
Konstantinos Chalkias*, Shir Cohen, Kevin Lewi, Fredric Moezinia, and Yolan Romailler

HashWires: Hyperefficient Credential-Based
Range Proofs
Abstract: This paper presents HashWires, a hash-based
range proof protocol that is applicable in settings for
which there is a trusted third party (typically a creden-
tial issuer) that can generate commitments. We refer
to these as “credential-based” range proofs (CBRPs).
HashWires improves upon hashchain solutions that are
typically restricted to micro-payments for small inter-
val ranges, achieving an exponential speedup in proof
generation and verification time. In terms of proof size
and computational cost, we show that HashWires com-
pares favorably against Bulletproofs for both 32- and
64-bit numeric values. Although CBRPs are inherently
less flexible than general zero-knowledge range proofs,
we provide a number of applications in which a cre-
dential issuer can leverage HashWires to provide range
proofs for private values, without having to rely on
heavyweight cryptographic tools and assumptions.

Keywords: range proofs, credentials, hash-chains, ac-
cumulators, cryptographic commitments, malleability,
micro-payments, location privacy

1 Introduction
A range proof is a special type of zero-knowledge
proof (ZKP) [22] for proving that a committed integer
lies within an interval, without revealing anything else
about the integer. Maxwell used them to achieve con-
fidential transactions [27], where an amount is hidden
in a Pedersen commitment, and a range proof allows a
verifier to check that it lies within a non-negative in-
terval. Range proofs were first conceived in works by
Damgård [17] and Fujisaki and Okamoto [21], with more
practical constructions from Boudot [4], Camenisch et
al. [9], and most notably, Bulletproofs by Bünz et al. [8].

*Corresponding Author: Konstantinos
Chalkias, Kevin Lewi, Fredric Moezinia,
Yolan Romailler: Novi / Facebook, E-mail:
{kostascrypto,klewi,moezinia,yromailler}@fb.com
Shir Cohen: Technion, E-mail: shir.co@gmail.com

A typical zero-knowledge range proof (ZKRP) in-
volves a cryptographic commitment and a proof. The
commitment must satisfy conditions known as hiding
and binding, and the proof must satisfy completeness,
soundness, and zero-knowledge. ZKRPs have been used
to construct private transactions on blockchains (such as
Maxwell’s Confidential Transactions proposal [27] and
MimbleWimble [32]) and privacy-preserving smart con-
tracts on Ethereum. They have also been proposed for
handling proofs of solvency [13, 16], privacy for elec-
tronic voting and auction systems, and anonymous cre-
dentials (see [29] for a more extensive survey of ZKRP
applications).

Some applications of ZKRPs exist in the setting in
which a trusted entity acts as an authority for either
producing or validating commitments over integer val-
ues.1 As an illustrative example, consider the setting in
which a citizen wishes to prove to a service provider that
their age is above a certain threshold, without having to
reveal their birth date [6, 18]. The trusted entity (e.g., a
governmental identification provider) can issue a state-
ment committing to the prover’s age, and the prover has
the capability of using a ZKRP protocol to produce a
proof that convinces a verifier that their age is indeed
above the requested threshold.

Although the above scenario could be solved with
existing ZKRP constructions, such as Bulletproofs or
Pedersen commitments, these solutions are often less
practical in resource-constrained environments where
asymmetric operations are considered expensive. In ap-
plications where these proofs are to be generated and
verified very frequently, focusing on implementing sim-
pler, light-weight primitives can be an attractive alter-
native. In this work, we are motivated by the following
question:

“Can we construct more efficient range proofs for
settings in which there is already a trusted party that

generates the commitment?”

1 Not to be confused with “trusted setup”, which requires trust
in the authority to correctly set up parameters that are critical
to the security of the range proof itself.

HashWires 2

In particular, can we leverage the assumption that
the verifier of the range proof can trust that the commit-
ment was generated honestly, in order to yield simpler
and more efficient constructions?

To capture the additional requirement of a trusted
“issuer” of the commitment, we introduce credential-
based range proofs (CBRPs), which differ from ZKRPs
in two ways: the soundness requirement is relaxed to
a weaker notion which we refer to as commitment-
conditional soundness, and the zero-knowledge property
is relaxed to witness indistinguishability. We provide a
formal treatment of these security definitions in Sec-
tion 2.1.

Hashchains. To help intuitively understand these re-
laxed security requirements for CBRPs, we begin with
the following description of a simple hash-based scheme
for range proofs, originally presented by Rivest and
Shamir [33] in a protocol known as PayWord (with
adaptations). Given two collision-resistant hash func-
tions G and H, and an integer N representing the max-
imum possible value of the domain, the issuer produces
a commitment c for a secret integer k ∈ [0, N] by se-
lecting a random seed r and setting c = Hk(G(r)) (using
Hk(·) to represent k repeated iterations of the function
H) and publishing c to a public bulletin board (or sign
and send c to the prover directly). The issuer sends the
randomness r and integer k to the prover, who can then
produce a range proof over c for the threshold t by com-
puting π = Hk−t(c) and sending π to the verifier. The
verifier checks that Ht(π) = c to be convinced that c is
a commitment of some value x ≥ t.

Despite its simplicity, PayWord suffers from a sig-
nificant drawback: letting n = dlog2 Ne be the number
of bits to represent the size of the domain N , note that
commitment and proof generation, and verification are
all asymptotically exponential in n. Thus, using Pay-
Word as a CBRP is really only suitable for small do-
mains, and its performance for large ranges is unlikely
to be competitive against generic ZKRPs.

Using garbled circuits. A completely different ap-
proach for building CBRPs for large domains without
using ZKRPs involves the use of garbled circuits. For
a secret integer k ∈ [0, N], the issuer can produce a
commitment representing a hash of a garbling of the
circuit C that evaluates as C(k, y) = 1 if k ≥ y and 0
otherwise, along with commitments to the randomized
values associated with each of the circuit’s input wires.
The prover, with an input threshold t, produces a proof
which consists of the garbled circuit for C, along with
an opening of the randomized values corresponding to

the input wires for the bit representation of t. To verify
this proof, a verifier can check that the opened commit-
ments correspond to the correct bits of t, that the hash
of the garbled circuits corresponds to what is in the fi-
nal commitment, and that the evaluation of the garbled
circuit produces the expected outcome.

Intuitively, the commitment-conditional soundness
derived from the correctness of the garbling scheme, and
witness indistinguishability follows from the privacy of
the garbled circuit itself. This solution is clearly general-
ized to arbitrary circuits (instead of just being restricted
to handle range proofs), but the size of a proof in this
scheme is quite large, mainly due to the fact that it
must contain the entire description of a garbled circuit.
Therefore, while this approach can technically handle
the large-domain inputs that PayWord could not, there
is still a substantial amount of room for improvement.

1.1 Our Contributions

In this work, we propose HashWires, which completely
overcomes the small-domain limitations of PayWord.
In particular, for n-bit intervals, HashWires achieves
commitment generation, proving/verification time, and
proof size to simultaneously be linear in n, while still
relying only on the existence of collision-resistant and
random-output hash functions (defined in Section 2.2).

The central component of the HashWires construc-
tion, described in Section 3, relies on a simple combina-
torial observation about a decomposition of any positive
integer x into a set of integers with a certain structure
that is naturally amenable to each of its elements be-
ing represented by a sequence of hash chains. We call
this set a minimum dominating partition (MDP), de-
fined in Definition 9. We then convert the elements of
this set into separate groups of hashmultichains in order
to achieve an exponential speedup in both proving and
verification time, taking extra care to ensure that the
witness indistinguishability property is still preserved.

We also provide a concrete instantiation of Hash-
Wires, described in Section 4. This instantiation in-
cludes a number of performance optimizations and prac-
tical considerations on top of the main construction
of Section 3, and is incorporated into an open-source
Rust implementation of HashWires. Another interesting
property is that HashWires can be implemented with
any hash function and hashchain sizes, enabling com-
patibility and proof-size versus computational efficiency
trade-offs. We also highlight that most blockchains do
not offer support for elliptic curve operation primitives

HashWires 3

in their smart contracts, but many allow hash function
invocations (i.e., KECCAK-256 in Ethereum [25, 39]
and {SHA2, SHA3}-256 in Diem [31]) which enables
implementing HashWires verification in smart contracts
without any modification to the underlying blockchain
virtual machine.

Furthermore, we offer benchmarks for various imple-
mentation instances, along with a comparison in proof
size and cost against existing works (most notably, Bul-
letproofs) that achieve general range proofs, taking ad-
vantage of the described optimizations to further in-
crease the efficiency of our scheme. In particular, for 64-
bit domains, a reasonably optimized HashWires proof
(using 32-byte hash outputs and hashchains consist-
ing of 256 elements) can be just 369 bytes long, which
compares favorably against Bulletproofs which produce
proofs of 692 bytes, all of that while being orders of
magnitude faster in terms of prover and verifier time.
Interestingly, using 2048-long chains results to 177-byte
proofs for ranges up to 232 which is even smaller than
the 192-byte Groth16 [24] ZKP output.

In Section 5, we also show how the structure of
HashWires commitments can be used to support con-
junctions of range queries, effectively extending the
scope of applications that these range proofs can be
applied to. Additionally, we identify proof malleability
issues on the original PayWord scheme and apply an
efficient fix inspired by the Winternitz checksum trick
used in hash-based signatures [7, 20, 28]. We also pro-
vide a number of applications which can be addressed
using CBRPs.

1.2 Related Work

In [33], the PayWord scheme uses hash chains in order to
provide a micro-payment solution, where the hashchain
proves possession of a given monetary value, allowing
an individual to spend up to a given amount only with
knowledge of a seed. The PayWord scheme was ex-
panded to work with multiple monetary denominations
[40] using multiple hashchains, allowing to represent
larger values more easily, but without the asymptotic
improvement that HashWires achieves. Later, in [26],
a generalization of PayWord was proposed which im-
proves verification time, but still uses exponential time
for commitment generation. PayWord’s approach has
also been used in auctions and proving age.

There is of course a large amount of prior work in
the study of zero knowledge proofs, as well as range
proofs specifically [4, 8, 9, 17, 21]. The goal of our work

is to further improve efficiency and proof size for these
schemes for specific scenarios by leveraging the assump-
tion of a trusted entity that can securely generate the
commitment.

Anonymous credentials. Another line of work
which bears resemblance to CBRPs includes the study
of anonymous credentials, described in [15] and realized
in [10]. In the anonymous credentials setting, there is
also the notion of a trusted issuer which produces a cre-
dential for a user. The user can then present this creden-
tial to different verifiers, who can check its validity. Two
notable security properties which have been focused on
in this setting are the “unlinkability” of credentials (an
issuer cannot identify credentials that it has signed, so
as to prevent tracing where the credential is used), and
“anonymity” for the attributes associated with the cre-
dential (which allow a verifier to check that the creden-
tial satisfies some notion of validity without learning
any extra information about the credential).

HashWires can be viewed as having applications
to anonymous credentials by providing the anonymity
property (albeit weakened to witness indistinguishabil-
ity instead of zero knowledge), without the focus on
satisfying the unlinkability property for the credential
issuer.

2 Preliminaries
In this work, we refer to λ as the security parameter.
For an integer N , we use [N] to represent the set of
integers {1, 2, . . . , N}. For two integers a < b, we use
[a, b] to represent the set of integers {a, a+ 1, ..., b}. We
use the terms “efficient” to represent an algorithm that
runs in time polynomial in λ, and “negligible” to denote
a quantity that is inversely proportional to being poly-
nomial in λ. For two distributions D1 and D2 over the
same domain, we write D1 ≈ D2 to represent compu-
tational indistinguishability; namely, for every efficient
adversary that receives as input a sample and outputs
a bit, the difference in probability that the adversary
outputs 1 when receiving a sample from D1 versus the
probability of the adversary outputting 1 when receiv-
ing a sample from D2 is negligible in λ. We refer to
the above quantity as the advantage of an adversary in
distinguishing D1 from D2.

We use {0, 1}∗ to represent bit strings of arbitrary
length. We use || to represent bit string concatenation.
For an integer n, we use 〈a1, . . . , an〉 to denote an or-
dered sequence of a set of elements {a1, . . . , an}.

HashWires 4

We use the notation yi,1 · · · yi,d to represent the
base-b representation with d digits of the integer yi.

2.1 Credential-Based Range Proofs

For a fixed positive integer N , along with a commit-
ment space C, proof space P, and randomness space
{0, 1}λ, a non-interactive CBRP is a tuple of algorithms
Π = (Setup,Commit,Prove,Verify) with the following
properties:
– Setup(1λ)→ pp. On input the security parameter λ,

the setup algorithm outputs public parameters pp.
– Commit(pp, x; r) → com. On input the public pa-

rameters pp, an integer x ∈ [N] and randomness
r ∈ {0, 1}λ, the commit algorithm outputs a com-
mitment com ∈ C.

– Prove(pp, x, t; r) → π. On input the public param-
eters pp, an integer x ∈ [N], a threshold t ∈ [N],
and randomness r ∈ {0, 1}λ, the prove algorithm
outputs a proof π.

– Verify(pp, com, t, π) → z. On input the public pa-
rameters pp, a commitment com ∈ C, a threshold
t ∈ [N], and a proof π, the verify algorithm outputs
a bit z ∈ {0, 1}.

Security. The following security properties of a
credential-based range proof are inherited from the typi-
cal security properties for any commitment scheme (hid-
ing and binding) as well as any range proof protocol
(completeness, soundness, and zero knowledge). These
properties are similar to (and mirrored from) a normal
range proof, except for the definition of soundness, and
a relaxation from zero knowledge to witness indistin-
guishability.

We note two key differences that make traditional
zero knowledge range proofs more widely applicable
than CBRPs. First, a CBRP is restricted to a specific
commitment scheme, rather than a proof that is gener-
ally compatible for any commitment scheme.2 Second,
the security properties of completeness, soundness, and
zero knowledge for a regular range proof assume that
the commitment itself is well-formed.

Of course, the advantage to considering a weaker
form of range proofs is that they can also be constructed
from simpler assumptions and faster primitives, while
still being motivated by various practical applications in

2 Note, however, that Bulletproofs, when used directly as range
proofs, are also restricted to Pedersen commitments.

which there already exists a natural separation between
a credential issuer and the prover.

Definition 1 (Binding Commitment). The commit-
ment for a CBRP is binding if for all efficient adver-
saries A that receive as input a set of public parame-
ters pp ← Setup(1λ) and output a pair of distinct inte-
gers x0, x1 ∈ [N] along with a pair of random strings
r0, r1 ∈ {0, 1}λ, with com0 ← Commit(pp, x0; r0) and
com1 ← Commit(pp, x1; r1), the quantity Pr[com0 =
com1] is negligible in λ.

Definition 2 (Perfect Completeness). A CBRP sat-
isfies (perfect) completeness if for every adversary
A that outputs an x ∈ [N], t ∈ [N] where
x ≥ t, and r ∈ {0, 1}λ, it always holds that
Verify(Commit(x; r), t,Prove(x, t; r)) = 1.

Definition 3 (Commitment-Conditional Soundness).
A CBRP satisfies commitment-conditional soundness
if for every adversary A that takes as input the pub-
lic parameters pp ← Setup(1λ) and outputs a tuple
(x, t, r, π) ∈ [N]× [N]× {0, 1}λ × P for which x < t, the
probability that Verify(pp,Commit(pp, x; r), t, π) = 1 is
negligible in λ.

Note that this definition is weaker than the usual defi-
nition of soundness for a range proof system. Typically,
for soundness, the adversary is allowed to produce a
commitment com, along with the threshold t and proof
π, and the adversary wins if Verify(com, t, π) = 1 and
there does not exist an (x, r) ∈ [N] × {0, 1}λ such that
com = Commit(x; r) and x ≥ t. In our case, however, we
are restricting the adversary’s power by ensuring that
the verifier cannot receive invalid commitments.

Definition 4 (ExptWI). For an integer N , the experi-
ment ExptWI

b (A) between a challenger and an adversary
A proceeds as follows:
1. The challenger sends pp← Setup(1λ) to A.
2. A sends to the challenger x, t ∈ [N], where x ≥ t.
3. The challenger samples randomness r ←R {0, 1}λ

and returns (comb, πb)← (Commit(xb; r),Prove(xb, t; r))
to A.

4. A outputs a bit, which is also the output of the
experiment.

Definition 5 (Witness Indistinguishability). A CBRP
satisfies witness indistinguishability if for all efficient
adversaries A, the quantity Pr[ExptWI

0 (A) = 1] −
Pr[ExptWI

1 (A) = 1] is negligible in λ.

HashWires 5

Finally, we say that a CBRP is secure if all of the above
properties: binding commitment, completeness, sound-
ness, and witness indistinguishability, hold. Traditional
commitment schemes also require a “hiding” property,
but we omit this definition since it is actually implied
by the witness indistinguishability property of the proof,
which is a strictly stronger notion.

2.2 Random-Output Hash Functions

In this work, we consider hash functions which satisfy
random-output security.

Definition 6 (Random-Output Hash Function). Let
U be the uniform distribution over {0, 1}λ. For an in-
teger d, let Hd(U) represent the distribution defined
as {H(x) : x ←R {0, 1}d}. We say that a hash func-
tion H : {0, 1}∗ → {0, 1}λ is random-output secure if
Hd(U) ≈ U for all d ≥ λ.

Any hash function which can be modeled after a random
oracle is also random-output secure. However, note that
random-output security and collision resistance for hash
functions are incomparable notions of security. For a
collision-resistant function G : {0, 1}∗ → {0, 1}λ−1, the
function H defined as H(x) := 0 || G(x) is also collision-
resistant, but not random-output secure. Similarly, for
a random-output secure function F : {0, 1}∗ → {0, 1}λ,
the function H defined as

H(x) :=

{
0, if x = 0λ or x = 0λ+1

F (x), otherwise

is also random-output secure, but not collision-resistant.

Pseudorandom generators. Recall that a pseudo-
random generator is a function G : X → Y (where
|Y| > |X |) with

{G(x) : x←R X} ≈ {y : y ←R Y}.

In other words, the distribution induced by G(x) for
randomly chosen x ←R X is indistinguishable from y

for randomly chosen y ←R Y.

2.3 Accumulators

For a domain X and output space Y, an accumulator
ACC = (Setup,Eval,WitCreate,Verify) is a tuple of four
algorithms defined as follows:
– Setup(1λ)→ pp. The setup algorithm takes as input

the security parameter λ and outputs public param-
eters pp.

– Eval(pp, S) → acc. The evaluation algorithm takes
as input the public parameters pp and a set S ⊆ X ,
and produces an accumulation acc.

– WitCreate(pp, x, S) → wit. The witness creation al-
gorithm takes as input the public parameters pp, an
element x ∈ X , and a subset S ⊆ X , and produces
a witness wit.

– Verify(pp, acc,wit, x)→ b. The verification algorithm
takes as input the public parameters pp, an accumu-
lation acc ∈ Y, a witness wit, and an input x ∈ X ,
and outputs a bit b ∈ {0, 1} representing whether or
not verification succeeded.

Using the terminology from [19], we consider static accu-
mulators that are non-universal (supporting only inclu-
sion proofs), and deterministic. We also alter the witness
creation algorithm by allowing it to take as input a set
S instead of the accumulation along with an auxiliary
string (as done in [19]). Although this is a slight loss of
generality, it simplifies the presentation of our main con-
struction without affecting the functionality or security
of the protocol.

Correctness. An accumulator is correct if, for pp ←
Setup(1λ), for any set S ⊆ X with x ∈ S, it holds that

Verify(pp,Eval(pp, S),WitCreate(pp, x, S), x) = 1.

Security. We define security for accumulators as fol-
lows:

Definition 7 (ExptACC). For an adversary A, we define
ExptACC(A) with a challenger as follows:
1. The challenger sends pp← Setup(1λ) to A.
2. A sends a witness wit, an element x ∈ X , and a set

S ⊆ X to the challenger.
3. The challenger computes acc ← Eval(pp, S), and

the output of the experiment is 1 if x 6∈ S and
Verify(pp, acc,wit, x) = 1, and 0 otherwise.

Definition 8 (Secure Accumulator). An accumulator
ACC is secure if for all efficient adversaries A, the quan-
tity Pr[ExptACC(A) = 1] is negligible in λ.

2.4 Minimum Dominating Partitions

In this section, we provide the building blocks of the
HashWires construction in Section 3, beginning with the
definition of a minimum dominating partition.

Definition 9 (Minimum Dominating Partition). For a
base b and two positive integers x, y ∈ Z+, let x =

HashWires 6

x1x2 · · ·xd and y = y1y2 · · · yd represent their corre-
sponding base decomposition into digits, with d =
dlogb(max(x, y) + 1)e. We say that x “dominates” y if
for every i ∈ [d], xi ≥ yi [3].

For a base b and positive integer x ∈ Z+, we define
the “dominating partition”, denoted DPb(x), to be an
ordered sequence of integers that satisfy the following
properties:
– The maximum element of DPb(x) is x.
– For every y ∈ [0, x], there is an element z ∈ DPb(x)

for which z dominates y in base b.
We write MDPb(x) to represent a minimum dominating
partition of x in base b: a dominating partition that
achieves the minimum size across all valid dominating
partitions of x in base b.

Examples. The sequence 〈3413, 3409, 3399, 2999〉 is a
valid dominating partition of 3413 in base 10 (in fact, it
is also minimum). In particular, all integers in [0, 2999]
are dominated by 2999, all integers in [3000, 3399] are
dominated by 3399, all integers in [3400, 3409] are dom-
inated by 3409, and all integers in [3410, 3413] are dom-
inated by 3413. Note that some integers can be domi-
nated by more than one element of the sequence. For in-
stance, the integer 1412 is dominated by 2999 and 3413.
But it is not dominated by 3399 because of its second
digit 4 > 3, and it is not dominated by 3409 because of
its third digit 1 > 0.

As counterexamples, note that 〈3413, 3399, 2999〉 is
not a valid dominating partition of 3413 in base 10
since the integers in the range [3404, 3409] are not dom-
inated by any integer in that sequence. Also that while
〈1999, 999, 1555〉 is a dominating partition for the value
1999 in base 10, it is not minimum: MDP10(1999) =
〈1999〉. Also note that while 3999 dominates all integers
in [0, 2999], it also dominates the integers [3000, 3999]
and therefore is a dominating partition for 3999 but not
for 2999.

Computing MDPs efficiently. In general, con-
structing a minimum dominating partition for an
integer x ∈ [N] is efficiently computable and
straightforward—see Algorithm 1 for a complete de-
scription of the procedure.

For any two integers x and b, let σ ← MDPb(x)
be the output of Algorithm 1. First, we show that σ
is a dominating partition for base b and integer x, and
then we show that it must be of minimum cardinality.
We start with some auxiliary lemmas, and show that
σ does not have redundancy (its own elements do not
dominate each other).

Algorithm 1 Computing MDPb(x)
Let d← dlogb(x+ 1)e
Initialize σ ← [x]
for i from 1, . . . , d− 1 do
if (x+ 1) mod bi 6= 0 then
yi ←

⌊
x/bi

⌋
· bi − 1

σ ← σ ∪ {yi}
end if

end for
return σ

In the following, we use d← dlogb(x+ 1)e. We also
define y0 ← x, and for each i ∈ [d − 1], we set yi ←⌊
x/bi

⌋
· bi − 1 (the value added to σ at the ith iteration

of Algorithm 1).

Lemma 1. For each i ∈ [d− 1], x dominates yi if and
only if (x+ 1) mod bi = 0.

Proof. Note that by construction, the digits
yi,d−i+1 · · · yi,d are all equal to the digit b − 1, and
yi,d−i ≡ xd−1 − 1 (mod b), and the remaining digits are
identical between x and yi. We note that x dominates yi
if and only if xd−i+1 · · ·xd are equal to the digit b−1 as
well. Hence, x dominates yi if and only if yi+bi = x. Set-
ting yi we get

⌊
x/bi

⌋
·bi−1+bi = bi

(⌊
x/bi

⌋
+ 1
)
−1 = x,

which completes the proof.

Lemma 2. For any two distinct elements z1, z2 ∈ σ, z1
does not dominate z2.

Proof. Assume that there exists a pair z1, z2 ∈ σ such
that z1 6= z2 and z1 dominates z2. Let j ∈ [0, d − 1] be
the minimum index such that z1 = yj .
– If z1 = x, then z2 = yi for some i ∈ [1, d − 1]. By

Lemma 1 we conclude that in iteration i, (x+1) mod
bi = 0. Therefore, z2 = ni is not added to σ, which
is a contradiction for z2 being in σ.

– If z1 6= x, then z1 = yj and z2 = yi for some 1 ≤ j <
i ≤ d−1. By construction, the digits yi,d−i+1 · · · yi,d
are equal to b − 1. Since yj dominates yi, this also
means that the digits yj,d−i+1 · · · yj,d are equal to
b − 1. Now, note that yj−1 is greater than yj , and
they can differ only in indices d − j and d − j + 1.
Additionally, d − i + 1 ≥ d − j (since j < i) and so
yj,d−j and yj,d−j are equal to b − 1. We conclude
that yj−1,d−j and yj−1,d−j are also equal to b − 1.
That is, yj−1 = yj which contradicts the minimality
of the index j.

HashWires 7

In both cases, we reach a contradiction, which completes
the proof.

Now, we are ready to prove that σ is indeed a dominat-
ing partition for base b and integer x.

Lemma 3. σ is a dominating partition for base b and
integer x.

Proof. By construction, the maximum element of σ is
x. It remains to show that for every integer z ∈ [0, x−1],
there exists some index i such that yi ←

⌊
x/bi

⌋
· bi − 1

such that yi dominates z.
Let k be the minimum index for which zk > xk

and let j ∈ [1, k − 1] be the maximum index such that
zj < xj . We start by proving that z is dominated
by yd−j =

⌊
x

bd−j

⌋
· bd−j − 1. It holds that the digits

yd−j,j+1 · · · yd−j,d are equal to b−1, proving that y` ≥ zl
for each ` ∈ [j + 1, d]. Since the index k is minimal, and
j < i, z1 · · · zj is dominated by x1 · · ·xj . Together with
the fact that yd−j,t = xt for each t ∈ [1, j − 1], we get
yd−j,t ≥ zk for those indices. Finally, yd−j,j = xj − 1
and since zd−j,j < xj it follows yd−j,j ≥ zj .

Therefore, since yd−j is added to σ in the (d− j)th

iteration of Algorithm 1, the claim follows.

Finally, we show that σ is a minimum dominating par-
tition for base b and integer x.

Theorem 1. For any two positive integers x and b, the
sequence output by MDPb(x) defined in Algorithm 1 is a
minimum dominating partition for x in base b.

Proof. By Lemma 3, MDPb(x) is a dominating parti-
tion for base b and integer x. To prove that it is indeed
of minimum size, suppose there is a smaller dominat-
ing partition OPTb(x), where |OPTb(x)| < |MDPb(x)|.
By the pigeonhole principle, there is some element
y ∈ OPTb(x) that dominates two distinct elements
z, w ∈ MDPb(x). There are two cases to consider:
– Case 1: z dominates y. Then, since y also dominates

w, by transitivity we have that z dominates w, which
contradicts Lemma 2.

– Case 2: z does not dominate y. Then there must be
some other v ∈ MDPb(x) which does dominate y,
and again by transitivity we have that v dominates
z, which contradicts Lemma 2.

In either case, we arrive at a contradiction, which proves
the claim.

2.5 Efficient Hashchains

Let G,H be collision-resistant hash functions. For a posi-
tive integer k, recall that the commitment of a hashchain
of k with uniformly sampled randomness r is defined as
Hk(G(r)). For an integer t, a prover can supply the value
π = Hk−t(G(r)) to a verifier, which will be accepted so
long as k ≥ t.

Let N be an integer and let b be a base, setting
d = dlogb(N)e, and let k1 · · · kd = k represent the base-b
decomposition of k. For uniformly sampled randomness
r, we define the commitment of a hash multichain of
length d, denoted HMCd(k; r), as the following concate-
nation of values:

HMCd(k; 〈r1, . . . , rd〉) := H(Hk1(r1) || · · · || Hkd(rd)).

Analogously, for an integer t = t1 · · · td, a prover can
supply the sequence of value π = Hk1−t1(r1) || · · · ||
Hkd−td(rd), which proves that t ∈ [0, k] as long as k
dominates t, since otherwise ki− ti is not positive for all
1 ≤ i ≤ d.

HashWires subroutine. For an integer d, we define
a randomized procedure HWSd which takes as input an
integer k and outputs a permutation P : [d]→ [d] along
with a pair of sequences each of d elements of {0, 1}λ.
For randomness r ∈ {0, 1}λ, the procedure HWSd(k; r)
operates as follows:
1. For each i, j ∈ [d], the subroutine computes ri,j ←

H((i, j) || r). It also uses r and H to derive a pseu-
dorandom permutation P : [d]→ [d].3

2. The subroutine computes 〈w1, . . . , wm〉 ← MDPb(k).
For each i ∈ [m], the subroutine computes ai ←
HMCd(wi, 〈ri,1, . . . , ri,d〉), and then samples d − m

random values am+1, . . . , ad ←R {0, 1}λ.
3. For each i ∈ [d], define ci ← aP (i). The output is

(P, 〈c1, . . . , cd〉, 〈r1,1, . . . , rd,d〉).

Note that the length of the hashchains implicitly defined
by HWSd(k; r) are logarithmic in k (linear in its rep-
resentation), whereas applying the PayWord hashchain
construction here would instead yield a hashchain lin-
ear in k (exponential in its representation). In the next
section, we will show how to take advantage of this ex-
ponential reduction in hash evaluations in order to con-

3 We omit the details for how this permutation is sampled, with
the only requirement that the evaluations of H on r are done in
a domain-separated manner (so as to not interfere with other
hash evaluations in the protocol).

HashWires 8

struct an efficient credential-based range proof proto-
col.

3 The HashWires Construction
In this section, we present our main result: HashWires,
a construction of a credential-based range proof that
relies only on the existence of collision-resistant hash
functions. HashWires works by constructing a commit-
ment from a collection of hash multichains derived from
a minimum dominating partition (Definition 9) of an
integer x. These sequences of hash multichains are ar-
ranged in a structure in which, similar to the original
PayWord construction, intermediate nodes of the chain
are included to form the range proof.

Let N be a positive integer and let b be a base.
Let G : {0, 1}∗ → {0, 1}λ and H : {0, 1}∗ → {0, 1}λ

be a pair of random-output hash functions. Let ACC =
(ACC.Setup,ACC.Eval,ACC.WitCreate,ACC.Verify) be a
secure accumulator. The HashWires construction
HW = (HW.Setup,HW.Commit,HW.Prove,HW.Verify) is
defined as follows:
– HW.Setup(1λ) → pp. On input the security pa-

rameter λ, the setup algorithm computes ppACC ←
ACC.Setup(1λ), d = dlogb(N)e, and outputs pp =
(ppACC, N, b, d).

– HW.Commit(pp, x; r) → com. On input the public
parameters pp = (ppACC, N, b, d), an integer x ∈ [N],
and randomness r, the commit algorithm computes
(P, 〈c1, . . . , cd〉, 〈r1,1, . . . , rd,d〉) ← HWSd(x; r) and
outputs com← ACC.Eval(ppACC, {c1, . . . , cd}).

– HW.Prove(pp, x, t; r) → π. On input the public
parameters pp = (ppACC, N, b, d), an integer x ∈
[N], a threshold integer t ∈ [N], and random-
ness r ∈ {0, 1}λ, the prove algorithm computes
(P, 〈c1, . . . , cd〉, 〈r1,1, . . . , rd,d〉) ← HWSd(x; r). Let
〈w1, . . . , wm〉 ← MDPb(x), and let i∗ ∈ [m] be
the first index for which wi∗ dominates t. Denot-
ing y1 · · · yd as the base-b representation of wi∗ and
t1 · · · td as the base-b representation of t, for each
j ∈ [d], define vj ← Hyj−tj (ri∗,j). The prover algo-
rithm computes

wit← ACC.WitCreate(ppACC, cP (i∗), {c1, . . . , cd})

and outputs the proof π ← (wit, 〈v1, . . . , vd〉).
– HW.Verify(pp, com, t, π) → z. On input the pub-

lic parameters pp = (ppACC, N, b, d), a commitment
com, a threshold t ∈ [N] with t1 · · · td as its base-b
representation, and a proof π = (wit, 〈v1, . . . , vd〉),

the verify algorithm computes

c∗ ← H
(
Ht1(v1) || · · · || Htd(vd)

)
.

The verify algorithm outputs the bit z ←
ACC.Verify(ppACC, com,wit, c∗).

3.1 Security

In order to prove that HashWires is indeed a secure
credential-based range proof, we must show that the
commitment is binding and that the range proof satis-
fies completeness, soundness, and witness indistingisha-
bility. We provide an intuition behind the proofs of each
of these properties below.

Security intuition. Informally, the binding property
of the commitment, as well as the perfect completeness
of the range proof are mirrored from the constructions
from PayWord and the use of hash chains, as they also
apply in HashWires.

Soundness comes from the property, ensured by the
minimum dominating partition construction, that for
any y > x, there is no element of MDPb(x) which domi-
nates y. This effectively implies that in order for a dis-
honest prover to fool the verifier into accepting, the
prover must compute a pre-image for the hash func-
tion H corresponding to the digit in which an element
of MDPb(x) does not dominate y (thereby violating the
collision-resistance property of H).

Finally, for witness indistinguishability, we leverage
the simulation-independent property of each of the indi-
vidual hash multichains corresponding to each element
of MDPb(x). It suffices to then show that our mecha-
nism for combining the roots of these hash multichains
still preserves the witness indistinguishability across the
multichains. Here, we rely on the fact that the prover
supplies dummy entries to pad the number of branches
to be consistent and independent of the size of MDPb(x),
and then permutes the branches so that the verifier can-
not tell which element of MDPb(x) dominates x.

The proof of the following theorem is given in Ap-
pendix A.

Theorem 2. The construction HW is a secure CBRP,
based on the assumption that H is a collision resistant
and random-output secure hash function, and that ACC
is a secure accumulator.

HashWires 9

4 Experimental Results
To assess the practicality of HashWires, we provide an
open-source Rust implementation [2] of the construc-
tion, measuring its performance on a range of parame-
ters. We describe a number of implementation optimiza-
tions that we integrated on top of the straightforward
version of HashWires presented in Section 3 in order to
achieve better performance. We conclude with a com-
parison against other ZKRPs in terms of overall effi-
ciency.

Instantiating primitives. The two main primitives
that need to be configured for HashWires are the under-
lying hash function (which must satisfy collision resis-
tance and random-output security) and the secure ac-
cumulator. We outline these choices below:
– Hash function: Our implementation can be config-

ured to any hash function which implements the
digest trait in Rust, which includes Blake2, Blake3,
SHA256, SHA512, and others.

– Accumulator: We use a sparse Merkle tree imple-
mentation that is also parametric in the choice of
underlying hash function.

HashWires also requires an instantiation of a random
permutation, for which we rely on a variant of Fisher-
Yates algorithm for shuffling a sequence of elements.

For handling large integers, we use the num_bigint
Rust library in order to convert from a string repre-
sentation of a large integer, along with an appropriate
zero-padding. The algorithm we use for computing min-
imum dominating partitions matches Algorithm 1.

4.1 Optimizations

The most straightforward optimization of HashWires is
the configuration of the base representation, which in-
troduces a natural tradeoff between proving and verifi-
cation time versus proof size. In the extreme example,
when b = N , HashWires is equivalent to PayWord, with
constant-size proofs but exponential proving and ver-
ification time complexity. On the other hand, setting
b = 2 yields a highly parallelizable set of operations for
the prover and verifier, at the cost of larger (but still
O(n)-sized) proofs.

There is also value in choosing a base that lies at
neither end of these extremes. For instance, if n = 64
(imagine the commitments are of Unix timestamps), we
can achieve relatively short proofs while paying a cost

in prover and verification time, but since hash compu-
tations are orders of magnitude faster than the group
operations that existing range proof solutions use, Hash-
Wires can offer solutions for these instances which are
more efficient both in proof size and prover and veri-
fication time. In Section 4.3, we show for a variety of
common settings for n, how a base can be chosen in or-
der to achieve smaller proof sizes than directly applying
Bulletproofs.

4.1.1 Truncation and Padding

The basic HashWires scheme does not take truncation
and padding into consideration, however as will show,
a careful selection of accumulators can result to faster
operations and significantly shorter proofs without sac-
rificing security. There are two places where such opti-
mizations can be applied.

First, we can omit the leading zeros of any num-
ber represented in base b up to the maximum N . For
instance, imagine the issuing number k = 47 in base
b = 10 and N = 999, 999. This number is encoded as
0∗b5 +0∗b4 +0∗b3 +0∗b2 +4∗b1 +7∗b0 and would typi-
cally require 6 independent hash chains, one per base-10
digit. However, by omitting the leading zeros we would
require two chains only. It is highlighted though that
whatever the truncation logic, the proof should not re-
veal the size of the number (degree of polynomial), and
thus a special accumulator should be selected to hide the
number of multichains. After considering various accu-
mulators to optimize on proof size, we recommend PLA,
a special hash-based accumulator described below.

Similarly, another opportunity to apply padding is
to hide the number of MDP-values. In the above exam-
ple, the MDP-list for k = 47 consists of two elements
〈47, 39〉 in base-10. Ideally, only these two MDP values
should be included in computations, but without ex-
posing the size of this list. This is possible via padded
deterministic sparse Merkle trees, which efficiently al-
low for hiding the MDP-list size and at the same time,
requiring as many hash multichains as the number of
MDP elements.

Padded Linear Accumulator (PLA). We describe
PLA, a simple linear accumulator which, by taking ad-
vantage of ordered-sets and padding opportunities, of-
fers a single hash-output element inclusion proof when
used in HashWires. As mentioned already, our proto-
col requires hash multichains, where each chain i cor-
responds to the i-th digit of a number k in base b. In

HashWires 10

practice, it is very common that the issuing and thresh-
old values k and t are by far smaller than N , and thus,
by skipping the leading zeros, less b-base digits (and in-
herently number of chains) than dN = dlogb(N)e are
required in the computations.

PLA takes advantage of the above observation and
is best suited to applications where:
– insertion order of the elements matters;
– we prove inclusion of the last m elements in the set;
– proofs must not leak the set’s size.

The above properties fit exactly the requirements of
HashWires, because (a) hashchains are ordered per
significant-digit (b) it requires inclusion proof of adja-
cent chains and (c) the number of actual chains used
in the commitment should not be leaked as this would
reveal information about the size of the issued value.

Let N be the maximum supported integer and k the
issuing value and let b be a base, setting dk = dlogb(k)e,
and let k1 · · · kdk

= k represent the base-b decomposi-
tion of k, where k1 is the most significant digit. For
uniformly sampled randomness r, we define the accu-
mulator’s Eval function of a hash multichain of length
dk, denoted PLAd(k; r), as follows:
PLAd(k; 〈r1, . . . , rd〉) = zd, where zd is computed differ-
ently depending on the padding requirement. If dk = dN
then padding does not need to apply because all of the
possible digits/chains are used anyway and zd = {z0 ←
Hk1(r1), zi ← (zi−1 || Hki+1(ri+1))} for i ∈ [1, dk). Oth-
erwise, a padding element p is deterministically gener-
ated from the issuing secret key and zdk

= {z0 ← p, zi ←
(zi−1 || Hki(ri))} for i ∈ [1, dk].

As for PLA’s WitCreate inclusion proof, the prover
outputs the result of the above Eval function up to
dk − dt, where t is the requested range proof threshold
decomposed as t = t1 · · · tdt

and dt its number of b-base
digits, computed as dt = dlogb(t)e. Then, the verifier
can “continue” evaluating the received output of Eval
with the computed hashchain elements Hki−ti(ri). We
highlight that because the verifier only receives the out-
put of Eval for the first dk − dt elements, dk itself is not
exposed and thus the number of actual chains stays se-
cret; otherwise, that would leak information about the
issued value.4

To sum up, the main advantage of PLA compared
to a Merkle-tree accumulator is that the inclusion proof
is independent of N and it consists of at most one

4 Obviously, if dk − dt = 0, then the output wit of WitCreate is
empty and extra inclusion proof elements are not required.

hash output element versus the expected dN if we used
Merkle-tree accumulators. Additionally, as already men-
tioned in sections 2.5 and 3, the basic HashWires con-
struction computes the commitment of each MDP’s hash
multichain using a simple hash concatenation accumu-
lator HMCd(k; r) := H(Hk1(r1) || · · · || Hkd(rd)). How-
ever this does not take padding into consideration and
without PLA we have to include dN − dk hash elements
to hide the number of chains used to encode k. The
latter would result to significantly longer proofs, espe-
cially when t << N . To avoid this, we propose updating
HMCd to PLA.Eval(ppPLA, {Hk1(r1), . . . ,Hkd(rd)}).

4.1.2 Deterministic Sparse Merkle Trees

As already mentioned in Section 3, the final step
of a HashWires commitment requires an accumulator
output over each MDP’s multichain commitment ci
and the basic construction computes this as com ←
ACC.Eval(ppACC, {c1, . . . , cd}).

However, just naively concatenating all ci has two
major efficiency drawbacks. Firstly, it is highlighted that
when a proof is requested, only one MDP path is ac-
tually selected. Unfortunately, this linear concatenation
accumulator expects attaching all ci values to the proof,
otherwise a verifier cannot evaluate the accumulator’s
outcome; this results to longer proofs. Secondly, apart
from compressing the final HashWires commitment into
one element, the purpose of this accumulator is to also
hide the actual MDP(k)-list size, dk ← dlogb(k)e. Ob-
viously, this is because dk leaks information about the
value k. It has been shown that dk ≤ dN and thus one
option to hide dk is to pad ci values with with dN − dk
random fake elements. In some scenarios, i.e., when a
small base is used and our issued number is very small,
adding extra dN − dk elements might significantly in-
crease computational effort and proof size.

One option to circumvent the first issue is replac-
ing the concatenation accumulator with a Merkle tree.
However, this tree should have dN (and not dk) leaves
as the tree-height would disclose information about the
number of its leaves, and inherently the MDP(k)-size.
That said, indeed a naive Merkle-tree requires log2(dN)
inclusion proof, but it still requires computing dN − dk
random fake leaves. Fortunately, we can reduce the num-
ber of extra padding nodes by utilizing the determinis-
tic padded sparse Merkle tree (SMTree) approach of the
DAPOL [13] protocol, which still allows for a dN tree-
height, but requiring a logarithmic number of padding
nodes. We implemented and applied the SMTree accu-

HashWires 11

mulator as the final step of the optimized HashWires
construction.

4.2 Reusing Multichains

In the basic version of HashWires each MDP value has its
own independent multichain and thus, in the worst-case
log2

b(N) hashchains of length b are required. The latter is
because there exists a maximum of logb(N) MDP values
and each MDP integer is encoded with a maximum of
logb(N) hashchains. Fig. 1 depicts a simple example of
such a case.

Fig. 1. Basic base-4 HashWires commitment to number 303 us-
ing 9 variable-size hashchains, 3 per MDP value 〈312, 303, 233〉.

However, we can take advantage of the fact that
plain HashWires is an one-time proof and thus we
could actually share multichains between MDP values by
wisely wiring hashchain nodes. Briefly, one can imagine
this optimization technique as overlaying the multichain
groups of Fig. 1 and merging them into one single mul-
tichain as shown in Fig. 2. As a result, only logb(N)
hashchains are required which reduces the commitment
and proof generation costs by a factor of logb(N), which
for base-256 implies an almost eight times faster Hash-
Wires construction5.

Sharing the multichain group does not come for free
though. As mentioned already, the size of the MDP-list
should remain confidential because that would leak in-
formation about the structure of the issued value. As we
show below, without extra modifications to the proto-
col, given a HashWires proof for a requested range r, a
verifier can try various hashchain size combinations out
of the received proof values and reach to other than the
intended MDP commitment.

To visualize how this is possible we will use Fig. 2
as an example use case, which shows an MDP4(312)

5 Note that HashWires was named after the hash-node wiring
technique that allowed multichain sharing between MDP values,
which boosted performance by a significant constant factor.

instance. Assuming a less than or equal to 301 proof
is requested, the prover normally picks the comm303
path (because 303 is smallest MDP-value larger than
301). Thus, the proof should contain the following list
of nodes: L = [seedA, seedB , h2(seedC)]. An honest ver-
ifier would hash seedA three times, would use seedB
directly, and hash h2(seedC) once to produce the wires
required to compute comm303.

However, a careful reader will realize that malicious
verifiers can brute force the number of rehashes for
different combinations until they reach another MDP-
value. In our example, if one hashes seedA twice, seedB
three times and h2(seedC) once, an adversary will reach
to comm233. Similarly, with different combinations one
can reach to comm312. As a result, the full size of L is
leaked.

To defend against the above scenario, we intro-
duce an extra salt value, in order to obfuscate each
MDP commitment root before they get used as in-
puts to the final HashWires accumulator. That said,
each proof should be accompanied by an extra salt
value (typically 16 bytes long should be enough)
and the final accumulator during HashWires com-
mitment generation should take as input com ←
ACC.Eval(ppACC, {PRF (c1, salt1), . . . , PRF (cd, saltd)}),
where an HMAC or Key Derivation Function (KDF)
can be used as a PRF candidate. Due to the existence
of this salt, the above attack cannot apply because
the proof includes the salt for the intended MDP-value
only, and thus, an adversary cannot compute/predict
the PRF output of any other brute-forced MDP path
required to evaluate the final accumulator. Fig. 5 in
Appendix B shows an example of adding salts to each
MDP commitment before used as an input to the final
accumulator.

Fig. 2. Optimized base-4 HashWires commitment to number 303
by reusing multichains.

HashWires 12

4.3 Benchmarks and Comparisons

Recall that we use b to represent the base parameter for
HashWires, N to denote the maximum integer of the
domain [0, N] for which our range proof intervals lie.
Asymptotically, HashWires benefits from:
– O(1) commitment size,
– O(logb(N)) proof size, and
– O(logb(N)) proof generation and verification time.

Note that although PayWord has O(1) commitment size
and O(1) proof size, it suffers from O(N) proof genera-
tion and verification time, which is completely imprac-
tical for intervals represented by a 64-bit integer (or
larger).

In the following, we give further justification to the
practicality of HashWires by concretely analyzing its ef-
ficiency.

4.3.1 Comparing Proof Size

To generate a HashWires commitment efficiently, a max-
imum of logb(N) hashchains of size b are required, along
with log2

b(N) total wires (see Fig. 2). Then, we use a
Merkle tree accumulator to create a root for the shuf-
fled sub-commitments of each MDP value (see Fig. 5).

In the worst case, where padding is not applied,
the total size for a single HashWires range proof is
logb(N) + log2(logb(N)) hash elements, which for n ≤
128, depending on the base selection, compares favor-
ably against a naive solution that uses Bulletproofs out-
putting proofs of 2 log2(log2(N)) + 9 elliptic curve (EC)
elements over a Pedersen commitment (typically, each
compressed EC element is 32 bytes, equal to a 256-bit
hash output). Note that the final optimized HashWires
version requires an extra 16 bytes for the MDP-salt plus
1 byte to encode the leaf-index required for the final
inclusion path to the sparse Merkle tree accumulator.
See Table 1 for our results. Note that size comparisons
also include the trusted-setup based Groth16 [24] (over
BLS12-381 curve) constant proof size zero knowledge
proof system. Another interesting outcome of this work
is that base-2048 HashWires can produce smaller proofs
than Groth16 in 32-bit domains.

Finally, we note that these numbers were obtained
under the assumption that the security parameter is 128
bits (which results in 256-bit outputs for the hash func-
tion when relying on collision resistance). Further im-
provements to proof size can be leveraged by building
HashWires out of pseudorandom functions, which could

n BPs G16 HW4 HW16 HW256 HW2048

16 544 192 369 209 113 113
32 608 192 657 369 209 177
64 692 192 1201 657 369 305
128 736 192 2257 1201 657 529

Table 1. Range proof size comparison (in bytes). We use HWb

to denote HashWires over a base b, with the security parame-
ter λ = 128. We use BPs to denote Bulletproofs and G16 for
Groth16 [24].

potentially allow us to rely on smaller overall output
sizes for each component of the proof.

4.3.2 Computational Efficiency

We implemented in Rust the optimized HashWires
scheme by applying PLA and sparse Merkle Tree ac-
cumulators and reusing multichains between MDPs [2].
We then compared our base-16 and base-256 worst case
results against the faster available Rust Bulletproofs
implementation from the dalek-cryptography crate. We
also ran Bulletproofs using the AVX2 backend, which
implements curve arithmetic using parallel formulas via
vectorized instructions [36] to ensure comparison trans-
parency against optimized range proofs implementa-
tions.

Table 2 presents the cost in microseconds (lower is
better) when running benchmarks in a MacBook Pro
2.4 GHz 8-Core Intel Core i9 CPU with 32GB or RAM.
As shown, Blake3 performs better than SHA2 in our se-
lected Intel CPU, although it’s true that in AMD Ryzen
architectures that support SHA extensions BLAKE3 is
only slightly faster than hardware-accelerated SHA-256.
Another interesting result is that because proof gener-
ation internally regenerates the commitment to com-
pute the final tree-inclusion proofs, it is slightly more
expensive than commitment creation. To sum up, when
comparing Blake-3 backed HashWires in base-16 against
the AVX2 optimized BulletProofs, the former performs
about 60 times better on proof generation and 30 times
on proof verification. Obviously, a Bulletproofs commit-
ment is just a Pedersen compressed elliptic curve point
which is computed 3 times faster than the best Hash-
Wires mode in the table6.

6 We highlight that Bulletproofs is a many-times range proof
scheme, which implies that in the long run, a few-times Hash-
Wires base-16 construction performs better only if used to pro-
duce 30 proofs or less.

HashWires 13

scheme commitgen proofgen proofver
BPs 71 12099 1555
BPs AVX2 36 6516 938
HW16 SHA2-256 274 278 84
HW256 SHA2-256 651 656 619
HW16 Blake3 101 103 31
HW256 Blake3 260 263 230

Table 2. Efficiency comparison (in microseconds) between Bullet-
proofs (BPs) with and without AVX2 support, and HashWires for
different bases and hash functions.

5 Extensions and Applications
In this section, we describe a number of extensions to
the core HashWires construction which may be relevant
for various applications. We conclude with a high-level
description of potential applications for CBRPs.

5.1 Handling Intervals

Recall that in our definition of a CBRP, the prover need
only show that the committed integer is above a certain
threshold, whereas typically range proofs are designed
to show that the committed integer lies within an inter-
val (both an upper and lower bound).

A fairly straightforward method for extending
HashWires to handle interval range proofs is to produce
two separate commitments of a value x, one with a range
proof that x ≥ t for some threshold t, and then another
proof that N − x ≥ N − t, as described in [1]. Since
both commitments are simply hash outputs, they can
be combined with another hash operation to produce
a “root” commitment that the verifier can check both
range proofs against. Recall the left half of Figure 3 for
an illustration of this method.

Note that we critically rely on the issuer being able
to verify that the commitment is well-formed, and hence
why it must behave as a trusted third party—otherwise,
it would be possible for a prover to generate range proofs
that appear valid to a verifier, yet do not correspond to
a well-formed commitment.

Conjunctions. Even more generally, what we are
showing is that HashWires commitments are amenable
to supporting conjunctions. This means that we can ap-
ply them to combine multiple proofs across a set of se-
cret integers and their commitments together, rather
than just a single integer. In terms of applications, this
can be used in order to prove the inclusion of, say, a

two-dimensional point in a given area of a surface; see
the right half of Figure 3 for such an example, where
two interval sub-proofs, one for longitude and another
for latitude can just be combined into one single Hash-
Wires proof.

Fig. 3. Left: older/younger than interval proofs (born in 1990).
Right: 2D location range proofs (somewhere in Madagascar).

5.2 Reusable Proofs

One inherent limitation of the HashWires construction
is that zero knowledge is not guaranteed to be preserved
if multiple range proofs must be generated for the same
commitment. To support the “reusability” of the com-
mitment in this manner, we can interpret the commit-
ment as a leaf of a balanced binary Merkle tree, whose
root commitment acts as the reusable commitment for
the protocol. With T leaves in this Merkle tree, the
new protocol would be able to support T distinct range
proofs over the same commitment, while only incurring
an additive O(log T) factor in proof size and verification
time. However, commitment and proof generation time
is multiplied by O(T). Based on the results presented
in Table 2, a 60-times HashWires (base-16 w/ Blake3)
would still be faster than Bulletproofs proof generation.
See Figure 4 for an illustration of this standard tech-
nique for a many-times stateful HashWires, similarly to
that used in a Merkle Signature Scheme (MSS) [28].

Fig. 4. Stateful 4-times Merkle-ized HashWires à la MSS.

HashWires 14

5.3 Preventing Malleability

Inherent to the hashchain system, it is important to
notice that our proofs are malleable: a proof of the value
311 < 312 can be reused to prove that 300 < 312 or that
211 < 312, and so on for other values dominated by 311,
which can be desirable or not.

For instance, malleability can be considered a fea-
ture when reusing the same proof for different requested
ranges, without computing each one from scratch. As an
example, full payslip copies are a common request and
works as an important metric for landlords because it
shows them that the potential renter has a steady in-
come and will be able to make the monthly payments.
For privacy purposes (not everyone feels confident on
revealing their salary break down details), renters can
just request a HashWires commitment from their em-
ployers, then compute a single range proof for the high-
est requested value and if possible reuse this to prove
smaller ranges to other landlords. Similarly, real estate
agents might request one single maximum range proof
from renters (their customers); then brokers are able
to recalibrate these proofs per landlord without renter-
landlord interaction.

In other settings though it is considered an adaptive
chosen message attack when a forged range proof proves
a range other than the value that was legitimately gen-
erated; in these cases malleability should be avoided.
For instance, the original PayWord protocol is malleable
by default and when used for auction bids, a malicious
man-in-the-middle can alter range proofs and submit
a valid, smaller than the original, bid. Changing bids
would result to auction manipulation favoring dishon-
est users.

There exist at least two approaches to defend
against malleability. A straightforward solution is for
the prover to always sign both the HashWires proof and
the requested numeric range value. A signature scheme
is binding to the message, and thus, that would work in
most blockchain applications as they typically require
an address-owner signature anyway.

We could however make HashWires self-protected
against malleability without the need of extra signatures
using ideas from hash-based post-quantum schemes. Ac-
tually, one can easily find similarities between Hash-
Wires and the Winternitz one-time signature scheme
(WOTS) [7, 28]. In Layman terms, the hashchain part
of HashWires can be considered a variation of WOTS,
with issuer-restrictions on the byte-values that could be
signed/proven. In short, while in WOTS any bit com-
bination can be signed, in HashWires the issuer ensures

that multichains are computed in such a way that not all
values have a path to the commitment root. WOTS de-
fends against adaptive chosen message attacks by sign-
ing over a checksum value appended to the (hashed)
message bytes at the cost of extra hashchains. Hash-
Wires can be enhanced with exactly the same mecha-
nism.

To understand how it works, imagine that each
hashchain can only be computed in the forward direc-
tion due to the computational implausibility to find
a hash pre-image. The checksum is computed as C =∑n
i=1(b − 1 −Mi) and it is a value that consists of the

sum of the differences between the b− 1 and Mi, where
Mi is the ith base-b digit of the requested range value.
Similarly to WOTS, the resulting checksum sum is en-
coded as a base-b integer and appended to the proof.
For instance, in the 32-bit domain, the value 232 − 1 is
encoded as (255, 255, 255, 255) in base-256 and would
have a checksum of 0. Similarly, the message (0, 0, 0,
1) would have an integer checksum of 1019, which is
encoded as (3, 251) in base-256 [23]. In practice, when
using base-256, the checksum adds up an extra two mul-
tichains, thus resulting to 64 bytes longer proofs for up
to 8192-bit domains)7.

Briefly, the WOTS checksum trick works because
if an attacker tries to prove a smaller range, the check-
sum should be increased, but due to the one-way nature
of hash functions, adversaries cannot produce longer
chains for the checksum part. More information about
the security of the Winternitz checksum can be found
in [7].

5.4 Applications

We briefly outline a set of applications for HashWires
(and CBRPs in general) in various practical settings,
especially in constrained environments such as when
smart-cards or IoT sensors are utilized or when alge-
braic group primitives are either not available or very
complex to be securely implemented (i.e., hardware, em-
bedded software or programming languages where there
is no existing library for Bulletproofs and other ZKP
systems). It is highlighted though that HashWires com-

7 In theory, one can fit the checksum in one longer single chain
of (worst-case) length dlogb(N)e ∗ b, instead of breaking it to b-
size multichains as in WOTS. Compared to the malleable Hash-
Wires mode, that reduces efficiency by a factor of 2 at most.

HashWires 15

mitments are not homomorphic and thus cannot be used
for adding / subtracting confidential amounts.

Verified location. CBRPs can be extended to prove
that multi-dimensional data verifiably lies within an in-
terval range (such as 2D / 3D location) by issuing a
proof for combined longitude and latitude. There exist
many sensitive location-sensitive applications, includ-
ing mobile and web user tracking (with privacy) and
satellite TV and radio station receiver location/area re-
strictions. Many fog computing applications in particu-
lar rely on location awareness including actuators net-
works and wireless IoT sensors [41]. There exist various
cryptographic primitives whose security relies on verifi-
able location including private location proximity [30],
position-based key exchange and multiparty computa-
tions [14], location-based identity keys [12] and access
control [42] among the others. One of the most im-
portant aspects though is malicious actors provisioning
fake locations, and GPS coordinates reported by users
may not be reliable. To mitigate this problem, the no-
tion of location verification which focuses on method-
ologies for securely verifying provided position-data,
was originally introduced in [5] and further explored
in [11, 14, 34, 35, 38, 41, 43]. Briefly, CBRP commit-
ments could be issued by IoT positioning sensors (i.e.,
signed by embedded secure enclaves) and then it is up
to the application logic to decide what range proof to
generate.

Know Your Customer. The broader application
space based on these specific examples includes KYC
(Know Your Customer) credentials. Regulators have
mandated financial institutions and networks to imple-
ment KYC validation, which could be used to perturb
client location and provide privacy for age with the use
of CBRPs. They are also widely applicable to other as-
pects of financial services, where they can be used to
represent account balance, deposits, and income that
can be attested to by trusted third parties such as banks.
This would be useful for mortgage, credit card and loan
applications as ownership of assets can be proved to a
third party (verifier) without revealing private informa-
tion. As already mentioned, one can imagine using a
proof to a landlord when submitting a rental applica-
tion without having to reveal personal wealth or income
information.

Micropayments and auctions. PayWord [33] is a
credit-based micro-payment protocol which involves a
customer, vendor and broker and uses hashschains for
better computational performance (it is in fact a Hash-

Wires instance for b = N). In short, imagine issuing
bank-checks, where one can gradually spend funds until
the full amount is exhausted; sellers should not neces-
sarily learn the remaining balance. This fits perfectly to
a blockchain application of digital remittances where ac-
count holders issue checks off-chain. However, although
micro-payment systems focus on small values, today’s
tiny denominations in many cryptocurrencies and due
to extreme exchange rate volatility, that might result to
long hashchains in the original PayWord scheme, even
when issuing checks of a few dollars value. We believe
that because HashWires is efficient for large domains
and many blockchains allow hash function smart con-
tract instructions, it might be a great candidate for
blockchain-based gradually redeemable checks.

Along the same lines, PayWord variants have been
proposed for privacy preserving auctions [1], where for
example the winner might not publicly reveal the bid
offer, but only prove that the value is greater than (or
less than depending on the auction type) the rest of the
bids. In Vickrey sealed-bid auctions for example [37],
the range of the winning bid might even stay secret from
everyone as the final price paid is the second-highest bid
price. HashWires might be a candidate protocol in these
settings as well.

Timestamping. Outside of financial services, CBRPs
can also be applied to achieve timestamp privacy for
certificates issued by a certificate authority (CA). Using
CBRPs, an entity that has received a certificate from a
CA can prove to a third party that a certificate has
not yet expired, without revealing the expiration date.
Other metadata such as time of certificate issuance or IP
address can also be wrapped in a range proof. In general,
CBRPs would make certificates more privacy-preserving
for clients without foregoing server-side verification.

Other applications. Other potential use cases might
include proving ranking ranges in job resumes/CVs and
online game leader-boards (i.e., top 10 GPA) without
disclosing the actual ranking-position. In some settings
this might be desirable to avoid review biases when
the job details demand that only a threshold should
be surpassed. Similarly, food and drug producers which
might need to satisfy some ingredient upper/lower val-
ues to get licensed, could in theory be issued signed
CBRP commitments from Food and Drug Administra-
tion (FDA) or similar agencies and then just print/show
a verifiable proof that the legal limits are satisfied with-
out disclosing the full “recipes” of their products.

HashWires 16

References
[1] Sebastian Angel and Michael Walfish. 2013. Verifiable auc-

tions for online ad exchanges. In ACM SIGCOMM.
[2] [blinded]. 2021. HashWires Rust implementation.
[3] Dan Boneh and Victor Shoup. 2020. A graduate course in

applied cryptography. (2020).
[4] Fabrice Boudot. 2000. Efficient Proofs that a Committed

Number Lies in an Interval. In EUROCRYPT ’00.
[5] Stefan Brands and David Chaum. 1993. Distance-bounding

protocols. In EUROCRYPT.
[6] William J Buchanan. 2021. Zero-knowledge Proof: Proving

age with hash chains. Asecuritysite: https://asecuritysite.
com/encryption/age.

[7] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas
Hülsing, and Markus Rückert. 2011. On the security of the
Winternitz one-time signature scheme. In AFRICACRYPT.

[8] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poel-
stra, Pieter Wuille, and Gregory Maxwell. 2018. Bullet-
proofs: Short Proofs for Confidential Transactions and More.
In IEEE S&P. https://doi.org/10.1109/SP.2018.00020

[9] Jan Camenisch, Rafik Chaabouni, et al. 2008. Efficient
protocols for set membership and range proofs. In ASI-
ACRYPT.

[10] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient
System for Non-transferable Anonymous Credentials with
Optional Anonymity Revocation. In EUROCRYPT.

[11] Srdjan Čapkun, Mario Čagalj, and Mani Srivastava. 2006.
Secure localization with hidden and mobile base stations. In
in Proceedings of IEEE INFOCOM. Citeseer.

[12] Konstantinos Chalkias. 2010. Secure cryptographic protocols
and applications based on bilinear pairings. (2010).

[13] Konstantinos Chalkias, Kevin Lewi, Payman Mohassel, and
Valeria Nikolaenko. 2020. Distributed Auditing Proofs of
Liabilities. 3rd ZKProof Workshop. ZKProof (2020).

[14] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail
Ostrovsky. 2009. Position based cryptography. In Annual
International Cryptology Conference. Springer, 391–407.

[15] David Chaum, Ronald L. Rivest, and Alan T. Sherman
(Eds.). 1982. CRYPTO’82. Plenum Press, New York, USA.

[16] Gaby G Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy
Clark, and Dan Boneh. 2015. Provisions: Privacy-preserving
proofs of solvency for bitcoin exchanges. In ACM CCS.

[17] Ivan Damgård. 1995. Practical and Provably Secure Release
of a Secret and Exchange of Signatures. J. Cryptol. (1995).

[18] Ankur Shah Delight. 2017. Zero Knowledge Proof of Age
Using Hash Chains.

[19] David Derler, Christian Hanser, and Daniel Slamanig. 2015.
Revisiting Cryptographic Accumulators, Additional Proper-
ties and Relations to Other Primitives. In CT-RSA.

[20] Chris Dods, Nigel P Smart, and Martijn Stam. 2005. Hash
based digital signature schemes. In IMA International Con-
ference on Cryptography and Coding. Springer, 96–115.

[21] Eiichiro Fujisaki and Tatsuaki Okamoto. 1997. Statistical
Zero Knowledge Protocols to Prove Modular Polynomial
Relations. In CRYPTO ’97, Vol. 1294. Springer, 16–30.

[22] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989.
The knowledge complexity of interactive proof systems. In
SIAM Journal on computing 18.1. 186–208.

[23] Matthew Green. 2021. Winternitz Checksum. https://blog.
cryptographyengineering.com/winternitz-checksum.

[24] Jens Groth. 2016. On the size of pairing-based non-
interactive arguments. In EUROCRYPT ’16. Springer.

[25] Hudson Jameson. 2016. Which cryptographic hash function
does Ethereum use? https://ethereum.stackexchange.com/
questions/550.

[26] Iuon-Chang Lin, Min-Shiang Hwang, and Chin-Chen Chang.
2005. The General Pay-Word: A Micro-payment Scheme
Based on n-dimension One-way Hash Chain. Des. Codes
Cryptogr. 36, 1 (2005).

[27] Gregory Maxwell. 2016. https://people.xiph.org/~greg/
confidential_values.txt.

[28] Ralph C Merkle. 1989. A certified digital signature. In
CRYPTO. Springer, 218–238.

[29] Eduardo Morais, Tommy Koens, Cees van Wijk, and Aleksei
Koren. 2019. A Survey on Zero Knowledge Range Proofs
and Applications. CoRR abs/1907.06381 (2019).

[30] Arvind Narayanan, Narendran Thiagarajan, Mugdha
Lakhani, Michael Hamburg, Dan Boneh, et al. 2011. Lo-
cation privacy via private proximity testing. In NDSS.

[31] Diem open-source contributors. 2021. Diem Blockchain hash
function support. https://github.com/diem/diem/blob/
master/language/move-vm/natives/src/hash.rs.

[32] Andrew Poelstra. 2016. Mimblewimble. (2016).
[33] Ronald L Rivest and Adi Shamir. 1996. PayWord and Mi-

croMint: Two simple micropayment schemes. In Interna-
tional workshop on security protocols. Springer.

[34] Naveen Sastry, Umesh Shankar, and David Wagner. 2003.
Secure verification of location claims. In Proceedings of the
2nd ACM workshop on Wireless security. 1–10.

[35] Dave Singelee and Bart Preneel. 2005. Location verification
using secure distance bounding protocols. In Mobile Adhoc
and Sensor Systems Conference.

[36] Henry de Valence. 2018. Accelerating Edwards Curve
Arithmetic with Parallel Formulas. https://medium.com/
@hdevalence/accelerating-edwards-curve-arithmetic-with-
parallel-formulas-ac12cf5015be.

[37] William Vickrey. 1961. Counterspeculation, auctions, and
competitive sealed tenders. The Journal of finance (1961).

[38] Adnan Vora and Mikhail Nesterenko. 2006. Secure location
verification using radio broadcast. IEEE Transactions on
Dependable and Secure Computing 3, 4 (2006), 377–385.

[39] Gavin Wood et al. 2014. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper 151, 2014 (2014), 1–32.

[40] Ching-Nung Yang and Hsu-Tun Teng. 2003. An efficient
method for finding minimum hash chain of multi-payword
chains in micropayment. In CEC ’03. IEEE, 45–48.

[41] Rupeng Yang, Qiuliang Xu, Man Ho Au, Zuoxia Yu, Hao
Wang, and Lu Zhou. 2018. Position based cryptography
with location privacy: A step for fog computing. Future
Generation Computer Systems 78 (2018), 799–806.

[42] Mingwu Zhang and Tsuyoshi Takagi. 2011. GeoEnc: Geo-
metric area based keys and policies in functional encryption
systems. In ASICP.

[43] Yanchao Zhang, Wei Liu, Yuguang Fang, and Dapeng Wu.
2006. Secure localization and authentication in ultra-
wideband sensor networks. IEEE J. Sel. Areas Commun
(2006).

https://asecuritysite.com/encryption/age
https://asecuritysite.com/encryption/age
https://doi.org/10.1109/SP.2018.00020
https://blog.cryptographyengineering.com/winternitz-checksum
https://blog.cryptographyengineering.com/winternitz-checksum
https://ethereum.stackexchange.com/questions/550
https://ethereum.stackexchange.com/questions/550
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/diem/diem/blob/master/language/move-vm/natives/src/hash.rs
https://github.com/diem/diem/blob/master/language/move-vm/natives/src/hash.rs
https://medium.com/@hdevalence/accelerating-edwards-curve-arithmetic-with-parallel-formulas-ac12cf5015be
https://medium.com/@hdevalence/accelerating-edwards-curve-arithmetic-with-parallel-formulas-ac12cf5015be
https://medium.com/@hdevalence/accelerating-edwards-curve-arithmetic-with-parallel-formulas-ac12cf5015be

HashWires 17

A Security Proof for HashWires
Each of the following lemmas independently establish
the security properties that make up a credential-based
range proof, as defined in Section 2.1.

Lemma 4. The construction HW satisfies perfect com-
pleteness.

Proof. Since x ≥ t, this means that an element of
MDPb(x) dominates t. Using y1 · · · yd as the base-b
representation of this element and t1 · · · td the base-b
representation of t, perfect completeness follows directly
from the proof construction and its definition of the val-
ues v1, . . . , vd. Since vj = Hyj−tj (ri∗,j), and the verifier
takes these values and computes c∗ ← H(Ht1(v1) ||
· · · || Htd(vd)), it follows that the set {c1, . . . , cd} exactly
matches the set for which ACC.Eval outputs com. There-
fore, by the correctness of the accumulator, we have that
HW.Verify(pp,HW.Commit(pp, x; r), t,HW.Prove(x, t; r)) =
1.

Lemma 5. The construction HW satisfies the binding
property for its commitments, based on the assumption
that H is collision resistant and that ACC is a secure
accumulator.

Proof. Recalling the definition of a binding com-
mitment, our goal is to show that for two dis-
tinct integers x0, x1 ∈ [N], the probability that
their commitments are identical is negligible. Con-
sider the event where HW.Commit(pp, x0; r0) = com =
HW.Commit(pp, x1; r1), which we want to show happens
with negligible probability. For each z ∈ {0, 1}, let (P (z),

〈c(z)
1 , . . . , c

(z)
d 〉, 〈r

(z)
1,1, . . . , r

(z)
d,d〉) ← HWSd(xz; rz), and let

C(z) = {c(z)
1 , . . . , c

(z)
d }. There are two cases to consider:

– Case 1: C(0) = C(1). Recalling the definition of
a minimum dominating partition, note that since
x0 6= x1, it follows that MDPb(x0) 6= MDPb(x1).
Since C(z) is constructed out of iterated hashes
on rz, where the number of iterations depends on
MDPb(xz), this means that we can break the colli-
sion resistance of H.

– Case 2: C(0) 6= C(1). Without loss of gen-
erality, let β be such that β ∈ C(0) and
β 6∈ C(1). If the commitments of x0 and x1
are equal, then ACC.Eval(ppACC, C

(0)) = com =
ACC.Eval(ppACC, C

(1)), which allows us to construct
an adversary A that participates in ExptACC as fol-
lows:

– The challenger sends ppACC ← ACC.Setup(1λ) to
A.

– A sends a witness wit ← ACC.WitCreate(ppACC,

β, C(0)), the element β, and the set C(1) to the
challenger.

In the final step, the challenger computes acc ←
ACC.Eval(ppACC, C

(1), and since β 6∈ C(1) and
ACC.Eval(ppACC, C

(0)) = ACC.Eval(ppACC, C
(1)), the

output of the experiment is 1, which breaks the se-
curity of the accumulator.

We have shown in both cases that an adversary which
can breaking the binding property of the commitment
can be used to break either the collision resistance of H
or the security of the accumulator, which completes the
proof.

Lemma 6. The construction HW satisfies
commitment-conditional soundness, based on the as-
sumption that H is collision-resistant and that ACC is a
secure accumulator.

Proof. We define the following two intermediate exper-
iments:
– E0(A): After sampling pp← Setup(1λ) and comput-

ing (x, t, r, π) ← A(pp), the experiment computes
com ← Commit(pp, x; r) and outputs z ← Verify(
pp, com, t, π).

– E1(A): After sampling pp = (ppACC, N, b, d) ←
Setup(1λ) and computing (x, t, r, π) ← A(pp), the
experiment computes com ← Commit(pp, x; r). Let
C = {c1, . . . , cd} be the set of values for which
com = ACC.Eval(ppACC, C). Let (wit, 〈v1, . . . , vd〉) ←
π, and compute c∗ ← H(Ht1(v1) || · · · || Htd(vd)).
If c∗ 6∈ C, then the experiment aborts and immedi-
ately outputs 0. Otherwise, the experiment outputs
z ← Verify(pp, com, t, π).

Lemma 7. For all adversaries A, E0(A) ≈ E1(A),
based on the security of the accumulator ACC.

Proof. Note that the only difference between E0 and
E1 is the conditional check that c∗ 6∈ C, resulting the
experimenting aborting and outputting 0. Therefore, if
E0(A) = 0, then E1(A) = 0 as well, by definition. If
E0(A) = 1 and c∗ ∈ C, then E1(A) = 1 as well. In
the following, we consider the only remaining case; let
A be an adversary for which E0(A) = 1, c∗ 6∈ C, and
E1(A) = 1.

We construct an algorithm B which participates in
ExptACC as follows. After B receives pp = (ppACC, N, b, d)

HashWires 18

from the challenger, it computes (x, t, r, π) ← A(pp),
with (wit, 〈v1, . . . , vd〉) ← π. It then submits a witness
wit, the element c∗ ← H(Ht1(v1) || · · · || Htd(vd)), along
with the set C (for which com = ACC.Eval(ppACC, C))
to the challenger. The challenger responds with a bit z,
which is also the output of B.

Now, given that c∗ 6∈ C and yet E1(A) =
1, this means that ExptACC(B) = 1 by definition.
Hence, using ε as the maximum advantage of any
adversary participating in ExptACC, we have that
|Pr[E0(A) = 1]− Pr[E1(A) = 1]| ≤ ε, which yields the
claim.

Lemma 8. For all adversaries A, the quantity
Pr[E1(A) = 1] ≤ ε, where ε is the probability of find-
ing a collision for H.

Proof. We construct an algorithm from E1(A) which
produces a collision for H. Note that if E1(A) = 1, then
this means that c∗ ∈ C, which in turn means that there
exists some w ∈ MDPb(x), r ∈ {0, 1}λ, and i∗ ∈ [d] for
which c∗ = HMCd(w, 〈H((i∗, 1) || r), . . . ,H((i∗, d) || r)).
Since w ∈ MDPb(x), this implies that w ≤ x < t. Using
w1w2 · · ·wd = w as the base-b representation of w and
t1t2 · · · td = t for t, this means that there exists some
index j ∈ [d] such that wj < tj .

Now, for k ∈ [0, wj], consider the sequence defined
as αk = Hwj−k(H((i∗, j) || r)), and for k ∈ [0, tj], the
sequence βk = Htj−k(vj). Let k∗ be the smallest index
for which αk∗ 6= βk∗ . There are several cases to consider:
– k∗ = 0. Then the we output the pair (γ1, γ2) as a

collision for H, where γ1 = Hw1(H((i∗, 1) || r)) ||
. . . || Hwd(H((i∗, d) || r)), and γ2 = Ht1(v1) || . . . ||
Htd(vd). Note that this is a valid collision, since
H(γ1) = c∗ = H(γ2).

– 0 < k∗ ≤ wj . Then, with γ1 = αk∗ and γ2 = βk∗ ,
we have that (γ1, γ2) is a valid collision for H, since
H(γ1) = αk∗−1 = βk∗−1 = H(γ2).

– Otherwise, with γ1 = H((i∗, j) || r) and γ2 = βwj+1,
we have that (γ1, γ2) is a valid collision for H, since
wj < tj implies that βwj+1 is well-defined, and
H(βwj+1) = βwj = αwj = H(γ1) by definition.

We have shown that in all cases, we are able to produce
a collision for H, which yields the claim.

Note that E0 corresponds exactly to the experiment de-
fined in Definition 3 when instantiated with HW. Thus,
putting together Lemmas 7 and 8 yields the claim.

Lemma 9. The construction HW satisfies witness in-
distinguishability, based on the assumption that H is
random-output secure.

Proof. We describe a simulator Sim : PP× [N]→ P×C
which takes as input the public parameters pp ∈ PP
and an integer threshold t ∈ [N], and outputs a tuple
(π, com) ∈ P× C as follows:
1. Using (ppACC, N, b, d) ← pp, Sim samples

a random index i∗ ←R [d], d − 1 values
c1, . . . , ci∗−1, ci∗+1, . . . , cd ←R {0, 1}λ, and values
v1, . . . , vd ←R {0, 1}λ.

2. With t1 · · · td as the base-b representation of t, for
each j ∈ [d], define ci∗ ← H(Ht1(v1) || · · · || Htd(vd)).

3. Using C = {c1, . . . , cd}, the simulator com-
putes wit ← (ACC.WitCreate(ppACC, ci∗ , C), π ←
(wit, 〈v1, . . . , vd〉), com ← ACC.Eval(ppACC, C), and
outputs (π, com).

In order to prove witness indistinguishability, for fixed
integers x, t ∈ [N] with x ≥ t, we define the following
series of distributions:
– D0: This is equal to the distribution (pp,Sim(t), x, t).
– D1: This is the same as D0, except in how the values

v1, . . . , vd are generated. Instead of uniformly sam-
pling them from {0, 1}λ, we instead sample r∗ ←R
{0, 1}λ, and do the following: Let 〈w1, . . . , wm〉 ←
MDPb(x), and let i∗ ∈ [m] be the first index for
which wi∗ dominates t. Denoting y1 · · · yd as the
base-b representation of wi∗ and t1 · · · td as the
base-b representation of t, for each j ∈ [d], define
vj ← Hyj−tj (H((i∗, j) || r∗)). All other steps remain
the same.

– D2: This is the same as D1, except in how the val-
ues c1, . . . , ci∗−1, ci∗+1, . . . , cd are generated. Instead
of uniformly sampling them from {0, 1}λ, we sam-
ple r ←R {0, 1}λ, for each i, j ∈ [d] compute ri,j ←
H((i, j) || r), compute 〈w1, . . . , wm〉 ← MDPb(x), use
H and r to select a permutation P ′ : [d] \ {i∗} →
[d] \ {i∗}, and for each i ∈ [d] \ {i∗}, set ai ←
HWSd(wi; ri) and finally ci ← aP ′(i). All other steps
remain the same.

– D3: This is equal to the distribution
(pp, (Prove(pp, x, t; r),Commit(pp, x; r)), x, t).

Lemma 10. For every adversary that can distinguish
D0 from D1 with advantage at most ε, there exists an
adversary that can break the random-output security of
either G or H with advantage at least ε/((b+ 1)d).

HashWires 19

Proof. Let Q1 represent the total number of evaluations
of H needed to produce the values v1, . . . , vd in D1. We
define a series of hybrid distributions F0, . . . , FQ1 such
that for each i ∈ [0, Q1], Fi is the same as D1, except
that a random output {0, 1}λ is used in place of the first
i evaluations of H in D1. Note that the evaluations of H
can be ordered so that Fi is always well-defined. Also,
observe that F0 is identical to D1, and FM is identical
to D0.

For each i ∈ [Q1], any adversary which can distin-
guish Fi−1 from Fi with advantage ε can then be used
to break random-output security for the hash function
with advantage ε. We then sum the advantages across
each Fi, along with using the fact that Q1 ≤ (b + 1)d,
to conclude the proof.

Lemma 11. For every adversary that can distinguish
D1 from D2 with advantage at most ε, there exists an
adversary that can break the random-output security of
H with advantage at least ε/(bd(d− 1)).

Proof. This proof follows almost identically from the
format of the proof for Lemma 10, but we repeat it
here for completeness. Let Q2 represent the total num-
ber of evaluations of H needed to produce the values
c1, . . . , ci∗−1, ci∗+1, . . . , cd. We define a series of hybrid
distributions F0, . . . , FM such that for each i ∈ [0, Q2],
Fi is the same as D2, except that a random output
{0, 1}λ is used in place of the first i evaluations of H
in D2. Note that the evaluations of H can be ordered so
that Fi is always well-defined. Also, observe that F0 is
identical to D2, and FM is identical to D1.

For each i ∈ [Q2], any adversary which can distin-
guish Fi−1 from Fi with advantage ε can then be used
to break random-output security for the hash function
with advantage ε. We then sum the advantages across
each Fi, along with using the fact that Q2 ≤ (b + 1)d2,
to conclude the proof.

Lemma 12. The two distributions D2 and D3 are iden-
tical.

Proof. The only distinction between the two distribu-
tions is that in D2, a random index i∗ ∈ [d] is selected,
and used to order a set of d values along with a per-
mutation P ′ : [d] \ {i∗} → [d] \ {i∗}, whereas in D3, a
permutation P : [d]→ [d] is used. Since the permutation
induced by P ′ and the random selection of the index i∗

is identical to having selected P from the entire domain
[d], we conclude that D2 and D3 are indeed identical.

By putting together Lemmas 10, 11, and 12, we can con-
clude that an adversary for ExptWI that can interact with

a challenger that simply computes (π, com)← Sim(pp, t)
on input (x, t) in Step 2 of ExptWI, and this response is
indistinguishable from a “real world” computation of π
and com using Prove and Commit, whilst being inde-
pendent of x. Therefore, if δ represents the maximum
advantage of any adversary in breaking random-output
security for H, then any adversary can have advantage
at most δ+ bd+ 2d2 in breaking witness indistinguisha-
bility for the construction HW.

Finally, with Lemmas 4, 5, 6, and 9, we conclude the
proof of Theorem 2.

B Full HashWires Snapshot
We present a snapshot of the optimized HashWires com-
mitment for the integer 312 (base-4), using a) determin-
istic KDFs to derive salts, hashchain and shuffling seeds,
b) PLA accumulators to compress multichain wires into
MDP commitments c) a sparse Merkle tree accumulator
at the top for computing the final HashWires commit-
ment and d) an optional single checksum hashchain to
defend against malleability.

In our benchmarks, we used this HashWires imple-
mentation model using salted hash functions as KDFs,
Durstenfeld’s algorithm for shuffling and we did not in-
clude the optional checksum chain.

HashWires 20

Fig. 5. Full snapshot of a HashWires commitment structure for 312 in base-4, including a single chain for malleability checksum.

	HashWires: Hyperefficient Credential-Based Range Proofs
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Credential-Based Range Proofs
	2.2 Random-Output Hash Functions
	2.3 Accumulators
	2.4 Minimum Dominating Partitions
	2.5 Efficient Hashchains

	3 The HashWires Construction
	3.1 Security

	4 Experimental Results
	4.1 Optimizations
	4.1.1 Truncation and Padding
	4.1.2 Deterministic Sparse Merkle Trees

	4.2 Reusing Multichains
	4.3 Benchmarks and Comparisons
	4.3.1 Comparing Proof Size
	4.3.2 Computational Efficiency

	5 Extensions and Applications
	5.1 Handling Intervals
	5.2 Reusable Proofs
	5.3 Preventing Malleability
	5.4 Applications

	A Security Proof for HashWires
	B Full HashWires Snapshot

