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Abstract. The Schnorr-Lyubashevsky approach has been shown able
to produce secure and efficient signature schemes without trapdoors in
the lattice-based setting, exploiting Gaussian distributions in the Eu-
clidean metric and rejection sampling to tune the signature probability
distributions. Translating such an approach to the code-based setting has
revealed to be challenging, especially for codes in the Hamming metric.
In this paper, we propose a new adaptation of the Schnorr-Lyubashevsky
framework to codes in the Hamming metric exploiting restricted vectors,
which allows avoiding existing attacks. We provide some preliminary ar-
guments to assess the security level of the new scheme and for computing
the relevant parameters. We show that the new scheme achieves compact
keys and signatures even without considering structured codes.

Keywords: Code-based cryptography · digital signatures · post-quantum cryp-
tography

1 Introduction

There are basically two approaches to code-based digital signatures. The first
one is derived from the “hash-and-sign” paradigm used for instance to achieve
RSA signatures, and encounters some difficulty when applied to the code-based
setting. This is due to the difficulty of randomly generating a decodable syn-
drome, yielding code-based schemes that are inefficient or insecure (or both).
Two historical proposals in this line are CFS [13] and KKS [21], which how-
ever have severe limitations. In fact, it is very difficult to find secure though
efficient instances of KKS [24]. Also CFS requires some extreme choices of the
code parameters to be efficient (e.g., very high code rates), and this exposes the
system to Goppa code distinguishers [18]. Some variants of CFS aimed at using
non-algebraic codes and reducing the public key size have been proposed [7], but
changing the underlying family of codes yielded to successful cryptanalysis [27].

Another important drawback of existing code-based signature schemes rely-
ing on the hash-and-sign paradigm is the large size of the public keys. A recent
and relevant scheme in this line, Wave [14], introduces a new approach rely-
ing on the hardness of decoding vectors with very large weight, and achieves a



public key size growing quadratically with the security level, which is an impor-
tant improvement over CFS. Nevertheless, the public key size in Wave is over 3
megabytes for 128-bit security, which is still rather large.

A different approach to code-based signatures, which has the advantage of not
relying on any trapdoor for key derivation, is that of applying the Fiat-Shamir
transform [19] to a code-based identification scheme. In fact, consolidated zero-
knowledge code-based identification schemes exist since a long time [31], which
however exhibit significant soundness errors and thus require many repetitions.
This leads to large signature sizes when these schemes are used to achieve digital
signatures. Subsequent variants of these schemes aim at overcoming such limita-
tions [33, 12, 1, 17, 9, 10, 5], but their characteristics are still far from being com-
parable with those of signature schemes relying on other mathematical objects
than codes, like lattices. One of the main advantages of lattice-based schemes is
that they can exploit the approach introduced by Lyubashevsky in [23], achiev-
ing very compact keys and short signatures, besides high algorithmic efficiency.
Such an approach is at the basis of Dilithium [16], one of the most promising
digital signature schemes participating to the ongoing NIST competition.

This motivates many attempts to translate the Schnorr-Lyubashevsky ap-
proach into the domain of code-based schemes, as done in [25, 30, 22]. In most
cases, however, these attempts resulted in a successful cryptanalysis of the cor-
responding schemes [29, 15, 2, 6]. While there are adaptations of the Schnorr-
Lyubashevsky approach in the rank metric code-based setting that are still con-
sidered safe [3] and achieve reasonable performance, no valid solution has been
found in the Hamming metric code-based setting to date. In many of the afore-
mentioned examples using codes in the Hamming metric, binary codes and sparse
signatures were used, obtained from a sparse secret key via linear algebra: this
feature is at the core of the corresponding attacks and definitely represents a
weak choice. The crucial difference between codes and lattices lies in how a
small vector can be defined. For the Hamming metric, smallness has normally
been associated with sparsity, thus requiring the existence of a large number of
zero entries in the noisy vectors: this unfortunately makes the noise ineffective
in masking the secret key. Lattices instead are defined in the Euclidean metric,
for which a small vector does not necessarily contain zero entries: this is the key
to dispose of small though secure noisy vectors.

We propose a novel code-based adaptation of the Lyubashevsky signature
scheme in the Hamming metric. Inspired by [14] and [5], we avoid sparsity by
using codes defined over a large finite field and secret keys formed by dense
vectors whose entries take values in a restricted subset of the possible values,
which we call restricted vectors. By doing this, we base the one-wayness of the key
generation algorithm on the recently introduced Restricted Syndrome Decoding
Problem (R-SDP), which has been proven to be NP-complete [5]. Similarly to the
Schnorr-Lyubashevsky approach, we employ a high noise term to properly hide
the secret key, and exploit rejection sampling to tune the obtained distribution
and avoid signatures that may leak information about the secret key.
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2 Notation

For two integers a and b, we denote as [a; b] the set of integers x such that
a ≤ x ≤ b; if a and b are instead reals, we denote as [[a; b]] the range defined by
all reals x such that a ≤ x ≤ b. We denote as Fq the finite field with q elements.
We consider the case of q prime, and sometimes represent the elements of the
field as [−bq/2c; bq/2c]. We denote matrices and vectors with bold capital and
small letters, respectively. Given a matrix A, we denote its entry in the i-th row
and j-th column as ai,j ; for a vector a, its i-th entry is indicated as ai. The
identity matrix of size r will be indicated as Ir. By support of a vector a, we
mean the set containing the indexes of non-zero coordinates. For two vectors a
and b having the same length n, we indicate their inner product as

〈a ; b〉 =

n−1∑
i=0

aibi.

If D is a probability distribution, we write a ∼ D if a is a random variable
distributed according to D. For D : Fq 7→ [[0; 1]], with some abuse of notation,
the expression a ∼ D means that each entry of a ∈ Fnq is distributed according to
D. If D is a discrete probability distribution, we denote as D(a) the probability
that D outputs a. For a set A, we write a $←− A if a is uniformly picked at random
among all the elements of A.

2.1 Coding theory preliminaries

Let C denote a linear code over Fq with length n, dimension k, redundancy
r = n − k and rate R = k/n. We represent codes through their parity-check
matrix, i.e., a full rank matrix H ∈ Fr×nq such that

{
Hc> = 0 | ∀c ∈C

}
. A

systematic parity-check matrix is a parity-check matrix in the form H = [Ir,P],
where P ∈ Fr×kq . For γ ≤ bq/2c, we denote with Sγ,t the set of length-n vectors
with entries over {0,±1, . . . ,±γ} ⊆ Fq and support size t. For the set of vectors
with support size not greater than t, we instead write Bγ,t =

⋃t
i=0 Sγ,i. The

Restricted-Syndrome Decoding Problem (R-SDP) is defined as follows [5].

Problem 1. R-SDPγ,≤t: R-SDP with bounded support size t
Let H ∈ Fr×nq , s ∈ Frq and t ∈ N. Find e ∈ Bγ,t such that He> = s.

As proven in [5] with a reduction from the decoding problem in the Hamming
metric, the decisional version of the above problem is NP-complete, regardless
of the value of γ. In this paper we also consider a slightly modified version of
Problem 1, where we require the support of the searched vector to be exactly t
(and hence, require the solution vector to be in Sγ,t). We denote the associated
problem as R-SDPγ,=t. It is easily seen that also the decisional version of R-
SDPγ,=t is NP-complete. In fact, any polynomial time solver for R-SDPγ,=t can
be used to solve R-SDPγ,≤x for a given x, by invoking it for no more than x
times. This trivially shows that such an efficient solver cannot exist. Notice that
the difference between these two problems is mostly formal, since they can be
solved with the same techniques. More details are given in Section 5.
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3 New signature scheme

The scheme we propose is parameterized by the positive integers r, n, q, b, wE ,
wc, tE , with r, b, tE < n and wE , wc ≤ b. It additionally employs two probability
distributions Dy,Dz defined over Fnq . Finally, we make use of an hash function
Hash that outputs vectors of size b with entries over {0,±1} ⊆ Fq and support
of size wc. The scheme we propose consists of the following triplet of algorithms.

Key generation

1. Select at random P ∈ Fr×kq and set H = [Ir|P].
2. Select at random E ∈ {0,±1}b×n such that each column has support size
wE , and each row has support size not lower than tE ;

3. Compute S = EH> ∈ Fb×rq ;
4. Set sk = E, pk = {H,S}.

Signature generation On input a message m:

1. Sample y ∈ Fnq from Dy;
2. Compute sy = yH>;
3. Compute c = Hash(m, sy);
4. Compute z = cE + y;
5. Perform rejection sampling to tune the distribution of z to Dz;
6. Output σ = {z, c}.

Signature verification On input m and σ = {z, c}

1. Verify that Dz(z) 6= 0, reject otherwise;
2. compute sy = zH> − cS;
3. accept if c = Hash(m, sy), reject otherwise.

The public key size corresponds to the number of bits one needs to repre-
sent H and S. Notice that, since H is random and systematic, it is fully repre-
sented through the seed used to generate P. To represent S we need br dlog2(q)e
bits, while exploiting an efficient representation for arrays in Fq, we can use
dbr log2(q)e bits. The signature size is given by the size of z plus that of c.
To represent z, we need n dlog2(γ̄)e bits which, using an efficient representa-
tion, can be reduced to dn log2(γ̄)e. For c, it is enough to send its support,
together with a single bit for each non-null entry, stating whether it is 1 or
−1: this requires wc + ndlog2(n)e bits. We choose Dy as the uniform distribu-
tion over {0,±1, . . . ,±γ} ⊆ Fq, and set Dz as the uniform distribution over
{0,±1, . . . ,±γ̄} ⊆ Fq, with γ̄ < γ. With rejection sampling, we tune the distri-
bution of each entry in z to be uniformly distributed over {0,±1, . . . ,±γ̄} ⊆ Fq,
and hence make z indistinguishable from a uniform element of Sγ̄,n. In particular,
we reject each entry with a very low probability ε, so that the average number of
signatures that one computes before the signing algorithm outputs something is
given by (1− ε)−n. The reasons behind the rejection sampling criterion, as well
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as recommendations on how to choose γ and γ̄, will be presented in Section 4.
In the verification process, to test whether Dz(z) is null or not, it is enough to
verify that each entry of z is not outside {0,±1, . . . , γ̄}. Finally, it is easily seen
that an honest signature always gets accepted, since

zH> − cS = (cE + y)H> − cEH> = yH> = sy.

4 Statistics and rejection sampling

Let us study the statistical distribution of the entries of each produced signature.
Due to lack of space, all the proofs of this section are reported in Appendix A.
We start by deriving the probability distribution of the entries in the product
cE; to do this, we consider the inner product between a random c ∈ {0,±1}b
and a vector e ∈ {0,±1}b modeling a column of the secret E.

Lemma 1. Let wE , wc ∈ N such that wE is even and min{wc , wE} < q. Let
e ∈ {0,±1}b with support size wE, such that wE/2 coordinates are equal to 1

and wE/2 coordinates are equal to −1. Let c $←− {0,±1}b, with support size wc.
Then, the probability that 〈c ; e〉 is equal to β ∈ Fq is given by

gq,wE ,wc,b(β) =

min{wE , wc}∑
v=βq

v and βq have the same parity

2−v

( v
v+βq

2

)(
wE
v

)(
b−wE
wc−v

)(
b
wc

) ,

where βq = min{β , q − β}.

Lemma 2. Let wE , wc ∈ N such that wE is even and min{wc , wE} < q. and
Let e ∈ {0,±1}b with support size wE, wE/2 coordinates equal to 1 and wE/2
coordinates equal to −1. Let c

$←− {0,±1}b with support of size wc, and y
$←−

{−γ, · · · , γ}. Then, Pr [〈c ; e〉+ y = β] is equal to

g̃q,wE ,wc,b,γ(β) =

∑γ
x=−γ gq,wE ,wc,b(β − x)

2γ + 1
.

In the signing algorithm, we employ a rejection sampling criterion to tune the
distribution of produced signatures to a desired target. In particular, we want
each entry of z to follow the uniform distribution over {0,±1, . . . ,±γ} ⊆ Fq. To
estimate the rejection rate, we rely on the following proposition, which in turn
relies on the well-known rejection sampling lemma.

Proposition 1 (Rejection sampling). Let wE , wc, γ, γ̄ ∈ N such that wE is
even, min{wc , wE} < q and γ̄ < γ < q. Let e ∈ {0,±1}b with support size
wE, wE/2 coordinates equal to 1 and wE/2 coordinates equal to −1. Let F be
the uniform distribution over {0,±1, . . . ,±γ̄}, with probability distribution f :

Fq 7→ [[0; 1]]. Let M = maxβ∈Fq

{
f(β)

g̃wE,wc,q,b,γ(β)

}
probability distribution function

defined by f : Fq 7→ [[0; 1]]. Let G be the distribution resulting from the following
experiment:
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1. sample c
$←− {0,±1}b with support of size wc;

2. sample y $←− {0,±1, . . . ,±γ};
3. compute z = 〈c ; e〉+ y;
4. output z with probability f(z)

Mg̃wE,wc,q,b,γ(z) .

Then, G outputs something with probability 1/M , and the samples obtained from
G are distributed according to F .

As a trivial application, we extend the above proposition to the case of multiple
samples obtained from G. In other words, we consider a vector z obtained by
repeating the experiment of G for n times, i.e.:

1. we choose E ∈ Fb×nq such that each column has support size wE and contains
wE entries equal to 1, and −1 entries equal to −1;

2. we pick c
$←− {0,±1}b with support size wc and y

$←− {0,±1, . . . ,±γ};
3. we compute z = cE + y;
4. we output z with probability 1

Mn

∏n−1
i=0

f(zi)
g̃wE,wc,q,b,γ(zi)

.

It is easily seen that the resulting distribution outputs something with probabil-
ity M−n, and that each entry of the sample is distributed according to F .

5 Solving the R-SDP

The authors of [5] have studied the complexity of solving the R-SDPγ,=t, for the
sole case of γ = 1 and t = n, via techniques borrowed from the ternary SDP [11].
In this section we generalize such an analysis, and consider larger values of γ, as
well as values of t that are lower than n. For space reasons, the proofs relevant
to this section are reported in Appendix B.

We consider the setting in which H is the parity-check matrix of a random
code C with length n and dimension k, and assume that at least one solution
always exists. For the fixed support size problem (i.e., R-SDPγ,=t), we assume

that the target syndrome is picked as s $←−
{
eH> | e ∈ Sγ,t

}
; in such a case, the

number of solutions can be estimated as

Nγ,=t = 1 +
|Sγ,t| − 1

qn−k
≈ 1 +

(
n

t

)
2t
(

1+log2(γ)
)
−(n−k) log2(q). (1)

Indeed, consider that for each e ∈ Sγ,t, we have that eH> is random over Fq
(since H is random), hence it is equal to s with probability q−(n−k). Considering
that Sγ,t contains

(
n
t

)
(2γ)t vectors, and that at least one solution always exists by

hypothesis, we obtain the result in (1). For the maximum support size version
of R-SDP (i.e., R-SDPγ,≤t), we instead consider s

$←−
{
eH> | e ∈ Bγ,t

}
, and

consequently estimate the number of solutions as

Nγ,≤t = 1 +
|Bγ,t| − 1

qn−k
≈ 1 +

t∑
i=0

(
n

i

)
2i
(

1+log2(γ)
)
−(n−k) log2(q). (2)
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We will furthermore distinguish between two cases, depending on the relation
between t and n. In the so-called small support case we have t� n, while in the
large support case we have that t is close to n.

5.1 Solving the R-SDP with fixed and small support

When the support of the searched vector is small, one may solve the R-SDP
through approaches following the principle of Information Set Decoding (ISD).
This family of techniques, which are the best general solvers for the SDP in
the Hamming metric, exploit the presence of a large number of null coordinates
in the searched vector. Prange’s algorithm [28] historically dates as the first
ever proposed ISD algorithm and can be used to decode both binary and non-
binary codes with essentially the same complexity (if we neglect the cost of
linear algebra in a non binary finite field). During the years, many improved
ISD algorithms have been proposed, aimed at reducing the computational cost
(see [4] for an overview of ISD algorithms for the binary field). Roughly, the main
idea is that of increasing the guessing probability by allowing the presence of
some non-null entries in the information set, and then proceed to identify them
through enumeration. Combining this idea with collision search techniques, the
complexity of ISD can be significantly reduced (see [8] and [26, 20] for state-of-
the-art ISD algorithms for the binary and non-binary cases, respectively).

Let us now consider the R-SDP with one solution having support size t� n.
First, Prange’s algorithm can be used without any modification, since it only
searches for a sufficiently large number of zero positions. However, we can do
better by relying on more advanced ISD algorithms. In fact, a solution for the R-
SDP is also a solution for the corresponding SDP instance. Yet, one can probably
optimize the algorithm by taking into account some observations:

1. when enumerating the candidates one should take into account that the
vector is restricted and hence takes values in {0, . . . ,±γ}. This leads to a
polynomial reduction in the ISD complexity, with respect to the general case
in the Hamming metric;

2. when the set entries of a candidate vector are not equally distributed over
{±1, . . . ,±γ}, then we can further speed-up the enumeration phase. Indeed,
if we know that some values are very unlikely to appear, then we can remove
them from the search, achieving another polynomial advantage in the cost.

Based on the above considerations, the complexity of solving R-SDPγ,=t with
small support can bounded between the cost of binary ISD algorithms (as lower
bound) and that of non-binary ISD algorithms (as upper bound) for the same
support size. Indeed, the easiest R-SDP instance is the one in which the set
entries of the solution have all the same value (say, are all equal to 1). In such
a case, the problem is identical to the binary SDP, with the only exception that
the considered code lives in a non-binary finite field (hence, the cost of linear
algebra is slightly larger). Employing the well-known approximation for the cost
of a binary ISD due to Canto-Torres and Sendrier [32], we can then conservatively
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assume that solving R-SDP with small support costs at least

CISD(n, k, t) = 2−t log2(1−k/n)−log2(Nγ,=t), (3)

where the term log2(Nγ,=t) takes into account the existence of multiple solutions.
Notice that, if t � n, then Nγ,=t ≈ 1, so that the reduction in the complexity
does not take place.

5.2 Solving the R-SDP with large support

When the support size of the solution is rather large (say, close to n), ISD
becomes ineffective since the searched vector does not contain a large number
of null entries. We here generalize the approach of [5], which solves the R-SDP
with fixed and maximum support, for the sole case of γ = 1.

To this end, to solve instances of R-SDPγ,≤t with t being close to n, we pro-
pose to use Algorithm 1, which is a natural generalization of the one proposed in
[5]. Basically, the algorithm first brings the given parity-check matrix into par-

Input: H ∈ F(n−k)×n
q , s ∈ Fn−kq , ` ∈ [0;n− k]

Output: e ∈ Bγ,t such that eH> = s

1 Pick a random permutation π.

2 Find A such that Aπ(H) =

[
In−k−` H′ ∈ F(n−k−`)×(k+`)

q

0`×(n−k−`) H′′ ∈ F`×(k+`)
q

]
; if it is not

possible, restart from line 1.
3 Compute [s′, s′′] = As, with s′ ∈ Fn−k−`q and s′′ ∈ F`q.
4 Produce a set Eγ,` ∈ Sγ,k+` of solutions to the R-SDPγ,k+` instance

represented by {s′′,H′′}.
5 for e′′ ∈ Eγ,` do
6 Compute e′ = s′ − e′′H′′>

7 if e′ ∈ Sγ,t−k−` then
8 return π−1

(
[e′, e′′]

)
9 Restart from line 1.

Algorithm 1: PGE+SS approach to solve R-SDPγ,t

tially row-reduced echelon form, via a column permutation π and row operations
described by the full-rank matrix A. The same transformation is applied to the
syndrome s (line 3 of the Algorithm), in order to obtain a length-` sub-syndrome
s′′ which, together with H′′, is given as input to a R-SDPγ,k+` solver (line 4 of
the Algorithm). Finally, the found solutions, which are grouped in a set Eγ,`,
are tested aiming to produce a solution to the initial R-SDPγ,=t instance (lines
5–8 in the Algorithm).
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Proposition 2. Let {H, s} ∈ F(n−k)×n
q ×Fn−kq be an R-SDPγ,≤t instance, with

H being a parity-check matrix of a random code C ⊆ Fnq with length n and

dimension k, and s
$←−
{
eH> | e ∈ Bγ,t

}
. Then, Algorithm 1 solves R-SDPγ,=t

with an average cost of

O

 T (t, γ, `) + M(t,γ,`)

1+M̃(t,γ,`)

η(t, γ, `)

(
1−

∏t
i=k+`

(
1−

(
i

k+`

)
/
(
n
k+`

))Nγ,=i)
 ,

where Nγ,=i and Nγ,≤t are as in (1), and (2), T (t, γ, `) is the average cost of
an algorithm that produces M(t, γ, `) solutions to an instance of R-SDPγ,=k+`,
and M̃(t, γ, `) out of these solutions lead to a success of Algorithm 1. Finally,
η(t, γ, `) denotes the probability that M̃(t, γ, `) is not null.

To conclude the analysis, we have to consider the cost of solving the small R-
SDPγ,k+` instance represented by {H′′, s′′}. As in [5], we consider the application
of Wagner’s algorithm [34], originally proposed as a solver for the subset sum
problem. Among the solutions to the problem, we assume that

1. the number of good solutions, i.e., vectors leading to a success for Algorithm
1, is given by

Uγ,t,` =

t∑
i=k+`

(
i

k+`

)(
n
k+`

)Nγ,=i; (4)

2. the number of bad solutions, i.e. vectors that do not lead to a success of
Algorithm 1, is given by

U ′γ,y,` = max
{

0 , q−`
(
(2γ)k+` − Uγ,t,`

)}
. (5)

Wagner’s algorithm on a levels to solve the R-SDP with maximum weight associ-
ated to {H′′, s′′} is detailed in Algorithm 2. For the sake of simplicity, we assume
that k+` is a multiple of 2a; H′′i , for i ∈ [0; 2a−1], denotes the matrix formed by
the columns of H′′ in the positions {ik+`

2a , . . . , (i+ 1)k+`
2a − 1}. In the algorithm,

the merging operation between two lists, which we denote as L(i)
2j uui L

(i)
2j+1, is

defined as follows

{(z2j + z2j+1, [p2j ,p2j+1]) | (zb,pb) ∈ L(i)
b , z2j + z2j+1 = 0 in the last ui entries}.

Similarly to [5, Proposition 16], in the following proposition we assess the com-
plexity of using Wagner’s algorithm to find one of the desired solutions.

Proposition 3. Let {H′′, s′′} ∈ F`×(k+`)
q ×F`q be an R-SDPγ,=k+` instance with

Uγ,t,` good solutions and U ′γ,t,` bad solutions. Assume to run Algorithm 2 on a
levels, with options 0 = u0 < u1 < · · · < ua−1 < ua = `.
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Input: H′′0, · · · ,H′′2a−1 ∈ F`×
k+`
2a

q , s′′ ∈ F`q
Output: A list L(a)

0 =
{(

pH′′> , p
)}

such that p ∈ {±1, . . . ,±γ}k+` and
pH′′> = s′′

Data: v, a ∈ N, with a ≥ 1 and v ≤ k+`
2a

, and positive integers
0 < u1 < · · · < ua−1 < `.

1 Set u0 = −1, ua = `.
2 Choose random subsets R0, · · · ,R2a−1 ⊆ {±1, . . . ,±γ}(k+`)/2

a

, each of size
(2γ)v.

3 Build the lists L(0)
j =

{
(z = pH′′>j ,p) | p ∈ Rj

}
for j ∈ [0; 2a − 2].

4 Build the list L(0)
2a−1 =

{(
z = pH′′>2a−1 − s′′ , p

)∣∣p ∈ R2a−1

}
.

5 for i = 1 to a do
6 for j = 0 to 2a−i − 2 do
7 L(i+1)

j = L(i)
2j uui L

(i)
2j+1

8 return L(a)
0

Algorithm 2: Wagner’s algorithm structured on a levels

Let ρ = 2

(
2av−k−`−log 2(q)

)(
1+log2(γ)

)
−log2(q)

∑a−1
i=1 ui2

a−1−i
. Then, the computa-

tional complexity used by Wagner’s algorithm is given by

T (k, `, γ) = min
a,v,u1,··· ,ua−1∈N
a≥1, v≤ k+`2a

0<u1<...<ua−1<`

{
max
i∈[0;a]

{
2v2i log2(γ)−φ(i) log2(q)

}}
,

where φ(i) =

{
0 if i = 0,
ui +

∑i−1
m=1 2i−1−mum otherwise.

The algorithm finds good solutions with probability η(t, γ, `) = 1−(1−ρ)Uγ,t,` , and
on average outputs M(t, γ, `) = ρ

(
Uγ,t,` + U ′γ,t,`

)
solutions, with M̃(t, γ, `) =

ρUγ,t,` of them being good.

6 Security and practical instances

Due to lack of space, we do not provide a formal proof of security, but simply
hints at how such a proof should work, by highlighting possible attack strategies.
The analysis of such attack avenues also allows us to describe how the system
parameters can be designed.

One-wayness of key generation The public key is a collection of syndromes
of restricted vectors. Indeed, each row of the public S is the syndrome of the
corresponding row of the secret E. Notice that, in the key generation algorithm,
we guarantee that the rows have minimum support size in the range tE , with
tE � n. Since the entries of E are either null or equal to ±1, we have that
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finding each row of E can be seen as facing an R-SDP1,≤t∗ instance, for some
t∗ ≥ tE . As we have highlighted in Section 5, the computational complexity to
solve R-SDP in case of a small support, for a code C , is not lower than that of
solving the Hamming SDP for a code with same length and dimension of C ,
but defined over the binary finite field, searching for a vector with Hamming
weight t∗. As (3) shows, the complexity grows exponentially with the weight of
the searched vector. Hence, conservatively, we assess the complexity of attacks
aimed at recovering the secret key as 2−tE log2(r/n) − log2(N1,tE ).

Unforgeability To forge a signature, an attacker may proceed as follows. First,
he picks a random y with the desired distribution and computes sy = yH>.
Then, he sets c = Hash(m, sy) and computes sz = sy + cS. If he/she is able to
produce a vector z ∈ Bγ,n such that zH> = sz, then the pair {c, z} can be used
as a valid signature. Notice that, to do this, he/she must solve an R-SDPγ̄,≤n
instance. To assess the hardness of this attack, we rely on Proposition 2.

Unfeasibility of noise recovery Assume that the adversary is able to retrieve
y from sy. If he succeeds, he/she can then compute z − y = cE and, since c is
known, retrieve information on E. Exploiting the sparsity of both c and E, the
rows of E can be trivially recovered. Then, we have to guarantee that recovering
y is unfeasible. Again, this reduces to the problem of solving an R-SDPγ,≤n
instance (hence, we use Proposition 2 to estimate the complexity of attacks of
this kind).

Statistical indistinguishability Finally, we consider the possibility for an
attacker of retrieving some information about the secret key by performing a
statistical analysis on a bunch of collected honest signatures. This is motivated
by the fact that the same private key is used to construct many signatures, and
each signature {c, z} is somehow related to the secret E. To describe how such
a dependence can be exploited, consider a collection of signatures for which the
digests c have a common set entry. To analyze this situation, we assume for
simplicity that such an entry is the first one, and that γ̄ = γ. In such a case,
the first row of E contributes to all the collected signatures, and its entries can
be recovered through a statistical analysis. Indeed, in the positions i ∈ [0;n− 1]
such that e0,i = ±1, we have that the i-th entry of the signatures takes value
equal to ±γ̄ with a slightly lower probability than (2γ̄ + 1)−1. If e0,i = 0, on
the contrary, this statistical bias is not present. Hence, collecting a sufficient
number of signatures with such digests would be enough to recover the first row
of E. Thanks to the rejection sampling in the signing algorithm, it is enough to
choose γ̄ ≤ γ − 1 to prevent this attack. Yet, this attack can be generalized by
considering the occurrence, in the digests, of specific tuples of size larger than
γ− γ̄. Indeed, a pattern of this size may be such that its product with a column
of E yields a value larger than γ − γ̄ (or lower than −(γ − γ̄)): in such a case,
the statistical bias in the signatures appears, and it can somehow be used to
recover information about the secret E. To completely prevent from this kind
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of attacks, it is enough to choose γ − γ̄ ≥ min{wc, wE}, which is the maximum
absolute value of each entry of cE.

6.1 Parameter choices

In order to design secure parameters for the new system, we must first guarantee
that the number of possible digests is sufficiently large, that is,

(
b
wc

)
2wc > 2λ.

Then, in order to choose wE , we first consider (3) and derive the minimum
value of tE guaranteeing that the complexity of ISD is higher than 2λ. The
number of times the key generation algorithm has to be repeated on aver-
age, before obtaining a matrix E where each row has support size at least
tE , can be estimated with simple combinatorial arguments, and is given by(

1−
∑tE−1
i=0

(
n
i

) (
wE
b

)i (
1− wE

b

)n−i)−1

. Taking all of this into account, in Table
1 we provide some parameter sets achieving λ = 128 bits of classical security.

As we see from the table, the scheme achieves very compact signatures and
public keys, and also enables flexible trade-offs between the public key size and
the computational efficiency (which is inversely proportional to the average num-
ber of rejected signatures per each generated signature).

(n, k, q) b wE wc tE γ γ̄ Avg rejections |σ| in kB |pk| in kB
(700, 450, 16381) 150 24 28 87 4300 4272 96.79 1.09 65.62
(900, 750, 16381) 150 12 28 50 5500 5472 98.8 1.43 39.37
(900, 450, 16381) 5500 26 28 128 5500 5472 98.8 1.43 118.12
(900, 700, 16381) 100 9 37 59 5400 5363 486.54 1.44 35.00
(900, 550, 16381) 200 26 25 94 6000 5974 49.81 1.45 122.50

Table 1. Instances achieving 128 bits of classical security. For all the considered pa-
rameters sets, the rejection rate in the key generation algorithm is lower than 0.1,
implying that on average the algorithm has to be repeated for no more than 10 times.

7 Conclusion

We have proposed a novel adaptation of the Schnorr-Lyubashevsky approach to
the design of digital signature schemes based on codes in the Hamming metric.
By relying on large weight vectors with restricted entries, the proposed scheme
is able to withstand known cryptanalysis approaches, while achieving very com-
pact signatures and keys. In this first proposal, we have considered random-like
non-structured codes, which allow relying on the general formulation of the cor-
responding decoding problems for the security of the scheme. A formal security
proof, along with the study of variants adopting structured codes (e.g., quasi-
cyclic codes), which may achieve further reductions in the public key size, is left
for future works.
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Appendix A - Proofs of Section 4

Proof of Lemma 1

Proof. The probability is the same for β and q−β, so we only consider the case
of β ∈ [0; bq/2c], for which βq = β. Let u1 denote the number of indexes i for
which ciei = 1, and u−1 denote that of indexes for which ciei = −1. To have
〈c ; e〉 = β, it must u1 − u−1 = β. Let v = u1 + u−1, that is, the number of
intersections between the support of c and that of e. To have 〈c ; e〉 = β, the
following two conditions must be verified:

– we have max{0 , wc + wE − `} ≤ v ≤ min{wE , wc};
– since u−1 = v − u1, it must be u1 = v+β

2 .

Hence, we obtain the following probability:

Pr [〈a ; b〉 = β] =

min{wE , wc}∑
v=β

v and β have the same parity

2−v

(
v
v+β
2

)(
wE
v

)(
`−wE
wc−v

)(
`
wc

) .

ut

Proof of Lemma 2

Proof. The proof is straightforward. Indeed, assume that y = x, which happens
with probability 1/(2α+ 1). To have 〈c ; e〉+x = β, it must be 〈c ; e〉 = β−x.
Summing over all possible values of x, we obtain the formula in the thesis. ut

Appendix B - Proofs of Section 5

Proof of Proposition 2

For a vector e ∈ Sγ,i for which eH> = s, the probability that π is such that
the vector e′′ formed by the last k + ` entries of π(e) are all non null is given
by εi =

(
i

k+`

)
/
(
n
k+`

)
. Notice that, if e′′ has a different support size, then it will

never be in the set Eγ,` produced in Line 4 and, hence, we have that e is never
returned as output from Algorithm 1. The number of solutions with support
equal to i can be estimated as Nγ,=i, so that the probability that π is not valid
for all of them is obtained as (1− εi)Nγ,=i . Multiplying over the values of i from
k + ` to t, and taking the complementary, we derive the probability that π is
valid for at least one out of the Nγ,≤t solutions. We multiply this probability by
η(t, γ, `) and obtain the success probability of one iteration of Algorithm 1.
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Let T (t, γ, `) denote the cost of an R-SDPγ,=k+` solver (i.e., for the instance rep-
resented by {H′′, s′′}), producing a set of solutions Eγ,` that on average contains
M(t, γ, `) elements. Since there are M̃(t, γ, `) actually valid solutions (i.e., lead-
ing to the success of Algorithm 1), on average we testM(t, γ, `)/

(
1 + M̃(t, γ, `)

)
vectors from Eγ,`, before Algorithm 1 successfully halts. Thus, we estimate the
cost of executing lines 4–8 as T (t, γ, `) +M(t, γ, `)/

(
1 + M̃(t, γ, `)

)
.

Proof of Proposition 3

Let x ∈ {±1, . . . ,±γ}k+` be a solution, i.e., such that xH′′> = s′′. Wagner’s
algorithm will output x among the vectors in the final list iff

a) x ∈ R0 ×R1 × · · · × R2a−1;
b) at each merge, the vector x is not filtered.

Condition a) is verified with probability
(

(2γ)v

(2γ)
k+`
2a

)2a

= 2(2av−k−`)
(

1+log2(γ)
)
.

We now proceed by computing the probability that also condition b) happens,
assuming condition a) holds. If a = 1, then we have no filtering, while in the
other cases it may happen in the levels from the first to the (a − 1)-th one.
To this end, we consider the i-th level (for i ∈ [1; a]), and divide x into 2a−i+1

chunks, each formed by k+`
2a−i+1 consecutive entries, which we denote as xj , for

j ∈ [0; 2a−i − 1]. In the i-th level, x will not be filtered if and only if

1. for j ∈ [0; 2a−i − 2], x2jH
′′>
2j + x2j+1H

′′>
2j+1 is null in the last ui − ui−1

positions;
2. x2a−i+1−2H

′′>
2a−i+1−2 + x2a−i+1−1H

′′>
2a−i+1−1 − s′′ is null in the last ui − ui−1

positions.

Note that if condition 1 is met, then condition 2 is met as well, so we just have
to consider the probability with which condition 1 happens. Given that both
H′′ and x are random, in each merge, chunks x2j and x2j+1 will not be filtered
out with probability q−(ui−ui−1). Given that, for j ∈ [0; 2a−i − 2], we perform
2a−i − 1 merges, condition 1 is verified with probability(

q−(ui−ui−1)
)2a−i−1

= 2−(2a−i−1)(ui−ui−1) log2(q).

Thus, the probability of x surviving till the last level is obtained as

a−1∏
i=1

(
q−(ui−ui−1)

)2a−i−1

= 2− log2(q)
∑a−1
i=1 ui2

a−1−i
,

where we consider u0 = 0. Putting everything together, we get that each solution
x is found with probability

ρ = 2(2av−k−`)
(

1+log2(q)
)
−log 2(q)

∑a−1
i=1 ui2

a−1−i
.
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The total number of produced solutions is then estimated as

M(k, `, γ) = ρ(Uγ,t,` + U ′γ,t,`),

while the success probability is simply obtained by considering the probability
that at least one good solution survives till the end, that is

η(γ, t, `) = 1− (1− ρ)Uγ,t,` .

We finally derive the computation complexity to execute Wagner’s algorithm.
To this end, we assume that the cost of each merge is equal to the list size. In
the initial level, we use lists of size L0 = (2γ)v. In the first level, i.e., for i = 1,

the average size of the lists is given by L1 = L2
0/q

u1 = 22v
(

1+log2(γ)
)
−u1 log2(q).

In the i-th level, for i ≥ 1, the average size of the lists L(i)
j is Li =

L2
i−1

qui−ui−1
.

With simple computations, we find that

Li = 2v2i
(

1+log2(γ)
)
−φ(i) log2(q),

with φ(i) =

{
0 if i = 0,
ui +

∑i−1
m=1 2i−1−mum otherwise.

.

We use the maximum of these quantities as a conservative lower bound on the
complexity.
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