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Abstract. Cryptocurrency exchange services are either trusted central
entities that have been routinely hacked (losing over 8 billion USD), or
decentralized services that make all orders public before they are settled.
The latter allows market participants to “front run” each other, an illegal
operation in most jurisdictions. We extend the “Insured MPC” approach
of Baum et al. (FC 2020) to construct an efficient universally compos-
able privacy preserving decentralized exchange where a set of servers run
private cross-chain exchange order matching in an outsourced manner,
while being financially incentivised to behave honestly. Our protocol al-
lows for exchanging assets over multiple public ledgers, given that users
have access to a ledger that supports standard public smart contracts. If
parties behave honestly, the on-chain complexity of our construction is
as low as that of performing the transactions necessary for a centralized
exchange. In case malicious behavior is detected, users are automatically
refunded by malicious servers at low cost. Thus, an actively corrupted
majority can only mount a denial-of-service attack that makes exchanges
fail, in which case the servers are publicly identified and punished, while
honest clients do not to lose their funds. For the first time in this line
of research, we report experimental results on the MPC building block,
showing the approach is efficient enough to be used in practice.

Keywords: Multiparty Computation, Secure Asset Exchange, Front-running,
Blockchain

1 Introduction

Decentralized cryptocurrencies based on permissionless ledgers such as Bitcoin [49]
allow for users to perform financial transactions without relying on central au-
thorities. However, exchanging coins among different decentralized cryptocur-
rency platforms still mainly relies on centralized exchange services who must
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hold tokens during the exchange process, making them vulnerable to theft. Cen-
tralized exchange hacks have resulted in over 8 Billions dollars’ worth of tokens
being stolen [51], out of which over 250 Million dollars’ worth of tokens were
stolen in 2019 alone. The main alternative is to use decentralized exchange ser-
vices (e.g. [12] ) that do not hold tokens during the exchange process but are
vulnerable to front-running attacks, since they make all orders public before
they are finalized. This allows for illegal market manipulation, for example by
leveraging the discrepancy between the most extreme buying and selling prices
to buy tokens at the smallest offered price and immediately selling them at the
highest accepted price.

Given the astounding volume of financial losses from centralized exchange
hacks, constructing alternatives that are not vulnerable to token theft is clearly
of great importance. However, ensuring that exchange orders remain private and
avoiding front-running has also been identified as a chief concern [29,9], since this
vulnerability reduces user trust and rules out regulatory compliance. In essence,
a solution is needed for reconciling order privacy, market fairness and token
security. In this work, we address the question:

Can we securely & efficiently exchange cryptocurrency tokens while preserving
order privacy, avoiding front-running and ensuring users never lose tokens?

1.1 Our Contributions

We introduce universally composable privacy preserving decentralized exchanges
immune to token theft and front-running, as well as optimizations to make our
approach feasible in practice. Our main contributions are summarized as follows:
– Privacy: A provably secure privacy preserving decentralized exchange pro-

tocol, which is immune to both front-running and secret key theft.
– Security: An Universally Composable [17] analysis of our protocol, showing

our approach is secure in real world settings.
– Efficiency: The first experimental results showing that Multiparty Compu-

tation on blockchains can be practical (i.e. faster than block finalization).
– Usability: An architecture that allows for deployment of a decentralized-

exchange-as-a-service where users only need to do very lightweight compu-
tation and complete a single blockchain transfer in connection with a single
round of efficient communication with the servers.

As the main building blocks of our work, we use publicly verifiable secure
multiparty computation (MPC) [5] and threshold signatures with identifiable
abort [39,38,20]. MPC allows for users to compute on private data without re-
vealing this data to each other, which is a central concern in our solution. More-
over, using tools for public verifiability [4], it is possible to prove to any third
party that a given computation output has been obtained without revealing in-
puts, which is paramount for proving validity in decentralized permissionless
systems. Moreover, we use standard (public) smart contracts to implement a
financial punishment system that incentivizes servers executing our protocol to
behave honestly and ensures that users are reimbursed in case servers cheat.

If parties do not cheat, our protocol requires no on-chain communication ex-
cept for the transactions needed to perform the exchanges and uses MPC only
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for privately matching orders (avoiding front-running). We prove security against
an actively dishonest majority and argue how clients can be refunded even in
case of total corruption. We analyse our solution in the Universal Composability
(UC) framework [17], which guarantees security even in complex situations where
multiple protocols are executed concurrently with each other (i.e. real world sce-
narios as the Internet or decentralized cryptocurrency systems). To that end, we
introduce a treatment of decentralized exchanges in the UC framework, allowing
us to prove that our protocol is secure even in these realistic scenarios.

1.2 Our Techniques
The protocol in a nutshell: Clients C1, . . . , Cm wish to exchange tokens be-
tween ledgers La and Lb using servers P1, . . . ,Pn that facilitate the privacy-
preserving exchange. Any number of ledgers can be involved, as long as all
parties can use a standard smart contract (e.g. Ethereum) on a ledger LEx.
Moreover, all ledger pairs La,Lb must use cryptocurrency systems that allow for
publicly proving that a double spend happened, e.g. Bitcoin UTXOs [49] (which
can be emulated by attaching unique IDs to coins in account-based systems like
Ethereum). Our protocol works as follows:

– Smart Contract Setup: The servers send a collateral deposit to a smart con-
tract on ledger LEx that guarantees that the servers do not cheat.

– Off-chain communication: After setup, only off-chain protocol messages are
exchanged between the servers unless cheating happens, in which case cheating
servers can be identified by publicly verifiable proofs [4] and punished.

– Main Protocol Flow: Performing exchanges between client Ci who wants to ex-
change tokens from ledger La held at their address Lsrc

i with tokens from Cj who
holds tokens in ledger Lb at address Lsrc

j (or any other tuple of users/ledgers/addresses):

1. Burner address setup: The servers set up threshold signature addresses Addrexi
and Addrexj on each ledger La and Lb.

2. Private order placement: Clients transfer their tokens to server threshold ad-
dresses on each ledger (i.e. clients Ci and Cj transfer their tokens from addresses
Addrsrci and Addrsrcj on ledgers La and Lb to addresses Addrexi and Addrexj , re-

spectively) and send to the servers the addresses Addr
trg
j and Addr

trg
i on La

and Lb where they will receive exchanged tokens if their orders match, respec-
tively. They also send secret shared order information, describing the prices
they charge for their tokens in a way that the servers do not learn the prices.

3. Confirmation: If the servers have correctly received the secret orders and de-
posits from all the clients on each ledger, they proceed. Otherwise, they gener-
ate and send to the smart contract refund transactions transferring tokens from
Addrexi and Addrexj back to client addresses Addrsrci and Addrsrcj , respectively. Ci
and Cj retrieve these transactions and post them to La and Lb, respectively.

4. Private Matching: The servers execute a publicly verifiable MPC protocol (e.g.
[5]) to run any order matching algorithm on secret-shared orders so that they
can publicly prove that either a given set of orders have been matched or that
a server has cheated, never learning non-matched orders.

5. Pay out: Servers post final exchange operations to addresses Addrtrgj and Addr
trg
i

on La and Lb for matched order pairs.
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– Cheating Recovery: The main cheating scenario is that a server sent an invalid
message or failed to send a message. In that case, an honest server complains to
the smart contract on LEx and all servers have to send valid protocol messages
to complete the protocol to the smart contract. If a server Pi does not send a
valid message, it is identified as a cheater.

Any server Pi identified as a cheater loses its deposit to the smart contract,
which is used to reimburse the clients and the honest servers for their work.

Security Guarantees: Our main protocol achieves security against an actively
dishonest majority of servers without requiring the clients to put up expensive
collateral deposits, which is the case in previous approaches (e.g. [5]) where all
parties must provide such deposits. Moreover, we describe a modification where
even in a catastrophic failure where all servers become corrupted, even though
the client’s orders may leak, all clients are guaranteed to be refunded by the
smart contract.

Efficiency: Unless cheating happens, all communication is off-chain and the
only information stored on-chain on any ledger are the transactions necessary to
perform the exchange itself (improving on [5]). If cheating happens, the smart
contract must identify and punish the cheater, but this cost is covered by the
cheater’s deposit. Moreover, MPC is only used to match orders in the Private
Matching phase, while other operations are executed via efficient off-chain pro-
tocols. Finally, we do the first full implementation of the MPC component in
a secure computation with financial incentives setting, showing that MPC on
blockchains is efficient in practice (in particular for our matching application).

Alternative Approaches: Our protocol can be modified in the following ways:

– Incentivizing Servers: Parties may pay exchange fees to servers so that it
is profitable to execute a server.

– Preventing Denial-of-Service attacks by Clients: In our outlined pro-
tocol, either all clients transfer their money after registration or they all get
reimbursed. Then, a client who registers but does not transfer funds could
participate in a Denial-of-Service attack. We explain in Section 4.3 how to
modify our protocol to avoid this.

– Guaranteed Success with Honest Majority of Servers: Assuming an
honest majority of servers, we can obtain a much more efficient protocol by
replacing the MPC protocol [5] used for the Private Matching with a much
cheaper honest majority MPC protocol. Moreover, in this case we can achieve
guaranteed output delivery, meaning that the privacy preserving exchange
always works regardless of the minority of malicious servers.

– Resilience under full corruption: Even though we consider a dishonest
majority where at least one server is honest, our technique can be modified
for the setting where all servers may be corrupted. If users are allowed to
register their orders (and destination addresses) on the smart contract, they
can prove that all servers have misbehaved and get reimbursed with tokens
from the exchange smart contract ledger, similarly to the approach of [35].
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1.3 Related Work
MPC with financial incentives: A feature required by the MPC scheme in our
applications is that if a cheating party obtains the output, then all the honest
parties should do so as well (so all parties learn matching orders). Protocols
which guarantee this are also called fair but known to be impossible to achieve
with dishonest majorities [26]. Recently, [2,10] initiated a line of research that
aims at incentivizing fairness in MPC by imposing cryptocurrency based finan-
cial penalties on misbehaving parties. Several works [47,46,11,8,5] improved the
performance with respect to on-chain storage and the size of the collateral de-
posits from each party, while others obtained stronger notions of fairness [43,25].
None of these works implemented the MPC component of this approach.

In our work, we rely on such techniques to ensure that servers cannot profit
from forcing exchange operations to fail. However, even the state-of-the-art [5]
of these works only considers the single blockchain setting (not allowing for ex-
changes) and suffers from indefeasibly high overheads in both off-chain/on-chain
complexity that would make exchange operations infeasible. We address these is-
sues with an MPC protocol that operates on multiple blockchains, but building a
decentralized exchange service where we only use MPC for matching orders; then
later generating matched order transactions via an efficient threshold signature.
We propose concrete improvements on the off-chain/on-chain overhead of [5]
with the first concrete implementation of techniques from [4,6]. Furthermore, we
achieve optimal communication (no more than in centralized exchanges) in the
optimistic setting, where no party behaves maliciously. For the first time in this
line of work [2,10,47,46,11,8,5] , we fully implement the MPC component of such
a solution showing it is efficient in practice, whereas previous works only focused
on on-chain efficiency (which is still optimal in our protocol).

Privacy Preserving Smart Contracts: Another related line of work [13,45,15] has
focused on constructing privacy preserving smart contracts that can be checked
for correct execution without revealing private inputs on-chain. However, these
are intrinsically unfit for our application because they require a trusted party
to learn all private inputs in order to generate zero-knowledge proofs showing
that a given computation output was obtained. This would allow a corrupted
trusted party (or insecure SGX enclave [14]) to perform front running (or even
steal funds), i.e. the same issues of centralized exchanges.

Distributed markets and exchanges: The use of MPC in traditional stock market
exchanges has been considered in [48,22,23] but these works focus on match-
ing stock market orders and do not address the issue of ensuring that exchange
transactions are performed correctly, which we do. Many commercial decentral-
ized exchange services (e.g. [12]) exist, but they are not private and suffer from
front-running as discussed before. A front-running resistant approach is sug-
gested in [9] but it relies on insecure trusted hardware [14] and has no privacy.

Fair Two-Party Data Exchange: Dziembowski et al. [35] showed how to use fi-
nancial incentives and a proof of cheating to enforce honest behaviour when two
parties are exchanging pre-images of a hash function using a distributed ledger.
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Despite showing security in UC, their approach would not directly be efficient
for cross-chain token exchange, nor generalize to exchange order matching. Fur-
thermore, their approach require posting auxiliary information to the ledger,
however small, even in the optimistic case.

2 Preliminaries

Let y
$← F (x) denote running the randomized algorithm F with input x and

implicit randomness, and obtaining the output y. Similarly, y ← F (x) is used

for a deterministic algorithm. For a set X , let x
$← X denote x chosen uniformly

at random from X . τ denotes the computational and κ the statistical security
parameter.

2.1 (Global) Universal Composability and the Global Clock

In this work, the (Global) Universal Composability or (G)UC framework [17,19]
is used to analyze security. Due to space constraints, we refer interested readers
to the aforementioned works for more details. We generally use F to denote an
ideal functionality and Π for a protocol. Several functionalities in this work allow
public verifiability. To model this, we follow the approach of Badertscher et al. [3]
and allow the set of verifiers V to be dynamic by adding register and de-register
instructions as well as instructions that allow S, the adversary controlling a set
of corrupted parties, to obtain the list of registered verifiers. As some parts of our
work are inherently synchronous, we model the different “rounds” of it using a
global clock functionality FClock as in [3,43,42]. See Appendix A.1 for a definition
of the verifier registration interfaces and Appendix A.2 for a definition of FClock.
Throughout this work, we will write “update FClock” as a short-hand for “send
(Update, sid) to FClock”.

2.2 Client-input MPC with Publicly Verifiable Output

We focus on MPC with security against a static, rushing and malicious adversary
A corrupting up to n−1 of the n servers wherem clients provide the actual inputs
and where all clients might be malicious. This specific setting of MPC is called
out-sourced MPC and can efficiently be realized in a black box manner on top of a
“standard” MPC scheme where the servers are providing the output [41]. We let
the MPC functionality compute the result y and share its output in a verifiable
way such that any potential verifier can either check that the output is correct or
identify a cheater, and hence allow for incentivized fairness. In Appendix A.3 we
formally define functionality FIdent adapted from [5] that captures this style of
MPC. We remark that differently from [5], we use a publicly verifiable version [4]
of the original protocol of [5] with optimizations from [6] where no homomorphic
commitments are needed and, in case no cheating is detected, no interaction
with the smart contract is needed apart from the initial deposits from servers
executing FIdent and the final output. Intuitively it specified an out-sourced MPC
functionality where clients C1, . . . , Cm supply private input that is computed on
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in MPC by the servers P1, . . . ,Pn and where the output of the computation
is verifiably shared between the servers in such a manner that the shares can
verified by an external verifier V after the completion of the protocol to identify
any potential malicious behaviour.

2.3 (Threshold) Signatures

In our work we rely on signatures and identifiable threshold signatures to rep-
resent transactions on ledgers. Therefore we will assume the existence of two
UC functionalities: FSig which is a standard functionality in UC [18] (with key
generation, signature generation and signature verification), as well as our own
formalization of general UC identifiable threshold signatures FTSig (which can
be seen as a generalization of signatures such as [21,20]). In comparison to
normal signatures, FTSig has a two-step process of signature generation, where
the parties first generate shares ρ of the overall signature σ which later on are
aggregated in a share combination phase. This share combination also exposes
parties that generated some shares wrongly. Additionally, FTSig also creates the
signing key in a distributed way. We treat both FSig and FTSig as global UC
functionalities, which means that both local and other global UC functionalities
can verify signatures on them. This is meaningful as we assume that ledgers
are global functionalities too, hence validating their transactions should be con-
sistent among any different session. Functionalities FSig,FTSig are presented in
Appendices A.4 and A.5, respectively.

2.4 Representing Cryptocurrency Transactions

In order to focus on the novel aspects of our protocol, we represent cryptocur-
rency transactions under a simplified version of the Bitcoin UTXO model [49].
For the sake of simplicity we only consider operations of the “Pay to Public Key”
(P2PK) type, even though any other types of transaction can be supported as
long as it is possible to publicly prove that a double spend happened and to gener-
ate transactions in a distributed manner. In particular, even a privacy preserving
cryptocurrency that publicly reveals double spends could be integrated to our
approach by constructing a specific purpose multiparty computation protocol for
generating transactions in that cryptocurrency. Representing Addresses: An ad-
dress Addr = vk is simply a signature verification key, where vk and subsequent
signatures σ are generated by the signature scheme used in the cryptocurrency
(represented by FSig and FTSig).

Representing Transactions: We represent a transaction in our simplified UTXO
model by the tuple tx = (id, In,Out,Sig), where id ∈ {0, 1}τ is a unique
transaction identification, In = {(id1, in1), . . . , (idm, inm)} is a set of pairs
of previous transaction id’s id ∈ {0, 1}τ and their values in ∈ N, Out =
{(out1, Addr1), . . . , (outn, Addrn)} is a set of pairs of values out ∈ N and signa-
ture verification keys Addr and Sig = {σ1, . . . , σm} is a set of signatures σ.

Transaction Validity: A transaction tx = (id, In,Out,Sig) is considered valid
if, for all (idi, ini) ∈ In and (outj , Addrj) ∈ Out, the following conditions hold:
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– There exists a valid transaction txi = (idi, Ini,Outi,Sigi) in the public ledger
(in our case represented by FBB and FSC) such that (ini, Addri) ∈ Outi.

– There exists σi ∈ Sig such that σi is a valid signature of id|In|Out under
Addri according to the cryptocurrency’s signature scheme (FSig or FTSig).

– It holds that
∑m
i=1 ini =

∑n
j=1 outj .

Generating Transactions: A party controlling the corresponding signing keys
for valid UTXO addresses Addr1, . . . , Addrm containing values in1, . . . , inm can
generate a transaction that transfers the funds in these addresses to output
addresses Addrout,1, . . . , Addrout,n by proceeding as follows:

1. Choose a unique id ∈ {0, 1}τ .
2. Choose values out1, . . . , outn such that

∑m
i=1 ini =

∑n
j=1 outj .

3. Generate In,Out as described above and sign id|In|Out with the instances of
FSig or FTSig corresponding to Addr1, . . . , Addrm, obtaining Sig = {σ1, . . . , σm}.

4. Output tx = (id, In,Out,Sig).

2.5 Bulletin Boards and Smart Contracts

Our approach does not require dealing with the specifics of blockchain consen-
sus, since we hold tokens in addresses controlled by threshold signatures in such
a way that transactions can only be issued when all servers cooperate. Since at
least one server is assumed to be honest, we do not have to confirm whether
a transaction is registered. Even when we address the case of total server cor-
ruption, our approach only requires identifying an attempt of double spending a
client’s deposit regardless of which transaction of the double spends gets final-
ized on the ledger. Hence, in this work we do neither fully formalize distributed
ledgers as was done in previous work [3], nor do we use other existing simplified
formulations such as [43]. Instead, for the sake of simplicity, we use a public
bulletin board functionality FBB that is presented in Appendix A to represent
ledgers.

3 Modeling Fair Decentralized Exchanges in UC

In this section we formalize a decentralized exchange on a high level. We assume
that there are m clients C1, . . . , Cm. These clients can exchange between ` ledgers
L1, . . . ,L`. Each Cj controls an amount of tokens amsrc

j in an address vksrcj which

is on ledger Lsrc
j . The goal of Cj is to acquire amtrg

j tokens on ledger Ltrg
j which

should be transferred to address vktrgj .
In order to compute transactions there exist two deterministic poly-time

algorithms compSwap and makeTX. On a high level, compSwap takes the exchange
order of each client between two specific ledgers, La and Lb, as input and returns
the order matches. Whereas makeTX takes as input the order matches computed
by compSwap for each possible pair of ledgers along with some metadata and
returns a list of all, unsigned, transactions to be carried out to complete the
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exchange over all ledgers. More concretely, a bit δj indicates for each client Cj
whether said client wants to buy amsrc

j tokens on La using at most amtrg
j tokens

from Lb, or if they want to sell amsrc
j tokens from La for at least amtrg

j tokens
on Lb. compSwap then returns a list of transfer orders. More concretely, a list of
tuples where each tuple contains two quantities, amj and amj′ and the identifiers
of two clients; client Cj who should have amj of its tokens transferred on La to
the other client Cj′ and client Cj′ should transfer amj′ of its tokens on Lb to Cj .
As our protocol will use individual burner addresses for each Cj controlled by
the servers, we assume for the computation that the asset was transferred by Cj
to an address vkexj using a transaction with id idj .

compSwap computes swaps between two ledgers. It takes as input m′ ≤ m tuples
of the form (Cj , δj , amsrc

j , am
trg
j ) where Cj , amsrc

j , am
trg
j ∈ N where δj = 0 if Cj

wants to swap from the first to the second and δj = 1 if it wants to swap from
the second to the first ledger. It outputs a list of tuples (Cj , amj , Cj′ , amj′),
where amj , amj′ ∈ N, which is viewed as a vector ya,b ∈ Ng for some g.

makeTX takes the ` · (`− 1) outputs of compSwap for each pair of ledgers La,Lb
with 1 ≤ a < b ≤ ` as well as a tuple (Cj ,Lsrc

j ,L
trg
j , idj , vk

ex
j , vk

src
j , vk

trg
j , amsrc

j )
for each Cj as input. It then outputs ` transaction orders (ida, Ina,Outa) (still
missing the signatures however), one for each La, such that

1. Ina = {(idj , amsrc
j )} for some Cj where Lsrc

j = La and Cj transferred the
amount amsrc

j to vkexj in a transaction with id idj .

2. Outa = {(outia, Addria)} where each Addria is either vksrcj for Cj with

Lsrc
j = La or vktrgj′ for Cj′ with Ltrg

j′ = La.

3.
∑
j in

j
a =

∑
outia and ida is computed as a hash of Ina,Outa.

Further discussion on our matching algorithm compSwap is presented in Ap-
pendix D. Notice, however, that our approach is not limited to this algorithm,
since our MPC component can accommodate any arbitrary matching algorithm.

Algorithms compSwap and makeTX only model the generation of UTXO-style
transaction descriptions that can later be turned into valid transactions by cre-
ating a signature Siga for each La. The exchange security requirements are then
modeled in the functionality (e.g. requiring that e.g. each Cj either gets its asset
back or also an asset on the other ledger according to some matching rule of
transactions). The exchange functionality FEX as well as the protocol ΠEx will
later use the algorithms compSwap, makeTX to generate the transactions. Looking
ahead we note that compSwap will be computed using outsourced MPC through
Fa,bIdent, keeping the input amsrc

j , am
trg
j from each client hidden from every server

whereas makeTX will be computed openly. We furthermore note that since there
is always an honest party that can influence the choice of algorithms so that the
chosen algorithms are fair.
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Functionality FEX (Part 1)

FEX interacts with the set of servers P = {P1, . . . ,Pn}, a set of m clients C =
{C1, . . . , Cm} as well as the global functionality FClock to which it is registered. FEX

is parameterized by the compensation amount q and the security deposit d = mq.
S specifies an adversary controlling a set of corrupted servers I ⊂ [n] and clients
J ⊆ C. Let L1, . . . ,L` be the available ledgers.

Init: Upon input (Input, sid, coins(d)) by each honest Pi:
1. Send (keygen, sid) to FTSig. If FTSig returns a key vk then save it internally

and continue, if it instead aborts then return coins(d) to each honest Pi and
stop.

2. Update FClock and wait for a message from S. If S sends coins(|I| ·d) send (key,
sid, vk) to each honest Pi, otherwise reimburse all honest Pi with coins(d).

Enroll Client: Upon input (Enroll, sid,Lsrc
j , vk

src
j , am

src
j ,Ltrg

j , vk
trg
j ) from a client

Cj ∈ C \ J or S if Cj ∈ J and if Init finished:
1. If Cj was enrolled already then return.

2. Send (Enroll, sid,Lsrc
j , vk

src
j , am

src
j ,Ltrg

j , vk
trg
j ) to S. If S sends (Ok, sid) then

send (keygen, sid) to FTSig to generate vkexj as well as (sign, sid,m) (obtaining
ρ) and (combine, sid,m, ρ, vk) to obtain σ.

3. If FTSig aborts then send (Abort, sid) to Cj . If it did not abort then send
(Proceed?, sid, σ, vkexj ) to the caller. If the caller was an honest Cj then wait
for input (value, sid, amtrg

j , idj) where idj is a transaction id of an hon-
estly generated transaction on Lsrc

j from vksrcj to vkexj with amount amsrc
j . Send

(InputProvided, sid, Cj) to S.

Exchange: Upon input (Exchange, sid) by all honest Pi and if Init finished:
1. Send (Clients?, sid) to S and wait for amsrc

j , idj for each Cj ∈ J or alternatively
for a message that Cj did not transfer to vkexj .

2. Send (Confirm, sid, {amsrc
i , idi}i∈[m]) to all servers in P. If no honest server

Pi for i /∈ I answers with (Confirmed, sid, {amsrc
i , idi}i∈[m]) (meaning a client

did not make a transaction) enter Abort without Output.

3. Send (sign, sid, Cj |idj , vk) (receiving ρj) and (combine, sid, Cj |idj , ρj , vk) to
FTSig for each Cj ∈ C. If any of them aborts then enter Abort without Out-
put.

4. For each a, b ∈ [`], 1 ≤ a < b ≤ ` let Ca,b be the clients swapping between La

and Lb. For Cj ∈ Ca,b define the m′ ≤ m values hj = (Cj , δj , amsrc
j , am

trg
j ) where

δj is 0 if Lsrc
j = La and 1 otherwise. Compute ya,b ← compSwap(h1, . . . , hm′).

If S sends (Abort, sid) enter Abort without Output.

Fig. 1: Functionality FEX for Secure Decentralized Exchange.
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Functionality FEX (Part 2)

Open: Upon input (Open, sid) by each honest Pi and if Exchange finished:
1. Send (sign, sid, open, vk) to FTSig and obtain ρ. Then send (combine,

sid, open, ρ, vk) to FTSig. If FTSig aborted then enter Abort without Out-
put, otherwise send (Outputs, sid, {ya,b}) to S.

2. Locally compute for each La the values ta = (ida, Ina,Outa) using makeTX. Let
the length of Ina be r and denote the burner addresses as vkexc for c ∈ [r].

3. For each La and c ∈ [r] send (sign, sid, ta, vk
ex
c ) to FTSig to obtain ρca. Then

send (combine, sid, ta, ρ
c
a, vk

ex
c ) to FTSig. If FTSig aborted enter Abort with

Output.

4. Send (sign, sid, done, vk) to FTSig to obtain ρ. Then send (combine,
sid, done, ρ, vk) to FTSig. If FTSig aborted then enter Abort with Output.

5. Update FClock. Then send (Success, sid, txa) to each Cj with La ∈ {vksrcj , vk
trg
j },

send coins(d) back to each honest Pi and coins(|I| · d) to S.

Abort with Output:
1. Update FClock twice and send (Abort?, sid) to S. If S responds with (Abort,

sid, I1) where ∅ 6= I1 ⊆ I then update FClock. Afterwards send coins(d) to each
honest Pi, coins((|I| − |I1|)d) to S and coins(|I ′|d/m) to each client Cj .

2. If S did not abort then update FClock. Afterwards for each La and c ∈ [r] send
(sign, sid, ta, vk

ex
c ) to FTSig to obtain ρca (with the same notation as Open).

Then send (combine, sid, ta, ρ
c
a, vk

ex
c ) to FTSig. If FTSig aborted overall with the

set of parties I2 ⊂ I cheating update FClock. Afterwards send coins(d) to each
honest Pi, coins((|I| − |I2|)d) to S, coins(|I ′|d/m) to each client Cj and return.

3. Otherwise update FClock, compute txa for each La, send (Success, sid, txa) to
each Cj with La ∈ {vksrcj , vk

trg
j }, coins(d) to each honest Pi and coins(|I| · d) to

S.

Abort without Output:
1. Update FClock twice.

2. Send (AbortC?, sid) to S which responds with (AbortC, sid, J1, {idj}j∈J\J1
)

where J1 ⊆ J . Then send (Abort?, sid) to S. If S responds with (Abort,
sid, I1) where ∅ 6= I1 ⊆ I update FClock, send coins(d) to each honest Pi, send
coins((|I| − |I1|)d) to S and coins(|I ′|d/(m− |J1|)) to each Cj ∈ C \ J1.

3. If S did not abort then update FClock. Afterwards for each Cj compute
tj = (idj , Inj ,Outj) by setting Inj = (idj , am

src
j ) and Outj = (amsrc

j , vk
src
j ) and

determining idj as the hash of Inj ,Outj .

4. For each Cj send (sign, sid, tj , vk
ex
j ) to FTSig and obtain ρj . Then send

(combine, sid, tj , ρj , vk
ex
j ) to FTSig. If FTSig aborted overall with the set of par-

ties I2 ⊂ I cheating then update FClock. Afterwards send coins(d) to each honest
Pi, coins((|I| − |I2|)d) to S and coins(|I2|d/m) to each client Cj .

5. If FTSig did not abort update FClock. Compute txj for each Cj and send
(Reimburse, sid, txj) to Cj , coins(d) to each honest Pi and coins(|I| · d) to
S.

Fig. 2: Functionality FEX for Secure Decentralized Exchange.
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3.1 The Fair Exchange Functionality

Functionality4 FEX as depicted in Fig. 1 & 2 generates the transactions for
clients via burner addresses. As our protocol later uses the global clock, FEX also
accesses FClock. The transactions that FEX will generate must be verifiable on
other ledgers and its signatures therefore come from a global threshold signing
functionality FTSig. FEX accesses FTSig in order to generate these, giving the
adversary S extra influence in the process. Notice that FEX implements a fair
secure swap given that compSwap and makeTX implement swapping algorithms.
S only learns the swap data ya,b after all transactions were determined but does
not learn the input orders like a centralized exchange does. S can only cause
an abort before the output is released by causing signature generation to fail.
In this case, all clients get reimbursed with either their original assets or with
a deposit (here coins) from S. If the functionality progressed far enough that
S learned the output, then it can only abort by losing its coins. Otherwise, the
swap output transactions will always be given to the clients.

4 Realizing the Exchange Functionality

We now describe a protocol ΠEx that GUC-realizes FEX, making sketch from
Section 1.2 more precise. As the smart contract which is used, abstractly de-
scribed in FSC (see Appendix B), is rather complex, we outline the interplay
between ΠEx and FSC beforehand. Due to space limitations, the smart contract
description and its formalization FSC as well as the full protocol ΠEx can be
found in Appendix B.

4.1 Overview of the Protocol

ΠEx runs between n servers P and m clients C. The clients can exchange between
` ledgers L. Each Cj controls an amount of tokens amsrc

j in an address vksrcj on

ledger Lsrc
j . The goal of Cj is to acquire amtrg

j tokens on Ltrg
j in address vktrgj .

Smart Contract Setup. Initially, no servers or clients are registered anywhere.
The servers P run a pre-processing step where they use FTSig to sample a com-
mon key vk for threshold-signing. Each Pi also sends its individual verification
key v̂ki to all other servers. Finally the servers set up ` · (`− 1) instances Fa,bIdent

to accept inputs by clients who want to transfer between La and Lb.
To initiate the protocol each server sends vk, v̂k1, . . . , v̂kn, coins(d) to FSC.

FSC will wait for a certain period and then check if all servers put in enough
deposit and signed messages consistently. If so, then the coins are locked and
FSC transitions to a state ready, otherwise the servers are reimbursed and FSC

goes back to its initial state init.

4 Throughout this work, we treat FEX as an ordinary UC functionality and not a global
functionality (which would intuitively make more sense). This is due to subtle issues
that would arise in the proof if FEX was global, namely the simulator would not be
able to equivocate the necessary outputs.
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1. Burner Address Setup. If a client Cj wants to exchange an asset from
Lsrc
j to Ltrg

j it checks if FSC is in state ready. If so then Cj sends a registration
message to all P, who generate a burner address vkexj on Lsrc

j using FTSig. The
servers sign the client’s data and vkexj using sk and send the signature to Cj .

2. Private Order Placement. If the signature is correct, then Cj transfers
amsrc

j from vksrcj to vkexj and inputs its transfer information into the correct

Fa,bIdent.

3. Confirmation. Servers wait until all transfers to burner addresses were
made and inputs were provided to Fa,bIdent by all clients. They then sign information
about the transactions to the burner addresses using sk. If either of this fails,
then at least one Pi signs an “abort” message using ŝki and sends it to FSC.

4. Private Matching. Afterwards the servers run compSwap on all Fa,bIdent to
match transactions. If Share of each FIdent is completed, all servers sign a mes-
sage “ok” using sk that every server obtains. If this fails then each Pi signs
an “abort” message and sends it to FSC. If signing succeeded but a server sent
“abort”, then all Pi respond by sending the signed “ok” to FSC. If signing “ok”
was successful then all Pi use Optimistic Reveal of Fa,bIdent, i.e. the swaps.

5. Pay Out. The servers will compute the resulting transactions txa = (ida, Ina,
Outa,Siga) using makeTX and by making signatures using FTSig under all burner
addresses of each La. These txa are then sent to clients Cj that are touched by the
transfer. In case of an error a server sends “abort” to FSC. Once all transactions
were signed the servers sign a message done using sk and send this message to
FSC. Upon receiving done signed by sk FSC reimburses all Pi.

Cheating Recovery. If any server sends an “abort” to FSC, then FSC waits if
any other server publishes an “ok” or “done” signed by sk. If “done” is published
after an “abort” then FSC reimburses all Pi.

If “ok” is published then each Pi runs Reveal and Allow Verify for each
Fa,bIdent and then posts all sk-signed client registrations, transaction ids as well as

FIdent-shares sa,bi . This allows each server to compute ya,b =
∑
i s
a,b
i and hence

ida, Ina,Outa for each La using makeTX. For each such transaction the server
then computes its shares of Siga which it also posts. All this information allows
FSC to check if all servers revealed correct shares and signature shares or not.
In case of cheating FSC sends the cheaters’ deposit to all registered clients and
reimburses all honest servers. If posted data was correct, FSC instead reimburses
all servers. Each client Cj identifies from FSC the parts necessary to compute its
swap transactions locally and then posts these to finalize the swap.

If no “ok” or “done” is published then each server posts all client registra-
tions signed by sk to FSC as well as the transactions that each client Cj made
to vkexj from vksrcj . After a certain delay passed the servers create reimbursing
transactions txj for each Cj . For this, each server Pi generates its share of the

signature using FTSig and sends this share to FSC, signed under ŝki.
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FSC parses all signed client registrations and transactions, locally generates
idj , Inj ,Outj for each Cj and checks that each Pi generated its signature share
correctly. If any share is missing or if Pi did not provide a valid share, then the
deposit of all cheaters is shared among all clients. Finally, each honest server is
reimbursed. If all reimbursement transactions can be made, then each Cj reads its
transactions from FSC and posts them on FBB while FSC reimburses all servers.

4.2 The Protocol
We discuss the practical deployment considerations of the protocol in Sec. 5 and
describe the full protocol in Figures 11-13 in Appendix C, where we also prove
the following statement:

Theorem 1. The protocol ΠEx GUC-implements the functionality FEX in the
FSC,FIdent,FClock,FSig,FTSig,FBB-hybrid model against any PPT-adversary cor-
rupting at most n− 1 of the n servers statically.

4.3 Preventing Denial of Service Attacks by Clients
In ΠEx as sketched above, any client that registers but does not transfer funds
causes an abort of the exchange. This can be avoided with an extension of ΠEx

that we outline below. We did not include this extension in the formalization of
ΠEx in order to keep the protocol description as small as possible.

To avoid the attack, all Pi in Step 3 of the protocol (Confirmation) sign
information on which clients will be included and which will be excluded in the
exchange, using FTSig. For each excluded Cj , the servers send the signed message
of exclusion to Cj . If Cj ’s transaction txj to vkexj on Lsrc

j was confirmed after
this signature was generated, then Cj sends this signature together with txj and
its registration information to FSC as proof that it should be reimbursed5. Upon
having obtained this, FSC requires all Pi to create a signature on a reimbursement
transaction to Cj . If a server Pi does not send it’s signature share, then Cj will
be reimbursed from the collateral of Pi on the exchange ledger.

Observe that txj might not be a valid transaction on Lsrc
j , but the reimburse-

ment transaction will only be valid if txj was valid (as it spends txj), hence
a malicious Cj cannot obtain funds of an honest party. Also, if a dishonest Pi
refuses to sign an honest Cj ’s reimbursement transaction, then Cj will be reim-
bursed on the exchange ledger with funds of Pi.

5 Implementation

To demonstrate feasibility of our approach, we describe a simple algorithm for
order matching, i.e. compSwap, along with an efficient MPC-based privacy pre-
serving implementation of this, based on the ring-variant of the SPDZ proto-
col [33,32] , called SPDZ2k [31].

We implemented an order-matching function, CcompSwap realizing the algo-
rithm compSwap, which we describe in full detail in Fig. 14 in Appendix D . We

5 All this information was signed by FTSig and must therefore be valid.
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note that CcompSwap is a simplified version of standard limit-order price-focused
matching algorithms, in the sense that it assumes all orders are for a constant
amount of tokens from ledger La and only matches according to price. That is,
the algorithm sorts the buy and sell orders according to their maximum and min-
imum limits respectively. Then the largest acceptable buy price is then matched
with the smallest acceptable sell price, assuming the buy price is larger than the
sell price. The clearing price will then be the average of the two prices. The price
describes how many tokens of Lb must be swapped to get a constant amount of
the tokens on La. Orders which are not matched are simply discarded, without
disclosing their price limits. We chose to implement this simple matching algo-
rithm as it provides a minimally useful example of what is required by compSwap

by performing oblivious sorting and selecting, which are they key aspects we can
expect from any reasonable choice of algorithm.

Furthermore, based on benchmarks of the most efficient implementation for
full-threshold ECDSA [30,34], we provide estimates for an implementation of
our full protocol showing that it can be realized efficiently, with the bottleneck
being the time it takes a transaction to be confirmed on the underlying ledgers.

Table 1: Complexity of the matching protocol
implementation in SPDZ2k .

Orders
(m)

k = 32, κ = 26 k = 64, κ = 57

#mult #rounds #mult #rounds

4 2269 151 4075 158

8 7417 262 13351 275

16 22833 410 41151 431

32 66465 595 119871 626

64 184449 817 332799 862

128 492097 1077 888127 1169

Complexity of Match-
ing. It is easy to see
that comparison is the
key primitive used in our
order matching. In most
arithmetic MPC schemes
this primitive can be
realized using O(log(k))
multiplication gates and
rounds of communication
where k is the max bit-
length of the numbers be-
ing computed on [24,31] . Besides being used for deciding whether a buy and sell
order should be matched, comparison is also the key component in most oblivious
sorting algorithms. In particular, Batcher’s Odd-Even Merge-sort [44, Sec. 5.4.3],
which our implementation uses, has comparison depthO(log2(m))) and uses a to-
tal of O(m log2(m)) comparisons. For this reason the overall round complexity of
our concrete order-matching algorithm, CcompSwap, ends up at O(log(k) · log2(m))

with multiplication gate complexity of O(k · m log2(m)). The communication
complexity associated with a multiplication gate is O(k+κ) bits for SPDZ2k [31].
Hence we get at most O((k+κ) ·m) bit in bandwidth usage per round. The total
amount used for each of the different choices of m and k by our implementation,
including overhead by the framework, is expressed in Table 1.

Implementation of Matching. We implemented and ran CcompSwap using the
Fresco framework [1], which is an open-source MPC framework in Java for se-
cure computation in the dishonest majority setting. We chose Fresco as it offers a
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simple API allowing quick construction of MPC applications. Furthermore, since
it is Java-based, it also allows for easy cross-platform deployment and integra-
tion with other software. Additionally, Fresco is a commonly used framework for
prototyping MPC applications [31,28] and supports a bring-your-own-backend
approach, allowing easy switching of the underlying MPC scheme without hav-
ing to modify the program to be executed. Most importantly however, Fresco is
actively maintained, has high test coverage and offers an extensive API of oper-
ations, making it a great choice for prototyping MPC protocols, with a focus on
potential real-world deployment, despite it not being the fastest option available.

We chose to base our implementation on arithmetic MPC instead of binary
MPC to closer reflect the domain where real-world matching algorithms work.
This also allows for more advanced computation of matches and prices through
arithmetic computation on the orders. This also avoids the large overhead there
would otherwise be present when doing arithmetic calculations on large integers
using an MPC protocol working over binary values. Furthermore, we also chose
SPDZ2k [27] as our MPC protocol to closer reflect the real-world setting. In par-
ticular SPDZ2kcan work over the same domain as standard processors, i.e. 32
or 64 bit integers, and hence allows for simple integration with already existing
algorithms, and systems that have been optimized for working over these do-
mains. Because of this, the online computation of SPDZ2k is significantly faster
than for SPDZ when computing comparison [31].

We note that we could have optimized our implementation by using newer
and more efficient approaches to MPC, such as approaches mixing both the bi-
nary and arithmetic setting [37]. However, the goal of our implementation has
been to show feasibility and an upper bound on the time it would require to ex-
ecute our protocol using a fully tested, documented and maintained framework.
Thus we leave such possible optimizations as future work.
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Fig. 3: Online phase of LAN (left) and WAN (right) execution of oblivious matching
using SPDZ2kon AWS m5.xlarge.
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Benchmarking Matching. We benchmarked the online execution of the match-
ing protocol in several different settings using Amazon’s Web Services EC2. We
show these benchmarks in Fig. 3 based on the average of 30 iterations (executed
after 30 “warm-up” iterations) and note that memory usage never gets above
536 MB regardless of test. For all tests we used m5.xlarge instances running
Ubuntu 18.04 LTS. This means that each instance has 4 virtual CPUs and 16
GiB of RAM along with a LAN connections of up to a 10 Gbps with less than
0.1 ms latency, when running instances in the same data-center. For the WAN
setting we also used m5.xlarge instances, but data centers in different countries.
For the setting with 2 servers, one was located in Ireland and another in the
U.K., with a latency of around 10 ms. For the setting with 3 servers, we kept
the servers in Ireland and the U.K., but added a third server in Germany, with
a latency of up to 25 ms between the Germany and Ireland servers.

When working over 32-bit integers (k = 32), the statistical security parameter
is κ = 26, whereas when working over the 64-bit integers (k = 64) we have
κ = 57. This is due to the underlying implementation of SPDZ2k in Fresco, and
was originally made for efficiency choices [31].

From Fig. 3 we notice a steep increase in execution time when expanding the
amount of orders and when moving from 2 to 3 servers. This is especially true in
the WAN setting. This is to be expected due to the underlying SPDZ2kprotocol
having round complexity in the multiplicative depth of the circuit being com-
puted and where each round involves every party sending two ring elements to
all other parties. Thus the overall execution time of the protocol becomes highly
depended on the underlying network, in particular its latency, when increasing
the amount of servers. This is also the case when increasing the amount of orders
as the round complexity is bounded by O(log(k) · log2(m)) and multiplication
gate complexity is bounded by O(k ·m log2(m)).

We imagine our protocol being run by a small set of servers, either run by a
single or a few public organizations, whose servers will be in physically distinct
locations, running distinct systems and administered by different people. For
this reason we only benchmark for 2-3 servers, but note that if high scalability is
desired one can simply change the underlying MPC scheme to a constant round
scheme such as BMR [7] as done in “Insured MPC” [5].

We note that Figure 3 only shows the online execution time. However, each
multiplication gate used for such an execution requires to be preprocessed in
advance in SPDZ2k . This preprocessing is independent of the input of the func-
tion to be computed and can thus be done before the clients even submit their
exchange orders. The most efficient SPDZ2k triple generation protocol with
benchmarks is due to Damg̊ard et al. [31], offering a throughput of 26,455
triples/second for k = 32 and 9,496 triples/second for k = 64 in the 2 server set-
ting on LAN. Thus this can be done completed in about 1.5 minutes for m = 128
and k = 64. However, a more band-width friendly solution has since been in-
troduced by Orsini et al. [50] that will most likely be more efficient for both the
LAN and WAN, but has currently not been implemented with benchmarks.
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Table 2: Complexity of the (threshold) signatures required by ΠEx for its different
phases. Time estimates are based on [39, Table 1].

FTSig FTSig FSig FSig/FTSig Wall-clock time (sec.)

keygen sign sign verify for m = 128

pr server pr server 2 servers 3 servers

LAN WAN LAN WAN

Initialize 1 0 1 0 1 1 1 1

Enroll m m m 0 125 125 246 246

Exchange 0 m+ 1 0 0 63 63 124 124

Open 0 < m+ 1 0 0 63 63 124 124

Abort w. out. 0 < m 0 0 62 62 123 123

Abort wo. out. 0 m 0 0 62 62 123 123Signatures. We outline the computational need and timing estimates of FTSig

and FSig, which is required by our protocol ΠEx in Table 2. Note that timings in
this table are estimates based on benchmark of a the recent work by Gennaro
and Goldfeder [39] for threshold ECDSA (currently the most popular scheme in
use by cryptocurrencies) with identifiable abort (which is needed for our proto-
col). The estimates are computed by adding the raw, single-core computation
benchmarks of Gennaro and Goldfeder and combine it with the latency between
the servers we used in Sec. 5 required for all rounds of the signing protocol (in-
cluding preprocessing time). We note that Gennaro and Goldfeder do not include
benchmarks for the key generation phase so we have benchmarked this as sign-
ing. This is quite conservative since the key generation phase of their protocol
is faster then the signing phase.

Total Execution Time. We only implemented and benchmarked the MPC
implementation of the CcompSwap algorithm from Fig. 14 since it is clearly going
to be the computation and communication related bottleneck when realizing
FIdent in the way discussed in Sec. 2.2. The only other cryptographic compu-
tation of this realization is limited to committing and opening of O(n(m + s))
commitments and sampling an equivalent amount of random elements in the
MPC computation. Such commitments can be constructed very simply and effi-
ciently in the ROM [16]. In particular in the order of microseconds, when using a
standard hash function like SHA-256 to realize the random oracle. Furthermore,
we note that besides the realization of FIdent and FTSig there are no other heavy
communication or computation involved in realizing ΠEx, since the other parts
is basically straight-line executable business logic.

Taking the above discussion into account, it is easy to see that in a full online
execution, the execution CcompSwap with no malicious behaviour, will be slower
than the time required for computing the threshold signatures6.

However, we now argue that even with the unoptimized implementation of
CcompSwap and FTSig these are not going to be the bottle-neck in regards to wall-
clock execution time in practice. The reason being the time it takes to finalize

6 Although we should note that the benchmarks of threshold signatures by Gennaro
and Goldfeder [39] are not optimized and run on a single-core consumer laptop
whereas our benchmark of CcompSwap runs on a powerful AWS instance. We expect
that the time required for the threshold signatures can be reduced significantly.
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transactions on the ledgers, which is necessary for any cross-ledger exchange.
A block has been finalized once it has been written to the ledger and a certain
amount of other blocks have been written afterwards to the same chain. This
ensures that one can be reasonably certain that the block with the transaction
will not be overwritten. The frequency at which blocks are constructed, and how
many should be constructed before a transaction can be considered finalized,
depends highly on the specific choice of ledger.

For Bitcoin, a new block is expected to be constructed every 10 minutes, and
a rule of thumb is that 6 further blocks must be written before a transaction
can be considered finalized. On Ethereum a block is constructed every 10-20
seconds and can optimistically be considered finalized after 3 minutes. In case
of Cardano, blocks are considered finalized after 10 minutes. This means that
each round of ledger I/O will generally involve a latency of several minutes and
hence be the bottleneck in practice.

Comparison to current solutions. As discussed in Sec. 1, besides our solu-
tion, there are generally only two other approaches to cross-chain exchange: 1)
A centralized exchange where a trusted party receives tokens on the different
ledgers and transfers the exchanged tokens accordingly based on some centrally
decided exchange rate. An example of this is Coinbase or Kraken. 2) A solution
using atomic-swap as employed by current decentralized exchanges [12,40,52],
where hash time locked contracts are used to ensure that the required transfers
actually get carried out. Only considering efficiency, even in the case of the
centralized exchange, two transactions must be carried out and finalized on the
underlying ledgers; one transfer from ledger La to the exchange and one from
the exchange to ledger Lb. This means that we can expect a centralized exchange
to take an order of tens of minutes to hours before it is has been fully finalized.
If a system based on atomic swaps is used, an extra transaction is required.
Thus requiring 3 sequential transactions to finalize before the exchange can be
considered complete.

When there is no malicious behaviour occurring, our system uses the opti-
mal 2 sequential transactions7 similarly to centralized exchanges. Specifically
our system involves the transaction by clients transferring their tokens to the
burner addresses and then the transaction of paying out the exchanged tokens.
Furthermore, we note that while waiting for the first transaction to finalize the
servers are sitting idle. This means that they could optimistically leverage this fi-
nalization time and start the actual matching computation. If the tokens are not
transferred by all clients, the servers will generate refund transactions instead
of opening the transactions computed by the private matching. Since the total

7 Technically 4 transactions are needed since the servers must put down a deposit to
the smart-contract, and receive this back at the end. However, the deposit can be
reused for an arbitrary amount of executions of exchanges, and we consider this as
purely overhead related to system setup. In case of malicious behaviour our protocol
uses at most 7 transactions to either complete the exchange or refund the clients
and return the honest servers’ deposits.
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computation time of ΠEx is less than the finalization time of most blockchains, it
means that its execution time will not be noticeable in the time it takes to carry
out and finalize a complete exchange. Hence using our protocol will not add any
time overhead to the current solutions (centralized or swapping). Furthermore,
since nothing (besides the one-time initialization of the server) is written to the
ledger, or executed by smart contracts, unless malicious behaviour occurs, it
means that there will be no added mining-related cost by our approach. Thus
achieving the added distributed security comes with no penalty in price or execu-
tion time as long as no malicious behaviour occurs. The only actual cost is what
is needed to keep the servers running and the one-time cost of initialization.

Deployment Considerations. Despite increasing the latency of an exchange,
we note that in a real-world deployment the servers would likely want to wait
for the clients’ transfers to the burner addresses get finalized before starting
the matching computation to prevent wasting computation and transfer/smart
contract fees. The reason being that it is unlikely that a client manages to
enroll in the exchange with the servers but fails to publish a transaction to
its source ledger. Even though it is formally considered a malicious deviation
this could happen without malice in many real world situations, either where
the client simply loses Internet connectivity or where miners chose to block a
specific client’s transfer. Thus the servers would only do an exchange on the
request from clients that have actually been finalized at a certain point in time
(and refund any transactions that happen to complete afterwards). This way it
is possible to prevent a single unstable client from delaying the entire protocol.
More importantly it will also prevent malicious clients from forcing the servers
(and honest clients) to spend money on smart contract and transaction fees of
exchanges that cannot be completed as discussed in Sec. 4.3. In regards to
creating a highly usable deployment we note that the clients actually don’t need
to be involved during the payout phase of the protocol. Instead of having each
client Cj post the signed transaction transferring their exchanged tokens to vktrgj
on ledger Ltrg

j themselves, we can simply have one of the honest servers post
this transaction on their behalf. This means that they do neither need to wait
for all other clients’ transfers of source tokens to be finalized, nor for all the
servers to finish computing the order-matching. This means that, unless one
or more servers are malicious, the only time the clients need to interact with
the protocol is during enrollment where they must register at the servers (and
receive a signed confirmation). For clients this only involves giving outsourced

input to Fa,bIdent, which can be done very efficiently and independently of other
clients or the size of the circuit to compute [41]. Thus this is something that can
easily be done in the user’s browser using a JavaScript web-app that integrates
with a user’s browser-wallet (e.g. MetaMask for Ethereum), where the server’s
signed response can be saved in the local web-page cache. Even if some servers
act maliciously and the abort branch of the protocol ends up being executed,
assuming there is still a single honest server, that honest server could simply
act on behalf of the client to ensure they get refunded. This is because all the
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information the client would need to post to FSC is actually constructed and
known by all the servers.

Future Work. Certain centralized exchanges are able to carry out huge amounts
of exchanges per second, without barely any latency in reception of the ex-
changed tokens. This is through a state-channel [36] approach where they hold
the client’s tokens persistently and simply carry out the transactions “in-the-
head”, keeping an internal ledger of which client owns what amount of tokens on
which ledger. However, such approaches necessarily require the same 2 sequen-
tial finalized transactions when they are to be committed on their respective
ledgers. We consider generalizing our approach to this setting, by implementing
a state-channel in MPC, an interesting direction for future work.

Even without realizing state-channels, simply employing a reactive MPC
functionality to carry out unmatched orders into a future iteration of compSwap
would be interesting. Along with adding more advanced features to CcompSwap,
such as expiration time and fully variable quantities to exchange, this would
allow for a complete and continues decentralized exchange platform that clients
can use “as-a-service” through a simple web-platform and a standard crypto-
wallet.
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Appendix A Remaining Notation and Basic Definitions

For any k ∈ N we write [k] for the set {1, . . . , k}. A function f(x) is negligi-
ble in x (or negl(x) to denote an arbitrary such function) if f(x) is positive
and for every positive polynomial p(x) ∈ poly(x) there exists a x′ ∈ N such
that ∀x ≥ x′ : f(x) < 1/p(x). Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and
Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are said to be statistically
indistinguishable, denoted by X ≈s Y , if for all z it holds that | Pr[D(Xκ,z) =
1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic algorithm (distin-
guisher) D. In case this only holds for computationally bounded (non-uniform
probabilistic polynomial-time (PPT)) distinguishers we say that X and Y are
computationally indistinguishable and denote it by ≈c.

A.1 Public Verifiability in Global UC

We follow the approach of Badertscher et al. [3] and allow the set of verifiers V to
be dynamic by adding register and de-register instructions as well as instructions
that allow S to obtain the list of registered verifiers. All functionalities with
public verifiability include the following interfaces (which are omitted henceforth
for simplicity):

Register: Upon receiving (Register, sid) from some verifier Vi, set V = V∪Vi
and return (Registered, sid,Vi) to Vi.
Deregister: Upon receiving (Deregister, sid) from some verifier Vi, set V =
V \ Vi and return (Deregistered, sid,Vi) to Vi.
Is Registered: Upon receiving (Is-Registered, sid) from Vi, return
(Is-Registered, sid, b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.

Get Registered: Upon receiving (Get-Registered, sid) from the ideal ad-
versary S, the functionality returns (Get-Registered, sid,V) to S.

The above instructions can also be used by other functionalities to register as a
verifier of a publicly verifiable functionality.
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A.2 Global Clocks and Bulletin Boards

FClock (see Fig. 4) is assumed to be a global functionality, which means that
other ideal functionalities will be granted access to it. And while in the real
protocol execution all parties send messages to and receive them from FClock, in
the simulated case only the ideal functionality, other global functionalities as well
as the dishonest parties will do so. Hybrid functionalities in the simulation might
also be given access, but this is not necessary in our setting. For simplicity, we do
not introduce a session management in FClock as it is not necessary to state our
result. FBB (see Fig. 5) is a Bulletin-Board global functionality that can store
authenticated messages as well as make them available for all users. We use FBB

as a dummy functionality for the ledgers among which assets will be transferred.

Functionality FClock

FClock is parameterized by a variable ν, sets P,F of parties and functionalities re-
spectively. It keeps a Boolean variable dJ for each J ∈ P ∪ F , a counter ν as well
as an additional variable u. All dJ , ν and u are initialized as 0.

Clock Update: Upon receiving a message (Update) from J ∈ P ∪ F :
1. Set dJ = 1.

2. If dF = 1 for all F ∈ F and dp = 1 for all honest p ∈ P, then set u← 1 if it is 0.

Clock Read: Upon receiving a message (Read) from any entity:
1. If u = 1 then first send (Tick, sid) to S. Next set ν ← ν + 1, reset dJ to 0 for

all J ∈ P ∪ F and reset u to 0.

2. Answer the entity with (Read, ν).

Fig. 4: Functionality FClock for a Global Clock.

Functionality FBB

FBB contains a list M∈ {0, 1}∗ of messages m ∈ {0, 1}∗ which is initially empty.

Post: Upon receiving (Post,m, vk, σ) from some entity contact FSig or FTSig be-
longing to vk. If σ verifies for m and vk then send (Post,m, vk, σ) to S and
append (m, vk) to M.

Read: Upon receiving (Read) from some entity, return M.

Fig. 5: The bulletin board functionality FBB that abstractly describes the source
and target public ledgers of transactions.
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Functionality FIdent

For each session, FIdent interacts with servers P = {P1, . . . ,Pn}, clients
C = {C1, . . . , Cm} and also provides an interface to register external verifiers
V. It is parameterized by a circuit C with inputs x(1), . . . , x(m) and output y ∈ Fg.
S provides a set IP ⊂ [n] of corrupt parties and IC ⊆ [m] of corrupt clients. FIdent

only interacts with P, C,V and S of the respective session sid.

Throughout Init, Input, Evaluate and Share, S can at any point send (Abort,
sid) to FIdent, upon which it sends (Abort, sid,⊥) to all parties and terminates.
Throughout Reveal, S at any point is allowed to send (Abort, sid, J) to FIdent. If
J ⊆ IP then FIdent will send (Abort, sid, J) to all honest parties and terminate.

Init: Upon first input (Init, sid) by all parties in P set rev, ver, ref← ∅.
Input: Upon first input (Input, sid, j, x(j)) by Cj and input (Input, sid, j, ·) by all
servers the functionality stores the value (j, x(j)) internally.

Evaluate: Upon first input (Compute, sid) by all parties in P and if the in-
puts (j, x(j))j∈[m] for all clients have been stored internally, compute y ←
C(x(1), . . . , x(m)) and store y locally.

Share: Upon first input (Share, sid) by Pi ∈ P and if Evaluate was finished:
1. For each i ∈ IP let S provide s(i) ∈ Fg.

2. For each Pi ∈ IP sample s(i)
$← Fg subject to the constraint that y =

∑
i∈[n] s

(i).

Optimistic Reveal: Upon input (Optimist-Open, sid, i) by each honest Pi and if
Share is completed, then send (Output, sid,y) to S. If S sends (Continue, sid)
then send (Output, sid,y) to each honest Pi, otherwise send (Output, sid,⊥).

Reveal: On input (Reveal, sid, i) by Pi, if i 6∈ rev send (Reveal, sid, i, s(i)) to S.
– If S sends (Reveal-Ok, sid, i) then set rev ← rev ∪ {i}, send (Reveal,
sid, i, s(i)) to all parties in P.

– If S sends (Reveal-Not-Ok, sid, i, J) with J ⊆ IP , J 6= ∅ then send
(Reveal-Fail, sid, i) to all parties in P and set ref← ref ∪ J .

Test Reveal: Upon input (Test-Reveal, sid) from a party in P ∪ V return
(Reveal-Fail, sid, ref) if ref 6= ∅. Otherwise return (Reveal-Fail, sid, [n] \ rev).

Allow Verify: Upon input (Start-Verify, sid, i) from party Pi ∈ P set ver ←
ver∪{i}. If ver = [n] then deactivate all interfaces except Test Reveal and Verify.

Verify: Upon input (Verify, sid, z(1), . . . , z(n)) by Vi ∈ V with z(j) ∈ Fg:
– If ver 6= [n] then return (Verify-Fail, sid, [n] \ ver).

– Else, if ver = [n] and rev 6= [n] then send to Vi what Test Reveal sends.

– Else set ws← {j ∈ [n] | z(j) 6= s(j)} and return (Open-Fail, sid, ws).

Fig. 6: Functionality FIdent for MPC with Publicly Verifiable Output.
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A.3 Client-Input Publicly Verifiable Multiparty Computation
Functionality FIdent

In Fig. 6 we formally define functionality FIdent for client-input publicly verifiable
multiparty computation adapted from [5]. In comparison to [5] we use non-
interactive UC commitments to realize the functionality, which simplifies it. As
FSC will need to interact with FIdent to verify outputs, we consider FIdent as
a global functionality. This does, however, not change anything concerning it’s
implementation or security proof, as FIdent does not keep a common state across
multiple sessions and ignores requests from other sessions.

Functionality FSig

Given ideal adversary S, verifiers V and a signer Ps, FSig performs:

Key Generation: Upon receiving a message (keygen, sid) from Ps, verify that
sid = (Ps, sid

′) for some sid′. If not, ignore the request. Else, hand (keygen,
sid) to the adversary S. Upon receiving (verification key, sid, SIG.vk) from S,
output (verification key, sid, SIG.vk) to Ps, and record the pair (Ps, SIG.vk).

Signature Generation: Upon receiving a message (sign, sid,m) from Ps, verify
that sid = (Ps, sid

′) for some sid′ . If not, then ignore the request. Else, send
(sign, sid,m) to S. Upon receiving (signature, sid,m, σ) from S, verify that
no entry (m,σ,SIG.vk, 0) is recorded. If it is, then output an error message to
Ps and halt. Else, output (signature, sid,m, σ) to Ps, and record the entry
(m,σ,SIG.vk, 1).

Signature Verification: Upon receiving a message (verify, sid,m, σ,SIG.vk′)
from some party Vi ∈ V, hand (verify, sid,m, σ,SIG.vk′) to S. Upon receiv-
ing (verified, sid,m, φ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set f = 1.
(This condition guarantees completeness: If the verification key SIG.vk′ is the
registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′, SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the entry
(m,σ, SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is the
registered one, the signer is not corrupted, and never signed m, then the
verification fails.)

3. Else, if there is an entry (m,σ,SIG.vk′, f ′) recorded, then let f = f ′. (This
condition guarantees consistency: All verification requests with identical pa-
rameters will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ, SIG.vk′, φ).

Output (verified, sid,m, f) to Vi.

Fig. 7: Functionality FSig for Digital Signatures [18].
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A.4 Standard Digital Signatures

The standard UC ideal functionality for digital signatures FSig from [18] is pre-
sented in Fig. 7.

Functionality FTSig

FTSig is parameterized with an ideal adversary S, a set of signers P and functionalities
F , a verifiers V (which automatically contains P and F) and a set of corrupted signers
I ⊂ P. FTSig has two internal lists Sh and Sig.

Key Generation: Upon receiving a message (keygen, sid) from each Pi ∈ P or
a functionality Fj ∈ F hand (keygen, sid) to the adversary S. Upon receiving
(verification key, sid, SIG.vk) from S, if (·, SIG.vk) was not recorded yet then
output (verification key, sid, SIG.vk) to each Pi ∈ P (or to Fj), and record
the pair (P,SIG.vk). If SIG.vk was recorded before then output (Abort, sid) to
S and stop.

Share Generation: Upon receiving a message (sign, sid,m,SIG.vk) from all hon-
est parties or a functionality Fj ∈ F send (sign, sid,m) to S. Upon receiving
(signature, sid,m, ρ, σ, J, f) from S, verify that

– no entry (m, ρ, J ′,SIG.vk′) with J ′ 6= J is recorded in Sh, and
– no entry (m,σ,SIG.vk, 0) is recorded in Sig if J = ∅.

If either is, then output an error message to S and halt. Else, let f ′ = 1 if J = ∅
and f ′ = f otherwise, record the entry (m, ρ, J,SIG.vk) in Sh, (m,σ, SIG.vk, f ′)
in Sig and return (shares, sid,m, ρ).

Share Combination: Upon receiving a message (combine, sid,m, ρ,SIG.vk) from
any party in P or functionality Fj ∈ F , find (m, ρ, J,SIG.vk) in Sh and
(m,σ,SIG.vk, b) in Sig. If J 6= ∅ then return (Failure, sid, J). If J = ∅ re-
turn (combined, sid,m, σ,SIG.vk). If no entry could be found in Sh and Sig

then return (Not-Generated, sid).
Signature Verification: Upon receiving a message (verify, sid,m, σ,SIG.vk′)

from some entity in V, hand (verify, sid,m, σ,SIG.vk′) to S. Upon receiving
(verified, sid,m, φ) from S do:

1. If SIG.vk′ = SIG.vk and (m,σ, SIG.vk, 1) ∈ Sig, then set f = 1.
2. Else, if SIG.vk′ = SIG.vk and (m,σ′, SIG.vk, 1) 6∈ Sig for any σ′, then set

f = 0 and record the entry (m,σ,SIG.vk, 0) in Sig.
3. Else, if there is an entry (m,σ, SIG.vk′, f ′) ∈ Sig recorded, then let f = f ′.
4. Else, let f = φ and record the entry (m,σ, SIG.vk′, φ) in Sig.

Return (verified, sid,m, f).

Fig. 8: Functionality FTSig for Threshold Signatures.

A.5 Threshold Digital Signatures

Functionality FTSig is defined in Fig. 8. The functionality is tailored to threshold
n, meaning that the adversary may control up to n − 1 parties but will still

28



not be able to forge signatures. This coincides with the security model for the
MPC scheme FIdent that we use. FTSig exposes a behavior such as FSig, but it
additionally allows S to choose the string of shares that later get combined into
a signature (although S has to choose both the shares ρ and the signature σ
together). Parties can learn σ from ρ via Share Combination, but cheating
during Share Generation leads to dishonest parties being exposed when trying
to combine the values from ρ. Observe that the actual choice of ρ binds S to
a certain consistent set of dishonest parties that are exposed via Share Com-
bination. In FTSig S will always be able to make Share Generation output
dishonest shares that lead to a signature that is valid (if the set of cheating
parties J is empty), but it never can make an invalid signature in an honest
instance of Share Generation.

Appendix B Smart Contract Functionality FSC

We now describe the smart contract on a high level, meaning its different states
and state transitions. This is to ease understanding, the full description will be
presented later. The Smart Contract will have 7 different states init, ready,
abort, ok1, ok2, reimburse1, reimburse2 where init is the initial state. State
transitions are performed whenever the global clock FClock changes and depend-
ing on the messages that are present on the ledger that FSC acts upon.

init If a tick happens, then check if all servers signed the same vk, v̂k1, . . . , v̂kn
using their individual ŝki and that Pi sent coins(d). If so then change state
to ready, otherwise reimburse all servers and stay in init.

ready If a tick happens and a message “done” is present, signed by sk, then
reimburse all servers and set the state to init. If a tick happens and a
message “abort” is present, signed by a ŝki that initialized the contract,
then change the state to abort.

abort If a tick happens and a message “done” is present, signed by sk, then
reimburse all servers and set the state to init. Else, if a tick happens and a
message “ok”, signed by sk, is present, then change state to ok1. Else, if no
such message is present at the tick, then change to reimburse1.

ok1 Call Test Reveal on each Fa,bIdent. If no parties J are returned as cheaters

by Test Reveal then check if for each Pi and each Fa,bIdent a message sa,bi
signed by ŝki is present. If indeed, then verify the output for each Fa,bIdent

using Verify. If any of the aforementioned steps fails, then let I1 be the set
of cheating servers.
If I1 = ∅ then change the state to ok2. If I1 6= ∅ then identify all the m
clients by finding all messages of the form (Cj |Lsrc

j |amsrc
j |vk

src
j |vk

ex
j |L

trg
j |vk

trg
j )

that are signed by sk. Furthermore, identify all the transaction ids idj to
burner addresses vkexj signed by sk. For each party in I1 share the deposit
among all m clients. Then return the deposit of the parties in [n] \ I1 and
change the state to init.
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ok2 Compute for each La in clear text the values ida, Ina,Outa from the outputs
of each Fa,bIdent as well as the client registration data and transaction ids using

makeTX. For each La check if each Pi sent shares of Siga signed with ŝki. If
so, then check that each share of Siga is valid using FTSig by running Share
Combination. If any of the previous steps fails, then let I2 be the set of
cheaters.
If I2 = ∅ then reimburse all Pi with their deposit and change the state to
init. Otherwise identify all the m clients by finding all client registration
data and transaction ids to burner addresses signed by sk. For each party
in I2 share the deposit among all m clients. Then return the deposit of the
parties in [n] \ I2 and change the state to init.

reimburse1 If a tick happens, then continue to reimburse2. Intuitively, during
this step all clients that get reimbursed are already fixed so the servers will
create the signatures on reimbursement transactions.

reimburse2 If a tick happens, consider all messages provided by each Pi to FSC

that are of the form (Cj |Lsrc
j |amsrc

j |vk
src
j |vk

ex
j |L

trg
j |vk

trg
j ) that are signed by sk

as well as all messages (idj |Inj |Outj , vksrcj ) ∈ M (transaction ids) where

Inj = (vksrcj , am
src
j ) and Outj = (amsrc

j , vk
ex
j ). If there are multiple messages

for Cj then ignore Cj
Locally compute for each Cj the transaction txj to reimburse Cj . Therefore
set Inj = (idj , am

src
j ), Outj = (amsrc

j , vk
src
j ) and set idj as the hash of both.

If each Pji provided ρij then check using Share Combination on FTSig that
it outputs a valid signature Sigj on idj , Inj ,Outj . If all such Sigj are valid
signatures then reimburse all Pi and set the state to init. If some signature
shares are not valid or some shares ρij are not present on FSC then let J be
the set of cheaters. Reimburse all servers [n] \ J and distribute the deposit
of the parties of J evenly to all Cj . Then set the state to init.

Formalizing the Smart Contract We use a combined smart contract and
public ledger functionality FSC. It is an extension to FBB, tailored to be combined
with an MPC protocol and similar to the functionality used in [5]. For technical
reasons, FSC has a hard-coded reference to the publicly verifiable MPC function-
ality FIdent in order to be able to verify outputs. FSC is described in Fig. 9 and
Fig. 10 and considered as an ordinary UC functionality in our work. Again, this
is due to technical limitations of UC, which would not make it possible for the
simulator we construct in our security proof to equivocate the necessary outputs.
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Functionality FSC (Part 1)

FSC interacts with the global functionalities FIdent,FClock,FSig,FTSig. It is parameter-
ized by the compensation q, the maximal number of exchange clients m and the
security deposit d = m · q. FSC has an initially empty list M of messages posted to
the authenticated bulletin board and a public state state which is initially init. It
furthermore has the sets P of servers which is initially empty. Upon each activation
FSC first sends a message (Read, sid) to FClock. If ν has changed since the last call
to FClock then it does the following:

state = init: Check if ((vk, {v̂ki}i∈[n], {Lj}j∈[`], {Fa,b
Ident}

a<b
a,b∈[`]), v̂ki) ∈ M for all i ∈

[n] via FSig. Furthermore check that each Pi with key v̂ki sent coins(d). If so then
change state to ready and set P = {P1, . . . ,Pn}. If not, for P ′ as the parties
that provided coins(d) send coins(d) to each party in P ′ and let state = init.

state = ready: If (done, vk) ∈ M then run CC(∅, ∅) and set state to init. Else if

(abort, v̂ki) ∈ M for some Pi ∈ P then change state to abort. Else do not
change state.

state = abort: If (done, vk) ∈ M then run CC(∅, ∅) and set state to init. Else, if
(ok, vk) ∈M then change state to ok1. Else change state to reimburse1.

state = ok1: Parse all messages (Cj |Lsrc
j |amsrc

j |vksrcj |vkexj |Ltrg
j |vk

trg
j , vk) ∈ M ( client

registrations) and all (Cj |idj , vk) ∈M (transaction ids). Then call Test Reveal

on each Fa,b
Ident. Afterwards check if (sa,bi , v̂ki) ∈ M for each Pi and each Fa,b

Ident

and send (Verify, sid, sa,b1 , . . . , sa,bn ) to each Fa,b
Ident. If all passes, then let ya,b =∑

i∈[n] s
a,b
i be the output of Fa,b

Ident. If any of the aforementioned steps fails, then
let I1 be the set of cheaters.
If I1 = ∅ then set state to ok2, else let C be the set of clients, run CC(I1, C) and
change state to init.

state = ok2: For each ledger La compute ida, Ina,Outa from ya,b as well as the client
registrations and transaction ids using makeTX. Let vkexa,1, . . . , vk

ex
a,r be the source

transactions in ina. For each La check if ((ρa,1i , . . . , ρa,ri ), v̂ki) ∈ M and send
(combine, sid, ida|Ina|Outa, ρ

a,c
i , vkexa,c) to FTSig for each c ∈ [r] and i ∈ [n]. If

any of the steps fails, then let I2 be the set of cheaters.
Let C be the set of clients. If I2 = ∅ then run CC(∅, ∅), otherwise run CC(I2, C).
Finally change state to init.

state = reimburse1: Change state to reimburse2.
state = reimburse2: Parse all messages (Cj |Lsrc

j |amsrc
j |vksrcj |vkexj |Ltrg

j |vk
trg
j , vk) ∈ M

(i.e. client registrations) as well as (idj |Inj |Outj , vk
src
j ) ∈ M (transaction ids)

where Inj = (vksrcj , am
src
j ) and Outj = (amsrc

j , vk
ex
j ). If there are multiple messages

for Cj then ignore Cj .
Compute for Cj the values idj , Inj ,Outj for reimbursement by setting Inj =
(idj , am

src
j ),Outj = (amsrc

j , vk
src
j ) and idj as the hash of Inj ,Outj .

Check if (ρij , v̂ki) ∈ M for each Cj and each Pi, then send (combine,
sid, idj |Inj |Outj , ρ

i
j , vk

ex
j ) to FTSig for each i ∈ [n]. If all values were present

on M and all queries to FTSig were positive then run CC(∅, ∅) and set state to
init. Otherwise let J be the set of cheaters and C be the set of all clients. Run
CC(J, C) and set state to init.

Afterwards it executes the operation and finalizes by sending (Update, sid) to FClock.

Fig. 9: The stateful smart contract functionality FSC.
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Functionality FSC (Part 2)

Post: Upon receiving (Post, sid,m, vk, σ) from some entity contact the instance of
FSig or FTSig belonging to vk. If σ verifies for m and vk then send (Post, sid,m, vk, σ)
to S and append (m, vk) to the list M.

Read: Upon receiving (Read, sid) from some entity, return M.

Send Deposits: Upon receiving (Lock-In, sid, coins(d)) from some entity Pi con-
taining the d coins of the security deposit send (Lock-In, sid, coins(d)) to S. Then
if state = init accept the money, otherwise return it to Pi.

Macro CC(punish, C): Let punish ⊂ P, |C| ≤ m and reimburse = P\punish. Send
coins(d) to each party reimburse and coins(|punish| · d/|C|) to each party in C.

Fig. 10: The stateful smart contract functionality FSC.

Protocol ΠEx (Part 1)

We have n servers P and m clients C. The clients exchange between ` ledgers L
known to P. Each Cj starts with an amount of asset amsrc

j signed by vksrcj on ledger
Lsrc

j . The goal of Cj is to acquire amtrg
j on Ltrg

j by a transfer to vktrgj .
The protocol runs in the presence of FClock,FSC and multiple instances of FSig,FTSig.

Initialize:
1. All P set up ` · (`− 1) instances Fa,b

Ident where 1 ≤ a < b ≤ ` to accept inputs by

clients who want to transfer between La and Lb and run Init on each Fa,b
Ident.

2. The servers P use FTSig to sample a common key vk. Furthermore each Pi uses

FSig to generate an individual public verification key v̂ki, which it shares with
all P.

3. Let t = (vk, {v̂ki}i∈[n], {Lj}j∈[`], {Fa,b
Ident}

a<b
a,b∈[`]). If FSC is in state init then each

Pi first computes a signature σv̂ki
(t) on t using FSig for the key v̂ki and then

sends (Post, sid, t, v̂ki, σv̂ki
(t)) to FSC. Afterwards, each Pi sends (Lock-In,

sid, coins(d)) to FSC updates FClock.

Enroll Client: Upon message (Enroll, sid, amsrc
j ,Lsrc

j , vk
src
j ,Ltrg

j , vk
trg
j ) by Cj :

1. If state = ready then all Pi use FTSig to generate a fresh key vkexj on Lsrc
j . Let

tj = (Cj ,Lsrc
j , am

src
j , vk

src
j , vk

ex
j ,Ltrg

j , vk
trg
j ). Then the servers use FTSig to generate

a signature σvk(tj) for the key vk. All Pi send (Ok, sid, tj , σvk(tj)) to Cj .
2. Upon receiving (Ok, sid, tj , σvk(tj)) Cj checks if σvk(tj) is valid using vk from
FSC. Then it creates a transaction txj = (idj , Inj ,Outj , Sigj) where idj is fresh

for Lsrc
j , Inj = (idj , am

src
j ), Outj = (amsrc

j , vk
ex
j ) and Sigj = σvksrcj

(id|In|Out) where

id is the id of an unspent transaction for vksrcj and the signature is produced by
FSig for the key vksrcj . Finally, Cj sends txj to FBB corresponding to Lsrc

j .

3. Let La = Lsrc
j and Lb = Ltrg

j . Each Cj sends (Input, sid, j, (Cj , 0, amsrc
j , am

trg
j )) to

Fa,b
Ident if a < b, otherwise it sends (Input, sid, j, (Cj , 1, amsrc

j , am
trg
j )) to Fb,a

Ident.

Fig. 11: The protocol ΠEx.
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Protocol ΠEx (Part 2)

Exchange: Upon (Exchange, sid) by all servers:
1. Each Pi checks that each Cj provided input to its respective Fa,b

Ident and that
txj has been approved (with the right amount of asset) on the respective FBB-
instance. If this is the case then all P use FTSig to generate a signature σvk(uj)
with uj = (Cj , idj) for the transaction id idj of txj . If the transaction is not
present or the signing with FTSig fails then Pi uses FSig to generate the signature

σv̂ki
(uj) and sends (Post, sid, abort, v̂ki, σv̂ki

(uj)) to FSC. It then updates FClock,
sends (Abort, sid) to all P and enters Abort.

2. Pi runs Evaluate and Share on each Fa,b
Ident where the circuit evaluated runs

compSwap for the registered number of parties. If Pi obtained an abort from any
Fa,b

Ident then it sends (Post, sid, abort, v̂ki, σv̂ki
(uj)) to FSC, updates FClock, sends

(Abort, sid) to all P and enters Abort.

3. If all of this succeeds, then all Pi compute σvk(ok) using FTSig and send
it to all servers. If Pi did not obtain the signature then it sends (Post,

sid, abort, v̂ki, σv̂ki
(uj)) to FSC, updates FClock, sends (Abort, sid) to all P and

enters Abort.

4. If no abort message was obtained then each Pi updates FClock. Then it checks
state of FSC. If state = abort then it runs Abort, else it runs Open.

Open:
1. Each Pi runs Optimistic Reveal for each Fa,b

Ident. If a server Pi obtained an

abort from any Fa,b
Ident then it sends (Post, sid, abort, v̂ki, σv̂ki

(uj)) to FSC, up-
dates FClock, sends (Abort, sid) to all P and enters Abort.

2. If no abort was received then each Pi obtained ya,b ∈ Fg for each Fa,b
Ident. For each

La Pi then computes txa = (ida, Ina,Outa,Siga) as follows:
(a) Compute (ida, Ina,Outa) using makeTX from all ya,b as well as all client

registrations and idj .

(b) Compute Siga = σvkexc
(ida|Ina|Outa) using FTSig for each vkexc where c ∈ [r]

and r is the number of burner addresses in Ina.
Finally, all servers will compute σvk(done) using FTSig. If a server Pi obtained

an abort from any FTSig then it sends (Post, sid, abort, v̂ki, σv̂ki
(uj)) to FSC,

updates FClock, sends (Abort, sid) to all P and enters Abort.

3. If no FTSig aborted then send txa to each Cj with La ∈ {vksrcj , vk
trg
j }.

4. All Pi send (Post, sid, done, σvk(done), vk) to FSC.

Abort: If Pi sends or receives (Abort, sid) at any point:
1. If Pi received (Abort, sid) from another server then update FClock.

2. If FSC is in state abort and Pi has the message σvk(done) then it sends (Post,
sid, done, σvk(done), vk) to FSC. Else if Pi has the message σvk(ok) then it sends
(Post, sid, ok, σvk(ok), vk) to FSC. Afterwards it updates FClock.

3. If it obtains coins(d) from FSC then it outputs coins(d) and terminates.

4. If FSC is in state reimburse1 then run Abort without Output. If FSC is in
state ok1 then run Abort with Output.

Fig. 12: The protocol ΠEx.
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Protocol ΠEx (Part 3)

Abort with Output:
1. For each registered Cj the servers send (Post, sid, tj , σvk(tj), vk)

and (Post, sid, uj , σvk(uj), vk) to FSC where tj =
(Cj ,Lsrc

j , am
src
j , vk

src
j , vk

ex
j ,Ltrg

j , vk
trg
j ) and uj = (Cj , idj).

2. Each Pi runs Reveal and Allow Verify for each Fa,b
Ident, fol-

lowed by sending (Post, sid, sa,bi , σv̂ki
(sa,bi ), v̂ki) to FSC and up-

dates FClock. If Pi or Cj obtains coins(d) from FSC then it outputs
coins(d) and terminates.

3. Otherwise Pi recovers all ya,b from FSC and does the following for
each La:
(a) Determine ida, Ina,Outa using makeTX from all ya,b as well as

all tj , uj .

(b) Compute ρa,ci by sending (Sign, sid, ida|Ina|Outa) to FTSig for
each vkexc where c ∈ [r] and r is the length of Ina. Set vj =
(ρa,1i , . . . , ρa,ri ).

4. Pi sends (Post, sid, vj , σv̂ki
(vj), v̂ki) for a ∈ [`] to FSC and updates

FClock.

5. If Pi obtains coins(d) from FSC then it outputs coins(d) and ter-
minates.

6. Each Cj checks if FSC contains data for a transaction txa if La ∈
{vksrcj , vk

trg
j }. If so then Cj reconstructs txa. Otherwise it outputs

the coins obtained from FSC.

Abort without Output:
1. For each registered client Cj the servers send

(Post, sid, tj , σvk(tj), vk) to FSC where tj =
(Cj ,Lsrc

j , am
src
j , vk

src
j , vk

ex
j ,Ltrg

j , vk
trg
j ). Furthermore, each client

Cj sends (Post, sid, idj |Inj |Outj , σvksrcj
(idj |Inj |Outj), vk

src
j ) to FSC

where idj |Inj |Outj are from the transaction txj that Cj made to
vkexj and where σvksrcj

(idj |Inj |Outj) is from the signatures Sigj that

are part of txj . Then each Pi updates FClock.

2. Next, each Pi for each Cj computes the transaction txj as follows:
(a) Set Inj = (idj , am

src
j ) and Outj = (amsrc

j , vk
src
j ).

(b) Determine idj as the hash of Inj ,Outj . Set tj =
(idj , Inj ,Outj).

(c) Compute ρij by sending (Sign, sid, tj , vk
ex
j ) to FTSig.

3. Each Pi sends (Post, sid, ρij , σv̂ki
(ρij), v̂ki) to FSC and updates

FClock.

4. If Pi obtains coins(d) from FSC then it outputs coins(d) and ter-
minates.

5. Each Cj checks if FSC contains data for a transaction txj . If so
then Cj reconstructs txj . Otherwise it outputs the coins coins it
obtained from FSC.

Fig. 13: The protocol ΠEx.
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Appendix C The Exchange Protocol, continued

We present the full protocol ΠEx in Figures 11-13 and the algorithm compSwap

in Figure 14, showing a sketch for the proof of Theorem 1.

C.1 Proof of Theorem 1

Proof. In order to prove the claim we construct a PPT simulator S which will,
in the ideal setting, interact with A, FEX and all the hybrid and global function-
alities in such a way that FEX ◦ S ≈ ΠEx ◦ A for any PPT environment Z, i.e.
that the interaction created by S is indistinguishable from a protocol transcript
in a composed setting. Additionally, the global functionalities will be present in
both cases and Z will be able to perform queries to these.
S, on a high level, runs as follows:

– Upon learning the sets I, J of corrupted servers and clients S simulates
honest servers Pi and honest clients Cj in a simulated instance of ΠEx.

– S follows the protocol ΠEx but with dummy inputs for Pi and Cj . S will
observe A’s behaviour during the protocol execution and from it extract
inputs that it sends to FEX on behalf of the dishonest servers and clients.

– During Initialize S will forward all messages sent by A to FTSig for gener-

ating the key vk. It generates keys v̂ki for all the simulated servers and sends
these to A. It then for each party sends a signature on t as in the protocol,
where different values are signed by different honest parties if A sent dif-
ferent keys to different honest servers. S will additionally provide messages
coins(d) by each simulated honest party to FSC. If FEX activates the clock
and time progresses then it sends coins(|I| · d) to FEX, otherwise it aborts.

– During Enroll Client S will simulate sign-up of honest clients based on
the output of FEX by sending the respective message to A. It forwards all
interactions of A to FTSig concerning the burner address. Ultimately it cre-
ates “fake” inputs for each honest Cj to the respective FIdent instance. For all
the dishonest clients S observes FSC as well as the instances of FBB. Upon
receiving an enrollment message to all simulated honest servers it sends the
respective message to FEX. Their inputs will be extracted from the respective
instances of FIdent which can be observed by S. Alternatively send a message
to FEX if a dishonest client neither provided any input nor made a transfer.

– During Exchange S follows what the honest servers would do in the protocol
and forwards messages to FTSig accordingly. It aborts if the computation on
any FIdent fails or if the sharing fails. Finally, it sends the respective message
to FEX.

– During Open either start the abort if FEX does so or obtain the outputs
ya,b from FEX. In case that S obtains the output then make the output
from FIdent to A appear to be the correct corresponding output and run
their output phases8. Then forward all interactions towards FTSig of A. If a

8 This is possible, even if FIdent is global, as S can alter all messages between A
and global functionalities. This will not be noticeable for Z as FIdent only outputs
information for a specific sid to TMs acting in that session.
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“done” message gets signed then let each honest server send it to FSC. Upon
obtaining coins(|I| · d) back from FEX let FSC forward these to A.

– If FEX runs Abort without Outputs S simulates the behavior of the honest
servers by sending the signed messages that they learned during Enroll
Client to FSC. Furthermore it fetches the transaction tx from FBB that the
honest client made to send money to the burner address and puts it on FSC

as an honest client does in the protocol. If A does not send certain messages
to FSC then identify the respective sets J1, I1 and send them to FEX. If FEX

sends any coins(d) back to S then let FSC distribute these accordingly.
– Simulate Abort with Output like Output without Abort is simulated.

It is easy to see that the messages which an adversary reads during the
simulated protocol are consistent with the values that are returned both to
the honest parties and servers and with the outputs of the ideal functionality.
The state of FClock during each protocol step is identical with that during the
simulated protocol instance. Moreover, whenever the simulated protocol aborts
then this also leads to an abort of FEX and when honest servers let FEX abort
then this is reflected in FSC. Honest clients never abort in the simulation as they
cannot abort in ΠEx either. Finally, the coins that A puts into FSC and obtains
from FSC are identical with those that S inputs into FEX or obtains from it. ut

Appendix D The Private Matching Algorithm

For our simple proof-of-concept of compSwap, we only assume an exchange be-
tween two distinct tokens and only allow exchanges of a preset amount in a pivot
tokens. However, since we build on general purpose MPC for matching, other
algorithms and rules could be implemented when implementing compSwap.

Concretely our prototype implementation could for example perform ex-
changes between Bitcoin and Ethereum and each exchange would be of, say
of 1 BTC. Hence a buy order would only contain the upper limit of Ether one
would maximally be willing to pay for 1 BTC, which could for example be 30
ETH. Similarly a sell order would contain the lower limit of Ether one would
minimally be willing to accept in exchange for 1 BTC. To get higher granularity
the units can of course be changed so that one rather express how many 0.00001
ETH one will pay for 1 BTC, for example 2, 985, 184 · 10−4 ETH. To buy more
than 1 BTC, one could simply issue multiple orders.

Orders are matched such that the largest buy limit is matched with the
smallest sell limit, under the constraint that buy limit is larger than, or equal
to, the sell limit. This match is removed from the set of orders, and the new
remaining largest buy limit is matched with the new remaining smallest sell
order. This continues until all orders are fulfilled, or the remaining largest buy
order is smaller than the smallest sell order, when the remaining orders are
discarded.

The clearing price of an order is then defined to be the average of the buy
limit of this specific order’s buyer and the sell limit of this specific order’s seller.
This means that all matched orders will likely have different clearing prices. To
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implement this securely we require that the buy/sell limits of every client’s order
is hidden and only the clearing price is leaked, and only after all orders in the
set have matched or discarded.

Since the buy/sell limits are hidden, orders must be distinguished, thus each
order is assigned a distinct, yet public ID, that is then linked to their client’s iden-
tity outside of the matching protocol, vksrcj . However, this must then be oblivious
to the servers during execution as this would otherwise leak information about
the relative difference between the different client’s limits during execution, thus
giving the servers a potential advantage in front-running the client’s in other
exchanges. But it could simply just be the client’s public key vksrcj , however, for
efficiency reason it makes sense to map this to a small index such that it can be
represented by a single element in the MPC computation.

With this description in mind we see that the matching protocol is simply
to sort, based on the buy limits and the sell limits, in parallel, followed by an
iteration through the sorted buy/sell limits, matching as long as the i’th buy
limit is greater than the i’th sell limit. However, even doing this in a secure way
becomes non-trivial since we cannot allow branching in MPC without requiring
all branches being executed. Hence it will not be efficient to use a standard
approach to sorting, such as quick-sort. Even merge-sort will be highly inefficient
since a trivial approach to oblivious merging would require O(m2) time for m
elements. For this reason an oblivious sorting algorithm (sorting network) must
be used. For example Batcher’s Odd-Even Merge sort [44, Sec. 5.4.3], which we
used in our implementation. This algorithm requires O(m log2(m)) comparisons
and has depth O(log2(m)) for m elements.

We describe the secure computation logic of our matching algorithm in
Fig. 14, using the common notation of J·K to indicate values hidden in MPC.
We include a subscript, J·Ki, to indicate a specific index of the internal represen-
tation hiding the value when this would otherwise not be known to the server.
In particular, this is the case after obliviously sorting the the input elements.

We note that in this protocol we assume that clients can send secret input to
the servers in a consistent way. We will not dwell on how exactly this is done, but
simply mention that this can be done efficient, black-box in the underlying MPC
scheme (assuming that it allows for reactive computation) using an approach
called out-sourced MPC [41].

In our algorithm we assume access to an algorithm, Sort, for oblivious sorting
of a list in increasing order and an algorithm Rev for reversing the order of a
list. Thus Rev(Sort(·)) returns a list in decreasing order. We also assume that
we have an oblivious method for comparison, that is JzK := JxK ≥? JyK where
z = 1 if x ≥ y and z = 0 otherwise. Finally we abuse notation and assume
the permutations sortbuy(j), sortsell(j) map an index j in an unsorted list to its
sorted position in said list, for the buy, respectively sell orders.

We note that in a real-world deployment, more logic would probably be added
to the matching. In particular, allowing for exchanges of variable amounts and
include time-stamps such that the oldest orders get priority in case of multiple
possible matches.
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Algorithm CcompSwap

CcompSwap realizes a limited compSwap functionality for order matching of const tokens
from La to a number of tokens on Lb. The algorithm is run between the servers
P1, . . . ,Pn on m = mbuy + msell order inputs, with order mj from client Cj , and
outputs at most min(mbuy,msell) order matches.

Input: Upon input (Cj , δj , amsrc
j , const) from client Cj for j ∈ [m] with δj = 0 if Cj

wishes to buy const tokens on La using at most amsrc
j tokens on Lb and δj = 1 if Cj

wishes to sell const tokens from La for at least amsrc
j on Lb. Concretely client Cj inputs

(Input, sid, j, amsrc
j ) on Fa,b

Ident and sends δj in plain to the servers. Furthermore, every

server Pi for i ∈ [n] inputs (Input, sid, j, ·) on Fa,b
Ident. If δj = 0 the servers map the

inputs to (
q
amsrc

j

y
i
, JjKi , buy) for some unused i ∈ [mbuy], otherwise they map it to

(
q
amsrc

j

y
i
, JjKi , sell) for some unused i ∈ [msell]. The servers also input a special value

indicating null by calling (Input, sid, null) on Fa,b
Ident to get JnullK.

Evaluate: The servers input (Compute, sid) on Fa,b
Ident for computing the following:

1. Compute( r
amsrc

sortbuy(j)

z

i
,

q
sortbuy(j)

y
i
, buy

)
i∈[mbuy]

← Rev
(
Sort

((q
amsrc

j

y
i
, JjKi , buy

)
i∈[mbuy]

))
,

( r
amsrc

sortsell(j)

z

i
,

q
sortsell(j)

y
i
, sell

)
i∈[msell]

← Sort
((q

amsrc
j

y
i
, JjKi , sell

)
i∈[msell]

)
2. For i ∈ [min(mbuy,msell)] let

JciK :=
r
amsrc

sortbuy(j)

z

i
≥?

r
amsrc

sortsell(j)

z

i

and compute
JxiK =

r
sortbuy(j)

z

i
· JciK + (1− JciK) · JnullK

JyiK =
r

sortsell(j)
z

i
· JciK + (1− JciK) · JnullK

JpiK =

(r
amsrc

sortbuy(j)

z

i
+

r
amtrg

sortsell(j)

z

i

)
· JciK

2
+ (1− JciK) · JnullK

3. Open the vector ya,b′ = (JxiK , JyiK , JpiK)i∈[min(mbuy,msell)]
.

4. Return the vector ya,b which is ya,b′ after removing all entries equal to
(null, null, null) and mapping each entry (xi, yi, pi) to (xi, pi, yi, 1).

Fig. 14: The Private Matching Algorithm
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