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ABSTRACT
In this work, we focus on verifiable random functions (VRF) that

may resist quantum threats. VRFs have a wide range of applications

and play a key role in Proof-of-Stake blockchains, such as Algorand.

Our main proposal is a VRF construction, X-VRF, based on the

XMSS signature scheme. In addition to being the first quantum-

safe VRF proposal based on symmetric primitives, X-VRF is the

first many-time quantum-safe VRF while existing quantum-safe

constructions only support very few evaluations. Being based on

symmetric-key primitives that have been studied extensively within

the security community, X-VRF provides strong confidence that it

can withstand quantum attacks in the long term.

Despite its stateful nature, we empower XMSS with the

blockchain so that users do not need to maintain individual states.

While increasing the usability of XMSS, our technique also enforces
honest behaviour when creating an X-VRF output so as to satisfy

the fundamental uniqueness property of VRFs.

We show how X-VRF can be used in the Algorand setting to ex-

tend it to a quantum-safe blockchain, and provide various instances

of X-VRF, as each may suit a different setting. Our X-VRF instances
are themost efficient quantum-safe many-time VRF proposals in the

literature. Our extensive performance evaluation, analysis, and im-

plementation indicates the effectiveness of our proposed construc-

tions in practice. In particular, we show that X-VRF can maintain

a very competitive throughput close to the existing Algorand pro-

tocol and can produce substantially more transactions per second

than Bitcoin.

1 INTRODUCTION
There is an increasing concern that the security of some classical

cryptosystems will be compromised due to advances in quantum

computing technologies, especially in recent years where this capa-

bility is becoming more mainstream and available to the masses, e.g.

quantum computing as a service [13]. It is well known that quantum

computers are capable of efficiently solving the mathematical prob-

lems underlying the currently most popular cryptosystems, i.e., the

integer factorization and discrete logarithm problems. A growing

body of literature recognises the importance of post-quantum (a.k.a.

quantum-safe) cryptography, i.e., cryptographic constructions that

remain secure even in the face of large quantum computers.

Making blockchains post-quantum have received considerable

attention due to the severe security impact in case the underly-

ing hardness assumptions are broken. Post-quantum cryptographic

primitives relevant for blockchain are mainly designed using lattice-

based cryptography [29], multivariate cryptography [11], hash-

based cryptography [4] and code-based cryptography [27]. How-

ever, most of the developed primitives based on mathematical as-

sumptions offer either signatures or public keys that are orders of

magnitude larger than the currently used ones [28]. In contrast, so-

lutions based on symmetric key primitives (e.g. hash-based cryptog-

raphy) meet three important goals of post-quantum cryptography:

efficiency, confidence, and usability [4]. Quantum-safe symmetric

cryptography is not significantly different from the current sym-

metric cryptography (only the key size needs to be doubled). Most

of the fundamental symmetric primitives have been defined and

standardized for decades hence boosting confidence in using them.

The other aforementioned post-quantum candidates are relatively

new and perhaps may be broken when more cryptanalytic efforts

to attack them are undertaken [4]. Furthermore, symmetric primi-

tives have been deployed widely and are ready for integration into

various applications.

Early blockchain systems (e.g. Bitcoin) are based on Proof-of-

Work (PoW), which is a consensus mechanism that enables a “lot-

tery” among the miners where the winner gets the reward and

decides how to extend the blockchain (i.e., adds the next block).

The first node who solves a difficult computational puzzle is the

winner. Due to the costly nature of PoW, an alternative consensus

mechanism based on Proof-of-Stake (PoS) has gained popularity

[2]. The assumption behind PoS is that the majority of the wealth

in the system is controlled by the honest participants (whereas in

PoW, it is considered that the majority of the computing power

belongs to the honest participants). An important cryptographic

primitive that many PoS solutions rely on to provide the required

security is Verifiable Random Functions (VRF). VRFs can also be

used in different blockchain applications as we describe in later

sections.
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1.1 Verifiable Random Function (VRF)
Micali et al. [26] introduced the concept of VRF, a variant of Pseudo-

random Functions (PRFs) satisfying a verifiability property. That is,

the knowledge of a secret key enables one to evaluate the pseudo-

random function and to prove the correctness of such evaluations

without revealing the secret key or compromising the pseudoran-
domness of the function. In more detail, a VRF is associated with

a secret key skVRF and the corresponding public key pkVRF which
can be used to verify the VRF output. Using this secret key skVRF, a
user can compute the function (yVRF, 𝜋VRF) ← VRFEval(skVRF, 𝑥)
at some input 𝑥 and generate a corresponding proof 𝜋VRF of the

correct computation of yVRF. The proof 𝜋VRF can be verified using

pkVRF (and public parameters). Additionally to the pseudorandom-

ness and verifiability properties, a secure VRF should also satisfy

the notion of uniqueness, meaning that under a fixed public key and

for one specific VRF input 𝑥 , there cannot exist valid proofs �𝜋VRF
of correct computation corresponding to two distinct VRF output
values yVRF ≠ �yVRF.
1.2 VRFs in the Blockchain
VRFs are widely used in PoS blockchains to conduct secret cryp-

tographic sortition such as to elect block proposers and voting

committee members [8, 9, 14, 17, 18, 25] as well as various appli-

cations in smart contracts such as online lottery. In this paper we

focus on the cryptographic sortition of VRFs in the blockchain.

Cryptographic sortition is an innovation of Algorand which

enables a set of users to select themselves to participate in Algo-

rand’s consensus protocol in a private manner. That is, they are

not identified to anyone else; including potential adversaries [1].

The committee-based consensus protocol proposed by Gilad et al.

[14] for Algorand leverages a VRF to implement cryptographic

sortition. Moreover, the VRF arrangement in Algorand enables fair

private non-interactive random selection of committee members,

weighted by their account balances.
1
This random selection of

committee members in Algorand also prevents attackers from tar-

geting a specific committee member. Additionally, the use of a VRF

in Algorand’s consensus protocol provides scalability and perfor-

mance required to support millions of users. The core of Algorand’s

blockchain is a Byzantine Agreement protocol that is executed

among a small randomly chosen committee of users for each round

[14]. More precisely, this protocol makes use of a VRF in the follow-

ing way. Each user holds a secret/public key pair (skVRF, pkVRF).
Let B be a block to be added. Each user should take the following

steps to determine whether s/he is part of the committee [16]:

(1) Compute (yVRF, 𝜋VRF) ← VRFEval(skVRF, 𝑄) for the user

secret key skVRF and a publicly known random seed 𝑄 and

output a pseudorandom value yVRF and a proof of correct

computation 𝜋VRF.

(2) Check if yVRF is in the target range [0, 𝑃], where 𝑃 is a

parameter that depends on the current stake of the user. If

this condition holds, the user will be a committee member

for B.

The committee membership can be verified by all users in Algo-

rand’s network by executing the verification algorithm of the VRF

1
A user would not benefit from having/creating multiple accounts.

with pkVRF, 𝑄 , yVRF and 𝜋VRF as input, and additionally checking

if yVRF ∈ [0, 𝑃]. Algorand instantiates their protocol with a long-

term (practically unlimited) stateless VRF based on elliptic curves

(ECVRF).

Similarly, Ouroboros Praos [8] conducts a private test that is

executed locally using a VRF to determine whether a participant

belongs to the slot leader set for any slots within a specific time

period.

The uniqueness, pseudorandomness and provability properties

of the VRF play crucial roles in preventing brute-force attacks that

try various output values yVRF in order to find one that falls within

the desired range. Moreover, the committee membership procedure

as well as its verification are computationally inexpensive, making

the consensus protocol highly scalable.

1.3 Our Contribution
In this work, we introduce the most efficient many-time post-

quantum VRF construction, called X-VRF. It is built only from sym-

metric primitives, contrary to existing VRFs which require asym-

metric cryptographic primitives. X-VRF is based on the stateful

XMSS signature. Inheriting from the statefulness of XMSS, X-VRF
is a stateful VRF (essentially a counter-VRFwhere the signer/verifier

needs to store a single counter). In contrast to the classical applica-

tions of VRF which may require a stateless construction, for most

of the blockchain settings it is often sufficient to employ a stateful

primitive. In fact, the blockchain’s block number, which is already

maintained by and available to all users, is the only state informa-

tion required for our application of X-VRF. Therefore X-VRF in the

blockchain environment is actually stateless from the point of view

of a blockchain user (as the user does not need to store an individ-

ual state information). X-VRF can then be naturally deployed over

Algorand, and utilize Algorand’s blockchain as the state counter.

We believe this ‘blockchain-empowered’ XMSS/X-VRF construc-

tion can prove useful in other applications as well. We provide a

technical overview of our approach in the next section.

We implement our construction under different settings and

provide a thorough evaluation analysis that shows its efficiency and

practicality. All of our settings provide a very efficient performance:

the computation time for both the evaluation and verify functions

is less than 1 ms. A user public key and a secret key are just 64 bytes

and 132 bytes, respectively, while the proof size is only around 3

KB for all settings. The main difference between X-VRF instances is
the trade-off between (one-time) key generation runtime, memory

requirement and the lifetime of a key pair.

We further discuss the integration of our VRF into the Algorand

blockchain. To support 100 nodes in the blockchain system, our

VRF can achieve almost 1000 transactions per second (TPS). If we

increase the number of nodes to 1000, our VRF can still achieve

around 500 TPS. More importantly, all of our different settings

provide a practically long to ultra long key lifetime, ranging from 45

hours to 20 years. When the key lifetime passes, the user just needs

to generate a new key pair and broadcast this on the blockchain.

The two existing practical post-quantum VRFs in the literature,

LB-VRF [12] and ISO-VRF [24], only support a few VRF outputs to

be generated by a key pair (i.e., they are not long-term VRFs). In the

Algorand setting, the key lifetime of LB-VRF and ISO-VRF is just
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in the order of seconds, meaning that committee members need to

update their keys (almost) every round, which is quite costly.

For a good viewpoint of comparison, we also introduce a naive

post-quantum VRF proposal that combines a symmetric-key PRF

with a non-interactive zero-knowledge proof (NIZK) of correct eval-

uation. We pick the NIZK based on the proof system in [23] which

also uses symmetric primitives and thus is fair to our comparison.

As expected, this proposal yields a stateless VRF construction which

we call SL-VRF. It is significantly more costly in terms of compu-

tation and communication in comparison to X-VRF while being

long-term and stateless. Our experiment shows that SL-VRF is 500

to 5000 times slower than our X-VRF in evaluation and verification,

while the proof size is also 13 times larger than our X-VRF.

1.4 Our Approach
Deterministic XMSS [6] is a good candidate for the construction

of a post-quantum VRF as it is the most efficient post-quantum

signature scheme constructed from symmetric primitives in terms

of signature size. XMSS employs a hash tree, where each leaf uses

a one-time signature scheme called WOTS+ [20]. WOTS+ is by

construction unique (i.e., for any fixed message and public key,

one can only create a single valid signature). However, by itself,

deterministic XMSS does not satisfy the fundamental uniqueness

property of a VRF since a user can use different tree leaves (that is,

different WOTS+ keys) to construct a new (and of course different)

XMSS signature even for the same message. Thus it is obvious that

a user can generate two different valid XMSS signatures for a single
message.

To satisfy the uniqueness of XMSS, we need to force the user to

use a pre-determinedWOTS+ key pair in signing. For this, we make

use of the blockchain state, i.e., empower XMSSwith blockchain. In

particular, the block number of a particular round in the blockchain

consensus can serve as a global counter, which we can use to force

users to use a specific WOTS+ key pair at each round. More pre-

cisely, at block number 𝐾 , when verifying the XMSS-based VRF

output, the verifier also checks that the leaf index indicated by the

authentication path is consistent with 𝐾 (See Figure 2). As a result,

this ensures that the user cannot choose between differentWOTS+

keys and also allows users to avoid maintaining a local state. We

formally prove that our X-VRF constructed from this approach

satisfies all security requirements of a VRF.

On the other hand, due to the computational/storage cost of cre-

ating and storing a big hash tree, X-VRF cannot be used to create,

say, 2
64

outputs as each output consumes one leaf. We investigate

various X-VRF instances with tradeoffs between computation, stor-

age and lifetime of an X-VRF key pair. For example, X-VRF-27 (with

2
27

leaves) construction offers a key lifetime of more than 20 years

in the Algorand setting and hence can be seen as long-term VRF,

though it requires a relatively long (around 2 days on a single core)

one-time key generation process. Of course, this process can be

optimized using standard techniques such as parallel processing or

delegating computation.

1.5 Roadmap
The rest of the paper is organized as follows. In Section 2, we recall

the important signatures and other cryptographic primitives that

are useful for our main constructions. In Section 3, we present the

“natural” VRF construction, denoted as SL-VRF, a stateless long-

term verifiable random function from a pseudorandom function

and a NIZK protocol. Section 4 introduces our main construction,

X-VRF, wherein we prove its security requirements. In Section

5, we discuss the implementation results and the evaluation of

the two VRF constructions, and compare their performances. In

Section 6, we describe the integration of our VRFs into the Algorand

blockchain.

2 PRELIMINARIES
In this section we recall the cryptographic primitivesWOTS+ (one-
time signature), XMSS (stateful signature), and fundamental defini-

tions used in this paper. For more details on the aforementioned

signature schemes we refer to [6, 20]. For a hash functionH (defined

in Definition 1), let H𝑤 (𝑚) denote the result of iteratively applying

𝑤 times the function H with𝑚 as the input for the first iteration.

𝑥
$← X denotes sampling 𝑥 uniformly from the domain X from a

random seed or at random.

2.1 Cryptographic Primitives
Definition 1 (Hash-Function). A hash function is an efficient

function defined by:

H : {0, 1}∗ → {0, 1}𝑛, 𝐷 ← H(𝑚) (1)

that maps an arbitrary-length message 𝑚 to an 𝑛-bit hash value
denoted as the digest 𝐷 . A hash function is expected to satisfy the
following security properties:
Preimage Resistance: For any hash digest 𝐷 , it is computationally

infeasible to find a message𝑚 s.t. H(𝑚) = 𝐷 .
Collision Resistance: For any two messages 𝑚1 ≠ 𝑚2, then

H(𝑚1) = H(𝑚2) with negligible probability.
Second Preimage Resistance: Given 𝑚, it is computationally in-

feasible to find𝑚′ ≠𝑚 s.t. H(𝑚′) = H(𝑚).

Definition 2 (Pseudorandom function (PRF)). A function
PRF defined with a key space K ∈ {0, 1}𝑛 :

PRF : K × {0, 1}𝑛 → {0, 1}𝑛, 𝑦 ← PRF(𝑘, 𝑥) (2)

is a pseudorandom function if the advantage of a polynomial-time
adversary A is Adv

PRF
A | Pr[APRF(𝑘, ·) (1𝜆) = 1] − Pr[A 𝑓 ( ·) (1𝜆) =

1] | < 𝑛𝑒𝑔𝑙 (𝜆) where 𝑘 ← K and 𝑓 is a random function such that
𝑓 : {0, 1}𝑛 ← {0, 1}𝑛

Definition 3 (WOTS+ [20]). WOTS+ is a Winternitz type one-
time signature scheme where a public key is used to sign exactly one
message 𝑚. WOTS+ is parametrized by the Winternitz parameter
𝑤 ∈ {4, 16, 256} (which determines the time-memory trade-off), the

message length |𝑚 |, len1 =

⌈
|𝑚 |

log(𝑤)

⌉
, len2 =

⌊
log(len1 (𝑤−1))

log(𝑤)

⌋
+ 1

and len = len1 + len2, where len is the number of 𝑛-bit string
elements inWOTS+ keys and signatures. It is defined by the following
three algorithms:

WOTS+ .KeyGen(1𝜆) : The key generation algorithm on input the
security parameter 𝜆, outputs a pair of secret and public keys:

(1) For 𝑛 = 2𝜆, sample 𝑘1, . . . , 𝑘len
$← {0, 1}𝑛 and r =

(𝑟0, . . . , 𝑟𝑤−1) with 𝑟𝑖 ∈ {0, 1}𝑛 .
3
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(2) For 𝑖 = 1, . . . , len and a hash functionH compute𝑦𝑖 = 𝑐𝑤 (𝑘𝑖 , r),
where 𝑐 𝑗 (𝑥, r) = H(𝑐 𝑗−1 (𝑥, r) ⊕ 𝑟 𝑗 ) for 𝑗 > 0.

(3) Output WOTS+ .sk = (𝑘1, . . . , 𝑘len) and WOTS+ .pk =

(𝑦1, . . . , 𝑦len, r).
WOTS+ .Sign(WOTS+ .sk,WOTS+ .pk,𝑚): The signing algorithm on

input a message𝑚, a secret key WOTS+ .sk = (𝑘1, . . . , 𝑘len) and
a public key WOTS+ .pk = (𝑦1, . . . , 𝑦len, r) outputs a signature
WOTS+ .𝜎 :
(1) Parse𝑚 as (𝑚1, . . . ,𝑚len1

) with𝑚𝑖 ∈ [0,𝑤 − 1] and compute
the checksum𝐶 =

∑len1

𝑖=1
(𝑤 − 1−𝑚𝑖 ). Concatenate the message

and the checksum to get (𝑏1, . . . , 𝑏len) with 𝑏𝑖 ∈ [0,𝑤 − 1].
(2) For 𝑖 = 1, . . . , len, computeWOTS+ .𝜎𝑖 = 𝑐𝑏𝑖 (𝑘𝑖 , r). Output the

signature WOTS+ .𝜎 = (WOTS+ .𝜎1, . . . ,WOTS+ .𝜎len).
WOTS+ .Verify(𝑚,WOTS+ .𝜎,WOTS+ .pk): The verification

algorithm takes as input the message 𝑚 the signature
WOTS+ .𝜎 = (WOTS+ .𝜎1, ...,WOTS+ .𝜎len) and the public
keyWOTS+ .pk = (𝑦1, . . . , 𝑦len, r), and proceeds as follows:
(1) Re-compute the checksum 𝐶 from the message 𝑚 to obtain
(𝑏1, . . . , 𝑏len).

(2) Compute (and output) WOTS+ .pk′ ←
(𝑐𝑤−1−𝑏1 (WOTS+ .𝜎1, r𝑏1+1,𝑤−1

), . . . ,
𝑐𝑤−1−𝑏len (WOTS+ .𝜎len, r𝑏len+1,𝑤−1

), r)
(3) Accept if WOTS+ .pk = WOTS+ .pk′, reject otherwise

Remark 1. The complete public keyWOTS+ .pk is necessary for
WOTS+ .Verify only if WOTS+ is used as an independent signature
scheme. In its integration to XMSS (see below) WOTS+ .Verify does
not output a Boolean value but directly outputs the re-computed
WOTS+ .pk′ (in Step 2) from the signatureWOTS+ .𝜎 . Therefore, only
the element r of WOTS+ .pk is needed in the input of WOTS+ .Verify
in XMSS.

Remark 2. It is easy to see that no PPT adversary can create
two distinct WOTS+ signatures on the same message𝑚 and under
the same public keyWOTS+ .pk assuming the hash function H(·) is
collision-resistant. This uniqueness property is important for our VRF
constructions.

Definition 4 (XMSS [6]). XMSS is a stateful signature scheme
constructed on the idea of a Merkle tree (see Figure 1). It is parame-
terized by the height ℎ of the tree, the length 𝑛 (in bits) of a message
𝑚 and the Winternitz parameter𝑤 used in the underlyingWOTS+

one-time signature scheme. We only consider the deterministic XMSS
construction, which consists of three algorithms:

XMSS.KeyGen(1𝜆) : The key generation algorithm on input the se-
curity parameter 𝜆 outputs a pair consisting of secret and public
keys:

(1) Initialize PRF.sk
$← {0, 1}𝑛 , XMSS.seed

$← {0, 1}𝑛 and
XMSS.idx = 0;

(2) For 𝑖 = 1, . . . , 2ℎ computeWOTS+ .seed𝑖 ← PRF(PRF.sk, 𝑖) and
use WOTS+ .seed𝑖 as the random seed to generate WOTS+ .sk𝑖
and WOTS+ .pk𝑖 as in WOTS+ .KeyGen, where PRF is a pseu-
dorandom function (see Definition 2 for a formal definition of a
PRF).

(3) Set XMSS.root to be the root of the tree generated based on the
2
ℎ WOTS+ public keys and XMSS.seed to generate the public
bitmask 𝑏, which is used as a mask of the children of nodes

(an example is illustrated see Figure 1). The tree is not directly
constructed using the WOTS+ public keys as leaves but using
their compression into a single 𝑛-bits value. The compression is
the root of tree constructed with len elements ofWOTS+ .sk as
leaves.

(4) Output XMSS.idx, XMSS.sk = (PRF.sk, XMSS.root,
XMSS.seed), XMSS.pk = (XMSS.root, XMSS.seed).

XMSS.Sign(XMSS.sk,𝑚, XMSS.idx) : The signing algorithm takes as
input the secret key XMSS.sk = (PRF.sk, XMSS.root, XMSS.seed),
XMSS.idx and a message𝑚, and outputs a signature XMSS.𝜎 :
(1) ComputeWOTS+ .seed𝑖 ← PRF(PRF.sk, 𝑖) with 𝑖 = XMSS.idx

and useWOTS+ .seed𝑖 to generateWOTS+ .sk𝑖 andWOTS+ .pk𝑖
(including r) as in WOTS+ .KeyGen.

(2) Generate the WOTS+ signature WOTS+ .𝜎 ←
WOTS+ .Sign(WOTS+ .sk𝑖 ,WOTS+ .pk𝑖 ,𝑚)

(3) Add the authentication path XMSS.Auth which is the path from
the WOTS+ .pk𝑖 , where 𝑖 = XMSS.idx, to the root XMSS.root.
(In the example in Figure 1 XMSS.idx = (011)2 = 310 and the
authentication path consists of the grey nodes)

(4) Set XMSS.𝜎 = (WOTS+ .𝜎, 𝑖, XMSS.Auth) for 𝑖 = XMSS.idx
and increment XMSS.idx.

(5) Output XMSS.𝜎 .
XMSS.Verify(XMSS.pk,𝑚, XMSS.𝜎) : The verification al-

gorithm takes as input the public key XMSS.pk =

(XMSS.root, XMSS.seed), the message 𝑚 and the signature
XMSS.𝜎 = (WOTS+ .𝜎, 𝑖, XMSS.Auth), and computes:
(1) Generate r fromWOTS+ .seed𝑖 ← PRF(PRF.sk, 𝑖)
(2) Compute WOTS+ .pk′ ← WOTS+ .Verify(𝑚,WOTS+ .𝜎, r) (see

Remark 1).
(3) Compute a root 𝑟 ′ starting fromWOTS+ .pk′ and following the

authentication path XMSS.Auth and the direction indicated by
𝑖 .

(4) Accept if XMSS.root = 𝑟 ′, reject otherwise.

Note that each user keeps an XMSS.idx value as some state

information and increments it every time a signature is generated.

However, there is no mechanism to enforce that the signer really
consumes the leaves in this fashion. The verification still succeeds

if a user decides to create the signature using some random leaf.

WhileWOTS+ keys can only be used to sign once,XMSS keys can
be used to sign 2

ℎ
times. ForWOTS+, |WOTS+ .pk| = |WOTS+ .𝜎 | =

len · 𝑛 bits. The public key in XMSS consists of only 2𝑛 bits, but

the signatures are bigger than inWOTS+. We provide a summary

of the parameters in Table 1.

Remark 3. Observe that XMSS as defined above does not satisfy
uniqueness as a signer can choose different tree leaves (i.e., different
WOTS+ keys) to sign the same message, leading to different signatures
on the same message. We overcome this problem when we design our
XMSS-based VRF construction.

2.2 Non-interactive Zero-Knowledge Proofs
(NIZK)

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation and 𝑥,𝑤 denote the

statement and the witness of this relation, respectively. Let Λ be the

corresponding language defined as Λ = {𝑥 | ∃𝑤 s.t. (𝑥,𝑤) ∈ R}.

4
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Figure 1: The XMSS tree construction.

Table 1: Summary of parameters

Parameter Description
𝜆 level of post-quantum security

𝑛 size of the hash function output and

equal to 2 · 𝜆
𝑤 Winternitz parameter

len number of 𝑛-bit values in WOTS+ keys
and signatures. len = len1 + len2,

with len1 =

⌈
|𝑚 |

log(𝑤)

⌉
and len2 =⌊

log(len1 (𝑤−1)
log(𝑤)

⌋
+ 1.

ℎ height of the hash tree (i.e., there are 2
ℎ

leaves)

Definition 5 (NIZK). A non-interactive zero-knowledge proof
Π𝑁𝐼𝑍𝐾 for the relation R consists of the following probabilistic poly-
nomial time algorithms:

Setup(1𝜆) : This algorithm takes as input the security parameter 1
𝜆

and outputs a verification key vk.

Prove(𝑥,𝑤) : On input a statement 𝑥 and a witness𝑤 , this algorithm
outputs a proof 𝜋 .

Verify(𝑥, vk, 𝜋) : On input a verification key vk, a statement 𝑥 and a
proof 𝜋 , output either 1 (if the proof is accepted) or 0.

A NIZK proof must satisfy the following security requirements:

Completeness: For all (𝑥,𝑤) ∈ R if we run (vk) ← Setup(1𝜆) then
we have

𝑃𝑟 [𝜋 ← Prove(𝑥,𝑤) : Verify(𝑥, vk, 𝜋) = 1] = 1

Soundness: For all (possibly inefficient) adversaries A, if we run
(vk) ← Setup(1𝜆), then we have

𝑃𝑟 [(𝑥, 𝜋) ← AVerify( ·,vk, ·) (1𝜆) : 𝑥 ∉ L∧
Verify(𝑥, vk, 𝜋) = 1] = 𝑛𝑒𝑔𝑙 (𝜆)

Zero-Knowledge: For all PPT adversaries A there exists a simulator
S = (S1,S2), s.t. if we run (vk) ← Setup(1𝜆) and ( ¯vk, 𝜏) ← S1 (1𝜆)

then we have

|𝑃𝑟 [AProve( ·, ·) (1𝜆, vk) = 1]

− 𝑃𝑟 [AS2 ( ¯kv,𝜏) (1𝜆, ¯vk) = 1] | = 𝑛𝑒𝑔𝑙 (𝜆)

2.3 Verifiable Random Function (VRF)
Definition 6 (Verifiable Random Function (VRF) [26]). A

VRF with input length ℓ (𝜆) and output length𝑚(𝜆) consists of the
following polynomial-time algorithms:

ParamGen(1𝜆): On input the security parameter 1
𝜆 , this probabilistic

algorithm outputs some global, public parameter ppVRF.
KeyGen(ppVRF): On input public parameter ppVRF this probabilistic

algorithm outputs two binary strings, a secret key skVRF and a
public key pkVRF.

VRFEval(skVRF, 𝑥): On input a secret key skVRF and an input 𝑥 this
algorithm outputs the VRF value VRF and the corresponding proof
𝜋VRF proving that yVRF was correctly computed.

Verify(pkVRF, yVRF, 𝑥, 𝜋VRF): On input (pkVRF, yVRF, 𝑥, 𝜋VRF) this
probabilistic algorithm outputs either YES or NO.

A secure VRF satisfies the following properties:

Provability: If (yVRF, 𝜋VRF) is the output of VRFEval(skVRF, 𝑥),
where the public and the secret key are honestly generated, then
Verify(pkVRF, yVRF, 𝑥, 𝜋VRF) outputs YES.
Pseudorandomness: Let A = (A1,A2) be a polynomial-time ad-
versary playing the following experiment Exp𝑝𝑟A :

(1) ppVRF ← ParamGen(1𝜆)
(2) (pkVRF, skVRF) ← KeyGen(ppVRF)
(3) (𝑥, 𝑠𝑡) ← AOVRFEval(skVRF, ·)

1
(pkVRF)

(4) (yVRF,0, ·) ← VRFEval(skVRF, 𝑥)
(5) yVRF,1

$← {0, 1}𝑚 (𝜆)

(6) b
$← {0, 1}

(7) b′ ← AOVRFEval(skVRF, ·)
2

(yVRF,b, 𝑠𝑡)
where OVRFEval(skVRF, ·) is an oracle that on input a value 𝑥
outputs yVRF and 𝜋VRF.
Any polynomial-time adversary A that does not issue any queries to
OVRFEval on the value 𝑥 , wins the above game with probability at
most 1/2 + 𝑛𝑒𝑔𝑙 (𝜆).
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Uniqueness: No values (pkVRF, yVRF,1, yVRF,2, 𝑥, 𝜋VRF,1,
𝜋VRF,2) can satisfy Verify(pkVRF, yVRF,1, 𝑥, 𝜋VRF,1) =

Verify(pkVRF, yVRF,2, 𝑥, 𝜋VRF,2) = 1, when yVRF,1 ≠ yVRF,2

Note: In contrast to the unconditional uniqueness property de-

fined in [26] our VRF constructions satisfy computational unique-
ness, where the running time of the adversary attacking the unique-

ness property is polynomially bounded. This stems from the fact

that we rely on the collision-resistance of a hash function.

3 SL-VRF: STATELESS VERIFIABLE RANDOM
FUNCTION FROM PRF AND NIZK

We apply the idea of instantiating a VRF from a PRF+NIZK construc-

tion which has been introduced in [15]. Recent works like [7, 23]

allows one to prove knowledge of a secret key 𝑘 that generate

𝑦 ← PRF(𝑘, 𝑥) where 𝑥,𝑦 are public information while preserving

the secrecy of 𝑘 , using symmetric primitives only. This means that

PRF is an arithmetic circuit like a block cipher or a hash function.

The current state of the art is the NIZK introduced by Katz et al.

(KKW) [23] which is is at the heart of post-quantum security of the

digital signature Picnic [7] submitted at the NIST standardization

process.

The KKW NIZK protocol introduced in [23] proves the knowl-

edge of a secret key without revealing any information about it

with the help of the input and outputs of a binary circuit like a

PRF or a block cipher. KKW is instantiated using the concept of

MPC-in-the-head introduced in [21]. MPC-in-the-head simulates

a multi-party computation of the circuit between 𝑃 parties. Then

to prove the knowledge of the secret key the protocol reveals the

views of all parties except one. The proof is verified by recomputing

the output based on the view of 𝑃 − 1 parties.

The size of the proof depends directly on the number of par-

ties 𝑃 of the MPC protocol. In the circuit, there are four different

operations: Addition with a public constant, addition of values com-

puted by all parties ("OR" gates), multiplication with a constant

and multiplication of values computed by all parties ("AND" gates).

Only the last one requires communication between the parties to

be performed. This means that the proof contains the views of 𝑃 − 1

parties for each "AND" gate of the circuit, and therefore its number

needs to be optimized. For this reason, KKW works with the block

cipher LowMC [3] which is a cryptographic primitive with low

multiplicative complexity, i.e. low number of multiplications in a

circuit ("AND" gates).

Ensuring Uniqueness: The idea behind our stateless VRF con-

struction is to use the block cipher LowMC as a PRF to generate

the random outputs and then prove with KKW the knowledge of

the secret key skVRF. In other words, taking a message 𝑥 as an

input, a user generates the corresponding pseudo-random outputs

𝑦 ← PRF(skVRF, 𝑥) and then use the KKW protocol as the VRF

proof. KKW protocol is made non-interactive using the Fiat-Shamir

transform. However, KKW allows to prove the knowledge of the

secret key that generates 𝑦 from the public 𝑥 without requiring the

use of the public key linked to the secret key skVRF. This causes
a problem for the uniqueness of the VRF. Indeed, a user could

generate a different value 𝑦′ for the same input 𝑥 using another

secret key skVRF ′. Therefore, we modify the public key as follows:

pkVRF is now composed of two elements pkVRF1
and pkVRF2

such

that pkVRF2
← PRF(skVRF, pkVRF1

). The evaluation procedure will

prove that the secret key which generated 𝑦 from 𝑥 is the same

as that generated pkVRF2
from pkVRF1

and so it is infeasible for a

malicious user to change its secret key in order to generate another

output of the VRF.

3.1 SL-VRF from PRF+NIZK Construction
ParamGen(1𝜆) : Pick a collision-resistant hash H : {0, 1}∗ →
{0, 1}𝑛 (for the Fiat-Shamir transform) and a Pseudo-random

function PRF : {0, 1}∗ × {0, 1}𝑛 → {0, 1}𝑛 . Output public param-

eters ppVRF = (H, PRF).
KeyGen(ppVRF) : On input public parameters computes skVRF

$←−
{0, 1}𝑛 and pkVRF1

$←− {0, 1}𝑛 . Then it computes pkVRF2
←

PRF(skVRF, pkVRF1
) and sets pkVRF = (pkVRF1

, pkVRF2
)

VRFEval(skVRF, 𝑥) : Given skVRF and a message 𝑥 , the algorithm

follows this procedures:

(1) 𝑦 ← PRF(skVRF, 𝑥)
(2) pk.check← (𝑥,𝑦, pkVRF)
(3) 𝜋NIZK ← Prove(pk.check, skVRF). For a relation R the NIZK

proof 𝜋NIZK holds iff:

(a) 𝑦 ← PRF(skVRF, 𝑥) and
(b) pkVRF2

← PRF(skVRF, pkVRF1
).

This can be done due to the KKW [22, 23] procedure on a

binary circuit composed of two PRFs (LowMC block cipher

as explained before) linked with an additional "AND" gate,

assuring that both statements are fulfilled.

VRFVerify(𝑦, 𝑥, 𝜋NIZK) : On input (𝜋NIZK, 𝑥,𝑦) it runs NIZK verifi-

cation algorithmVerify(𝑥,𝑦, 𝜋NIZK) of the underlying KKWNIZK

proof and outputs 0/1.
The security depends on the properties of the underlying PRF

for a given key skVRF (collision resistance and one-wayness) and

the security of KKW NIZK see [23])

SL-VRF Security Discussion. The provability of SL-VRF follows via

direct investigation. As long as the underlying KKW NIZK proof

is correct, SL-VRF is provable. The security, i.e. uniqueness and

pseudorandomness of our SL-VRF depends on the properties of the

underlying PRF. The uniqueness follows from two facts; first the

PRF output is a deterministic function of the secret key skVRF and
the input 𝑥 , meaning that evaluating the PRF twice on the same

value yields the same output. Secondly, the validity proof of the

statement (3) (𝑏) in the VRF evaluation procedure (VRFEval) pre-
sented in Section 3.1 forces each user to use her fixed secret key for

each evaluation and so ensures uniqueness due to the deterministic

property of the PRF as explained before. The pseudorandomness

of the VRF output is inherited from the corresponding pseudoran-

domness property of the underlying PRF.

In order to evaluate the efficiency of our SL-VRF, we need to anal-
yse the underlying NIZK proof construction. A detailed evaluation

is provided in Section 5.

4 X-VRF: VERIFIABLE RANDOM FUNCTION
FROM XMSS

In this section we introduce a construction of a secure VRF from

XMSS. As discussed in the introduction, naively extending XMSS
to a VRF does not result in a secure construction as the uniqueness
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property can easily be violated. In particular, when a user constructs

a hash tree in XMSS, she is able to use any of the leaves (i.e.,WOTS+

keys) to create the XMSS signature. As a result, XMSS by itself does
not satisfy uniqueness.

This is indeed very problematic in a blockchain application that,

for example, uses the VRF output to perform leader election (as

in Algorand). More specifically, the user can simply create a huge

hash tree, say, with 𝑁 leaves for XMSS, and then she will be able to

amplify his success probability of being elected by a factor of 𝑁 as

she can try to create the XMSS-based VRF output from each leave

and can output the one that is successful.

To circumvent this problem, we index every VRF evaluation

and modify the uniqueness requirement to the case where for a

fixed message and public key the VRF evaluations with the same

index always lead to the same value. Then, in the later sections, we

enforce all users to use a pre-determined index ctr when creating

an XMSS-based VRF output. This way, the users does not have the

ability to choose between multiple leaves and can only produce a

single signature output on a message.

4.1 X-VRF from XMSS Construction
ParamGen(1𝜆) : On input security parameter 𝜆, output public pa-

rameters ppVRF = H, for H : {0, 1}∗ → {0, 1}𝑛 .
KeyGen(ppVRF) : On input public parameters ppVRF,
(1) Run (XMSS.idx, XMSS.sk, XMSS.pk) ← XMSS.KeyGen(1𝜆),
(2) Output (idxVRF, pkVRF, skVRF) =

(XMSS.idx, XMSS.pk, XMSS.sk).
VRFEval(skVRF, 𝑥, idxVRF) : On input skVRF = XMSS.sk, a message

𝑥 and an index ctr = idxVRF,
(1) Run XMSS.𝜎 = (WOTS+ .𝜎, 𝑖, XMSS.Auth) ←

XMSS.Sign(XMSS.sk, 𝑥, ctr),
(2) Set 𝜋VRF = XMSS.𝜎 ,
(3) Compute yVRF ← H(XMSS.𝜎, 𝑥),
(4) Output (𝜋VRF, yVRF).

VRFVerify(pkVRF, 𝑥, yVRF, 𝜋VRF) : On input (𝜋VRF, yVRF), the public
key pkVRF and a VRF input 𝑥 ,

(1) Parse 𝜋VRF = XMSS.𝜎 = (WOTS+ .𝜎, 𝑖, XMSS.Auth),
(2) If 𝑖 and XMSS.Auth are inconsistent (i.e., if the leaf index indi-

cated by XMSS.Auth is not equal to 𝑖), output NO.

(3) Otherwise, if the verification of XMSS.𝜎 succeeds and yVRF =

H(XMSS.𝜎, 𝑥), output YES.
(4) Otherwise output NO.

In VRFEval, the counter decides which leaf of XMSS tree is used

and this is checked in VRFVerify. In our blockchain application, we

enforce users to use a specific publicly known counter value so

that the user cannot choose multiple leaves to create a VRF output

at a particular point. This is crucial to guarantee uniqueness. It is

indeed easy to establish a global counter value in the blockchain

environment since it can simply be set to the block number 𝐾 mod

𝑁 , where𝑁 is a fixed public integer denoting the maximum number

of rounds a key pair can be used. In particular, we set 𝑁 = 2
ℎ
for

an XMSS tree of height ℎ (See Figure 2 for an example with 𝑁 = 4).

We also remark that with access to such a global counter, the

users no longer need to store individual state information. That is,

the VRF itself in a way becomes stateless as the users can simply

retrieve the block number from the blockchain and do not need to

worry about maintaining a state themselves.

4.2 X-VRF Security Analysis
The most critical property we need to analyze is the uniqueness.

Therefore, before proving the security of X-VRF construction, we
first focus on the uniqueness of XMSS under the constraint that

the index used to create the signature is the same.

Lemma 1 (XMSS Uniqeness). Let XMSS.𝜎1 =

(WOTS+ .𝜎1, 𝑖, XMSS.Auth1) and XMSS.𝜎2 =

(WOTS+ .𝜎2, 𝑖, XMSS.Auth2) be two valid XMSS signa-
tures created by a PPT adversary on the same message
𝑚 and under the same public key XMSS.pk and the
same index 𝑖 (i.e., XMSS.Verify(XMSS.pk,𝑚, XMSS.𝜎1) =

XMSS.Verify(XMSS.pk,𝑚, XMSS.𝜎2) = 1). If the hash func-
tion used in the XMSS definition is collision-resistant, then
XMSS.𝜎1 = XMSS.𝜎2 (i.e., XMSS is unique provided that the indices
in the two signatures are the same).

Proof. Let XMSS.pk be a public key and 𝑚 be

a message. Fix an index 𝑖 ∈ [0, 2ℎ − 1]. Also, let

XMSS.𝜎1 = (WOTS+ .𝜎1, 𝑖, XMSS.Auth1) and XMSS.𝜎2 =

(WOTS+ .𝜎2, 𝑖, XMSS.Auth2) be two valid signatures created by

a PPT adversary on 𝑚 using XMSS.pk and 𝑖 . It is clear that

XMSS.Auth1 = XMSS.Auth2
as the leaf index and the tree root

is the same if the hash function is collision-resistant. We now

just need to show that WOTS+ .𝜎1 = WOTS+ .𝜎2. This follows

immediately from Remark 2. □

Theorem 1 (X-VRF Security). X-VRF is correct and satisfies the
properties of computational uniqueness and pseudorandomness in
the random oracle model. In particular, the uniqueness holds in the
sense that the same ctr (or leaf index) must be used in VRFEval as in
Lemma 1.

Proof. We prove the three properties of Definition 6.

Correctness. The correctness of X-VRF follows via direct investi-

gation. As long as the underlying XMSS scheme is correct, X-VRF
is correct.

Uniqueness. To prove uniqueness of our X-VRF scheme by a

reduction to the uniqueness property of the underlying XMSS
scheme, we assume Aunq being an adversary against uniqueness

property of our X-VRF scheme. We can construct an adversary

Bunq against the uniqueness property of the underlying XMSS. Let
yVRF1

, yVRF2
be two different outputs and 𝜋VRF1

, 𝜋VRF2
the two

respective proofs generated by Aunq on the same input 𝑥 . We

know that yVRF𝑖 = H(XMSS.𝜎𝑖 , 𝑥) and 𝜋𝑖 = XMSS.𝜎𝑖 for 𝑖 ∈ {1, 2}.
If yVRF1

≠ yVRF2
, then we must have XMSS.𝜎1 ≠ XMSS.𝜎2. Set

𝑚 = 𝑥 being the input message of the XMSS.Sign algorithm. Since

𝑥 is the same in both signatures XMSS.𝜎1 and XMSS.𝜎2, it follows

that the XMSS signature scheme is not unique, which contradicts

the uniqueness property stated in Lemma 1.

Pseudorandomness. Let Apr be a PPT adversary against the

pseudorandomness of our X-VRF scheme. Recall that yVRF =

H(XMSS.𝜎, 𝑥) whereH is modelled as a random oracle and XMSS.𝜎
is a signature on 𝑥 . Also recall that XMSS.𝜎 contains WOTS+ .𝜎
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which is the (iterated) hash of some completely random and inde-

pendent 𝑛-bit strings unknown toApr. So, anyWOTS+ .𝜎 results in

just some random bit string that is contained in XMSS.𝜎 . Hence, the
only wayApr can distinguish yVRF from a uniformly random value

happens if Apr has queried H on the input (XMSS.𝜎, 𝑥), which
happens with negligible probability since Apr cannot query the

signing oracle on 𝑥 . From here, the pseudorandomness property

follows. □

5 IMPLEMENTATION AND EVALUATION
This section presents the implementation results of our X-VRF con-

struction as well as the naive SL-VRFwhich is used as a baseline for
comparison. Traditionally, VRF constructions from unique signa-

tures require the signature to be stateless. However, we argue that

in most of the blockchain applications a stateful VRF is sufficient

as the blockchain can easily maintain the state.

5.1 Implementation Setup
Both SL-VRF and X-VRF have been implemented in C for a level

of post-quantum security of 𝜆 = 128. We choose to work with

SHA-256 as the hash function. The implementation of SL-VRF is

based from [30]. It couples KKW [23] with the Fiat-Shamir trans-

form to get a NIZK. The implementation of X-VRF is derived from

the XMSS implementation provided in [19]. Both implementations

were deployed on a machine with a Intel(R) Core i7-86500 CPU @

1.90GHz 12GB of RAM.

5.2 VRF Proof Sizes.
Table 2 summarizes the proof size of each instance. As expected,

the X-VRF constructions clearly outperform SL-VRF with proof

sizes at least 13.3 times smaller. The VRF proof size in a X-VRF
instance denoted by |X-VRF.𝜋VRF | is computed by the following

formula |X-VRF.𝜋VRF | = ℎ ·𝑛+𝑛 ·len. The VRF proof of our SL-VRF
construction depends only of the size of the NIZK proof [22]. The

size that we presented in Figure 2 differs from the one provided

by Katz et al. [23], and the reason behind this is that we used the

parameter of the NIST submission presented in [22] which have

been optimized to give a compromise between algorithm efficiency

and proof size. The size of the VRF proof for SL-VRF construction

is denoted by |SL-VRF.𝜋VRF |, and we refer the reader to [22, 23] for
further details.

5.3 Memory Requirements
In Table 2, we propose applicable memory requirements for our

four instances of X-VRF. It is important to know that the mem-

ory capacity impact principally the X-VRF evaluation procedure.

The X-VRF key generation procedure does not require expensive

memory as the full XMSS tree does not need to be fully stored.

A capacious memory can reduce the offline computations for

the XMSS evaluation procedure that are the authentication path

selection (the grey nodes in Figure 1). Devices with high memory

capacity will be able to store the whole XMSS tree and therefore

avoid any offline computation. However, the required memory to

store the full tree (together with theWOTS+ keys) would be imprac-

tical particularly for the X-VRF-23 and X-VRF-27 instances which

would require respectively 35 GB and 350 GB to store the com-

plete binary tree. Therefore, we propose to store the ℎ − 1 levels

of the XMSS tree (i.e., the whole tree except the bottom leaves and

WOTS+ keys). This means that offline computations are necessary

every two evaluations and requires the computation of the two

WOTS+ key pairs based on a secret seed and a PRF. For example

in Figure 1, if XMSS.index = 0, the offline phase computes both

first WOTS+ key pairs. Then, if XMSS.index = 1 there is no offline

computation required as both firstWOTS+ key pairs have been gen-

erated. Then, when XMSS.index = 2 the offline computation will

generate WOTS+ key pairs number 2 and 3. The memory required

with this technique for all instances is highlighted in Table 2. This

advantage to have cheap offline computations (≪ 1 ms) needs to be

done for only half of the X-VRF evaluations and most importantly

it requires a maximum of 4GB of memory, which can be considered

to be acceptable and be applicable to lightweight devices.

5.4 VRF Computation Efficiency
We further present four instances of X-VRF with different heights

of the XMSS tree. We evaluated VRF with heights 15 (denoted as

X-VRF-15), 19 (denoted as X-VRF-19), 23 (denoted as X-VRF-23) and

27 (denoted as X-VRF-27). This means each of these instances can

generate, respectively, at most 2
15
, 2

19
, 2

23
and 2

27
VRF evaluations.

Table 2 summarizes the performance of each instance. When it

comes to the key generation procedure SL-VRF as expected out-

performs all X-VRF instances, as it only requires the selection of

a random element of 𝑛 bits while all four instances of X-VRF need

to generate XMSS tree with a greater height which leads to more

computation.

Although the KeyGen of SL-VRF is much faster than that of

X-VRF, the running time of the evaluation algorithm Eval of SL-VRF
cannot compete with the stateful construction X-VRF. Eval of
SL-VRF requires the simulation of MPC computation, which is

quite costly.

Regarding the performance of the evaluation algorithm of X-VRF
instances the performance of X-VRF is really competitive. The rea-

son behind is that only theWOTS+ signature needs to be computed

at the spot, as the authentication path could be pre-computed. For

X-VRF, the evaluation cost is at most (𝑤 − 1) · len calls of the cryp-
tographic hash function. Our results demonstrates that X-VRF is at

least 956 times faster than SL-VRF for the VRF evaluation.

The VRF verification of X-VRF also outperforms SL-VRF by at

least 474ms. The total cost verification for SL-VRF is the verification
of a number of execution of the MPC-in-the-head with 𝑃 − 1 parties

(details presented in [22]), while X-VRF needs only a maximum of

ℎ+𝑤 ·len+log len calls to the hash functionH. Note that verification
runtime in the blockchain application is an important metric as this

needs to be repeated by all (honest) committee members.

6 INTEGRATION TO ALGORAND
In this section, we discuss the details of our X-VRF integration

into the Algorand consensus protocol. As discussed earlier, the

uniqueness of X-VRF (and the underlying XMSS signature) crucially
relies on enforcing the use of a single pre-determined counter ctr
in VRFEval (or index XMSS.idx in XMSS.Sign). We can achieve

this easily in the blockchain setting. In particular, there is already
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Table 2: Performance evaluation of X-VRF, SL-VRF, ECVRF and LB-VRF. For LB-VRF, we report the results provided in [12]. For
ISO-VRF, we report the results provided in [24]. For the memory requirement of X-VRF, an evaluator stores 2

ℎ 256-bit values
for ℎ ∈ {15, 19, 23, 27}.

Instances ECVRF X-VRF-15 X-VRF-19 X-VRF-23 X-VRF-27 SL-VRF LB-VRF ISO-VRF

Memory requirement for Eval negl. 1 MB 16 MB 256 MB 4 GB negl. negl. negl.

PK size 32 B 64 B 64 B 64 B 64 B 48 B 3.32 KB 97 B

SK size 32 B 132 B 132 B 132 B 132 B 24 B 0.45 KB 436 B

Proof size 80 B 2.63 KB 2.76 KB 2.88 KB 3.01 KB 40 KB 4.94 KB 836 B

KeyGen 0.05 ms 48.9 s 14.2 min 3.73 h ≈ 58 h 0.38 ms 0.33 ms 1.5 s

VRFEval 0.10 ms 0.72 ms 0.75 ms 0.78 ms 0.80 ms 765 ms 3.1 ms 12 s

VRFVerify 0.10 ms 0.87 ms 0.91 ms 0.94 ms 0.97 ms 475 ms 1.3 ms 240 ms

Table 3: Estimated TPS for our VRFs with different signatures on various number of nodes. ‘N/A’ means the given number of
nodes cannot be supported.

#Nodes Signature X-VRF-15 X-VRF-19 X-VRF-23 X-VRF-27 SL-VRF ECVRF LB-VRF ISO-VRF

Ed25519 1010 1010 1010 1009 940 1015 1000 1013

10 Rainbow 1008 1008 1008 1007 938 1013 998 1011

SPHINCS+ 34 34 34 34 32 34 32 32

Ed25519 990 989 988 987 639 1014 939 1005

50 Rainbow 988 987 986 985 638 1012 937 1003

SPHINCS+ 33 33 33 33 21 34 22 24

Ed25519 966 963 961 958 263 1014 862 996

100 Rainbow 964 961 959 957 263 1012 861 994

SPHINCS+ 32 32 32 32 9 34 10 14

Ed25519 521 496 474 449 1000

N/A

820

1000 Rainbow 520 495 473 448 N/A 998 818

SPHINCS+ 17 17 16 15 34 N/A

Key Lifetime 45 hours 1 month 1.3 years >20 years Practically unlimited 5 seconds 5 seconds

the block number that serves as a globally agreed, inalterable and

publicly accessible counter. Let 𝑁 = 2
ℎ
be the number of leaves

in XMSS and 𝐾 be the block number. Then, we let the verifiers

check that the ctr (or XMSS.idx) used at block number 𝐾 is equal

to 𝐾 mod 𝑁 . Therefore, every user is forced to use the leaves in a

certain order and we can achieve uniqueness.

6.1 Performance Estimation
To illustrate our benchmark results better, it is important to un-

derstand the bottleneck of the current Algorand protocol. As of

September 2020, Algorand’s mainnet employs over 1000 nodes, and

allows for roughly 5.4 MB of data propagated per block, as a result

of their efficient consensus protocol. It consists of 5000 signed trans-

actions, at 1064 bytes each, and 80 KB for VRF data. To break up the

VRF part, 1000 nodes implies 1000 ECVRF proofs, which is around

80 KB of data. It is straightforward to see that the majority of the

data is reserved for transactions. Under the assumption that a trans-

action is 1KB on average, and the signature is Ed25519, Algorand

allows for 5K transactions per block, or, roughly 1K transaction per

second (TPS) as Algorand generates a block in about 5 seconds.

Note that, in Algorand, although the final blocks only log trans-

actions (while VRF payload are not included in the final blocks by

design - the committee members only attest that they have seen

9



M. Buser, R. Dowsley, M. F. Esgin, S. K. Kermanshahi, V. Kuchta, J.K. Liu, R. Phan, and Z. Zhang

enough votes, without putting those information to the block for

performance reasons), the actual data propagated through the net-

work during each block is indeed the combination of VRF payload

and the transaction payload. Therefore it makes sense to use this to-

tal payload size as the networks throughput limitation, rather than

the actual blocksize. To summarize, we follow [12] and estimate

the Algorand TPS throughput as follows:

TPS =
payload size − total VRF cost × #nodes

(transaction size + signature size) × blocktime

.

Note that as ‘refreshing’ a key pair happens much less frequently

for X-VRF (in comparison to LB-VRF), the per-round cost of a key

refreshment is negligible in our setting. Using the above formula,

we estimate the TPS throughput of Algorand using our VRF in

combination with different signature schemes that are used to au-

thenticate transactions. In this computation, we make the following

assumptions as in [12] for a fair comparison. We assume a payload

size of 5.4 MB. We follow Algorand and assume 1 KB data for trans-

action size. As Algorand generates a block in about 5 seconds, we

take blocktime as 5 seconds. The last moving part in the equation

is the signature size. For this component, we consider the origi-

nal Ed25519 signature used by Algorand, whose signature size is

64 bytes. In addition, we also consider two extreme cases in the

post-quantum setting: (i) Rainbow
2
[10] -the shortest signature

finalist candidate in NIST’s Post-Quantum Cryptography standard-

ization process- whose signature size is as small as 66 bytes
3
, and

(ii) SPHINCS+ [5], whose signature is 30696 bytes, which relies

on symmetric primitives only. For X-VRF, we further set the tree
heights as 15, 19, 23, 27. This means a user can use the same key

in X-VRF for roughly 45 hours, 30.3 days, 1.33 years and more

than 20 years, respectively. For SL-VRF, the nodes would not ever

need to re-generate keys in practice. We will talk about X-VRF key

schedules in the next section.

Turning to the performance comparison, as one shall see in Table

3, our X-VRF can be integrated into Algorand for all four settings.

For the real world scenario (1000 nodes), with X-VRF we see a

roughly 55% reduction in TPS for both Ed25519 and Rainbow. Note

that it is a common understanding that post-quantum cryptogra-

phy performs much worse, compared to classical ones. Hence, we

believe that even a 55% reduction should be considered as a great

achievement of our solution, rather than a drawback. The through-

put for SPHINCS+ is much worse, recording 16 TPS on average.

We note that even this case is still faster than Bitcoin (at 5 TPS). On

the other hand, the stateless VRF SL-VRF does not perform well for

large networks. Our simulation shows that the consensus is only

possible for a network of at most around 100 nodes. When the num-

ber of nodes is higher, the blockchain capacity is not sufficient to

transmit the SL-VRF payload, thus, making the protocol unusable.

6.2 Dual Key Scheduling
Now that we know our X-VRF provides a much more practical

solution than SL-VRF, it is imperative to argue the usability of

our stateful X-VRF. In our vision, a protocol should deploy both

X-VRF and SL-VRF. X-VRF provides great performance, and should

2
https://www.pqcrainbow.org/

3
We note that the signature length of 48 bytes of an earlier Rainbow version is used in

[12].

always be used when they are available. However, as per setup, an

X-VRF key needs to be refreshed once in a while, requiring the user

to be online at a certain time. This update requires an additional

64 bytes for VRF public keys, and a signature on the public key

for authenticity, per cycle. We consider this cost to be negligible,

compared to the rest of the cost as for X-VRF-23, for example, a

cycle happens only every 1.33 years. In practice though, we cannot

rule out the cases where users may lose their keys. For conservative

purpose, nonetheless, it is desirable to have a backup plan: the user

falls back to SL-VRF if he has consumed all X-VRF keys and has

not uploaded a new X-VRF key (See Figure 2).

There are nonetheless two additional subtleties here. First, if

every user needs to update their keys periodically, the network

may be flooded by X-VRF keys that are never used. Our solution is

as follows. For relay nodes who may be very frequently selected

as committee members, we suggest that they use X-VRF. They are

actually a very small portion of the user base, and account for the

majority of VRF payloads. For casual users who perhaps will vote

rarely in their lifetime, it is sufficient for them to use SL-VRF, which
minimizes the number of key updates.

The other issue is with the VRF randomness. At a given round

when the user does not have an X-VRF key, the user may actually

choose to either upload a new X-VRF key, or use his default SL-VRF
key. This breaks the uniqueness of the VRF. Our solution is to

enforce the user to announce its new X-VRF key a few (say, 𝑘)

rounds prior to it being active, where 𝑘 is a system parameter, and is

currently set to 10 by Algorand blockchain. This approach is indeed

already adopted by Algorand with its ECVRF, to limit attackers

with a large share of tokens from speculating the block randomness

(derived from ECVRF) in the future. It is straightforward to see that,

with this restriction, for any given round, if the user has announced

an X-VRF key 10 blocks earlier, then it must use that key; otherwise

it must use its SL-VRF key. Thus, uniqueness remains intact.

Eventually, we achieve a post-quantum blockchain that supports

both X-VRF and SL-VRF. Under the assumption that most of the

users will be online regularly, we further assert that the final TPS

will be (very) close to the data for X-VRF in Table 3. Since this

dual VRF is an orthogonal direction from this paper, we leave the

rigorous analysis to future work.

6.3 X-VRF Instances
As explained previously, we propose four different instances of

X-VRF and there are the only applicable constructions to Algorand’s
1000-node setting as the results in Table 3 demonstrate. Because

of the stateful nature of the XMSS signature, there is a maximum

number of possible VRF evaluations per key pair. Our goal in the

choice of XMSS tree heights is to have VRF instances that can be

used for at least one day in Algorand (X-VRF-15) without updating
the keys, another for at least one month (X-VRF-19), third one for at
least one year (X-VRF-23) and the last one (X-VRF-27) which could

be used for more than 20 years. Each of these VRF instances has

different advantages which can be summarized as follows. When

using the X-VRF-15, the keys need to be updated every 45 hours. If

we assume that each node stores the full XMSS tree it will require 1

MB of storage which is 256 times less than the memory required to

store a XMSS tree when using the X-VRF-23 and even 4096 times
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Figure 2: XMSS/X-VRF state and Blockchain

less than in the case of X-VRF-27. The main disadvantage of using

X-VRF-15 is the regular key update that needs to be performed every

45 hours yielding several regular updates during the year. X-VRF-19
allows the network to update the keys only once per month but

the computational cost of these monthly updates is 32 times higher

than the cost needed when X-VRF-15 is used. X-VRF-23 offers the
possibility to make this update only every 1.33 years but the cost

of this update for each node takes 3.73 hours on our machine and

is 256 times greater than the cost required in X-VRF-15. Finally our

last instance, X-VRF-27 avoids the need of a key update for more

than 20 years, the key generation would be only necessary when

new nodes join the network or when a node has lost its key. The

main advantage of this instance is that the network does not need

to go through a regular key update similar to the SL-VRF instances.

The disadvantage is the cost to join the network or the cost of losing

the key which takes around two days on our machine and is 4096

times greater than the cost of an update in X-VRF-15.
Table 3 illustrates the expected TPS for each of X-VRF instances,

and as explained previously the best performance is achieved with

Rainbow signature scheme. For this part, we assume that nodes will

not lose their key. For a network composed of 10 nodes, all X-VRF
instances achieve the same expected TPS which means that in a

network of 10 to 50 nodes instances with fewer key updates could

be privileged. For a network of 100 nodes, X-VRF-15 achieves the
best TPS, however its TPS difference with X-VRF-27 consists of only
8 transaction per second. When there are 1000 nodes the difference

of TPS is logically larger, X-VRF-15 could process 72 transactions

per second more than X-VRF-27 when using Ed25519 or Rainbow

signature scheme. However, the synchronization of a generalized

key update for a larger network could be more challenging and

could slow down the process.

Memory Optimization. We presented in Section 5.3 the ideal

memory requirement to achieve a balance between offline com-

putations and memory consumption (See Table 2). However, it is

important to know that these memory requirements are flexible and

can be adapted to user specified preconditions. As previously ex-

plained, the fast way to evaluate the VRF is to pre-store the path in

the tree then compute the WOTS+ signature for the current round.
However, the current node does not necessarily need to store ℎ − 1

levels of the full tree. Indeed, the node can pre-compute and store

only certain paths that are needed for the rounds in the near future.

As the rounds progress, the paths that are no longer needed can be

discarded and new paths can be pre-computed and stored. This way,

we can keep the memory requirements at even lower levels. Overall,

there are straightforward trade-offs to be considered depending on

the user’s system specifications.

Choice of Instance.We showed that all four X-VRF constructions
are promising post-quantumVRFs applicable in an existing network

like Algorand. Each of them have different advantages going from

memory consumption to key update times. To avoid the challenges

of synchronizing key updates throughout the network, X-VRF-27
appears to be the best. If the focus is on achieving the best TPS and

reducing the impact of key loss, then X-VRF-15 would be the best.

X-VRF-23 provides a tradeoff between TPS and recurrence of key

updates. Moreover, our proposition of dual key system by coupling

X-VRF with SL-VRF combines the best of two worlds.

6.4 Comparison with current state of the art
To the best of our knowledge, there exist only two other prac-
tical post-quantum VRFs, the first one is provided in [12] using

lattice-based techniques and we refer to it as LB-VRF. The second is

introduced in [24] and referred to as ISO-VRF in this work. ISO-VRF

is currently the only Isogeny-based post-quantum VRF. Table 3

presents the expected TPS in Algorand, as given in [12], for LB-

VRF and for ISO-VRF, we computed the expected TPS in Algorand

according to the parameters presented in [24].

X-VRF vs LB-VRF [12]. Our results show that all four X-VRF
instances outperform LB-VRF when it comes to TPS for all node

sizes due to its shortest proof size of X-VRF instances compared
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to LB-VRF (see Table 2). As the number of nodes increases, the

advantage of our constructions increases. Another disadvantage of

LB-VRF is that the users need to update their keys at every round

(block generation), hence every 5 seconds in the case of Algorand.

Our X-VRF construction, on the other hand, can support the use of

the same key pair for at least 45 hours; e.g. X-VRF-15, which has the

shortest key life time. X-VRF-27 offers the possibility to work with

the same key for more than 20 years. Even if it is difficult to compare

the algorithms’ performances because they were not executed on

the same machine as LB-VRF numbers were taken from the original

paper [12], X-VRF seems to be more efficient when it comes to VRF

Evaluation performances as LB-VRF takes 3.1ms while the slowest

X-VRF takes only 0.8 ms. The difference between both verification

procedures is too small to draw any conclusion.

X-VRF vs ISO-VRF [24]. The comparison between our construc-

tion and ISO-VRF in Table 3 shows that ISO-VRF outperforms X-VRF
when it comes to the expected TPS in Algorand. This difference of

performance ensues directly from the shorter proof size of ISO-VRF

compared to all four instances of X-VRF as illustrated in Table 2.

However, more crucially is that the proof size of ISO-VRF presented

in Table 2 has been directly taken from [24] which only offers

post-quantum NIST-1 level of security, while X-VRF achieves at

least level 2 of NIST post-quantum security. Secondly, the main

advantage of X-VRF over ISO-VRF is that a key pair can be used

for at least 45 hours while ISO-VRF, similarly to LB-VRF, needs

to update their key after every round/block, so every 5 seconds.

Another important advantage of X-VRF compared to ISO-VRF is

the performance of the algorithms particularly of VRFEval. It is
important to note that ISO-VRF has not been implemented but its

authors [24] estimated the time per evaluation to 12 seconds (see

Table 2) without any parallelization. This makes ISO-VRF unprac-

tical compared to our construction which performs VRFEval for a
maximum of 0.8 ms. The X-VRF verification procedure also seems

to outperform that of ISO-VRF’s. The final advantage is the level of

comprehension of X-VRF’s security compared to ISO-VRF. Indeed,

X-VRF is based on XMSS which is a mature primitive and has a

security well understood by the research community. In contrast,

ISO-VRF is a new approach and its security has not been studied.

7 CONCLUSION
In this paper, we introduced the first post-quantum verifiable ran-

dom functions based on symmetric primitives. Our XMSS-based
X-VRF proposals support a competitive number of transactions per

second in a post-quantum PoS-based consensus protocol. It clearly

outperforms the one-time lattice-based VRF when it comes to proof

size and matches the one-time isogeny-based VRF while ensuring

a higher security level. X-VRF is the first, and currently only, post-

quantum VRF allowing to evaluate multiple inputs with the same

key pair. Being based on long-studied symmetric primitives, all

X-VRF instance provide strong security assurances while also being
highly efficient and strongly outperforming current state of the art

performances.
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