Indifferentiable hashing to ordinary elliptic \mathbb{F}_{q}-curves of $j=0$ with the cost of one exponentiation in \mathbb{F}_{q}

Dmitrii Koshelev ${ }^{1}$
Computer sciences and networks department, Télécom Paris

Abstract

Let \mathbb{F}_{q} be a finite field and $E_{b}: y^{2}=x^{3}+b$ be an ordinary (i.e., nonsupersingular) elliptic curve (of j-invariant 0$)$ such that $\sqrt{b} \in \mathbb{F}_{q}$ and $q \not \equiv 1(\bmod 27)$. For example, these conditions are fulfilled for the group \mathbb{G}_{1} of the curve BLS12-381 $(b=4)$. It is a de facto standard in the real world pairing-based cryptography at the moment. This article provides a new constant-time hash function $H:\{0,1\}^{*} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$ indifferentiable from a random oracle. Its main advantage is the fact that H computes only one exponentiation in \mathbb{F}_{q}. In comparison, the previous fastest constant-time indifferentiable hash functions to $E_{b}\left(\mathbb{F}_{q}\right)$ compute two exponentiations in \mathbb{F}_{q}. In particular, applying H to the widely used BLS multi-signature with m different messages, the verifier should perform only m exponentiations rather than $2 m$ ones during the hashing phase.

Key words: cubic residue symbol and cubic roots, hashing to ordinary elliptic curves of j-invariant 0 , indifferentiability from a random oracle, pairing-based cryptography.

Introduction

Since its invention in the early 2000s, pairing-based cryptography [1] has become more and more popular every year, for example in secure multi-party computations. One of the latest reviews of standards, commercial products and libraries for this type of cryptography is given in [2, §4.1].

Let \mathbb{F}_{q} be a finite field of $\operatorname{char}\left(\mathbb{F}_{q}\right)>3$ and $E_{b}: y^{2}=x^{3}+b$ be an elliptic \mathbb{F}_{q}-curve whose the j-invariant is 0 . The priority is given to the curves E_{b}, because the pairing computation on them is the most efficient (see [1, §4]). As is well known [1, Remark 2.22], only ordinary curves are safe to deal with the discrete logarithm problem. And according to [3, Example V.4.4] the ordinariness of E_{b} results in the restriction $q \equiv 1(\bmod 3)$, i.e., $\omega:=\sqrt[3]{1} \in \mathbb{F}_{q}$, where $\omega \neq 1$. Today, the most popular pairing-friendly curve in the industry is the Barreto-Lynn-Scott curve BLS12-381 [4, §2.1] for which $\left\lceil\log _{2}(q)\right\rceil=381$.

Many pairing-based protocols (for example, the BLS multi-signature [5, §3], [6]) use a hash function of the form $H:\{0,1\}^{*} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$. There is the regularly updated draft [7] (see also $[1, \S 8]$) on the topic of hashing to elliptic curves. In order to be used in practice H must be indifferentiable from a random oracle [8, Definition 2] and constant-time, that is the computation time of its value is independent of an input argument.

Almost all such previously proposed hash functions are obtained as the composition $H:=$

[^0]$e^{\otimes 2} \circ \mathfrak{h}$ of a hash function $\mathfrak{h}:\{0,1\}^{*} \rightarrow \mathbb{F}_{q}^{2}$ and the tensor square
$$
e^{\otimes 2}: \mathbb{F}_{q}^{2} \rightarrow E_{b}\left(\mathbb{F}_{q}\right) \quad e^{\otimes 2}\left(t_{1}, t_{2}\right):=e\left(t_{1}\right)+e\left(t_{2}\right)
$$
of some map $e: \mathbb{F}_{q} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$. Such a map is often called encoding. In this case the indifferentiability of H follows from [8, Theorem 1] if \mathfrak{h} is indifferentiable and $e^{\otimes 2}$ is admissible in the sense of [8, Definition 4]. The fastest known encodings are Elligator 2 [9, §5] and the Wahby-Boneh "indirect" map [4]. Both (resp. H) can be implemented with the cost of one (resp. two) exponentiation(s) in \mathbb{F}_{q}.

This article essentially improves our ideas from [10]. More precisely, there provided that $\sqrt{b} \in \mathbb{F}_{q}$ we construct one more encoding e whose the tensor square $e^{\otimes 2}$ is admissible. Moreover, e equally requires only one exponentiation in \mathbb{F}_{q}. However in this work (also for $\sqrt{b} \in \mathbb{F}_{q}$) we directly provide an admissible map $h: \mathbb{F}_{q}^{2} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$ approximately with the same cost as e and such that $h(t, t)= \pm e(t)$. In other words, the tensor square is superfluous in the given situation and hence we get rid of one exponentiation in \mathbb{F}_{q}. Let us also remark that h is given by quite simple formulas with small coefficients unlike the Wahby-Boneh encoding.

1 Geometric results

As mentioned above, we are only interested in $q \equiv 1(\bmod 3)$, i.e., $\omega:=\sqrt[3]{1} \in \mathbb{F}_{q}^{*}$, where $\omega \neq 1$. Further, for the sake of being definite, suppose that $\sqrt[3]{b} \notin \mathbb{F}_{q}$. The opposite case is much simpler, hence results of the article can be extended to it without problems. For $i \in\{0,1,2\}$ consider the elliptic curves $E_{b}^{(i)}: y_{i}^{2}=b^{i} x_{i}^{3}+b \simeq_{\mathbb{F}_{q}} E_{b^{2 i+1}}$. Note that $E_{b}^{(1)}, E_{b}^{(2)}$ are two different cubic \mathbb{F}_{q}-twists of $E_{b}=E_{b}^{(0)}$.

There is on $E_{b}^{(i)}$ the \mathbb{F}_{q}-automorphism $[\omega]\left(x_{i}, y_{i}\right):=\left(\omega x_{i}, y_{i}\right)$ of order 3. Take the quotient $T:=\left(E_{b} \times E_{b}^{(1)} \times E_{b}^{(2)}\right) /[\omega]^{\times 3}$ with respect to the diagonal action of $[\omega]$. This is a Calabi-Yau threefold according to $[11, \S 1.3]$. It is readily seen that it has the affine \mathbb{F}_{q}-model

$$
T:\left\{\begin{array}{l}
y_{1}^{2}-b=b\left(y_{0}^{2}-b\right) t_{1}^{3}, \\
y_{2}^{2}-b=b^{2}\left(y_{0}^{2}-b\right) t_{2}^{3}
\end{array} \quad \subset \quad \mathbb{A}_{\left(y_{0}, y_{1}, y_{2}, t_{1}, t_{2}\right)}^{5}\right.
$$

where $t_{j}:=x_{j} / x_{0}$. By the way, the famous SWU (Shallue-van de Woestijne-Ulas) encoding [1, $\S 8.3 .4]$ deals with another Calabi-Yau \mathbb{F}_{q}-threefold.

We can look at T as a curve in $\mathbb{A}_{\left(y_{0}, y_{1}, y_{2}\right)}^{3}$ given as the intersection of two quadratic surfaces over $\mathbb{F}_{q}\left(t_{1}, t_{2}\right)$, where the latter denotes the rational function field in two variables t_{1}, t_{2} over the constant field \mathbb{F}_{q}. Nevertheless, below it will be more convenient to work over the subfield $F:=\mathbb{F}_{q}\left(s_{1}, s_{2}\right)$, where $s_{j}:=t_{j}^{3}$.

Lemma 1 ([12]). T / F is an elliptic curve having a short Weierstrass form $W: y^{2}=x^{3}+$ $a_{4} x+a_{6}$ with the coefficients

$$
\begin{aligned}
& a_{4}:=-3\left(b^{2} s_{1} s_{2}+\omega^{2} s_{1}+\omega b s_{2}\right)\left(b^{2} s_{1} s_{2}+\omega s_{1}+\omega^{2} b s_{2}\right) \\
& a_{6}:=-\left(b^{2} s_{1} s_{2}-2 s_{1}+b s_{2}\right)\left(2 b^{2} s_{1} s_{2}-s_{1}-b s_{2}\right)\left(b^{2} s_{1} s_{2}+s_{1}-2 b s_{2}\right)
\end{aligned}
$$

In particular, the discriminant and j-invariant of W equal

$$
\begin{aligned}
& \Delta=\left(2^{2} 3^{3} b s_{1} s_{2}\left(b s_{1}-1\right)\left(b^{2} s_{2}-1\right)\left(s_{1}-b s_{2}\right)\right)^{2} \\
& j=\left(2^{4} 3^{2}\left(b^{2} s_{1} s_{2}+\omega s_{1}+\omega^{2} b s_{2}\right)\left(b^{2} s_{1} s_{2}+\omega^{2} s_{1}+\omega b s_{2}\right)\right)^{3} / \Delta
\end{aligned}
$$

Theorem 1 ([12]). There is a point $\psi \in W(F)$ with the coordinates

$$
x=b\left(2 b s_{1}-1\right) s_{2}-\left(3 b s_{1}-2\right) s_{1}, \quad y=3 \sqrt{b}(2 \omega+1) s_{1}\left(b s_{1}-1\right)\left(b s_{2}-s_{1}\right) .
$$

It corresponds to a point $\varphi \in T(F)$ whose the coordinates are the irreducible fractions $y_{i}\left(t_{1}, t_{2}\right):=$ num $_{i} /$ den, where

$$
\begin{aligned}
& \text { num }_{0}:=\sqrt{b} \cdot\left(b^{2} s_{1}^{2}-2 b^{3} s_{1} s_{2}+2 b s_{1}+b^{4} s_{2}^{2}+2 b^{2} s_{2}-3\right), \\
& \text { num }_{1}:=\sqrt{b} \cdot\left(-3 b^{2} s_{1}^{2}+2 b^{3} s_{1} s_{2}+2 b s_{1}+b^{4} s_{2}^{2}-2 b^{2} s_{2}+1\right), \\
& \text { num }_{2}:=\sqrt{b} \cdot\left(b^{2} s_{1}^{2}+2 b^{3} s_{1} s_{2}-2 b s_{1}-3 b^{4} s_{2}^{2}+2 b^{2} s_{2}+1\right), \\
& \text { den }:=b^{2} s_{1}^{2}-2 b^{3} s_{1} s_{2}-2 b s_{1}+b^{4} s_{2}^{2}-2 b^{2} s_{2}+1 .
\end{aligned}
$$

Moreover, $\sum_{i=0}^{2} y_{i}\left(t_{1}, t_{2}\right)+\sqrt{b}=0$.
It is remarkable that the functions $y_{i}(t, t)$ are nothing but (up to the minus sign) those from [10, Theorem 1]. Besides, the important case $b=4$ gives

$$
\begin{aligned}
& \text { num }_{0}=2 \cdot\left(2^{4} s_{1}^{2}-2^{7} s_{1} s_{2}+2^{3} s_{1}+2^{8} s_{2}^{2}+2^{5} s_{2}-3\right), \\
& \text { num }_{1}=2 \cdot\left(-2^{4} 3 s_{1}^{2}+2^{7} s_{1} s_{2}+2^{3} s_{1}+2^{8} s_{2}^{2}-2^{5} s_{2}+1\right), \\
& \text { num }_{2}=2 \cdot\left(2^{4} s_{1}^{2}+2^{7} s_{1} s_{2}-2^{3} s_{1}-2^{8} 3 s_{2}^{2}+2^{5} s_{2}+1\right), \\
& \text { den }=2^{4} s_{1}^{2}-2^{7} s_{1} s_{2}-2^{3} s_{1}+2^{8} s_{2}^{2}-2^{5} s_{2}+1 .
\end{aligned}
$$

In other words, T / \mathbb{F}_{q} is an elliptic threefold whose the elliptic fibration is the projection to t_{1}, t_{2}. In these terms, $\varphi: \mathbb{A}_{\left(t_{1}, t_{2}\right)}^{2} \rightarrow T$ is an \mathbb{F}_{q}-section of the given fibration. In particular, $\operatorname{Im}(\varphi)$ is a rational \mathbb{F}_{q}-surface. In turn, W is a global minimal Weierstrass form for T. These and other notions of the theory of elliptic threefolds see, e.g., in [13]. For completeness, the much simpler theory of elliptic surfaces is well represented in [14].

If the point $\phi_{0}:=(\sqrt{b}, \sqrt{b}, \sqrt{b})$ is chosen as the neutral element of the Mordell-Weil group $T(F)$, then as shown in [12] its 2-torsion subgroup $T(F)[2]=\left\{\phi_{i}\right\}_{i=0}^{3}$, where

$$
\phi_{1}:=(\sqrt{b},-\sqrt{b},-\sqrt{b}), \quad \phi_{2}:=(-\sqrt{b}, \sqrt{b},-\sqrt{b}), \quad \phi_{3}:=(-\sqrt{b},-\sqrt{b}, \sqrt{b}) .
$$

The next theorem clarifies why ψ has the simplest coordinates among infinite order points from $W(F)$.

Theorem 2. Consider F as the rational function field $k_{1}\left(s_{2}\right)$ (resp. $k_{2}\left(s_{1}\right)$) over the constant field $k_{1}:=\mathbb{F}_{q}\left(s_{1}\right)\left(\right.$ resp. $\left.k_{2}:=\mathbb{F}_{q}\left(s_{2}\right)\right)$. Then, taking into account the lattice structure with respect to the height pairing,

$$
T(F) \simeq W(F) \simeq \mathrm{A}_{1}^{*} \oplus(\mathbb{Z} / 2)^{2}, \quad \text { moreover }, \quad W(F) / W(F)_{\mathrm{tor}}=\langle\psi\rangle
$$

Proof. Since T / k_{j} is obviously a rational surface, W / k_{j} is also so. With the help of [12] we get that the singular fibers of the Kodaira-Néron model of W / k_{j} have the types $\mathrm{I}_{2}, \mathrm{I}_{2}, \mathrm{I}_{2}, \mathrm{I}_{0}^{*}$ in Kodaira's notation. Consequently $W\left(\overline{k_{1}}\left(s_{2}\right)\right) \simeq W\left(\overline{k_{2}}\left(s_{1}\right)\right) \simeq \mathrm{A}_{1}^{*} \oplus(\mathbb{Z} / 2)^{2}$ according to [14, Table 8.2]. Further, [12] allows to compute the canonical height of ψ, which turns out to equal $1 / 2$. This is also the minimal norm of the lattice A_{1}^{*}. Thus the theorem is proved.

We do not claim that $T(F) / T(F)_{\text {tor }}=\langle\varphi\rangle$ with respect to ϕ_{0} as the neutral element of $T(F)$, because this point does not correspond to that at infinity on W / F. We chose ϕ_{0} just to describe $T(F)[2]$ in a more canonical way.

For the sake of compactness we put

$$
\beta:=-3 \sqrt{b}, \quad \infty:=(1: 0) \in \mathbb{P}^{1}, \quad P_{0}:=(0, \sqrt{b}) \in E_{b}, \quad \mathcal{O}:=(0: 1: 0) \in E_{b} .
$$

Denote by $N u m_{i}$ (resp. Den) the homogenization of $n u m_{i}$ (resp. den) with respect to a new variable t_{0}. For $y \in \mathbb{F}_{q}$ consider on $\mathbb{P}_{\left(t_{0}: t_{1}: t_{2}\right)}^{2}$ the pencil of the \mathbb{F}_{q}-sextics

$$
C_{i, y}: \text { Num }_{i}=\text { Den } \cdot y, \quad C_{i, \infty}=C_{\infty}: \text { Den }=0
$$

and the \mathbb{F}_{q}-conics $D_{i, y}:=\pi\left(C_{i, y}\right)$, where

$$
\pi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2} \quad \pi\left(t_{0}: t_{1}: t_{2}\right):=\left(t_{0}^{3}: t_{1}^{3}: t_{2}^{3}\right)
$$

Also, let $L_{i}: t_{i}=0$,

$$
R_{0}:=(1: 0: 0), \quad R_{1}:=(0: 1: 0), \quad R_{2}:=(0: 0: 1)
$$

and $\mathbf{Q}_{k}:=\pi^{-1}\left(Q_{k}\right)$, where

$$
Q_{0}:=(0: b: 1), \quad Q_{1}:=\left(b^{2}: 0: 1\right), \quad Q_{2}:=(b: 1: 0) .
$$

Below we formulate a few simple lemmas, which are readily checked. By the way, the indices $i \pm 1$ will always mean the operations \pm modulo 3 .

Lemma 2. The order 3 projective \mathbb{F}_{q}-transformations

$$
\tau: \mathbb{P}^{2} \leadsto \mathbb{P}^{2} \quad \tau\left(t_{0}: t_{1}: t_{2}\right):=\left(b t_{2}: t_{0}: t_{1}\right) \quad \text { and } \quad \tau^{\prime}:=\pi \circ \tau \circ \pi^{-1}: \mathbb{P}^{2} \leadsto \mathbb{P}^{2}
$$

give the isomorphisms

$$
\tau: C_{i, y} \leadsto C_{i+1, y}, \quad \tau^{\prime}: D_{i, y} \leadsto D_{i+1, y}, \quad \tau, \tau^{\prime}: L_{i} \leadsto L_{i+1}
$$

as well as

$$
\tau\left(R_{i}\right)=\tau^{\prime}\left(R_{i}\right)=R_{i+1}, \quad \tau^{\prime}\left(Q_{i}\right)=Q_{i+1}
$$

It is worth noting that the curves $D_{i, \pm \sqrt{b}}$ (and hence $C_{i, \pm \sqrt{b}}$) are reducible over \mathbb{F}_{q}. Indeed,

$$
\begin{equation*}
D_{0, \sqrt{b}}: t_{0}\left(t_{0}-b t_{1}-b^{2} t_{2}\right)=0, \quad D_{0,-\sqrt{b}}:\left(t_{0}-b t_{1}+b^{2} t_{2}\right)\left(t_{0}+b t_{1}-b^{2} t_{2}\right)=0 . \tag{1}
\end{equation*}
$$

Lemma 3. There are the following equalities. First,

$$
D_{i, y} \cap D_{\infty}=D_{i, 0} \cap D_{\infty}=\left\{Q_{k}\right\}_{k=0}^{2}
$$

Second,

$$
D_{0, y} \cap D_{1, y}=\left\{Q_{k}\right\}_{k=0}^{2} \cup\left\{\left(b^{2}(y-\sqrt{b}): b(y-\sqrt{b}): 4 y\right)\right\}
$$

for $y \neq \pm \sqrt{b}$. Third,

$$
\begin{array}{ll}
D_{i, y} \cap L_{i}=\left\{Q_{i}\right\}, & D_{0, y} \cap L_{1}=\left\{Q_{1},\left(b^{2}(y-\sqrt{b}): 0: y-\beta\right)\right\}, \\
D_{\infty} \cap L_{k}=\left\{Q_{k}\right\}, & D_{0, y} \cap L_{2}=\left\{Q_{2},(b(y-\sqrt{b}): y-\beta: 0)\right\}
\end{array}
$$

also for $y \neq \pm \sqrt{b}$.
Lemma 4. The set of singular points

$$
\operatorname{Sing}\left(C_{i, y}\right)= \begin{cases}\mathbf{Q}_{i} & \text { if } y \notin\{ \pm \sqrt{b}, \beta, \infty\} \\ \mathbf{Q}_{i} \cup\left\{R_{i}\right\} & \text { if } \quad y=\beta \\ \cup_{k=0}^{2} \mathbf{Q}_{k} & \text { if } \quad y=\infty\end{cases}
$$

Moreover, $R_{i} \in C_{i, \beta}$ is an ordinary point of multiplicity 3 and all other singularities are cusps regardless of y.

Theorem 3. For $y \neq \pm \sqrt{b}$ the curves $C_{i, y}$ are absolutely irreducible.
Proof. The cases $y \in\{\beta, \infty\}$ are immediately processed by Magma [12]. In compliance with Lemma 4 for another y the curve $C_{i, y}$ has only 3 cusps, hence it has no more than 3 different absolutely irreducible components F_{0}, F_{1}, F_{2}. Consider the transformations

$$
\chi_{k}: C_{i, y} \xrightarrow{\sim} C_{i, y} \quad \chi_{0}:=\left(\omega t_{0}: t_{1}: t_{2}\right), \quad \chi_{1}:=\left(t_{0}: \omega t_{1}: t_{2}\right), \quad \chi_{2}:=\left(t_{0}: t_{1}: \omega t_{2}\right) .
$$

Since they are of order 3 , for any $k, \ell, m \in\{0,1,2\}, \ell \neq m$ the case $\chi_{k}: F_{\ell} \xrightarrow{\leadsto} F_{m}, F_{m} \xrightarrow{\leadsto} F_{\ell}$ is not possible, otherwise $F_{\ell}=F_{m}$. Also, given ℓ note that $\chi_{k}: F_{\ell} \leadsto F_{\ell}$ for all k if and only if F_{ℓ} is a Fermat cubic or the line L_{m} for some m. Consequently either F_{0}, F_{1} are Fermat cubics or F_{0}, F_{1}, F_{2} are conics conjugate by χ_{k} for some (or, equivalently, any) k.

It is checked in [12] that the second case does not occur. In the first one, we obtain the decomposition $D_{i, y}=\pi\left(F_{0}\right) \cup \pi\left(F_{1}\right)$ into lines. However it is easily shown that the discriminant of the conic $D_{i, y}$ equals $\pm 4 b^{6}(y-\sqrt{b})(y+\sqrt{b})^{2}$, hence it is non-degenerate for $y \neq \pm \sqrt{b}$.

Hereafter we assume that $y \neq \pm \sqrt{b}$. Let $\sigma_{i, y}: C_{i, y}^{\prime} \rightarrow C_{i, y}$ be the corresponding normalization morphisms. As is well known,

$$
\# \sigma_{i, y}^{-1}\left(\mathbf{Q}_{i}\right)=\# \sigma_{i, \beta}^{-1}\left(R_{i}\right)=\# \sigma_{\infty}^{-1}\left(\mathbf{Q}_{k}\right)=3, \quad \sigma_{i, y}: C_{i, y}^{\prime} \backslash \sigma_{i, y}^{-1}\left(\operatorname{Sing}\left(C_{i, y}\right)\right) \xrightarrow{\leadsto} C_{i, y} \backslash \operatorname{Sing}\left(C_{i, y}\right)
$$

Further, we have the coverings $\pi_{i, y}:=\pi \circ \sigma_{i, y}: C_{i, y}^{\prime} \rightarrow D_{i, y}$ whose the Galois group is clearly isomorphic to $(\mathbb{Z} / 3)^{2}$.

Theorem 4. For $y \notin\{\beta, \infty\}$ the geometric genus $g\left(C_{i, y}\right)=7$. Also, $g\left(C_{i, \beta}\right)=4, g\left(C_{\infty}\right)=1$.
Proof. Denote by r_{y} the number of ramified points $Q \in D_{i, y}$. Since $\pi_{i, y}$ is a Galois covering, the well defined ramification index $e_{Q} \in\{3,9\}$ (see, e.g., [15, Corollary 3.7.2]). It is obvious that $Q \in L_{k}$ for some $k \in\{0,1,2\}$. Moreover, the case $e_{Q}=9$ may occur only for $Q \in\left\{R_{k}\right\}_{k=0}^{2}$. From Lemmas 2, 3 it follows that

$$
\#\left(D_{i, y} \cap L_{i}\right)=1, \quad \#\left(D_{i, y} \cap L_{i-1}\right)=\#\left(D_{i, y} \cap L_{i+1}\right)= \begin{cases}1 & \text { if } \quad y=\infty \\ 2 & \text { otherwise }\end{cases}
$$

Moreover, $R_{i-1}, R_{i+1} \notin D_{i, y}$, but $R_{i} \in D_{i, y}$ if and only if $y=\beta$. Therefore $r_{y}=5$ for $y \notin$ $\{\beta, \infty\}, r_{\beta}=4$, and $r_{\infty}=3$. Besides, according to Lemma 4 for all points $Q \in D_{i, y} \cap\left(\cup_{k=0}^{2} L_{k}\right)$ we have $e_{Q}=3$. Applying the Riemann-Hurwitz formula [3, Theorem II.5.9] to $\pi_{i, y}$, we eventually obtain $g\left(C_{i, y}\right)=3 r_{y}-8$.

2 New hash function

This paragraph clarifies how the \mathbb{F}_{q}-section $\varphi: \mathbb{A}_{\left(t_{1}, t_{2}\right)}^{2} \rightarrow T$ from Theorem 1 results in a constant-time map $h: \mathbb{F}_{q}^{2} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$. First of all, for $a \in \mathbb{F}_{q}^{*}$ denote by $\left(\frac{a}{q}\right)_{3}:=a^{(q-1) / 3}$ the cubic residue symbol, which is trivially a group homomorphism $\mathbb{F}_{q}^{*} \rightarrow\left\{\omega^{i}\right\}_{i=0}^{2}$.
Lemma 5 ([16, Remark 2.3]). An element $a \in \mathbb{F}_{q}^{*}$ is a cubic residue if and only if $\left(\frac{a}{q}\right)_{3}=1$. Moreover, in this case

$$
\sqrt[3]{a}= \begin{cases}{[17, \text { Proposition } 1]} & \text { if } \quad q \equiv 1(\bmod 9) \text { and } q \not \equiv 1(\bmod 27) \\ a^{-(q-4) / 9}=a^{(8 q-5) / 9} & \text { if } \quad q \equiv 4(\bmod 9) \\ a^{(q+2) / 9} & \text { if } \quad q \equiv 7(\bmod 9)\end{cases}
$$

To be definite, we put $\omega:=\left(\frac{b}{q}\right)_{3}$ ($\neq 1$ by our assumption). Also, let us consider only $q \not \equiv$ $1(\bmod 27)$.

Letting $g_{i}:=y_{i}^{2}-b$ for $i \in\{0,1,2\}$, we get $T:\left\{g_{j}=b^{j} g_{0} t_{j}^{3}\right.$ for $j \in\{1,2\}$. It is obvious that $\left\{\left(\frac{g_{i}}{q}\right)_{3}\right\}_{i=0}^{2}=\left\{\omega^{i}\right\}_{i=0}^{2}$ whenever $g_{i}, t_{j} \in \mathbb{F}_{q}^{*}$. Besides, denote by $n \in\{0,1,2\}$ the position number of an element $t_{1} \in \mathbb{F}_{q}^{*}$ in the set $\left\{\omega^{i} t_{1}\right\}_{i=0}^{2}$ ordered with respect to some order in \mathbb{F}_{q}^{*}. For example, if q is a prime, then this can be the usual numerical one.

One of crucial components of h is the auxiliary map

$$
h^{\prime}: T\left(\mathbb{F}_{q}\right) \rightarrow E_{b}\left(\mathbb{F}_{q}\right) \quad h^{\prime}\left(y_{0}, y_{1}, y_{2}, t_{1}, t_{2}\right):=\left\{\begin{array}{lll}
\left(\sqrt[3]{g_{0}}, y_{0}\right) & \text { if } & g_{0}=0 \quad \text { or }\left(\frac{g_{0}}{q}\right)_{3}=1, \\
\left(\sqrt[3]{g_{1}}, y_{1}\right) & \text { if } & \left(\frac{g_{0}}{q}\right)_{3}=\omega^{2} \\
\left(\sqrt[3]{g_{2}}, y_{2}\right) & \text { if } & \left(\frac{g_{0}}{q}\right)_{3}=\omega
\end{array}\right.
$$

Unfortunately, in this form the value of h^{\prime} is computed with the cost of two exponentiations in \mathbb{F}_{q} : the first for $\left(\frac{g_{0}}{q}\right)_{3}$ and the second for $\sqrt[3]{g_{i}}$. Instead, we give an equivalent definition of h^{\prime} (up to the automorphisms $[\omega]^{i}$).

The case $q \equiv 4(\bmod 9)$. Under this assumption

$$
\left(\frac{\omega}{q}\right)_{3}=\omega^{(q-1) / 3}=\omega^{(q-4) / 3} \cdot \omega=\omega^{3(q-4) / 9} \cdot \omega=\omega .
$$

Let $\theta:=g_{0}^{(8 q-5) / 9}$ and $c_{j}:=\sqrt[3]{(b / \omega)^{j}} \in \mathbb{F}_{q}^{*}$. We obtain

$$
g_{j}=b^{j} g_{0} t_{j}^{3}=\left(c_{j} \theta t_{j}\right)^{3} \quad \text { if } \quad \theta^{3}=\omega^{j} g_{0} \text {, i.e., }\left(\frac{g_{0}}{q}\right)_{3}=\omega^{3-j} .
$$

It is easily shown that

$$
h^{\prime}: T\left(\mathbb{F}_{q}\right) \rightarrow E_{b}\left(\mathbb{F}_{q}\right) \quad h^{\prime}\left(y_{0}, y_{1}, y_{2}, t_{1}, t_{2}\right)= \begin{cases}\left(\omega^{n} \theta, y_{0}\right) & \text { if } \quad \theta^{3}=g_{0} \\ \left(c_{1} \theta t_{1}, y_{1}\right) & \text { if } \quad \theta^{3}=\omega g_{0} \\ \left(c_{2} \theta t_{2}, y_{2}\right) & \text { if } \quad \theta^{3}=\omega^{2} g_{0}\end{cases}
$$

Since

$$
\theta^{3}=g_{0}^{-(q-4) / 3}=g_{0}^{q-1-(q-4) / 3}=g_{0}^{(2 q+1) / 3}=g_{0}^{2(q-1) / 3} \cdot g_{0}
$$

this map is well defined everywhere on $T\left(\mathbb{F}_{q}\right)$. It is worth noting that θ can be computed with the cost of one exponentiation in \mathbb{F}_{q} even if g_{0} is given as a fraction u / v for $u \in \mathbb{F}_{q}$, $v \in \mathbb{F}_{q}^{*}$. Indeed,

$$
\begin{equation*}
\theta=(u / v)^{(8 q-5) / 9}=u^{(8 q-5) / 9} \cdot v^{(q-4) / 9}=u^{3}\left(u^{8} v\right)^{(q-4) / 9} \tag{2}
\end{equation*}
$$

The case $q \equiv 10(\bmod 27)\left(\right.$ relevant for BLS12-381). Take any $\zeta:=\sqrt[9]{1} \in \mathbb{F}_{q}^{*}$ such that $\zeta^{3}=\omega$. In this case

$$
\left(\frac{\zeta}{q}\right)_{3}=\zeta^{(q-1) / 3}=\omega^{(q-1) / 9}=\omega^{(q-10) / 9} \cdot \omega=\omega^{3(q-10) / 27} \cdot \omega=\omega .
$$

Let $\theta:=g_{0}^{(2 q+7) / 27}$ and $c_{j}:=\sqrt[3]{(b / \zeta)^{j}} \in \mathbb{F}_{q}^{*}$. Given $i \in\{0,1,2\}$ we obtain

$$
g_{j}=b^{j} g_{0} t_{j}^{3}=\left(c_{j} \theta t_{j}\right)^{3} / \omega^{i} \quad \text { if } \quad \theta^{3}=\omega^{i} \zeta^{j} g_{0} \text {, i.e., }\left(\frac{g_{0}}{q}\right)_{3}=\omega^{3-j}
$$

It is easily shown that

$$
h^{\prime}: T\left(\mathbb{F}_{q}\right) \rightarrow E_{b}\left(\mathbb{F}_{q}\right) \quad h^{\prime}\left(y_{0}, y_{1}, y_{2}, t_{1}, t_{2}\right)=\left\{\begin{array}{lll}
\left(\omega^{n} \theta / \zeta^{i}, y_{0}\right) & \text { if } & \exists i: \theta^{3}=\omega^{i} g_{0} \\
\left(c_{1} \theta t_{1} / \zeta^{i}, y_{1}\right) & \text { if } & \exists i: \theta^{3}=\omega^{i} \zeta g_{0} \\
\left(c_{2} \theta t_{2} / \zeta^{i}, y_{2}\right) & \text { if } & \exists i: \theta^{3}=\omega^{i} \zeta^{2} g_{0}
\end{array}\right.
$$

Since

$$
\theta^{3}=g_{0}^{(2 q+7) / 9}=g_{0}^{2(q-1) / 9} \cdot g_{0},
$$

this map is well defined everywhere on $T\left(\mathbb{F}_{q}\right)$. It is worth noting that θ can be computed with the cost of one exponentiation in \mathbb{F}_{q} even if g_{0} is given as a fraction u / v for $u \in \mathbb{F}_{q}$, $v \in \mathbb{F}_{q}^{*}$. Indeed,

$$
\begin{gather*}
\theta=(u / v)^{(2 q+7) / 27}=u^{(2 q+7) / 27} \cdot v^{q-1-(2 q+7) / 27}=u^{(2 q+7) / 27} \cdot v^{(25 q-34) / 27}= \\
=u \cdot u^{2(q-10) / 27} \cdot v^{3} v^{5(5 q-23) / 27}=u v^{8}\left(u^{2} v^{25}\right)^{(q-10) / 27} . \tag{3}
\end{gather*}
$$

The cases $q \equiv 7(\bmod 9)$ and $q \equiv 19(\bmod 27)$ are processed in a similar way. To be definite, throughout the rest of the article we will deal with the modified version of h^{\prime}. Finally, we come to the map desired

$$
h: \mathbb{F}_{q}^{2} \rightarrow E_{b}\left(\mathbb{F}_{q}\right) \quad h\left(t_{1}, t_{2}\right):= \begin{cases}P_{0} & \text { if } t_{1} t_{2}=0 \\ \mathcal{O} & \text { if den }\left(t_{1}, t_{2}\right)=0, \\ \left(h^{\prime} \circ \varphi\right)\left(t_{1}, t_{2}\right) & \text { otherwise }\end{cases}
$$

We emphasize that in the definition of h^{\prime} (a fortiori, in φ) the cubic residue symbol does not appear. Further, by returning the value of h in (weighted) projective coordinates, we entirely avoid inversions in the field. Besides, the constants ω, c_{j} (and $\zeta, \zeta^{-1}=\zeta^{8}$ if $q \equiv 10(\bmod 27))$ are found once at the precomputation stage. By the way, in the formulas (2), (3) we take $u:=n u m_{0}^{2}-b \cdot d e n^{2}$ and $v:=d e n^{2}$. Calculating the value θ every time no matter whether $t_{0} t_{1} u v=0$ or not, we eventually obtain

Remark 1. The map h is computed in constant time, namely in that of one exponentiation in \mathbb{F}_{q}.

3 Indifferentiability from a random oracle

Theorem 5. For any point $P \in E_{b}\left(\mathbb{F}_{q}\right) \backslash\left\{ \pm P_{0}, \mathcal{O}\right\}$ we have

$$
\begin{array}{ll}
\left|\# h^{-1}(P)-(q+1)\right| \leqslant 7\lfloor 2 \sqrt{q}\rfloor+6, & \left|\# h^{-1}\left(P_{0}\right)-3 q\right| \leqslant\lfloor 2 \sqrt{q}\rfloor, \\
\left|\# h^{-1}\left(-P_{0}\right)-2(q+1)\right| \leqslant 2\lfloor 2 \sqrt{q}\rfloor, & \left|\# h^{-1}(\mathcal{O})-(q+1)\right| \leqslant\lfloor 2 \sqrt{q}\rfloor .
\end{array}
$$

Proof. All the inequalities follow from the Hasse-Weil-Serre bound [15, Theorem 5.3.1] for the number of \mathbb{F}_{q}-points on a projective non-singular absolutely irreducible \mathbb{F}_{q}-curve.

First, suppose that $h\left(t_{1}, t_{2}\right)= \pm P_{0}$. Then $t_{1} t_{2}=0$ or $\theta=g_{0}=0$. In the first case, $h\left(0, t_{2}\right)=h\left(t_{1}, 0\right)=P_{0}$. In the second one, $\left(1: t_{1}: t_{2}\right) \in C_{0, \pm \sqrt{b}}$. These curves decompose as $C_{0, \sqrt{b}}=L_{0} \cup F_{0}$ and $C_{0,-\sqrt{b}}=F_{1} \cup F_{2}$, where F_{k} are Fermat cubics (cf. the equations (1)). The latter are obviously elliptic curves (of j-invariant 0). In accordance with Lemma 3 we have $\left(C_{0, \pm \sqrt{b}} \cap C_{\infty}\right)\left(\mathbb{F}_{q}\right)=\emptyset$. Note also that $\left(F_{1} \cap F_{2}\right)\left(\mathbb{F}_{q}\right)=\left(L_{i} \cap F_{k}\right)\left(\mathbb{F}_{q}\right)=\emptyset$ for all $i, k \in\{0,1,2\}$.

In turn, $\left(C_{\infty} \cap L_{k}\right)\left(\mathbb{F}_{q}\right)=\emptyset$ according to Lemma 3, hence $h^{-1}(\mathcal{O})=C_{\infty}\left(\mathbb{F}_{q}\right)$. Besides, $\operatorname{Sing}\left(C_{\infty}\right)\left(\mathbb{F}_{q}\right)=\emptyset$ (see Lemma 4). As a result, we obtain the bijection $\sigma_{\infty}: C_{\infty}^{\prime}\left(\mathbb{F}_{q}\right) \xrightarrow{\rightarrow} C_{\infty}\left(\mathbb{F}_{q}\right)$. Finally, the geometric genus $g\left(C_{\infty}\right)=1$ by virtue of Theorem 4 .

Now take $P=(x, y) \in E_{b}\left(\mathbb{F}_{q}\right) \backslash\left\{ \pm P_{0}, \mathcal{O}\right\}$. The case $y=\beta$ does not occur, because $\beta^{2}-$ $b=8 b$ is not a cubic residue in \mathbb{F}_{q}. In compliance with Lemmas 2,3 we see that

$$
\left(C_{i, y} \cap C_{\infty}\right)\left(\mathbb{F}_{q}\right)=\left(C_{i, y} \cap C_{i+1, y}\right)\left(\mathbb{F}_{q}\right)=\left(C_{i, y} \cap L_{i}\right)\left(\mathbb{F}_{q}\right)=\emptyset, \quad \#\left(C_{i, y} \cap L_{k}\right)\left(\mathbb{F}_{q}\right) \leqslant 3
$$

for all $i, k \in\{0,1,2\}$. Besides, the x-coordinates of $h\left(t_{1}, t_{2}\right)$ and $h\left(\omega t_{1}, t_{2}\right)\left(\right.$ resp. $\left.h\left(t_{1}, \omega t_{2}\right)\right)$ are always different if $i \in\{0,1\}$ (resp. $i=2$), because $\theta\left(t_{1}, t_{2}\right)=\theta\left(\omega t_{1}, t_{2}\right)=\theta\left(t_{1}, \omega t_{2}\right)$. Therefore

$$
h^{-1}\left(\left\{P,[\omega](P),[\omega]^{2}(P)\right\}\right)=\bigsqcup_{i=0}^{2} h^{-1}\left([\omega]^{i}(P)\right)=\bigsqcup_{i=0}^{2} C_{i, y}\left(\mathbb{F}_{q}\right) \backslash\left(L_{i-1} \cup L_{i+1}\right) .
$$

Since $\# h^{-1}\left([\omega]^{i}(P)\right)=\# h^{-1}\left([\omega]^{i+1}(P)\right)$, we obtain

$$
3 \cdot \# h^{-1}(P)=\sum_{i=0}^{2} \# C_{i, y}\left(\mathbb{F}_{q}\right) \backslash\left(L_{i-1} \cup L_{i+1}\right)
$$

Consequently,

$$
\sum_{i=0}^{2}\left(\# C_{i, y}\left(\mathbb{F}_{q}\right)-6\right) \leqslant 3 \cdot \# h^{-1}(P) \leqslant \sum_{i=0}^{2} \# C_{i, y}\left(\mathbb{F}_{q}\right)
$$

Further, $\# C_{i, y}\left(\mathbb{F}_{q}\right)=\# C_{i+1, y}\left(\mathbb{F}_{q}\right)$ according to Lemma 2. Thus

$$
3\left(\# C_{i, y}\left(\mathbb{F}_{q}\right)-6\right) \leqslant 3 \cdot \# h^{-1}(P) \leqslant 3 \cdot \# C_{i, y}\left(\mathbb{F}_{q}\right)
$$

and hence

$$
\left|\# h^{-1}(P)-\# C_{i, y}\left(\mathbb{F}_{q}\right)\right| \leqslant 6 .
$$

At the same time, Theorem 4 says that $g\left(C_{i, y}\right)=7$. Besides, $\operatorname{Sing}\left(C_{i, y}\right)\left(\mathbb{F}_{q}\right)=\emptyset$ (see Lemma 4). As a result, $\sigma_{i, y}: C_{i, y}^{\prime}\left(\mathbb{F}_{q}\right) \leadsto C_{i, y}\left(\mathbb{F}_{q}\right)$. We eventually obtain

$$
\left|\# h^{-1}(P)-(q+1)\right| \leqslant\left|\# h^{-1}(P)-\# C_{i, y}\left(\mathbb{F}_{q}\right)\right|+\left|\# C_{i, y}\left(\mathbb{F}_{q}\right)-(q+1)\right| \leqslant 6+7\lfloor 2 \sqrt{q}\rfloor .
$$

The theorem is proved.
Corollary 1. The map $h: \mathbb{F}_{q}^{2} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$ is surjective at least for $q \geqslant 211$.
Corollary 2. The distribution on $E_{b}\left(\mathbb{F}_{q}\right)$ defined by h is ϵ-statistically indistinguishable from the uniform one [8, Definition 3], where $\epsilon:=16 q^{-1 / 2}+O\left(q^{-1}\right)$.
Proof. For any point $P \in E_{b}\left(\mathbb{F}_{q}\right)$ put

$$
\begin{gathered}
\delta(P):=\left|\frac{\# h^{-1}(P)}{q^{2}}-\frac{1}{\# E_{b}\left(\mathbb{F}_{q}\right)}\right| \leqslant\left|\frac{\# h^{-1}(P)}{q^{2}}-\frac{1}{q}\right|+\left|\frac{1}{q}-\frac{1}{\# E_{b}\left(\mathbb{F}_{q}\right)}\right|= \\
=\frac{\left|\# h^{-1}(P)-q\right|}{q^{2}}+\frac{\left|\# E_{b}\left(\mathbb{F}_{q}\right)-q\right|}{q \cdot \# E_{b}\left(\mathbb{F}_{q}\right)} \leqslant \frac{\left|\# h^{-1}(P)-q\right|}{q^{2}}+\frac{\lfloor 2 \sqrt{q}\rfloor+1}{q(q+1-\lfloor 2 \sqrt{q}\rfloor)}= \\
=\frac{\left|\# h^{-1}(P)-q\right|}{q^{2}}+\frac{2}{q^{3 / 2}}+O\left(\frac{1}{q^{2}}\right) .
\end{gathered}
$$

If $P \notin\left\{ \pm P_{0}, \mathcal{O}\right\}$ from Theorem 5 we obtain

$$
\delta(P)=\frac{16}{q^{3 / 2}}+O\left(\frac{1}{q^{2}}\right)
$$

Similarly,

$$
\delta\left(P_{0}\right)=\frac{2}{q}+O\left(\frac{1}{q^{3 / 2}}\right), \quad \delta\left(-P_{0}\right)=\frac{1}{q}+O\left(\frac{1}{q^{3 / 2}}\right), \quad \delta(\mathcal{O})=\frac{4}{q^{3 / 2}}+O\left(\frac{1}{q^{2}}\right)
$$

Thus

$$
\sum_{P \in E_{b}\left(\mathbb{F}_{q}\right)} \delta(P) \leqslant(q+\lfloor 2 \sqrt{q}\rfloor-2)\left(\frac{16}{q^{3 / 2}}+O\left(\frac{1}{q^{2}}\right)\right)+\frac{3}{q}+O\left(\frac{1}{q^{3 / 2}}\right)=\frac{16}{q^{1 / 2}}+O\left(\frac{1}{q}\right)
$$

The corollary is proved.

For $t_{2} \in \mathbb{F}_{q}$ consider the encoding $h_{t_{2}}: \mathbb{F}_{q} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$ of the form $h_{t_{2}}\left(t_{1}\right):=h\left(t_{1}, t_{2}\right)$. By definition, $h_{0}\left(t_{1}\right)=P_{0}$ for any $t_{1} \in \mathbb{F}_{q}$. Nevertheless, by analogy with [10, Theorem 2] we can prove the next lemma. Its main difference is that $h_{t_{2}}\left(t_{1}\right)=h_{t_{2}}\left(\omega t_{1}\right)$ whenever $\sqrt[3]{g_{2}} \in \mathbb{F}_{q}$, hence 10 appears instead of 6 .

Lemma 6. For $t_{2} \in \mathbb{F}_{q}^{*}$ and $P \in E_{b}\left(\mathbb{F}_{q}\right)$ we have $\# h_{t_{2}}^{-1}(P) \leqslant 10$ and hence $q / 10 \leqslant \# \operatorname{Im}\left(h_{t_{2}}\right)$.
By this lemma [8, Algorithm 1] still works well in the case of h. Indeed, for $P \in E_{b}\left(\mathbb{F}_{q}\right)$ pick uniformly at random $t_{2} \in \mathbb{F}_{q}$ and then find uniformly at random $t_{1} \in h_{t_{2}}^{-1}(P)$. This gives

Remark 2. The map h is samplable [8, Definition 4].
Remarks 1,2 and Corollary 2 imply that h is admissible in the sense of [8, Definition 4]. Finally, using [8, Theorem 1], we establish

Corollary 3. Consider the composition $H:=h \circ \mathfrak{h}:\{0,1\}^{*} \rightarrow E_{b}\left(\mathbb{F}_{q}\right)$ of a hash function \mathfrak{h} : $\{0,1\}^{*} \rightarrow \mathbb{F}_{q}^{2}$ and h. The hash function H is indifferentiable from a random oracle if \mathfrak{h} is so.

References

[1] N. El Mrabet, M. Joye, Guide to Pairing-Based Cryptography, Cryptography and Network Security Series, Chapman and Hall/CRC, New York, 2017.
[2] Y. Sakemi et al., Pairing-friendly curves, https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves, 2020.
[3] J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, New York, 2009.
[4] R. Wahby, D. Boneh, "Fast and simple constant-time hashing to the BLS12-381 elliptic curve", IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019:4, 154-179.
[5] D. Boneh et al., "Aggregate and verifiably encrypted signatures from bilinear maps", Advances in Cryptology - EUROCRYPT 2003, LNCS, 2656, ed. E. Biham, Springer, Berlin, 2003, 416-432.
[6] D. Boneh et al., BLS signatures, https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature, 2020.
[7] A. Faz-Hernandez et al., Hashing to elliptic curves, https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve, 2020.
[8] E. Brier et al., "Efficient indifferentiable hashing into ordinary elliptic curves", Advances in Cryptology - CRYPTO 2010, LNCS, 6223, ed. T. Rabin, Springer, Berlin, 2010, 237-254.
[9] D. Bernstein et al., "Elligator: Elliptic-curve points indistinguishable from uniform random strings", ACM SIGSAC Conference on Computer \& Communications Security, 2013, 967-980.
[10] D. Koshelev, Efficient indifferentiable hashing to elliptic curves $y^{2}=x^{3}+b$ provided that b is a quadratic residue, ePrint IACR 2020/1070.
[11] K. Oguiso, T. Truong, "Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy", Journal of Mathematical Sciences, the University of Tokyo, 22 (2015), 361-385.
[12] D. Koshelev, Magma code, https://github.com/dishport/Indifferentiable-hashing-to-ordinary-elliptic-curves-of-j-0-with-the-cost-of-one-exponentiation, 2021.
[13] K. Hulek, R. Kloosterman, "Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces", Annales de l'Institut Fourier, 61:3 (2011), 1133-1179.
[14] M. Schütt, T. Shioda, Mordell-Weil lattices, A Series of Modern Surveys in Mathematics, 70, Springer-Verlag, Singapore, 2019.
[15] H. Stichtenoth, Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, Berlin, 2009.
[16] A. Dudeanu, G.-R. Oancea, S. Iftene, "An x-coordinate point compression method for elliptic curves over $\mathbb{F}_{p} "$, International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2010, 65-71.
[17] G. Cho et al., "New cube root algorithm based on the third order linear recurrence relations in finite fields", Designs, Codes and Cryptography, 75:3 (2015), 483-495.

[^0]: ${ }^{1}$ web page: https://www.researchgate.net/profile/Dimitri_Koshelev email: dishport@yandex.ru

