming weights ti :=
wtH(eWi

) of the errors restricted to the sets Wi, for all i = 1, . . . , `. These types
of hints are motivated by template attacks on operations containing the error,
e.g., load and store operations of continuous bits (blocks) of the error vector. If
the size of simultaneously processed error bits becomes to large (a conservative
estimate would be larger 16 bit), the profiling step for all possibilities of values
is not practical anymore. In this case, and also to reduce the attack complexity
for smaller template sizes, an attacker can opt to use only Hamming weight
templates. In this case, a successful template matching reveals the Hamming
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Fig. 1. Influence of hints on work factor of Stern’s ISD algorithm, exemplified for two
parameter sets each of the NIST round 3 submissions Classic McEliece and BIKE.

weight of the targeted block. An example of such an attack can be given with
the HQC cryptosystem. The first step during the HQC decryption consists of the
subtraction v − uy, where v and u define the ciphertext and y is a very spare
error vector and the private key. By fixing v = [0 . . . 0] and u = [1 0 . . . 0] the
private key is subtracted from a zero vector. A template attack using Hamming
weight templates is then able to retrieve the Hamming weight of each subtraction
block (depends on the register size of the target platform).

In the following, we adapt well-known ISD algorithms to include this infor-
mation leakage and describe how this reduces the security level.

4.1 Prange’s ISD Algorithm with Known Block Weights

For didactic reasons, we start with Prange’s information-set decoder. Based on
the knowledge of the Hamming weight of the error blocks, we adapt the strategy
of choosing an information set as, thereby (for known weight decomposition
t) increasing the probability that the information set is error-free. For a given
t, we fix a vector x ∈

{
[x1, . . . , x`] ∈ Z` : 0 ≤ xi ≤ ηi − ti,

∑
i xi = k

}
. As

described in the following, we have to choose x carefully since the work factor of
our decoder will depend on it. Then, in each iteration of the algorithm, we choose
independently and uniformly at random a subset Xi ⊆ Wi of cardinality xi for
each i, i.e., xi positions from each block. Since

∑
i xi = k, the union X = ∪iXi

has cardinality k. Then, we proceed as in the original Prange algorithm: We
check if X is an error-free information set.

Theorem 7. For a given x, Algorithm 1 has expected work factor of WPrange =
WPrange,Iter

PPrange
, where WPrange,Iter = (n−k)2(n+1) (cost of one iteration) and PPrange =∏`

i=1

(
ηi−xi

ti

)(
ηi
ti

)−1
(success probability).

Proof. See Appendix E. ut
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Algorithm 1: Prange with Known Block Weights

Input: ISD problem (in form r and G, cf. discussion below Definition 1) and
weight decomposition t of the error, vector x

Output: Error e
do
X ← ∪`

i=1Xi, where the Xi are chosen independently uniformly from the
subsets of Wi of cardinality xi

e← r − rX (GX )−1G // Same as in original Prange alg.

while wtH(e) 6=
∑

i ti
return e

Since η and t are given, we can influence the work factor of Algorithm 1
by choosing x in a suitable way. The following greedy algorithm maximizes the
success probability for given η and t:
– Initially, choose xi = ηi − ti for all i = 1, . . . , `
– While

∑
i xi > k, decrease the xj (by one) that increases PPrange the most.

The greedy choice leads to a global maximum of PPrange since the xi only influence
distinct factors of the product, so the increase of PPrange resulting from decreasing
one xj does not influence the relative increase of PPrange of other xi 6= xj in the
next steps. Note that the algorithm ensures that xi ≤ ηi − ti for all i, i.e., that
the success probability PPrange is non-zero. We will see in Section 4.3 that this
choice of x reduces the work factor significantly compared to the original Prange
algorithm for a growing number of blocks.

4.2 Stern’s ISD Algorithm with Known Block Weights

Stern’s algorithm uses two parameters p and ν to choose an information set
in each round. It allows a fixed number of errors in the information set and
additionally restricts the number of errors outside the information set. Stern’s
algorithm divides the information set into two equal-size subsets X and Y and
looks for words of weight p at the indices of X weight p at the indices Y, and
weight 0 on a fixed uniform random set Z of ν positions outside the information
set. Hence, we need to choose three sets, X ,Y,Z, at random. Again, we adapt
the choice of these sets to the known weight distribution by designing three
vectors x,y, z that indicate how many positions we choose for the three sets,
respectively, from each block. A heuristic choice of the vectors is discussed below.

Theorem 8 states the expected work factor of the adapted Stern algorithm.
The formula for the success probability in (1) consists of sums whose number of
summands may grow exponentially in the parameters p and `. However, we can
compute it in polynomial time using dynamic programming similar to [27].

Theorem 8. For given x,y, z and parameters p, ν, Algorithm 2 has an expected

work factor of WStern :=
WStern,Iter

PStern
, where the cost per iteration is given by

WStern,Iter = (n− k)2(n+ 1) + ν
(
L(mx, p) + L(my, p)

−mx −my +
(
my

p

))
+

(
mx

p

)(
my

p

)
2ν−1

(t− 2p+ 1)(2p+ 1),
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Algorithm 2: Stern with Known Block Weights

Input: ISD problem and weight decomposition, t of the error, vectors x, y, z,
parameters p, ν (ν must be also the sum of the entries of z).

Output: Error e
do
X ← ∪`

i=1Xi, where the Xi are chosen independently uniformly from the
subsets of Wi of cardinality xi
Y ← ∪`

i=1Yi, where the Yi are chosen independently uniformly from the
subsets of Wi \ Xi of cardinality yi
Z ← ∪`

i=1Zi, where the Zi are chosen independently uniformly from the
subsets of Wi \ (Xi ∪ Yi) of cardinality zi

e← Iteration of original Stern alg. w.r.t. sets X ,Y,Z and parameters p, ν

while Stern stopping condition not satisfied for e
return e

where L(x, y) :=
∑y
i=1

(
x
i

)
, mx :=

∑
i xi, and my :=

∑
i yi.

The success probability of each iteration is given by

PStern =
∑
a∈Z`

0≤ai≤ti∑
i ai=p

∑
b∈Z`

0≤bi≤ti−ai∑
i bi=p

∏̀
i=1

(
xi

ai

)(
yi
bi

)(
ηi−xi−yi−zi
ti−ai−bi

)(
ηi
ti

) , (1)

and can be computed in polynomial bit complexity (in the parameters n, k, `, p).

Proof. See Appendix E. ut

Again, the question is how to choose the vectors x, y, z for given η and t.
We propose the following heuristic:

– Choose a vector x̃ with
∑
i x̃i = k as in the heuristic for Prange’s decoder.

Our goal is to choose as the information set (union of X and Y) with exactly
x̃i positions from the i-th block.

– Choose xi, yi ≈ x̃i

2 , e.g., alternatingly rounded down/up for odd x̃i such
that we have

∑
i xi ≈

∑
i yi ≈ k/2. The fact that we take roughly the same

number of entries from the information subset in the i-th block means that
the probability that X and Y contain exactly p errors is roughly the same.

– Choose zi = 0 for all i = 1, . . . , `. While
∑
i zi < ν, increase (by one) the zj

that maximizes PStern.

4.3 Numerical Results and Comparison

We present numerical results for the work factors of the modified Prange, Lee–
Brickell (see Appendix F), and Stern algorithms. All plots show logarithmic
work factors as a function of the number of blocks `. Figures 2, 3, and 4 (see Ap-
pendix A for the latter two) contain the curves for the parameter sets of Classic
McEliece, BIKE, and HQC, respectively, which we list in the preliminaries.
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We use the presented heuristics to choose x,y, z, and optimize over the
parameters p and ν. If ` - n, we choose ηi ≈ n/` rounded up or down in a suitable
ratio. Since the work factors depend heavily on the weight distribution to the
blocks, we randomly sample for each parameter set several errors (uniformly at
random from the set of errors of weight t) and present realizations as points,
plus curves for the log of the mean work factor. The number of realizations for
each ` and algorithm is roughly 50.
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Fig. 2. Work factors of the modified Prange, Lee–Brickell, and Stern algorithms as a
function of the number of blocks for which the weight distribution is known, for two
Classic McEliece parameter sets. Lines are means, points are realizations.

It can be seen that for all systems, parameter sets, and algorithms, only a few
blocks are needed to push the work factor below the claimed security level. For
instance, in mceliece348864, Stern’s algorithm only needs to know the weight
decomposition for 11 blocks (of size ηi ≈ 317) to get below the security level for
some weight decompositions (i.e., realizations of the error), and 29 blocks (of
size ηi ≈ 120) to push the mean work factor below the claimed security level.
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A Further Numerical Results for Known Block Weights

Figures 3 and 4 present numerical results for known block sizes (cf. Section 4.3),
for BIKE and HQC, respectively.
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Fig. 3. Work factors of the modified Prange, Lee–Brickell, and Stern algorithms as a
function of the number of blocks for which the weight distribution is known, for two
BIKE parameter sets. Lines are means, points are realizations.

B Combining Different Types of Hints

The restricted error values from Appendix C can easily be combined with any
other hint described previously, since they do not transform the parameters of the
SDP, and are only used within the algorithms solving any given SDP. Therefore,
we will now focus on how to combine the results from Subsections 3.1 to 3.4.

https://eprint.iacr.org/2019/909
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Fig. 4. Work factors of the modified Prange, Lee–Brickell, and Stern algorithms as a
function of the number of blocks for which the weight distribution is known, for two
HQC parameter sets. Lines are means, points are realizations.

If we know an error measurement (as in 3.2) or a message measurement (as
in 3.4), which includes the case of knowing a message entry (as in 3.3), then we
transform the original SDP into one where the sought-after codeword lives in a
subcode of the original code, with the same error vector, but different received
word. Since the error vector is unchanged in this new SDP instance, any hint
about it can be used in the usual way. Note however, that when combining
message measurements and/or error measurements, it might happen that not
all of the hints are linearly independent and that thus some of them do not add
any extra information.

If we know a precise error value (as in the first and third case in 3.1), say ej ,
then we shorten the code and delete the j-th coordinates in the error vector and
the received word (and if ej 6= 0 we decrease the weight of the error vector). The
shortening implicitly contains the hint rj−ej = mG(j), where G(j) denotes the
j-th column of G, which is again a measurement of the message. It can hence be
combined with other measure measurements (or error measurements) as above,
in the shorter code.

If we know only an error location but not the value (as in the second case
in 3.1), then we puncture the original code and do not have the implicit mea-
surement which reduces the dimension of the code. That means that m is not
changed in the reduction, and hence any hints about the message can be used,
also in the reduced (n− 1, k, t− 1)-SDP.

Overall, it follows that all hints can be combined with each other, in arbitrary
order. However, it might be that not all of them are linearly independent to prior
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hints, and might not provide any extra information, and hence no reduction of
the SDP.

C Restricted Error Values

When considering a cryptosystem over Fq with q > 2, and knowing that the
error values are from a proper subset E ⊂ Fq, this can again speed up any
decoder. For this the randomly guessed (partial) error vectors in the decoding

algorithm are simply chosen from En
′

instead of Fn′

q (where n′ is the length of
the respective partial error vector). This has e.g. been done in [4], where the
error vectors live in {±1}n.

This idea can straight-forwardly be extended if one only knows that a part
of the error vector has restricted error values.

Remark 1. Since Classic McEliece, BIKE and HQC are defined over F2, this
consideration has no impact on their security.

D Partial Measurements of the Error Vector

During encryption of many code-based cryptosystems, one needs to compute
the syndrome s of an error e w.r.t. the public parity-check matrix H, where all
vectors/matrices are in a finite field, typically F2. This is done using a vector-

matrix multiplication s = eH>. In practice, this multiplication can be done by
grouping entries of the vectors into blocks of a fixed bit size B (e.g., B = 8 bits
in the reference implementation of Classic McEliece [2]). This means that we in
parallel compute, for each row hi of H and each j = 0, . . . , B−1, the j-th shifted
inner product

bi,j :=

n/B−1∑
µ=0

ej+µBHi,j+µB .

To get the inner product of e with the i-th row of H, we finally need to sum up

〈e,hi〉 =

B−1∑
j=0

bi,j .

If we are able to retrieve, for some i, the B-bit vector bi = [bi,0, . . . , bi,B−1], then
we obtain B measurements of the error, where the measurement vectors are of
the form

vi,0 := [Hi,0, 0, . . . , 0︸ ︷︷ ︸
B−1 zeros

, Hi,B , 0, . . . , 0, Hi,2B , 0, . . . , 0, Hi,n−B ]

vi,1 := [0, Hi,1, 0, . . . , 0, Hi,B+1, 0, . . . , 0, Hi,2B+1, 0, . . . , 0]

...

vi,B−1 := [0, . . . ,Hi,B−1, 0, . . . , 0, Hi,2B−1, 0, . . . , 0, Hi,n−1]
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The vector bi, for some i, can be obtained through a template attack on the
syndrome computation in the encryption step. Please note that this attack on
the reference implementation of Classic McEliece allows for the usage of value
templates since B is small.

E Proofs

In this appendix, we present proofs of some of the theorems in the paper.

Proof of Theorem 7 (Modified Prange Algorithm). The cost of one iteration stays
the same as in the original Prange decoder and is dominated by matrix inversion.
An iteration succeeds iff the chosen positions in X are error-free.3 This is again
true iff every Xi is error-free. The fraction

(
ηi−xi

ti

)
/
(
ηi
ti

)
equals the probability

that in block Wi of length ηi, the randomly chosen xi positions are error-free,
given that exactly ti errors are contained in Wi, i.e., exactly Prange’s success
probability restricted to one block. Since the positions Xi are chosen indepen-
dently, the claim follows. ut

Proof of Theorem 8 (Modified Stern Algorithm). The proof works similar to the
adapted Lee–Brickell algorithm in Appendix F. One iteration costs as much as
in the original Stern algorithm, see [15] for a detailed analysis. Stern’s stopping
condition is fulfilled if and only if there are exactly p errors in X , p errors in
Y, and 0 errors in Z. The success probability formula then follows by summing
over all cases to distribute p errors over the partition Xi of X (vector a) and to
distribute p errors over the partition Yi of Y (vector b). Again, the number of
summands is exponential in n, k, `, p, but we can compute PStern in polynomial
time using dynamic programming. ut

F Modified Lee–Brickell Algorithm for Known Block
Weights Hint

Lee and Brickell’s algorithm works similarly to Prange’s ISD algorithm. The
difference is that the algorithm succeeds even if a few errors are contained in
the randomly chosen information set. This means that the success probability
is significantly increased compared to Prange’s algorithm, but a bit more work
is needed per iteration. We adapt the choice of the information sets in the Lee–
Brickell algorithm: As in our adaptation of Prange’s ISD, we choose from each
block a given number positions for the information set, and hope that overall at
most a few errors are contained in the information set. The number of positions
that we choose from each block depends on the distribution of errors. Algorithm 3
summarizes the decoder for blocks.

Theorem 9 states the expected work factor of the adapted Lee–Brickell algo-
rithm. Note that the formula for the success probability in (2) consists of a sum

3 As in most works on information-set decoding, we neglect the probability that a
randomly chosen set is not an information set, since it is for most codes a constant
in the same order of magnitude as 1.
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Algorithm 3: Lee–Brickell with Known Block Weights

Input: ISD problem and weight decomposition, t of the error, vector x,
parameter p

Output: Error e
do
X ← ∪`

i=1Xi, where the Xi are chosen independently uniformly from the
subsets of Wi of cardinality xi

e← Iteration of original Lee–Brickell alg. w.r.t. inf. set X and parameter p

while Lee–Brickell stopping condition not satisfied for e
return e

whose number of summands may grow exponentially in the parameters p and `.
However, we can compute it in polynomial time using dynamic programming in
a similar approach as in [27].

Theorem 9. For a given x and parameter p, Algorithm 3 has an expected work

factor of WLB =
WLB,Iter

PLB
, where the cost per iteration is given by WLB,Iter :=

(n − k)2(n + 1) + (n − k)
∑p
i=1

(
k
i

)
+ (n − k)

(
k
p

)
, and the success probability of

each iteration is

PLB =
∑
a∈Z`

0≤ai≤ti∑
i ai=p

∏̀
i=1

(
xi

ai

)(
ηi−xi

ti−ai

)(
ηi
ti

) . (2)

The success probability PLB can be computed in polynomial bit complexity (in the
parameters n, k, `, p).

Proof. We adapt the original Lee–Brickell algorithm only by changing the se-
lection of the information set. Hence, the cost per iteration WLB,Iter is the same
as in the original algorithm. The cost is as stated if the concept of intermediate
sums is used (cf. [7]).

The Lee–Brickell algorithm succeeds if the information set X is chosen such
that it contains exactly p errors, and the remaining positions contain exactly
t − p errors. Hence, for PLB, we sum over all possibilities that the p errors are
distributed over the information set partitions Xi in the ` blocks. Obviously,
there can only be at most ti errors in the i-th information set. The products
of fractions of binomial coefficients count the number of possibilities to choose
information sets with |Xi| = xi that contain exactly ai errors, divided by the
number of possibilities to distribute the ti error positions on the ηi positions of
a block.

We can compute PLB in polynomial time using dynamic programming, see
[27] for an efficient algorithm to compute a similar formula. ut

Again, the success probability depends significantly on the choice of x for
given η and t. A possible heuristic is to the same as for Prange’s decoder:
Choose xi = ηi − ti and decrease that xi by one, for which (2) is increased the
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most. Since the best choice for p is often a small integer, it appears to be a good
enough choice to use exactly the same x as computed for Prange’s ISD (p = 0),
even though p is chosen to be greater than 0.
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